
Cross-Platform Determinism
in Warhammer Age of Sigmar: Realms of Ruin

Bradley Pollard

Engineering Lead

Frontier Developments

Outline

• Introduction

• Protecting the programmer

• Cross-platform determinism

• Networking

• Post-mortem

Who are Frontier Developments?

• Founded in 1994 by David Braben

• Cobra engine

• Best known for park management games

Realms of Ruin

• Warhammer Age of Sigmar
universe

• Released: Nov 17th, 2023

• Platforms: PC, PS5, Xbox
Series X|S

Making our first RTS

• Frontier has never made an RTS before

• Building on prior GDC talks

Determinism:

• Common approach

• High learning curve

• Unfamiliar dev team

Goal: Build a robust deterministic simulation framework (DSim)

Why determinism?

Commands (inputs) generate state

• Network synchronisation

• Replays

• Anti-cheat

Inspired by these talks:

• 'Overwatch' Gameplay Architecture and Netcode – GDC 2017

• Back to the Future! Working with Deterministic Simulation in 'For
Honor’ – GDC 2019

https://www.gdcvault.com/play/1024001/-Overwatch-Gameplay-Architecture-and
https://www.gdcvault.com/play/1026077/Back-to-the-Future-Working
https://www.gdcvault.com/play/1026077/Back-to-the-Future-Working

Network synchronisation

• Ultra-low bandwidth

• Low development overhead

• Limited multiplayer experience

Replays

• Simple to generate

• Debugging aid

• Development tool

Example of a looping replay

Anti-cheat

• Competitive multiplayer

• Detect local modifications

• Command validation

Determinism considerations…

Desynchronisations (desyncs):

• Caused by non-deterministic code

• State will diverge after

• Hard to debug!

• Separate gameplay state and visuals

• Programmers need to adjust

How can we help them?

Outline

• Introduction

• Protecting the programmer

• Cross-platform determinism

• Networking

• Post-mortem

Protecting the programmer

• Built for gameplay programmers

Fail fast

• Three steps to prevent desyncs…

Protecting the programmer

Component
Compiler

•Block non-
deterministic
types

Template
meta-
programming

•Define data
access

Deterministic
ordering

•Assert on
startup that
parallel reads
and writes are
ordered

About the DSim Framework

• Gameplay state only

• Entity Component System (ECS) model

• Components only contain data

• Systems only contain methods

• This made it easier to enforce determinism

Protecting the programmer

Component
Compiler

•Block non-
deterministic
types

Template
meta-
programming

•Define data
access

Deterministic
ordering

•Assert on
startup that
parallel reads
and writes are
ordered

Building a C++ Reflection System in One Weekend Using
Clang and LLVM by Arvid Gerstmann

https://www.youtube.com/watch?v=XoYVeduK4yI
https://www.youtube.com/watch?v=XoYVeduK4yI

Component Compiler

Pre-compilation step:

• Generate an Abstract Syntax Tree (AST)

• Create reflection functions

Runtime:

• Populate reflection database

 Serialisation

 Cyclic Redundancy Check (CRC) calculation

Reflection System

• A list of permitted types

• Includes primitives and
container types

Primitive types that are permitted in the DSim

Missing reflection type! `float` has not been reflected
and is therefore not permitted within the DSim.

• Compilation error!

Protecting the programmer

Component
Compiler

•Block non-
deterministic
types

Template
meta-
programming

•Define data
access

Deterministic
ordering

•Assert on
startup that
parallel reads
and writes are
ordered

Template metaprogramming

System definition

System update

Making the compiler work for you

Protecting the programmer

Component
Compiler

•Block non-
deterministic
types

Template
meta-
programming

•Define data
access

Deterministic
ordering

•Assert on
startup that
parallel reads
and writes are
ordered

Why parallelism?

• Simulation runs at 16Hz

• Interpolate to higher framerates

• Simulation ticks could cause spikes

• Can we run Systems in parallel?

Parallel problems

• A vector for non-determinism

• Random numbers are tricky!

• Ordering matters

• Component access dependencies matter

• Avoid serial execution

Deterministic parallelism

• Systems are templated on
the Components they
access

• We can use this
information to our
advantage

Traversing the Schedule Graph

• Cobra provides an advanced scheduler

• Each System is scheduled as a task

• Leverage the schedule graph

Visualising the graph

• Visualisations are key

• Scheduler can export graphs to show dependencies

Random numbers
Machine A Machine B

Simulation Simulation

RNG(42) RNG(42)

A B C D

10 20 4 7

System A

A = 10

System B

B = 20

System C

C = 4

System D

D = 7

A B C D

10 20 7 4

System A

A = 10

System B

B = 20

System D

D = 4

System C

C = 7

Random numbers
M

a
c
h
in

e
 A Simulation

RNG(42)

A B C D

5 12 9 21

System A

RNG(10)

A = 5

System C

RNG(4)

C = 9

System B

RNG(20)

B = 12

System D

RNG(7)

D = 21

M
a
c
h
in

e
 B Simulation

RNG(42)

A B C D

5 12 9 21

System A

RNG(10)

A = 5

System D

RNG(7)

D = 21

System B

RNG(20)

B = 12

System C

RNG(4)

C = 9

Outline

• Introduction

• Protecting the programmer

• Cross-platform determinism

• Networking

• Post-mortem

Floating point, yay or nay?

• Floating point can be used…

• but requires extreme care

• We targeted 4 different platforms

• Take the performance hit – use fixed-point!

