
MARCH 2004

G A M E D E V E L O P E R M A G A Z I N E

L E T T E R F R O M T H E E D I T O R

EDITORIAL
Editor-in-Chief

Jennifer Olsen jolsen@gdmag.com
Managing Editor

Jamil Moledina jmoledina@gdmag.com
Departments Editor

Kenneth Wong kwong@gdmag.com
Product Review Editor

Peter Sheerin psheerin@gdmag.com
Art Director

Audrey Welch awelch@gdmag.com
Contributing Editors

Jonathan Blow jblow@gdmag.com
Noah Falstein nfalstein@gdmag.com
Steve Theodore stheodore@gdmag.com

Advisory Board
Hal Barwood Designer-at-Large
Ellen Guon Beeman Monolith
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed Microsoft

ADVERTISING SALES
Group Associate Publisher

Michele Sweeney e: msweeney@cmp.com t: 415.947.6217
Senior Account Manager, Eastern Region & Europe

Afton Thatcher e: athatcher@cmp.com t: 404.658-1415
Account Manager, Northern California & Midwest

Susan Kirby e: skirby@cmp.com t: 415.947.6226
Account Manager, Western Region & Asia

Craig Perreault e: cperreault@cmp.com t: 415.947.6223
Account Manager, Target Pavilion, Education, & Recruitment

Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Advertising Production Coordinator Kevin Chanel
Reprints Julie Rapp e: jarapp@cmp.com t: 510.985.1954

GAMA NETWORK MARKETING
Director of Marketing Michele Maguire
Senior Marcom Manager Jennifer McLean
Marketing Coordinator Scott Lyon

CIRCULATION

Circulation Director Kevin Regan
Circulation Manager Peter Birmingham
Asst. Circulation Manager Lisa Oddo
Circulation Coordinator Jessica Ward

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.763.59581 f: 847.763.9606
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

e: msalinas@cmp.com t: 650.513.4234 f: 650.513.4482

EDITORIAL FEEDBACK
editors@gdmag.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall
Executive Vice President & CFO John Day
Executive Vice President & COO Steve Weitzner
Executive Vice President, Corporate Sales & Marketing Jeff Patterson
Chief Information Officer Mike Mikos
President, Technology Solutions Robert Faletra
President, CMP Healthcare Media Vicki Masseria
Senior Vice President, Operations Bill Amstutz
Senior Vice President, Human Resources Leah Landro
VP & General Counsel Sandra Grayson
VP, Group Publisher Applied Technologies Philip Chapnick
VP, Group Publisher InformationWeek Media Network Michael Friedenberg
VP, Group Publisher Electronics Paul Miller
VP, Group Publisher Enterprise Architecture Group Fritz Nelson
VP, Group Publisher Software Development Media Peter Westerman
VP & Director of CMP Integrated Marketing Solutions Joseph Braue
Corporate Director, Audience Development Shannon Aronson
Corporate Director, Audience Development Michael Zane
Corporate Director, Publishing Services Marie Myers

W W W . C M P G A M E . C O M

✎

W
e were all born
into this world
naked and helpless,
and that’s a bit
how I felt when I

first came to Game Developer five years
ago as a young, know-nothing editorial
assistant. Well, I did know some things,
but trust me, they weren’t about game
development. What I learned from that
point forward has changed my life not
only by teaching me new things and new
ways to think about them, but also by
introducing me to a development com-
munity teeming with more gifted,
thoughtful, and generous people per
capita than may exist anywhere else.

Now, after five years at Game
Developer, my time has come to move
on and learn more new things, which I
am hoping won’t feature an unrelenting
battery of monthly production deadlines.
It’s not been an easy decision at which to
arrive, of course. I’ll miss turning the
brainchildren of clever minds into glossy
printed pages that they can show off to
Mom. My job has been pleasurable pri-
marily due to the professionalism and
generous esteem of the hundreds of writ-
ers I’ve dealt with over the years and the
thousands of enthusiastic readers I’ve
heard from and met.

Writing this column each month was
not exactly something I looked forward
to, but I always tried not to waste the
space allotted to me (okay, space which I
allotted to myself), and for that I’ve cov-
ered a lot of ground, from business to
politics to publishers to matters of craft.
So, at the risk of repeating myself here
and there, let me touch on some of the
major trends I’ve seen transpire in the
game industry in the past five years.

For one thing, most of you have gotten
a lot better at your jobs, whether spurred
by rising expectations, abject fear, or just
practice. While some production gaffes
continue to appear in Postmortems with
frustrating frequency, many other com-
mon development pitfalls have been

incrementally improved upon to where
they are now—gasp!—manageable.

Also, you’ve gotten more confident in
your professional identity. Maybe you
still can’t explain your job to your par-
ents or make them understand that it
even is a real job, but you’re heroes to
more and more young people who want
to grow up to be game developers.

On the downside, after five years too
many of you are still letting yourselves be
marginalized or trivialized in a main-
stream context. Keep demanding more
professional marketing and PR activities
for your games on par with other high-
profile entertainment products, not pro-
motional materials that evoke monkeys
and typewriters.

Finally, apathy among game develop-
ers at regulatory efforts and political
witch-hunts is at an all-time yawn. Your
creativity and freedom are being threat-
ened. Just because you create fantasy
worlds doesn’t mean they won’t be sub-
ject to a heavy dose of reality at some
point. Even though I may suffer some
initial separation anxiety, rest assured
that Game Developer remains in fine
hands. The editorial team has some very
exciting changes coming down the pike,
but I don’t want to give too much away
yet, so stay tuned.

In addition to all the regular colum-
nists who labored month after month
under my cruel hand, I’d like to thank
the whole advisory board for their self-
less contributions, and I especially thank
Jeff Lander, Jonathan Blow, Hal
Barwood, and Dave Pottinger for being
extra generous with insightful feedback
and for each having a delightful way of
delivering it. This magazine owes much
to everyone who’s contributed to it in
ways big and small over the years.

CMP Media, 600 Harrison St., 3rd Fl., San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

2

Game Developer
is BPA approved

G A M E P L A N

Jennifer Olsen
Editor-in-Chief

www.gdmag.com

Checkout Time

Nintendo releases scant details on new device.
Nintendo spilled a few specifications of its
upcoming handheld Nintendo DS, sched-
uled to debut at E3 this year. Nintendo
president Satoru Iwata’s statement that
Nintendo DS is “based upon a completely
different concept from existing gaming
devices” diminished speculations of the
new device simply being an enhanced
Game Boy Advance. Though Nintendo
spokesperson Yasuhiro Minagawa claims
that they’re not trying to take on PSP,
industry watchers consider the Sony PSP a
serious competitor to Nintendo’s handheld
products. Nintendo’s announcement
describes a device with “two separate 3-
inch TFT LCD display panels, separate
processors, and semiconductor memory of
up to 1GB.” No photo or prototype was
available at press time.

Kevin Bachus to make the Phantom material-
ize. Infinium Labs appointed Kevin
Bachus, the cofounder of both Microsoft

Xbox and Capital Entertainment Group,
as its president and COO. Bachus’s imme-
diate focus is to launch the Phantom
Gaming Services, the company’s broad-
band game-rental program. Even though
Bachus’s arrival lends some legitimacy to
the Phantom project, many are still highly
skeptical of the elusive game console,
whose debut at CES in January 2004
proved to be a non-operational mockup.

Avid gains access to Alienbrain. Avid
Technology acquired the Munich-based

NXN Software, which offers asset and
production management systems for the
entertainment and computer graphics
industries. The acquisition gives Avid’s
customers access to NXN’s Alienbrain,
supported by Alias, Discreet, Softimage,
and other digital content-creation pack-
ages. Designed for workflow manage-
ment, the Alienbrain product line fits into
Avid’s current strategic motto: “make,
manage, and move media.”

Microsoft leaks next-gen Xbox details.
Microsoft leaked to the press some tenta-
tive specifications for its next-generation
Xbox. Whereas the current Xbox features
an 8GB hard disk, the new console will
likely include none; users may rely on
flash memory to store saved files (as with
the Playstation 2). Microsoft was reluctant
to say whether the new ATI-powered
Xbox would be backward compatible
with the current Nvidia-powered Xbox.
The unofficial nature of this announce-
ment leaves Microsoft room to reposition
the new console with additional compo-
nents, should competitor Sony introduce
the Playstation 3 with far more advanced
features. The next Xbox is set to appear
in 2005, and Playstation 3 in 2006. q

Send all industry and product release news
to news@gdmag.com.

mar ch 2004 | g a m e d e v e l o p e r6

I N D U S T R Y W A T C H; K E E P I N G A N E Y E O N T H E G A M E B I Z | k e n n e t h w o n g

G A M E R T E C H N O L O G Y C O N F.
WESTIN SEATTLE HOTEL

Seattle, WA.
March 11–12, 2004
Cost: $895
www.lawseminars.com/htmls/
seminars04/04gamewa/

S O U T H B Y S O U T H W E S T :
M U S I C A N D M E D I A

THE AUSTIN CONVENTION CENTER

Austin, TX.
March 12–21, 2004
Cost: $225–$775
www.sxsw.com

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

SN Systems delivers PS2 debugger. SN
Systems released Proview Plus for the
Playstation 2 console, a postmortem
debugger that works with Sony’s latest
development hardware (DTL-
H3010*LT). The software-based
debugger communicates with the con-
sole via the FireWire port, leaving both
the Ethernet and USB ports available
for use by the game. It requires
Windows 2000 or XP, a FireWire port,
and Sony’s development hardware.
Proview Plus is available for
$1,000–$7,200. www.snsys.com/
PlayStation2/ProViewPlus.htm

IDV plants Speedtree RT 1.6. Interactive
Data Visualization released Speedtree
RT 1.6, a tree design and simulation
editor/middleware. The new version
includes enhanced lighting realism and
trunk design, along with efficiency
improvements. Other key new features

include: Bump-mapping and self-shad-
ow lighting effects, 360-degree bill-
boarding for smoother transitions,
improved root/branch detail, and new
library additions, bringing the total to
80 species. www.idvinc.com/html/
speedtreert.htm

Macromedia launches Director MX 2004.
Macromedia announced Director MX
2004, the latest version of its multime-
dia development and prototyping tool.
New features include support for JAVA
script in addition to Director’s existing
Lingo script, better integration with
Flash, support for nonlinear DVD play-
back, and better playback of Quick-
Time, Windows Media, Real, and AVI
files. Director MX 2004 is available as
an upgrade from Director 8.5 or MX
for $399 or standalone for $1,199.
www.macromedia.com

—Peter Sheerin

P TTHHEE TTOOOOLLBBOOXX
D E V E L O P M E N T S O F T W A R E , H A R D W A R E ,
A N D O T H E R S T U F F B

Will games developed for the current Xbox
(shown here) be playable on the new Xbox?

8 mar ch 2004 | g a m e d e v e l o p e r8

M
obile game develop-
ment is hot. That does-
n’t mean many people
are actually making
money in the market,

but nonetheless, it’s big. Major publishers
such as Activision and THQ have stepped
up to the plate, along with a host of new-
comers, to bring content to carriers world-
wide. Sun’s J2ME platform is deployed on
the most carriers, with thousands of devel-
opers producing a seemingly infinite array
of games for handsets of all types.

Surprisingly, there isn’t a thriving mar-
ket for J2ME development tools. With
Metrowerks’ CodeWarrior Wireless Studio
languishing without updates, Borland has
stepped into the vacuum with an afford-
able J2ME IDE—JBuilder 9: Mobile
Edition. Sporting the familiar JBuilder
interface, Borland has put together a great
package that’s even cheaper than Code-
Warrior, for $399. You may have to look
really hard, however, JBuilder Mobile
Edition just isn’t very widely available.

JBuilder has a long history as a tool for
J2SE developers. Therefore, the interface
of the IDE should be familiar to those
who have used previous versions of
JBuilder. To the uninitiated, JBuilder is far
less complicated than CodeWarrior’s
somewhat Byzantine interface, but not as
fast or slick as Microsoft’s VisualStudio.
The GUI is also curiously slow, with
redraws and refreshes occasionally being
heavily delayed even with 512MB of
RAM (Borland suggests a full 1GB of
RAM for optimal performance).

Yet, after reading through the brief on-
line documentation, I was up and running

in no time. Creating a simple “Hello
World” MIDlet was easy as pie. And con-
verting my old Sun Wireless Toolkit proj-
ects to JBuilder was just as simple once I
got the hang of it. All I had to do was cre-
ate a new project and start copying files
over. In addition to manually copying files
and adding them to the project, JBuilder
provides a number of wizards to set up
default projects and simplify the task of
getting started.

Speaking of wizards, JBuilder has a
number of unique features that can help
when developing more complicated
MIDlets. One in particular is the UI
designer. Even though J2ME’s lcdui pack-
age is pretty bare-bones as far as GUIs are
concerned, JBuilder allows you to specify
the GUI components of a screen and will
generate the code and classes automatical-
ly. It will also analyze the code and then
display a diagram that shows you which
screens link to which. This not only helps
you visualize your program, but also helps
you spot errors in your GUI logic that
may make screens inaccessible or other-

wise unusable. This tool really simplifies
the task of setting up mundane GUI code
and lets you get to the real meat of devel-
opment (that is, if you actually use J2ME’s
ugly and inflexible GUI classes).

One of the great innovations of
Wireless Studio was the ability to select
between multiple JDKs to support each
handset’s unique API. JBuilder mimics
this ability with the JDK Configurator.
Here you can point JBuilder at the folder
in which the desired API is stored, and it
will automatically find the classes,
libraries, and emulators. You can then
pick the SDK you want to use for this
project, not to mention switching it at
any time to make builds of your project
for specific SDKs.

As for other J2ME-specific features,
JBuilder allows for extensive editing of the
JAD file. This includes creating your own
custom fields and values. In addition,
JBuilder provides support for third-party
obfuscators, including Retroguard. Also,
any third-party emulator can be used and
custom command-line parameters can be
set for each one. JBuidler also supports
ANT, so you can create your own custom
scripts for just about any purpose. This
comes in handy when having to make
handset-specific builds that may require
the inclusion or exclusion of certain files
for certain handsets (such as art assets), or
omitting various classes.

JBuilder’s source-level debugger is quick
and responsive, not to mention full-fea-
tured, with a standard array of break-
points, watches, and other tools. In com-
parison, CodeWarrior’s debugger is laggy,
and even buggy at times where it fails to
stop at certain exceptions and has a hard
time refreshing variable values. Unfor-
tunately, CodeWarrior’s trailblazing on-
device debugging feature is absent from

XX
P R O D U C T R E V I E W S

T H E S K I N N Y O N N E W T O O L S

RALPH BARBAGALLO | Ralph runs FLARB (www.flarb.com), a game studio in Southern
California specializing in wireless games. He is the author of Wireless Game Development in
C/C++ with BREW (Wordware Publishing) and is currently working on a MIDP 2.0 book.

