
FEBRUARY 2004

G A M E D E V E L O P E R M A G A Z I N E

L E T T E R F R O M T H E E D I T O R

EDITORIAL
Editor-in-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Jamil Moledina jmoledina@cmp.com
Departments Editor

Kenneth Wong kxwong@cmp.com
Product Review Editor

Peter Sheerin psheerin@gamasutra.com
Art Director

Audrey Welch awelch@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Jonathan Blow jon@number-none.com
Noah Falstein noah@theinspiracy.com
Steve Theodore steve@theodox.com

Advisory Board
Hal Barwood Designer-at-Large
Ellen Guon Beeman Monolith
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed Microsoft

ADVERTISING SALES
Director of Sales/Associate Publisher

Michele Sweeney e: msweeney@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 404.658-1415

Account Manager, Northern California & Midwest
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Western Region & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Account Manager, Target Pavilion, Education, & Recruitment
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Advertising Production Coordinator Kevin Chanel

Reprints Julie Rapp e: jarapp@cmp.com t: 516.562.7081

GAMA NETWORK MARKETING
Director of Marketing Michele Maguire

Senior Marcom Manager Jennifer McLean

Marketing Coordinator Scott Lyon

CIRCULATION

Circulation Director Kevin Regan

Circulation Manager Peter Birmingham

Asst. Circulation Manager Lisa Oddo

Circulation Coordinator Jessica Ward

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.763.59581 f: 847.763.9606
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

e: msalinas@cmp.com t: 650.513.4234 f: 650.513.4482

EDITORIAL FEEDBACK
editors@gdmag.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Executive Vice President & CFO John Day

Executive Vice President & COO Steve Weitzner

Executive Vice President, Corporate Sales & Marketing Jeff Patterson

Chief Information Officer Mike Mikos

President, Technology Solutions Robert Faletra

President, CMP Healthcare Media Vicki Masseria

Senior Vice President, Operations Bill Amstutz

Senior Vice President, Human Resources Leah Landro

VP & General Counsel Sandra Grayson

VP, Group Publisher Applied Technologies Philip Chapnick

VP, Group Publisher InformationWeek Media Network Michael Frieden

VP, Group Publisher Electronics Paul Miller

VP, Group Publisher Enterprise Architecture Group Fritz Nelson

VP, Group Publisher Software Development Media Peter Westerman

VP & Director of CMP Integrated Marketing Solutions Joseph Braue

Corporate Director, Audience Development Shannon Aronson

Corporate Director, Audience Development Michael Zane

Corporate Director, Publishing Services Marie Myers

W W W . G A M A N E T W O R K . C O M

✎

W hether it’s talking,

being the root of

all evil, not grow-

ing on trees, or

making the world

go ’round, money’s on our minds this

month with the publication of our Third

Annual Salary Survey (page 34). There

are few greater pleasures in life than

being paid to do something you love, and

the news among our salary respondents

is good overall: they’re more experi-

enced, getting paid more, and enjoying

more perks.

The real question is how to ensure

developers continue to love what they

do. The industry’s perpetual evolution

produces a steady stream of new oppor-

tunities for talented developers, but these

opportunities are being undermined by

those aspects of game developer life that

remain, often to developers’ great frus-

tration, unchanged.

The biggest problem is lack of stabili-

ty. Large companies can inflate and

deflate project teams so quickly that,

upon going gold, many developers are

unsure whether to expect a bonus or a

pink slip. Conversely, developers can

jump from small studio to small studio

and never feel more job security than

they would if they were working in

someone’s garage. Those few mid-sized

studios in-between only offer employees

a taste of both extremes.

Beyond just recognizing the problem,

employers must realize that, while stabil-

ity is desirable to most, it means differ-

ent things to different people. For some

it’s fertile ground for professional

growth or advancement. For others it’s

insurance benefits, a share of profits, or

a retirement nest egg. The single biggest

overall change I’ve seen in game devel-

opers in the past few years is thousands

of young, transient, empty-apartment

dwellers turning into family men and

women. What a difference turning 30

makes—just ask PONG.

The commercial demands of game

development awkwardly straddle aspects

of both staid corporate IT and chaotic

Hollywood production models. Each of

those industries has developed its own

means by which to provide employees

with the security they desire: IT through

the relative predictability of mature soft-

ware engineering practices and comfy,

big-corporation benefits, Hollywood

through guilds and unions. That’s not to

say either industry is immune to periodic

downturns, offshoring trends, or other

threats to ongoing industry-level stability,

but they have found a way to provide

their talent on an individual level with

some kind of safety net.

If consolidation trends continue, a

smaller number of larger employers will

be able to provide stability with benefits

but not immunity from layoffs at the

end of every project cycle, which cast

developers back into the pool of having

to choose between risky small ventures,

more revolving doors, or just heading

off to another tech or entertainment sec-

tor and taking their irreplaceable

knowledge with them. Unionizing seems

an unlikely near-term turn of events, so

what’s the right way to protect develop-

ers and promote long-term career and

industry stability?

I don’t have an answer, but at least I’m

not the only person wondering. The

International Game Developers Associa-

tion recently formed the Quality of Life

Committee (www.igda.org/qol) to address

these and other issues pressing to devel-

opers. Get involved in finding viable solu-

tions for the human side of the game-

business equation. Share your thoughts at

the Committee’s roundtable sessions

planned for this year’s Game Developers

Conference, and help get the Committee’s

whitepaper off the ground. Because your

skills, talent, and experience are worth

more than just a paycheck.

CMP Media, 600 Harrison St., San Francisco, CA 94107 t: 415.947.6000 f: 415.947.609

2

Game Developer
is BPA

approved

G A M E P L A N

Jennifer Olsen

Editor-in-Chief

www.gdmag.com

Quality, Not Quantity

Mocap, My Precious

I really enjoyed Ed Hooks’s article

about motion capture and acting

(“Chasing Gollum,” December 2003).

Most of the articles written about motion

capture are boring, technical, and not

really helpful. I was a motion capture

animator for seven years in the video-

game business, and recently wrote a

book on motion capture, scheduled to be

released in February 2004.

It seems we have a lot of the same

ideas about the importance of the motion

performer and setting up each shot to

reflect the mood. Unfortunately, a lot of

animators think, “I can change it howev-

er I want after the fact,” which is an

awkward way of looking at it.

Matt Liverman

via e-mail

Projecting Confusion

I enjoyed Steve Theodore’s Artist’s View

column on “Procedural Textures”

(November 2003). I am interested in

exploring this subject more myself. One

of the things that confused me in the arti-

cle was his use of the term “projection.”

I associate the term with UV coordinates,

but is a projection simply an instance of

a procedural being applied?

Stefan Henry-Biskup

Liquid Development, via e-mail

Steve Theodore replies: a “projection” is
any method of relating a 3D object to a
2D texture. If you freeze that projection
you get a UV mapping, but you can also
keep the projection live (in 3DS Max,
this would mean setting the individual
UV map gizmos to create different UV
channels). In the example I was using in
the article, I was suggesting multiple
projections (such as front, side, and
back) for painting the basis of a texture
and then using render-to-texture to
combine them into a single UV map,
since very few realtime engines can han-
dle multiple UV sets. The advantage of

that is you can paint the pieces at any
resolution and orientation you want and
still get them down into single, densely-
packed UV map.

Common Sense++

I n response to Jonathan Blow’s

“Predicate Logic” column (The Inner

Product, December 2003), I too have

seen plenty of over-engineering in game

code over the past few years. People try

to get too tricky and fancy with object-

oriented design and C++ features com-

bined. As he states in the article, “they

shoot themselves in the foot.”

However, I think he’s throwing the

baby out with the bathwater. My last

project at my previous studio was start-

ed from scratch for the Playstation 2

using middleware for rendering. We had

six programmers total, two of which

had never shipped a game and two oth-

ers that had shipped one game prior. In

10 months, we completed the project on

time and under budget while not only

keeping features, but adding some fairly

major ones in as well. We were heavily

object oriented and fully C++. Some of

this can be credited to our lightweight

production process and software design

philosophy. But I wholeheartedly believe

that our overall engine architecture is

what saved us. We didn’t template

everything, we didn’t have ridiculous

hierarchies or monolithic systems. We

just had common sense.

Paul Reynolds

Humongous Entertainment/Atari, via e-mail

Striking a Nerve

J onathan Blow’s column “Predicate

Logic” is very presumptuous. Bold

statements are good, and everything he

says makes sense. But he makes a lot of

jumps and assumptions. In my opinion,

the real question should be: do OO

practices improve things over what they

were before OO? The reason the pro-

gramming community has so widely and

completely embraced OO is: the answer

is yes, a resounding and absolute yes. As

tangled as OO can get to be, the

spaghetti code that was used before it

came along was far worse.

So the second question becomes: does

OO have problems? A corollary ques-

tion may be: is OO doing all it was

thought it would do? The inevitable

answer is that it does have problems

and that it isn’t as amazing as was ini-

tially hoped.

Hyrum Tanner

BYU—Center for Instructional Design

via e-mail

Jonathan Blow replies: I agree with you
entirely on these points. But I am not
trying to say in the article that all OO is
bad. What I am trying to say is, the
game industry is currently going through
a period of overzealous commitment to
the OO paradigm, wherein anything
that isn’t object oriented and extremely
formal is considered bad. I think that’s
very damaging and a big mistake.

f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r6

S A Y S Y O U
A F O R U M F O R Y O U R P O I N T O F V I E W . G I V E U S Y O U R F E E D B A C K . . .C

C
E-mail your feedback to

editors@gdmag.com, or write us at

Game Developer, CMP Media LLC,

600 Harrison St., San Francisco, CA 94107

VICE CITY still under fire. Responding to crit-

icism from the Haitian American groups,

Rockstar’s parent company Take-Two

issued an apology and promised to

change a portion of GRAND THEFT AUTO:

VICE CITY that featured the mission

objective “kill all the Haitians” (a refer-

ence to a specific drug gang). The meas-

ures, however, fail to satisfy the protest-

ers: Jean-Robert Lafortune of the

Haitian American Grassroots Coalition

says the sheer presence of the game con-

stitutes “a clear and present danger for

Haitian nationals.” The latest lawsuit

from the Palm Beach County Haitian

American Coalition named not only the

game makers but also several retailers

(Target, Wal-Mart, and Best Buy) as

defendants. This particular controversy

did not surface until nearly 13 months

after VICE CITY’s release.

PSX sold out in Japan despite ambivalent
analysts. Sony’s multifunction device PSX

debuted in Japan to mixed reviews from

industry analysts: Kazumasa Kubota of

Okasan Securities called it a “publicity

stunt” and predicted

sales momentum would dissipate after a

month or two; Kazuya Yamamoto of UFJ

Tsubasa observed that “lowering the

specifications of the PSX hurt Sony’s

image.” (Sony released the device with-

out some of the features previously

promised.) On the other hand, Hideki

Watanabe of HSBC Securities noted that,

compared to similar products from

Matsushita Electric and Pioneer, the PSX

is less expensive and highly competitive.

Despite the skepticism of some analysts,

the consumers depleted the first produc-

tion run of the unit within a few days.

What’s in a name? Microsoft, which once

sued the makers of Lindows OS for

infringing on its Windows OS trademark,

is now being hit with a similar lawsuit

from Mythic Entertainment, the makers

of DARK AGE OF CAMELOT. Mythic

alleges that the software giant’s upcom-

ing MMORPG MYTHICA is likely to

cause confusion among the consumers.

Mythic has previously raised objections

to Microsoft’s use of the name MYTHICA,

but Microsoft refused to desist. Filed in

the U.S. District Court for the Eastern

District of Virginia (Alexandria),

Mythic’s suit seeks permanent injunction

and economic remedies.

Sid Meier inducted into CMA Hall of Fame. Sid

Meier, creator of the CIVILIZATION game

series, is among the top five individuals

the public has voted for induction into the

Computer Museum of America (CMA)

Hall of Fame Class of 2002 (www.

computer-museum.org). The CMA Hall of

Fame recognizes innovators who have

contributed to the computer industry’s

milestone achievements. Meier will join

other nominees past and present, ranging

from Charles Babbage, inventor of the

Analytical Engine, to Tim Berners-Lee,

father of the World Wide Web. q

Send all industry and product release
news to news@gdmag.com.

f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r8

I N D U S T R Y W A T C H; K E E P I N G A N E Y E O N T H E G A M E B I Z | k e n n e t h w o n g

P TTHHEE TTOOOOLLBBOOXX
D E V E L O P M E N T S O F T W A R E , H A R D W A R E ,
A N D O T H E R S T U F F

N A R R AT I V E G A M E S
ZKM
Karlsruhe, Germany
February 6–12, 2004
Cost: Euro 400–Euro 1,600
www.sagas.de

W O R K S H O P O N I N T E R A C T I V E
E N T E R TA I N M E N T

UNIVERSITY OF TECHNOLOGY, SYDNEY

Sydney, Australia
February 13, 2004
Cost: $50–$150
http://research.it.uts.edu.au/
creative/ie/

U P C O M I N G E V E N T S

CCAALLEENNDDAARR
Intel Compilers 8.0. Intel released version

8.0 of its compilers, designed for opti-

mizing performance of C++ (and

Fortran) applications running on Intel

processors. The Intel C++ Compilers

for Windows and Windows CE .NET

support optimization of code for Intel’s

range of CPUs, including its Xscale

PDA processors as well as the current

variations of its 32-bit and 64-bit desk-

top chips. www.intel.com/software/

products/compilers/

Softimage Behavior. Softimage has

shipped version 1.5 of Softimage

Behavior, an IDE/SDK that allows users

to simulate the behavior of crowds of

any conceivable size, even crowds num-

bering in the thousands. New in version

1.5 is a batch-processing system that

can be used to model complex behav-

iors in the background, enbaling you to

continue working in the foreground.

www.softimage.com

3Dconnexion supports DCC apps.
3Dconnexion has enhanced the drivers

for its line of 3D motion controllers,

providing expanded features and cus-

tomization for the DCC market. Its

Spaceball, Spacemouse, Spacenavigator,

and Spacetraveler are now supported

by 3DS Max, Cinema 4D, Bodypaint

3D, Maya, Motionbuilder, and

Photoshop, with the mapping of some

or all of the six axes optimized for

manipulation of the on-screen view,

camera position, or objects.

www.3dconnexion.com

—Peter Sheerin

B

PSX debuted in Japan to a mixed reception.

10 f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r10

G amecoda by Sensaura is a

complete audio solution

for PC, Playstation 2,

Xbox, and Gamecube

(with internal develop-

ment versions running on WinCE and

Mac OS). Having only been about 14

months from its conception, it has yet to

make a substantial impact on the scene,

but Sensaura claims that at least two very

large game publishers have already taken

it on-board for a number of upcoming

titles. I’ll take a look at its functionality,

scalability, and ease of implementation in

this review. For this review, I tested ver-

sion 1.5, the latest version available.