Floating point in detail

• Could we quantize/round? Probably not

• Multiple platforms = multiple compilers

• Robustness was the priority

https://randomascii.wordpress.com/2013/07/16/floating-
point-determinism/

https://randomascii.wordpress.com/2013/07/16/floating-point-determinism/
https://randomascii.wordpress.com/2013/07/16/floating-point-determinism/

Data model differences

• We shipped on
Linux and PS5

• Fundamental type
size differences

• Component
Compiler can assist
us again!

Evaluation order

• A compiler issue, rather than a platform one

• Take for example MyFunc(RandInt(), RandInt())
• No guarantee which call to RandInt() happens first!

• No smart tricks here

Padding bytes

• The most common form of desync

• “False positive” desyncs

• Serialising non-trivial types is slow

• Component Compiler initialises padding bytes

Initialising padding bytes

• Component Compiler will
initialise padding

• Allows for Components to
be serialised trivially

• Padding bytes are then
deterministic

Tooling

• How to handle desyncs?

• Appropriate tools needed

• ‘Desync Detector’

• A tool to analyse XML state dumps as a diff

Desync Detector

Outline

• Introduction

• Protecting the programmer

• Cross-platform determinism

• Networking

• Post-mortem

Dedicated server

• Another platform – Linux!

• Preferable over peer to peer

• Blame clients for desyncs

• Gather debug info from the server

Optimising for latency

• Very little data is sent each frame

• Acks add too much latency

• Resend everything!

• Keep track of last confirmed tick

• Inspired by Gaffer On Games – Deterministic Lockstep
https://gafferongames.com/post/deterministic_lockstep/

https://gafferongames.com/post/deterministic_lockstep/

Redundant retransmission

Tick 10 Tick 11 Tick 12

Input A Input A Input A

Input B

Tick 13

Input A

Input B

Input C

9 9 9 9 10

Tick 14

Input B

Input C

Tick 15

Input B

Input C

Tick 16

Input C

10 12 13

Tick 17

Ack Ack Ack

Time

Buffering

• Command buffer

• Buffer size increases during bad network conditions

• Increases input delay

• Speed up to shrink buffer

Future work

• Rollback

• Further optimisation needed

• Reduce the size of a snapshot

• “8 Frames in 16ms” by Netherrealm Games’ Michael
Stallone
https://gdcvault.com/play/1025021/8-Frames-in-16ms-
Rollback

https://gdcvault.com/play/1025021/8-Frames-in-16ms-Rollback
https://gdcvault.com/play/1025021/8-Frames-in-16ms-Rollback

Outline

• Introduction

• Protecting the programmer

• Cross-platform determinism

• Networking

• Post-mortem

Open Beta post-mortem

• Frontier’s first ever cross-platform test

• Xbox Series X|S, PlayStation 5 and PC

• 50,000+ games played

Open beta post-mortem

Open beta post-mortem

Release post-mortem

• Story remains the same after release

1v1 telemetry

2v2 telemetry

Key takeaways

• Protect the programmer to avoid desyncs

• Cross-platform determinism is possible given the right
constraints

• Proper tooling is critical

• Determinism can provide benefits

Thanks to the team at Frontier

Core Code team:

• Menno Markus

• Daniel Whittaker

• And the Shared Technology Group

Talk advisors:

• Matt Simper

• Owen McCarthy

Questions?
Email additional questions to:

bpollard@frontier.co.uk

mailto:bpollard@frontier.co.uk

	Slide 1: Cross-Platform Determinism in Warhammer Age of Sigmar: Realms of Ruin
	Slide 2: Outline
	Slide 3: Who are Frontier Developments?
	Slide 4: Realms of Ruin
	Slide 5: Making our first RTS
	Slide 6: Why determinism?
	Slide 7: Network synchronisation
	Slide 8: Replays
	Slide 9: Anti-cheat
	Slide 10: Determinism considerations…
	Slide 11: Outline
	Slide 12: Protecting the programmer
	Slide 13: Protecting the programmer
	Slide 14: About the DSim Framework
	Slide 15: Protecting the programmer
	Slide 16
	Slide 17: Component Compiler
	Slide 18
	Slide 19: Reflection System
	Slide 20: Protecting the programmer
	Slide 21: Template metaprogramming
	Slide 22: Making the compiler work for you
	Slide 23: Protecting the programmer
	Slide 24: Why parallelism?
	Slide 25: Parallel problems
	Slide 26: Deterministic parallelism
	Slide 27: Traversing the Schedule Graph
	Slide 28: Visualising the graph
	Slide 29: Random numbers
	Slide 30: Random numbers
	Slide 31: Outline
	Slide 32: Floating point, yay or nay?
	Slide 33: Floating point in detail
	Slide 34: Data model differences
	Slide 35: Evaluation order
	Slide 36: Padding bytes
	Slide 37: Initialising padding bytes
	Slide 38: Tooling
	Slide 39: Desync Detector
	Slide 40: Outline
	Slide 41: Dedicated server
	Slide 42: Optimising for latency
	Slide 43: Redundant retransmission
	Slide 44: Buffering
	Slide 45: Future work
	Slide 46: Outline
	Slide 47: Open Beta post-mortem
	Slide 48: Open beta post-mortem
	Slide 49: Open beta post-mortem
	Slide 50: Release post-mortem
	Slide 51: Key takeaways
	Slide 52: Thanks to the team at Frontier
	Slide 53: Questions?