Borland’s JBuilder
Mobile Edition

by ralph barbagal lo

JBuilder’s interface is less complicated than
CodeWarrior’s, but not as fast as VisualStudio’s.

JBuilder. Even though in the case of
CodeWarrior it only worked on one or
two handsets, it is an excellent feature
that Borland should really look into for
upcoming versions.

Much like CodeWarrior, JBuilder fea-
tures in-IDE support for third-party
source control programs, including the
widely used open-source tool, CVS. Other
big-time development features touted in
the documentation include UML diagram-
ming, although that’s only available in the
more expensive Enterprise Edition.

Once again, a J2ME IDE is here with
not much to compete against. I heartily
recommend this over CodeWarrior
Wireless Studio. With JBuilder’s snappy
interface, a plethora of features, and a
very low price, I don’t think anyone will
be missing Metrowerks from this space.
It’s unfortunate, as some advanced fea-
tures such as on-device debugging are
still absent from JBuilder. We’ll have to

see how much continuing support
Borland affords JBuilder Mobile Edition
given its scarcity. If you are an existing
CodeWarrior user, there may be no com-
pelling reason to switch. However, con-
sidering that heavyweights such as Sony
Ericsson and Nokia have embraced
JBuilder as a prime development tool for
their respective handsets, it may be time
to reconsider.

3DConnexion’s
SpaceTraveler

by sean wagstaff

I
f you work in 3D, navigation in space
probably occupies far more of your day

than you realize. But just as a painter
doesn’t give much thought to how he
positions his brush on the canvas, experi-
enced 3D artists don’t really think about
moving around in three-dimensional
space. Unless you’re using an unfamiliar
application, say, switching from Maya to
3DS Max, navigation is simply an integral
part of what you do and there’s not much
room for improvement. Or is there?

The $599 SpaceTraveler, which looks
like a volume control knob (complete with
a purple LED accent on the buttons
around its rim) is designed to make 3D
operations faster and more intuitive.

Using the SpaceTraveler is almost
immediately familiar. You plug it into
your USB port and install the driver soft-
ware (plug-ins are provided for Maya and
Max, and built into MotionBuilder,
Cinema 4D, and BodyPaint 3D, but the
controller doesn’t work with every 3D
tool). To use it, you simply push, pull, tilt,
and twist the single knob. Your finger
movements translate directly into 3D
space—x, y, and z rotation and transla-
tion, often referred to as six degrees of
freedom—in your application. Lift the
knob and you move up in y, push it for-
ward and you move forward in z. Twist
the knob and you’ll rotate in y; tilt it, and
you’ll pitch forward or back, left or right.
The tricky part is learning not to translate
on z when you pitch on x, and not to
translate on y when you actually mean to
roll on z (a temporary filter can be turned

on that blocks non-dominant movements).
But with a few minutes worth of practice
to get a feel for it, the SpaceTraveler
becomes very natural to use, although it is
quite sensitive to even fine movement.
However, you’ll soon find yourself tum-
bling a scene around as easily as you
would with your standard keyboard and
mouse combinations, and rotating a cam-
era is certainly more intuitive than, say,
SHFT-CTRL-ALT-middle-mouse dragging.

Which brings us to the most obvious
question about this device: who needs it?
If you’re already comfortable working in a
3D application, and navigation with the
standard key commands and mouse
actions has become second nature, why
bother with yet another input device? In
my experience, many 3D operations, such
as architectural modeling, dynamics, and
texture manipulations, simply require too
much keyboard input to benefit from the
SpaceTraveler at all. I need my hands on
the keyboard, and mouse, and instant
access to pop-ups and marking menus
provided by my right mouse button,
which just doesn’t leave enough hands for
a third input device.

On the other hand (literally) when it
comes to operations that require one-
handed navigation, the SpaceTraveler is a
terrific idea. For example, when sculpting
an organic model or painting textures on
surfaces with a Wacom tablet, you can
rotate and tumble the model with one
hand, while painting with the other. While
doing character animation, the Space-
Traveler can be used as a low-speed
motion capture input device that lets you
use gestures, rather then explicit rotations,
to move a joint, although you’ll have to
set up your characters to work with this

STATS
Borland Software Corp.
Scotts Valley, Calif.
(831) 431-1000
www.borland.com

PRICE
$399

SYSTEM REQUIREMENTS
Intel Pentium II/400MHz or equivalent,
256MB of main memory (512MB recom-
mended), Windows 2000 or Windows
XP, 1.9GB of free hard drive space (full
install).

PROS
1. Intuitive and streamlined interface.
2. Easily switch between JDKs.
3. Innovative new tools such as the UI

Designer.

Cons:
1. No on-device debugging.
2. Lack of UML support.
3. A very hard to find product.

JBUILDER MOBILE ED.
XXXX

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

w w w .gdmag.com 9

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

The intuitive SpaceTraveler 3D controller.

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

input. The device’s eight
buttons can be mapped to
common keyboard short-
cuts, and the defaults for
Maya activate the Hot
Box, translate, rotate, and
scale commands. However,
the buttons are too small with terrible
ergonomics, and I still need to use the
keyboard for other commands, such as
the marking menus.

The SpaceTraveler, as the name implies,
is small and portable. Although on-the-
road walkthroughs of real-time-3D scenes
seem unlikely, I found the SpaceTraveler
useful as an accessory to a high-end 3D
laptop for bringing work home. My
Compaq runs all my 3D applications, but
the built-in trackpad is all but useless for
3D navigation, and the keyboard is
cramped, with a non-standard layout,
which also makes navigation clumsy. The
SpaceTraveler really improves the usability
of that machine on the go.

I wouldn’t recommend the Space-
Traveler to everyone. After all, if you’re
already comfortable navigating in your
predominant 3D application, you proba-
bly don’t need it. However, if you do a lot
of work that requires one-handed naviga-
tion, the SpaceTraveler may be a welcome
arrival to your world.

XXXX | SpaceTraveler
3DConnexion

www.3dconnexion.com

Sean is a freelance 3D artist. You can
reach him at www.wagstaffs.org.

Collision Detection in
Interactive 3D Environments
by Gino van den Bergen

reviewed by jeremy jessup

I
n Collision Detection in Interactive 3D
Environments, (Morgan Kaufmann,

November 2003), Gino van den Bergen
explores the algorithms necessary to deter-
mine whether polygonal intersections
occur in a real-time interactive simulation.
Available for $59.99, the book spans 277

pages through seven chap-
ters and includes a CD-
ROM containing the
source code to SOLID 3.5
(Software Library for Inter-
ference Detection), a colli-
sion-detection library for

interactive 3D animation.
After the first chapter’s brief introduc-

tion, the second chapter details the
required concepts of the text. Generally,
the collision-detection algorithms present-
ed in the book operate on convex objects.
Methods are described to decompose com-
plex shapes into various convex primitives
such as spheres, triangles, and boxes.
Some consideration is given to collision
response, performance optimizations
through frame and geometric coherence,
and problems arising from floating point
error in calculations. The chapter is heavy
in mathematics and notation and makes
for a slow and sometimes tedious read.

Chapter three introduces algorithms for
various types of primitive collisions
through four broad categories: spheres,
axis-aligned boxes, separating axes, and
polygons. Each category contains an algo-
rithm for various primitive combinations.
For example, under the sphere category
the routines presented are sphere to
sphere, ray to sphere, and line segment to
sphere. Each algorithm is well described
mathematically, then some pseudo-code is
provided to illustrate the implementation.
However, each category’s primitive combi-
nation type presents just one algorithm.
While other sources for algorithms are
well-cited throughout the book, it would
have been beneficial to compare multiple
collision algorithms based on various sce-
narios to explore the topic completely.
The SOLID library uses the routines cho-
sen and presented in the text.

Chapter four is on convex objects,
and Van den Bergen considers both sin-
gle-shot and incremental algorithms
designed to perform several types of
proximity queries on polytopes. In par-
ticular, each algorithm’s computational
complexity is provided and references
are given for additional detail. The bulk
of the chapter is devoted to discussion of

the Gilbert-Johnson-Keerthi (GJK) algo-
rithm, which is used to determine dis-
tance and collision of general convex
objects. The GJK algorithm is an itera-
tive distance routine but can also be
applied to general convex objects.

Chapter five discusses data structures
that reduce the scope of collision calcula-
tions during run-time. Through a combi-
nation of spatial partitioning, model parti-
tioning, and frame coherence (an assump-
tion that motion is generally smooth and
changes per frame are small in a given
scene), optimizations can be made to
reduce overall computational time in cal-
culating pair-wise collisions between the
various types of polyhedra. Each section
presents several partitioning methods and
provides a case study regarding their per-
formance, along with a test bed of com-
plex objects to help highlight the perform-
ance differences.

SOLID has been under development for
the past seven years, and chapter six pro-
vides the goals, an overview, design deci-
sions, and restrictions of the library. In
fact, the material presented in the book is
implemented as the SOLID library. The
provided SOLID source code helps con-
textualize the algorithms and discussion
presented in the text. Finally, the last
chapter describes the current limitations of
collision detection and considers future
research areas where further improvement
might occur.

Overall, the book does an excellent job
presenting the challenges and necessary
considerations when designing a collision
detection system but not in a manner that
is approachable by everyone. Developers
capable of appreciating the mathematics
and theory will benefit from van den
Bergen’s description of his insights and
experience. One drawback, though, is
that his presentation is tailored toward
the SOLID API implementation, rather
than being a complete look at the prob-
lem in general.

XXXX | Collision Detection in Interactive
3D Environments | Morgan Kaufmann

www.mkp.com

Jeremy works for Rockstar San Diego.

XP R O D U C T R E V I E W S

mar ch 2004 | g a m e d e v e l o p e r10

A
s co-founder of Luxoflux, Peter
Morawiec has heard it all
before. Having broadened the
vehicular combat genre with
games like Vigilante 8 and

Star Wars: Demolition, he’s used to fielding
comparisons to pioneering titles. Well, it was
déjà vu all over again, as gamers, marketers,
and, yes, even journalists made connections
between Luxoflux’s recent True Crime: The
Streets of L.A. and the seminal sandbox title
Grand Theft Auto III. This time out, the
story took an unexpected turn when author
Robert Crais accused the game’s developers of
infringing on his novels. When Luxoflux and
publisher Activision showed him the game, he
saw how distinct it was from his work, and
dropped the suit. Although this added an unwelcome layer of
drama to the release of True Crime, it validated Morawiec’s
dogged pursuit of innovation. As project/design lead on True
Crime, Peter delivered that innovation by integrating the story
tightly into the game.

GD: What factors led you to connect TRUE CRIME’s gameplay so
dependently to story?

PM: I’m a big movie and fiction buff, so True Crime was
always envisioned to be a story-driven game. I was hoping we
could create something akin to a videogame incarnation of an
action film, where the story and gameplay blend into one
another seamlessly (subject to load time limitations). We used
very short, palatable cinematics to progress the story, while
placing the action segments in the player’s hands.

Simultaneously, I wanted to achieve a sort of hybrid active-
passive experience, where the entertainment goes on no matter
how badly the player does, allowing even a total newbie to
fumble his or her way through an entire storyline, without
repeating missions or getting stuck. In a passive medium such
as a movie, whenever the hero hits a low point mid-film, the
story doesn’t restart; rather, the hero recovers or finds another
way to go on. This is especially true in detective stories, where
the protagonist tends to encounter a few dead ends before
eventually connecting the dots. However, many gamers will
instinctively want to replay a failed mission, so the jury’s still
out on this particular feature.

GD: What is your writing process?
PM: I prefer to arrive at a condensed story outline first—the

general theme, the hero, the villain, their motivations, the cli-
max, the introduction event, key branch points, some loca-

tions, and story twists. At this stage, I try not
to concern myself with gameplay issues much,
but I never discard those considerations com-
pletely either. The next step involves detailing
out the story and breaking it down into indi-
vidual cinematic and gameplay components.
Games tend to be considerably longer than
films and most time is “action time,” so
you’ve got to stretch the script and proliferate
it with gameplay mechanics pertinent to your
game. Unlike a traditional movie script, each
conversation is described merely in terms of
its content and tone, not the actual final dia-
logue, which comes last. We hire professional
writers to assist us with tuning the script and
developing all dialogue. One of the lessons of
True Crime is the need to write matching

VO for both cinematics and gameplay—the game is very
campy throughout, but it also features several darker
moments, so the main character’s generic one-liners often end
up out of synch with the mood of the story.

GD: Given TRUE CRIME’s connection to hard-boiled detective sto-
ries, how important is it for games to explore narrative genres?

PM: As the videogame market matures, I believe it’s natural
for story-driven games to be crafted within established narra-
tive genres. With the age of today’s average gamer pegged at
something like 29, the audience welcomes a greater thematic
variety as well as deeper and more mature storylines. I believe
that people will instinctively want to play the same types of
genres they like to watch or read. As a matter of fact, we’ve
already seen a number of successful games dubbed as horror,
film noir, Hong Kong action, and so forth.

GD: In light of GRAND THEFT AUTO III’s notoriety, is it better to
market a crime game as a GTA-killer or as an original experience?

PM: As a game maker, I’d clearly prefer the latter. However,
from a sales standpoint, I’d imagine it is always beneficial to
make bold claims (so long you can back them up). Either way,
the challenge lies in managing consumers’ expectations, which
is an extremely tricky thing.

GD: In retrospect, what steps can a writer and a project lead
take to head off infringement claims before lawsuits are filed?

PM: Games are big business, so as long as there are willing
lawyers, there will be lawsuits. The best thing to do is to per-
form plenty of legal due diligence before you ship.

GD: What games are you playing now?
PM: Call of Duty, Shrek 2 (in development internally),

and eagerly awaiting Half-Life 2. q

mar ch 2004 | g a m e d e v e l o p e r12

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | j a m i l m o l e d i n a

Hard-Boiled Developer
Luxoflux’s Peter Morawiec on bringing classic story genres to life

Peter Morawiec makes crime play.

L
ately, I’ve been developing a programming lan-
guage called Lerp. Lerp is an imperative language
with some declarative extensions for data han-
dling. The declarative statements are based on
predicate logic (“Predicate Logic,” December

2003), a simple way of reasoning with facts well known in the
AI community.

In the past few articles I’ve shown how predicate logic
expressions can be used to manipulate data in concise and
powerful ways. However, the traditional handling of predicate
expressions, in languages like Prolog, has some problems that
need to be addressed. Prolog was never adopted for wide-
spread use; I believe this is partially due to some software-
engineering shortcomings that Prolog proponents were slow
to acknowledge and fix.

Software-Engineering Problems

A
language with good software-engineering properties helps
you keep a program from becoming too chaotic as it

grows; such a language supports software-development pat-
terns that result in fewer bugs and makes it easy to find bugs
when they do happen. As an example, C++ performs type
checking at compile time and link time, so many common
errors (like passing the wrong argument to a procedure) are
caught and fixed before you ever run the program. On the
other hand, LISP doesn’t have static type checking, so you can
only find type errors at runtime. Those errors might lurk for a
long time, if they’re in code paths that are infrequently exer-
cised. So C++ provides a definite advantage over LISP in
terms of getting real work done.

