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Who are Frontier Developments?

• Founded in 1994 by David Braben

• Cobra  engine

• Best known for park management games



Realms of Ruin

• Warhammer Age of Sigmar 
universe

• Released: Nov 17th, 2023

• Platforms: PC, PS5, Xbox 
Series X|S



Making our first RTS

• Frontier has never made an RTS before

• Building on prior GDC talks

Determinism:

• Common approach

• High learning curve

• Unfamiliar dev team

Goal: Build a robust deterministic simulation framework (DSim)



Why determinism?

Commands (inputs) generate state

• Network synchronisation

• Replays

• Anti-cheat 

Inspired by these talks:

• 'Overwatch' Gameplay Architecture and Netcode – GDC 2017

• Back to the Future! Working with Deterministic Simulation in 'For 
Honor’ – GDC 2019

https://www.gdcvault.com/play/1024001/-Overwatch-Gameplay-Architecture-and
https://www.gdcvault.com/play/1026077/Back-to-the-Future-Working
https://www.gdcvault.com/play/1026077/Back-to-the-Future-Working


Network synchronisation

• Ultra-low bandwidth 

• Low development overhead

• Limited multiplayer experience



Replays

• Simple to generate

• Debugging aid

• Development tool

Example of a looping replay



Anti-cheat

• Competitive multiplayer

• Detect local modifications

• Command validation



Determinism considerations…

Desynchronisations (desyncs):

• Caused by non-deterministic code

• State will diverge after

• Hard to debug!

• Separate gameplay state and visuals

• Programmers need to adjust 
 

How can we help them?
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Protecting the programmer

• Built for gameplay programmers

Fail fast

• Three steps to prevent desyncs…



Protecting the programmer

Component 
Compiler
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deterministic 
types
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meta-
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ordering

•Assert on 
startup that 
parallel reads 
and writes are 
ordered



About the DSim Framework

• Gameplay state only

• Entity Component System (ECS) model

• Components only contain data

• Systems only contain methods

• This made it easier to enforce determinism
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Building a C++ Reflection System in One Weekend Using 
Clang and LLVM by Arvid Gerstmann

https://www.youtube.com/watch?v=XoYVeduK4yI
https://www.youtube.com/watch?v=XoYVeduK4yI


Component Compiler

Pre-compilation step:

• Generate an Abstract Syntax Tree (AST)

• Create reflection functions

Runtime:

• Populate reflection database

 Serialisation

 Cyclic Redundancy Check (CRC) calculation





Reflection System

• A list of permitted types 

• Includes primitives and 
container types 

Primitive types that are permitted in the DSim

Missing reflection type! `float` has not been reflected 
and is therefore not permitted within the DSim.

• Compilation error!
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Template metaprogramming

System definition

System update



Making the compiler work for you
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Why parallelism?

• Simulation runs at 16Hz

• Interpolate to higher framerates

• Simulation ticks could cause spikes

• Can we run Systems in parallel?



Parallel problems

• A vector for non-determinism

• Random numbers are tricky!

• Ordering matters 

• Component access dependencies matter

• Avoid serial execution



Deterministic parallelism

• Systems are templated on 
the Components they 
access

• We can use this 
information to our 
advantage



Traversing the Schedule Graph

• Cobra  provides an advanced scheduler

• Each System is scheduled as a task

• Leverage the schedule graph



Visualising the graph

• Visualisations are key

• Scheduler can export graphs to show dependencies
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Floating point, yay or nay?

• Floating point can be used… 

• but requires extreme care

• We targeted 4 different platforms

• Take the performance hit – use fixed-point!



Floating point in detail

• Could we quantize/round? Probably not

• Multiple platforms = multiple compilers

• Robustness was the priority

https://randomascii.wordpress.com/2013/07/16/floating-
point-determinism/ 

https://randomascii.wordpress.com/2013/07/16/floating-point-determinism/
https://randomascii.wordpress.com/2013/07/16/floating-point-determinism/


Data model differences

• We shipped on 
Linux and PS5

• Fundamental type 
size differences

• Component 
Compiler can assist 
us again!



Evaluation order

• A compiler issue, rather than a platform one

• Take for example MyFunc(RandInt(), RandInt())
• No guarantee which call to RandInt() happens first!

• No smart tricks here



Padding bytes

• The most common form of desync

• “False positive” desyncs

• Serialising non-trivial types is slow

• Component Compiler initialises padding bytes



Initialising padding bytes

• Component Compiler will 
initialise padding

• Allows for Components to 
be serialised trivially

• Padding bytes are then 
deterministic



Tooling

• How to handle desyncs?

• Appropriate tools needed

• ‘Desync Detector’ 

• A tool to analyse XML state dumps as a diff



Desync Detector
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Dedicated server

• Another platform – Linux!

• Preferable over peer to peer

• Blame clients for desyncs

• Gather debug info from the server



Optimising for latency

• Very little data is sent each frame 

• Acks add too much latency

• Resend everything!

• Keep track of last confirmed tick

• Inspired by Gaffer On Games – Deterministic Lockstep
https://gafferongames.com/post/deterministic_lockstep/ 

https://gafferongames.com/post/deterministic_lockstep/


Redundant retransmission
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Buffering

• Command buffer

• Buffer size increases during bad network conditions 

• Increases input delay

• Speed up to shrink buffer



Future work

• Rollback 

• Further optimisation needed

• Reduce the size of a snapshot

• “8 Frames in 16ms” by Netherrealm Games’ Michael 
Stallone
https://gdcvault.com/play/1025021/8-Frames-in-16ms-
Rollback 

https://gdcvault.com/play/1025021/8-Frames-in-16ms-Rollback
https://gdcvault.com/play/1025021/8-Frames-in-16ms-Rollback
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Open Beta post-mortem

• Frontier’s first ever cross-platform test

• Xbox Series X|S, PlayStation 5 and PC 

• 50,000+ games played



Open beta post-mortem



Open beta post-mortem



Release post-mortem

• Story remains the same after release

1v1 telemetry

2v2 telemetry



Key takeaways

• Protect the programmer to avoid desyncs

• Cross-platform determinism is possible given the right 
constraints 

• Proper tooling is critical

• Determinism can provide benefits



Thanks to the team at Frontier

Core Code team:

• Menno Markus

• Daniel Whittaker

• And the Shared Technology Group

Talk advisors:

• Matt Simper

• Owen McCarthy



Questions?
Email additional questions to:

bpollard@frontier.co.uk 

mailto:bpollard@frontier.co.uk
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