(Version 2.0 was in beta at press time,

and is set to be released at GDC 2004.)

Gamecoda makes its interface fairly

simple, using a four-layered system, con-

sisting of a Sensaura abstraction layer

(SAL), low-level Gamecoda API, Game-

coda toolkit, and high-level CAGE

(Console Audio Game Engine) game

audio API with its tools (CAGE Producer

and CAGE Plug-ins). The abstraction

layer is the lowest level, sitting between

the main CODA API and the actual

hardware, making future ports to other

platforms a much smoother process.

The Gamecoda API is the core of

Gamecoda, containing the usual func-

tionality found at this level, such as

buffer and source creation and playback,

along with many other features. Some of

the main features include 3D audio,

envelopes, LFOs, filters, seamless buffer

queuing, and reverb. Software versions of

all features are available, should they not

be provided in hardware on the platform,

thus making the API completely flat and

truly cross-platform.

The high-level CAGE API integrates

with the CAGE Producer application and

provides a very simple interface (sound

can be played back using only six calls),

while adding all of the CAGE features

such as automatic streaming, randomiza-

tion, sequencing, and sound instancing.

Full source code for this API is provided.

While I can’t comment on programmer

interaction with the system, as it hasn’t

yet been released with a title, CAGE and

the CAGE Producer are where I got to

get my hands dirty, and are the sections

that I think expose some of the most

advanced functionality of the system.

CAGE organizes sounds in an abstract

sense as objects, rather than as individual

files, which is the next level of sound file

management in modern projects. The

objects act as containers (known as “sam-

ple banks”) for any number of sound

files, be they .WAV, .VAG, or whatever

format your platform and engine prefer.

The containers can have a great number

of properties set and can then be con-

trolled in playback through another con-

tainer known as a “sound bank.” Thus, if

you wanted to have 12 footstep sound

variations and wanted to change their

timing to be dependent on “walk” or

“run,” you could place all of your sounds

in a single sample bank, and assign prop-

erties to two sounds in a sound bank:

“walk” and “run.” Footstep sounds on

different surfaces can be accommodated

by simply creating other sample banks

containing the relevant samples, and a

slot system allows for easy swapping of

XX
P R O D U C T R E V I E W S

T H E S K I N N Y O N N E W T O O L S

ALEXANDER BRANDON | Alexander (abrandon@midway.com) has been involved with
game audio since 1994 and is currently the audio manager at Midway in San Diego.

Sensaura’s Gamecoda
by alexander brandon

The containers in Sensaura’s Gamecoda enable fine-tuned control through a logical interface.

similar sample banks in the game. If you

discover that a few of the “heel” sounds

are too loud and don’t want to change

the files themselves, simply create a mix

group and you have full control of vol-

ume there. I found this aspect of

Gamecoda to be straightforward and

powerful, and it took just a few minutes

to get a few samples together and play

around with them in real time.

Properties exist in the user-friendly

CAGE Producer GUI to manipulate 3D

placement, reverb, volume, panning, rep-

etition, and the properties of the files

themselves. One particularly useful indi-

cator tells you exactly what compression

is used by any file (or set of files) that

you click on. If you want to compress

files to a particular platform’s codec, or

resample them to a different rate, it will

do this for you, singularly or in batches,

leaving the original files intact.

Some extended functionality began to

emerge later during my testing: interleav-

ing and matrices. With interleaving you

can load multiple variations of the same

track and interleave them into a single file

for greater efficiency and synchronized

playback. This can be useful for varied

music playback as well as sound effects. It

also means you can stream a stereo VAG

file or Xbox ADPCM file. Interleaved

streams can also contain markers, allow-

ing the programmer to trigger in-game

effects based on musical cues.

A matrix lets you set a “grid” of

sounds that you can manipulate based on

timing or other parameters as well. This

gives far more depth than randomized

playback, or even randomized playback

with a bias against recently played sounds.

I experienced this through a demo that

simulated a car engine, with results that

sounded pretty darn realistic. It’s incredi-

bly versatile but a bit less obvious when it

comes to methodologies. I can’t imagine

what I’d use it for, but if it can simulate a

car engine I’m sure it can do a lot more

along two axes of sound playback.

CAGE has varied reverb settings based

on different environments (if the player

enters a large cavern, the reverb settings

can reflect it). Unfortunately the settings

are based on boxes, which can be diffi-

cult to manipulate with a complex level

architecture. At least a basic set of primi-

tives would be more useful.

Gamecoda also has taken a step for-

ward by interfacing with two of the most

used 3D rendering programs on the plan-

et for game development: Maya and 3DS

Max. While this is a great way for audio

staff to help take some pressure off the

level design staff, most studios have

either engines such as Unreal or their

own proprietary systems for level design,

which are spread across widely ranging

techniques. Some studios use a combina-

tion, having level designers build basic

level shapes and artists touch up areas by

importing prerendered objects, or

importing levels entirely. For the latter

method, Gamecoda is an absolutely per-

fect fit, but for others the game studio is

left to find its own method of implemen-

tation of reverb zones and sound object

assignments. Gamecoda does pick up the

slack by providing easy ways to do this

in its documentation, and sensibly uses

XML for its project file format. Covering

more ground with existing engines would

be the next step to take to cover as many

bases as possible.

Finally, something that is helping short-

en the increasing time taken for mixing

sounds properly during the alpha and beta

states of a game is interactive mixing. As

games approach Hollywood levels of

sound quality, having a good mix is

becoming increasingly more important.

Being able to ID sounds or groups of

sounds and assign faders to them that

control volume, filters, and such during

gameplay is a feature showing up in some

of the console dev kits, though Gamecoda

has yet to provide this.

Gamecoda is one of the most advanced

sound engines available and scores high

for its cross-platform versatility and large

list of features. But its youth shows, and

it still has some growing to do to wear

the king’s crown of game audio engines.

Regardless, I’d recommend it for any

kind of project for just about any genre.

It’ll save studios without their own cus-

tom engine an awful lot of time.

Digimation’s Model
Bank Collection

by tom carroll

P retend for a moment that you’re in

the 3D modeling and animation

field. It’s 4:45pm and you’ve just put the

wraps on a shot showing Japanese fight-

er aircraft strafing a Tyrannosaurus rex.

Your boss enters the office and before

you can say, “The shot’s a wrap, CJ,”

he swivels your chair around and

shouts, “The brass just saw the rushes—

Zeros are out, Stukas are in; the T-Rex

is now a monstrous anaconda that’s

fighting a giant grasshopper. I’ll be back

in 15 minutes and you’d better have

something up and running!” What

would you do (besides checking whether

your résumé is current)?

If you have Digimation’s exhaustively

thorough Model Bank Collection, a com-

pilation of more than 4,600 detailed and

fully textured 3D models, you can simply

STATS
Sensaura
Middlesex, U.K.
+44 (20) 8848-6636
www.sensaura.com

PRICE
$10,000–$25,000

SYSTEM REQUIREMENTS
PC (Windows), relevant game console
development kits.

PROS
1. Cross platform.
2. Advanced data management and file

organization.
3. Less programmer low-level work and

more control to the audio staff.

CONS
1. No real-time (interactive) mixing.
2. Needs engine editor support (Unreal,

and so forth).
3. Reverb zones represented only as

boxes.

GAMECODA XXXX

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

w w w . g d m a g . c o m 11

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

replace one set of models with another

and concentrate on the rigging and ani-

mating. The Model Bank Collection spans

nine CDs and contains 1,160 distinct

models covering all things vehicular (mili-

tary and civilian), animals, architecture,

furnishings, plants, anatomy, and more.

Also, each model comes in four levels

of detail (very high, high, medium, and

low), which accounts for the 4,600 mod-

els in the total package. The availability of

high-quality LOD models is invaluable to

both cinematic and real-time videogame

developers; judicious application of LODs

helps speed rendering time without sacri-

ficing the quality of the finished product.

While it’s unrealistic to dig thoroughly

into every model on the nine CDs, the

ones I looked at were appropriately

detailed, and each LOD was carefully

matched with a respectable set of texture

maps and materials. The selection menus

for the Model Bank Collection are simple

and effective (click on a category, select

the model you want, highlight it with the

cursor, and read the name and location of

each model).

In the videogame industry, it’s pretty

common knowledge that many developers

go to great lengths to build their own pro-

prietary models. It’s also common knowl-

edge that when modelers have to rely on

sketchy reference photos of various assets

(or their own imaginations) the results can

vary widely from how things look in real

life. Add to the mix the problems that

harsh deadlines can impose and you’ve

got the picture. Digimation’s models are

very representational of the actual assets,

which leaves the developer free to make

changes to the geometry to suit the appli-

cation or alter the textures to make the

asset unique. Each model also comes with

a bonus: both bump and reflection maps.

Digimation’s CD-based Model Bank

Collection is available only in .MAX for-

mat, which shouldn’t be a problem for

most users who are familiar with such

conversion programs as PolyTrans. The

full collection costs $995, but check the

company’s web site for special offers as

well as details on how the collection is

available via the Internet. The online ver-

sion supports such formats as: .MAX,

.3DS, .OBJ, .DXF, .COB (TrueSpace), .X

(DirectX), .VRML, and .W3D

(Shockwave 3D).

A test project that I pursued was the

creation of a hybrid zeppelin/battleship

called a “dirigible dreadnought,” some-

thing I never would have done if I had

had to develop my own models. Via

Digimation’s Model Bank Collection, I

had a serviceable dirigible dreadnought

up and on-screen within moments, allow-

ing me to concentrate on customizing this

Hindenburg of battleships to suit my own

needs. And that’s where this collection

shines most—putting credible assets in

the hands of creative people.

XXXX | Model Bank Collection
Digimation

www.digimation.com

Tom (jetzep56@yahoo.com) is an environ-
ment modeler for Rockstar San Diego.

Alias Sketchbook Pro 1.0
spencer lindsay

A lthough the advent of the tablet PC

seemed innovative when I saw Bill

Gates bring it out at Comdex a few years

ago, I could never really figure out what I

would do with it. It’s a computer without

all the input devices I’m used to. However,

after downloading and trying out Alias

Sketchbook Pro 1.0, I think I need to get

one. The only thing missing from Sketch-

book Pro is the smell of my eraser and the

scratching of the pencil. Really. Its sensi-

tivity and flow are exponentially better

than Photoshop’s. Though it doesn’t have

a lot of the features found in Adobe’s

Photoshop or Corel’s Painter, it makes up

for their lack in its speed (not to mention

price). Featuring an amazing set of pencil

and marker tools, as well as a pen, eraser,

airbrush, smear tool, custom brush editor,

and a good layer feature, Alias Sketch-

book Pro is a solid first release.

Upon opening Sketchbook Pro for the

first time, I was a bit intimidated by the

lack of visible tools. All you get is a white

page with a small graphic tool pallet in

the bottom-left corner. After reading the

docs and playing with it a bit, however, I

found the tools easy to find and use.

Most tools are selectable via a flick of the

stylus, and the color mixer offers func-

tionality similar to that found in Painter’s

excellent palette tools, and is extremely

easy to use. The pencil and marker tools

were my favorite. Most paint programs

make an attempt to get the marker look

correct, but this is the first program I’ve

used that really made me believe that I

was using a marker.

Although Sketchbook Pro has many

great features, it also has a few not-so-

great ones. Moving around in the sketch

environment is extremely tedious. Instead

of the simple “spacebar and drag” of

Photoshop, there’s a “zoom and move”

tool that drove me nuts with its counter-

intuitive gizmo floating at the end of my

pen. Another bother was that there was

no way to assign hotkeys to often-used

commands. I know that this was built for

Tablet PCs, but adding hotkey support

would make this a much easier tool to

use, both on desktop workstations and

with those Tablet PCs that feature key-

boards. The eraser tool was sometimes

linked to my stylus eraser, and sometimes

not. Finally, a lasso tool and .PSD import

would add some essential functionality.

Although I’m sure that 2.0 will shake

some of the bugs out, at $179.00 for the

download version and $199.00 for the

CD version with printed manuals, Alias

Sketchbook Pro is a great addition to any

digital artist’s tool set. q

XXXX | Alias Sketchbook Pro 1.0
Alias

www.alias.com

Spencer (slindsay@rockstarsandiego.com) is
a technical artist for Rockstar San Diego.

XP R O D U C T R E V I E W S

A “dirigible dreadnought” assembled from
Digimation’s Model Bank Collection.

f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r12

W e caught up with Randy

Smith just as he was put-

ting the finishing touches

on Thief 3 as project

director at Ion Storm.

Randy has worked on the stealth-based Thief
series since its inception, starting out his career

as a designer at Looking Glass Studios. This lat-

est Thief integrates current techniques such as

emergent gameplay, although there’s much

more going on, as evidenced by Randy’s intro-

duction of the ability to see your character’s

limbs from the first-person perspective.

Game Developer: What challenges were posed
by THIEF 3’s “body awareness” feature?

Randy Smith: The feature has some of the

harder challenges from implementing both

first-person and third-person view modes. For

example, in most first-person games you don’t have to show

your character animating when climbing, but with body aware-

ness you have to, because the player character is visible and

animating in the world. In most third-person games, you don’t

have to line up the character with world geometry all that pre-

cisely, but with body awareness you have to, because the cam-

era is so close to the player character’s model. Also, the camera

is attached to the player character’s head, so you need to create

animations that hold the head steady in addition to being aes-

thetically pleasing, which is really hard.

GD: How do you define emergent gameplay?
RS: Emergent gameplay is the phenomenon in which game-

play challenges or solutions to challenges emerge (possibly

unexpectedly) as a second-order consequence of game systems

interacting with each other. So, say you’ve got AIs who chase

the player, and you’ve got pressure plates that detect weight

on them and trigger traps. The pressure plates were placed

expecting the player would walk over them, but the design is

that clever players can also lure AIs to set off the traps.

Luring the AIs onto the pressure plates is an expected exam-

ple of emergent gameplay in which the AI system and the

physics system interact. Then, during playtest, you discover

that some clever players are tossing objects onto the pressure

plates to set the traps off, which is an unexpected example of

emergent gameplay, in this case an emergent solution. There’s

also emergent problems, such as when the AI on the pressure

plate gets killed by the trap but then a friendly AI hears the

noise and as a consequence starts walking towards the pres-

sure plates to investigate—suddenly the player has to protect

that AI from the pressure plates, which is an

emergent problem.

GD: What role should it play in future games?
RS: As you can see from the examples, emer-

gent gameplay supports player choice and

expression in a way that you can’t get in a game

where every possible challenge, solution, and

outcome is understood and explicitly imple-

mented ahead of time by the developers. The

important thing to me is the fact that interac-

tion is what sets games apart and makes them a

unique art form. If the history of other art

forms is any indication, then I believe the future

of interactive art is in more complicated forms

of interaction, and emergence is likely to be a

designer tool which contributes to pioneering

that future. But it’s probably the case that

whether entertainment software follows this

development is up to fickle consumer demand.

GD: What other tools do you think are worth experimenting with
in distinguishing the interactive qualities of games?

RS: Well, I think simulation is going to continue being really

important for empowering player expression and sophisticated

interaction. If you don’t have at least a little simulation in your

game, if everything is emulated, then the most sophisticated

player expression you can achieve is still discrete, and that’s a

pretty limited form of interaction and expression.

Another tool I’m interested in right now is narrative. During

Thief 3’s development, we experimented with the narrative

presentation. The player is presented with some ambiguous but

emotionally charged material towards which they can express

a variety of reactions using their standard in-game tools. The

game detects and responds to a handful of possible non-mutu-

ally-exclusive responses. This design is meant to capitalize on a

player trend we noticed, in which players would unexpectedly

contribute to the background story in various ways, such as

knocking out all the guards and leaving them in one room.

There’s an assumption that videogames are supposed to be

somewhat realistic experience simulators. I think once interac-

tive art really establishes itself as a fine art, as opposed to sim-

ply an entertainment medium, then this assumption too will

start to be questioned. Again, this is pretty parallel to the his-

tory of other art forms, but it’s probably a long way off.

GD: What games are you playing now?
RS: Mario Kart: Double Dash!!, Deus Ex: Invisible

War, The Legend of Zelda: The Wind Waker, Ancient
Domains of Mystery, and Decker. q

f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r14

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | j a m i l m o l e d i n a

Emerging from the Tunnel
Ion Storm’s Randy Smith on distinguishing the art of games

Randy Smith demonstrating the
importance of emergence.

T wo months ago I looked at predicate logic as a

possible way to help simplify game programming;

last month I introduced a programming language

called Lerp. The paradigm behind Lerp is a fusion

between traditional imperative programming and

the declarative style of predicate logic.

Toward the end of last month’s article, I implemented C-style

structs as syntactic sugar over predicate logic databases. This

means that the programming language has very good introspec-

tion support, and all sorts of interesting pattern-matching

queries can be performed on fundamental data structures.

All the time, random people propose high-level programming

features that sound good at first but, when applied to real

problems, are not actually helpful. (In fact, this seems to be the

norm for new language features.) Not only have I proposed a

feature unproven in the world of games, I have used it to

replace struct, the traditional workhorse of the imperative lan-

guage. Given all this, the onus is upon me to show that the

database features are useful for nontrivial real-world problems.

A Simple Real-World App

I thought it would be fun to choose a program from an earlier

column and port it from C++ to Lerp. After a bit of consider-

ation, I chose the application from “Interactive Profiling: Part 1”

(December 2002). The program is relatively simple; you have a

standard mouse-look and keyboard-walk interface for moving

around the world, the ground is flat, and there are about 100

crates scattered around. The crates are rotated at different orien-

tations, and there are a number of different textures on them.

Originally, the point of this program was to provide a simple

world for a profiler to run on. Since profiling is not the point of

this exercise, to help keep things simple in the port, I reduced

the profiling information to a traditional frame counter.

This application has been a good crucible for the early

design of the language. I started with a vague idea (I wanted to

base a language on predicate logic) and selectively refined the

language based on the demands made by concrete programs

like this one—hopefully keeping myself grounded in reality

through the process.

Nature of the Test Program

O ne interesting aspect of this test program is that it draws

all those crates at a very low level. It uses glVertex(),

glTexCoord(), and glColor() to render each crate at one vertex at

a time. Lerp is intended to be a scripting language, and in a real

game, you’d rarely use the scripting language to render at this

low a level. Instead you would use a render_mesh() function,

which would be implemented in fast and efficient C++ code.

In fact, this test application is so low-level that it even com-

putes the lighting for the faces itself, by dynamically computing

surface normals and dot-product-ing them with the light direc-

tion. If the program were trying to do less work, it could store

surface normals for each entity and tell OpenGL to do the

lighting itself.

As a result of all this, the program is actually much more

stressful than necessary to meet our domain requirements. If it

can be made to run quickly, we’re in good shape.

Program Fundamentals

T he test app uses a Vector3 class to represent points, and it

does a bunch of math on those points, passing the results

to the aforementioned OpenGL calls to render the world.

Naturally I need to implement a way to call OpenGL func-

tions from Lerp. That’s straightforward enough; I can just code

wrappers in C++ that can be called from Lerp.

I could also implement a Vector3 class in C++, manipulated

via wrappers, but that would be a cop-out. The whole point of

this program is to stress-test Lerp’s data structure–handling

mechanism, and Vector3 is the fundamental data structure of

this program. So Vector3 needs to be implemented using the

database features.

Implementing Vector3

H ow to implement a Vector3 as a database? I could take

the approach we tend to use in C++, which is just to have

some named slots x, y, and z, with a floating-point value for

each. But lately I’ve been rethinking these named coordinates,

as they don’t generalize very well to higher dimensions—for the

fourth dimension, sure, we can use w, but beyond that the let-

ters just get arbitrary. And if Lerp is going to be a high-level

language, the code I write for Vector3 should just be reusable

for Vector4, Vector11, or any other dimension. So, whereas I

might introduce the ability to use names as aliases for the

dimensions at some later date, for now I am just going to num-

f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r16

j o n a t h a n b l o wI N N E R P R O D U C T

Designing the Language
Lerp: Part 2

J O N A T H A N B L O W | Jonathan
(jon@number-none.com) is a game technology
consultant who consults with people about
game technology.

w w w . g d m a g . c o m 17

ber the dimensions 1, 2, and 3. This is in keeping with the dif-

ferential forms and Clifford algebra traditions of naming

dimensions e
1
, e

2
, and so forth, except I am leaving off the e.

Also, it introduces uniformity between the way we reference

vectors and matrices (we use integer subscripts for matrices).

So a Vector3 will just be a database containing facts that tell

me what the coordinates are. Each coordinate will be represent-

ed by one fact, perhaps like this: [‘coordinate 1 0.337], meaning,

“The value of coordinate 1 is 0.337.” But on second thought,

every fact stored in a vector is going to have ‘coordinate as the

first entry, so we can just eliminate that redundancy. Hence the

facts will look like [1 0.337] or [3 1.562]. From now on I will

also call facts tuples, since really what we are looking at here

are tuples of arbitrary data elements.

For a Vector3 to be valid, the facts inside it should be two

elements long, the first element being an integer, the second ele-

ment being a floating-point number. (There’s another important

constraint that we’ll talk about later.) It would be nice to have

some error checking, so the program can tell us when we make

mistakes. So I created the ability to declare a database schema

inside a struct declaration. The schema controls which facts can

be stored in a database, and it provides error checking as well

as program documentation. For a Vector3 it looks like this:

struct Vector3 {

[?Integer ?Float];

}

The syntax for a schema uses square brackets just like a fact

tuple would. This schema indicates that the first slot can be any

integer and the second can be any float. But we ought to be

more specific than this; the first coordinate of a Vector3 can’t

be just any integer; it has to be between 1 and 3. So I added

some new syntax to declare this in a compact way:

struct Vector3 {

[(1..3) ?Float];

}

At this point, it’s easy to see that an optimized version of

Lerp could look at this declaration and know to store the

Vector3 floating-point values compactly into an array. That’s

good to keep in the back of our minds, but we won’t obsess

over it now.

Since I added this concept of “..” indicating a range of inte-

gers, I made it work in imperative expressions also. You can say

each (1..n) {...} and the code will loop n times over the block.

This is used in the example code to initialize the crates.

Syntactic Sugar for Vector3

U sing the syntax introduced last month, we can manipulate

this new Vector3 type. Supposing we have a Vector3 called

v, we can find its x coordinate by evaluating v.[1 ??]. In other

words, for the tuple with 1 in the first slot, what is the value in

the second slot? But what’s interesting—and very hard to do in

C++—is that we can also perform queries that go backward

from the usual direction. So we can say things such as each

v.[?? 0.0]. In other words, give me a list of the coordinates that

are zero.

Still, the v.[1 ??] seems cumbersome; in C we would just say

v.x. Also, we need to think about initializing the vector. In C,

we can say v.x = foo. As of last month’s sample code, we used

the operator “.+” to add things to databases (and “.-” to

remove them); so to set coordinate 1 of the vector, we’d say

v .+ [1 foo].

But we have a consistency problem here that can cause more

tedium. Not only must each tuple of v be well-formed, but there

should be only one tuple for each spatial coordinate. If v has

two different entries with 1 in the first slot, we’re in trouble. So

before saying v .+ [1 foo] as shown above, we need to say v .-

[1 ?]. In other words, remove any tuple with 1 in the first slot. If

we don’t remember to do that, we create a glaring data inconsis-

tency. That requirement is annoying and it encourages errors.

Furthermore, there’s no way for the system to catch the errors,

because the compiler doesn’t know about this constraint.

To help improve error checking, and to make programming

nicer, I added the idea of a domain/range relationship to the

struct schema declaration. The power of the database approach

is that we can query the data in a freeform way, so we’re not

restricted; but often, as with the Vector3, we are modeling func-

tions (not arbitrary relations). In these cases, one direction of

query is forward, and another backward. We want to make it

easy to talk about the forward direction, since that will be the

most common case.

So in the schema, you can use the symbol “|” to indicate a

division in a tuple: everything to the left is the domain; every-

thing to the right is the range. The definition of Vector3

becomes:

struct Vector3 {

[(1..3) | ?Float];

}

Sometimes the domain of a tuple won’t be on the left-hand

side. In those cases, I provide an alternative syntax for declar-

ing it; see the sample code if you’re interested.

Now at least if we assert two tuples for the same coordinate,

the system can signal an error. But I also added some syntactic

sugar to imperative expressions, using C-style array subscript-

ing syntax. If you say v[1] as an r-value, that’s equivalent to

the expression v.[1 ??] (since the compiler knows by looking at

the schema that the domain of v is one element wide). If you

use v[1] as an l-value, as in v[1] = foo, the compiler removes

from v any old tuple that matches [1 ?] before adding the new

tuple [1 foo].

Using this nice brief syntax, we can define basic vector oper-

ations like addition, scalar multiplication and the dot product.

Listing 1 shows two examples. They are pretty neat, because

they are brief and they work on sparse vectors of arbitrary size.

The sparsity part requires some small language additions that

are beyond the scope of this article; also notice that I have gen-

eralized in the Listing from Vector3 to Vector. Thinking about

implementing these features is, for now, an exercise for the

interested reader. I like that I can define a versatile vector class

so simply and clearly.

The Matrix4

W riting a simple 3D application involves using some

matrices as well as vectors, so let’s look at a matrix defi-

nition:

struct Matrix4 {

[(1..4) (1..4) | ?Float];

}

It’s very much like a vector, except the tuple is three elements

wide because there are two indices. Now, suppose I have some

matrix m and I want to extract the first column vector from it.

Nicely, the database query operation just provides the right

answer for us—we don’t need wrapper functions or anything.

We just evaluate m.[? 1 ?] and the result is a database consisting

of length-2 tuples that fill in the question marks; in other

words, the values from all tuples that have a 1 in the second

slot. This has the same form as a Vector4, but for the purposes

of type checking, can the compiler know it’s supposed to be a

Vector4? There’s a sense in which it can; if you write down the

schema for this resulting database, it’s just the schema for

Matrix4 without the second slot: [(1..4) | ?Float]. That match-

es the schema for Vector4, so if we allow anonymous databases

to type-match based on their schemas, we achieve some pretty

reasonable type-safety.

Here’s another trick: the trace of a matrix m is just + each

m[?i ?i]. Note that we’re using the array subscript notation

for brevity, as we did with vectors; since we’ve specified the

same variable name for both index slots, the values in the two

slots must be equal, so the each iteration only travels along the

diagonal of the matrix. Math operators in Lerp automatically

expand across each just like function calls. For example, + each

(1..10) evaluates to 55, * each (1..5) evaluates to 120.

I get warm, fuzzy feelings from this. These expressions are so

short and simple that they probably don’t justify creating a

wrapper function in many cases—if you want to get a column

vector from m, you may not want to call some

get_column_vector() function, when you can just say m.[? n ?].

This is interesting because it may allow compound math expres-

sions to merge more organically than they might otherwise.

But How Does It Run?

W hen you try out this month’s sample code, you’ll find

that it runs at a reasonable speed. On my 1.5GHz

Pentium-M laptop, it clocks in at 30 frames per second. Keep in

mind that the language system is almost entirely unoptimized—

the bytecode is bloated, the function interfaces are slow, the

code garbage collects every frame, and all the databases are still

implemented as linked lists. Despite all this, the application

runs at a smooth frame rate. If nothing else, this goes to show

that computers are awfully fast these days.

Source Code and Next Month

I ’ve demonstrated that, despite its foundations in wacky lan-

guage features, Lerp can accomplish real-world tasks. I

encourage you to download the sample code (available at

www.gdmag.com) and play with the interpreter yourself. Next

month, we’ll look at some all new pattern-matching language

features. q

I N N E R P R O D U C T

f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r20

LIST ING 1 . BASIC VECTOR OPERATIONS

proc dot_product(Vector a, Vector b) {

return + each a[?i] a[i] * b[i];

}

proc *(Vector v, Float factor) {

Vector3 result;

each v[?i] result[i] = v[i] * factor;

return result;

}

A R T I S T ’ S V I E W

w w w . g d m a g . c o m 21

s t e v e t h e o d o r e

A s we all know (much too well), skeletal deforma-

tion isn’t a realistic way of representing a body

flexing. Most modelers have had to watch in

horror as their lovingly detailed character folds

up like an accordion when it raises its arm or

turns its head. Skeletal deformation always tends to collapse

around joints under extreme rotations. Moreover, the problem

gets worse with every additional degree of freedom. Even sim-

ple hinge-joints, such as elbows and knees, are prone to strange

effects, but shoulders are the worst, because they rotate on all

three axes at once and are very mobile (see Figure 1).

In film production, the traditional skin deformer has largely

been supplanted by a muscle system that simulates the behavior

of muscles and bones under the skin. This technology, which

used to require a squad of dedicated coders and technical dele-

gates, is gradually trickling down to us mere mortals. There’s

already at least one Max plug-in available (that you can down-

load from www.cgcharacter.com) and a Maya one is on the

way. Unfortunately, muscle technology is pretty new. If the

standard time lag between offline and real-time deployment of

technology holds true, we’ll have to wait a few years for a

workable real-time muscle system. In the meantime, we’re stuck

with the same old skeletal engines, so we’ve got to make the

best of them. This month we’re going to look at a simple bone-

based strategy for dealing with crummy deformations in real-

time skeletal systems.