On the whole, predicate logic is an error-prone method of
expression. Traditionally, there’s not much in the way of com-
pile-time error-checking. The speed of your program and its cor-
rectness depend drastically on small variations in the way the
predicates are written. I’ll illustrate this with some examples.

Suppose you have some objects arranged in a tree; there is a
parent relationship that links objects together (Figure 1). We
want to ask whether one object is an ancestor of another, in
other words, whether it can be reached by traversing some
number of parent links. Using Lerp syntax, we would define
the ancestor predicate like this:

[‘ancestor ?x ?a] <- [‘parent ?x ?a];

[‘ancestor ?x ?a] <- [‘parent ?x ?p] & [‘ancestor ?p ?a];

w w w .gdmag.com 15

j o n a t h a n b l o wI N N E R P R O D U C T

Designing the Language
Lerp: Part 3

FIGURE 1: We represent this set of nodes arranged in a tree in predi-
cate logic assertions as [‘parent a b], [‘parent b p], [‘parent c p],

[‘parent d c], [‘parent e c].

J O N A T H A N B L O W | Jonathan Blow nor-
mally has a new blurb in this box every
month. This month, though, he forgot. Send
recommendations or your favorite anti-senility
medicine to jblow@gdmag.com.

mar ch 2004 | g a m e d e v e l o p e r16

I N N E R P R O D U C T

The first line says a is an ancestor of x if a is the parent of x.
The second line says a is an ancestor of x if x has some parent p,
and if a is an ancestor of p. The second line performs recursion
and the first line handles the
simplest case; the two lines
together provide a complete
definition of ancestor.

One of the nice aspects of
predicate logic is its declara-
tive structure. In theory, you
just state the facts, and the
runtime system figures out
the answers to your queries
based on the stated facts.
However, in reality, it’s just
not that simple, because
facts can’t get up and solve
problems by themselves. In
predicate logic systems, there’s a solver algorithm that tries to
put facts together to eliminate unknowns. The problem with
traditional predicate logic systems is that, due to concerns over

performance and correctness, we end up spending most of our
time thinking about the course of action this solver algorithm
will take to put our facts together, when we’re supposed to be

thinking about just the facts
themselves.

For example, Prolog’s
solver will consider the facts
one by one in the order you
list them (for details, see
the sources listed under For
More Information on page
19), so the ancestor relation
as written above would be
an efficient way to pro-
gram. But suppose you
switch the order of the
statements like this:

[‘ancestor ?x ?a] <- [‘parent ?x ?p] & [‘ancestor ?p ?a];

[‘ancestor ?x ?a] <- [‘parent ?x ?a];

We end up spending most of our
time thinking about the course of

action the solver algorithm will take
in order to put our facts together,

when we’re supposed to be thinking
about just the facts themselves.

Now you have a program that is extremely inefficient. It
will always perform a recursive search first, climbing all the
way to the root of the tree and whizzing right past the answer,
only finding the answer as it backtracks.

The situation can get worse if, for instance, you switch the
order of the conjunction in the first rule:

[‘ancestor ?x ?a] <- [‘ancestor ?p ?a] & [‘parent ?x ?p];

[‘ancestor ?x ?a] <- [‘parent ?x ?a];

Now the solver will just loop infinitely. An attempt to
answer any ancestor question will cause the solver to immedi-
ately pose another ancestor question. As long as our examples
remain this simple, we can work around them without too
much strife. Maybe we can add some compile-time checking
to spot simple loops like the one above. But, as with any lan-
guage, the situation gets murkier when the program gets big-
ger, due to additional relations that reference one another
recursively in various ways. As the program grows, we must
work harder to manage the solver’s data processing. Writing a
large-scale software project like this will not be as much
about logic as one would hope.

To top it all off, there are a lot of places this kind of solver
just can’t reach. Imagine we want to make the solver navigate

an arbitrary graph
(Figure 2). Let’s say we
have a fact, neighbor,
which tells us whether
two nodes have an arc
between them, and we
want to define a relation,
connected, which tells us
whether two nodes are
some number of neigh-
bor-steps away. Well, a
Prolog solver will just go
into an infinite loop on
this problem, period. To
fix this, we need to add
lots of extra data and

relations to manage the solver’s progress, and we end up doing
the same kind of work we must do in imperative language,
except in a more Byzantine manner. Recent variants of Prolog,
and other logic programming languages, apply numerous band-
aid approaches to this problem, but I have not seen one that
solves the problem to my satisfaction.

Flow control is implicit in such declarative languages, so it’s
very hard to manage if you need to actually steer the process.
This is not nearly as nice as in an imperative language, where
the programs are lists of statements that say, “Do this, then
this, then this.”

Control the Solver

T
his straightforwardness of imperative languages is why I
designed the core of Lerp to be imperative, but so far

there’s an extreme asymmetry in the language design. The
imperative part can scale, with reasonable confidence that the
program will do what you hope. The logic part, though, is
only useful for simple tasks; as facts in the logic system
become more complicated, the program will probably start
running slowly or loop infinitely—who knows? I don’t feel I
can produce reliable programs with acceptable efficiency
when things get large on the logic side.

w w w .gdmag.com 17

FIGURE 2: A graph that con-
tains cycles will cause
problems for a Prolog
solver. In this scheme, each
arc between the nodes rep-
resents an assertion of the
form of ['neighbor ?a ?b]. To
ask whether a path exists
between rooms, we can
define a primitive connected
that traverses these neigh-
bor facts.

Maybe that’s not so bad—if the imperative side is good
enough, maybe the language philosophy should be that logic is
only used for simple things. Certainly, the matrix and vector
examples previously shown (“Designing the Language Lerp: Part
2,” February 2004) are interesting and useful, and we could just
accept those (along with the carrying example) as the limit of
what the logic in Lerp will do. But I want to push it further.

Simplified Ancestor

T
hroughout the language design process, I have been keep-
ing in mind the most effective features from other lan-

guages, like Perl, and looking for opportunities where they
can be gainfully employed. In this case, I found a way to
reframe Perl’s regular expression handling. Let’s go back and
look at that definition of ancestor:

[‘ancestor ?x ?a] <- [‘parent ?x ?a];

[‘ancestor ?x ?a] <- [‘parent ?x ?p] & [‘ancestor ?p ?a];

What we’re trying to say here is, “An ancestor is anyone you

can reach by following a parent relation one or more times.”
This is interesting because “one or more times” is a common,
primitive concept in regular expression-pattern matching: it’s
denoted with a +. In fact, if we treat parent as a single symbol,
then the idea “one or more parent relations” would just be
written in regexp form, as parent+. With that in mind, we can
develop an alternate syntax where ancestor is defined like this:

[‘ancestor ?x ?a] <- /{ ?x ‘parent+ ?a };

This definition treats the database facts of Figure 1 like a
graph. The /{} are just syntactic markers, saying that the braces
contain instructions about how to walk the graph. This particu-
lar graph-walking expression says, “Start at x, then follow one
or more parent arcs until you arrive at a.” The symbol parent is
still assumed to be a binary operator like in the previous defini-
tion. Think of { ?x ‘parent+ ?a} as expanding as follows:

[‘parent ?x ?tmp_1] & [‘parent ?tmp_1 ?tmp_2] & ... & [‘parent

?tmp_n ?a].

mar ch 2004 | g a m e d e v e l o p e r18

I N N E R P R O D U C T

If it helps reduce confusion, we can reformat the parent facts
in the database so the identifier ‘parent is infix rather than pre-
fix, so the facts look like [node1 ‘parent node6] instead of [‘par-
ent node1 node6]. This is just a cosmetic change, and clearly we
can do a graph-walk among facts stored in either format.

Complex Graph Walks

W
e can compose longer graph-walking expressions.
Suppose we want to find whether x and y have a com-

mon parent. There are several ways to form this query. We
could say /{ ?x ‘parent+ ?p } & /{ ?y ‘parent+ ?p }, meaning,
“Is there some common p reachable by parent-steps from
both x and y?” Or we define the relation child as [‘child ?a
?b] <- [‘parent ?b ?a]; then we can string together one expres-
sion that looks like this: /{ ?x ‘parent+ ?p ‘child+ ?y }.

That may be easier to think about, since it talks about one
continuous path, from x up to p down to y. But the point of
child is just to define a transition that goes in the direction
opposite of parent. Requiring a separate definition for that is a
little cumbersome; instead, we can add some notation to the
graph-walking expressions to say, “Switch the order of the
arguments before searching for this fact in the database.”
Let’s use the ~ character for this, with the little wave symbol-
izing the swapping of two things. Then the query becomes /{
?x ‘parent+ ?p ~’parent+ ?y }; whether you prefer this is a mat-
ter of taste, but it does make for a simpler program. Another
way to think of ~ is that it means, “Go backward along this
graph edge instead of forward.”

Let’s apply this to a concrete game situation. Suppose
you’re making a fantasy game, and a dragon has just breathed
on a player, whom we will call victim. We want to apply dam-
age_amount points of damage to everything flammable the play-
er is carrying. We know an object is flammable if it has a
member variable flammable set to true.

The catch is, we need to search for items that are not in the
player’s top-level inventory. If the victim is carrying a bag, and
there’s a scroll in the bag, then we will have facts [‘carrying
victim bag] and [‘carrying bag scroll], but probably no [‘carry-
ing victim scroll], since such deep linking would make data
handling cumbersome and expensive. So when it comes time
to burn the stuff, we need to perform a recursive search
through the player’s inventory to make sure we find every-
thing. Supposing we have some function apply_damage, we can
invoke it on all relevant entities like this:

apply_damage(damage_amount, each /{ victim ‘carrying+ ??

.flammable });

In this graph-walking expression, the carrying+ finds all the
entities starting from victim, the ?? indicates the node in that
slot should be the return value of the expression and the
.flammable looks up the member variable flammable on whatever

value we reach. If that member variable doesn’t exist or is
false, the traversal fails for that particular path and returns
nothing; otherwise, it returns the node in the ?? slot. Recall
that the each as a function argument causes apply_ damage to be
called once for each entity that satisfies the query.

That’s pretty good. It’s different from what you’d do in
many other languages, and it’s certainly simpler. You can
imagine ways of adding further regexp syntax to handle fire-
proof containers. It works out to be pretty simple. In fact
most of the convenient features of regular expression syntax
can be adopted directly into this graph-walking scheme
(parentheses to join patterns into larger groups, and so forth).

What this Notation Does

T
his graph-walking syntax helps us phrase queries in ways
that are more straightforward and compact than with tra-

ditional predicate logic. But it also does something more
important—it gives us a way to avoid the recursion and termi-
nation pitfalls. When evaluating a term like carrying+, the
graph-walking engine can just assume some things that are
difficult to deduce in a general predicate logic environment.

Going back to the non-hierarchical situation of Figure 2, a
graph walker can easily solve the query with no risk of infi-
nite looping, without requiring the programmer to add ancil-
lary data. It can just mark the nodes it has visited and never
try them again, since there’s no reason to visit a node twice
when evaluating a pattern option like +. This is valuable, since
it widens the scope of queries that the programmer can make
while feeling confident and safe. This month’s sample code
(available at www.gdmag.com) implements the examples dis-
cussed here, and some others.

Relation to SNePS

T
he regular expression query syntax treats a predicate logic
database as a series of nodes connected by arcs.

Interestingly, there are some systems developed in the AI
world centered around this idea of graph traversal. The most
prominent one is SNePS (see For More Information), consid-
ered by some to be a helpful tool for knowledge representa-
tion in natural language processing. The semantics of SNePS
are not exactly like what we have discussed here, though there
are some interesting similarities. q

w w w .gdmag.com 19

F O R M O R E I N F O R M AT I O N

Clocksin, W.F. and Mellish, C.S., Programming in Prolog (Springer-Verlag,

New York, 1987).

SNePS Research Group

www.cse.buffalo.edu/sneps/

A R T I S T ’ S V I E Ws t e v e t h e o d o r e

mar ch 2004 | g a m e d e v e l o p e r21

T
his month we’re going to return to the discussion
of subdivision modeling we started previously
(Artist’s View, January 2004). Since the theoretical
part is out of the way, we can now focus on some
practical rules for dealing with subdivisions.

First, let’s quickly recap the basics from our earlier discus-
sion. A subdivision surface is made by recursively refining a
polygon mesh. The topology of the original mesh determines
the quality of the smoothing. Connected mesh edges that pass
through the four-way intersections in the control mesh (edge
loops) create smooth B-splines on the subdivision surface.
Conversely, vertices that have more or less than four incoming
edges (pole points) terminate edge loops, interrupting the flow
of the surface and introducing a cusp on the surface right
under the pole. Faces with more or less than four sides also
create smoothing glitches when they are refined (extraordi-
nary points), although in a typical game model these aren’t
too serious.

For these reasons, the ideal subdivision model is built from
a grid of quads. Since all of the faces are four-sided, they sub-
divide smoothly. More important, since all of the internal
intersections in a quad grid are four-way, every series of con-
nected edges in the mesh is a smooth spline, so it’s easy to
build models with smoothly curved surfaces. Note that a mesh
is only a quad grid if all of its vertices (except those on the
outer borders) have exactly four incoming edges. Many mesh-
es that are made entirely of quads don’t qualify as quad grids
(Figure 1).

Advice for the Left Brain

B
ecause of the stress subdivision modeling places on mesh
topology, it tends to require more forethought than tradi-

tional polygon crunching. Bay Raitt, who did the the subdivi-
sion models of Gollum in the Lord of the Rings movies,

describes the subdivision workflow as “volume, surface,
detail.” This top-down process stresses the importance of
working from the largest aspects of the model to the smallest.
This is usually a good practice in any case. With subdivisions,

Subdivide and Conquer
Part 2: Practicalities

STEVE THEODORE I Steve started animat-
ing on a text-only mainframe renderer and
then moved on to work on games such as
Half-Life and Counter-Strike. He can
be reached at stheodore@gdmag.com.

FIGURE 1. An all-quad mesh can still have pole points, where more or
less than four edges meet. Note the discontinuity of the splines on the
surface of the subdivision sphere.

it’s especially important, since an accidental pole point can
distort the sweep of a large contour. Thus, in my capacity as a
conscientious columnist, I am obliged to make a public pitch
for careful planning.

In any case, subdivision tools implicitly favor a top-down
process. Most major packages implement Hierarchical
Subdivision Surfaces (HSDS), allowing you to work directly
on vertices created by different iterations of the subdivision
process. HSDS is invaluable for localizing details; the wrinkles
in a character’s forehead, for example, are best done locally at
a higher subdivision level than the rest of the model. Without
the ability to drill down in the subdivision hierarchy, the
detail areas would have to be carefully stitched to the lower-
resolution regions or they would propagate unneeded control
points to the simpler areas in the way NURBS models often
do. Moreover, HSDS details will move with their parent sur-
faces if the base control mesh is changed, so large scale edits
can be made without disturbing completed detail work.

Unfortunately HSDS has important limitations. Most
importantly, the topology of the hierarchical subdivisions is
determined by the topology of the original control mesh. So,
for example, you can’t add a wrinkle line across a forehead in
a higher subdivision level unless the edges flow in the right
direction on the base level (Figure 2). Moreover, in most

A R T I S T ’ S V I E W

mar ch 2004 | g a m e d e v e l o p e r22

FIGURE 2. HSDS’s lower levels derive their topology from the base
mesh, which could be a limitation in some cases.

implementations, changes to the base topology can confuse
the detail layers, leading to unpredictable migrations of details
as the vertex indices change. Most important, HSDS doesn’t
change the basic behavior of subdivisions and the need for
clean topology at the highest level. Thus HSDS is ideal for
organized modelers, but offers relatively little to intuitive,
improvisational, or just plain sloppy artists.

Back to the Future

N
URBS are often a good starting point for a well-planned
subdivision model. Beginning your model with NURBS is

also a good way to include a strong foundation of quad grids,
since NURBS patches are fundamentally quad-based. More
important, though, starting the model with NURBS helps to
separate the volume stage of modeling from the surface stage.
NURBS patches can be rebuilt on the fly to almost any level
of detail. With subdivisions, on the other hand, adding or
removing control points always involves some alteration in
the final form. Roughing out your main forms in NURBS
allows you to concentrate on the model without worrying too
much about the distribution of the control mesh. Once the
shapes look right, you can go back and assign density where it
is needed by cutting up or rebuilding the patches.

w w w .gdmag.com 23

FIGURE 3. Generally it’s a good idea to define major forms in
NURBS before starting a subdivision model.

Integrating NURBS into a subdivision model is fairly sim-
ple. You simply convert your NURBS into polygons, which
are then stitched together to serve as the basis of a subdivi-
sion-control cage. Generally, the most efficient way is to
model only the important forms, leaving the connecting areas
for the subdivision model (Figure 3). Subdivisions handle
oddly-shaped, arbitrary blends more easily than NURBS do,
so there’s no need to build NURBS shapes—such as boundary
surfaces, trim-blends, and multi-sided fillets—that are basical-
ly there to serve as fillers. Here’s a good rule of thumb: any-
thing that requires a lot of thought in the NURBS stage is
probably better fixed in the subdivision stage. The only really
finicky task worth doing in NURBS is matching up the
isoparms of adjacent patches, which will reduce the time
required to stitch together the subdivision cage.

The one important trick is to convert the control cage of
the NURBS model rather than the final limit surface. In other
words, you want to copy the NURBS control cage into your
subdivision model. Maya offers an option to do this directly;
however, in Max or XSI, you’ll need a script that builds a
polygon mesh out of NURBS CVs. Unfortunately there are
subtle but important differences in the underlying math (see
Artist’s View, January 2004), so conversion between NURBS
and subdivisions will not be perfect. For most purposes, how-

ever, the conversion is adequate without additional tweaks.
You can improve conversion accuracy by increasing the num-
ber of NURBS isoparms before conversion.

Now for the Right Brain

N
ow, it’s time to return to the messiness of the real world.
Most of us are too busy thinking about our subject mat-

ter to worry about the topology every time we touch a mesh.
Moreover, we often tend to obsess over local details that crop
up, because the little details often tell us so much about the
way the overall model will evolve.

The result is that most of us—especially those who learned
the trade as low-polygon modelers—add or subdivide faces
more or less at random when trying to capture an elusive detail
or suggestive contour. It takes a lot of discipline to follow a
strict top-down methodology.

Therefore, it’s time to take a look at the alternative to plan-
ning: cleanup. Artistic issues aside, the ordinary give-and-take
of roughing out a mesh almost always leaves behind a trail of
accidental pole points and unintended n-gons, which need to
get polished off before the model is truly ready for prime
time. Trying to eliminate nasty little shading glitches or con-
tours that refuse to stay put can consume a lot of time, even
when a model appears to be nearly done. So let’s look at some
practical aspects of fixing an existing subdivision cage for
optimum results.

For game modelers, the key task is really two-fold: deciding
which vertices have to be fixed and which faces have to be
quadrangulated. In theory you could build a complete quad
grid mesh with hordes of tiny polygons taking the place of
irregular intersections and faces; however, the practical prob-
lems with trying to manage such a heavy mesh generally out-
weigh the benefits, at least in game applications. High-resolu-

A R T I S T ’ S V I E W

mar ch 2004 | g a m e d e v e l o p e r24

FIGURE 5. Pole points with an even number of incoming edges (Left)
are more predictable than those with an odd number (right).

FIGURE 4. Trying to fix the pole point and n-gon (upper left) simply
moves the problem around.

tion modeling for films or real-world CAD applications may
demand complete topological purity. For games (even game
cinematics), it’s easier and more realistic to accept some poles
and n-gons as necessary evils.

Sweeping Under the Carpet

M
ost of the time, moving topological problems into incon-
spicuous places is an adequate alternative to eliminating

them. Usually, fixing a topology problem in one place causes a
new one to crop up nearby (Figure 4). By far, the worst part
of trying to regularize a subdivision mesh is the agony of
spending half an hour tweaking a problem area only to realize
you have reshaped the mesh back to its original configuration.
Settling for simply hiding the glitches instead of eliminating
them turns the frustrating task of chasing an error into a use-
ful tactic. For this reason, keep an eye out for transitional
areas that are obscure or don’t have strong forms where you
can offload tricky connectivity problems.

In other cases, the tradeoff is topological rather than spa-
tial. Not all flaws are equally serious, so choose the lesser
ones. For example, eliminating a pole point frequently means
creating an n-gon, or vice versa. In general, if you are forced
to choose between an n-gon and a pole, accept the n-gon,
since a pole has two bad side effects (a shading glitch at the
extraordinary point and a break in the flow of the surface
spline) whereas the n-gon has only one.

It's also worth remembering that pole points with an even

number of incoming edges are also less problematic than
those with odd numbers. Although an even-sided pole point
still creates an extraordinary-point shading glitch, the surface
flow under an even-sided pole is smoothly continuous along
the opposite incoming edges (Figure 5). Odd-sided poles, by
contrast, produce a clear discontinuity for all the incoming
edges. The one exception to the even-odd rule is that vertices
with only two incoming edges (unless they are on an open
border of the mesh) are always a bad idea, since they usually
produce very noticeable divots in the subdivision surface.

Quad Squad

B
ecause quads produce the cleanest and most predictable
subdivisions, you always want to use them instead of the

n-gons if you can. n-gons should be used only as connective
tissues in areas without important structure or definition.
When you’re trying to grid up an existing irregular mesh,
you’ll find that any n-gon with an even number of sides can
always be divided into quads without adding any vertices.
Conversely n-gons with odd numbers of sides can only be
quadded by splitting one of their original edges. Usually this
will involve extending the split until you reach an acceptable
pole point or an open edge of the mesh. When applying the
even-odd rule for a group of faces, remember to subtract two
from the total edge count for each shared edge. So, for exam-
ple, a triangle adds one edge to a quad (4 + 3 – 2) if it is con-
nected by one edge, but actually subtracts one if it is connect-
ed to two edges. Thus, you can’t make quads by deleting the
edge between a quad and a triangle (4 + 3 – 2 = 5), but you
could do so by adding a quad and two triangles (4 + 3 + 3 – 4
= 6) (Figure 6).

Survival of the Fittest

S
ubdivisions are still in their infancy. Although they are a
great step forward, they certainly don’t represent the end

of the line in the evolution of modeling tools. Most subdivi-
sion modelers are really just glorified polygon tools—they’re
great for quickly hacking around, but they don’t give the
artist a whole lot of leverage. Recently a lot of development
energy has gone into useful but basically cosmetic improve-
ments, like isoline displays or edge-loop selection tools.
What’s really needed, though, is better integration of more
sophisticated functions. Tangency projection, freeform fillets,
radius fillets, and—most importantly—trims would all
tremendously upgrade subdivision modeling. So would native
subdivision-support for tools like bi-rail lofts. Even mathe-
matically correct NURBS-to-subdivision conversion would be
a big step forward. If your software rep comes around the
office asking what you want to see in the next version of your
package, don’t be shy—speak up! q

A R T I S T ’ S V I E W

mar ch 2004 | g a m e d e v e l o p e r26

FIGURE 6. Here are some examples of possible (blue) and impossible
(red) quadrangulation when adding adjacent faces.

A
s an audio engineer at
World Wrestling Enter-
tainment, I record the voic-
es of our on-air talent and
wrestlers. There is an art

to recording the human voice, capturing
all its nuances and timbre, which requires
the right mics, gear, and professional
experience. This is especially true for
videogames because others will rely on the
quality of your recordings at a later stage
of game development, and you must be
right on the money.

No gain, no game. I record sessions flat;
no EQ, no compression, and no DSP (dig-
ital signal processing). Our audio chain is
quite pure: from the mic (Neumann M
149 Tube, Sennheisser HMD 25-1 headset
mic) to the mic pre (Summit Audio MPE-
200) to the console (Euphonix System 5
digital broadcast console), out of the con-
sole digital (AES) to a Sony PCM 7040
DAT. To have something to work with, it’s
critical to have a good gain structure, and
a solid, strong signal.

For our latest game, WWE Smack-
down! Here Comes the Pain, I decided
to go with the Sennheiser HMD 25-1
headset mics because these are the mics
that are used for the broadcast of
Smackdown and I wanted the commen-
tary to sound authentic, not done after the
fact in audio post. This goes along with
my theory of recording in general:
Capture good sound from the original
source and you won’t need to do much to
it to make it sound great. This way, when
it’s time to mix, half the battle of getting
accurate sound is already taken care of.

In your face. Recording WWE
wrestlers poses some unique challenges.
Given the physicial and psychological
demands on these athletes, they are gen-
erally very intense people who have no
time to waste. I have to be conscious of
my gain structure. Too hot a signal will
cause over modulation, which in the dig-
ital world is unforgiving and sounds
awful. What I like to do is place a wind-
screen approximately 10 inches in front

of the mic capsule. People by instinct,
tend to get real close to a windscreen, so
by creating space (from the capsule to
the windscreen) you effectively create a
more favorable gain structure. Imagine if
Stone Cold Steve Austin were asked to
record some voice elements. He would
probably be intense, just like he is in the
ring. But, by having that space, I can
control and adjust my mic gain (on the
preamp) seamlessly, without wasting
precious time, which is paramount.

Keep it clean. Preparing your talent is
important because they need to know
what is expected of them. For instance, I
explain to the wrestlers how this is going
to be used in a game, and that their
words should be clear and deliberate.
Usually, there are hundreds of phrases,
exclamations that need to be “clean.”
Every wrestling move sound, grunt, and
spoken name needs to be isolated. For
example, if The Rock pounds Stone Cold
Steve Austin with the “People’s Elbow,”
then the sound of the interaction, Stone
Cold’s reaction, and the announcer’s
commentary need to be recorded sepa-

rately, so they can be used in varying
combinations in real time during game
play with perfect clarity.

No conversions below the belt. Other
elements to consider are sample rate and
bit rate. Our audio post rooms are out-
fitted with Fairlight MFX 48 digital
workstations. We are running these sys-
tems at 48KHz/24-bit. The Fairlights
work in tandem with the Euphonix
System 5 console seamlessly. The
Euphonix utilizes MADI technology so
once the audio stream is converted to
digital (AES to MADI), we can output
to many different (AES) sources. For
gaming sessions the result is a 44.1KHz
16-bit R-DAT. I output AES to a Sony
PCM 7040 so there’s no sample rate
conversions to deal with.

Sample rate conversions can get a bit
dicey. Remember digital audio is a binary
representation of an analog sound. The
more conversions you introduce into your
bit stream, the further away you are from
the original analog sound. Consider the
audible difference between a WAV file
and a compressed MP3 of the same
source. The same holds true for sample
rate conversions. The more pristine the
signal, the better it will sound at game
time. The ideal is for a developer to be
able to plug this audio directly into the
game without conversions.

Before you step out of the ring. To elimi-
nate “fix it in the mix” scenarios, I apply
some knowledge learned from analog
audio engineering. One trick is to pot up
all your faders to zero, then use the mic
trims to get a good strong level. The key
is to actually listen to the sound you’re
getting. This may sound simple, but it’s
easy to overlook, and can make or break
your in-game audio. q

T I M R O C H E | Tim is the audio post engineer for World Wresling
Entertainment, working on WWE’s TV programming and games such
as WWE SMACKDOWN! HERE COMES THE PAIN, WWE SMACK-
DOWN! SHUT YOUR MOUTH, and WWF SMACKDOWN! JUST BRING

IT. He also worked on a wide range of TV shows and videos.

Laying the Smackdown
on Voice Recording

t i m r o c h eS O U N D P R I N C I P L E S

mar ch 2004 | g a m e d e v e l o p e r24

Balancing gain and personality: recording
WWE wrestler Mick Foley and on-air
announcer Jonathan “The Coach” Coachman

T
he late media analyst Mar-
shall McLuhan once said,
“Those who make a distinc-
tion between education and
entertainment don’t know

the first thing about either.”
When I first heard the quote many

years ago, I thought he was overstating
the case: there is a lot of entertainment
that has nothing to do with education,
and much of education is far from enter-
taining. But the more I think about it,
particularly about the game design work
I’ve done that’s intended for teaching or
training, the more truth I see in his state-
ment and its pertinence to games. Games
are teaching exercises: you play them as
long as there is something new to learn,
whether it’s the controls of an X-Wing
fighter, the right kung-fu sequence to dis-
able an AI opponent, or the crystal rota-
tion method required to finish a level.
On the academic side, the best teachers
I’ve had are those who made learning fun
and turned the process into a game, a
competition, or a journey of discovery.

The 2004 Game Developers Confer-
ence includes for the first time a Serious
Games Summit focusing on games with
training or educational goals. I’ve experi-
enced the growth and diversity of this
field firsthand, designing games that
encourage good nutrition, help kids with
cancer cope with their treatment regi-
mens, or help Shell employees under-
stand what their colleagues in explor-
ation and production go through to find
and collect oil and natural gas. The well-
publicized area of educational games
based on academic subjects is just a sub-
set of this branch of game development.
The Serious Games Summit allows the
less-publicized and burgeoning areas that
focus on adult learning and training to
come to the forefront.

Inspired by the upcoming summit, I
invited two experts in this field—Ben
Sawyer, cofounder of Digital Mill and
designer of Virtual U, and Marc Prensky,
founder of Games2Train and author of

Digital Game-Based Learning (McGraw-
Hill, 2000)—to suggest some relevant
game design rules. They provided enough
material for several articles. Here’s a
summary of some of their key points.

Ben Sawyer counsels developers to
focus on a mission, a desired outcome
that transcends the usual industry goal
of selling lots of copies. This focus
reminds us the game “is usually a subset
of a larger project with greater goals for
the client.” He also points out that,
with this sort of game, we are designing
for more than just the player and must
address the needs of the instructors,
teachers, or trainers who might want to
customize it and monitor the partici-
pants’ progress.

Finally, he suggests we remember to
apply the numerous strengths of our
industry and not simply the most obvious
selling point that “good games are fun.”
For example, games can be easily cus-
tomized by teachers and trainers and can
adapt to the individual. At the same

time, game developers are experts in the
practical application of AI, 3D graphics,
and simulation. Ben believes we need to
demonstrate these comparative advan-
tages to potential serious game sponsors
to promote the use of game industry
techniques in training.

Marc Prensky shares my uneasiness
about the term “Serious Games,” since
this can erroneously imply that educa-
tional games are not fun or that tradi-
tional games with no purpose other than
entertainment are somehow not serious
business. Making a game fun is a great
challenge in itself; providing game con-
tent that teaches a player something real
is even harder. His first rule: “Content is
important, but fun has to trump con-
tent—don’t suck the fun out!” He sug-
gests posing a few questions to validate
the effectiveness of these learning games:
“Is this game fun enough that someone
who is not in its target audience would
want to play it (and would learn from
it)? Do people using it think of them-
selves as players rather than students or
trainees? Is the experience addictive?
Does it encourage reflection about what
it teaches?”

Both Sawyer and Prensky discuss at
length ways to convince potential clients
that games and game industry tech-
niques have merits as educational and
training tools. My experience suggests
that as people who grew up with com-
puter games mature and move into
authoritative positions in traditional
industries, we’ll see a huge increase in
the acceptance of games as a fun and
effective way to train people. I’ll follow
up in a future column with lessons
learned at the summit. q

Beyond Entertainment?

n o a h f a l s t e i n

N O A H F A L S T E I N | Noah is a 24-year veteran of the game
industry. His web site, www.theinspiracy.com, has a description of
The 400 Project, the basis for these columns. Also at that site is a
list of the game design rules collected so far, and tips on how to
use them. You can e-mail Noah at nfalstein@gdmag.com.

mar ch 2004 | g a m e d e v e l o p e r30

B E T T E R B Y D E S I G N

If ROGUE SQUADRON can teach you to fly an X-
Wing, can games teach you to eat right?

mar ch 2004 | g a m e d e v e l o p e r32

he Mythical Man-Month
is a seminal work on not
just software engineering
but the psychology of
human interaction inside
a team environment.

Nearly everyone in our industry is famil-
iar with the name of the book and most
have a cursory understanding of its cen-
tral tenets. However, significantly fewer
people have ever actually read the book
or have a deep understanding of it
beyond some well-known quotes that
have become platitudes. This lack of
deep understanding leads to two prob-
lems. First, people don’t prevent actions
that go against the very pretense of the
book, which means they make mistakes
that were identified as mistakes nearly
30 years ago. The second problem is
people rely on an overly simplified
understanding of the book and therefore
are unable to conceive how its funda-
mental rules can be bent and twisted to
allow that which seems impossible.

Obviously I recommend everyone put
this book in his or her personal reading
queue and get to it soon. Rather than
rehashing the book’s contents, the focus
of this article is on ways to bend and
stretch The Mythical Man-Month to its
extremes; to help reduce restrictions of
progress due to communication break-
downs and interdependencies.

The author of The Mythical Man-
Month, Frederick P. Brooks, Jr., puts forth
an idea that probably isn’t too shocking
to most of us. He believes software engi-

neering is radically different from all other
forms of engineering primarily because
there is no physical representation for our
product. He argues that while studying
the organization of other engineering
fields can be useful, it cannot completely
govern our particular craft. I’ll extend this
idea even further with another not-so-
ground-breaking declaration: computer
game engineering is by far the most eso-
teric of all software engineering, because
at its essence is the difficulty of developing
the all-important fun-factor.

About Schedules

T
he two primary ways to control the
inherent limitations imposed by The

Mythical Man-Month are through sched-
ule and process. While the scope of this
article is on scheduling, a complementary
feature covering the process side appears
on Gamasutra.com. The Mythical Man-
Month states that adding people to a
project experiences a law of diminishing
returns until a point where growing the
team actually creates a net loss in
progress. The essence of this idea lies in
the complexity of software engineering,
where each team member works on a
virtual object with a significant amount
of attachment to other pieces. All of
these separate pieces must line up cor-
rectly for the final product to succeed, so
communication among people becomes
an exponentially tightening bottleneck as
the team expands. Translation: more of
your day is being spent in meetings. This

is especially true as the project gets closer
to the end and the volume of history
knowledge reaches its peak. However,
while this general tenet is true, the rate
of decline and the transition where the
new person added causes a net loss in
productivity is variable. The best way to
control these variables is through knowl-
edge of your project’s scope and
resources, especially the team’s manpow-
er. And this understanding must go
beyond simple head counts and reach a
true understanding that your team is
made up of very different people who
need to be managed in very different
ways. An effective management strategy
including schedule and process can pull
significantly more productivity out of a
given team and thus stretch The
Mythical Man-Month to its limit.

All successful projects must start with a
schedule to understand the scope of the
undertaking, no matter their timeframe. If
you believe you don’t have time to sched-
ule, then I counter you don’t have time not
to. A schedule is your first line of defense
against the communication breakdowns
that kill a project’s deadlines.

Amazingly, I still encounter teams with
extremely poor or even nonexistent
schedules. In my early years in the busi-
ness, I worked on three games called
Esoteria, Tube Racer, and Beneath.
Never heard of them? Exactly. The first
was barely released and probably only
sold a couple hundred units and the next
two were both canceled after numerous
schedule overruns. All suffered endlessly

The Secret’s in the

Schedule
Bending The Mythical Man-Month

Michael Saladino | Michael just finished a year-long tour of duty at Microsoft Game Studios Publishing where he helped ship COUNTER-
STRIKE for Xbox, MIDTOWN MADNESS 3, and TETRIS WORLDS LIVE. He’s now at EA in Los Angeles where he’s a development director, put-
ting his money where his mouth is. Contact him at msaladino@gdmag.com.

S C H E D U L I N G m i c h a e l s a l a d i n o

33w w w .gdmag.com

Ill
us

tr
at

io
n

by
 A

ud
re

y
W

el
ch

from a lack of proper scheduling. Since
then, I have shipped every game I have
led on time, mainly due to great schedules
which gave me the information I needed
to mutate my team when new problems
arose. In my last year at Microsoft pub-
lishing, I’ve seen many games ship and
many games killed: a constant theme run-
ning through them all is poor scheduling
leads to canceled projects.

Project Life Stages

T
o understand scheduling a game you
must first understand the phases of

existence that all projects go through.
While the absolute time of each phase
fluctuates based on the overall project
length, there are common ratios of time
between them. The first stage is concept
development. You are in a creative peri-
od when blue sky brainstorming is the
goal. At this point, you have no need
for real schedules beyond simply setting
a deadline for finishing these initial
meetings. Upon completion of this
phase, you should have a well-defined
design document with discussion of not
just the gameplay but also art and engi-
neering-centric sections as well. This
should take approximately 1/8 of the
total timeline or about three months
from a 24-month project.

The next stage is your prototype
where you prove out the major
unknowns, the foremost being the fun
factor. This section is scheduled much
like the whole game, only with an abbre-

viated timeframe, normally around 1/8
of the total project but sometimes grow-
ing depending on initial technology.
Obviously, the more stable the tool set
and engine you start with, the more like-
ly the prototype would fall within the
three month estimate. If the prototype is
successful, you should leave this phase
with a strong understanding of what will
make the game fun and an example pro-
gram that conveys this idea. Along with
this will also be a system-level task list
with estimated time allocations for
designing these new systems. In other
words, all the major systems might not
be done but you should know what they
are and have a rough guess as to the
manpower needed to complete their first
pass. This is the phase when independent
developers should begin shopping
around to publishers. While some devel-
opment houses are lucky enough to get
signed with only paper presentations,
showing up with a working prototype
goes significantly further when trying to
secure a deal.

Your next stage is preproduction,
which is when the team tackles the
remaining uncompleted systems through
at least the first implementation. For
example, your new experimental lighting
system with dynamic shadows should be
up and running along with the decision to
continue work on it or cut it due to prob-
lems. You should also have your first cou-
ple of levels completed to alpha quality to
extrapolate the effort needed to complete
the remaining levels. The first level

always takes the longest and usually ends
up being the worst because your team is
getting used to the process and the new
game you’re making. So you must com-
plete two or three levels so the team
begins approaching what the real world
manpower per level will be. Once you’ve
done this, you’ll be able to map out the
rest of the time frame and know if you
need to reduce the level count immediate-
ly. This stage should take about six
months from a 24-month project or 1/4
of the total project.

Now you enter full production, which
is normally when your team hits its max-
imum size (without the extras needed for
test, which normally comes on later). At
this stage, the game should be fun and its
entirety should be known. This is where
your system level task list is constantly
being refined into smaller and smaller
resolutions. The process is becoming
mechanical now as opposed to the
freeform conceptual stages in the begin-
ning. Your schedule is now the end-all
be-all of the project’s existence. You
should expect this time to last about nine
months or a full 3/8 of the project mak-
ing it the longest stage. This section of
development ends with code and content
complete meaning everything is in the
game the way it was originally planned.
It doesn’t mean the game has to be com-
pletely locked down as final changes can
still be made well into alpha as long as
proposed changes significantly improve
the overall quality of the game with lim-
ited risk.

S C H E D U L I N G

mar ch 2004 | g a m e d e v e l o p e r34

The figure on the left shows how just adding people to the project does not add value and can actually diminish progress due to overloaded commu-
nications. The figure on the right shows how improved scheduling can pull the maximum value line out and increase progress.

Pr
og

re
ss

Manpower

Maximum
Value

Pr
og

re
ss

Manpower

Maximum
Value

And now we’re brought to the end,
the final stage. It’s here that you’ve
reached alpha and beta, also known
respectively at Microsoft as code/content
complete and zero-bug release (ZBR).
These stages are mostly defined by long
crunch times. Programming is focused on
bug fixing, the art department on final
polish, and the test team ramps up to full
capacity. The schedule is becoming less
structured and instead the team is being
driven by daily and hourly updates
derived from the test team along with
oversight from the departmental leads
and producer. Your bug-tracking soft-
ware essentially becomes your schedule
as you make your final sprint, which
normally lasts about three months out of
24 or 1/8 the total.

Once you understand these stages of
development, you’ll be better able to
schedule them. One important point is
that these fractions are meant to be guide-
lines, not strict rules. All projects expand
and shrink these stages as they need them.
While one project needs more time for
prototyping, another needs less for pro-
duction. Or perhaps your project is a
simultaneous three-console release that
will probably increase your absolute time
spent in the final bug push. However,
these guidelines should help you identify
earlier when a particular stage is grossly
beyond expectations. For instance, if you
worked on a prototype for nine months,
you shouldn’t expect to complete the
game in the next year. Your team obvious-
ly created lots of new technology and
gameplay if it took nine months for a pro-
totype, so ramp-up time alone when
building the full game will prevent your

team from finishing in
the coming year.
Working at Microsoft
publishing has shown
these time ratios to
work successfully for
many projects includ-
ing Counter-Strike
for Xbox, which was
essentially a five-
month project, and
Whacked, which was a
two-year one. These two
projects had completely dif-
ferent absolute times but simi-
lar ratios between segments.

Building a Schedule

T
raditional scheduling in the form of
a Microsoft Project document or a

simpler Excel spreadsheet is most criti-
cal during the prototype, pre-produc-
tion, and production phases of develop-
ment. Concept development is too
freeform and the final bug push is too
reactionary; neither will benefit much
from a schedule. The prototype phase is
really just an abbreviated form of pre-
production and production, so to
understand those is to understand pro-
totyping. Therefore, let’s focus on pre-
production, production, and the differ-
ences between them.

Creating a schedule first requires build-
ing a task list, which is in fact an expres-
sion of your design document. Are you
building a racing game? Do you need a
four-point suspension system? Do you
need a flight control model? Is water sur-
face dynamics critical to the boat level?

Do you need a custom lightmapper?
These game features need to be filtered
into independent engineering, art, and
level-construction tasks. The resolution of
these tasks is dependent on where you are
in the timeline of your project. We begin
with system-level tasks during pre-pro-
duction and constantly refine these as
milestones are started, progressed, and
completed. By the time you reach produc-
tion with the major unknowns resolved,
you should be able to make a valiant
effort to refine the entire schedule down
to days, but don’t. Tasks should initially
be timed at a resolution of about a week.
Anything that needs to be completed in
the next two months should be resolved
down to days. Refining the resolution too
much, too soon will be work wasted
since the dynamic nature of a schedule
will lead you to redo it anyway.

Understand the Team

T
he next stage is understanding your
team’s manpower. You should begin

by identifying the type of developer (any
team member including programmers,
artists, level designers, and so forth) each
person on your team is. One simple way
to do this is to analyze how they fall into
four basic types, based on combinations
of skill and dedication. These types can be
represented on a simple 2�2 matrix with
their skill level on one axis and their dedi-

w w w .gdmag.com 35

24-Month Project Timeline

3 6 9 12 15 18 21 24

Conceptional
3 months

Preproduction
6 months

Protoype
3 months

Alpha/Beta
3 months

Full Production
9 months

A sample timeline describing the phases of development. As actual project lengths and subjects
vary, you can scale the proportions to fit your game.

0
Months

mar ch 2004 | g a m e d e v e l o p e r36

cation on the other. Developers near the
low end of both axes, those with little
skill and poor morale, should be removed
from the project after attempts are made
to improve their dedication. Skill takes
significant time to improve so don’t expect
that to rise over the course of one project,
but a person’s morale certainly can.
However, if you can’t promote improve-
ment in a reasonable time, say 1/4 of the
total project length, remove them from
either the project or the company. Too
many leads allow poor performers to stay
in positions where they drop the ball and
bring down the morale of those around
them. Removing a poor performer can
quite often create a net gain for the entire
team even with the loss of the head. My
previous work at Presto Studios showed
me first-hand the damage one or two low-
end members can do to the overall work-
load and morale of a team.

The next type of developers are the
highly skilled persons who are poorly
motivated. Maybe they don’t like the
game. Maybe they’re angry because they
didn’t get the lead positions. Maybe they
just came off a horrible crunch and just
aren’t ready to dedicate long hours again.
Whatever the reason, they simply want to
work their 40 hours, do their job effec-
tively, and then go home. But since they
are still highly skilled they are valuable in
their own way. They will be most useful
when working on exactly what they want
to work on. If they’re masters of net-
working, then that’s where they go. They
will put up with the least amount of
unpleasant work when compared to the
other developer types. Due to their skill
level, they will require less hand holding
but their strict hours mean keeping them
on their schedule will be most critical.
Luckily, their own sense of pride will
often be their strongest motivation for
getting the job done right and on time.

Then we have the young kids straight
out of college with little skill but miles of
desire. These developers want to prove
themselves but they can get over their
heads very quickly. Give them the systems
with the most design in place. Put them in
positions where they have the most num-
ber of seasoned developers working with
them. They should be given non-perform-

ance–critical code such as UI. They should
be watched over by more experienced
mentors and be expected to make up for
their inevitable schedule overruns with
long hours. At this point in their career,
they are paying their dues. And if their
rookie mistakes are kept to a minimum by
monitoring them closely, their ambitious
attitude can help light a fire underneath
everyone in the group.

And finally, we are brought to the most
important people on the team: the super-
stars. They are the highly skilled, highly
motivated crew that makes the impossible
possible. This is the white-hot fiery core of
the sun that will drive your project when
things get tough. They will work week-
ends without even being asked. They will
bring in sleeping bags when necessary and
work all night if needed to get back on
schedule. Work for a 1:3 ratio between
superstars and the other two types of
developers. (Remember, you should have
already fired the first group so we’re only
left with three total groups.) Your super-
stars are your first and last line of defense
against missing your milestones.

Assign the Team

O
nce you understand your team, you
can successfully begin to assign peo-

ple from your pool of talent to the task
list you have built. Assign the highly
skilled but poorly motivated people first.
Give them the systems their skills match
and they are interested in building. If you
run into conflicts such as too many
physics programmers all wanting to own

the system, try to exchange these
resources with other teams. You do not
want highly-skilled, poorly-motivated
people working on systems they don’t
want to. If you do this they will most
likely start dragging their feet or sending
out resumes. Next, layer in the superstars
who most likely can do almost any sys-
tem you assign to them. These people
have written graphics, physics, sound,
AI, and most everything else so skill
matching should be less important. After
they have been placed, the first two
groups of developers should cover every
major system, leaving the eager rookies to
round out the corners and fill in the gaps.

With people assigned to the task list,
the lead should take the first pass at
assigning time to each job. Be liberal
with your estimates; optimism is a swift
killer of any schedule, so assume mis-
takes will be made. Go ahead and
assume your difficult, product-defining
systems will need to be rewritten two or
three times. Once completed, bring your
team together and as a group discuss
your estimates, gather contrary opinions,
and negotiate final estimates for the
schedule. Remember, even though you’re
the lead, it’s the persons you’ve assigned
to the task who have to complete it in
the scheduled time. Give them the final
word if you can’t come to a consensus.

You now have a full task list complete
with people and time, however it’s still
not a schedule. I’ve seen many projects
over the years stop at this point without
truly turning the task list into a schedule
by serializing the pieces. This process
begins by determining dependencies
among the tasks. You can’t texture a
level until it’s been modeled. You can’t
animate a character until it’s been
skinned. You can’t program the front-end
UI screens until a base GUI system is fin-
ished. This is what creates a timeline that
shows people what they should work on
on any given day. This is also how you
can identify the communication depend-
encies that lead to one of the central
tenets of The Mythical Man-Month. It’s
at this point that you can see just how
interconnected your different systems and
the programmers building them will have
to be to complete the project.

S C H E D U L I N G

A developer productivity matrix.

Driven Rookies.
Expect long hours
but slow progress.

Superstars. Will
drive the project’s
milestones.

Failing on both
fronts. Get them
off your project.

Experienced, but
working 40 hours/
week. Schedule to
their skills.

D
ed

ic
at

io
n

Skills

We now must lay this data into our
schedule software. Put each person down
for six hours a day for five days a week.
Even if you expect a death march, don’t
start by scheduling for it. That’s a sure bet
at blowing your deadlines down the road.
The six-hour day covers the time during
an eight-hour day the person will be in
meetings, taking lunch, or hanging out in
the kitchen eating a muffin with the team.
Remember to put in holidays. (I laugh
every time I see a schedule with someone
completing a task on Christmas Day.) And
as a general rule of thumb, assume each
developer will take one personal week of
time every four months.

Now you might look down at your
schedule and think something has gone
horribly wrong. One or two people in
the schedule will have way too much
work that puts them months or even
years beyond the rest of the team.
Workload balancing is required to fix
this problem. Move tasks to other devel-
opers, starting with the easiest, but
remember as tasks move away from their
ideal owners they may need additional
time padding for someone not as familiar
with the system. This is also when the
idea of additional developers should be
first introduced. If you have a hard date

for delivery and the tasks just don’t add
up, start padding your team with TBD
(to be decided) members. This true and
honest schedule will be your ammunition
to request more support from your boss.
Fight the urge to simply schedule for a
crunch this early in the process. If you
can’t get the people you need on this
schedule, then make it clear cuts must
begin now. By following these steps, you
can start making these hard decisions
early instead of in the final months.

After days or weeks of working out
the tasks and timeframes, you now have
a schedule. You should know the size of
your team, the tasks they perform, the
order in which they will perform them,
and how long the total project should
take. Of course, it’s all a big educated
guess at this point but it’s infinitely better
than nothing. And remember that the
schedule is a living document that should
be updated daily by the owner. Don’t be
afraid to change it and make sure people
know when their sections do change or
when a major overhaul is needed to
bring the schedule back into reality. If
any one person falls behind his or her
milestone deliverable time by more than
10 percent, the problem should be
addressed that day. Maybe the person

just needs to talk the problem out with a
mentor. Maybe he or she needs assistance
with the volume of work. Maybe some-
one else can take one item off the plate
to give the person a couple of extra days.
Be honest with the schedule. The more
truthful the schedule is, the more flexible
your team will be.

A schedule is knowledge. Yes, it’s a
human construct and therefore ultimately
flawed, but it’s still the best way project
managers have to understand what lies
before them. It’s your map through the
jungle and you’ll be glad you have it even
if a couple of the trails are mislabeled.
With this information you’ll be able to
stretch your team into shapes and forms
everyone around you will claim are
impossible. And even if you do miss a
milestone, a well-built schedule will help
everyone believe you’re only missing one
instead of the constant slide most doomed
projects face.

My next article (available at
www.gamasutra.com) discusses process
and useful ways to implement your new
schedule, so your team can continue
breaking new ground in game develop-
ment while you keep the communication
nightmare off their backs. Now get back
to work, you have a schedule to write! q

S C H E D U L I N G

mar ch 2004 | g a m e d e v e l o p e r38

A segment of the Microsoft Project schedule used for developing COUNTER-STRIKE for Xbox.

j e n n i f e r o l s e nG D C P R E V I E W

mar ch 2004 | g a m e d e v e l o p e r40

Game Developers
Conference

The Set-Up

T
hrow together more than 10,000 attendees, 400 speakers,
200 exhibitors, hundreds of journalists, and a doomed
San Jose downtown resigned to being overrun for a week,

and a Game Developers Conference is born. The GDC (which is
produced by the CMP Media Game Group, which also publish-
es Game Developer) is now in its 18th incarnation, facing the
continuing challenge of offering up structure to the uninitiated
along with fresh, unexpected experiences for the wizened indus-
try veteran.

Recent forays into specialized mini-conferences, such as GDC
Mobile (returning this year March 25 and 26) and the IGDA
Academic Summit, have attracted new faces to the event, but
not to be lost in the whirlwind of activity is people’s fundamen-
tal desire to connect meaningfully with like-minded colleagues.
Bonds forged in months and often years of newsgroup and e-
mail correspondence might culminate in face time meticulously
planned or happily spontaneous, while new connections help
attendees move forward.

Whether you’re one of the old-school GDC alumni or an
incoming freshman, let our guide point the way to some of the
interesting people and events at the 2004 Game Developers
Conference.

Who’s New

M
any interesting speakers are mak-
ing their first GDC presentations

this year, including:

John Carmack. Though his pro-
gramming-track keynote topic remained
at press time as elusive as id’s next Doom
installment, thousands will no doubt turn
out to see what this game development
icon has to say. As befits this coding wiz-
ard–cum–aerospace dabbler, prepare for
some actual rocket science.

E i j i Aonuma. The designer/director
of numerous Legend of Zelda titles,
including the most recent Wind Waker,
arrives on GDC’s shores to discuss “The
Evolution of a Franchise: The Legend
of Zelda.” Anyone trying to move a
mature franchise forward in today’s
competitive marketplace can learn some-
thing from the venerable Zelda series.

Masah i ro Sakura i . Late of HAL
Laboratories, Sakurai (Kirby’s
Dreamland, Super Smash Bros.) is
now taking his show on the road, by
developing for multiple platforms and
talking openly about his design work in
“Game Design: Risk and Reward.” Risk:
Do players really want to beat the snot
out of cute little Pikachu? Reward: Yes,
they most certainly do.

Yann is Ma l lat . Can scrappy young
teams of can-doers really still give their
all and turn out amazing games? Ubi
Soft’s Montreal-based Prince of Persia:
The Sands of Time team says oui.
Executive producer Mallat reveals how
the magic came together in his lecture,
“Reawakening a Classic: Prince of
Persia Case Study.”

Kenji Kaido and Fumito Ueda.
ICO’s producer (Kaido) and director/
designer (Ueda) reveal how they set out
to make a very different game and bring
never-before-seen attention to detail to
the medium. With their backgrounds in
game production and fine arts, they show,
in “Game Design Method of ICO,” how
methodology and artistry can work
together to create unforgettable games.

The 4th Annual Game Developers Choice Awards
Every year sees more game awards doled out, from a wider variety of
sources. Still, the GDC Awards, presented by the IGDA, remain the only
major venue where developers are honored by their peers and get to address
them as such. The posthumous presentation of last year’s Lifetime
Achievement Award to the family of Nintendo’s Gunpei Yokoi left nary a
dry eye in the house. Don’t miss the presentation of the 6th Annual
Independent Games Festival as well. March 24, 6:30–9:30 p.m.

Experimental Gameplay Workshop
The EGW started out two years ago as an unknown side session, but the
room quickly overflowed, proving that despite rampant sequelitis there are
plenty of people in the industry who care about innovating within the inter-
active medium. Organized by Game Developer’s own “Inner Product”
columnist, Jonathan Blow, the EGW has quickly become a must-see for wet-
eared newbies and hoary veterans alike. March 25, 3–6 p.m.

Gamehotel: Games and Digital Pop Culture
Gamehotel is a brand-new event to GDC, as its organizers, Paris-based TNC
Network, further their self-stated goal of “pointing the direction to the
future of innovative and diverse interactive entertainment” by going straight
to the creatives at GDC. Combining presentations and demos from such
industry darlings as Tetsuya Mizuguchi (Rez) and Masaya Matsuura
(Mojibribon), emerg-
ing-platform game
designers, and a
menagerie of wacky
Asian action-figure
makers, the event
promises an eye-open-
ing experience.
March 25, 6–8 p.m.

John Gaeta Visual Arts Keynote
Anytime a visionary, artistic speaker promises a “stream of consciousness–
style discussion” on any number of multiple topics, you know you’re in for
either one of the best or worst talks of your life. Let’s hope the plot of his
presentation, which may or may not include “creative empowerment for the
average Joe,” “schooling your grandparents on a Playstation 3,” “how to
properly set fire to hard drives,” “the death of The Matrix,” and “some other
visual effects stuff” holds together better than the trilogy’s. March 26, 12–1 p.m.

Developer Business Summit: An IGDA Think-Tank
The days of ham-handed business management are numbered in today’s
high-stakes game development industry, yet proven, replicable strategies
remain elusive. This in-depth two-day summit brings business leaders from
development studios big and small together with publishing insiders to help
plot a course for business success in game development.
March 22 and 23, 10 a.m.–6 p.m.

G D C T O P F I V E

w w w .gdmag.com 41

G D C P R E V I E W

What to Do When All Goes to Hell
James Gwentzman
Considering the erratic nature of
game development, it’s never too
cautious to be prepared for the
worst-case scenario.
IGDA Women’s Group Gathering
Jessica Lewis
This is a great opportunity for me to
learn more about the gripes and con-
cerns of an underserved sector of
developers. Plus, I’m single.

Developing a Massively Multiplayer
Game
Raph Koster, Rich Vogel,
Gordon Walton
It’ll help me understand what it
takes to efficiently manage the mas-
sively multi-developer team (100+)
required to create such a game.
Immigration for Foreign Games
Professionals in the Age of Homeland
Security
Ron Rose
Rose’s tips on compliance issues
concerning hiring and contracting
foreign talent should give me a better
picture of what international game
development teams face today.
Acting for Animators
Ed Hooks
I’m interested to see how Hooks
distinguishes animation invested
with emotion from animation
devoid of motive.

K E N N E T H ’ S G D C P I C K S

Real World Multi-Threading in PC Games
Aaron Coday, William Damon,
Maxim Perminov
While the potential for enhanced per-
formance is quite real, so is the poten-
tial for diminished performance if
done poorly or mismatched with all
the CPU features.
Developing Wireless Location-Based
Games
Jay Aguilar
This could create a new genre of
videogames, and I’m curious to see if
its use here is better than the horrid
experience I’ve had with location-
based WAP content.
Advanced OpenGL Tutorial
Cass Everitt, Simon Green, Evan Hart,
Bill Licea-Kane, Rob Mace, John Spitzer
Not all games revolve around Direct3D,
and the coming of the OpenGL shading
language is definitely something to keep
an eye on.
Advanced Visual Effects with Direct3D
David Gosselin, Jeff Grills, Shawn
Hargreaves, Richard Huddy, Gary
McTaggart, Jason Mitchell
This all-day tutorial from the leading
experts on the Direct3D technologies
in DX9 should teach you about the
latest techniques for eye-popping
imagery.
Government Simulation in 3DS Max
Brian Blau, Stephen Langmead, Mike
Rasmussen, Douglas Whatley
The use of videogame technology in
government applications is an oppor-
tunity for growth, and seeing how the
rapid rate of technological change in
games mixes with the government’s
pace may be illuminating.

P E T E R ’ S G D C P I C K S

How to Write an Unforgettable Story
John McLean-Foreman
Evocative storytelling is essential to
memorable entertainment. As a
moonlighting novel writer and film
critic myself, both professional and
personal interests compel me to
attend this one-day tutorial.
A Peek Behind the Shoji: The
Japanese Videogame Market Today
Ryochi Hasegawa
For years, Japan was the Mecca of
game innovation. While rumors of
its game market’s demise may be
premature, I wonder what it takes
to chart a game through the shift-
ing generalizations.
Interfacing with Hollywood:
Challenges and Opportunities
Keith Boesky, Leonard Grossi,
Jason Rubin, Larry Shapiro
Unfortunately, the movie industry
has no USB port. But they do have
representatives on this panel. I’m
hoping they’ll offer some insight
into creating mutually beneficial
licenses.
The Secret of PAC-MAN’s Success:
Making Fun First
Toru Iwatani
Why couldn’t millions around the
world, including myself, stop play-
ing this game? This session doubles
as therapy.
The History of Animation
Phil Tippett
Salvador Dali traveling through
time to talk about surreal game art
would be slightly less interesting.

J A M I L ’ S G D C P I C K S

mar ch 2004 | g a m e d e v e l o p e r42

Our GDC Picks

T
he entire Game Developer edi-
torial staff will be at the show,

and we’re all putting together our
own agendas. Although session
times and dates were not final at
press time, here are some of the
goings on that Managing Editor
Jamil Moledina, Departments
Editor Kenneth Wong, and Product
Review Editor Peter Sheerin are
planning for.

mar ch 2004 | g a m e d e v e l o p e r44

GDC at Work: Deploying an Open
Interactive Audio File Format

I
magine where 3D graphics development would be without
the advent of OpenGL and you can understand the impetus

to create a nonproprietary, royalty-free interactive audio stan-
dard. Members of the Interactive Audio Special Interest Group
(IA-SIG), in tandem with the MIDI Manufacturers Association,
are pursuing just such a goal in the ongoing development of
Interactive XMF, the eXtensible Music Format for interactive
audio, which they presented at last
fall’s Audio Engineering Society (AES)
Convention.

Chris Grigg, George Sanger, and
Martin Wilde will host an hour-long
session, “Cross Platform Audio Using
Interactive XMF,” to present the cur-
rent status and goals of the effort,
offer opportunity for community
input, and drum up support from
developers who they hope are as tired
of reinventing the wheel as they are.
Now that audio is becoming more of a
selling point for games, reducing ineffi-
ciencies and rework in audio develop-

ment can benefit many developers, from the creative visionaries
to the bean-counters. For more information, see Linda Law’s
Gamasutra article on the subject, at
www.gamasutra.com/resource_guide/20030528/law_01.shtml.

PSP Peek

W
ell before Sony is expected to unveil PSP plans at E3
formally in May, SCEA’s David Coombes and Peter

Young will attempt to demystify Sony’s
new machine for its new and hopeful
developers in their presentation,
“Programming for PSP.” No doubt
they’ll go over high (and perhaps some
low) points of the specs in detail, offer
development resource scenarios, and
outline Sony’s developer support plans
for the device. They’re also planning to
address how the machine’s graphical
capabilities might affect handheld
game design, making this session a
prime stopping point for game design-
ers and producers as well. Won’t you
throw in some free samples, guys? q

Roundtable sessions are where the
massive scale of GDC gets back to
more intimate, grassroots discussions.
Many attendees carry away their best
GDC memories from the spontaneous
but profound conversations around
roundtables. The outcome depends on
who shows up, making some sessions
inimitable sources of inspiration, and
some of them poorly attended duds.
Here are a few sessions that ought to
provoke lively debate.

Quality of Life: The Next Step.
If moderator François Dominic
Laramée successfully moves the discus-
sion beyond cathartic renditions of
crunch-mode horror stories, developers
can share ideas on how the IGDA
should steer its efforts to promote bet-
ter balance between a game develop-
ment career and life outside the office.

User Created Content: Is It Worth It?
As project director of BioWare’s
Neverwinter Nights, moderator
Trent Oster should have a good per-
spective on this contentious issue.

Players want to get more, developers
have less to give. But is putting tools
and creative power in your customers’
hands good for developers and their
prized brands?

By the Books: Solid Software
Engineering for Games. Now in their
third year, these popular sessions (one
on each conference day) attempt to
tackle game programming’s $64,000
questions. Moderator Noel Llopis
enables participants to compare strate-
gies for language use, documentation,
testing, tools, and more. Newer
methodologies such as extreme pro-
gramming are also discussed in a
game development-specific context.

The Publisher’s “Rules of Acquisition.”
Tantalized by the idea of a juicy sellout?
Just want to be prepared on the off
chance that a publisher shows up at
your doorstep with sacks of gold-pressed
latinum for you and your hardworking
partners? Attorney Tom Buscaglia hosts
a free-for-all where non-Ferengi types
can discuss how to successfully jump
through the business hoops of acquisi-
tion without tripping up.

G D C P R E V I E W

R O U N D T A B L E R O U N D U P

mar ch 2004 | g a m e d e v e l o p e r46

G A R R E T T Y O U N G , M A R I O R O D R I G U E Z , A N D C H R I S P I C K F O R D |
Garrett’s eight-plus Microsoft years span from testing NBA FULL COURT PRESS to exec.
producing the PGR series with Bizarre. Mario began testing games at Microsoft as a
2002 University of Miami grad, recently working on PGR2 and RALLISPORT

CHALLENGE. Chris has been designing and testing at Bizarre for four years, shipping
the PGR series and FUR FIGHTERS.

P O S T M O R T E M g a r r e t t y o u n g , m a r i o r o d r i g u e z , a n d c h r i s p i c k f o r d

47w w w .gdmag.com

P
roject Gotham Racing 2
is the sequel to the best-
selling Xbox racing game,
developed by Bizarre
Creations (Liverpool,

England) with production and publishing
support from Microsoft Game Studios.
Our two teams rolled directly into produc-
tion after finishing international versions
of PGR in February 2002. We significantly
expanded the scope and quality of the
combined team, bringing on new artists,
programmers, and testers. Our ultimate
goal for this project was to create a AAA
PGR title for the 2003 holiday season
built upon the fundamental strengths of
the PGR franchise and innovate in our
use of the Xbox’s online system, Xbox
Live. Given our on-time delivery and the
game’s 92.4 percent average score from
over 70 reviews (referenced from
www.gamerankings.com), we feel that we

achieved our goals.
We owe that success to the strength of

our people and the clarity of our chal-
lenge. Smart, effective, hard-working peo-
ple are critical to achieving any worth-
while goal, and our two teams had that in
spades. Though there were some disagree-
ments and late changes in tactical direc-
tion, everyone on the team was always
working toward a clear overall strategic
vision for the project. A key ingredient to
our ultimate success was the strong rela-
tionship between developer and publisher:
matching Bizarre’s design, technical, and
artistic strengths with Microsoft’s
strengths in testing, licensing, usability,
creative writing, and production manage-
ment. Without an extremely high level of
trust, we would not have been able to
maximize the efforts of each team, and
PGR 2 would not have been as strong.

Our hope is that this postmortem can

G A M E D A T A

PUBLISHER: Microsoft Game Studios
FULL-TIME CORE TEAM: 40

MAX TEAM SIZE (including test,
licensing, localization, and other

support resources): 102
LENGTH OF DEVELOPMENT: 2 years

RELEASE DATE: Nov 18, 2003
PLATFORM: Xbox

DEVELOPMENT HARDWARE: Pentium
600MHz–2.4GHz machines with

256–1024MB RAM, GeForce 2–4 series
and ATI Radeon 9700 Pro video boards.

DEVELOPMENT SOFTWARE: Microsoft
Visual Studio .NET, Microsoft SourceSafe,

Alienbrain, built-in 3D Editor, Softimage
XSI, Araxis Merge 2001, SoundForge
PROJECT SIZE: 37,174 files, 219,538

lines of code, 41GB of data

provide some insight into how we
worked together to build Project
Gotham Racing 2—the things that
worked well, and the things we would do
differently if we had to do it all over
again. With luck, we hope other teams
will be able to apply these lessons to
improve their processes and avoid some
of our pitfalls.

What Went Right

1.
Strong early vision for innova-
tion. In our efforts to build on

the market success of PGR, we knew it
was critical to stay true to and build on a
formula gamers loved. We decided to
greatly expand the number and diversity

of cars (from 25 to 100) and cities (from
four to 11). Our artists invested signifi-
cant time in researching routes through
cities we felt were interesting, recogniza-
ble, and fun to drive. As we broadened
the scope of the car list, we added new car
categories like classics, muscle cars, super-
cars, and even SUVs. The designers also
expanded the Kudos system to increase
the reward for skillful driving, adding
rewards for taking a “good line” through
a corner, drafting, and navigating track
sections cleanly (without hitting walls).

But as a new PGR game, we knew we
had to continue to push that spirit of
innovation. Though Xbox Live was an
unproven and unknown technology dur-
ing our initial design planning, we com-
mitted to pushing the online frontier in

PGR 2. We bet gamers would love racing
online against their friends, and we
decided to incorporate Xbox Live
Scoreboards for each race in our game.
These interactive high-score rankings
allow every gamer with an Xbox Live
account to post a race result, and allow
the top 10 racers to post their actual race
ghost replay for anyone to download and
watch (or race against).

There were major challenges inherent
in each decision. To build all the new
cars and cities, we virtually doubled the
size of the original art team, which also
increased the challenges in team manage-
ment and communication. Relying on
unfinished technology from external
teams created a large bottleneck in our
production schedule, as we awaited their

P O S T M O R T E M

mar ch 2004 | g a m e d e v e l o p e r48

deliverables. We chose to accept these
challenges head-on, given our vision to
expand the scope of the game beyond the
original title.

2.
Reducing worldwide manage-
ment. The Bizarre Creations

team included all of our core developers,
artists, game and sound designers, and
production staff. The Microsoft team in
Redmond, Washington included many
production and design support staff,
licensing managers, a full test team, and
the marketing team. Given the impor-
tance of our international release, we
had localization staff working full-time
in Japan, Korea, Taiwan, and Ireland.
We also employed 3D art vendors in
Australia and England, and translation

vendors in France.
During production, members of the

team visited locations all around the
world to gather research, reference
material, and recordings. We shot thou-
sands of photos and hundreds of hours
of video in each city. We recorded real
DJs in Moscow and Tokyo. We even
made a special trip to the Promised
Land, visiting the Ferrari plant in
Maranello, Italy to photograph and
record engine audio of the Ferrari Enzo
before it was released to the public. To
borrow an old British saying, the sun
never set on the PGR 2 team.

Managing such a global team created
many problems in communication and
schedule management. Our approach to
solving these problems was to actually
reduce, rather than expand the amount
of management. We built up strong com-
munication channels between all mem-
bers of the team, removing the communi-
cation bottleneck that can occur at the
producer level on game projects. All
members of the production support staff
at Microsoft were empowered to interact
directly with all of their peers and other
members of the Bizarre team. The
Redmond testers and Liverpool develop-
ers interacted directly through the bug

database, e-mail, and phone calls. The
Liverpool art team worked closely with
the Redmond licensing managers on
approvals and change requests from
vehicle manufacturers and other external
licensors. All members of our interna-
tional localization teams interacted
directly with our UI developer.

As most teams do, we also planned
goals and deliverables for each milestone
over the life of the production schedule.
However, it was the people we had in
place and our open communication
channel team-wide that were the greatest
contributors to our ability to resolve
issues quickly and hit our aggressive hol-
iday release schedule.

3.
Proving stable online game-
play early. Online multiplayer is

frequently the highest risk area for any
game, since multiplayer features can be
the hardest to implement and require sig-
nificant optimization and tuning. We
addressed this problem early by imple-
menting the bulk of our network code,
physics optimizations for interpolation of
car speed and trajectory across all boxes,
and support for all Xbox Live features
by early April, 2003, five months before
release. Our overall multiplayer execu-

w w w .gdmag.com 49

ABOVE. A Porsche Carrera GT edges out a Saleen S7 on the Sydney waterfront.
LEFT. A classic Porsche Carrera purrs loudly on a bridge in Yokohama.
PREVIOUS PAGES. A Ferrari Challenge Stradale scares off tourists at the Duomo in Florence.

tion was relatively smooth, with only
performance and voice issues to resolve
during our final code optimization phase.

We were able to achieve positive
results by hiring a strong network pro-
grammer, working closely with the Xbox
Live team to fully understand the new
technologies as they were being built,
and synchronizing our implementation
and test processes. Implementing a major
set of Xbox Live features to the require-
ments of the Xbox certification team
required educating our team immediately.
This investment paid off later by allow-
ing us to quickly implement new APIs as
Xbox Live 2.0 features such as stats with
attachments (to support upload of ghost
replays) were completed late in our proj-
ect schedule.

Testing’s early involvement quickly
identified lag and interpolation problems,
and allowed us to troubleshoot new
Xbox Live features such as friends, voice,
and Scoreboards during initial implemen-
tation, which allowed the development
team to stabilize new features earlier.

As a result of proving multiplayer sta-
bility early on, we were able to eliminate
a major risk to our production schedule
and focus our efforts on other gameplay,
tuning, and polishing issues during the
endgame.

4.
Driving user feedback into
product design. Designing a

game under tremendous time pressure
can often create a myopic approach to
interface design and play balance. The
team is so close to the game during
development that objective evaluation of
the inherent challenge and usability
becomes difficult if not impossible.
Schedule requirements limit valuable itera-
tion time, and members of the team can-
not represent the diversity of skill across

the spectrum of all end users. The theory
“a user is only a ‘new user’ once” pre-
sumes everyone in your audience will be
willing to struggle through a confusing
interface and unbalanced difficulty levels
to experience and enjoy your game vision.

We had success in addressing these
challenges on PGR 2, but not without
serious investment of people and itera-
tion time over the last few months before
release. We spent literally hundreds of
hours hand-tuning each car, to balance
realistic handling with ease of use. We
used the Microsoft usability and con-
sumer playtest labs extensively to seek
out feedback from racing gamers, and see
first-hand their initial experience and dif-
ficulty navigating our interface, under-
standing the Kudos system, and achiev-
ing the micro-goals of each race mode.

Aside from finding and fixing all func-
tionality and content bugs, our greatest
efforts during the endgame were put
towards balancing our gameplay difficul-
ty. Almost everyone across the teams in
both Liverpool and Redmond—and many
others not already on the PGR 2 team—
spent time providing play-balance feed-
back on specific challenges, each of the
five difficulty levels, and the overall rate
for unlocking cars. Considering the scope
of the game, the size of the audience, and
the concerns we had about exposing
“golden paths” (shortcut cheats to high
scores) in the scores and ghosts posted to
our Live Scoreboards, we were very happy
with the results achieved during our
intense and collaborative tuning period.

5.
Effective licensing manage-
ment. Real-world authenticity is

a core characteristic of the PGR franchise:
real cars, real cities, real radio stations
with real DJs, and real music from real
bands. Unlike movie makers, game mak-

ers are required to get contractual
approval with the owners of each logo
and likeness before releasing it in a game.

With 11 cities (including a real-world
race track), over 100 cars, unique DJs for
each of our 33 radio stations, and over
300 songs, this was a monstrous task.
We employed a team of five licensing
managers over the course of the entire
project to own and execute on this task,
establishing contacts and maintaining
relationships with all appropriate parties,
facilitating review of all in-game assets,
and working closely with legal counsel to
close down each contract.

The licensing team’s contributions
were vital. Not only did they enable our
artists to fully realize the authenticity of
each city, they also secured the appropri-
ate rights, without which we would not
have been able to include Ferraris,
Porsches, BMWs, or any of the other real
cars in PGR 2.

What Went Wrong

1.
Synchronizing production
deliverables worldwide. As

mentioned previously, managing the con-
tributions of our worldwide team was a
great challenge, and we feel that process
went well overall. However, as with any
huge challenge, there were major prob-
lems that surfaced in some core areas of
production.

Our original plan for addressing the
problem of recording, processing, and
implementing source material from our
worldwide car list was to distribute the
workload and take advantage of our
global resources. This ended up causing
more problems than it solved. Crucial
implementation and tuning time for each
car was sacrificed, as all cars were not

mar ch 2004 | g a m e d e v e l o p e r50

P O S T M O R T E M

LEFT. A photograph of a bridge in Sydney. MIDDLE. A wireframe version of that bridge. RIGHT. An in-game screenshot of the bridge,

recorded to identical specifications and
many cars were recorded very late.
Additionally, an essential member of the
sound design team moved to California
and attempted to continue to fill the role
part-time, adding friction to an already
weak process. A related problem also
occurred with the DJ scripts we recorded
in each local city, as long contract and
recording schedules delayed implementa-
tion beyond our desired dates.

This failure taught us two lessons.
First, we needed to better synchronize
content creation and implementation in
the future. Second, we were reminded of
a challenge all Microsoft-published proj-
ects face: synchronization of the imple-
mentation and test teams.

Though all the developers, artists, and
designers at Bizarre were working in real
time within the same bug database as our
Redmond testers, licensing managers, and
international localization teams, we did
experience many setbacks. At 4GB, our
transfer time for builds was substantial,
and we were forced to change file transfer
tools three months before release. Some
obvious bugs in Redmond were difficult
to reproduce in Liverpool, as the testers
verified builds that were at least a full day

behind development. The 5,000-mile dis-
tance between teams greatly increased the
risk associated with any last-minute file
changes at the end of the project.

Though we made some great strides to
better synchronize implementation and
testing, our challenge moving forward
will be to hit our functionality and con-
tent deadlines more effectively, increase
the stability of the build process, and to
increase the scope of smoke tests in
Liverpool before builds are sent over to
the Redmond test team.

2.
Design took too long.
Incomplete design had the single

largest impact on the slide of deliverables
throughout our project schedule. Though
we all understood and agreed upon the
fundamental vision for the franchise, we
started our PGR 2 design document very
late, and we were still updating this docu-
ment after feature freeze and E3 as new
ideas cemented. We ended up overhauling
many elements of our design several times,
such as the user interface, Kudos reward
values, and overall game structure.

There were many critical factors that
extended our design phase. Our designers
were spread too thin early on, and we

pursued many different paths and game
modes before hitting on a concrete plan.
Martyn Chudley, the creator of the PGR
franchise and head of Bizarre Creations,
played a critical part in stepping in to nar-
row the focus of the overall game design
in early 2003.

Iteration on the handling characteris-
tics of each vehicle proved incredibly
challenging, and was completed very late
in the schedule. As with any simulation-
quality racing game, each change in vehi-
cle handling has a significant knock-on
effect on each car’s usability, the perform-
ance of the AI, the class and competitive
categorization of each car, and the diffi-
culty-level setting for each race.

Quadrupling the number of cars from
PGR to PGR 2 more than quadrupled our
vehicle-tuning time, as the broader scope
of vehicle content required far more dili-
gence, testing, and tuning between indi-
vidual vehicles and classes. We underesti-
mated the initial scope of this effort.

To combat these problems we expanded
the size of the test team, pulled in addition-
al designers from other projects, and hired
a small team to execute specifically on the
play-balancing task. Moving forward onto
future projects we will seek out additional

P O S T M O R T E M

mar ch 2004 | g a m e d e v e l o p e r52

A Porsche 911 GT1 burns rubber on the streets of Chicago.

solutions, such as fleshing out key sections of the design document
earlier, prototyping new gameplay elements in offline builds, and
proactively scheduling our extensive play-balance efforts. Iteration
is a natural part of game development and we’re pleased with the
results, but getting there was no easy task.

3.
Relying on new technologies from external
teams. PGR 2’s design called for online features to be

integrated within almost every area of the game. These features
required APIs that were still in development by the Xbox Live
team as our schedule progressed, raising many significant
obstacles and time constraints.

While our Scoreboards were an extension of the system
shown in the 2002 Xbox Live starter kit’s MotoGP demo, we
utilized them to a far greater extent than on other titles.
Coupled with new Xbox Live features, such as stats with attach-
ments (such as ghosts), and the high volume of Live users we
anticipated, we knew that we had placed a big bet on bringing
these emerging technologies to a usable and stable state. If any
piece failed, the system would have failed. Implementing the
new attachments APIs for uploadable and downloadable ghosts
presented us with unpredictable problems, as we were pioneers
in this space. The Xbox ATG team was extremely supportive,
but they were also pushing hard to complete features for their
own deadline.

One example of a problem we should have been able to
avoid was optimization of our interaction with the Live
Scoreboards. During research done by the Xbox Live team late
in our schedule, they found our code was making far too many
calls to their Scoreboard servers, a capacity problem their
servers would not have been able to handle after release.
Though we fixed this problem, it raised significant production
fears at the end of our schedule.

In relying on critical technology from external teams, we have
learned the importance of allocating an adequate schedule buffer
to accommodate unforeseen problems, maintaining strong com-
munication with all dependent parties, and gaining a deep under-
standing of the technology.

4.
Stability of the ghost replay system. In supporting
a feature where any Xbox Live user worldwide could

upload a ghost replay, we needed to be able to guarantee each
ghost would be a perfect replica of the actual race result. The
critical nature of this feature caused us to dedicate significant
attention from our test team.

The replay subsystem served as the underlying framework for
recording the ghost data. This legacy system was both complex
and difficult to consistently debug. One late night two days
before RTC (release to certification), our testers were in heated
competition, challenging each other’s high score ghosts on one

w w w .gdmag.com 53

LEFT. The Bizarre Creations PGR 2 development team. RIGHT. The Microsoft Game Studios PGR 2 production and publishing team.

of the arcade cone challenges, with sever-
al lead changes over the course of a few
hours. As one score became very difficult
to beat, one of the testers noticed the
total Kudos shown in the ghost replay did
not match the value on the Scoreboard.
Despite all the months of non-stop test-
ing, a strong game only hours from ship-
ping still had a very critical bug some-
where in the replay system.

Competitive gameplay is a very valu-
able part of the testing process during the
endgame—this was how gamers were
going to be playing our game! Although
we fixed it, we could have found that
bug earlier, and in the future we will also
push to create more automation for criti-
cal areas such as this, including hooks
for specific test scripts, boundary, and
stress conditions. We’ll never be able to
perfectly emulate the gameplay of mil-
lions of gamers, but by prioritizing our
focus, expanding our automation suite,
and increasing the size and scope of our
endgame “bug bash” efforts to broader
internal groups and teams, we’ll be better
armed to find and fix all show-stopping
bugs before release.

5.
Build process and source
control. We had a substantial

number of assets to manage during content
creation at Bizarre Creations, including
over 100 cars with 3D model and dynam-
ics/handling files, 11 constantly evolving

city models, and over 8,000 audio content
files. This caused tremendous confusion at
the end of the project, as our processes
were not originally planned to handle this
scope of code and content.

At the beginning of the project we had
multiple teams uploading to one game
image. This led to significant content
incompatibility problems in the build,
such as cars using incorrect engine audio,
city tracks without track-side barriers,
and old bugs re-appearing as old content
over-written as new. We planned to solve
this by splitting up the original game
image into separate images for city data,
audio and radio content, car content, and
all source code. We also planned to cre-
ate a unique test image, where all content
would be copied before release to the
Redmond test team.

However, splitting the process this way
ended up causing more harm than good.
During the endgame, as the Bizarre team
was doing builds every few days, the test
image had to be manually updated fre-
quently. To ensure consistency and speed,
the team created a step-by-step process
and set of batch files, to be run in a specif-
ic order each time. With a game so large
and server space at a premium, we could
not use Alienbrain or another file manage-
ment package. We were forced to dedicate
one person to this manual drag-and-drop
process for creating the test image.

Disasters began to strike as the build

process began to take longer. Everyone
was working very long hours, late check-
ins were made after build smoke tests,
and additional steps were added in man-
aging retrieval of assets from multiple
game images, complicating the build
process. The test image would often be
pulled together and posted to the secure
FTP site, only for the Redmond test team
to find the build would not run when
they came in the next morning, losing a
day of testing on the latest bits.

Moving forward, the Bizarre team will
stick to two game images—one image for
the team to post all code and content,
and another image for all tested, ship-
pable content. With less moving parts,
we expect the process to go more
smoothly on future projects.

Final Lap

I
n the end, we are all very proud of the
results we were able to achieve in

PGR 2, and we hope gamers are too. As
a team, we were able to deliver on our
vision and critical priorities for the game.
We were able to increase our quality bar
by maintaining a strong balance between
building upon the core fundamentals of
PGR gameplay and breaking new ground
in online multiplayer and scoreboards.
We were also able to deliver the game to
gamers on time.

However, no project is perfect, and we
certainly had our share of hurdles to
overcome, many self-imposed. We grew a
lot as a combined Bizarre Creations and
Microsoft Game Studios team between
PGR and PGR 2. Our challenge will be
to continue that growth in the future, to
learn from the success and failures of our
past, and to work together to overcome
future problems as they arise.

Looking back, the key to our success
was the team involved in bringing the game
to life. PGR 2 was built by smart, hard-
working people working together effectively
with a high degree of trust, open commu-
nication channels, and a clear vision and
goals. Easy things to say, but the magic
was in the execution, as it will likely con-
tinue to be in the foreseeable future. q

P O S T M O R T E M

mar ch 2004 | g a m e d e v e l o p e r54

A BMW M3 shines through a rainy night in Edinburgh.

F
or many game developers, “marketing
guy” ranks near the top of the neces-
sary evil scale—right after “enter-
tainment lawyer” and “retail
buyer.” Of course, marketing is a

necessary evil. Whether you’re working with the
industry’s top publishers or just starting out, at
some point you’re going to have to understand,
embrace, and ultimately partner with that mar-
keting beast demanding attention in the dark cor-
ner of your business aspirations.

First Step:
Understanding the Beast

M
arketing is communication—it’s that simple. When
a company puts an emphasis on marketing, it is in fact

putting an emphasis on communication. Understand this, and
you realize the old saying “we don’t need marketing—our game
will sell itself” is tantamount to saying, “we don’t need to com-
municate with people—our game will do that on its own.”

It’s okay to think of marketing in simple terms, but it’s dan-
gerous to think of it as a simple endeavor. Consumer segments
have eroded and splintered into an expanding number of tar-
gets. Adopting a multi-layered campaign, utilizing well-placed
snipers to support the heavy artillery, is necessary to get your
message across effectively. Increasingly, the audience is turned
off by sledgehammer communication tactics; today’s consumers
are empowered consumers, and their patience is evaporating
with every ad promoting the “most awesome,” “most
advanced,” and—worst of all—“most immersive” game ever
released. Today, your marketing message has to be razor sharp,
it needs to be emotionally creative, and it better be intelligent
enough to establish a meaningful connection with consumers,
or your margin for success will be reduced to a pinhole.

Next Step: Embracing the Beast

P
utting an emphasis on effective marketing is a fact of life
in any industry competing for consumer dollars, so why

fight
it? If you

haven’t
done so

already, it’s time to
embrace the beast. That does-

n’t mean you should develop the market-
ing; it means you should treat marketing as a priority. In the
film and music industries, for example, movie studios and
music labels provide the actual marketing machinery, but the
successful directors, actors, producers, and musicians make
marketing a priority throughout their careers.

Final Step: Partnering with the
Beast

U
nlike the movie studios, which are similar to one another in
the way they integrate product development and marketing,

not all game publishers are alike. Some demand interaction
between development and marketing; others believe separation
allows for the least amount of interference. In truth, marketers
need the partnership—they need to know the product intimately
if they’re going to establish effective positioning and communica-
tion. And developers need the partnership so they can create the
appropriate fuel to drive the communication machine, and ulti-
mately deliver the promise of the marketing claim.

There are three keys to a true partnership. Number one:
share information. Numbers two and three: share information

S O A P B O X c r a i g r e l y e a

mar ch 2004 | g a m e d e v e l o p e r72

continued on page 71

Marketing:
Packed inTogether

Ill
us

tr
at

io
n

by
 G

re
g

H
ar

gr
ea

ve
s

early and often. That
means sharing original
pitch materials, concept
art, napkin notes, what-
ever you’ve got. And,
yes, that means sharing
the design document—
preferably before it’s
finalized. Your marketing partners need more than a list of fea-
tures; they should be in on the discussion about character traits,
story arc, level objectives, and everything else from the HUD
layout to the number of hours the average player needs to com-
plete your game. In turn, you should get in on the discussion
about consumer trends, competitive products, market condi-
tions, and retail initiatives. There is no such thing as starting
too early on this process.

Through this process, marketing and development should
identify the vital “hooks” to your game’s positioning as early as
possible—to make sure the features that support the hooks don’t
disappear during production. Through this process, the two
groups should identify product placement, promotional partner-
ship and custom retail opportunities that are organic to your
game, not just slapped on at the last moment. Through this
process, the costly and unsettling disconnects that occur between
the marketing message and the final game can be avoided. And

opportunities can be seized
in a timely manner, rather
than frantically chased or
missed altogether.

Cooperation isn’t enough.
Cooperation is the market-
ing guy politely e-mailing a
request for assets that get

incorporated into your milestone schedule. Partnership is market-
ing and development meeting regularly, establishing positioning
for the product at the earliest possible stage and developing goals
for communication initiatives to support the positioning. This
shouldn’t be a relay race, with each person performing his leg of
the race separately. It’s a bobsled run, with everyone packed
together rocketing down a slippery course that demands a unified
effort from start to finish. It may seem like an uncomfortable
notion to some, but it’s the only way to keep pace with the com-
petition and maximize your game’s chances for success. q

Craig Relyea | Craig is Executive V.P. of Marketing for Creative
Domain, a leading Hollywood entertainment marketing agency,
where he runs the Interactive Entertainment Division and helps
develop game campaigns for the industry’s top publishers. Craig is
also the former head of Marketing for DreamWorks Interactive and
V.P. of Worldwide Marketing for Interplay Entertainment.

S O A P B O X

w w w .gdmag.com 71

continued from page 72

Partnership means meeting
regularly, establishing posi-

tioning, and developing goals

	02gameplan
	06indwatch
	08prodrev
	12profile
	15innerp
	21artview
	24soundp
	30betterby
	32f-saladi
	40gdcpreview
	46postmort
	72soapbox

	return:

