
Mission Kontrol:
Revolutionizing Combat Testing for
Mortal Kombat 1

Etienne Palmer-Campbell
Gameplay & Tools Engineer

NetherRealm Studios

Thank you everybody for coming today.

In a challenging fighting game such as Mortal Kombat
with thousands of unique inputs, how can you ensure
that all your developers are capable of independent
in-game testing?

Today I want to demonstrate why you don’t always
need to be good at video games to work on them. I’ll
do that by telling the story of Mission Kontrol: a tool
that revolutionized combat testing for Mortal Kombat
1.

My name is Etienne Palmer-Campbell. I’m a
Gameplay and Tools Engineer working at
NetherRealm studios.

Content Warning

Blood and Gore,
Intense Violence

Right up front I’d like to give a content warning
because this presentation includes some gameplay
footage from Mortal Kombat 1 which is rated mature
for Blood, Gore, and Intense Violence.

Background

I’ll start with a little background on myself and the
games we make. I’ve been with NetherRealm since
2018 at the start of my career, which was
midway through the development of Mortal Kombat
11 [click]. My time on that project was mostly spent
providing support to other gameplay engineers while
I learned the ropes and handled minor gameplay
features.

After finishing work on MK11 and it’s DLC, I moved
on to some prototype work in Unreal Engine 4. [click]
This was a precursor for the engine migration we did
when transitioning from Mortal Kombat 11 to our
latest project: Mortal Kombat 1.

[click]
During the Mortal Kombat 1 project, some of my
primary engineering responsibilities included: work

for the Combat AI, Tutorial features, and creating debug
combat testing tools, which is what I’ll be talking about
today.

So, the context for this presentation is going to be about
fighting games made in Unreal Engine, but the engine
components I reference do carry forwards into the latest
version of UE5 and I believe the takeaways can be applied
more broadly than fighting games.

The fighting games we make at NetherRealm are
known for how challenging they can be. Players often
need to invest a lot of time practicing their skills
before feeling comfortable with the controls. I’ll hold
off on the details of our game for now, because what
I’m getting at is that developers are not an exception
to this!

Anything that makes your game harder to play also
makes it harder to work on. This difficulty is often
increased further by the game always changing
during development. We use tools to mitigate that
problem.

Accessibility

Independence

Iteration Time
Mission Kontrol

What I’m going to show you today is how to create
specialized gameplay testing tools within the Unreal
Engine – as well as what this can do to promote
[click] accessibility, independence, and reduced
iteration times for your whole team when performing
gameplay feature testing.

Maintaining the stability of a shared game project is a
shared responsibility, so it’s important for every
developer to have what they need to test their work
efficiently.

➢Workflow Problem

➢Unreal Solution

➢Feedback Iteration

I’ll start by describing the problem we identified and
why it was important to address.

Then I’ll talk about how and why we decided to solve
that problem using only the tools available within the
game engine.

Finally, I will show you the iteration and feedback
process we went through to evolve the tool into what
it is today.

[click]
Let’s begin with some more context about that
original workflow problem.

2019 2020 2023

Workflow Problem

The Mission Kontrol project started in 2020, during
the transition from Mortal Kombat 11 to Mortal
Kombat 1.

For those of you who are unfamiliar with the
gameplay of modern Mortal Kombat, let me introduce
you with a trailer for one of our recently released DLC
characters. This will help set the stage for
understanding our problem space.

I want to demonstrate how much effort goes into a
character. While watching, keep track of the different
types of content the characters demonstrate.
Particularly during the cinematic sequences towards
the end.

Workflow Problem

[Wait for trailer to finish]

Workflow Problem

Character
Content

Foley / SFX

Dialogue

Cinematics

Animation

Dismemberment

(Gore)
Visual
Effects

Cloth Sim

Character
Skins

Character
Props

(Weapon,
Hats)

As you can see, a single character in our game
requires a lot of polished content from a wide variety
of disciplines. Like any fighting game, our core
gameplay revolves around these characters, which
means everybody in the studio needs to be able to
rapidly iterate on it.

One of the most expensive features shown at the end
of the trailer is the Fatalities. These in-engine
cinematic sequences live at the core of the Mortal
Kombat identity, each character has several of them
along with many other similar finishing moves like
Brutalities or Fatal Blows. This type of content
exercises every one of those systems.

Workflow Problem

When you multiply that by our full roster of
characters, you end up with a mountain of content.
MK1 launched with 23 playable main characters, with
12 additional characters released as DLC to date. The
latest DLC is being released this month, T1000 from
Terminator 2.

Workflow Problem

This game also introduces Kameo fighters. These are
essentially sidekick characters whose abilities get
added on to your main character and are featured
heavily during the cinematic moments.

These don’t add quite as much content as a full
character, but it’s still comparable. It also introduces
a lot more permutations to worry about when
characters interact with each other.

So the problem is all the content we’ve discussed so
far is hidden within gameplay, and as I mentioned
earlier, our games are designed to be challenging.

Workflow Problem

That core gameplay loop always involves a lot of
complex button combos which vary for every
character across increasingly large rosters. Each of
those characters has their own unique set of attacks
which we call a move list. Each of those attacks,
including the Fatalities and other cinematic
sequences, is mapped onto a unique button
combination. Some characters have upwards of 100
different moves.

Players need to memorize and be able to execute at
least a few of these to play the game effectively.
Many players will only pick a single character to focus
on growing their skills with, but as a developer I may
end up working on all of them.

While this move list screen is helpful, during
development it always may not be available or

accurate until the later stages of the project, which leaves
us to track down this information on the fly.

Workflow Problem

The quantity of moves isn’t the only issue here. One
of the pillars of fighting games is that these many
attacks can be strung together to create combo
sequences, which often requires careful timing and
challenges your dexterity. This becomes an
accessibility problem.

For example, take a look at this combo challenge.
This is single player content designed to practice and
test advanced skills. The controller in the lower
corner is a live input display.
[play clip]

As one of the developers responsible for this feature,
I need a way to consistently reproduce complex
interactions to validate features like this. While I do
enjoy fighting games, let’s just say my engineering
skills are more relevant than my fighting game skills,

so I’m not well practiced enough to get this right on my
first try. But when I’m fixing bugs, I want to get it right on
my first try, every time, and I want it to be easy.

Workflow Problem

Introduce Mission Kontrol. This is a testing tool made
for automating combat gameplay, intended to be
accessible for any developer. It provides a remote
interface for users to view character move lists and
request the automated execution of those moves.
This clip is a preview of the latest version of the tool.
I’m using it to replicate a resurrection scenario that
you may recognize from the gameplay trailer we
watched.

[play video]

One of Conan’s moves allows him to come back from
the dead, and it requires a little bit of setup to make
it happen. Mission Kontrol makes it simple to
reproduce that scenario repeatedly by automating the
inputs, as well as putting the game into the correct
state beforehand.

If I didn’t have this tool and I didn’t know how to perform
any of those moves myself, I might have to ask somebody
from the design or QA team to come to my desk and help
me reproduce.

Workflow Problem

Before Mission Kontrol, we did have other tools that
helped with this type of problem. One of those tools
is input recordings. Our games typically feature a
training mode where you can capture and play back
your own inputs. This is invaluable for training, and
for local testing. There are also first party console
developer tools that can capture and playback raw
inputs before they get to the game.

The downside here is that it’s not independent if you
don’t know how to perform the move. It requires
cooperating with somebody who knows how to do it,
making it a two-person job.

So, going into this project we already had enough
reason to investigate more efficient workflows.

Remote Work

• Restricted hardware

• Restricted collaboration

• Remote console control
software unreliable

Workflow Problem

However, just as we began researching this tool at
the start of 2020, the United States entered lockdown
for the COVID-19 pandemic, and the workflow
problem grew larger.

Everybody started working remotely, making it
difficult to collaborate on reproducing issues.
Depending on the hardware they were able to take
home, many devs suddenly did not have physical
access to their devkits (which are at the studio) or
the ability to use a physical controller to remotely
play the game on consoles.

The problem grew from “What buttons do I press?”
into “How do I press buttons?”.

The existing solution for this includes first party
remote control software for the playstation and xbox

platforms, which allow you to interact with the console
remotely. However, these tools are not always as reliable
or easy to use for testing as a local connection. It gets the
job done most of the time, but it doesn’t make it any
easier. This has continued to be relevant as working from
home has become more commonplace.

Accessibility

Independence

Iteration Time
Mission Kontrol

Workflow Problem

So, taking a step back, you can see how each of
those aspects of our workflow are impeded by the
nature of our game and work environment. The
problem of input complexity may not be relatable for
developers in every genre. However, the message
here is that if there’s anything interfering your ability
to efficiently test core features, then it’s a problem
worth investigating.

➢Workflow Problem

➢Unreal Solution

➢Feedback Iteration

So, we know what the problem is. [click]

How did we leverage the Unreal Engine to solve it?
The first step was plotting out the requirements and
putting together a high-level view of the components.
I’ll go over our overall plan, as well as run through
some technical details specific to Unreal Engine.

Requirements

Unreal Solution

At the application level, we knew that we needed:
- [click] The option to have a portable application,

not dependent on Editor. This makes the tool
easier to use for certain workflows that don’t
always need the full editor, such as engineers, QA
testers, or external teams who don’t have access
to the Editor.

- [click] We also needed to connect to game
instances on any of our release platforms,
including those which are managed by external
teams such as Nintendo Switch and PC ports.

Requirements

Unreal Solution

For functionality, our starting point goal was to
request character move list data from the game
application, present it to the remote user, and then
use that data to request automated move execution.

• Not in retail builds
• Access to Game API
• Services tool requests

Game Automation PluginMission Kontrol Engine Plugin

Tool Adapter Game Adapter

Unreal Solution

Tool Interface
Game

Application

• Slate UI
• Display move list
• Execute selected move

Network with
game instances

With those requirements in mind, we plotted out a
model of the tool following this general structure:
- Mission Kontrol Tool Plugin – Unreal engine plugin

using Slate UI to build the tool interface. Slate is
the UI framework used by the unreal editor
application, which I’ll talk more about later.

- Tool Adapter – module on the tool plugin which
manages networking with eligible game
instances. This includes establishing connections
and sending or receiving data.

- Game Adapter – debug only plugin on the game
application which networks with the tool
application and services automation or data
requests.

So how does the Unreal Engine fit into all of this?

Unreal Solution

Slate UI

“Messaging”
Runtime Module

Unreal Frontend

Session Frontend inside of Unreal Frontend program (UE 4.27)

There are 3 unreal components that make up the
core of what we needed.

[click]

The Slate UI framework,

[click]

The engine runtime module called “Messaging” which
handles the networking between Unreal applications
on the same network or same process, which is the
case when you are running the game from inside the
editor application.

[click]

Finally, Unreal Frontend. This is a lightweight
standalone program built separately from the editor

which hosts several debugging tools. One of those tools is
called “Session Frontend”. Reverse engineering this tool
was my starting point for Mission Kontrol. Session
Frontend provides a model for how to use all three of
these components to create a remote debugging tool. As a
first step, I created a shell for the tool interface using
Slate.

Unreal Solution

Extend

Replicate

Session Frontend inside of Unreal Frontend program (UE 4.27)

There are a couple different paths we considered
taking from this point that you should also consider.

[click]

One option was to directly extend Session Frontend
by adding additional panels inside of it. This would
then borrow the same remote connection service.

[click]

The second was to create an independent tool
modeled after Session Frontend.

• More Flexible UI

• Independent Networking

• Avoid Engine Modification

Why Replicate?

Unreal Solution

Extend

Replicate

Session Frontend inside of Unreal Frontend program (UE 4.27)

The second option does involve more work, but there
are a few reasons we chose this path for Mission
Kontrol. Mostly it has to do with our intended scope:

We knew that we wanted Mission Kontrol to have it’s
own internal tab well, similar to Session Frontend.
This allows it to serve as a toolbox with room to grow
– by adding additional panels.

We wanted greater control over the networking
component and the way that game instance
connections are managed for the user. Making
changes to the Session Browser, which is the
component on the left that manages connections for
Session Frontend, would have involved engine
modifications.

Generally, we try to avoid making engine modifications
because it increases the cost of integrating new engine
updates and poses a risk of breaking other engine
features.

If this doesn’t apply to you then you might consider
extending instead, which could be cheaper for a simpler
tool.

So here are the steps we took to create our own version of
a frontend tool.

• Editor Standalone Window

• Engine Plugin

Create the Plugin

Unreal Solution

https://dev.epicgames.com/documentation/en-us/unreal-engine/slate-editor-window-quickstart-guide-for-unreal-engine

The first is creating the engine plugin for the tool
interface. You can do this from the Editor by opening
Plugins window, then adding a new plugin of type
“Editor Standalone Window”. You’ll need to specify
Engine plugin here so it can be added to the Unreal
Frontend later.

Unreal Solution

https://dev.epicgames.com/documentation/en-us/unreal-engine/slate-editor-window-quickstart-guide-for-unreal-engine

This image is of UE5, but the steps are the same as
in UE4. At the time I originally did this the Slate
documentation was relatively sparse, but UE5 has
better documentation walking you through this part
of the process so I recommend checking that out.

Creating the plugin will generate some boilerplate
code files, which is where you’ll begin writing Slate
code. Despite my lack of UI experience at the time I
was still able to use Slate to implement just about
everything people could ask for by referencing the
large library of Slate widgets that are used across the
Editor. I found the easiest way to learn was the
Widget Reflector tool.

Widget Reflector // Session Frontend (UE 4.27)

Unreal Solution

The Widget reflector displays the implementation
details for any of the UI elements you can see in the
editor, allowing you to browse examples of Slate
code by using the editor as a gallery. This is how I
modeled after existing Editor UI patterns such as the
Session Frontend. You would also find this useful if
you decided to extend instead of replicate. Since I
wanted my own version of the Session Browser
panel, I used the widget reflector to track down the
implementation. [click]

Clicking that link takes me directly to the source code
for the Session Frontend widget, and from there I
found the Session Browser code. This not only gave
me access to all the Slate widgets I would need to
display a list of connections, but it also directed me
towards the underlying networking modules, which is
the next major step.

Game Automation PluginMission Kontrol Engine Plugin

Tool Adapter Game AdapterTool Interface
Game

Application

UE Developer Modules UE Runtime Modules

Unreal Solution

MessagingSession ServicesSession Frontend
(For the Session Browser)

The engine runtime modules that facilitate
networking and communication for Session Frontend
are called [click] Messaging and Session Services.

The Messaging module is an API for setting up what
are called message endpoints and sending data
between them. This is needed to communicate
between the Game Adapter and Tool Adapter.

The Session Services module is an API for managing
messaging connections. It maintains a list of game
instances that are discoverable on your network and
manages which of them is considered active in the
Session Browser used by Session Frontend. The
active session can be accessed via the API, which
allows your tool to borrow the same connection as
Session Frontend, as well as the same Session

Browser UI.

Messaging Settings

UDP

• Project Settings
• Plugin > UDP Messaging

• Command line args
• Game Application

• -Messaging

• -SessionOwner=USERNAME

TCP

• Project Settings
• Plugin > TCP Messaging

• Command line args
• Game Application

• -Messaging

• -SessionOwner=USERNAME

• -TcpMessagingConnect=IP_ADDRESS:PORT

• Tool Application
• -TcpMessagingListen=IP_ADDRESS:PORT

Two important notes about the Messaging system is
that it will be disabled by default in any non-editor or
shipping build, and the default protocol is UDP.

These settings can be changed by editing the default
project configuration, or on a case-by-case basis with
command line arguments when launching the
application.

We used TCP because it prevented bugs with
messages being received in the wrong order during
high traffic. We also used command line instead of
keeping it enabled by default, because the IP address
needs to be specified for TCP and that information is
dependent on the context you’re launching from.
Your mileage may vary on this, since it does
complicate things for the end user.

Game Automation PluginMission Kontrol Engine Plugin

Tool Adapter Game AdapterTool Interface
Game

Application

UE Developer Modules UE Runtime Modules

Unreal Solution

MessagingSession ServicesSession Frontend
(For the Session Browser)

Going back to the modules diagram, I should mention
that we did not directly use the Session Browser or
the Session Services API in Mission Kontrol. [click]

We created our own version of Session Browser
called the Fight Browser, and managed game
instance connections independently of Session
Services. My recommendation would be not to do
that, and to begin by leveraging the Session Browser
as this diagram suggests.

Unreal Solution

Mission Kontrol Fight Browser tab (UE 4.27)

This is the Fight Browser. This was more work but
allowed for more control over how connections are
managed.

This is where I could have prepared better for the
long-term. It was understood that we would want to
use this framework for other tools going forwards,
but the immediate goal of Mission Kontrol was very
specific and held my focus. While implementing the
adapter modules responsible for networking, I didn’t
spend enough time ensuring that they would be
generic enough to allow independent tools borrowing
the same connection, like Session Services. The
consequences came later when we needed to add
unrelated tools either as extensions of the Mission
Kontrol plugin, or with a dependency on it. This goes
against the intended scope of Mission Kontrol, but it
was a sacrifice we made to avoid the cost of a

refactor. It’s important to keep encapsulation in mind
when implementing core components like that to avoid
accumulating tech debt. Alternatively, don’t re-invent the
wheel.

Extending Unreal Frontend

1) Tool Plugin independent from Editor
• Use WITH_EDITOR if needed

2) Tool Plugin Program support
• Tool .uplugin file, see right

3) Modify Unreal Frontend build target to
load and enable Tool Plugin

Unreal Solution

"Modules": [
{

"Name": “ToolAdapter",
"Type": "EditorAndProgram",
"LoadingPhase": "Default“

},
{

"Name": “ToolMessages",
"Type": "RuntimeAndProgram",
"LoadingPhase": "Default"

},
{

"Name": “ToolInterface",
"Type": "EditorAndProgram",
“LoadingPhase": "Default"

}
],
"SupportedPrograms": ["UnrealFrontend"]

So, we’ve gone over everything needed to create a
remote debugging tool, but right now it’s still only
available in the editor. The missing piece is Unreal
Frontend.

For the tool to be available to a standalone program,
the tool plugin must be independent from any Editor
modules. It’s okay if that’s conditional based on the
build target.

Then, all the modules in the tool plugin must be
allowed to load for Programs, and the plugin itself
must explicitly support Unreal Frontend.

From here we decided to directly modify and extend
Unreal Frontend. Alternatively, you could avoid the

engine modification by creating your own standalone
Unreal program, but that is considerably more work.

Unreal Solution

Mission Kontrol inside of Unreal Frontend program (UE 4.27)

Slate UI

“Messaging”
Runtime Module

Unreal Frontend

All together this enabled me to prove out the initial
framework for Mission Kontrol. I now had a basic tool
interface which could be hosted from the editor or a
standalone program and connect to a networked
game instance on any of our console platforms.

➢Workflow Problem

➢Unreal Solution

➢Feedback Iteration

Relying on those existing Unreal tools as a model for
this foundation was critical for me to produce
something useful quickly enough to keep pace with
our rapid development cycle. We wanted people to
learn how to use the tool while setting up their initial
workflows for the project and then provide feedback
to help it evolve alongside the game. This process
was important to start early in development to leave
ample time for iteration.

So now comes the follow through. [click] Several
months later, development on MK1 is accelerating
and the game is starting to take shape.

Feedback Iteration

Focused QA
Testing

•Stability

•Major UX

For the first stage of iteration, we chose our QA team
as the user group. This is not only because software
testing is their specialty, but also because they are
going to be one of the biggest clients for this tool, so
their feedback is valuable. Our goal here is to focus
on stability and major UX improvements based on
that feedback.

This clip demonstrates one of the first versions of the
tool. The window in the bottom right corner of the
screen is the tool interface. Right now, it’s showing
the available game instance connections.

[click]
And now it is displaying a list of all the available
attack commands for player 1 on the left. One of
those commands is then selected and executed in
game. That list of moves is game data that was
requested by the tool upon connecting. It’s important
to note here that this data is not something which
was scraped from content by the tool but rather
communicated by the running game instance.

This satisfies all the requirements from the initial
planning. Pretty simple to begin with but it’s already
more useful than what we had before.

Based on their feedback we made a couple big
improvements. Most notably the ability to request
actions on both players at the same time and setup a
multiplayer interaction, and a panel for controlling
our frame stepping tool, which is demonstrated here.

[Play video]
This frame stepping tool has been with us for a while
now, but the typical way of controlling it is via the
gamepad. There are debug only button chords for
activating it and interacting with it. Since the user is
specifically not using a gamepad in this context, this
provides an alternative interface because the two
tools are frequently used at the same time.

Feedback Iteration

Focused QA
Testing

•Stability

•Major UX

Studio-Wide
Reveal

•Feature requests

•Feedback channels

After this stage, we’re ready to go wide.

[click]
We introduced the tool to the rest of the studio in a
live demonstration and training presentation. At the
end of this presentation, we did some Q&A, including
an open request for any feature ideas. Some of the
most useful features came from this initial wave of
feedback.

Afterwards, we directly asked disciplinary leads to
incorporate the tool into their team workflows and
created a public communication channel on Slack to
use as a feedback forum. Once people had some time
to play with it and saw the benefits, the ideas kept
coming. This is where the tool transformed into
something we now view as essential to our workflow.

This is the latest version of Mission Kontrol which I
previewed earlier. I won’t go over everything that’s
changed, but I’ll talk about a couple of the most
useful features that came out of this stage of
iteration.

[play video]
The first is the concept of test script. Rather than
executing moves one at a time, now you can create a
sequence of multiple tasks, and there’s a wider range
of actions that a task can be, such as executing a
move, executing a console command, resetting game
state, or waiting between actions so that you can
piece together a combo sequence or complex
multiplayer interaction.

What I’m doing here is creating a script that makes
both players jump and hit each other at the same

time, which is an important test case to cover that
requires careful timing.

Possibly the most useful thing to come from this was
the ability to export these test scripts in JSON
format, which can then be shared or attached to
tracking tickets to assist with bug reproductions.
Functionally, this is similar to an input recording but
with some extra capabilities.

What I’m doing here is exporting the test script for
the trading kicks and then importing a different test
script which was created for a different set of
characters.

The test scripts contain some meta data to help make
sure that the correct characters and game settings
are loaded before attempting to import. Here I’m
being prompted to reload the game with the correct
characters during the import process.

This is important so that the game is prepared to
communicate the expected character data upon importing
the script, because the characters need to be loaded for
the data to be accessible.

This particular script demonstrates another scenario
that is difficult to reproduce by hand because of the
spacing between characters and timing of the
attacks.

If I make small adjustments to the initial distance
between players, something a little different happens
each time the reaction that Ghostface has when he
hits the ice clones. This is exactly the type of scenario
that might result in a weird cloth or visual fx bug that
only occurs under specific circumstances.

Having this degree of precise control over the game
state - using a tool that’s accessible to the whole
studio - has made testing and reproduction an
entirely different process compared to previous
projects. It really can’t be understated just how
valuable it is to create a portable bug reproduction in

a complex action game.

[click]
The final stage covers the rest of the project. Gameplay
tools are working with a moving target, and regular
maintenance will be needed to stay functional while the
game evolves. This is another reason why the feedback
channel is so useful, since it gives people a direct line to
notify the tool engineers when anything gets broken.

After the dust settles from that initial wave of new
features, we continue to get requests for new tools as our
priorities change. As I mentioned I won’t cover everything
but here’s a handful of the most elaborate tools that were
created later using the same foundation as Mission
Kontrol.

Feedback Iteration

Focused QA
Testing

•Stability

•Major UX

Studio-Wide
Reveal

•Feature requests

•Feedback channels

Extended
Life

•Maintenance

•New Tool requests

The final stage covers the rest of the project.

[click]
Gameplay tools are working with a moving target,
and regular maintenance will be needed to stay
functional while the game evolves. This is another
reason why the feedback channel is so useful, since it
gives people a direct line to notify the tool engineers
when anything gets broken.

After the dust settles from that initial wave of new
features after the reveal, we continue to get requests
for new tools as our priorities change. As I mentioned
I won’t cover everything but here’s a handful of the
most elaborate tools that were created later using the
same foundation as Mission Kontrol.

Feedback Iteration

Move Test Matrix Brutality Tester

These two, the Move Test Matrix on the left and the
Brutality Tester on the right, are elaborations of the
move tester that were created to assist with smoke
testing. They function similarly, the shared premise
being that they generate and execute large batches
of test scripts based on user parameters, for easy
hands-free smoke testing. Once you hit execute, you
just sit back and watch as a series of test scripts are
executed for a comprehensive variety of scenarios.

It’s important for us to test brutalities like this
because there’s a lot of them, they are intentionally
difficult to execute, and they need to look good for
each permutation of characters because the victim
needs to look good while they’re being torn apart,
and the attacker needs to look good while they’re
doing it. A lot of polish goes into this feature.

Feedback Iteration

QA Frontend

This last one is called QA Frontend, which is totally
packed full of useful debugging tools that our QA
team relies on to quickly iterate over the massive
amount of content in our game. Mission Kontrol has
an intentionally limited scope so that it can have a
focused interface dedicated to the core combat
gameplay loop, but QA Frontend is a collection of
smaller tools that cover the entire game.

➢Workflow Problem

➢Unreal Solution

➢Feedback Iteration

With that, we’ve seen all the key components
involved in creating a full gameplay debugging tool
suite. Problem identification, in-engine custom
tooling support, and being available and responsive
to feedback during the earliest stages of a project.

Thank you everybody for attending my talk today. I
hope that I could inspire you to investigate ways that
your game could benefit from something like Mission
Kontrol. With the proper engine support, you can find
opportunities to dramatically improve iteration times
for your whole team.

Thank you!

Q & A

Etienne Palmer-Campbell
Gameplay & Tools Engineer

NetherRealm Studios

Now we can move on to questions.

	Intro
	Slide 1: Mission Kontrol: Revolutionizing Combat Testing for Mortal Kombat 1
	Slide 2: Content Warning
	Slide 3: Background
	Slide 4
	Slide 5

	Problem
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Remote Work
	Slide 17

	Solution
	Slide 18
	Slide 19: Requirements
	Slide 20: Requirements
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Why Replicate?
	Slide 25: Create the Plugin
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Messaging Settings
	Slide 30
	Slide 31
	Slide 32: Extending Unreal Frontend
	Slide 33

	Iteration
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

	Conclusion
	Slide 45
	Slide 46: Q & A