The Incredible Shrinking Joint

T he logic behind using extra bones to correct bad deforma-

tions is pretty straightforward. Ordinarily, joints collapse

because of the way skeletal systems manipulate the vertices in a

mesh. For each bone influencing a given vertex, the skeleton

says, “If you are attached to this bone only, you’d go there.”

The system then collects all of the positions possible for the ver-

tex and finds their mathematical center using a weighted aver-

age, which serves as the final position. The problem is, this

process works only for positions (see Figure 2). Instead of say-

ing, “One of your bones rotated 90 degrees and the other 0, so

you rotate 45,” the system says, “Go halfway between where

you were and where you would be on the bone that rotates 90

degrees.” The depressing result of this is all too familiar. If

you’re working on a cinematic or a vertex-based real-time

engine that doesn’t use skeletons, you can probably fix the

problem with deformers or joint-driven freeform deformation

lattices. In a real-time skeletal engine, which means most mod-

ern game engines, you’re out of luck.

Enter (to a blaze of heroic fanfare) our hero—the fix-up bone!

A fix-up is an ordinary bone, located in the same place as the

problem joint. The fix-up substitutes a correct rotational inter-

polation for an incorrect linear one by turning some fraction

(usually half) of the original joint’s rotation (see Figure 3). The

partially rotated bone provides a more accurate target for vertex

interpolations. Thus, when you weight vertices to a fix-up bone,

they rotate around the joint rather than passing through it.

Vertices partially weighted to a fix-up will still show the same

collapsing interpolation we know and hate, but the effect is

reduced, because the fix-up halves the amount of error. In a real-

ly complex model you may want more than one fix-up at a par-

ticular joint to minimize the interpolation errors even further.

While it’s not a substitute for a full cinematic toolbox of

deformers and flexors, the fix-up bone has one great strength:

simplicity. As far as your engine is concerned, the fix-up bone is

just another bone—no special code, no extra art, no additional

performance cost. On platforms with severe transform limita-

A Joint Effort

STEVE THEODORE I Steve started animat-
ing on a text-only mainframe renderer and
then moved on to work on games such as
Half-Life and Counter-Strike. He can
be reached at steve@theodox.com.

FIGURE 1. Shoulders are the Achilles’ heel of the character animator.

tions, you may need to think about the cost of adding lots of

fix-ups, but few modern engines are transform-bound. You can

add fix-ups to your model without even talking to a program-

mer or a producer. In the game production world, this makes

them the ideal art tool.

Building Strong Bones

T he only real trick to building fix-up bones is understanding

how they relate to the animation skeleton. Ordinarily, we

can assume that the clavicle bone is the parent of the upper

arm, the upper arm of the lower, and so on; the links connect-

ing most bones look and behave more or less like physical

bones. In addition to the physical arrangement of the bones,

this arrangement represents the serial arrangement of the for-

ward kinematics (FK) hierarchy: moving the upper arm moves

the lower arm, moving the lower arm moves the hand, and so

on. As long as you think in FK terms, the animation skeleton

works like a real one. Fix-ups, on the other hand, don’t fit neat-

ly into this structure. Physically, the fix-ups need to sit exactly

on or very close to the bones they are assisting. In the bone

hierarchy, though, they are generally going to be siblings of the

bones they help.

For example, consider an arm made up of two regular bones:

bicep and its child forearm. If you want to add an elbow bone,

you’d naturally assume that elbow would be the child of bicep

and the parent of forearm. However building the arm this way

would create a dependency loop, because elbow is dependent

on what forearm does to derive a partial rotation. FK rotation

of forearm would cause elbow to rotate as well, thus changing

the pose you’ve just set on forearm. Even worse, inverse kine-

matics (IK) wouldn’t be possible at all, since IK can’t make

sense of a zero-length bone. To resolve the paradox, elbow has

to be a sibling of forearm rather than its parent. Not only does

this arrangement eliminate the dependency loop, it means that

elbow and forearm share the same local coordinate system

(bicep’s transform), which makes interpolation much easier.

In principle, the fix-up doesn’t have any physical length, since

it only represents rotation around a point. Since it’s parallel to

the regular skeleton, it won’t have any children, and will never

need to move or scale. In practice, though, you’ll probably

want to add a non-animating stub bone to the fix-up to make

selection easier and so you can visually check the operation of

the fix-up as your skeleton animates. In Maya, adding a stub is

quite simple: just append an extra joint to your fix-up bone,

positioned as you see fit, by manually parenting an extra joint

object to the fix-up joint. Max, on the other hand, has a fetish

for aligning bones with their children and will want to forcibly

align the fix-up so that its local X-axis points directly at the

stub. Once the fix-up is active, you may find that the local X-

axis points in an inconvenient direction (it’ll usually be partially

hidden inside the bone that the fix-up is assisting). For this rea-

son, it’s usually easier to just use a different kind of object (for

example, a box primitive) as the fix-up bone. You can then

shape it as you like with poly-modeling tools. This won’t have

any affect on its behavior. Remember to turn the stub’s render-

able property off if you don’t want it messing up test renders.

Driving Mr. Fix-Up

S ince the basic job of a fix-up is to rotate by a fraction of

another bone’s rotation, the process doesn’t demand a lot

of expression-writing wizardry or 3D math. If you’ve complet-

ed all the animation tutorials in your package, you should be

able to design fix-ups. Because the fix-up’s task is so straight-

forward, it’s easiest to skip the complexities of expression writ-

ing and drive the fix-up using orientation constraints. Not only

are constraints easier to create and maintain than expressions,

their operation and implementation are fairly similar for most

art packages. In this respect, constraints are emphatically differ-

ent from expressions. (Using constraints also simplifies your job

if, say, you need to write a column describing your techniques

for a magazine.) But if you’re more comfortable with expres-

sions, driven keys, reactors, or other advanced control tech-

niques, you can certainly use them to drive fix-ups as well.

A R T I S T ’ S V I E W

f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r22

FIGURE 2. This two-bone structure shows why joints tend to collapse.
Blue and orange vertices are weighted completely to their respective
bones. The brown vertices are weighted 50 percent to each bone.
When the blue joint bends, the position of the brown vertices is calcu-
lated by averaging the position they would have had if they were
attached solely to orange or blue bones. This produces the collapsing
and pinching typical of most skinning systems.

FIGURE 3. Here the green vertices are weighted to a fix-up bone, which
rotates at half the rate of the blue bone. The resulting vertex positions
preserve much more of the volume at the joint than the original
skinned (brown) vertices.

Setting up the constraints is quite simple. You begin by con-

straining the fix-up bone to the bone whose rotation you need

to reproduce. To return to our earlier example, the elbow fix-

up would be orient-constrained to follow forearm. In order to

halve the rotation, you simply need to add a dummy target

object aligned to the rest orientation of the bone you’re trying

to assist. If you weight the constraint equally between the

dummy and the real target (see Figure 4), the result is a halved

rotation. The dummy should be the third sibling of the fix-up

and the target. In our example, it is a child of the bicep. For

most applications, that’s pretty much all there is to it.

If you need to fine-tune the behavior of the skin, you can

adjust the response of the fix-up by manipulating the weights in

the orient constraint. Joints under heavy clothing, for example,

may want fix-ups that rotate at one third, rather than half the

rate of the moving limb. For joints with very pronounced under-

lying anatomy, such as the patella of the knee, you may want to

simulate the sliding of skin over bone by slightly moving the fix-

up as well as rotating it. You may even want to tweak the final

behavior by hand-animating the dummy constraint object,

although this is really overkill in most applications.

There are a few details to keep in mind. If the dummy rest

target and the real target are too close (less than 180 degrees

apart), odd things may happen, because the constraint may not

know how to properly interpolate between them (see Figure 5).

Fortunately, this doesn’t happen often, since few joints have a

range of motion greater than 150 degrees. The most common

cause of problems is building the skeleton at one extreme of a

very large range of motion: for example, an arm built hanging

straight down from the shoulder, which is then animated over

the character’s head. In such a case, you may need to reposition

the dummy to the middle of that shoulder’s range of motion so

that the constraint doesn’t approach the 180-degree limit.

Changing the orientation of the dummy will also change to the

orientation of the fix-up. Luckily, you only need to care about

the relative behavior.

Wrapping Up

A dding fix-ups to your skin deformer is no different from

adding any other bone. The one rule you need to respect is

that the fix-up should be active and working before you include

it in your skinning deformer. The vertices you bind to the fix-up

will be bound to the pose of the fix-up as it is when you

include it in the skin deformer. So you need to be sure that, at

skinning time, the fix-up is behaving the way it will during ani-

mation—particularly if you have adjusted a constraint target.

You will probably have to manually assign the vertices. The fix-

ups are usually so small compared to the limbs they assist that

envelope-based assignment will take little notice of them. In any

case, you may need to experiment a little to find the right

weightings. Though tedious, this isn’t difficult.

As you can see, building fix-ups is far from difficult. When

dealing with simple, repetitive tasks like this, it’s always a good

idea to write scripts to do the grunt work. Automation is not

only a timesaver but also an easy way to reduce the possibility

of human error and keep consistent naming conventions. This

month’s code (available at www.gdmag.com) includes scripts for

Maya and Max that set up a simple fix-up on a selected bone.

While the simple fix-up bones described here are hardly the

answer to all the limitations of conventional skinning, they’re still

a significant step forward, especially for low-polygon models.

When you’re comfortable with fix-ups, you should keep your

eyes open for ways to apply the same basic strategy to more diffi-

cult skinning problems. For example, joint-based fix-ups like

these don’t help a lot with the shearing effect that causes biceps to

shrink when they twist too much along the main axis. However, a

fix-up located in the middle of the bicep, which counter-rotates

against the twist of the arm, can be a huge help. Unfortunately,

that requires a little more fancy footwork—enough for an article

all its own. We’ll get there in a few months. q

w w w . g d m a g . c o m 23

FIGURE 4. An orient constraint, weighted equally to a moving bone
(blue) and a stationary rest target (orange), effectively halves the rota-
tion of the moving bone.

FIGURE 5. Orient constraints can flip suddenly if the angle between the
rest and moving targets approaches 180 degrees.

My last article for this

column (“The Live

Orchestra Recording,”

December 2002)

prompted a number of

e-mails seeking advice to ensure success-

ful foreign orchestra sessions. I could

easily fill the pages of this magazine with

a comprehensive list of dos and don’ts,

but the single most important thing is

finding the right orchestra for your par-

ticular project.

Find the contractor. Each orchestra has

a contractor, to serve as your key contact

person. The role of a foreign contractor

is much more diverse than that of his or

her American counterpart. In addition to

booking the musicians and support staff,

the foreign contractor should assist with

hotel accommodations, transportation,

acquisition of specialty instruments, and

the resolution of many preproduction

questions. Communication is critical. In

the U.S., we take the Internet for grant-

ed. However, in many European cities,

Internet portals are found only in

Internet cafés. It is not uncommon to

wait multiple days for e-mail respon-

ses. A contractor that has reliable daily

access to the Internet should be consid-

ered highly.

Research the orchestra. Every contrac-

tor will speak highly of his or her

orchestra, so you should research the

orchestra’s credentials independently.

The quality of foreign orchestras tends

to be excellent but can vary. As such, the

orchestra’s demo CD can be mislead-

ing. Similarly, don’t be impressed by an

orchestra’s name. I have recorded with

the Bratislava Symphony twice and was

shocked to find that the second occasion

contained different musicians from the

first. To eliminate such doubt, Petr

Pycha, contractor of the Prague

Symphony and the new Filmharmonic,

gave me the names of all the principal

players and the official orchestra picture

before our sessions. Ask to see a list of

credits, then contact those people.

It is extremely important to know if

the orchestra has experience with your

musical style. Many European orchestras

have different musical traditions and may

not be accustomed to your musical

vocabulary. Remember, for many of these

orchestras, it was less than 15 years ago

that our cultures were segregated by the

Iron Curtain. As a result, sometimes the

younger players yield better results for

music outside that region’s cultural tradi-

tion. Finally, consider the city in which

you are recording. There is an undeniable

correlation between the size of the city

and the quality of the orchestra.

Draw an agreement. When formalizing

your decision, make sure you include a

quality-acceptance clause. Tough deci-

sions are sometimes necessary, and occa-

sionally a player needs to be rep-

laced. This topic can be taboo with some

European orchestras. I’ve had orchestras

quickly accommodate my request for

personnel changes, and I’ve seen tempers

flare at the mere suggestion.

Also, make sure you have the same

players every day. Rehearsing a cue one

day, only to find different key players the

next day, can be disastrous. Include your

technical and orchestration requirements

in the agreement. Make a list of every

instrument, every mute, even what kind

of percussion mallets you will need, and

include them in the agreement. Make

sure the group can properly accommo-

date click, and video sync if necessary.

Finally, make sure you specify a form

of payment; doing business with foreign

orchestras can expose you to exchange

rate fluctuations. Although the Euro is

becoming the standard means of

exchange throughout Europe, some

groups like the Russian State Symphony

Cinema Orchestra prefer the relative sta-

bility of the dollar.

Multinational efficiency. Another bene-

fit to good Internet communication is

that it allows immediate access to pro-

duction materials regardless of loca-

tion. For example, the GC Game Music

Symphony Concert yielded about 5,400

pages of music. Using a web portal creat-

ed by producer Thomas Boecker, the

composers’ original scores were uploaded

from all over the world. I then down-

loaded, reviewed, and approved all

scores in New York. Once approved, the

orchestra’s librarian downloaded the

files, and printed, formatted, and com-

piled part books in Prague. This system

allowed us to avoid transporting hefty

amounts of music and worrying about

the ensuing disaster should that music

arrive late. Never consider any other

form of snail mail, as customs regula-

tions will inevitably delay your ship-

ment. Finally, if you want the players to

understand your intentions, remember

that the international language of music

is not English. It’s Italian. q

A N D Y B R I C K | In the past 18 months, Andy has ventured across
the Atlantic seven times, recording game music projects with five
world-class European orchestras and conducting the first-ever sym-
phonic concert of Western and Japanese game music. You can reach
him via www.andybrick.com or andybrick@aol.com.

In Search of the Perfect
Foreign Orchestra

a n d y b r i c kS O U N D P R I N C I P L E S

f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r24

Members of the Czech National Orchestra,
one of many foreign resources within reach.

T his is not just my 24th

Better by Design column but

also the conclusion of my

24th year in the game

industry. There are also 24

time zones around the world. Coinci-

dence? Numerological inevitability? Or

possibly, a feeble excuse to write about

international game rules?

I’ve just returned from the fifth

Australian Game Developers’ Con-

ference. Although the game industry in

Australia is still small compared to that

of the U.S. or Europe, it is large in pro-

portion to its population, and benefits

from optimism, excitement, and an

impressive amount of government sup-

port rarely available elsewhere.

The keynote speech by John De

Margheriti of Microforte focused on

Australia’s unique position, which leads to

a blending of the cultures and perspectives

from three major world markets: Asia,

North America, and Europe. That’s a the-

ory confirmed by my own past experience

with Australian developers, who often

combine styles from various regions.

But what’s behind those styles? True,

individual countries and regions have

developed distinct game fashions and pref-

erences. North American games are popu-

lar throughout much of the world, with

the notable exception of Japan. Some

Japanese console games achieve interna-

tional popularity, but there are very few

foreign-made console hits on Japan’s top

10 list, and some of the top Japanese

games never become international hits.

Some British games are worldwide

hits, clearly on par with the popular

American titles, but there are also some

local hits that don’t get accepted else-

where. Many games made in France or

Germany don’t sell as well when translat-

ed into English. And yet, when I was at

LucasArts, I was surprised to see that

SECRET OF MONKEY ISLAND games, which

are full of American puns and ironies

that would logically be hard to translate,

sold very well in Germany—per capita,

more than six times better than its U.S.

sales. So it’s clearly possible to transcend

the language and culture barrier. Could

there be game design rules that determine

success or failure in individual countries?

One clue comes from a common char-

acteristic In the games of five different

German and Austrian developers that

I’ve worked with recently to help them

break into the North American market.

These European developers generally

tend to make games that focus more on

details, specifically on opportunities for

players to indulge in micromanagement,

but less on story or character. While giv-

ing the player sole control over the

details might help sell a game in German-

speaking markets, it might deter buyers

elsewhere.

I discovered another clue working

with some Japanese experts to translate

the insult-swordfighting episode from

THE SECRET OF MONKEY ISLAND, where

characters trade insults and rejoinders

to gain advantage in fights. Although

this went over well in America and

Germany, our Japanese experts were

detectably horrified (even though they

politely veiled their reactions). They

were amazed that we thought it was

funny to insult each other, and they

found two insults involving farmers and

ancestors particularly offensive. In

Japan there are many social rules and

good behaviors that children are taught

along with their first words. Perhaps

these rules are already part of Japanese

game design as well.

A game’s regional popularity may be

affected by design rules, but it is ulti-

mately determined by the subtle, intu-

itive cultural preferences. There are also

signs suggesting that game developers

around the world are gradually assimi-

lating different cultural elements while

retaining their own unique perspectives.

Zootfly, a new developer in Slovenia, is

creating a game called HOLLOW, which is

influenced equally by the works of

Kafka, Hollywood films, and Slovenia’s

own emergence from behind the Iron

Curtain. The game is set in an alternate-

history universe where a dictatorial state

dominates most of Central Europe. But

the stormtroopers of this regime have

adopted the fashion sense of Saturday
Night Fever, which the Zootfly team

calls “Disco Totalitarianism.” That’s

only one of several unique design ele-

ments, and I have difficulty imagining a

U.S. company creating something simi-

lar. But pop culture’s global influence is

apparent even in Slovenia.

Although there are many groups all

over the world managing to create games

that succeed in other countries, there are

definitely design rules that are endemic to

specific countries and cultures that can

affect the local popularity of games. If

you’d like to enlighten me with a game

design rule specific to your country,

please e-mail me. q

To Globalize or to Localize ...

n o a h f a l s t e i n

N O A H F A L S T E I N | Noah is a 24-year veteran of the game
industry. His web site, www.theinspiracy.com, has a description of
The 400 Project, the basis for these columns. Also at that site is a
list of the game design rules collected so far, and tips on how to
use them. You can e-mail Noah at noah@theinspiracy.com.

f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r26

B E T T E R B Y D E S I G N

HOLLOW delivers a disco eye for the storm-
trooper guy.

t h o m a s b u s s e rP O L Y S L E R P

f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r28

W hile working on our current Xbox title,

B.C., we realized the animation system

was consuming more CPU time than we

wanted. The increasing number of flying,

swimming, and walking creatures and the

number of blended animations were eating up to 10 percent of

the CPU time. We explored different ideas to reduce this compu-

tational cost, including: simplifying the characters’ skeletons

drawn in the distance, limiting the number of blended animations

on each character, streaming animations from the hard drive at

30 frames per second, and using approximation methods to

interpolate the rotations. This last concept is the subject of this

article. Our initial requirements were to find a method that

would be both fast and as accurate as possible: we have very

large dinosaurs in our game, and small errors on one bone rota-

tion would be noticeable. We also knew we had to accept a

trade-off between speed, accuracy, and memory footprint.

We’re using unit quaternions to represent the rotation of

each bone in the skeleton and therefore use the classical spheri-

cal linear interpolation (Slerp) defined by:

(Eq. 1)

where: , w = cos–1 d and d = q1
. q2

Note that s(0) = 0 and s(1) = 1

Computing a Slerp requires the evaluation of several expen-

sive trigonometric functions: three sines and one arc-cosine.

Attempting to approximate Slerp is desirable and has been pre-

viously explored. Jonathan Blow made a notable contribution

with quasi_slerp in his article “Hacking Quaternions” (The

Inner Product, March 2002). Unfortunately our March 2002

Game Developer evaporated from the office and only recently

fell into my possession. Given the pressures of your average

project, this was perhaps fortunate as the learning experience

has produced some new and exciting techniques that I may not

have encountered otherwise.

In this article, we’ll first discuss how to substitute the func-

tion s by a polynomial. The new family of interpolation func-

tions is hence called PolySlerpn, where n is the degree of the

polynomial substituting s. Then, as the substitution by an

approximation introduces errors, we will study the type and the

s t
t

()
sin

sin
=

()ω

 Slerp(q q) q q1 2 1 2, , () ()t s t s t= − +1

T H O M A S B U S S E R | Thomas is the lead programmer on B.C., a
title developed by Intrepid Games, a satellite developer of Lionhead Stu-
dios. He can be reached at tbusser@intrepidgames.com.

PolySlerp
A fast and accurate
polynomial approximation
of spherical linear
interpolation (Slerp)

w w w . g d m a g . c o m 29

amount of discrepancies and will elaborate methods to minimize

them. We’ll use a simple method, found by coincidence, which

significantly improves the accuracy. We will also look into dif-

ferent implementation approaches, using tables or not, requiring

a preprocessing stage or not, exploiting the Pentium SSE instruc-

tion set or not. Finally, we will measure the gain in time com-

pared to the standard Slerp implementation and will quantify

the average and maximum errors introduced on a large set of

randomly generated pairs of quaternions. The next section stud-

ies the function s and defines the restricted domain we want to

approximate.

Function s and Limit of Our Domain
of Approximation

T he function s is essentially parametric and the angle w
between the quaternions is the parameter. Before consider-

ing any approximation method, we need to see what this func-

tion looks like, depending on the value of w. Figures 1 and 2

show the cases for , and .

As q and –q represent the same rotation, we only consider

here the cases where w £ p/2, thus in the case q1
. q2 < 0—

equivalent to say w > p/2—we change the sign of q2, to guaran-

tee that w £ p/2. With this restriction, it appears intuitively from

Figure 1 that a polynomial approximation is likely to be good

enough for the task.

General Formulation of the Polyno-
mial Functions

A s stated in the introduction, we call PolySlerpn our approx-

imation method of Slerp, using a polynomial Pn of degree

n; here is its definition:

(Eq. 2)

where the general formula of the polynomial Pn is:

(Eq. 3)

Now, to compute the coefficients Pn,0 to Pn,n and define com-

pletely the polynomial, we need n + 1 sample points. We choose

to take points regularly placed on the t axis from 0 to 1 inclu-

sive. The samples taken on s are s(i / n) where i ranges from 0 to

n inclusive. We use the notation Sn,i to represent s(i / n). Two

simplifications appear immediately:

Because Pn(0) = sn,0 = s(0) = (0) (see Equation 1) we are sure

that all the Pn,0 are zero; that is, there is no offset at the origin:

Pn(1) = sn,n = s(1) = 1 means that the sum of Pn1 to Pn,n is

one, and hence, we can compute n – 1 coefficients and compute

the remaining one as the complement to one of the sum of all

the others.

P s p p pn n n n i
i

n

n() , , ,0 0 0 00 0= = ⇔ + = ⇔∑

P t p p tn n n i
i

i

n

() , ,= +
=
∑0

1

PolySlerp (q q) q q1 2 1 2n n nt P t P t, , () ()= − +1

limω → 0ω π= 3 4/ω π= / 2

Proof:

We rewrite our polynomial:

(Eq. 4)

Table 1 lists, without detailing the intermediary resolution

steps, the formulation of the coefficients Pn,2 to Pn,n, for P2, P3,

and P4. It has been obtained by solving the system of equations:

Pn(1 / n) = sn,1, Pn(1 / n) = sn,2 Pn ((n – 1)/n) = sn,n–1. Note that

P1(t) = t which is equivalent to say that PolySlerp1 is the linear

interpolation, or Lerp.

Measuring and Minimizing Errors

A s we work with unit quaternions and because we substi-

tute s by an approximation, we can focus on the following

types of errors introduced:

The error on the length of the resulting quaternion:

, where

The angular error with the Slerp:

The Euclidean distance with Slerp:

We use the first two measures (the error on the length el and

the angular error ea) to establish a method to reduce the “synthet-

ic” error ed (error on the Euclidean distance). It is synthetic in the

sense that when the two others are 0, ed is always 0 as well.

Compensating the Error on the Length

T o cancel the error on the length is simply a matter of renor-

malizing the result quaternion, which is to say, dividing the

quaternion by its length. It is, however, worth noting that the

normalization can be slightly simplified in our specific case. The

length of the PolySlerpn is: , where

and .

We know that , which implies the length is:

, d = q1
. q2 (Eq. 5)

Compensating the Angular Error

M inimizing the angular error happens to be more complex,

and in fact I couldn’t find a direct analytical method.

Let’s examine an indirect approach.

The angular error can be understood as the resultant quater-

nion being “too late” or “too early” as compared to Slerp. It is

therefore possible to apply a transform to t to compensate for the

discrepancy, but we’ll consider instead a method that modifies the

coefficients Pn,i to minimize the error. Using this technique, we

realized more accurate results at equivalent computational cost.

Combining Polynomials to Minimize
the Error

A s I could find no analytical method, I looked for a numeri-

cal search method—binary or iterative—to minimize the

error. As the values of the Pn,i depend on the angle between the

quaternions, we could, for instance, try to approximate the Pn,i
coefficients by polynomials, but, clearly, the number of free vari-

ables to search would quickly become prohibitive as n increases,

and/or the degree k of the polynomials approximating Pn,i gets

higher. For an approximation of all the Pn,2 to Pn,n (n – 1 coeffi-

cients) by a polynomial of degree k, we would need (n – 1)(k + 1)

variables to search. We therefore tried another approach.

To explain the principle of this method, let’s first take a

simple example. Figure 3 represents the angular error over t
generated by a linear interpolation (PolySlerp1) and by Poly-

Slerp2 for the case w = p / 2. Intuitively, we can notice that the

angular error coming from PolySlerp2 is approximately half of

l a b abd= + +2 2 2

q q1 2= =1

b P t= ()
a P t= −()1l a b= +q q1 2

e p td s= − Slerp(q q)1 2, ,

e
p
p

ta
s

s

= ⋅










−cos , ,1 Slerp(q q)1 2

p ts n= PolySlerp (q q)1 2, ,e pl s= − 1

P t p t p tn n i
i

n

n i
i

i

n

() , ,= −






+

= =
∑ ∑1

2 2

P s p p pn n n n i
i

n

n n i

n

() , , , ,1 1 1 1 11= = ⇔ = ⇔ = −∑ ∑

P O L Y S L E R P

FIGURE 1. S(t) for different values of w. FIGURE 2. The domain covered.

f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r30

Q2

Q3

Q4

q m s s s4 4 4 4 4 1 4 2 4 3

32

3
4 6 4 1, , , , ,= − − + −()

q m s s m s s s4 3 4 3 3 1 3 2 4 4 4 1 4 2 4 3

9

2
3 3 1

16

3
18 24 14 3, , , , , , , ,= − +() + − + −()

q m s m s s m s s s4 2 4 2 2 1 4 3 3 1 3 2 4 4 4 1 4 2 4 32 4
9

2
5 4 1

2

3
104 114 56 11, , , , , , , , , ,= −() − − +() − − + −()

q m s s3 3 3 3 3 1 3 2

9

2
3 3 1, , , ,= − +()

q m s m s s3 2 3 2 2 1 3 3 3 1 3 22 4
9

2
5 4 1, , , , , ,= −() − − +()

q m s2 2 2 2 2 12 4, , ,= −()

that coming from PolySlerp1 but negated. We may wonder if

it would be enough to replace P2 by the linear composition

to minimize the angular error. It seems, at

first glance, to be an interesting option, as the third curve on

Figure 2 suggests. It’s only an intuitive ratio, for the specific

case w = p / 2, but it allows us to present our approach: using

a linear composition of polynomials of degree 1 to n to mini-

mize the error. It happens that a constant coefficient is good

enough for all values of w. The end composition being of the

same degree as Pn, but with different coefficients. We define

the new polynomial:

(Eq. 6)

where each mn,i is the coefficient applied on Pi.

This method can work only if we assume the result will be

normalized, the simple case shows immediately

that PolySlerp1 substantially alters the length of the quaternion.

We renormalize the quaternion at the end of the interpola-

tion which implies that the sum of mn,i can be any arbitrary

value (except 0), and we add a constraint so that this sum is

always one. Doing so reduces the number of mn,i to search by

one and mn,n is now simply the complement to one of the sum

of all the other mn,i. Compared to the method suggested earli-

er—that builds a polynomial for each Pn,i and needs to the

search for (n – 1)(k + 1) parameters—we have only n – 1

parameters to search. Remark the sum over i of the qn,i is 1.

After simplifying all the linear compositions, we get the new

qn,i coefficients shown in Table 2. We just need now a “hill-

climbing” style function to estimate the mn,i coefficients by

minimizing the error. We not only want to minimize the maxi-

mum angular error (ea max) but the average one as well (ea avg).

To do so, we actually minimize e = ea max + kaea avg and update

ka during the search process to take into account the actual sta-

tistical ratio observed between the average and maximum angu-

lar error.

Implementation

W e explore different approaches here. For PolySlerp2, and

its error-compensated version, the evaluation of the

coefficient P2,2 (to define P2) and q2,2 (to define Q2), can be

done directly from the dot product d and therefore either in

real time or stored in a lookup table:

1 3 2 31 2/ /P P+

Q t m P tn n i i

i

n

() ,= ()
=
∑

1

1 3 2 31 2/ /P P+

w w w . g d m a g . c o m 31

Q Coefficients

TABLE 2. Simplified Qn,i Coefficients.

FIGURE 3. Angular error as function of t for w = p/ 2.

P2 or simplified as

P3

P4

p s s s4 3 4 1 4 2 4 3

32

3
4 6 4 1, , , ,= − − + −()

p s s s4 3 4 1 4 2 4 3

16

3
18 24 14 3, , , ,= − + −()

p s s s4 2 4 1 4 2 4 3

2

3
104 114 56 11, , , ,= − − + −()

p s s3 3 3 1 3 2

9

2
3 3 1, , ,= − +()

p s s3 2 3 1 3 2

9

2
5 4 1, , ,= − − +()

p
d

2 2 2
2 2

1
, = −

+p s2 2 2 12 4, ,= −

P Coefficients

TABLE 1. Formulating Pn,2 to Pn,n .

Reminder: m2,2 is a constant found by the search algorithm.

Another option is to store the dot product d and the coeffi-

cient P2,2 (or q2,2) along with the pair of quaternions. Finally,

we can use a look-up table that holds the coefficient P2,2 (or

q2,2). The index in this table is the dot product multiplied by

the size of the table and we call this index the “Polynomial Id”

or PolyId for short. For B.C. we use a table of 2,048 entries.

For PolySlerp3 and PolySlerp4, and their error compensated

versions, however, the coefficients of P3, Q3, P4, and Q4,

require several sample points on s and need for that reason to

be stored in lookup tables.

If q1 and q2 are known in advance—coming from an anima-

tion usually—we attach the PolyId to the pair of quaternions—

typically in the exporter code. The dot product is needed for

the renormalization (see Equation 5), but we don’t need to cal-

culate it in real time as we can store it in the table. The normal-

ization won’t be completely accurate in that case, but we

assume it’s a reasonable trade-off.

When q1 and q2 are not known in advance—while blending

two skeleton poses for instance—the PolyId has to be calculated

or, as explained earlier, in the case of PolySlerp2 it is also possi-

ble to compute the coefficient of the polynomial directly in the

interpolation code.

The code provided offers, for PolySlerp2, both a direct ver-

sion and a version using the lookup table. We coded them

mainly to be able to compare the error level and the speed of

the two versions.

We implemented a standard and a SSE version of all the Poly-

Slerpn. Note that the SSE code uses the “Reciprocal Square Root

Estimate” (mnemonic “rsqrtss”) which is much faster but also

less accurate than the standard method to compute . This

introduces a new source of discrepancies in the interpolation. We

compensate it, to a large extent, by having another set of mn,i
coefficients. The error minimizing function that computes the

mn,i has hence to be compiled in standard or SSE mode.

Statistics: Error and Speed

I t’s finally time to see if this method was worth the effort: the

evaluation of polynomial of the fourth degree, some renor-

malization logic and a look-up table that may cause data cache

contentions are, after all, good reasons to doubt. We measured

the time to interpolate between 200,000 pairs of quaternions

and evaluated the average error on the angle (in degrees) and

on the length, compared to Slerp. We made the test on an

Xbox, in standard version and with SSE extensions activated.

The standard version gave us the figures shown in Table 3.

The PolySlerp4 seems to be quite accurate without error com-

1 / x

q m
d

2 2 2 2 2
2 2

1
, ,= −

+











p
d

2 2 2
2 2

1
, = −

+

f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r32

P O L Y S L E R P

METHOD VERSION TIME ANGULAR LENGTH
X1000

D3DSlerp From the standard 216 0.00 0.00
Xbox library

Lerp 62 1.100 104.85
Lerp Err. Compensated 91 “ 0.00
PolySlerp4 Standard 81 0.005 0.04

Preprocessed PolyId 70 “ “
Preprocessed PolyId + 97 “ 0.03
Err. Compensated
Err. Compensated 113 “ 0.00

PolySlerp3 Standard 82 0.012 0.58
Preprocessed PolyId 69 “ “
Preprocessed PolyId + 94 0.005 0.03
Err. Compensated
Err. Compensated 112 “ 0.00

PolySlerp2 Preprocessed PolyId 61 0.471 2.09
Preprocessed PolyId + 89 0.007 0.03
Err. Compensated
Err. Compensated 107 “ 0.00
Err. Compensated + 123 “ “
No lookup table
Err. Compensated + 85 “ “
Coefficients stored in
animation key

TABLE 3. Interpolation error test results in standard version.

pensation, it should be a good candidate both for interpolating

between animation keyframes (the “Preprocessed PolyId” ver-

sion) and a general-purpose replacement of Slerp (“Standard”

version). Now, using a lookup table may be a problem: it can

be very cache unfriendly and can cause discontinuities between

two look-up entries. In that case the “Err. Compensated + No

look-up table” version of could be used.

Table 4 shows the results from the SSE implementation. We

can see the speed improvement for PolySlerp and measure the

effect of using the “Reciprocal Square Root Estimate” assem-

bler operator on the accuracy. It becomes apparent that com-

pensating the errors on PolySlerp4 is actually detrimental in

SSE: it doubles the average error on the length. From this table,

it looks like the best candidates are probably the “Preprocessed

PolyId” version of PolySlerp4 for animation key-frame interpola-

tions and the “Err. Compensated + No lookup table” version of

PolySlerp2 for the other cases. At the cost of more memory used

for the animation data, the “Err. Compensated + Coefficients

stored in animation key” could be used.

The Accuracy Trade-Off

I mproving animation techniques to create richer content is a

constant concern in our field. Whether it is a matter of

blending more animations to produce more lifelike behaviors,

building more complex character skeletons to improve realism,

or having more actors on the screen to create more interesting

worlds, the cost of computation increases dramatically. Having

a fast approximation method for animation interpolation

proves itself as a useful tool so long as the memory and accura-

cy trade-off is good. In many cases, a Lerp function with some

error correction might be accurate enough, but when the accu-

mulation of error becomes very noticeable, a more accurate

method is desirable; for that reason, PolySlerp has been useful

for us and may be useful for other developers. q

w w w . g d m a g . c o m 33

F O R M O R E I N F O R M AT I O N

Ken Shoemake. “Animating Rotation with Quaternion Curves.”
Computer Graphics Vol. 19, No. 3 (July 1985).

David Eberly. “Rotation Representations and Performance Issues.”
Magic Software, Inc. (January 2002).
www.magic-software.com/Documentation/RotationIssues.pdf

David Eberly. “Fast Inverse Square Root.” Magic Software, Inc.
(January 2002). www.magic-software.com/Documentation/
FastInverseSqrt.pdf

Jonathan Blow. “Hacking Quaternions.” Game Developer magazine
(March 2002).

A C K N O W L E D G E M E N T S

Thanks to Malika Saulnier for years of contribution to systems
analysis and algorithms design, and Andrew Vidler and Sam Mar-
tin for their constructive comments and their careful reading.

TABLE 4. Interpolation error test results with SSE implementation.

METHOD VERSION TIME ANGULAR LENGTH
X1000

D3DSlerp From the standard 221 0.00 0.00
Xbox library

Lerp 60 1.100 104.85
Lerp Err. Compensated 70 “ 0.09
PolySlerp4 Standard 85 0.006 0.04

Preprocessed PolyId 67 “ “
Preprocessed PolyId + 83 “ 0.09
Err. Compensated
Err. Compensated 106 “ “

PolySlerp3 Standard 84 0.013 0.58
Preprocessed PolyId 68 “ “
Preprocessed PolyId + 74 0.006 0.09
Err. Compensated
Err. Compensated 93 “ “

PolySlerp2 Preprocessed PolyId 55 0.471 2.09
Preprocessed PolyId + 71 0.008 0.09
Err. Compensated
Normalized 88 “ “
Err. Compensated + 74 “ “
No lookup table
Err. Compensated + 63 “ “
Coefficients stored in
animation key

j e n n i f e r o l s e nS A L A R Y S U R V E Y

f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r34

Ill
us

tr
at

io
n

by
 A

ud
re

y
W

el
ch

w w w . g d m a g . c o m 35

TT his year has been one of true maturation in the game
industry, growing pains and all. To paraphrase Calvin
Coolidge, today more than ever the business of game
development is business. The gulf between game devel-
opment’s garage roots and Wall Street’s unrelenting

demands is widening. Consolidation has been rampant, bringing big
paydays to some and leaving others out in the cold. Uncertainty about
the future, both technological with regard to future consoles, and pro-
fessional with regard to job security, has been a dominant theme.

Still, at the heart of every underpraised triumph and big-budget
blockbuster alike are the individual men and women who conjure game
magic from the alchemy of programming, art, design, audio, and pro-
duction support. Now in its third year, Game Developer’s annual salary
survey examines how such efforts translate into salaries and perks for
thousands of U.S. game developers.

With the help of research firm Audience Insights, we sent e-mail invi-
tations to Game Developer magazine subscribers, Game Developers
Conference 2003 attendees, and Gamasutra.com members in October
2003, asking them to participate in our annual salary survey, and we
received 4,508 unique responses worldwide.

Not all respondents provided sufficient compensation information to
be included in the findings. We also excluded cases where the compen-
sation was given at less than $10,000 or greater than $300,000, or where
there was text entered that did not readily correspond to a compensa-
tion figure. We further excluded records missing key demographic and
classification information. As this article reports U.S. compensation only,
we also eliminated the approximately 1,400 non-U.S. respondents,
bringing the total sample reflected in the compensation data presented
in the following pages to 2,740.

The sample represented in our salary survey can be projected to the
game developer community with a margin of error of plus-or-minus 1.8
percent at the 95 percent confidence level. That means we can say with
95 percent certainty that the aggregate statistics reported would stay
consistent, within the margin of error, across the entire population.

Every year the game industry garners more attention from fans and
speculators alike. Analysts are no longer projecting the gangbusters
growth rates of the past few years, but many outside the industry, from
film and music especially, are looking for ways to leverage its cross-
media moneymaking potential. Within the industry, some are experi-
menting with more Hollywood-like permutations of the game business
model, including the creation of modular, discipline-centric teams of
programmers, artists, or designers available for contract. How future
evolution of the game business will affect the balance of power in the
industry, and the compensation for developers, remains to be seen.

f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r36

S A L A R Y S U R V E Y

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<2 2–5 6+

programmer lead programmer technical director

Programming salaries per years of experience and position

$5
8,

40
0 $6

9,
82

8

$7
4,

18
2

$6
9,

41
3

$7
6,

90
4

$9
7,

90
7

$8
5,

86
7

$9
6,

61
4

$1
10

,9
41

In the midst of rampant consolidation
and talent-shifting in the game indus-

try, programmers continue to enjoy high
salaries relative to other development
disciplines, whether they work on devel-
opment tools, gameplay, animation,
graphics, physics, networking, AI, or
hardware engineering. But as the next
generation of consoles looms, subtle
shifts in the employment market are
already taking place as studios cast an
eye to who will carry them smoothly
through the transition. Once again the
existing talent pool will face an “evolve
or die” prospect with new technology.

Valuable assets in programmers in
addition to core technical proficiency are
flexibility, an ability to see the “big
picture” on a development project, and
an understanding of how the business
of game development affects decision-
making on a project. These qualities
help differentiate the top tier of technical
talent that is always in demand. Battle-
tested leads and technical directors are
also extremely valuable, but scant
availability of such positions limits the
advancement prospects of many
rank-and-file game programmers.

years years years

Programming

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<2 2–5 6+

artist animator lead artist/animator

Art and animation salaries per years of experience and position

$4
0,

57
3

$4
8,

30
4

$4
8,

22
2

$5
3,

21
8

$5
3,

63
6

$5
8,

83
9

$6
4,

09
8

$6
3,

63
6

$7
4,

68
5

S pecialization is more than ever
the name of the art game. Unlike

programming positions, which can often
be difficult for employers to fill, a single
artist opening can elicit hundreds of
applications. Relative to programmers,
artists’ salaries reflect the opposite
extreme of a gulf between demand
and supply.

The driving force in the artist market,
whether for painters, modelers, or
animators, has always been raw talent.
Those artists and animators who can
push the creative envelope while still

respecting technical parameters are
most prized. As more and more artists
and animators migrate to games from
Hollywood, this crop of talent must
come up to speed on the technical
limitations a game project will place on
their genius.

While art team size may fluctuate
during the course of a project, most
games still get by with one lead artist, or
a lead artist and a lead animator. Artists
with management expertise will surely
grow in demand in the next generation
as content-creation needs escalate.

years years years

Art and Animation

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<2 2–5 6+

game designer lead designer/creative director

Game design salaries per years of experience and position

$4
1,

65
2

$4
4,

66
7

$5
3,

03
1

$6
6,

94
3

$6
4,

24
8

$9
2,

05
9

G ame design is an extremely com-
petitive field to enter, and entry-

level salaries reflect this fact. However,
designers with a few blockbuster titles
under their belt will find their stock rise
quickly; there is a big pay gap between
rookie designers and more experienced
designers and leads.

In our survey, the designation of
“game designer” covered game design-

ers, level designers, and writers. Writing
is a hot area of design right now, receiv-
ing more attention in game budgets as
consumer expectations rise for produc-
tion values in games. Lead designers
and creative directors generally manage
others who are implementing gameplay
decisions, leads governing a single title
and creative directors a franchise or
portfolio of titles.

years years years

Game Design

The Employment Picture:
Feast and Famine

W hile the overall employment picture in the U.S.
improved slightly toward the end of 2003, the

game industry was a sea of corporate consolidation
broken by waves of layoffs, shutdowns, and very early
strategic positioning for the next generation. With
game production costs rising, “companies are really
looking to bring on fewer and better talent,” says Mark
Alzahov, senior recruiter, R&D, for Vivendi Universal
Games. Still, the question of whether it’s an employ-
er’s or a candidate’s market remains complicated,
depending on what each party has to offer the other.

“All positions are highly competitive, and none of our
clients wants to settle for less than the best-qualified
candidate,” says game industry recruiter Mary
Margaret Walker, president of Mary-Margaret.com
Recruiting and Business Services. On the other hand,
“it is equally true that our candidates are not desper-
ate, and expect a lot from a potential future employer.”

So what puts a candidate in the most-qualified
bracket? Understanding the business of game pro-
duction with a big-picture perspective on a project is
a big advantage. “Everyone wants talent that can
understand a production schedule, people that are
able to stick to a common goal, from programming to
art to design,” says Alzahov. Now that teamwork and
flexibility are key assets, some companies’ layoffs are
opportunistic, according to Jill Zinner, president of
game recruiter Premier Search. These layoffs might
target people who have a lot of experience in the
industry but aren’t willing or able to adapt to new
technologies and production models. These cast-
aways are then having a tougher time finding new
homes as the game business matures, according to
Zinner. “They’re going into other industries, business
and edutainment industries. A lot are going into cell
phones and handhelds.”

And what impact is the bumper crop of students
from the growing number of game-studies specialty
schools having on the market for entry-level talent?
“The bulk of that impact is a few years away,” says
Zinner. “The general trend from employers is that
they don’t even want to interview these people unless
they have a college degree they had before they even
entered [the game-studies] school.” And while a
lucky few do get hired straight out of such programs,
Walker is “concerned that the programs are giving
[students] false hope on their ability to find a job after
successful completion of the program.”

As the game industry continues to mature in the
next few years, the asset of adaptability and ability to
mentor will serve those who remain in the industry
well, as new people come in from schools and relat-
ed industries, such as effects and animation. True
maturity, according to Zinner, “means not being
threatened by new people coming in.”

36%
2-5 yrs

37%
6+ yrs

27%
<2 yrs

Years experience in the industryAll programmers

43%
2-5 yrs

37%
6+ yrs

20%
<2 yrs

Years experience in the industryAll artists and animators

38%
2–5 yrs

40%
6+ yrs

22%
<2 yrs

Years experience in the industryAll game designers

w w w . g d m a g . c o m 37

97.0% male
$77,853

avg. salary

3.0% female
$73,000

avg. salary

90.7% male
$57,825

avg. salary

9.3% female
$56,205

avg. salary

92% male
$62,113

avg. salary

8% female
$56,572

avg. salary

27.7%

72.3%

% receiving additional
compensation

Highest salary
$156,000

No compensation
other than salary

Average
additional

compensation
$13,019

27.9%

72.1%

% receiving additional
compensation

Highest salary
$275,000

No compensation
other than salary

Average
additional

compensation
$17,321

25.6%

74.4%

% receiving additional
compensation

Highest salary
$300,000

No compensation
other than salary

Average
additional

compensation
$16,654

Average salary by gender

Average salary by gender

Average salary by gender

f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r38

S A L A R Y S U R V E Y

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<2 2–5 6+

assoc. producer producer exec. producer

Production salaries per years of experience and position

$4
4,

15
7 $6
0,

59
1

N
/A

$5
1,

36
4 $6

3,
31

5

N
/A

$5
8,

64
3 $7

8,
60

3

$1
22

,5
45

G ame production has undergone
maturation along with the rest of

the industry in the past few years.
Whether working internally or externally,
producers are an essential interface
between the development team and the
business of making games. Charged
primarily with keeping a project on
schedule and on budget, producers’
proximity to the bottom line is reflected
in higher salaries than many of the cre-
ative disciplines of development.
Experienced executive producers,
whose responsibilities would include
management and development of a

franchise comprising multiple titles,
commanded the highest salary average
for disciplines reported by years of
experience in our survey.

Defining and securing top production
talent can be a challenge for studios.
Schools and universities don’t focus
their educational programs on
production, and the knowledge and
experience needed are hard to find in
those not already in the game industry.
Many producers still work their way
up the ladder through design and
quality assurance.

years years years

Production

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<2 2–5 6+

Tester QA lead

QA salaries per years of experience and position

$3
2,

17
2

$3
9,

00
0

$4
0,

30
4

$4
6,

95
1

$5
3,

83
6

$5
6,

50
0

T his year is the first that we’ve
included QA salaries in our survey

results, a reflection of both the role the
test department plays as proving
grounds for future development talent
and the increasing significance of the QA
function in meeting high consumer
expectations and minimizing returns
and support costs. No longer confined to
the production domain of bug-hunting,
testers are expanding into more signifi-
cant territory of usability and focus-

group testing to help ensure higher cus-
tomer expectations are met.

A scant 14 percent of our survey
respondents reported being in QA more
than six years, the smallest proportion
at this experience level by far of any dis-
cipline. On one hand this figure under-
scores QA’s role as a springboard for
other development careers, while on the
other hand it points to a dearth of sub-
stantial experience in this increasingly
vital function.

years years years

Quality Assurance

100K

90K

80K

70K

60K

50K

40K

30K

20K

10K

0K
<2 2–5 6+

Audio salaries per years of experience and position

$4
5,

75
8

$5
3,

54
3

$7
7,

74
6

T he current generation of consoles
have given the audio community

some of what they’ve been asking for
for years: processor time, some storage
space, and most of all, respect. The sky-
rocketing popularity of home theater has
quickly catapulted game audio delivery
from tin-can PC speakers rattling on a
desktop to digital surround inundating
players’ living rooms. Dolby and DTS
technologies are now big selling points
for games, and even THX began offering

audio certification for games this year.
Industry consolidation has enabled

sizeable audio departments to be estab-
lished at some of the larger studios, but
much of the game audio workforce
remains in gun-for-hire form. It’s a
fiercely competitive business, but half
our survey respondents have been at it
for six or more years, the highest per-
centage of any development discipline.
Obviously there is some payoff for per-
sistence in the audio game.

years years years

Audio

w w w . g d m a g . c o m 39

General Trends

T his year’s overall salary picture includes QA per-
sonnel for the first time, which complicates making

direct comparisons to previous years’ average salary
figures across all respondents; however, some relation-
al data highlights interesting trends.

Women respondents made up 7 percent of the total, a
slight increase from prior years. However, their salaries
on average continue to lag behind their male counter-
parts’, at 87.4 cents on the dollar, a slight dip from the
89 cents on the dollar reported in our 2002 survey.
Conversely, the U.S. Labor Department’s Bureau of
Labor Statistics reported the national male-female
wage gap narrowed slightly in 2002 to 78 cents on the
dollar, up from 76 cents in 2000.

The West Coast continues to be a hotbed of game
development, with employer competition driving up
salaries relative to other regions. The top five states
represented in our survey were, in order: California,
Washington, Texas, Illinois, and Massachusetts. q

Salary averages by region

49%
6+ yrs

15%
<2 yrs

36%
2–5 yrs

Years experience in the industryAll production

50%
6+ yrs

13%
<2 yrs

37%
2–5 yrs

Years experience in the industryAll audio

45%
2-5 yrs

14%
6+ yrs

41%
<2 yrs

Years experience in the industryAll QA

27.3%

72.7%

% receiving additional
compensation

Highest salary
$240,000

No compensation
other than salary

Average
additional

compensation
$16,769

Highest salary
$120,000

33.1%

66.9%

% receiving additional
compensation

Highest salary
$250,000

No compensation
other than salary

Average
additional

compensation
$19,216

Average salary by gender

96.9% male
$64,663

avg. salary

3.1% female
$59,720

avg. salary

Average salary by gender

91.6% male
$41,387

avg. salary

8.4% female
$44,214

avg. salary

Average salary by gender

83.1% male
$75,510

avg. salary

16.9% female
$60,756

avg. salary

Overall average salary by gender

93.0% male
$68,256

avg. salary

7.0% female
$59,660

avg. salary

Additional compensation: all developers

27% none

4% profit sharing
6% stock options/equity
8% royalities

13% project/title bonus

42% bonus

East $62,827
South $62,447
Midwest $61,870
West $70,932

Washington $72,925

Texas $63,424

California $71,945

f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r40

T otally Games has a proud association

with the largest conflict the world has

ever seen, World War II. Battlehawks,

Their Finest Hour, and the acclaimed

Secret Weapons of the Luftwaffe
represent our previous forays into the subject. We

have also been known to dally about in a

galaxy far, far away as demonstrated by our

X-Wing and TIE Fighter series of games,

as well as to boldly go where several

have gone before with Star Trek:
Bridge Commander. But when you

get down to it, there is just something

infinitely more satisfying in dealing

with actual historical events.

Secret Weapons over Normandy
(SWON) began with Totally Games’

and LucasArts’ desire to revisit World

War II as a setting. Movies such as

Saving Private Ryan, television shows such

as Band of Brothers (based on Stephen

Ambrose’s superb book), and videogames

such as the Medal of Honor series leave no

question that over 50 years later, WWII still res-

onates with many of us. Totally Games felt that the time

was right to bring our style of air combat back to the WWII

era. Also we were very excited about bringing our style of game

to the console audience, a first for both our company and the

console market. Once details were lined up, we jumped into

development.

This article endeavors to discuss a few of the issues pertinent

to cross-platform development. The simultaneous release on the

Playstation 2, Xbox, and PC was by far the most unique new

challenge SWON presented. With our release date set in

stone, we quickly defined

the box within which we had

to work. Being typical game

developers, we made every

attempt to fill said box, and when it

was full, we pulled and stretched it to fit

a few more things. We then weighed all deci-

sions concerning gameplay, technology features, and other

miscellany against the time available. There is always risk

when one is too cautious with scope. Go too far and you end

up missing dates risking never seeing the finished product on

the shelves. Don’t go far enough and you end up with a

mediocre title. In the majority of our early discussions, as

well as many right up to the end, we centered on this issue.

In the end, it came down to a gamble.

Totally
Games’
SECRET
WEAPONS
OVER
NORMANDY

P O S T M O R T E M m o r g a n w . g r a y

41w w w . g d m a g . c o m

What Went Right

1.Middleware. From the start, given our schedule, we

knew that creating an entirely new engine was not an

option. We simply could not afford pausing active development

while our engineers worked on an engine. Therefore it was

middleware to the rescue. After looking into the then current

crop of cross-platform middleware solutions, we decided upon

Criterion’s Renderware. This goes down in the Totally Games

history books as “a good call.”

Beyond having a renderer and various support systems, the

choice to go with the middleware solution also gave us the

foundation of an asset chain and pipeline. This is often an

overlooked aspect of purchasing your engine off the shelf. This

initial leg-up helped us avoid the initial stumbling inherent in

many projects. In what seemed like record time, we not only

were throwing

graphics up on

the screen, along

with rudimentary

physics and AI,

but the whole

package was

bootable on CD,

across all platforms.

Of course no middle-

ware solution will make

your game for you. Serious

work was done on the effects system, terrain render-

ing, physics, and numerous other aspects of

Renderware in order to realize our vision of SWON. But

in the end it was the initial foundation provided by Render-

ware that allowed us to proceed with confidence through the

development cycle. The faster you can get your game up and

running, the faster you can prove your design theories, or identi-

fy rough spots that require correcting. Going with middleware

bought us the time to handle these issues as they sprang up.

2. The team. Truly the most important part of the

game’s development was the team. Our internal devel-

opment team worked like a well-oiled machine throughout the

entire development process. The size of Totally Games was also

an asset. Having such a small team broke down the traditional

separations and divisions sometimes found at game companies.

Programmers would talk openly with designers, artists with

programmers. Generally, you cannot expect to create a situa-

tion where everyone on the team gets along. You can, however,

do everything possible to foster a cooperative environment,

G A M E D A T A

PUBLISHER: LucasArts
NUMBER OF FULL TIME DEVELOPERS: 24 full-time developers,

4–5 part time developers as needed, plus the use of
LucasArts’ sound, voice, localization, and QA departments

CONTRACTORS: art, writing, and voice actors
LENGTH OF DEVELOPMENT: 18 months

RELEASE DATE: November 18, 2003
TARGET PLATFORM: Playstation 2, Xbox, and PC

DEVELOPMENT HARDWARE: Pentium 1–2.4GHz machines
with 256–1024MB RAM and various graphics cards

DEVELOPMENT SOFTWARE: Renderware, CRI, 3DS Max,
Photoshop, Code Warrior, Microsoft Visual Studio,

Various proprietary in-house tools
PROJECT SIZE: Files: 30,284;

Code: 246,513 + ~85K actual lines of code

M O R G A N W . G R A Y | Morgan has been with Totally Games for
nearly five years. On SWON, Morgan served as project coordinator.
Prior to that he served as a mission builder/level designer on X-WING

VS. TIE FIGHTER: BALANCE OF POWER, X-WING ALLIANCE, and STAR

TREK: BRIDGE COMMANDER, and as lead game designer for ROBIN

HOOD: DEFENDER OF THE CROWN by Cinemaware/Capcom.

P O S T M O R T E M

where problems, issues, and ideas will be circulated throughout

the team and respected. In addition to the internal team, we

fostered a similar relationship with our external partners. We

relied on our publisher, LucasArts, for sound design, voice sup-

port, additional art resources, localization support, and quality

assurance. All were treated as members of the collective, which

in the end helped us make a cohesive game. In fact, although

there were various heated discussions, they were all based on a

passion to improve the game. Unproductive arguments or per-

sonality clashes were essentially absent from the project. All in

all, it was a wonderful environment in which to create a game.

3.Design focus. From the early days of the project, the

entire team had a clear idea of the game we were creat-

ing. We were setting out to make a seat-of-your-pants, histori-

cally inspired WWII air-combat action title. That was the goal.

Having everyone on the same page creatively cannot be over-

looked. Although there were stumbles when it came to technol-

ogy, process, and general development, everyone on the team

had a clear understanding of what the final game should look

and play like. With this in mind, there was no grasping for

gameplay or risky experimentation on ideas that would derail

us from that goal. With a well-defined box in which to explore,

we were able to focus everyone’s creative energies toward

defining and enhancing how air combat action should play.

4. Strong preproduction. Being Totally Games’ first

strong foray into the console market, and the first time

we had ever attempted simultaneous releases across three plat-

forms, we knew that having a solid plan and a realistic sched-

ule would be the only way we could make everything come

together. Scheduling was done mostly in Microsoft Project. We

laid out the start and stop dates, as well as the various mile-

stones, and quickly had a skeleton of the time frame we had to

work with. We encouraged the team leads (tech, art, design) to

create their own team schedules, which were then incorporated

into the master schedule. Allowing the leads to use a method

that was comfortable to them was far more effective than try-

ing to force them into using an imposed standardized format.

Game development is an odd creature that seems to resist most

known types of scheduling, mostly due to its organic nature. In

spite of this, our method worked well for us, although it did

demand a high level of communication. Having one person

with the “grand vision” as well as an eye on the deadlines

allowed all of the pieces to come together.

We also used our preproduction period to hammer out the

details of our pipelines and tools. By creating various tests we

began stressing our systems. During active development they

would be put to the true test, and having some time up front to

find the obvious issues greatly increased our overall productivi-

ty (the exception being our art tools, which we will discuss

later on). We also used the time to begin testing various tech-

nology pieces, most notably our terrain systems. Finally the

lion’s share of the design was documented, which provided a

strong road map for the flow of the game. In addition, having

the design at a mature state allowed us to begin generating

asset lists, AI needs, and other miscellaneous game components

that further refined our overall schedule.

5.Build process. Like most game developers, we

believed that one of the cornerstones of productive

development was nailing down our tool and pipeline chain.

Although not as flashy as a model exporter or mission-scripting

utility, our build process was the workhorse that allowed all of

our hard work to be realized through the glory and majesty of

a bootable version. Our process was an “automated” one, in

that various configuration and output styles could be selected

by the user, and the process begun by hitting what was known

as “The Big Button.” Unfortunately I have had to place the

word “automated” in quotation marks, since during the course

f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r42

The simultaneous release of a title on multiple platforms requires a militaristic adherence to timing, milestones, and team cooperation—or else
risk never seeing the finished product on store shelves.

w w w . g d m a g . c o m 43

of the project we never reached a place where anyone on the

team could handle making a build. This wasn’t because of the

tool itself, which worked well, but because we didn’t have a

“normal build” until near the project’s end. Something

inevitably was broken in code or in our asset banks that

required specialized build knowledge to correct. Our main

build keeper held the keys to the kingdom, with a small hand-

ful of us capable of tackling most of the day-to-day issues. Like

many aspects of game production, this specialized knowledge

should be spread throughout the team. Having any one mem-

ber of the team be the only one able to handle a particular task

leaves you vulnerable to losing time if that person falls ill, takes

vacation, or is hit by a bus.

At the start of the project our builds would take close to seven

hours to complete. This represented almost an entire workday’s

delay before updates and fixes could be verified. Thanks to the

work of several team members, we eventually reduced our over-

all build times to around two and half hours. This allowed for

the rapid creation and distribution of the game to development

team members and quality assurance. With several machines

dedicated to the build process we could now turn around ver-

sions of the game, across all three platforms, along with localized

versions, in under six hours. It was this speed that allowed us to

hit our dates. So, despite early difficulties and the sometimes

arcane knowledge needed, our build process figuratively and

practically made everything work in the end.

What Went Wrong

1. Platform balance. Understandably, having never

released a title across three platforms, there were prob-

lems associated with various details that we completely under-

estimated, if not overlooked. When our QA team came on

board, the Playstation 2 version was what they jumped on. We

were fortunate in that many on the QA side had previous

Playstation 2 testing experience. Quickly we fell into a good

rhythm—we would provide new versions of the game on a time-

ly basis, and QA would do their part in shredding them into

individual entries in our bug database. When we had stabilized

the Playstation 2 version we began to turn our eye towards the

Xbox version. It was then that the problems began. Having

focused entirely on the Playstation 2, the Xbox version was lack-

ing many of the features of other versions. This version was also

very unstable. On its own, this situation is not unique in game

development, but as we were also finalizing the Playstation 2

SKU, we faced a critical manpower shortage.

Bugs were reported on the Xbox and left to languish, as the

people responsible for fixing them focused on Playstation 2

issues deemed more critical. This resulted in a slower turn-

around, giving QA less time to dig deep into the Xbox version.

This situation was slightly alleviated after we submitted the

final Playstation 2 version to Sony, and all attention was given

to the Xbox. We quickly brought the Xbox and then the PC

versions up to a shippable state, but if we had the opportunity

to do it all over again we would balance out our version priori-

ty, giving each one more time for testing TLC. The fact is sim-

ple: more testing time results in more bugs found, and rapidly

acting on these bugs results in a more polished and enjoyable

final product.

2. Endurance. Many on the team were multiple-title vet-

erans, well accustomed to the frantic pace of crunch

time. However, if releasing a title on a single platform is a

sprint, releasing on three platforms is a triathlon. We had gone

through the alpha, beta, and submission milestones on the

Playstation 2 version, but were beginning to lose steam. How-

ever, we had to go through it all again for the Xbox version.

Due to the short amount of time remaining, the lines between

alpha and beta became blurred. Formal schedules were rapidly

replaced with daily spreadsheet tracking and an aggressive

monitoring of the bug database. Although a slightly haphazard

approach to the development, it was the only way that we

could stay on top of the sheer volume of things to do. Once

again, we finished a component of the project, only to face

another: the PC version. As with the other two versions, it was a

frantic race to the end, and our assumption that the Xbox and

ABOVE. An Me 163 Komet on a 3DS Max 6 drawing board.
RIGHT. The secret rocket-propelled fighter reborn to shoot across
the skies of Europe.

f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r44

PC would be very similar paid off. Other than platform-specific

issues (mostly hardware compatibility–related), the PC version

was finished and sent off for duplication on time.

In retrospect, our focus on Playstation 2 as the primary plat-

form ended up being a double-edged sword. It had allowed us to

deal with the challenges of developing on what is generally a more

difficult platform, and it further gave us a version that was in a

presentable state far earlier than the other platforms. However,

this focus forced us to let the other two versions slip too far

behind. In a more ideal development process we would have

maintained all versions at a near-parallel level of maturity.

Although we made some level of progress on all platforms each

month, in the end we basically ended up rapidly porting features

to the other platforms in order to finish on time. All versions were

completed on time and a level of quality achieved, but the price

paid by the team was higher than it should have been. As much as

possible, future schedules will be created with an eye toward stan-

dardizing the development of all versions, taking milestones,

demos, and personnel resources into account.

3. Internationalization. With the growing world game

market and the escalating costs of game development,

getting your game out to as many players as possible is crucial.

We had made the typical allowances for translation; no embed-

ded text in graphics, an interface tool that made layout and

adjustment of the UI manageable, and a story presentation that

was sensitive to international sensibilities (given that our game

takes place during WWII, special consideration was given to the

German and Japanese markets). The one place we had over-

looked was our method of storing text strings, and in turn

exporting them into game-ready files.

We used Microsoft Word, with a custom table-based tem-

plate, for storing and ID-tagging strings. This method worked

well for our game designers to enter dialogue and text in a

familiar, creativity-friendly format; however, it did not prove

adequate for data management. This initially became an issue

during the formation of our voice recording script. Multiple

documents (more than 65 individual files) had to be manually

cut and pasted into a single comprehensive Microsoft Excel

spreadsheet for the recording. It was at this time that we should

have created an automated system that took the individual doc-

uments and formed them into a single comprehensive database.

However, caught in the moment, we made the unwise decision

to do this by hand as opposed to taking the time to create a

proper tool.

When we came to localize the game, we once again regretted

the lack of an automated process for text integration. Our full

text string count topped 5,000, certainly not overly large, even by

flight game standards. However, we localized the game into five

languages. The translated text would come back in language-spe-

cific sets. Soon we were faced with five sets of translated docu-

ments, each with over 65 documents per set, all requiring inte-

gration into our main dataset. Attempts were made to handle this

by hand for a brief period of time. Understandably, this process

was prone to errors. Text mismatches and version control issues

popped up all over the game. Also handling integration by hand

was time consuming, which greatly slowed our turnaround time

in producing new builds to be tested. As the deadline loomed, we

quickly realized it was time to go through the trouble of creating

an automated system; good thing, too, since we only had two

months remaining in regular development. The hassle turned out

to be about five hours of work for our tech lead to prepare an

automated string importer/exporter. This turned a process that

once took hours (per document set), into a 30-minute miracle

that could happen over a lunch break. We could turn around a

complete batch of localized builds, ready to boot from DVD, in

about four hours. As you can imagine, this greatly increased our

QA time, and allowed us to ship clean, neat, and polished ver-

sions of the game overseas.

The moral of the story here is, build tools. Time spent up-

front will pay off in the end. In the future we are moving

toward an online database system that will allow the transla-

P O S T M O R T E M

LEFT. A B-17 under construction
in 3DS Max 6.
RIGHT. The final “Flying
Fortress,” ready for strategic
bombing runs.

tors the ability to modify the text over the web, which will then

automatically be integrated into our build process.

4.Art tools. Placing this element in the “what went

wrong” list pains me. We made a strong commitment to

creating good tools and supporting them through their develop-

ment. The importance of building good tools in a timely fashion

cannot be stressed enough. All too often our art tools reach

maturity at the last minute. Our ability to preview our art in a

native platform environment (Playstation 2 or Xbox) was ham-

pered for a great deal of the project. In addition, our special

effects tools did not fully come online until two months before

alpha. This significantly cut down our iteration and refinement

time. Although the final versions of the game are beautiful, so

much more could have been achieved, specifically when it came

to maximizing the potential of each platform, if we had had

stronger, more artist-friendly tools from the start of the project.

During our preproduction period, we should have created multi-

ple “stress cases” to truly define the scope of the feature sets we

would require for active development.

5.Product messaging. The air-combat market is a com-

plicated beast. On the PC side, your game is either a

hardcore flight simulation, a space combat game, or an

“arcadey” shooter. On the console side, there is a bit more lati-

tude with respect to genre definition. Totally Games’ history

with the genre was both a blessing and a curse. Tying the game

to our Secret Weapons of the Luftwaffe gave many the

false impression that we were setting off to make a hardcore

flight simulation. We actively attempted to address this mis-

conception, but somewhere the true message did not reach

many of our fans. This created some confusion as to what type

of game we were making. Surprisingly, our console fans (new

to Totally Games’ titles) accepted and embraced what we put

on the shelves, though our PC players seemed disappointed

with the direction we decided to take. Although we understood

that there are distinctions between console and PC gamers, we

failed to realize that each required very specific handling in

terms of delivering the message of the game. One must be

aware of the types of genre labels one’s game may receive

depending on the platform. In retrospect, we might have done

a better job at fostering a community base, and keeping those

in the community base well informed of what the game was

and how it was progressing.

We live in an information-rich world, and although it is easy

to keep one’s head down in order to deal with daily challenges

of development, we owe our fans and the game community

our best efforts at reaching out and keeping them in the loop.

They serve as an invaluable resource to bounce ideas off of,

and as a source of inspiration. Time will tell if our current

efforts at promoting and supporting the game can break some

of its lingering misconceptions. In the end, as the reviews seem

to support, we reached our goal of producing a fun, exciting

air combat game.

Leaving the Nest

W riting these words a few weeks after SWON’s release, I

feel the term “postmortem” is slightly inappropriate. If

anything I think “postpartum” might be more applicable. All

involved accomplished the difficult task of finishing the game

across three platforms, and shipping the game off to the

world on time. This was the hardest development cycle of my

career, and the hardest, I’m sure, for many others. In the end,

I am proud of what we accomplished. Not only did we make

our first entry into console gaming, but we did it with a

degree of professionalism and savvy that makes us all proud.

The reviews have been kind, and all that is left to see is the

reaction of our fans. Hopefully, they will enjoy the game as

much as we do. Happy flying! q

Distinctively arcade-like game features such as dogfighting and an established legacy in simulation can confuse the intended audience.

w w w . g d m a g . c o m 45

Z en Buddhists have a tradition of

creating beautiful, intricate art-

works in sand called Mandalas. They

sometimes dedicate months to perfect-

ing these elaborate arrangements. Then,

once the masterpiece is complete, they destroy it.

As an artist and a Westerner, when I first heard of this prac-

tice I felt an inexplicable knot in my stomach. Imagine your

proudest achievement suddenly gone, with only the memory

of its creation left to comfort you. Imagine your résumé and

portfolio blank in spite of years of work experience. Now

imagine that you caused this, and you did it willingly.

This goes against everything we are taught. “You reap what

you sow,” so we spend our lives sowing furiously, in hopes of

reaping great rewards in the future. But when do we stop

sowing and start reaping? If we stop sowing today, then what

happens tomorrow? No time to ponder—up the corporate

ladder we scurry, around and around the hamster wheel. It’s

the old rat race, and as videogame developers, even we are

part of it.

One might ask why Zen monks would destroy such a beau-

tiful piece of art. Well, consider the alternative. How on earth

do you preserve a piece of artwork made from sand? The

slightest vibration, even the footsteps of a passerby or a con-

versation in the next room, poses a catastrophic threat. With

every passing moment the sand settles and shifts. It cannot be

preserved. It is beyond control. So they do not seek to control

or prolong what cannot be, and therein lies their wisdom—

wisdom that can be applied to our world, the world of the

professional artist.

“Professional artist” is a curious term, somewhat contradic-

tory in nature. If you define the word “professional” in rela-

tion to getting paid for a service, then it makes sense, but if

you define it through association with the concept of profes-

sionalism as it pertains to etiquette, it’s a bit harder to wrap

your mind around. Artists rely on their ego and a strong sense

of individuality to distinguish themselves. Our creative process

is often fueled by the desire for emotional satisfaction, thriving

on concepts such as pride, inspiration, creativity, recognition,

and congratulation. True professionals, on the other hand,

must suppress their ego and forego their personal agenda in

S O A P B O X e r i k a s o r s o n

f e b r u a r y 2 0 0 4 | g a m e d e v e l o p e r56

continued on page 55

Ill
us

tr
at

io
n

by
 A

la
na

 M
ac

hn
ic

ki
 /

 T
hr

ee
 in

 a
 B

ox

The Zen of the
Professional
Artist

order to best serve their pur-

pose and do their job well,

learning instead to draw sat-

isfaction from payment, and

taking pride in professional

conduct in place of emotion-

al gratification.

Of the many challenges

that face the professional

artist, most are similar in

nature to the quandary

faced by the Zen monk,

originating from a loss of

control. We were artists

long before we became pro-

fessional artists. Often during these earlier years, our art

served as a form of self-expression, relaxation, and a great

source of personal pride and self-worth. It’s also one of the

few aspects of our life over which we were able to exercise

absolute control. Sometimes it’s hard, when you have been

steering your own ship for so long, to relinquish the helm and

resign yourself to rowing while someone else steers. But we

must—that is our job.

In years past, this bothered me, causing me at times even to

question my decision to make art a career, and as a result,

lose one of my favorite pastimes. But recently I have found

that there is much joy to be had as a professional artist. It

comes not by searching out and discovering more favorable

circumstances or by altering your environment, but rather by

altering your own perception of events.

Instead of scheming over

new means with which to

preserve their creations, or

vainly cursing their misfor-

tune, Zen monks divorce

themselves from countless

hours of effort, and relin-

quish all emotional attach-

ment to their Mandalas once

they’re complete. They do so

in recognition of their pow-

erlessness to control destiny,

and the foolishness and futil-

ity of such aspiration.

What is remarkable is that,

although they crave no emotional payoff for their labor, their

personal detachment does not negatively affect the quality of the

work. They live in the present moment, and at the moment of

creation, there is no reason to do less than what is possible. At

completion, however, there is no reason to expect more from a

piece of art, for it is finished, static, and dead. The time has come

to remove it from thought and focus on the present task, one

that has not yet reached maturity, one that may still benefit from

the attention. This is the Zen of the professional artist. q

ERIK ASORSON | Erik is a Southern California–based 3D artist
specializing in videogame development. His work has been featured
in seven videogames since 1998. He is the author of “Game Artist’s
Perspective,” a bi-weekly column at www.cgworks.com. Contact
him at erik@erikasorson.com.

S O A P B O X

w w w . g d m a g . c o m 55

continued from page 56

At the moment of creation,
there is no reason to do

less than what is possible.
At completion, however,

there is no reason to
expect more

	02gameplan
	06saysyou
	08indwatch
	10prodrev
	14profile
	16innerp
	21artview
	24soundp
	26betterby
	28f-busser
	34f-olsen
	40postmort
	56soapbox

	return:

