
T H E  L E A D I N G  G A M E  I N D U S T R Y  M A G A Z I N E   V O L 1 9  N O 9 

S E P T E M B E R  2 0 1 2           S E P T E M B E R  2 0 1 2           I N S I D E :   S C A L E  Y O U R  S O C I A L  G A M E S



http://perforce.com/try20


www.gdmag.com 1

c
o

N
T

E
N

T
S

.0
9

1
2

V
o

LU
m

E
 1

9
 N

U
m

B
E

R
 9

p o s t m o r t e m

24 PixelJunk 4am
 How do you invent a new musical instrument? PixelJunk 4am turned 

PS3s everywhere into music-making machines and let players stream 
their performances worldwide. In this postmortem, lead designer Rowan 
Parker walks us through the ups (Move controls, online streaming), the 
downs (lack of early direction, game/instrument duality), and why you 
need to have guts when you’re reinventing interactive music. 

 By Rowan Parker

f e a t u r e s

7 Fight the lag!
 Nine out of ten game developers agree: Lag kills online multiplayer, 

especially when you’re trying to make products that rely on timing-based 
skill, such as fighting games. Fighting game community organizer Tony 
Cannon explains how he built his GGPO netcode to “hide” network latency 
and make online multiplayer appetizing for even the most picky players.  

 By Tony Cannon

15 Scale Your online game
 Mobile and social games typically rely on a robust server-side 

backend—and when your game goes viral, a properly-architected 
backend is the difference between scaling gracefully and being DDOSed 
by your own players. Here’s how to avoid being a victim of your own 
success without blowing up your server bill. 

 By Joel Poloney

20 level uP Your Studio
 Fix your studio’s weakest facet, and it will contribute more to your studio’s 

overall success than its strongest facet. Production consultant Keith 
Fuller explains why it’s so important to find and address your studio’s 
weaknesses in the results of his latest game production survey. 

 By Keith Fuller

d e p a r t m e n t s

2      gamePlan  By Brandon Sheffield                                                               [ e d i t o r i a l ]                                                                     
         Haters Gonna Hate     

4       headS uP diSPlaY  By Staff                                                                           [ n e w S ]  

      The indie-led wrestling genre revival, and games for cats

32     toolBox  By Mike De La Flor                     [ r e v i e w ]

Wacom Cintiq 24HD Tablet Review

34 inner Product  By Alex Darby [ P r o g r a m m i n g ]

Programmers Disassemble!

43 good JoB  By Patrick Miller [ c a r e e r ]

Q&A with Seth Killian, new studios, and who went where

44 Pixel PuSher  By Steve Theodore [ a r t ]

The Chopping Block

46 deSign oF the timeS  By Jason VandenBerghe [ d e S i g n ]

The Care Bear Myth

48 gdc newS  By Staff [ n e w S ]

GDC Online Preview

50 aural Fixation  By Damiam Kastbauer [ S o u n d ]

Pop Will Eat Itself

51 BuSineSS  By Dave Edery [ B u S i n e S S ]

 Free-To-Play Pitfalls

52 educated PlaY  By Patrick Miller [ e d u c a t i o n ]

Souvenir

56 arreSted develoPment  By Matthew Wasteland [ h u m o r ]

The Gamemasons

http://WWW.GDMAG.COM


GAME PLAN // BRANDON SHEFFIELD

game developer   |   September 20122

game plaN // braNdoN SHeFFIeld

Mass EffEct 3 was the cap to a 
trilogy of games that players had 
come to feel emotionally invested 
in.  They had maintained their 
characters and character alignment 
through dozens of hours of play, 
and the internet was rife with 
speculation about where the story 
could go. Then they finished the 
game—and by gum, some vocal 
people sure hated that ending. 

So BioWare read the vitriolic 
comments, listened to the 
petitions, and made a new ending 
that tried to address some of these 
concerns. And guess what? The 
haters still hated it. We, collectively, 
have created a game community 
that thrives on hate, and 
sometimes there’s not much you 
can do but grow thicker skin.

I love to hate you
»The engagement we have with 
the community is a double-
edged sword. It is fantastic (and 
necessary) to get fan feedback 
and make people feel involved 
in a product. But the internet 
is the “great equalizer,” and 
WeedSmokeBalls187 now feels his 
voice is as important as that of a 
work’s original creator. The ease of 
expressing opinion on the internet 
makes it easy for everyone to feel 
their voice is as important as any 
other, and the loudest voice will 
often become popular opinion. 

Then there’s how creators 
react. A comment saying “Wow, 
I love this!” doesn’t get as much 
attention as “God, this is terrible.” 
Everyone, game developers and 
journalists included, responds 
quicker and with greater force 
to negative reinforcement than 
positive. The squeaky wheel gets 
the grease, and to a voice that 
wants to get noticed, that’s a 
powerful piece of knowledge.

I don’t think this is something 
people do on purpose, but the 
more reactionary statements 
are made, and actions are taken 
based on negative comments, 
the more we show people that 

hating on products really works. 
It gets results, or at the very least 
reactions, and this has been 
absorbed into internet and geek 
culture at large.

Here’s another recent example 
in games. Journalist Patrick Klepek 
recently lost a close relative, 
which greatly affected him, and he 
briefly spoke about it publicly. Not 
long after, Klepek wrote an article 
that some people disagreed with, 
including one person who saw fit to 
comment, “I’m glad someone close 
to you died.” 

Klepek was quite affected by 
this terrible statement, of course, 
and wrote about it on his blog. 
Now, I’m not saying he shouldn’t 
have addressed it, but fewer 
people would write a blog post 
about how they had gotten some 
awesome praise from a random 
internet denizen. By and large, we 
as an industry reward negative 
comments with more attention 
than we give positive ones.

Very often, when I address a 
negative sentiment that’s been left 
on my articles, or levied toward 
me personally, especially if I do it 
directly via email, the person will 
backtrack, saying, “Oh my god, I 
love your stuff. Thanks for replying. 
I’m sorry if I seemed rude, I was just 
thinking this and that...” The hate is 
expressed deeply, but is really only 
on the surface. It’s born out of a 
deeper need for connection.

People love to hate the things 
they love. And why not? If they 
care about something deeply, any 
minor detail will stick in their craw, 
and they’re more likely to get a 
response from the people who 
made the thing they like, if they 
make a stink about it. We reward 
it, directly. 

the power of the prevIew
»There’s one big exception to this 
haterade trend in games, and 
that’s the indie darlings of the 
world. The indie game community 
is generally much more open and 
supportive than is the triple-A game 

community, most likely because 
many in the indie game community 
are making games themselves. 
Nobody wants their first big effort 
stomped on, and so a culture of 
support is bred instead of one of 
negative reinforcement.

But it’s interesting to watch 
these indies as they climb. 
Self-starters like Zeboyd Games 
were lauded early on for their 
revisionist Japanese-style RPGs, 
but as soon as they started to 
work on a large property (Penny 
Arcade’s On thE Rain-slick 
PREciPicE Of DaRknEss: EPisODE 
3), the criticisms and negativity 
started streaming in. Once you’re 
rolling with the big boys, it’s time 
to get your shields up.

As an indie, showing your work 
early and often wins you points 
with your friends and your fans, 
and people will be very supportive 
of you. But when you’re BioWare, 
and you change a character’s armor 
slightly, you’re going to get some 
praise, and a bunch of hate. And as 
I mentioned before, we’re trained 
to seek out that hate, and to give it 
greater privilege than the love we 
receive. It’s terribly hard to avoid.

It’s alIve!
»This is a monster that we as 
professionals have bred and 
allowed to flourish. Community 
managers have tried to mitigate it 
with information leaks to fans, and 
many developers have had blowups 
about this very issue. Ignoring 
your fans is never the answer, and 
silencing voices of dissent is not 
very democratic.

I don’t think anyone has found 
the ultimate answer. My advice is to 
ignore the hate publicly at first, but 
discuss it internally to see whether 
it has merit. If it’s something you 
should really address, speak to 
those concerns as though they 
were well reasoned and nicely 
written. But whatever you do, don’t 
feed the trolls.

—Brandon Sheffield
twitter: @necrosofty

haters Gonna hate UBM LLC.
303 Second Street, Suite 900, South Tower  
San Francisco, CA 94107  
t: 415.947.6000  f: 415.947.6090 

w w w . u B M . C o M

suBsCrIptIon servICes

for InforMatIon, orDer QuestIons, anD 
aDDress ChanGes
t: 800.250.2429  f: 847.763.9606 
e: gamedeveloper@halldata.com
www.gdmag.com/contactus

eDItorIal

puBlIsher
Simon Carless  e:  scarless@gdmag.com
eDItor-In-ChIef
Brandon Sheffield  e:  bsheffield@gdmag.com
eDItor
Patrick Miller  e: pmiller@gdmag.com
ManaGer, proDuCtIon
Dan Mallory  e: dmallory@gdmag.com
art DIreCtor
Joseph Mitch  e:  jmitch@gdmag.com
ContrIButInG wrIters
Tony Cannon, Joel Poloney, Rowan Parker, Mike 
De La Flor, Alex Darby, Steve Theodore, Jason 
VandenBerghe, Damian Kastbauer, David Edery, 
Matthew Wasteland
aDvIsory BoarD
Mick West   Independent 
Brad Bulkley   Microsoft 
Clinton Keith   Independent
Brenda Brathwaite   Loot Drop 
Bijan Forutanpour   Sony Online Entertainment 
Mark DeLoura   THQ
Carey Chico   Globex Studios
Mike Acton   Insomniac

aDvertIsInG sales

GloBal sales DIreCtor 
Aaron Murawski  e: amurawski@ubm.com  
t: 415.947.6227 
MeDIa aCCount ManaGer
Jennifer Sulik  e: jennifer.sulik@ubm.com
t: 415.947.6227
GloBal aCCount ManaGer, reCruItMent
Gina Gross  e: gina.gross@ubm.com  
t: 415.947.6241
GloBal aCCount ManaGer, eDuCatIon
Rafael Vallin  e: rafael.vallin@ubm.com 
t: 415.947.6223

aDvertIsInG proDuCtIon

proDuCtIon ManaGer  
Pete C. Scibilia  e: peter.scibilia@ubm.com
t: 516-562-5134

reprInts

WRIGHT’S MEDIA   
Jason Pampell  e: jpampell@wrightsmedia.com
t: 877-652-5295  

auDIenCe DevelopMent

auDIenCe DevelopMent ManaGer  
Nancy Grant  e: nancy.grant@ubm.com
lIst rental  
Peter Candito 
Specialist Marketing Services
t: 631-787-3008 x 3020
e: petercan@SMS-Inc.com
ubm.sms-inc.com

game developer
magazINe
www.gdmag.com

DEaLInG wITH crITIcISM, anD wHy pLayErS LOvE TO HaTE wHaT THEy LOvE

http://WWW.GDMAG.COM
mailto:gamedeveloper@halldata.com
http://www.gdmag.com/contactus
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:pmiller@gdmag.com
mailto:dmallory@gdmag.com
mailto:jmitch@gdmag.com
mailto:amurawski@ubm.com
mailto:jennifer.sulik@ubm.com
mailto:gina.gross@ubm.com
mailto:rafael.vallin@ubm.com
mailto:peter.scibilia@ubm.com
mailto:jpampell@wrightsmedia.com
mailto:nancy.grant@ubm.com
mailto:petercan@SMS-Inc.com
http://ubm.sms-inc.com
http://WWW.UBM.COM


http://twofour54.com/gaming


HEADS-UP DISPLAY

GAME DEVELOPER   |  SEPTEMBER 20124

Patrick Miller: Who are the main players in 
this indie wrestling revival?
Mat Dickie: Ten years ago, Dave Wishnowski 
started a movement called Wrestling Gamers 
United in response to what he and many others 
saw as the mainstream developers’ collective 
mishandling of the genre. He put his money 
where his mouth was and bankrolled a project 
of his own called PRO WRESTLING X, which he’s 
hoping to release soon. Meanwhile, Dave Horn’s 
ACTION ARCADE WRESTLING is available on the 
Xbox Live Indie Games Marketplace, and he 
has started work on a second, more ambitious 
installment. Dan Hinkles of Serious Parody has 
secured a £1m ($1.56 million) investment in 
his WRESTLING MANAGER project for iOS. Finally, 
I have released the WRESTLING MPIRE series on 
PC and WRESTLING REVOLUTION for Android, and I 
have an iOS version in the works.

PM: Do you consider each other colleagues, 
or competitors?
MD: The way I see it, Dave Wishnowski caters 
to PC, Dave Horn caters to Xbox, Dan Hinkles 
caters to iOS, and I’m getting the best out 
of Android. We’re all on the same page, and 

we’re going about it in our own unique ways 
so there is no competition. Collectively, we’re 
bringing independent content to separate 
corners of the industry.

PM: How did this indie wrestling revival start?
MD: Well, we are all disappointed with the state 
of mainstream wrestling games. We thought that 
THQ had a winning formula with WWF NO MERCY 
on Nintendo 64, which had inherited a Japanese 
game engine. When THQ took the license in their 
own direction, a lot of diehard fans had to endure 
games that looked the part but lacked substance 
and playability. Dave Wishnowski has said he is 
trying to recapture the golden era of Nintendo 64 
with his PRO WRESTLING X. 

PM: Is there anything you get to do with your 
wrestling game as an indie that a licensed 
dev can’t?
MD: Our independent games depict a fi ctitious 
universe where anything can happen and 
creativity outranks commercial obligations. I get 
a kick out of taking things behind the scenes and 
exposing the realities of the business. A licensed 
product could never go that far behind the curtain. 

I can’t think of any other sport or license where 
the contrast between the mainstream view and 
the independent view is so stark.

PM: Do you think the wrestling market could 
support more devs and more games?
MD: The wrestling demographic has always been 
good to me professionally, because you have a 
small but passionate audience who are prepared 
to invest in the entertainment they love. That’s 
what fi rst motivated me to make wrestling games 
for PC. Each platform is dominated by WWE 
primarily, but there’s a heart-shaped hole where 
an independent can make his presence felt.

PM: Are you working in in-app purchases?
MD: That business model would be the holy grail 
for us because wrestling games are bursting 
with content that could be monetized, while still 
making the fundamental gameplay available to 
all. It’s defi nitely something I’ll be investigating in 
mobile. That said, I like to keep things simple, so 
we’ll have to see if it’s a headache to manage. As a 
solo developer, I have to pick my battles carefully.

PM: How is it going from a primarily console-
based game niche to mobile?
MD: You can’t fully recreate a console game 
on a smaller device, so you have to consider 
what sacrifi ces you’re willing to make. I made a 
conscious decision to rediscover my 2D roots 
and put gameplay at the forefront. A lot of 
longtime fans felt that 2D was a step backward 
for me, but I could either make an unplayable 
3D game or a playable 2D game. Sometimes 
you have to go backward to go forward!

The whole transition has actually been a 
blessing for me because I seem to have found 
my place. When I was making big 3D games 
for PC, all people did was make unreasonable 
comparisons to mainstream releases. WRESTLING 
REVOLUTION is an intentionally retro project, so 
everybody gets it and accepts it for what it is. 

Also, players have fewer preconceptions 
about how things should work. It wasn’t easy to 
squeeze so many commands into a few swipes 
and pinches, but I feel I’ve delivered something 
that goes beyond a gimmick and has become a 
credible way of engaging with wrestling. 

–Patrick Miller

IT’S REAL TO ME
INDIE WRESTLING GAME DEVS ADD NEW LIFE TO THE GENRE

WRESTLING MPIRE. Inset: ACTION 
ARCADE WRESTLING.

//////// Wrestling games are largely a one-company genre; if you have the WWE license, you’re making the 
biggest game in town. But when wrestling fans aren’t satisfied with where the big game is going, it’s up 
to the independent developer to turn the match around. Game Developer spoke with WRESTLING REVOLUTION 
developer Mat Dickie about the nascent indie wrestling revival.



HEADS-UP DISPLAY

WWW.GDMAG.COM 5

GAMES FOR CATS
The two-man team of artist TJ 
Fuller and programmer Nate 
Murray at developer Hiccup had 
something of a fl op with their 
video game debut: JACOB’S SHAPES, 
a simple iPad puzzle game aimed 
at children. Perhaps children 
weren’t their forte. Perhaps they 
needed a new audience.

Noticing several YouTube 
videos of cats pawing at iPad 
games (the human-focused kind), 
Fuller decided to try to make a 
game specifi cally aimed at them—
something that could be produced 
and put on the App Store quickly so 
they could go back to making “real” 
games. The resulting game has 
one simple mechanic: an object 

on the screen (either a laser light, 
a mouse, or, in the latest update, 
a butterfl y) moves around the 
screen in lifelike patterns, enticing 
the cat to touch it. Cats are scored 
on their performance, and the 
game even incorporates Game 
Center, to make sure kitty’s best 
scores are saved for all to see.

Just three weeks and one 
playtest at a local animal shelter 
later (neither Fuller nor Murray 
are cat owners), GAME FOR CATS 
debuted, drawing major media 
attention and enough sales to 
justify both a sequel and several 
copycats (pun intended).

Though it isn’t huge (yet), 
there is now a legitimate market 
for video games aimed at felines. 
So we sat down for a quick phone 
chat with Fuller for a list of best 
practices behind what makes 
GAME FOR CATS tick.

1 // SUBTLE, NATURAL 
MOVEMENTS
Cats can detect subtle movements 
better than we can. If a cat 
doesn’t sense that its target is 
“alive,” it’s going to ignore it. The 
fi rst attempt at movement in 
GAME FOR CATS was done purely 
through code, but everything 
“felt way too mechanical,” Fuller 
tells us.

The solution was to throw 
out that code and record finger 
movements on the iPad. When 
the laser (or mouse) moves 
around in the game, creeping 
around slowly one moment 
and darting offscreen the 
next, that’s programmer Nate 
Murray’s finger emulating life.

2 // HIGH-CONTRAST 
VISUALS
There is still some debate as 
to exactly what cats can and 
cannot see in terms of color, 
hue, and saturation, but no one 
disagrees that they can tell the 

difference between 
light and dark.

To take advantage 
of this, GAME FOR CATS 
ensures a high level 
of contrast between 
the target and the 
background, no matter 
which game mode a 
cat is playing. The laser 
level offers a bright laser 
on top of a dark background, 
for example, while 
in another mode, a 
darkly colored mouse 
scurries atop an almost 
offensively bright wedge 
of cheese.

3 // CATS LOVE DLC
Like many mobile games, GAME 
FOR CATS is a free download that 
monetizes itself with in-app 
transactions: specifi cally, the 
download includes the laser level 
for free, and offers the mouse 
level for an optional 99-cent 
transaction.

Unfortunately, the initial 
release of the game made 
that purchase path a little too 
easy; in the days immediately 
following the game’s release, cats 
everywhere were accidentally 
purchasing the 99-cent level 
without their owners’ permission. 

“We got in a lot of trouble,” 
Fuller laughs. “People were 
accusing us of tricking cats into 
making purchases. We got a ton 
of comments on our iTunes page 
[from] people accusing us of 
trying to rip them off.”

The solution was to implement 
a test to make sure the purchaser 
is human before the charge is 
allowed to go through. Specifi cally, 
the purchaser is asked to place 
a hand on the screen and hold it 
there while the app “scans” it. In 
reality, the game makes sure that 
four fi ngertip touch points don’t 
move for a few seconds—a test 
even the craftiest of cats would 
have a hard time circumventing.

4 // NO PAUSE FOR 
PAWS
Hiccup wanted to implement a way 
for humans to pause the game 
(allowing them to switch levels or, 
perhaps, tweet kitty’s high score), 
but doing so in a way that prevented 
cats from pausing the game 
themselves was a design challenge.

The solution, according to 
Fuller, “still isn’t perfect”; that 
humans have to tap a specifi c 
section of the screen fi ve times 
in rapid succession to pause the 
game. It works pretty well, but 
Fuller says that cats still set it off 
by accident occasionally.

5 // REWARD WITH 
A SOUND
Whenever a cat successfully 
scores in the game (in other 
words, touches the moving 
target), its score increases and a 
sound plays to reward the cat and 
keep it engaged; the laser chimes, 
the mouse squeaks in terror.

Fuller warns that while there 
is temptation to have music in 
the game, he thinks it would have 
ruined this effect.

“If there’s music playing, they 
wouldn’t hear it,” he says. “The 
sound has to be meaningful, and 
with purpose.”

–Frank Cifaldi

difference between 
light and dark.

To take advantage 
of this, GAME FOR CATS

ensures a high level 
of contrast between 
the target and the 
background, no matter 
which game mode a 
cat is playing. The laser 
level offers a bright laser 
on top of a dark background, 
for example, while 
in another mode, a 
darkly colored mouse 
scurries atop an almost 
offensively bright wedge 
of cheese.

3 // CATS LOVE DLC 4 // NO PAUSE FOR 

TIPS FOR FELINE-FRIENDLY DIGITAL AMUSEMENTS

Gamasutra mascot Tony Cifaldi tests GAME FOR CATS.

http://WWW.GDMAG.COM


UPCOMING EPIC ATTENDED  EVENTS

Please email licensing@epicgames.com for appointments

Escapist Expo
Durham, NC
September 14-16, 2012

MIGS
Montreal, Canada
November 13-14, 2012   

Unreal Engine 3 Kinects 
with Fable: The Journey

w
w
w
.u
n
re
a
le
n
g
in
e
.c
o
m

© 2012, Epic Games, Inc. Epic, Epic Games, Unreal, Unreal Developer Network, UDN, Unreal Engine, UE3, Unreal Kismet, Unreal Landscape and Unreal Matinee are trademarks or registered trademarks of 

Epic Games, Inc. in the United States of America and elsewhere. All other trademarks are property of their respective owners. All rights reserved.

Lionhead Studios is embracing Microsoft’s Kinect 

for Xbox 360 with its latest Fable game. Fable: The 

Journey is set a few years after Fable 3 and unveils 

a brand new area of Albion to gamers. 

Players take control of Gabriel, an outsider who 

becomes a hero as a result of the seer Theresa, 

who has been in the background of previous Fable 

games. The new game, which was developed using 

Unreal Engine 3 (UE3), was designed from the 

ground up to fully embrace Kinect technology.

“Kinect gave us the chance to let the player feel 

more involved with the world,” said Charlton 

Edwards, lead level designer, Lionhead Studios. “It 

gave a physicality to some interactions that a button 

simply can’t replicate. 

According to Ben Brooks, senior scripter, Lionhead 

Studios, the company’s level design and gameplay 

scripting teams – 19 members in total – worked 

much more closely together on this game than previ-

ous Fable titles because the Unreal Engine’s toolset 

united these disciplines in a way that the studio’s old 

tools didn’t. 

“Our level design and gameplay scripting teams 

have used Unreal Kismet extensively – it’s our 

primary tool for bringing the world to life,” explained 

Brooks. “It’s allowed us to very rapidly prototype, and 

the visual interface has opened up quest creation to 

people who might view themselves as non-technical. 

The accessibility of the tools has really helped us be 

self-reliant as a team.”

Brooks said that Unreal Matinee, in particular, was 

something of a revelation. On previous games, the 

camera placement was done by noting camera 

location and facing vectors and interpolating be-

tween them with script, which was a slow and clunky 

process. Being able to craft cutscenes in Matinee 

gave the team much more control and 

really empowered them to fi nesse their work.

Edwards said a couple of the nine level design team 

members had Unreal Engine experience. For the 

rest it was a pretty gentle learning curve. 

“The nature of the game means we didn’t need to 

get right under the hood and bang our heads on the 

bonnet,” he said.

Edwards said the level design team used Matinee 

and Kismet to quickly block out puzzles and 

environmental animations so they could get their 

vision across and try out ideas without just showing 

someone something scrawled excitedly on a piece 

of paper.

“My main reason for choosing UE3 was tools and 

iteration,” said Marcus Lynn, technical director, Lion-

head Studios. “I wanted to get a smile back on the 

faces of content creators again where they wanted to 

go and improve something and feel like they had the 

support and tools they needed.”

Lynn said his team started the evaluation with a 

skeletal team and quickly got up-to-speed on most 

aspects at a basic level. New engineers on the proj-

ect were given a two-week period to write something 

fun using UE3, which proved successful. 

Lionhead adopted additional Unreal Engine technol-

ogy tools such as Unreal Landscape and the foliage 

system, which helped reduce memory overhead and 

improve performance.

“We have managed to create a world that feels 

complete and cohesive,” said Edwards. “There is a 

real sense of scale and place with many magnifi cent 

vistas and always a sense of traversing a huge land.”

The development process to bring Kinect functional-

ity to life was a smooth one. The team ensured that 

they had Kinect initialized and updated at the correct 

points and that the interfaces were clear enough for 

the gameplay and level scripters to use in UE3.

“The Unreal Developer Network (UDN) has been an 

invaluable resource for us in both discussing com-

mon issues among developers and Epic, but also 

for getting quick answers and resolutions using the 

forum history and the combined knowledge of the 

other developers using it,” said Lynn.

With the game nearing completion, the team is 

happy with what they’ve been able to accomplish. 

“It is a lovingly hand-crafted world, and we have tried 

hard to marry a lot of detail with the need to keep the 

frame rate high,” remarked Edwards.

After three successful RPG adventures in the Fable 

series, Lionhead Studios hopes players will embrace 

the same type of innovation it pioneered in console 

games with Kinect technology. 

Thanks to Lionhead for speaking with freelance 

reporter John Gaudiosi for this feature.

http://www.unrealengine.com
mailto:licensing@epicgames.com


T o n y  C a n n o n

www.gdmag.com 7

>>>

http://WWW.GDMAG.COM


IDENTIFYING THE CHOKEPOINT

T he most common method of bringing 
multiplayer games online is to run a separate 

simulation on each console and keep them 
synchronized by ensuring that each simulation 
gets exactly the same inputs (see Figure 1). If 
the simulations are determined solely by the 
inputs, playing the same inputs on both consoles 
will result in the same output. This method 
has a lot of plus sides to it; computers are by 
nature deterministic and most arcade games 
use integer math exclusively, which is very well 
behaved from processor to processor, and the 
developer is also completely isolated from the 
details of the network implementation. Aside from 
making sure the game runs deterministically, 
the engineers and designers implementing the 
gameplay can be isolated from the details of the 
network engine. This means you can retroactively 
add online multiplayer support to games that 
have already been released. (If you can provide 
a machine emulator for the original hardware 
the game was written on, you don’t even need to 
recompile it!) Finally, this method has no server-
based components aside from a method required 
for basic matchmaking, which is usually provided 
by the console manufacturer.

Unfortunately, this method also comes with 
one major drawback: These games are usually 
designed to sample the controller input before 
every simulation state update. A simulation 
frame in the game cannot execute until all the 
inputs from remote players have been received. 
In practice, this manifests itself as an input delay 
equal to the time it takes to send a packet from 
one console to the next. In short, the games lag. 
The instant response the game was designed for 
is replaced by a sluggish and squishy control that 
can ruin the players’ experience. 

In many cases, the delay introduced by the 
networking layer can completely change the feel 
of the game. In STREET FIGHTER, we call them “lag 
tactics”: using the knowledge that by the time 
your opponent sees your move it will be too late 

GAME DEVELOPER   |   SEPTEMBER 20128

S
ome of the best multiplayer arcade games on consoles or PC are absolutely ruined by lag when played online. It’s 
easy to understand why; if you’re playing a game that rewards precise timing and control (such as brawlers, shoot-
’em-ups, and fighting games, for example), you want your experience to be as close to lag-free as possible, or the 
game will feel like no one is playing as well as they think they should. In this article, I’ll walk through how I designed 

my GGPO netcode (short for “Good Game, Peace Out”), which was used in SKULLGIRLS, STREET FIGHTER III: 3RD STRIKE ONLINE 
EDITION, and plenty of emulated arcade games through the FinalBurn Alpha emulator. It’s handy for devs looking to mask and 
minimize the effects of lag in online multiplayer—particularly in games in which timing-based skill is key.

 GGPO is compatible with all arcade-style games that meet the following criteria: 1) Each update to the game simulation 
state must be deterministically derived solely from the player inputs and the previous simulation state, 2) the game must 
be able to update its simulation state independently of sampling the controller, rendering the video, or rendering audio, and 
3) the game must be able to save and load the simulation state and execute on demand. GGPO handles all the details. The 
game developer simply needs to modify her game loop to allow for speculative execution.

FIGURE 1: Implementing network play with the traditional frame-delay method.

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

GAME STATE

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

GAME STATE

GAME STATE

FRAME 1

FRAME 2

FRAME 3

LOCAL INPUTS 1

LOCAL INPUTS 2

LOCAL INPUTS 3

LOCAL INPUTS 4

LOCAL INPUTS 5

LOCAL INPUTS 6

REMOTE
 INPUTS 2

REMOTE
 INPUTS 2

REMOTE
 INPUTS 3

REMOTE
 INPUTS 4

REMOTE
 INPUTS 5

REMOTE
 INPUTS 6

NETWORK LAYER

P1 + P2 MERGED INPUTS 1

P1 + P2 MERGED INPUTS 1

P1 + P2 MERGED INPUTS 1

FIGURE 2: Breaking down GGPO’s prediction mechanism.

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

FRAME 0

FRAME 1

FRAME 2

FRAME 3

FRAME 4

FRAME 5

LOCAL INPUTS 1

LOCAL INPUTS 2

LOCAL INPUTS 3

LOCAL INPUTS 4

LOCAL INPUTS 5

LOCAL INPUTS 6

REMOTE
 INPUTS 2

REMOTE
 INPUTS 2

REMOTE
 INPUTS 3

REMOTE
 INPUTS 4

REMOTE
 INPUTS 5

REMOTE
 INPUTS 6

GGPO.NET

P1 + PREDICTED INPUT

P1 + PREDICTED INPUT

P1 + PREDICTED INPUT

P1 + PREDICTED INPUT

P1 + PREDICTED INPUT

P1 + PREDICTED INPUT

GAME STATE

GAME STATE

GAME STATE

GAME STATE

GAME STATE

GAME STATE

GAME STATE

PREDICT

PREDICT

PREDICT

PREDICT

PREDICT

PREDICT

http://GGPO.NET


www.gdmag.com 9

to respond. To many, including myself, lag tactics 
greatly influence the competitive experience of 
the game online.

I wrote GGPO to try to do a better job of solving 
the lag problem, without sacrificing all the other 
great properties of this method. Instead of adding 
an input delay to the entire simulation, GGPO 
gives the local player immediate control over his 
avatar by hiding the latency of the connection in 
the start-up of each remote player’s action. This 
does a much better job of faithfully reproducing 
the offline experience in the online game.

The SoluTion: GGPo

GGPo  uses speculative execution to 
eliminate the perceived input 

delay for each local player. Instead of waiting for 
all inputs to reach a player’s simulation before 
executing a frame, GGPO will guess what remote 
players will do based on their previous actions 
(see Figure 2). This eliminates the lag experienced 
by the local player created by the traditional 
frame-delay method. The local player’s avatar is 
just as responsive as when playing offline. Though 
the actions of the other players cannot be known 
until their inputs arrive, the prediction mechanism 
used by GGPO ensures that the game simulation 
is correct most of the time.

When GGPO receives the remote inputs from 
the network, it compares the predicted inputs 
to the actual ones. If it finds a discrepancy, it 
rewinds the simulation back to the first incorrect 
frame (see Figure 3), repredicts the inputs for 

each player based on the updated input stream, 
and advances the simulation to the current frame 
using the new prediction. 

hidinG The laG

i n GGPO, the local actions performed by the 
player always happen instantly, and are 

always correct. This is a great property to have, as 
the responsiveness of the avatar to the controller 

is often the most important aspect in the player’s 
enjoyment of the online experience.

Furthermore, any long-term effects caused by 
remote players whose inputs have already been 
received are also correct. For example, if your 
opponent in Street Fighter threw a fireball at you 
a few frames ago, the behavior of that fireball is 
completely deterministic and cannot be affected 
by your opponent’s future inputs. Therefore, the 
fireball will appear to move correctly immediately 
after your local simulation state has determined 

Figure 3: ggPO at work. Note the rollback in frame 1.

iNPut

iNPut

iNPut

iNPut

iNPut

iNPut

lOcal iNPuts 3

lOcal iNPuts 4

remOte
 iNPuts 1

remOte
 iNPuts 2

remOte
 iNPuts 3

remOte
 iNPuts 4

ggPO.Net

P1 + PreDicteD iNPut (Frame 3)

rOllback tO Frame 1

P1 + P2 mergeD iNPuts 2

P1 + PreDicteD iNPut (Frame 3)

P1 + PreDicteD iNPut (Frame 5)

P1 + PreDicteD iNPut (Frame 6)

game state

game state

game state

game state

game state

game state

game state

re-PreDict

game state

lOcal iNPuts 5
iNPut

lOcal iNPuts 6
iNPut

veriFy

re-PreDict

PreDict

veriFy

veriFy

x

P1 + PreDicteD iNPut (Frame 2)

P1 + PreDicteD iNPut (Frame 3)

Frame 3

Frame 1

Frame 3

Frame 4

Frame 5

Frame 6

Frame 2

SkullGirlS.

http://GGPO.NET
http://WWW.GDMAG.COM


that the player actually did throw the fireball. This 
makes the timing and experience of dealing with 
a fireball online identical to the experience offline, 
which is important, as dealing with fireballs is a 
major part of Street Fighter!

Similarly, opponents usually cannot change 
the arc of their jumps after initiating them, so 
dealing with your opponent descending from 
a jump, perhaps with a well-placed Dragon 
Punch, is identical both online and offline. So if 
everything appears to be correct all the time, 
where’d the latency go?

 The latency is hidden in the window 
between when your opponent initiates an action 
and your simulation realizes that an action 
was performed. The time lost in that window 
is effectively skipped to your simulation. For 
example, suppose both you and your opponent 
are playing a game of Street Fighter on a 
network that takes 60ms to send a packet from 
one console to the next. When your opponent 

executes a move, his simulation will process 
the controller inputs immediately. To him, the 
move comes out right away, since local inputs 
are sent to the simulation immediately and are 
always correct. Your simulation, however, will 
not notice that your opponent performed a move 
for another 60ms, when a packet arrives from 
the network carrying that input. When it does, 
GGPO will instruct the game to rewind 60ms, 
correct your opponent’s input, and fast-forward 
the game simulation 60ms back to the current 
time. As a result, on your console you will not 
see the first 60ms of animation of whatever your 
opponent did. It is as if the move began 60ms 
into the animation, from your perspective.

This is not ideal, but the alternative is to 
delay the entire simulation by 60ms, including 
local inputs. In practice, losing those 60ms of 
animation usually results in a greatly preferable 
user experience. This is partially due to the greatly 
increased responsiveness of local actions, but is 
also because most of the time those 60ms just 
don’t matter that much. To illustrate this, let’s look 
at a specific example.

Most attacks in Street Fighter have three 
phases: start-up, execution, and recovery (see 
Figure 4). The start-up of a move is how long 
a move takes to become active after the user 
presses the button. While there is usually some 
animation state associated with the start-up 
of a move, the move isn’t actually doing any 
damage yet. The serious business happens in 

the execution window; if the opponent overlaps 
your move’s active region at any time during 
the execution window, the game simulation will 
register it as a hit. A hit causes the simulation 
to start new animations, play audio, subtract 
some life from your opponent, and lots of other 
effects. It’s a big deal as far as simulation state 
is concerned. Recovery is simply the duration 
after a move executes before you can perform 
another one. 

These numbers are usually measured in 
frames, and the first thing competitive Street 
Fighter players do when a new game comes 
out is to mine the frame data for every move 
in the game to begin researching tactics. If 
we look at the frame data for one of the most 
beloved and fastest Street Fighter games on 
the market, Super Street Fighter ii turbo (http://
nki.combovideos.com/flame.html), we see that 
a vast majority of the moves have a start-up of 
at least four frames (or 66ms). That’s incredibly 
important to us, because it means that on a 
120ms ping connection, it’s possible to resolve 
almost every rollback before the execution of 
a move, which means that the visual and audio 
glitches that result from incorrect predictions 
are almost always limited to the animation of 
the start-up of a move, not the result of hitting 
your opponent. 

Modern broadband connections from Los 
Angeles to New York typically have a faster 
ping than 120ms. In fact, anecdotal evidence 

game developer   |   september 201210

Figure 4: On most broadband connections, ggPO can mask the lag in the start-up phase of a Street Fighter move.

Figure 5: A snapshot of activity on the 
ggPO.net test server. Clearly, cross-

continental play isn’t much of a problem.

SAmPle 
COntrOller

uPdAte  
gAme StAte

render

idle
Figure 6: the typical 
arcade game loop.

http://GGPO.net
http://nki.combovideos.com/flame.html
http://nki.combovideos.com/flame.html


www.gdmag.com 11

shows that GGPO’s techniques scale well up to 
latency experiences on broadband connections 
worldwide; see Figure 5 for a snapshot of the 
GGPO.net test server activity on a typical evening.

IntegratIng ggPO

ggPO is written to isolate the developer 
from the network details as much 

as possible. Figure 6 demonstrates a simplified 
game loop for an arcade game.

The loop samples the controller for the game 
to generate inputs for the next simulation state 
of the game. Those inputs are passed into some 
simulation engine to update the game to the next 
frame and render the result of each simulation 
step. Many timing-sensitive arcade games will 
drive their game-loop at a fixed rate (e.g., 60hz), 
in which case it may be necessary to idle before 
sampling the next controller state for the next 
frame. There are many variations of this game 
loop. For example, a game may only sample the 
controller and update the game state at 30hz, but 
still render up to 120hz by interpolating between 
the last two game states. GGPO is equally suitable 
to this scenario as well.

Figure 7 shows a game loop that has been 
modified to incorporate GGPO. After sampling the 
controller, the developer should pass the game 
inputs to GGPO via the ggpo_synchronize_input 
function; ggpo_synchronize_inputs will transmit 
all local inputs to remote players. It also merges 
predicted and actual remote inputs for all remote 
players in the game into the input stream. The 
result is a tuple of controller inputs suitable to be 
passed to the local game engine, with one input 
for each player in the game.

The bulk of the developer’s game engine 
can remain unmodified, aside from some 
potential caveats mentioned later. Instead 
of idling before returning to the top of the 
game loop, the developer should call the ggpo_
advance_frame function, which will compare 
inputs received for all remote players to their 
predicted values. When it finds a discrepancy, 

ggpo_advance_frame loads the last correctly 
predicted frame and executes the game’s 
update game state function repeatedly, passing 
the corrected inputs to each subsequent call, 
to fast-forward the game simulation back to 
the current frame. The load, save, and execute 
functions are provided to GGPO by the developer 
at initialization time.

SynchrOnIzIng the clOck  
and InPutS

ggPO uses a simple and efficient 
protocol for synchronizing inputs 

between players in a session (see Listing 1). 
The header of each packet contains a 16-bit, 
session-specific identifier followed by the type 
of the payload. The three major packet types are 
quality_report, quality_reply, and input.

struct packet {

struct {

 uint16    magic;

 uint8    type;

} hdr;

union {

  struct {

 uint32  start_frame;

    uint32     ack_frame;

    uint16     num_bits;

    uint8      bits[maX_compressed_bits];

} input;

struct {

 int8    frame_advantage;

   uint32   ping;

  } quality_report;  

   struct {

     uint32   pong;

  } quality_reply;

  } input;

  } u;

}

Listing 1: A simplified description of ggPO’s 
UDP packet payload.

One input payload is sent for every call to ggpo_
synchronize_inputs. The inputs are compressed 
using a state machine to toggle virtual buttons. 
The machine begins with an empty input vector 
at frame 0. Inputs for each frame are encoded 
into the bits array by encoding the buttons that 
have changed from the previous frame using the 
following fairly trivial coding system:

1 + <5-bits of n> : toggle button n from the 

previous input

0 : end input

Almost all the inputs in a stream compress down 
to a single bit (0). Even an extremely twitchy 
game where the user toggles 10 inputs per 
second compresses down to around 300 bits per 
second. This is small enough that all inputs from 
the previously acknowledged frame are encoded 
with every packet, which makes handling dropped 
packets and out-of-order packets extremely 
simple. GGPO keeps a history of the last x inputs 
received from a remote player, where x is a window 
larger than the prediction barrier. Whenever an 
input is received from a remote player, load the 
start_frame input from the window and execute 
the bits state machine to recover all subsequent 
inputs. If we generate any inputs beyond our 
window, they are sent to the prediction subsystem 
for verification and stored in the window. Finally, 
remember the number of the last generated input 
so it can be sent to our peer in the ack_frame field 
of the next input packet.

GGPO will periodically send a quality_report 
packet to measure the fairness of the connection. 
Each quality-report packet contains a timestamp 
generated on the current machine and this peer’s 
measure of its local “frame advantage.” When a peer 
receives a quality_report message, it immediately 
sends a quality_reply response, copying the ping 
value from the report into the reply. The originating 
peer measures the round-trip time for a packet by 
subtracting the current time from the pong time in 
the last quality_reply packet.

“Frame advantage” is GGPO’s concept of how 
much of an advantage, in frames, the local player 

testing ggPO With emulators
GGPO was developed, tested, and optimized using the FinalBurn Alpha emulator for PCs. FinalBurn was 
an ideal choice: Its source license is rather permissive, and it supports a huge library of arcade games. 
Emulators are also especially good at encapsulating the entire game state in a compact format, which 
was ideal for GGPO; the SaveState() andLoadState() callbacks for GGPO are based almost entirely on the 
Save Game and Load Game functions from FinalBurn Alpha. 

Emulators also tend to generate an exact amount of audio and video state at some fixed frequency 
(usually 1/60th hertz to match the average arcade monitor’s refresh rate), which lets us avoid many of 
the video and audio glitches that can occur during mispredictions, since the entire state of the rasterizer 
and sound hardware is restored in a rollback. And once an emulator is written, debugged, and integrated 
with GGPO, all games that run on that emulator gain the benefit of networked play, without needing to 
modify the source of the emulated game. 

http://GGPO.net
http://WWW.GDMAG.COM


has due to wall clock skew. It is calculated using 
the following formula:

frame_advantage = (last_remote_frame + (ping * 

frame_frequency / 2)) - last_local_frame

That is to say, we estimate the frame our peer is 
rendering now by adding half the round-trip packet 
time to the last packet we received and subtract 
the frame we are currently rendering. The result 
will be the number of frames that our peer is ahead 
of us. For example, suppose we calculate that the 
frame_advantage is 2. This means we believe a 
neutral observer located equidistant from our two 
games and equipped with a very good spyglass 

would see my game rendering frame 20 at the 
exact instant an opponent’s game is rendering 
frame 22. GGPO considers this an “advantage” 
because it means our simulation will only need 
to rollback two fewer frames than our peer’s 
simulation, meaning his version of game reality is, 
on average, more out-of-date than my own. There 
are many things that can negatively impact the 
calculation of an accurate frame-advantage value, 
including asymmetric packet transmit times, 
intermittent connection issues, and so on, but this 
formula seems to work well in practice.

Each connection peer in a GGPO session 
is always aware of his local frame advantage 
and receives periodic updates as to his peer’s 

calculation of frame advantage. GGPO will attempt 
to keep the game “fair” by making sure that the 
local and remote frame advantages agree to within 
a one-frame tolerance. For example, if a GGPO 
endpoint consistently computes a local frame 
advantage of five while paired to a peer whose 
local frame advantage is consistently three, GGPO 
will attempt to equalize the disparity by slowing 
the execution of the local endpoint down by one 
frame. This should result in a loss of one frame for 
the local end and a gain of one frame for the remote 
end, equalizing the frame advantage of both to four 
frames. The implementation of exactly how to slow 
the local endpoint down is handled by a callback 
provided by the game developer.

Separating game State 
from rendering

i t should be clear by now why GGPO requires that 
you separate your game logic from rendering: 

For each video frame rendered, the game state 
may need to be updated many times to re-evaluate 
the current state from a mispredicted remote 
input. If the game engine had to rerender those 
frames in addition to recalculating the game state, 
GGPO’s rollback technique would be prohibitively 
expensive. For example, while your video renderer 
may require all sorts of inverse kinematics, soft 
body simulation, and other expensive calculations 
for visual effect, to use GGPO you should strive to 
build your game simulation in such a way that it 
does not require them.

The game’s renderers must also be capable 
of removing assets from a mispredicted 
previous frame. For example, a frame that 
created a fireball and played a whooshing sound 
might not actually be the correct result when all 
inputs from remote players are received. This is 
fairly easily handled for video, but can be tricky 
for audio. There are two methods for handling 
audio that have been used successfully.

The first is to treat audio as part of your 
simulation state. If your game-state is updated 30 
times a second, then you should include 33.3ms 
of audio samples for each channel which should 
be rendered along with your game state. When 
it comes time to render audio, render only those 
33.3ms per channel rather than the entire effect. 
This is relatively easy to implement, but can result 
in some audio popping during long rollbacks.

The second method is to keep in the game-
state a list of all previously rendered audio effects 
and the frame during which they were started. 
This window need only be as large as the GGPO-
configured maximum buffer window. When 
rendering audio, compare the list of effects in 
the game state to the currently queued effects 
in the audio device. Effects that exist in the game 
state but have not been queued should be sent 
to the audio device. They may need to be started 

game developer   |   september 201212

sample 
controller

update  
game state

render

load game 
state

update  
game state

synchronize 
inputs

pull

save game 
state

receive 
remote  
inputs

tr
an

sm
it

re
ce

iv
e

Figure 7: the arcade 
game loop with ggpo. 
the gray blocks indicate 
steps that have been 
added or modified in 
order to integrate ggpo.



www.gdmag.com 13

several milliseconds into the effect if the effect 
was created as part of a rollback. (Starting the 
effect at 0% volume and gradually amplifying it 
up to 100% can alleviate the popping effect that 
might occur when this happens.) Effects that are 
in the audio queue, but not in the simulation state, 
are ones that have been revoked as a result of a 
rollback. Playing them to begin with was an error 
and they should be stopped, potentially after 
attenuating them down to 0% volume over several 
frames to remove popping.

GettinG it All RiGht the 
FiRst time

W hile the SDK is very easy to use, very 
complicated games, or games that were 

designed and written without GGPO in mind, may 
run into several stumbling blocks, the first of 
which was just discussed: The video and audio 
renderers must be divorced from the game’s 
simulation state. Secondly, the game developers 
must ensure they have the CPU budget to 

execute their simulation update step many times 
per frame. Ideally, you would like your game 
simulation to run fast enough to execute an extra 
four to five times per frame, which is enough to 
mask about 80ms of latency. Finally, the game’s 
simulation must be completely deterministic and 
determined solely from the player inputs.

When playing the game with local players, 
there’s never any reason to do a rollback, as all 
inputs are always 100% correct and received 
immediately from the local controllers. As a 
result, the code paths implementing these three 
features are almost always only tested while the 
networking portion of the game is being tested or 
implemented. This is usually a small fraction of 
the total test time a game gets.

To help developers port their game to GGPO, 
a special debugging mode called “sync test” is 
included. When initializing GGPO in sync test 
mode, the SDK will treat every game-frame like a 
mispredicted remote input frame, even when only 
local players are playing. Every frame will load, re-
execute a configurable number, and save the game 
state for each call to ggpo_advance_frame. This 

greatly speeds the development and test time of 
integrating GGPO into a game, as the performance 
and correctness of the most difficult bits can be 
implemented and debugged without requiring a 
remote session, or even a network.

There is no silver bullet for slaying the lag 
monster, but GGPO gives game developers 
another tool for wrestling it into submission. 
With GGPO, developers can reduce input lag in 
their game to levels below the one-way packet 
transmission time without greatly complicating 
their game-loop or engine design. Speaking 
as someone whose gaming roots go deep into 
arcade culture, I hope that developers out there 
will use GGPO or the techniques described in this 
article to bring lag-free, online gaming to their 
titles in the future. 

Tony Cannon graduated from Stanford University in 1995 

with a BS in computer science. He has worked at VXtreme 

Inc., Microsoft, and is currently employed by VMware and 

Radiant Entertainment. Tony has a passion for fighting 

games and is a co-founder and tournament director for the 

Evolution Tournament Series.

ggpo’s prediction algorithm
A good prediction algorithm 
can minimize the visual 
glitches that can occur 
during a rollback. The 
prediction algorithm’s job 
is to anticipate the player 
inputs arriving from the 
network at frame N + (L 
/ F) given the inputs for 
all previous frames 1...N, 
where N is the input last 
received from the remote 
player, L is the one-way 
packet transmission time, 
and F is the frequency at 
which the game executes 
its game state.

The quality of the 
prediction algorithm is a 
function of the frequency 
and severity of the 
rendering glitches caused 
by a missed prediction. For 
example, in a game of Pong, 
a misprediction will cause 
the opponent’s paddle to 
jump to a new position on 
the screen. Getting the 
paddle position wrong is 
important, of course, but 
an algorithm that is always 
wrong but only off by a 
few pixels is preferable 

to one that is only wrong 
10% of the time but causes 
the opponent’s paddle to 
jump by one-quarter of the 
screen length.

Naturally, the 
best-possible prediction 
algorithm is game-specific, 
and probably player-specific 
as well. GGPO’s built-in 
algorithm is designed to 
work well with fighting 
games and beat-’em-ups, 
though it should work 
equally well for shooters, 
maze-solving games (Pac-
Man, gauntlet) and most 
other arcade games. To 
date, no developer who has 
used GGPO has seen the 
need to implement his own 
prediction. 

The built-in prediction 
algorithm assumes future 
inputs will be identical to 
the inputs most recently 
received from the remote 
player. This caps the number 
of prediction errors to the 
number of times the input 
state changes per interval. 
While simple, this has proved 
to work quite well in avoiding 

the most jarring visual 
effects. For example, the 
character moving backward 
or forward will often cause 
the screen to scroll left or 
right. Getting that position 
wrong will result in the 
entire screen jumping to 
the left or right during a 

rollback. By assuming the 
joystick remains held in one 
direction, we ensure that 
the screen scrolls smoothly 
in the most common case: 
running to the right. The 
worst case (rapidly toggling 
the joystick from left to 
right) seldom occurs in 
actual gameplay.

Time-permitting, it may 
be preferable to use the 
game-state of the previous 
1...N frames to provide a 
better prediction algorithm 
than the one built into GGPO. 
For example, in a game of 
Pong, it might be better 
to predict that the remote 

opponent will always move 
their paddle in a manner 
to intercept the ball, 
regardless of their previous 
inputs. In practice, however, 
incorporating the possibility 
of a misprediction into 
the design of the game 
to minimize the effect 
of a rollback has a better 

payoff, as it’s impossible to 
completely eliminate them. 
For example, if you have a 
screen-scroll effect when a 
player moves on the screen, 
consider basing it on the 
average position of the 
player over several frames 
or the position of the player 
K frames ago (where K >= 
the expected latency in a 
game), which will minimize 
(or completely eliminate) 
the screen-jumping glitch 
during a rollback. If you 
have any effects that 
start on the first frame of 
execution (e.g. a dramatic 
screen blackout starting a 
Super Combo in a fighting 
game), consider starting 
the effect on the Kth frame 
instead of the 0th frame 
so that the effect is always 
based on confirmed inputs 
instead of predicted inputs. 
Obviously, there is some 
give-and-take between the 
responsiveness of the game 
when played offline and the 
smoothness when played 
online using GGPO, but it is 
an option for designers.

Gauntlet.

http://WWW.GDMAG.COM


http://GDCONLINE.COM


J O E L  P O L O N E Y

WWW.GDMAG.COM 15

///////////// When building any type of online game, it’s common practice for game 
developers to have a user-facing client as well as a back-end server component. In 
a lot of cases, these might be two totally different code bases. For example, most 
Flash and native iOS games have a server piece written in a common scripting 
language such as Ruby, Python, PHP, or Node.js, which is used mostly to validate 
game states and prevent players from hacking their games.

This article is going to assume that you’re already familiar with current server-side 
technologies, especially the LAMMP stack (Linux, Apache, MySQL, Memcached, PHP). 
Instead of spending a lot of money and time building out your server infrastructure, 
we will discuss a few interesting ways to use your existing architecture to help scale 
your game quickly, cheaply, and hopefully with fewer headaches along the way. I 
highly recommend taking a look at Amitt Mahajan’s article titled “Make It Fast!” in the 
August 2010 issue of Game Developer magazine for more background information on 
this topic. >>>

{  O P T I M I Z E  Y O U R  S E R V E R  B A C K - E N D  T O  S C A L E 
Q U I C K L Y ,  C H E A P L Y ,  A N D  P A I N L E S S L Y  }

http://WWW.GDMAG.COM


SCALING SERVER PROBLEMS 
WITH EXISTING TITLES
/// I’ve worked on several social 
gaming titles over the past few 
years, and one of the most common 
headaches is dealing with the 
server side of game development. 
The fi rst downside to creating 
separate server architecture is that 
you have to write your game logic 
twice. There is currently no clean 
way to run native iOS/Flash code 
at the server level, so you’re stuck 
rewriting everything in a second 
language. In addition to doubling 
your workload for any given feature 
in your game, you need to make 
sure that the client code and the 
server code are in sync, which can 
be a huge headache because it’s 
often near-impossible to track down 
when they go out of sync. 

“Out of sync” errors are 
extremely common in social games. 
These errors occur when the server 
comes to a different conclusion 
about a given player’s state than the 
front-end client does. In this case, 
it is assumed that the server is the 
authority, and the server tells the 
client to reload the player state. This 
unfriendly user experience is a nasty 
side effect of having two code bases 
attempting to run the same logic.

The second downside to creating 
your own back-end is scaling it. 
When your game reaches several 
millions of players every day, your 
back-end systems will need to grow 
to accommodate their increased 
load. Scaling these services is not 
an easy task and can take teams 
of dozens of engineers working 
around the clock to keep them up 
and running. In this day and age, 
it’s commonplace for a game to go 
viral and have millions of people 
playing every day within a few short 
weeks—so you need to prepare for 
that before it happens. 

I’ve watched a dozen games 
go through this growth trajectory. 
In most cases, these games had a 
proven, scalable server architecture 
and a large team to help support 
it—but despite all that, there were 
still issues scaling any new game. 
One of the games I worked on added 
a million players a week for 30 
straight weeks. Its peak usage was 
close to 33 million people playing 
every day. Obviously, this required 

a massive amount of servers, along 
with midnight phone calls to fi x them 
and keep the game afl oat.

These games validated the 
player state every fi ve seconds 
while the game was running; the 
game would batch up a player’s 
actions and send those requests 
to our back-end, where they would 
be routed amongst thousands 
of servers to validate the game 
state and send a response back 
to the client. With over 30 million 
people playing every day, this was 
an incredible amount of traffi c. 
We used Amazon’s EC2 cloud 
technology to get new servers 
quickly and cheaply, but we hit 
bottlenecks in our architecture on 
a daily basis, and our server count 
quickly soared into the thousands. 

The functions of these 
servers ranged from application 
servers that would actually run 
the validation logic, to database 
servers, caching servers, and load-
balancing servers. Each group of 
servers scaled horizontally pretty 
well, but the sheer size of the 
server array meant we had to spend 
lots of time (and money) managing 
the servers. All told, 1,000 extra-
large, high-memory servers on 
EC2 cost close to $4 million a year. 
What began as a relatively simple 
problem (stop players from hacking 
our game) had grown into a very 
complicated, costly one.

THINKING OUTSIDE THE BOX
/// I wondered how many players 
were actively trying to cheat their 
way through our games compared 
to number of players who just played 
them normally. It turned out that the 
number of players not cheating vastly 
outnumbered those who are, so why 
spend all these computing resources 
checking player state if there’s 
a strong chance they will never 
actually cheat in the game? This is 
an optimistic approach to cheating, 
of course, but it could drastically 
change what our server architecture 
looks like. If we don’t need to validate 
player state upon every request, 
we can signifi cantly streamline our 
server architecture—especially the 
application server array, which made 
up about 75% of the server count. 

That doesn’t mean we stopped 
validating player states, of course—

GAME DEVELOPER   |    SEPTEMBER 201216

LOAD 
BALANCER 

ARRAY

APPLICATION 
SERVERS

(PHP/PYTHON/RUBY)

SYNC QUEUE
MEMCACHE 

SERVER 
ARRAY

SYNC 
SERVER 
ARRAY

MASTER 
DATABASE 

ARRAY

SLAVE 
DATABASE 

ARRAY

REQUEST

The basic server architecture for a social/
mobile game.



www.gdmag.com 17

we just didn’t need to validate every 
single action. In this case, we let 
data from the client flow through 
to our Memcache array and then 
validate it in an offline validation 
process. This setup makes use of 
the write-back cache technique 
as well; if you’re not familiar, the 
idea is to write player state to a 
Memcache array first and then 
write it to a database when write 
cycles are free. This removes a 
tremendous amount of pressure 
on the database with very minimal 
risk of losing player state. In our 
new setup, the validation is moved 
out of every request and into the 
syncing process instead. If we 
are no longer validating state on 
a per-request basis, we no longer 
have the need for a complicated 
and fancy application server setup. 
Application servers would no longer 
validate, but simply write the data 
straight to our Memcache array. 

This technique had the added 
bonus of reducing the size of our 
server arrays across the board as 
well, because we didn’t have to 
worry about how often we needed 
to save player state with the new 
setup. The reason behind sending 
requests to our servers every five 
seconds was to make sure that if 
the player closed the game at any 
point, we lost at most five seconds 
of player state. On a mobile device, 
you don’t have this issue since you 
typically only have one client. In 
this case, you could save the state 
locally on the device and then write 
it to the servers every few minutes. 
Flash games are a little different, 
because you don’t have access to 
store a large amount of data locally. 
Even if you did, the game could 
be opened in any browser on any 
computer, making local storage 
irrelevant since the changes on 
one computer couldn’t be seen on 
another. Thus, we had to flush the 
changes very rapidly.

However, you can use Javascript 
to detect when a browser has been 
closed, minimized, or the user has 
changed tabs, and save your game 
state to the server before that event 
finishes. This way, your game only 
has to make requests to the back-end 
servers once every few minutes, 
rather than 10-15 times per minute, 
which greatly reduces the volume 

of traffic coming to our servers. 
Overall, we managed to reduce the 
load on our load balancing array, 
Memcache array, and database 
arrays. It also helped with database 
lock contention, since we only had to 
write once every few minutes rather 
than a dozen times a minute. 

What’s more, if your clients are 
only sending data to the server 
once every few minutes, you 
can now throttle the number of 
requests a given player is making. 
This helps prevent botting and 
botnet programs from pounding 
your servers. This type of attack 
was quite prevalent and was very 
hard to detect, because valid 
requests looked identical to invalid 
ones, and the average player 
would more often than not look like 
someone using a botnet to pound 
our servers. If we’re only expecting 
one hit to our server every minute, 
then anything significantly over 
that can easily be picked out.

Putting it all together
/// The flow for processing and 
saving user data now looks like this:

• •  Player plays your game for 
some period of time. During this 
time, you should track the game 
state solely in the client. All of 
this data should be zipped up 
in to a “blob” of data, or a large 
object that has nested groups of 
data inside of it.

• •  After five minutes have gone 
by, we zip up the entire state 
object and send it to our back-
end servers.

• •  An application server gets 
the request and writes this 
zipped-up state object to our 
Memcache server array without 
validating anything. It also puts 
an entry into a queue to validate 
and sync when we have free 
write cycles. This entry can be 
as simple as including the key to 
the Memcache and a timestamp 
of when to validate it.
 
• •  A worker server that is 
processing the queue picks up 
a user, runs a very quick validity 
test on the new data, saves it 
to the database, and removes 

A p pli c At i o n  c o d e :

function handle_player_state(header, client_state) {
 // grab and validate our session information
 server_state = Memcache.get(header.user_id);
 if(server_state.session.auth_token != header.auth_token) {
  respond(‘Not a valid user’);
 }

// check to make sure we aren’t storing stale data
 if(server_state.last_saved > client_state.last_saved) {
  respond(‘Received stale data’);
 }

 // check the last time we sent data to the server
 if(server_state.session.saves_in_last_minute > BOT_RATE_LIMIT) {
  respond(‘Rate limited’);
 }

 // write data to memcache
 Memcache.save(header.user_id, client_state);

 // add entry to sync queue
 StateQueue.add(USER_STATE_QUEUE, header.user_id);

 respond(‘Successfully saved’);
}

VA li d At i o n  c o d e :

function validate_player_state(user_id) {
 // grab old state and new state
 new_state = Memcache.get(user_id);
 old_state = Database.get(user_id);
 
 // check to make sure we aren’t storing stale data
 if(old_state.last_saved > new_state.last_saved) {
  Memcache.save(user_id, old_state);
  return;
 }

 // prepare list of basic values we want to search
 attributes = [‘coins’, ‘cash’, ‘xp’, ‘total_value’];
 averages = Averages.get(attributes);

 flags = old_state.flags;

 for(attribute in attributes) {
  difference = new_state[attribute] – old_state[attribute];
if(Math.abs(difference) > averages[attribute]) {
 flags += 1;
}
 }

 // check number of flags and save data
 if(flags > MAX_FLAGS_ALLOWED) {
  old_stage.flags = flags;
Memcache.save(user_id, old_state);
 } else {
  new_state.flags = flags;
  Memcache.save(user_id, new_state);
  Database.save(user_id, new_state);
 }

 return;
}

http://WWW.GDMAG.COM


it from the queue. If the validity 
test fails, you simply discard the 
changes, restore the data from 
the database, and move on. In 
this case, the player state would 
be rolled back to the last known 
valid state.

• •  Rinse and repeat as the 
player continues to play.

This new approach signifi cantly 
eases the load on the back-end. 
Over a fi ve-minute period in the 
old architecture, we would have 60 
requests to our application servers, 
60 writes to our Memcache servers, 
and one sync to our database. 
In the new setup, we have one 
request to our application servers, 
one write to Memcache, and one 
sync to our database in the same 
time interval. Current estimates to 
this new approach are looking at 
close to a 75-80% savings on server 
head count, translating to millions 
of dollars for a large scale game.

BUILDING AN OFFLINE 
VALIDATION CHECKER
/// If we’re going to blindly trust 
the data we receive from the client, 
then we will need a quality offl ine 
validation checker. But what should 
it check? We can start with very 
basic values such as the player’s 
level and experience, the player’s 
currency values, and the player’s 
inventory. We could even look at the 
value of all of their in-game items 
combined, or the total net worth 
of a player. Since the validation 
checker is running during the sync 
from Memcache to our database, 
we can compare values from both 
the new data we’re writing and the 
old data we’re overwriting. In this 
case, we simply compare the new 
values for each attribute with our 
previous values (taking timestamps 
into account) and see if they make 
sense. For example, if the player’s 
in-game currency increased from a 
hundred coins to a million coins in 
fi ve minutes, that’s a red fl ag that 
should be more closely examined. 

A more complex approach would 
be to apply statistical analysis to 
each value against a norm. If your 
player base is millions of users 
and only a fraction of them are 
actually cheating, you can use this 

to your advantage to fi gure out 
who’s cheating. For any given level 
in a game, you can plot out what 
the values should look like. You 
will likely end up with a bell curve 
of values. For example, you would 
determine at level 10, the average 
net worth of a player is somewhere 
between 5,000 and 6,000 coins. At 
this point, you can place a change 
in this curve and see where it lies. If 
it falls several standard deviations 
outside of the norm, then that 
should raise a red fl ag. Don’t 
hesitate to get creative with your 
validation algorithm. It can vary in 
complexity and can look at any or 
all user states. 

DEALING WITH CHEATERS
/// When your offl ine validation 
algorithm detects strange behavior, 
there are several things you can 
do: You can disable accounts until 
you have a chance to look into 
them further, you can reset or lock 
their account entirely, or simply 
fl ag the account depending on the 
magnitude of the infraction. A good 
approach here would be to have a 
rating system for fl agged users; If an 
account is fl agged once, let it slide, 
but if it’s fl agged several times, stop 
saving the changes to the database. 
There is also the possibility for a rare 
false positive where someone who 
is playing the game normally begins 
getting fl agged for cheating, so you’ll 
need a readily available customer 
service department to help them get 
back in to the game. 

With this kind of server 
architecture, you also have the 
option of taking a hybrid approach 
to cheating countermeasures. In 
this case, you would have all the 
original architecture, but you would 
start out assuming that all players 
are not cheating. When your 
offl ine validation algorithm fl ags 
an account, you fl ip a switch that 
would then begin validating their 
account on every request again. In 
this case, if a game with a million 
daily players has a 1% hacking rate, 
only 10,000 players are checked on 
every request, which is still a huge 
difference from the previous million 
players that we were validating on 
a per request basis before. This 
setup has a much stronger level of 
security and has all the benefi ts of 

reducing your server count, but the 
downside is you have to maintain 
two code bases.

POTENTIAL CASES WHERE THIS 
DOESN’T WORK
/// This technique works best 
for single-player games, such as 
FARMVILLE, WORDS WITH FRIENDS, 
THE SIMS SOCIAL, and ANGRY BIRDS. 
In these cases, when a player 
cheats, they are only cheating for 
themselves. From what I’ve seen in 
the past, most of those who cheat 
are doing so just to prove a point, 
rather than to get around having 
to pay to play the game. Also, 
since there is no global economy 
in single-player games, there is 
no real way for someone to cheat 
and ruin the game for others. 

Unfortunately, this technique does 
not work when communicating 
with other players through trading, 
auction houses, and so on. 
When one player’s actions affect 
another signifi cantly, you will 
want to validate that transaction 
as it happens. This technique also 
shouldn’t be used when a player is 
using in-game currency or premium 
currency to buy goods. This is a 
rare enough action on its own and 
should be very secure since it deals 
with real money. In most social 
games, only a small percentage of 
our player base actually spent real 
money in their games, so this won’t 
be a signifi cant amount of traffi c.

FEWER SERVERS, MORE MONEY
/// Overall, I see three advantages 
to using this kind of server 
architecture: You save money 
on your server bill (which, for a 

popular game, will most likely 
outweigh whatever you lose from a 
few minor cheaters that get away 
with it), you improve your player 
experience by making out-of-sync 
bugs and server outages less 
frequent, and most importantly, 
you can focus on building a great 
game instead of having to worry 
about how it’s going to scale. What’s 
more, it’ll be easier for you to build 
games more quickly because you 
only have to worry about one code 
base and you won’t need to spend a 
signifi cant amount of time scaling 
servers as your game grows.

Scaling the back-end of a mobile 
or social game is no easy task, and 
even if you read about a new back-
end scaling solution, it’s not always 
the kind of thing you can simply 

drop in place. This solution uses 
open source software and existing 
web technologies, and should 
be very common to what you’ve 
already seen in the past—the only 
difference is how you’re actually 
using it. The security of this system 
can be as strong and robust as 
you like. This architecture can be 
reused for many titles, with the 
validation logic swapped in and out 
depending on which title is using 
it. In the end, game developers 
should be focused on building great 
games, not fi guring out how to keep 
them alive. 

JOEL POLONEY is an entrepreneur who 

sold his fi rst social gaming startup to 

Zynga in 2009 where he went on to build 

FARMVILLE and lead up central technology. 

He has since left and is currently working 

on his second startup, focusing on products 

that people love to use.

GAME DEVELOPER   |   SEPTEMBER 201218

FARMVILLE.



enroll now

earn   

your aa, ba, bfa, ma, mfa or  

m.arch accredited degree 

engage   

in continuing art education courses

explore   

pre-college scholarship programs

www.academyart.edu

800.544.2787 (u.S. Only) or 415.274.2200

79 new montgomery st, san francisco, ca 94105

Accredited member WASC, NASAD, CIDA (BFA-IAD, MFA-IAD), NAAB (M.ARCH) 

*Acting degree program is not available online.

Visit www.academyart.edu to learn about total costs, median student 
loan debt, potential occupations and other information.

Photo credit: Joseph Taylor, Chris Haejin Chu

take classes online or  
in san francisco

acting* 

advertising

animation & Visual effects

architecture

art education

art History

fashion

fine art

Game design

graphic Design

illustration

industrial Design

interior architecture & Design

landscape architecture

motion Pictures & television

multimedia communications

music Production & sound Design 
for Visual media

Photography

web Design & new media

http://WWW.ACADEMYART.EDU
http://www.academyart.edu


IdentIfyIng your 
studIo’s strength 

 

» When asked to identify their studio’s 
strongest facet (see Figure 1), production 
came out on top (eight respondents), followed 
by work/life balance and polishing/delivering 
(six respondents each), and then innovation 
(five respondents). Interestingly, of the eight 
people who voted for production, only one of 
them listed their role as project management. 
You would expect if a studio’s strength was 
working together as a team that the project 
managers, who have good oversight of the big 
picture, would be the ones to comment on it. 
Also, three people who voted for innovation 
as their studio’s strength occupied studio 

leadership roles. No other response had such a 
strong showing from studio leaders, indicating 
that from the top down more organizations 
are explicitly targeting new ideas or new fields 
of endeavor rather than trying to compete in 
established and often overpopulated genres. 

I did a similar survey last year, which you’ll 
see in the charts, but please note that the 
categories were changed slightly since the prior 
survey; morale and publishing were added to 
reflect feedback from the previous survey. The 
traditional roles of publishing and developing 
games are, in some cases, combined under one 
roof in our industry, so I wanted to include both 
areas in the survey. 

In addition to identifying their studio’s 
strength, respondents were also asked to 
estimate the impact of their studio’s strongest 
point upon overall company success, from 
1 (low) to 5 (high). This year’s responses 
(average value of 3.78) are slightly more 
positive than in the previous year (average 
value of 3.48). We’re going to use this later to 
compare the impact of a studio’s strongest and 
weakest facets on its success.

IdentIfyIng your 
studIo’s weakness 

 

» When asked what area of operation people 
would most like to see improved at their 
company, the clear winner in 2011 was company 
leadership, with fairly even votes in the other 
categories. This year, polishing/delivering took 
a slight lead over mentoring/training (see 
Figure 2). Intriguingly, the least-critical area of 
improvement in the 2012 results was last year’s 
most sought-after; possibly because studio 
leadership has gotten noticeably better in the 
last year, or possibly because other areas have 
become more important. 

Considering leadership was also ranked 
third for most-improved area of operation in 
the past year (see Figure 3), I’m inclined to 
think that overall studio leadership has, in fact, 
been improving. However, it’s worth pointing 
out that studio leaders are disproportionately 
represented among the people taking this 
survey, and said leaders may be more likely to 
point out the positive aspects of leadership than 
would the people being led. 

how does your 
studIo’s weakness 
affect your 
success?

 

» You can only improve what you can measure 
(usually in dollar amounts, when it comes to 
business), so I asked respondents to quantify 
the impact of their studio’s weakest facet upon 
their success, from a scale of –5 (“serious 
negative impact”) to 5 (“highest positive impact,” 
meaning even your studio’s weaknesses are 
contributing to its overall success).

Last year the average value of the 24 
respondents was –1.71, meaning the area in 
question was negatively impacting company 
success. In 2012, the 33 survey participants 
averaged a –1.79. Taken broadly, this indicates 
that, year over year, developers believe it’s 
more important for a studio to address its 
flaws. Essentially, the average assessment 
made by an industry worker is that the biggest 
problem area in their organization is having 
a larger negative impact than it was last 
year—perhaps upon employee morale, product 
quality, or other factors—which ultimately 
translates to less money being made by the 
worker’s studio. 

There are a few different reasons why this 
could be the case; better internal and external 

“how can your game 
studIo make better 
games?”

It’s a fairly simple question, and the 
answer—find out what you don’t do 
so well, and fix it—seems equally 
simple. But when you take a close 
look inward, you may discover that 
the strengths and weaknesses 
your studio had when you started 
working there haven’t drastically 
changed since. I surveyed a pool of 
43 experienced developers across 
disciplines (see the Methodology 
sidebar for more details) to 
determine what we as an industry 
are good at, what we’re bad at, and 
how important we think it is to shore 
up our weaknesses. If your studio 
isn’t taking big steps to address its 
weaknesses, it should be.

game developer   |   september 201220

k e i t h  F u l l e r



publishing

mentoring/training

communication

pre-production

morale

company leadership

innovation

work/life balance

polishing/delivering

production

0 2 4 6 8 10

2011
2012

Figure 1: What is your studio’s strongest point?

polishing/delivering

mentoring/training

production

pre-production

communication

work/life balance

innovation

company leadership

0 2 4 6 8 10

2011
2012

Figure 2: What is your studio’s weak point?

number of respondents

number of respondents

communication could make employees more 
aware of their studio’s weaknesses, or a 
studio could simply be experiencing overall 
entropy over time. The ultimate takeaway from 
this question is that our industry’s efforts to 
continuously improve aren’t effective enough. 
If they were, the answers to this question 
would be getting increasingly positive, not 
increasingly negative. From the top down, 
studios need to examine their improvement 
efforts and devote more or better resources to 
this area of operation.

The case for fixing 
weaknesses

» Now we can take the estimated impact on 
studio success of both a studio’s strongest and 
weakest facets (3.78 and –1.79, respectively) 
to determine a studio’s potential return on 
investment for improving its weakest area of 
operation. When I asked the survey respondents 
how much fixing the studio’s primary weakness 
would affect their overall success (on a scale 
from one to five), the average value in 2012 was 
3.52 (compared to a 2011 average of 3.5). At this 
point we have:

a.  Impact of studio strength on 
overall success: 3.78

b.  Impact of studio weakness on 
overall success: –1.79

c.  Estimated effect of fixing 
weakness on overall success: 3.52

If we take the difference between b and c, we 
end up with 5.31 as the overall impact of fixing 
a studio’s weakness; out of a 5-point scale, that 
is a 106% perceived impact on success. 

www.gdmag.com 21

http://WWW.GDMAG.COM


In other words, the people doing the work and 
leading the teams at your studio see something 
that needs to be fixed because it affects your 
success more profoundly than your greatest 
strength. And they have reason to believe 
you could reverse a negative trend by fixing 
it—so that you are actually not just patching up 
weaknesses in the leaky boat that represents 
your studio, but turning those weaknesses into 
strengths that make your studio more money. 
And as you’ll see in the next section, they even 
have clear ideas about how to do it.

How can your studio 
fix wHat’s broken?

» In the latter portion of the survey, I delved 
deeper into what these folks would suggest 
doing to bring about the improvements they 
envision. The questions are more open-ended 
and don’t lend themselves to summary, but 
the suggestions are wide-ranging and include 

things like improving communication with QA, 
professionalizing the management of projects, 
and listening to the people who make the games 
and not just the people who sell them. Here are a 
few of the verbatim responses.

 WHAT Would you fIx? 

“Onboarding and training on new tools.” 
 HoW Would you fIx IT? 

“Highly searchable training materials.”

WHAT Would you fIx? 

“We have way too many meetings. 
Sometimes we’ll have meetings about 
previous meetings and post-meeting 
meetings. Sometimes we’ll have weeks 
where half the team is stuck in back-to-
back meetings all day.” 
HoW Would you fIx IT? 

“There needs to be a limit to the 
amount of meetings we can have, or 
a meeting-free day just so people can 
catch up on work.”

WHAT Would you fIx? 

“I’d like to see decisions thought 
through from the beginning, instead of 
growing exponentially near the end of 
the project.” 
HoW Would you fIx IT? 

“ More discussion with different leads 
at the beginning of the project to 
determine what is and isn’t feasible.”

WHAT Would you fIx? 

“I would bring back agile processes.” 
HoW Would you fIx IT? 

“ Hire an agile coach to objectively help 
us identify and fix the problems we 
have with agile.”

beHind tHe answers

» The goal of my annual survey and indeed of 
this article is to improve our industry—how we 
do what we do. And that can come from fixing 
something that exists, or creating something 
that doesn’t. It’s not just dependent upon getting 
the management to listen, or automating your 
build process, or eschewing Taylorism in favor of 
Scrum. Sometimes it’s about heading off in a new 
direction, trying a new business model, creating 
a new company, or having the courage to try just 
one more time, hoping they’ve found a studio that 
remains solvent long enough to ship a product. 
I plan on running a Third Annual Production 
Survey in 2013 around GdC and I would greatly 
appreciate your participation. The more people 
who participate, the more meaningful the results 
will be. Hopefully, this survey can play just a tiny 
bit in helping us get there. 

Keith Fuller is a production consultant 

(fullergameproduction.com) with 15 years of game 

development experience. He’s also the author of Beyond 

Critical: Improving leadership in Game development.

me tho dolog y

Around the time of GdC 2011, I invited all manner of production coordinators, producers, and studio leaders to participate in an anonymous 10-question 
survey about how their companies, projects, and teams operate. This year I repeated the survey, with many of the same questions from 2011, as well 
as a few new items added in response to comments I received when discussing the previous year’s results. These survey results were obtained 
from a pool of 43 viable respondents, most of whom were either programmers (12 respondents) or project managers (12 respondents). In terms of 
experience level, only seven respondents described themselves as frontline contributors, compared to 12 senior contributors. All other participants 
listed their positions as being some form of management or leadership. The demographic responses indicate that programming, project management, 
and design describe almost 75% of the participants’ roles, and that much more than half of all respondents are relatively experienced individuals. 

Note that while the survey asks questions about demographic information (the respondent’s development discipline and seniority level, as well as 
their studio’s targeted platforms), I did not cross-tabulate any of the production survey questions with the reported demographic information in order 
to preserve anonymity. from my own experience as a studio developer, I understand that many people fear posting their opinions online because their 
statements might somehow get linked back to them and result in retribution by an employer. Also, in order to diversify and expand the respondent 
pool, I made sure to post the 2012 survey invitation in the most discipline-agnostic way possible.

Figure 3: What has your studio improved upon most over the last year?

 pre-production .................25.9%

 production  ........................ 18.5%

 company leadership......... 14.8%

 mentoring/training .......... 11.1%

 morale ................................ 11.1%

 polishing/delivering ..........7.4%

 innovation .............................7.4%

 communication .................... 3.7%

 morale .................................. 3.7%

 work/life balance ............. 3.7%

game developer   |  september 201222

http://fullergameproduction.com


23W W W . G D M A G . C O M

http://WWW.GDMAG.COM
http://vfs.com/enemies
http://GDMAG.COM/SUBSCRIBE


game developer   |   September 201224



//////////////////////////////////////////////////////////////// At the end of 2010, right after fi nishing 
PIXELJUNK SHOOTER 2, Q-Games president and founder Dylan Cuthbert pulls me aside for a chat.

“So we’ve kind of got this music visualizer using the PlayStation Move called LIFELIKE on the 
back burner,” he says. “You should make it happen.”

I asked for some more details about the project. “Well, there’s music,” Dylan said, “And there’s 
a PlayStation Move. Off you go.”

PIXELJUNK 4AM released in spring 2012 on PSN. It’s not so much a game in the strictest sense 
of the word—it’s a Move-exclusive audiovisual composer, where all your performances are 
broadcast live around the world on PSN. The player creates music using the Virtual Audio Canvas, 
which is an actual physical 3D space carved out in front of the player. It contains more than 190 
sound samples, a wide variety of DSP effects, and the ability to dub loops into your own unique 
groove. We also released a free Live Viewer, allowing anyone on PSN to stream performances live 
and give real-time feedback. 

It’s easy for a game designer to say, “Hmm, this boss is still a little easy. It should breathe 
more magma!” Knowing when a 4AM event is fi nished, on the other hand, starts venturing into the 
realm of music production—and there were no other similar games to use as points of reference. 
The control scheme is completely unique to 4AM, and the experimental social gameplay we 
included also seemed pretty far-fetched at the time when we were developing. 

Normally, those are the points at which someone high up usually says, “Stop smoking so much 
and make something solid!” Yet throughout development, Dylan supported every new crazy idea 
by saying, “If it’s fun, put it in!” Our U.S. publisher Sony Santa Monica was also super supportive 
despite the amount of wild new design that 4AM was pushing. The faith (and massive balls of 
steel!) of these fi ne people is what ultimately allowed us to release a unique experience that will 
hopefully be remembered fondly for a long time by its players.

WWW.GDMAG.COM 25

R O W A N  P A R K E R

http://WWW.GDMAG.COM


W H A T  W E N T  R I G H T

1. FEARLESS 
HARDWARE 
EXPERIMENTATION 

/// Going into the project, I didn’t 
exactly have a glowing perception 
of the Move—it had always felt 
gimmicky to me. On the first day, 
though, we played around with 
some of the SDK samples and were 
surprised to discover that the Move 
actually seemed pretty robust and 
ripe for creating some wild stuff with 
tricks that neither the Kinect nor 
the Wii could do. (It occurred to me 
at the time that it might not be the 
Move’s fault that it wasn’t being used 
for crazy new stuff, but that people 
weren’t making games for it to do 
crazy new stuff; since we started on 
4am, we’ve seen some other notable 
Move experiments, which warms my 
heart greatly!). 

With a skeleton team of two 
programmers and one designer, 
we prototyped at least 12 different 
control methods for 4am, all utilizing 
the Move to control music in space. 

Some of the control schemes varied 
from casting musical “spells” in 
the air to replicating an eight-way 
arcade stick and inputting Street 
Fighter commands in the air. 
Regardless of how ludicrous each 
idea seemed, though, the only test 
that mattered was whether we could 
ask, “Can I make music, and is it 
fun?” and honestly answer yes. 
Dylan supported our willingness 
to experiment without regard for 
whether something felt “normal” 
or “gimmicky,” all the way up until 
we found 4am’s distinctive Virtual 
Audio Canvas. Without that support 
to continue experimenting, we might 
never have pushed the Move enough 
to find the Virtual Audio Canvas we 
have now. It would have been a hell 
of a lot easier to just implement a 
menu and pointers, but it wouldn’t 
have been 4am!

2.DISCARDING OLD 
TOOLS 

/// When I picked up the liFelike 
project in January, there were 
already legacy tools and an 

editor. Unfortunately, this editor 
was largely unusable (I’ll explain 
why later) and we needed to 
make a quick decision regarding 
how to move forward. It was 
primarily developed and tested 
on a PC, and the PS3 version 

wasn’t optimized. GameMonkey 
(our scripting language) was 
running computationally intensive 
generic behaviors with a vast 
array of tweakable properties. The 
framework gave us flexibility, but 
came at the cost of unoptimized 
generic code that was incurring 

a lot of processing time. Even 
though the artists and designers 
were only able to build rather 
generic-looking visualizers, our 
frame rate was still suffering. 

Shortly after the controls 
prototype was finished, we 

scrapped all the generic behaviors 
and started rewriting the rendering 
code with specific visuals in mind. 
It gave us the freedom to optimize 
each visualizer independently 
(scalpel over sledgehammer) and 
expose only the most interesting 
elements to the artists. Ditching 

game developer   |   September 201226



WWW.GDMAG.COM 27

support for the PC build also let 
us offl oad a lot onto the PS3’s 
SPUs, and freed our lone visualizer 
programmer from the burden of 
maintaining both versions of the 
editor. This boosted our frame 
rate and made the artists feel 
more empowered to make cool 
stuff. We also sat the visualizer 
programmer right by the relevant 
artists, in order to quickly iterate 
the visualizer as they fi gured out 
what the artists needed to achieve 
the look they wanted. This paired-
nucleus approach was defi nitely 
smoother than a programmer 
trying to write blanket variables to 
achieve an invisible goal.

3. RENAMING FROM 
LIFELIKE TO 4AM

/// Around July 2011, we realized 
we had a completely different 
beast than we’d started with. There 
was an internal and external need 
to redefi ne the project and leave 
behind any associations to the old 
one. We couldn’t have known how 
much of an effect renaming to 4AM 

would have, though. In the initial 
meetings a lot of names were 
thrown around that came very 
close (PIXELJUNK: ACID, PIXELJUNK: 
GROOVE) but once it was said, 
4AM caught on almost instantly. 
It encapsulated the identity that 
we in the offi ce had all come to 
attribute to the game, and it was 
the only one we could agree on 
that would convey that identity 
to people outside as well. 4AM 
best captured the atmosphere 
of a club in the early hours of the 
morning. The name change didn’t 
just throw off the shackles of old 
design ideas and tech for us; it 
gave everyone a common word to 
congregate around. It’s also just 
plain fun to say.

4. A RADIO STATION 
ON PSN

/// 4AM broadcasts all 
performances live around the 
world using the PlayStation 
Network. There is also a Free 
Viewer available for download, 
which allows anyone to stream 

current live performances even 
if they don’t own the game itself. 
It is essentially a free Visualizer-
powered radio station available 
to anyone with a PS3, where the 
performers create the content. 
Needless to say, this was some 
uncharted territory both for us 

and for Sony. Sony’s Title User 
Storage (TUS) service came to 
the rescue, helping us avoid P2P 
networking by storing a buffer of 
each broadcast per user on their 
servers. Unlike regular streaming 
services (UStream, for example), 
we wanted 4AM to be live without 
interruption, so we couldn’t allow 
for any buffer latency to occur. 
This meant that the data sent 
across the network needed to be 
heavily packed.

4AM currently creates an initial 
one-time-only buffer on load, so 
if the network connection drops 
packets during a performer’s 
playback, the buffer shrinks 
permanently. Fortunately, we 
managed to keep the network 
data packet size to a minimum, 
which meant 4AM has an almost-
negligible rate of packet loss. 
The Free Viewer contains all the 
same assets as the full version, 
so we only have to send the 
Move’s motion data (gyro and 
accelerometer) to effectively call 
all the same functions on the 
local client, meaning that viewers’ 

ga me  data

DE VELOPER: Q-Games
PUBLISHER: Sony Santa Monica
RELE ASE DATE:  May 15, 2012
PLATFORMS: PSN
INITIAL NUMBER 
OF DE VELOPERS:  3
FINAL NUMBER OF DE VELOPERS: 
6 + music by DJ Baiyon
LENGTH OF DE VELOPMENT: 16 
months
DE VELOPMENT TOOLS:C++, 
GameMonkey
HALLUCINOGENS CONSUMED: 
Minimal.

http://WWW.GDMAG.COM


PS3s are actually replaying the 
performer’s Move motion data in 
order to replicate the performance, 
not simply streaming a video. We 
wanted 4am to be viewable to all 
PS3 owners, with thousands of 
people concurrently streaming live 
performances, and a P2P network 
setup simply would not have been 
able to handle that kind of load. 
It’s also nice to know that our 
unorthodox use of the TUS didn’t 
overload Sony’s servers.

5. SUPPORT YOUR 
STARS

/// PixelJunk 4am was designed to 
encourage “performance” in every 

sense of the word, but we only 
realized what we’d really made 
once the live beta started. The live 
beta was an online stage where 
players could perform. As people 
started playing with the live beta, 
they began to post videos and 
personal streams of themselves 
performing in 4am to build their 
own followings.

We were humbled to see that 
players were already enjoying 
themselves with just the 
featureless beta, and once we 
released it, the social effect was 
compounded. One feature shining 
through is the auto-shuffle 
attract mode: While on the main 
menu, 4am will seek current live 

streams in the background and 
put up a random person playing 
live as a menu background. This 
attract mode also adds to the 
head count for that performer’s 
crowd. A stable of other features 
(Facebook, Twitter, hometown, 
local time, avatar display) were 
also designed to let players stamp 
their own identity on an event; 
identity really lets performers 
make the 4am events their 
own. Since we’ve launched and 
gone live, some performers are 
amassing crowds with thousands 
of people in the audience. Most 
people will go their whole lives 
and never be able to play in 
front of a live audience of that 

capacity. I’m thrilled people are 
experiencing that.

W H A T  W E N T  W R O N G

1. LACK OF EARLY 
DIRECTION

/// In 2010, when the project was 
still called lifelike, it was crippled 
by a confused artistic direction 
as to where it should go. If we had 
a strong artistic vision early on, 
we could have avoided building 
features we would end up not using, 
and we would have built tools 
that let us get the visual effect we 
wanted. Since we didn’t have that 
artistic vision, we had to build very 

game developer   |   September 201228



www.gdmag.com 29

generalized tools that produced a 
rather generic visual style.

In an attempt to make the 
editor more artist-friendly, we 
used GameMonkey to expose a 
lot of in-game models’ behaviors. 
Unfortunately, we exposed too 
many parameters and variables, 
which took down the frame rate. 
A great example was the jump 
behavior designed to make small 
circles jump in time with the music. 
Over time, the jump behavior 
became bloated with a variety of 
other requests like interpolating 
color based on height, rotating on a 
pivot point, and other small artistic 
touches. If it so happened that 
none of them were being used, 
the cost of one jumping circle 
could be astronomical for the 
visual payoff. This was the price 
though of wanting flexibility in the 
visuals but never nailing down any 
one element. 

Many of these behaviors were 
things that could have been (and 
eventually were) written far more 
efficiently and optimized for the 
SPU once we knew exactly what 
we wanted to make. As a result, 
early incarnations of the editor on 
PC were a monstrosity, making it 
almost impossible to use without 
an intricate knowledge of each 
behavior’s roots in code. (The 
original programmer moved on 
shortly after the prototype, so there 
are probably still things lurking in 
there that no one will ever know 
about now.) The GameMonkey 
behavior method of using the editor 
was largely tossed out following 
the prototype, essentially binning a 
vast amount of resources and time. 

2. TEXT TUTORIAL 

/// We knew that 4am had so many 
new gameplay concepts and 
controls that it was going to be 
hard to explain how to play it. At 
game shows and events, we found 
people picked it up extremely 
easily, given the tactile nature of 
the Virtual Audio Canvas (vibration 
feedback). Explaining this idea with 
just text and images, though, was 
a completely different story. Even 
after repeatedly refining the current 
tutorial and running “blind tests” on 
new people with every iteration, we 

still haven’t really achieved a 100% 
understanding rate for the controls 
after one tutorial play-though. 
4am introduces many new control 
concepts with no easily available 
mental reference points—there’s 
nothing like it we can compare 
it to—so it’s kind of like asking 
players to read a book and then 
play a saxophone.

The player can really only 
learn how to control 4am through 
play and experimentation, not a 
tutorial—just like a regular musical 
instrument. However, since we call 
it a “game tutorial,” people expect 
to understand everything about 
the game after they’re done with it. 
While it’s nice to see many players 
just “getting in there” and quickly 
picking up the rest of the controls, it 
would still be nicer to have a gentler 
tutorial experience that gives 
people time to acclimatize first.

3. ARTIST  
VS. PLAYER 

/// 4am began as a passive music 
visualizer. When it started coming 
together as more of a music 
creation tool, a fundamental 
conflict arose: Players want to 
manipulate the music, but the 
artists want to preserve their 
original idealized state of a track. 
When we began experimenting 
with DSP effects, we quickly found 
that people like to warp music and 
make it their own. The dichotomy 
within 4am is that we want players 
to find their own sound, where 
traditionally produced music 
aims to have already achieved 
that for you by the time you 
hear it. So when making tracks 
for 4am, should they be prepped 
for “finishing” inside 4am by the 
players using DSP effects, or 
should they be ready to go right 
out of the box? 

This internal tension had 
a direct impact on the ranges 
available to players within the 
DSP effects. A flanger or chorus 
DSP might have a wide frequency 
or feedback range to play within, 
but by carefully setting a min/
max range under the hood, we 
could safely trim the performer’s 
freedom space to something we 
knew would produce the kind of 

sound we wanted. Unfortunately, 
some of these ranges are probably 
still too subtle for the average user 
to enjoy, since they can be difficult 
to hear depending on what track is 
playing. We had to create effects 
that were audible and interesting 
to players, but at the same time 
stylistically acceptable to the 
artist. In hindsight, these are two 
completely opposed ideas, so it 
was always going to be difficult to 
satisfy both. The player still needs 
to have fun, but not at the cost of 
being a passive appreciation tool 
for the artist’s benefit.

4. COMMUNICATING 
4AM TO THE MEDIA 

/// 4am is not a traditional “game.” 
We probably took too long to 
realize ourselves that it is more of 
an instrument than a game, and 
so we slipped into our regular PR 
habits. The mistake we made was 
expecting the same response as 
usual from the traditional game 
media outlets: Many review sites 
and journalists clearly didn’t know 
how to approach the title, and 
either chose to not review because 
it didn’t fall within their definition 

http://WWW.GDMAG.COM


of a game, or reached in with a 
lukewarm reviewing hand without 
really wanting to shake the boat. 

This was in stark contrast to 
the sharp love/hate response we’ve 
seen in comments and forums from 
people. It’s validating to know we 
made something that generates a 
passionate reaction from traditional 
gamers and challenges their 
definition of a game. Those players 
who do love 4am have continued 
to perpetuate it through word of 
mouth and online user reviews, 
which has been a great boon. 
However, we definitely needed to 
act earlier and reach out in more 
lateral PR directions to audio- and 
music-production-specific sources. 
We’ve also been showing 4am at 
a variety of music festivals this 
year, such as Coachella, Electric 
Daisy Carnival, and very soon at 
Lollapalooza, giving festival-goers a 
cool chill-out option.

5. MANAGING BETA 
EXPECTATIONS 

/// There was a degree of 
miscommunication surrounding 
the beta for 4am. We were the 
first beta to have two packages 
(a Free Viewer and a Full Version), 
which made it tricky before we’d 
even started. Of course, both were 
critical for testing purposes, but 

the main problem was people 
mistaking the Free Viewer as a 
demo and expecting gameplay. 
In the context of the full title, the 
Free Viewer is great and has had 
a huge uptake, but in a climate 
where betas are free anyway, that 
value was lost and people expected 
playable content. 

From a developer standpoint, 
we wanted to use the beta to test 
the PSN broadcasting system in a 
semicontrolled environment and 
get some player feedback to make 
some last-minute changes. Prior 
to the beta, the only broadcasting 
tests we’d been able to perform 
were between internal QA with 
Sony, so we didn’t know how 4am 
and PSN would handle having 
thousands of people download the 
Free Viewer and watch.

The great uptake meant we 
fulfilled these two goals, but I feel 
that some people may have been 
burned on their first impression 
through the beta. The official beta 
announcement was a combined 
effort with our publisher Sony 
and our own official channels, but 
ultimately we should have taken 
more ownership of the message 
and ensured that word got out 
about how the beta was going to 
work (by baking an informative 
screen right into the package, for 
example). Unfortunately, with the 

small team size and time restraints, 
we really couldn’t give the beta the 
time it deserved. Overall, the beta 
was successful in satisfying our 
development requirements, but 
from a marketing perspective, I 
feel there may be a few players out 
there who might never give 4am a 
second chance.

LATE INTO THE 
MORNING

/// If someone had asked me to 
sit down and seriously design 
a new musical instrument in 

January 2011, I would have been 
enthusiastic. I also would have 
had no idea where to start. (Now, 
I would probably clutch my knees 
and rock back and forth underneath 

my desk.) Yet at the end of our 
musical-space journey, we now 
have a new electronic instrument 
and performance-art platform that 
people are enjoying online. I feel 
amazingly fortunate to have landed 
in something that was backed by so 
much faith, and I am grateful that 
we were given the time we needed 
to make 4am and not some corner-
cutting “missed opportunity.” Since 
then, we’ve been working in secret 
fervor on a new PixelJunk IP that 
will see a return to more traditional 
gaming roots (but still has that 
unique PixelJunk twist). 

Rowan PaRkeR is the lead designer on 

PixelJunk 4am. He resides in Japan and is 

working at Q-Games on future PixelJunk 

titles. He would like the world to know that 

waffles are delicious. 

game developer   |   September 201230

Caption

If someone had asked me 
to sit down and seriously 

design a new musical 
instrument in January 

2011, I would have been 
enthusiastic. I also would 

have had no idea where to 
start. (Now, I would probably 

clutch my knees and rock 
back and forth underneath 

my desk.) 



http://GDCONLINEAWARDS.COM


toolbox

game developer   |   September 2012 32

Wacom

Cintiq  
24HD Tablet

» out of the box, the most obvious 
difference between the 24HD and 
other cintiqs is its size. at nearly 
64 pounds and 30.29 inches wide 
x 18.26 inches high, the 24HD is 
significantly larger than its siblings. 
The IPS widescreen display is 
24.1 inches, with a 1920 x 1200 
pixel native screen resolution 
and 5080 lpi tablet resolution. 
The 24HD display is brighter, has 
more contrast, and covers more of 
the adobe RGB color gamut than 
previous cintiqs or the 21UX.

another important difference 
between the 24HD and the 21UX is 
the stand design. The 24HD features 

a hinged stand that allows the tablet 
to operate like a drafting table, which 
lets you be a little bit more flexible in 
your workspace. Unlock the hinged 
arms at the base, and the arms can 
rotate 75 degrees, making it possible 
to position the display upright (not 
possible with the 21UX), flat on the 
desktop, or beyond the desk edge 
to rest on the artist’s lap. also, the 
display itself can pivot 163 degrees 
along the arm hinges, so between 
the upper and lower hinges the 24HD 
is relatively easy to fit into whatever 
working arrangement you prefer.

21UX users may be surprised 
to find that the 24HD does not have 

a rotating display like the 21UX. 
While this may take some getting 
used to, the lack of a rotating pivot 
makes sense because the 24HD 
is more like a workbench than a 
sketch pad. While it would have 
been nice for Wacom to somehow 
engineer the 24HD display to rotate, 
its sheer size may have limited this 
possibility. In practice, once you’re 
accustomed to the 24HD, you won’t 
miss the rotating pivot, especially 
if you’re working with programs 
that feature rotate view tools 
(such as autodesk Sketchbook Pro 
and adobe Photoshop cS 4 and 
higher, for example). on the other 

////////  Wacom digitizing tablets are ubiquitous in professional computer graphics. Their lower-end Intuos tablets are popular 
and relatively affordable, but professionals will typically opt for a high-end cintiq tablet. Unlike the lower-end Intuos tablets, 
a cintiq tablet is essentially an upright display you can draw on. This eliminates the dissonance of drawing horizontally on a 
desktop tablet while viewing an upright display, offering a more natural analogue to traditional drawing. They’re pricey, though; 
the 24HD is the largest cintiq model available and costs $2,599. If your artistic workflow depends heavily on the quality and 
versatility of your hardware though, it’s worth it. 

The Cintiq 24HD has a 24.1-inch 
widescreen 1920 x 1200 display 
with a 5080 lpi tablet resolution. 
Compared to the previous Cintiq 

tablet, the high-definition display 
is brighter, has more contrast, 
and covers more of the Adobe 

RGB color gamut. 

PRICE 

› $2,599

SYSTEM REQUIREMENTS

› Windows 7, Vista or XP (SP3, 32- or 64-
bit versions), Mac OS 10.5.8 (or later)

PROS

1. Larger drawing and work area
2. Full HD resolution
3. Innovative stand

CONS

1. No display rotation
2.  Surface feels more slippery
3. Heavy

WACOM Cintiq 24HD
www.wacom.com

By mIke De la FloR

http://www.wacom.com


toolbox

hand, Adobe Illustrator and other 
important graphics programs don’t 
have a rotate view tool, so you 
might need to find a workaround.

Of course, when you’re working 
on your tablet, you probably don’t 
want to reach over for the keyboard 
very often. The Cintiq 24HD has two 
customizable Touch Rings, each 
with three presets and 10 Express 
keys (six fewer Express keys 
than the current 21UX). The Touch 
Rings and Express keys reduce 
the need to reach for the keyboard. 
However, if you absolutely have to 
use your keyboard, you can slip it 
underneath the display, which rests 
on small, retractable feet that leave 
about 2 inches of height clearance 
for a keyboard. The base part of 
the stand is not just support for 
the display—it also functions as a 
balancing counterweight that firmly 
grounds the tablet while you are 
positioning it. Note that the stand 
footprint takes up considerable 
desktop real estate at 25 inches 
wide by 15 inches deep. Your 
experience may vary, but for me, it 
didn’t take long to adjust from the 
21UX to the 24HD. 

The digitizing technology behind 
the 24HD is basically the same as 
that in Intuos 4 tablets. The pen is 
the standard pressure-sensitive, 
two-button, cordless, battery-free 
stylus with an eraser, and it supports 
2,048 levels of pressure sensitivity 
and a 60-degree tilt range. As 
expected, the pen is lightweight, 
balanced, and the rubber (latex-free) 
grip makes it easy to hold. If you’re 
making the jump from an older Cintiq 
model, you’ll immediately notice that 
the pen is more sensitive. However, 
you might notice a short lag 
between when the pen moves and 
when the stroke appears on screen 
that you didn’t notice before—
usually if you’re working with very 
large files or complicated brushes 
that are taxing your computer’s 
resources. Overall, however, the 
increased pressure sensitivity lets 
you draw with more nuance and 
subtlety.

In the past, Cintiq tablets have 
had issues with calibrating for 
the viewing angle and parallax. 
When you move the display, you 
change the viewing angle, which 
causes the tip of the pen to appear 

to not line up with the cursor. This 
is compounded by the parallax 
effect created by the gap between 
the glass on top of the IPS display, 
which makes the pen look even 
more off-kilter. To calibrate the 
tablet, you have to position the 
display as desired and then press 
the handy Wacom control panel 
button on the bezel and work 
through the short calibration 
process that takes a few minutes. 
Most artists have favorite positions 
in which they use their tablets, 
so you probably won’t have to do 
this often, but if you are a bit more 
nomadic in your artistic endeavors, 
you’ll have to repeat this process 
each time you move.

One of the natural aspects of 
drawing on paper or painting on 
canvas is the resistance provided 
by the texture of the surface 
(usually referred to as “tooth”). 
The 24HD and other Cintiqs feature 
an antiglare coating on the glass 
that also provides a subtle tooth to 
the drawing surface. Compared to 
older Cintiq or Intuos tablets, the 
24HD drawing surface feels a bit 
more slippery, which might take 
a little getting used to. Also, even 
though current Cintiq tablets ship 
with glass screens instead of the 
older plastic screens, you still need 

to keep the drawing surface free of 
dirt, dust, and skin oils, because 
the mix may result in excessive 
wear or permanent scratching.

There’s no doubt about it: The 
$2,599 price tag is a pretty big deal, 
and whether you’re upgrading from 
another Cintiq model or buying a 
Cintiq for the first time, it might not 
be worthwhile. CG artists may do 
well sticking with the smaller 21UX, 
especially if your workflow relies 
on the rotating display. However, 
you might find that the 24HD’s 
stand opens up drawing positions 
you can’t get with the 21UX, and 
the 24HD’s larger size and side 
bezels give you more drawing 

space and plenty of elbow room. 
The 24HD is a drafting table or a 
workbench, not a sketchpad. Also, 
the 24HD display supports a full 
high-definition resolution, includes 
more of Adobe’s RGB color gamut, 
all at a standard 16:10 aspect ratio 
(which is more useful for games 
than the 21UX’s 4:3 aspect ratio). 
For professional CG artists whose 
productivity depends in large part 
on hardware, upgrading to the 
24HD is a no-brainer. 

Mike de la Flor is a freelance medical 

illustrator, animator, instructor and writer. 

He’s the author of The Digital Biomedical 

Illustration Handbook and other CG books.

one of the main differences 
between other Cintiqs and the 

24Hd is its redesigned stand. The 
new stand allows the 24Hd to be 

positioned upright, flat, angled, or 
just rest on the artist’s lap.

www.gdmag.com 33

The Cintiq 24Hd features an 
extensive array of programmable 

express keys and Touch strips 
that reduce the need to reach 

for the keyboard. The bezel also 
houses buttons that display 

an onscreen keyboard and can 
launch the Wacom control panel.

http://WWW.GDMAG.COM


PROGRAMMERS 
DISASSEMBLE!

34

INNER PRODUCT // ALEX DARBY

LEARN TO LOVE YOUR DEBUGGER’S DISASSEMBLY WINDOW

The disassembly window in your debugger is your friend.
It is my honest opinion that all programmers should be made to 

understand and embrace the disassembly, registers, and memory windows; 
—and by doing so to take a big step toward becoming the programmers 
they could and should be.

Obviously it’s not quite that simple, but it’s hardly rocket science—and 
you certainly don’t have to become an assembly programmer to do it. As 
a game programmer, the vast majority of the assembly code that you will 
see in your disassembly window was generated by a compiler, which follows 
strict conventions when generating code. Once you understand the principles 
underlying these conventions, it’s not so hard to make sense of compiler-
generated assembly on any platform by applying that knowledge (given time 
and access to the internet or relevant hardware manuals, anyway). Apply this 
information to the data you get from your debugger, and over time you will fi nd 
that at the disassembly level, debugging a release build is actually not very 
little different than from debugging a debug build.

I know this is true, because I once feared what lay behind the veil of 
disassembly, and having pushed my way through it, I’ve found that it’s 
much more pleasant and productive on the other side. Understanding 
disassembly makes it easier to debug release builds and spot issues that 
are often more or less invisible in high-level code (such as fl oat to double 
conversions). It also makes it easier to fi gure out what you shouldn’t worry 
about—for example, the kind of traditional by-hand optimizations, such as 
shifting and adding to try and to optimize multiplication by constants, are 
exactly the kind of optimization that most compilers will spot and do for you.

Over time, looking at disassembly in the debugger will enable you to gain 
a solid understanding of how your compiler generates assembly code from C/
C++ code, and how the generated assembly code implements behavior that 
is required by the C/C++ code. You’ll fi nally understand that all the little rules 
about What Not To Do in C/C++ (e.g., “don’t return pointers to local variables,” 
or “don’t pass large structures by value”) are simply implications of the 
underlying mechanics of the assembly level implementation of the system— 
self-evident truths rather than rote-learned rules.

Also, many of the most subtle and insidious bugs (other than those 
associated with multi-threading) are often only apparent at the level of the 
disassembly, and are essentially invisible when debugging at the source level. 

GAME DEVELOPER   |  SEPTEMBER 2012



For example; , it is entirely possible for code from different source fi les (or 
more commonly, different libraries) to end up with differing ideas about the 
size and/or content of a struct or class but to still execute without crashing for 
the vast majority of the time when accessing instances of the problem type. 
The same is equally true for data accessed via incorrectly- cast pointers or 
(heaven forbid) function calls made to incorrectly- cast function pointers.

The fi nal benefi t I’m going to mention is only really available to those 
who devote serious time and effort to understanding disassembly: the crash 
dump. Most companies have their “crash dump guy” (or gal), the go-to person 
who can work their way through a crash dump and come out on the other 
side with the cause, a suggested fi x, and the a general smell of heroism about 
them. None of these people were born able to make sense of crash dumps; 
they all got there by gaining the knowledge they needed, the determination to 
apply it, and the raw mechanical practice that made them experts.

I’m not a crash dump guy, but I get by. Given a crash dump, a map fi le for 
the build, access to the relevant tools and documentation for the platform 

I’m working with, and an appropriate amount of time, I can usually fi nd my 
way to the root of the problem. 

SOME ASSEMBLY REQUIRED
» In order to make sense of the workings of the assembly level of C/C++, 
you’ll need a little basic information. First, you need to get your head 
around the difference in “worldview” between C/C++ code and assembly 
code. The worldview of assembly code is intimately tied to the CPU and, 
more or less, an order of magnitude more granular than that of high 
high-level code. Second, you need to understand the core mechanism 
employed to implement the “engine” of the C/C++ language—the Stack. 
While the principles underlying the operation of the Stack are more or 
less identical across platforms, the specifi c implementation of the Stack 
on any given platform is partially defi ned by that platform’s Application 
Binary Interface (or ABI), which is itself determined by the capabilities of 
that platform’s CPU. 

INNER PRODUCT // ALEX DARBY

FIGURE 1: Visual Studio 2010 shows the debugger windows that I suggest you have open if you decide to step through this simple snippet of disassembly. The right-click context menu 
is shown so you can see what display options I have checked.

WWW.GDMAG.COM 35

http://WWW.GDMAG.COM


INNER PRODUCT // AlEx DARby

The worldview of assembly code
» While the overall behavior of compiler-generated assembly code is 
logically isomorphic with that requested by the C/C++ code (it will produce 
the same output for a given input), the specifics of how that behavior is 
achieved are often surprising when you first observe them. I mentioned 
that the worldview of assembly is an order of magnitude more granular 
than that of high high-level code; the best way to demonstrate this is to 
write some code, compile it in a debug build, put a breakpoint on it, and then 
step through it in a disassembly window using a “mixed” view (i.e., one that 
shows the source code inline with the disassembly it caused the compiler to 
generate). Let’s start with this simple example:

int x = 1; 

int y = 2; 

int z = x + y;

Since this magazine doesn’t have a native compiler and IDE, I’ll take you 
through this very simple illustrative snippet of code myself. The disassembly 
view I’m showing in figure 1 shows x86 assembly, and was generated from 
an executable compiled using the debug configuration of a vanilla win32 
console application created using the Microsoft Visual Studio 2010 “New 
Project” wizard.

So what does it all mean? Let’s take a closer look at it in figure 2.

 
figure 2: reading some basic disassembly.

The lines of black text with number prefixes are the original lines of C++ code, and 
the lines of gray text below each are the corresponding assembly instructions.

The hexadecimal (hex) number at the start of each line of assembly 
(red box) is the memory address of that line of assembly—remember that 
machine code is just a stream of data in memory that tells the CPU what to 
do, so logically each instruction must start at a specific address in memory. 
Next on each line are the assembly code mnemonics (green box). Each 
mnemonic represents a CPU instruction, and is followed by its arguments, 
or “operands” (blue box). Only the mnemonics mov and add are used here 
because the code is very simple, but there are many more. 

Let’s take a closer look at the operands. The identifiers eax and ebp refer 
to two of the registers of the x86 CPU architecture. Registers are “working 
area” for CPUs; fragments of memory that are built into the CPU itself, which 
the CPU can access instantaneously (within one CPU cycle). Rather than 
having addresses like memory, registers are typically named in assembly 
code because there are usually only a (relatively) small number of them.

The eax register is a “general purpose” x86 register, primarily used for 
mathematical operations.

The ebp register is the “base pointer” register. In x86 assembly, local 
variables will typically be accessed via an offset from this register; we will 

cover why this is the case in a second example later. 
This just leaves dword ptr [...] to explain. Operand values that are intended 

to be treated as memory addresses rather than values are put in square 
brackets. The dword ptr part is an x86 assembly code size directive specifying 
the size of the value at the address—dword is a contraction of “double word” or a 
32-bit value (in x86 assembly code a word is a 16-bit value).

Now that we know how to make sense of the disassembly we can see 
here, let’s manually step through it.

These first two lines of assembly are very simple, and are clearly performing 
the same instruction with different operands. The first is moving the 32-bit 
integer constant value 1 into the 4 bytes (32 bits) starting at memory 
address ebp-8. Since we know that this code corresponds to the line of C++ 
code directly above it, we can infer that the integer value we refer to at the 
high level as x is stored at ebp-8.

Using the same logic we can see that second line of assembly is moving 
the 32-bit integer constant 2 into the 4 bytes starting at memory address 
ebp-14h, which is where the value of the high high-level variable referred to 
as y is stored. Note that the trailing “h” on the offset from ebp indicates a 
hex value (ebp-8 doesn’t require a trailing “h” because 8 is the same value 
in both decimal and hex).

The same approach can be applied equally well to decipher the next three lines 
of assembly: The value at ebp-14h (y) is moved into the eax register, then the 
value at ebp-8 (x) is added to the value of eax, and the value of eax (the sum 
of y and x) is moved into the address ebp-20h (the high high-level variable z).

This is an incredibly simple piece of assembly to look at, but believe it or 
not this has served to illustrate the difference in worldview between assembly 
and C/C++ admirably well. We’re using x86 disassembly for this particular 
example, but you will find that the disassembly you encounter on more exotic 
development hardware (such as a PS3 or Xbox 360 devkit) will behave in much 
the same way; the mnemonics will differ, but these principles will still hold.

You now know several key principles about the worldview of assembly code 
which hold on the vast majority of hardware platforms. First, in order to perform 
a useful operation on some data a CPU will generally require it to be in a register; 
second, values in CPU registers must usually be explicitly moved to and from 
memory; and third, there is no machine-level concept of a named variable—the 
CPU deals with memory addresses, registers, and their contents.

The sTack and The abi
» Now that we understand the worldview of assembly code in principle 
we need to look at what is arguably the engine of C/C++—the Stack. If you 
are a C++ programmer and you’re not 100% sure what the Stack is or how 
it works, you are not alone. The C++ Programming Language by Bjarne 

gAmE DEvElOPER   |   sEPTEmbER 201236

 The more you do this, the easier it will get. You’ll be a better, 
more effective, and more productive programmer; and—before 
you know it—probably one of the people others call over when 

they break the release build and need help debugging it. 



www.gdmag.com 37

INNER PRodUcT // alEx daRby

Stroustrup (creator of C++), now on its 3rd third edition, is considered the 
standard text on C++ (at least until the update for the C++11 standard is 
published), and while it does from time to time refer to data or objects being 
“on the stack,” it doesn’t discuss what the Stack is or how it works. (For the 
sake of clarity, I’m going to capitalize the Stack to discriminate distinguish it 
from just any old instance of a stack data structure.)

As C/C++ programmers, we are comfortable that the entry point of our 
programs is the function int main( int argc, char** argv )and that 
our programs are structured primarily by calling other functions, which 
call other functions, and so on. In principle, a function can be called from 
anywhere at any time in a program, and since C and C++ support function 
pointers and library code, there is no way of knowing at compile time when 
or even whether a function will be called. 

Additionally, the majority of functions need a little working space in 
memory (for local variables), and since only a relatively small number of 
nested function calls will generally be made at any given point, it would clearly 
be very wasteful to just reserve some memory for each function’s working 
space—and it would almost certainly prevent us from using recursion. 

So, how can we manage working memory for functions and have a 
standardized method for functions to call one another? Enter the Stack, 
stage left. The Stack is a stack data structure, and in a single-threaded 
program the Stack contains the vast majority of the data relating to the 
current execution state of the program and all non-global “automatic” 
memory (i.e., local variables) under the control of the compiler.

In case any of you are unfamiliar with the concept of a stack as a data 
structure, the concept of a stack requires only two operations: you can push 
data onto the top of a stack, which hides the previous top of the stack, and 
you can pop data off the top of a stack, which exposes the previous top of 
the stack. This interface gives stack data structures a property that has 
important implications: N bytes of data pushed onto a stack followed by N 
bytes of data popped off leaves it essentially unchanged. 

Why is this important? Well, let’s imagine some arbitrary function A() 
that calls another function B()— when A() is called it pushes a little working 
space on the Stack, and then while executing it calls B(). As long as B() 
ensures that it pops any working space it pushed onto the Stack before it 
returns control to A(), A() can safely assume the state of the Stack is the 
same as it was before it made the call to B().

Simply by using a stack as the medium for function local storage and 
enforcing a contract on how functions use the Stack when calling one another 
(a Calling Convention), we gain efficient and “automatic” management of local 
memory, and a mechanism that allows function calls to be arbitrarily nested. 
It is such a simple and elegant solution to the problem it solves that it is 
almost as if it were discovered rather than invented.

The working space used by a function within the Stack is normally referred 
to as its Stack Frame.  Each function puts its own Stack Frame on the Stack when 
it’s called, and removes it before it returns, so at any given point in a program’s 
execution, the current sequence of nested function calls—or Call Stack—can be 
determined by looking at the Stack Frames currently stored in the Stack. 

In fact, when you put a breakpoint in your code in your IDE of choice and 
use the Call Stack window to discover the sequence of function calls that 
got you to your breakpoint, the data used to populate that window is almost 
certainly derived by the debugger from the instantaneous state of the Stack.

While the fine detail of how the Stack is implemented varies from CPU 
to CPU, machine to machine, and compiler to compiler (and even with the 
same compiler and different compiler options), its operation is, in principle, 
identical on all hardware I have ever worked with.

In order to properly understand the Stack, we need to look at its 
operation in a little more detail. Table 1 details the steps involved in calling 
a function. The function doing the calling is referred to as Caller, and the 
function being called is referred to as Callee:

Note that some of the items in the Work Done column are in [square 
brackets], and some are in italics: . Items in [square brackets] indicate 

that the work is not always required—for example, if the callee takes no 
parameters, then they need not be stored—while items in italics may not 
necessarily store their data on the Stack (this is platform-dependent). Also, 
“clean up passed function parameters” appears twice, but it will only happen 
in one place or the other, usually in Step 5 (Caller regains control), because if 
it happens in Step 3, it precludes the use of variadic functions (for example, 
functions like printf() which can take variable numbers of arguments.).

As mentioned previously, the details of the Stack’s operation on a given 
platform are defined by a platform-specific standard called an Application 
Binary Interface (or ABI). The ABI specifies how functions should allocate their 
working space on the Stack, how parameters are passed to functions, how the 
various CPU registers are to be used, how various data types are represented, 
and so on. This standard is partly required to ensure compatibility between 
library code generated by different compiler vendors, but also typically 
ensures that best practices for using the hardware are followed. 

Like the worldview of assembly, this information is a lot easier to take 
in and understand by working through an example. Just as before we’ll be 
looking through the disassembly of a very simple piece of code (see Figure 
3). This time, however, we’ll be looking at it in a release build, since there are 
less instructions and use of the Stack is much more efficient, and therefore 
easier to follow in a memory window.

Most platforms have one ABI. Unhelpfully, there are several ABIs for x86, 
or (depending on your point of view) you might say there is one ABI with 
several not entirely compatible calling conventions. The disassembly shown 
in this article uses the “standard” x86 cdecl calling convention (which is 
default for a win32 project in Visual Studio 2010).

STep Work DoNe NeT STAck operATioN

1. Caller prepares 
to call

store current execution 
state (i.e. CPU registers in 
use etc.)

[store parameters 
expected by callee]

store return address 

pass control to callee

push N bytes

2. Callee prologue create Stack Frame 
allocating space on the 
Stack for local variables

push M bytes

3. Callee executes [clean up passed function 
parameters]

possibly call other 
functions

any zero sum 
combination of 
push followed by 
pop

4. Callee epilogue de-allocate Stack Frame 

return control to caller

pop M bytes

5. Caller regains 
control

[use return value]

[clean up passed function 
parameters — most 
platforms]

reinstate function 
execution state

pop N bytes

TABle 1: The steps involved in calling and returning from a function.

http://WWW.GDMAG.COM


INNER PRODUCT // AlEx DARby

Astute readers will be wondering why this code uses argc and printf(). 
This external input and output is necessary to prevent the optimizing 
compiler from optimizing the entire program code away in a release 

build. In fact, in order to demonstrate the Stack in action, I also had to 
turn off link time code generation, and all function inlining in the compiler 
options. It is a testament to the tireless efforts of compiler programmers 
over the years that it is non-trivial to prevent simple snippets of code from 
boiling away into nothing when compiled in a release build configuration!

Now let’s take a look at Figure 4, which was originally a screenshot 
from Visual Studio 2010, but has been edited fairly extensively to 
highlight specific areas of interest. It certainly looks pretty intimidating, 
but once the meanings of the various annotations are explained it 
should appear less so. 

Figure 4 represents a snapshot of the program’s Stack state at the point of 
the deepest Stack use within our code—that is, immediately after the block of 
assembly numbered 4 in the diagram has been called. The diagram is broken up 
into several smaller areas, each of which holds different information.

The panel on the left with the tab named Disassembly is the 
disassembly of the simple C++ code snippet above. The next assembly 
instruction that will be executed is shown by the yellow arrow in the red 
circle located in the left left-hand margin of the window. 

Memory 1 is a memory window whose top address is the value stored 
in the esp register. This window is set up to represent memory as 32 32-bit 
unsigned integers in hex format, and it shows the top of the Stack. Memory 
2 is a second memory window whose top address is the value stored in the 

gAmE DEvElOPER   |   sEPTEmbER 2012 38

Figure 3: Our second sample code fragment.

Figure 4: A snapshot of our 
program’s Stack in Visual 

Studio 2010.



www.gdmag.com 39

INNER PRodUcT // alEx daRby

ebp register. This pane contains the entire content of the Stack belonging 
to our code and also (in the grey area) the Stack Frame of the function that 
called main().Memory 3 is set up to show bytes, and its top address is the 
memory containing the string constant “%d” that we pass to printf().

The colored areas in the Disassembly pane delimit the significant 
blocks of assembly we will examine: Red blocks highlight the function 
names in code, green blocks show code that executed before this Stack 
snapshot, blue blocks show code that will execute after the Stack snapshot, 
and green and blue blocks are numbered in order of execution. The green 
and blue bar graph on the rightmost edge of the image show the Stack depth 
immediately after each of the corresponding colored blocks.

To make sense of this concrete example of the Stack in action we’re 
going to step through the numbered blocks looking at each order, but before 
we do this we are going to have a quick look at two special-purpose x86 
registers called ebp and esp, and at the x86 assembly instructions push 
and pop, which are all instrumental in the implementation of the Stack in the 
standard x86 assembly generated by the Visual Studio 2010 compiler.

The register esp is normally referred to as the Stack Pointer, and it holds the 
address of the top of the Stack. The register ebp is normally referred to as the 
Base Pointer or the Frame Pointer, and it holds the base address of the current 
function’s Stack Frame; local variables and function arguments are typically 
accessed by an offset from the ebp register (as we saw in our first example).

The assembly instruction push is responsible for pushing its operand 
onto the top of the Stack; it does this by affecting the value of esp so that 
the size of the Stack is increased and then writing to the new address of 
esp. The assembly instruction pop is responsible for popping its operand 
off the Stack. It does this by setting its operand to the value at the address 
stored in esp, and then reducing the size of the stack. 

A crucial fact about the x86 Stack is that it grows downward in memory 
address space. When data is pushed onto the top of the Stack the value of 
esp is decreased, and when data is popped off the Stack the value of esp 
is increased. Table 2 shows an example use of push and of pop, and the 
equivalent assembly code that would have the same effect:

exaMple use effecT equivalenT asseMbly

push   eax Increase the size of the 
Stack by 4 bytes (i.e. the 
size of an x86 register).

Store the value of the eax 
register on the Stack.

sub     esp, 4
mov   [esp], eax

pop   eax Gets the value off the top 
of the Stack into the eax 
register.

Reduces the size of the 
Stack by 4 bytes.

mov    eax, [esp]
add     esp, eax4

Table 2: explaining the use of push and pop.

Now we’re ready to walk step-by-step through the Stack.

block 1: prologue of main()

As we saw from Table 1, the function’s prologue is primarily responsible for 
creating its Stack Frame; the space in which its local variables are stored. 
Let’s look at the assembly that does this.

First, the instruction push ebp “closes” the caller’s Stack Frame, storing 
the base address of the calling function’s Stack Frame on the Stack so it can be 
reinstated before main() returns. Next, mov ebp, esp stores the value of esp 
in ebp, which sets the base address of main()’s Stack Frame to the current top 
of the Stack. 

Now we’re ready to take the last step in creating a Stack Frame: growing 
the stack to make room for the function’s local variables by subtracting the 
size required by the local variables from the current value of esp. However,   
in the code block we’re looking at, the compiler has already optimized the 
code by using registers to store the values for x and y, so main() has no 
local variables and we don’t have to subtract anything. Essentially, the sub 
esp, 0 instruction isn’t actually there, but it’s implied by the ABI, so it would 
be remiss of me not to mention it. 

Looking at the Memory 2 pane in figure 4, we can see (from the gray 
area representing the Stack before main() was called) that the top of the 
Stack was 0x003EFC24 when we entered main(). 

Looking at vertical bar on the right labeled 1 (which represents the 
Stack depth after block 1) we can see that the top of the Stack is now 
memory address 0x003EFC20, which holds the value 003efc64 that the 
prologue has pushed onto the Stack; , which was the value of ebp when 
main() was called.

We also know that esp and ebp both currently have the value 
0x003EFC20.

block 2: initializing x and y

As we have briefly discussed already, the optimizing compiler has managed 
to do away with our local variables, so let’s look at what it’s done with 
them. First we have the move eax, dword ptr [ebp+8] instruction: note 
Note that positive offsets from ebp are below the current function’s Stack 
Frame, which typically indicates a function parameter is being accessed. 
As it happens, the dword ptr-sized value at [ebp+8] is argc, and its value 
is being moved into the general purpose eax register, so we now know that 
eax holds the value defined as x by the C++ code.

After that comes the lea ecx, [eax+1] instruction. lea (Load 
Effective Address) is another assembly instruction we’ve not yet seen. 
It evaluates its second operand as an address, and stores the result 
of that evaluation in the register specified by its first operand. As I 
understand it, lea was originally intended to help optimize array access, 
but you will very commonly see it used like it is here, as an optimization 
for combined addition and multiplication. In this case, it is clearly adding 
one to the value in eax (which we know is x) and storing the result in 
ecx, which is another general purpose x86 register. So we now know that 
the value we defined as y in the C++ code is in the ecx register. Looking 
at the vertical bar on the right for block 2, we can see that this has left 
the Stack unchanged.

block 3: calling AddArgs()

http://WWW.GDMAG.COM


INNER PRODUCT // AlEx DARby

This block shows how the Stack is used by the default x86 calling 
convention to pass arguments to functions. Under the standard x86 cdecl 
calling convention, arguments are passed to a function by pushing them 
onto the Stack in the reverse order that they are declared in the high 
high-level code, and the ‘return address’ for the callee to return execution 
to after it finishes executing is pushed onto the Stack after the arguments. 
This behavior is specified by the calling convention, and the assembly of 
the callee expects the return address to be on the top of the Stack when it is 
called so that it knows where to return to.

In this block, we start with push ecx, which puts the value of ecx—
which we know is y—on the top of the Stack; this can be seen at address 
0x003EFC1C in Memory 2. Next comes push eax, which pushes eax (which 
we know is x; this can be seen at address 0x003EFC18 in Memory 2. After 
that we see call 00BE1000. 

The instruction call is new to us, like push and pop, it is a special 
instruction that combines work which can be done with multiple other 
assembly instructions. When call is executed it pushes the address of the 
next instruction onto the Stack (this is the return address), then it jumps 
the execution to the address specified by its operand, which will be the 
address of the first instruction in the prologue of the callee function.

Comparing the vertical bar for block 3 with Memory 2 in the diagram, 
we can see that immediately before the first instruction in AddArgs() is 
executed; address 0x003EFC14 is the top of the Stack, and holds the return 
address 00be1020, which is the address of the next instruction after the 
call to AddArgs(); address 0x003EFC18 is 4 bytes from the top of the Stack, 
and holds the value of x; and address 0x003EFC1C is 8 bytes from the top 
of the Stack, and holds the value of y.

Block 4: prologue of AddArgs()

The prologue of block 4 is identical to the prologue of main(), so there is 
no need to cover the assembly instructions or their effects in detail. By 
consulting the diagram, we can see that the base pointer of main()’s Stack 
Frame (0x003EFC20) is now stored on the top of the Stack; ebp is now the 
base address of AddArgs()’s Stack Frame which has replaced main()’s as 
the topmost Stack Frame on the Stack; and AddArgs(), like main(), has no 
local variables and so its Stack Frame has a size of 0 bytes (i.e., ebp == 
esp == 0x003EFC10). The values corresponding to AddArgs()’s parameters 
iArgOne and iArgTwo are now at the memory addresses [ebp+8] and 
[ebp+0Ch] respectively.

Block 5: epilogue of AddArgs()

Before we consider the epilogue, we should note that the x86 ABI specifies 
that the eax register should be used to return integer values from functions 
(note: floating Floating point is another story entirely). 

Looking at the assembly instructions between block 4 and block 5, 
we can see that the parameters iArgOne and iArgTwo (on the Stack at 

[ebp+8] and [ebp+0Ch] respectively) are being added together in eax, so 
AddArgs()’s expected return value is in eax immediately before the start of 
the function’s epilogue.

The first instruction in this line is pop ebp, which takes the value on 
the top of the Stack and stores it in ebp. The last thing pushed was the 
value of ebp, which we know was the base address of main()’s Stack Frame 
at the point when the function was called. Restoring this value into ebp 
removes AddArgs()’s Stack Frame from the Stack and reinstates main()’s as 
the topmost Stack Frame. This reduces the size of the Stack by 4 bytes (by 
adding 4 to esp).

The second instruction in this line is ret, which is new to us. It is 
essentially the opposite of the instruction call—when ret is executed, it 
pops the return address off the top of the Stack, and then jumps execution 
back to the return address.

Block 6: call printf() from main()

Now, since we only called printf() to prevent the compiler from optimizing 
the C++ variable z away, this assembly code doesn’t really matter too 
much for the purpose of illustration. That said, it does push parameters to 
printf() onto the Stack, which makes the size of the Stack relevant to the 
function prologue of main(). It also does a couple of things we’ve not seen 
before, so it’s worth looking at.

This block begins with push eax; we know eax contains the return 
value of AddArgs(), so this code is just passing the C++ variable z as the 
2nd second parameter to printf(). Next is push 0BE20Ech; looking in the 
diagram at Memory 3 we can see that this address is the first byte of the 
string constant “%d”. This makes sense, since we know from the previous 
call to AddArgs() that parameters are pushed onto the Stack in reverse 
order. Then we have call dword ptr ds:[00BE20A0h]. This is clearly 
calling a function (printf()), but why does it use a different syntax for 
the address operand? Well, ds:[...] indicates an offset from the data 
segment register; this register is used in an x86 addressing mode that 
was inherited from 16-bit windows, and which is now primarily used to call 
functions that are linked via .dlls. Since printf() is part of the standard 
C library, and the default option for a win32 console app is to load this 
library as a .dll, this is as one would expect.

The important thing to note about this block is that it doesn’t clean 
up any of the parameters that were pushed onto the Stack in order to call 
AddArgs(). It simply pushes more parameters onto the Stack in order to call 
printf(). Looking at the vertical Stack depth bar corresponding with the 
end of block 6 in the diagram, we can see that immediately after the call 
instruction the Stack is now deeper than after the prologue of AddArgs().

Block 7: clean up the Stack and exit

We’re almost there! This block of assembly is typical of the epilogue of a 
non-leaf function (i.e., a function that calls other functions). add esp, 10h 

gAmE DEvElOPER   |   sEPTEmbER 201240



www.gdmag.com 41

INNER PRodUcT // alEx daRby

resets the Stack to the state it was in immediately after the prologue of main(), 
essentially undoing all pushes for passing function parameters. xor eax, 
eax sets the return value (eax) to 0—xor is a self-explanatory assembly 
instruction, and the XOR of anything with itself is 0. pop ebp removes main()’s 
Stack Frame from the top of the Stack, reinstating the Stack Frame of whatever 
called main() as topmost. Finally, ret pops the return address (00be11a0) off 
the top of the Stack and jump execution to that address. That’s it!

So, what next?
» You should now have a good idea of what the worldview of assembly code 
is like, and have a good basic grasp of how the Stack works both in principle, 
and via a (relatively) simple concrete example of that principle in action on 
the x86 architecture. So, what next? 

The next step is to take what you’ve learned from this article and apply it, 
and then apply it some more until you really understand it. The next time you’re 
debugging and you’re not immediately pressed for time, go and turn on the 
disassembly view and try to make sense of what’s going on at the assembly level.

If you find an assembly instruction you don’t know: , Don’t don’t panic! 
Just do what the pros do; search the internet, check the hardware manuals, 
post on Stack Overflow, or post on your hardware vendor’s support forums. 
There are plenty of places where experts are more than willing to share their 
knowledge with people who want to learn.

The more you do this, the easier it will get. You’ll be a better, more 
effective, and more productive programmer; and—before you know it—
probably one of the people others call over when they break the release build 
and need help debugging it.

Making your debugger work for you
» Now that we’ve worked through this simple piece of assembly code, it 
should be pretty clear that once you’re armed with an understanding of the 

worldview of assembly code, and the way the Stack works to manage local 
variables and function calls, it’s nowhere near as scary as it looks.

This section covers a few invaluable hints and tips that I’ve picked up 
about debugging in release mode—since there’s no debugging information 
in your executable, you need to make up for that by knowing how to get the 
debugger to tell you what you want to know whenever it possibly can.

SyMbolS pleaSe!
» When you compile code in a debug configuration, it will generate a file of 
some sort that contains the symbols in your code. This data is part of the 
data that allows your debugger to match the source code files up with the 
assembly and let you debug your code at the source level.

Make sure your release build is generating symbols (or your platform’s 
equivalent—a .map file, for example). If you can’t see a call stack in your 
debugger when debugging a release build, then there is a good chance 
you’re not building symbols in release. Your debugger will be able to make 
use of the symbols to display the names of functions and global variables 
(singletons and such), and you will have a far, far easier time debugging 
with symbols than without them. 

When you’re working on a console, you should be archiving symbol files 
along with the other temporary data needed to make a disc as part of your 
build process for discs that are in any kind of test process—debugging a 
core dump without symbols is not an easy task.

MeMory windowS
» Since the code is optimized, the debugger doesn’t necessarily have all the 
information available that it needs in order to work out the correspondence 
between the high-level code and the assembly code you’re looking at, so 
the usual debugging staples of watch windows, autos, and local panes are 
unlikely to be of much use.

figure 5:  a few examples of handy watch window casts..

http://WWW.GDMAG.COM


INNER PRODUCT // AlEx DARby

Memory windows obviously allow you to get around this issue by looking 
directly at memory yourself. As long as you have an address, you can see 
exactly what value is stored in it. But there is another less-obvious use for 
memory windows: You can easily keep track of the Stack by opening a memory 
window and using the name of the Stack Pointer register and Stack Frame 
pointer register (if your system has one) where you would normally put a 
memory address. On x86, as we know, the Stack Pointer is esp, and the Frame 
Pointer (or Base Pointer) is ebp.

To make the memory window in Visual Studio 2010 update as the value of 
the register changes, you will need to click the Reevaluate Automatically button 
just to the right of the “Address:” edit box. With most debuggers, you can also 
ask the memory window to interpret and display the memory it’s viewing as if 
its content were of a specific type (int, float, char, etc.) and control how those 
values are laid out in the window. This is how I got the Stack to be displayed in a 
manner that was useful for following the second simple example of assembly 
code, so you should definitely play with the options available in your debugger 
until you’re happy that you know what it allows you to look at. 

Watch WindoWs
» Most of the debuggers out there will support way more functionality than 
you expect in their watch windows.

the  sizeof() trick: You should be able to use the sizeof() operator to find 
out the size of any type that’s in the executable you’re debugging. It generally 
uses the standard syntax without the semicolon. You also usually need to give 
the type name fully qualified with namespaces.

View contents of registers and memory addresses: Most debuggers 
also allow you to use the name of the register you want to watch in a watch 

window and see the content of it just like any variable name, and the same 
also goes for (valid) memory addresses. This is often a lot more convenient 
than using the Registers or Memory windows, since you usually only want 
to see one or two registers, or a small range of memory addresses at any 
given time.

the casting types trick: Most debuggers support C-style casts in watch 
windows these days. This is incredibly useful because you can ask the 
debugger to treat any value as a pointer to any type in your codebase and to 
evaluate it and display it as the type you ask it to in the watch window. You 
typically use the standard C / C++ syntax, and as with sizeof(), you’ll need to 
use type names fully qualified with namespaces.

Figure 5 shows examples of the sort of watch window casts I use 
frequently, which include register as pointer to type, memory address as 
pointer to type, offset from register as pointer to type, any of the above as an 
array of arbitrary size specified in the watch window, byte offset of a member 
within a struct, and my personal favorite, which gets the byte offset of a 
member within a struct / class. This is really useful for following assembly 
code inside libraries for which you can only access the headers.

Note that the code in Figure 5 uses ecx to contain the pointer to the 
current element in aDemos in the for loop, so at the point shown it is pointing to 
the last element in aDemos. 

alex darby is technical director at Birmingham City University’s Gamer Camp Pro (MSc in 

Video Game Development). He has been working in the game industry since 1996, and is 

very proud to have been one of the founding members of the FreeStyleGames team and to 

have been involved with the creation of DJ Hero. He is also a husband, dad, part-time indie 

developer, and skateboarder.

gAmE DEvElOPER   |   sEPTEmbER 2012 42

�  Reference industry news and features
�  Consult your digital counselor
�  Play student games and join the forum

�  Examine tutorials and exclusive features
�  Check out the Annual Salary Survey
�  Reference the premier Game School Directory

�  Learn from the pros
�  Attend deep-dive sessions with Q&A
�  Connect with your game making peers

Visit your year round mentor at gamecareerguide.com

Download your free digital copy at gamecareerguide.com

Visit gdconf.com for info about the next seminar at GDC 2013

http://GAMECAREERGUIDE.COM
http://GAMECAREERGUIDE.COM
http://GDCONF.COM
http://GAMECAREERGUIDE.COM
http://GAMECAREERGUIDE.COM
http://GAMECAREERGUIDE.COM


www.gdmag.com 43

good job
hiring news and interviews

Hired someone interesting? Let us know at editors@gdmag.com!

new studios

Longtime CapCom strategiC marketing direCtor (and street Fighter speCiaList) seth kiLLian jumped ship to sony 
santa moniCa in earLy juLy to work as a Lead designer on (among other things) pLaystation aLL-stars: BattLe 
royaLe By superBot entertainment. game deveLoper Caught up with seth to taLk to him aBout his Career shiFt. 

seth kiLLian Leaves CapCom For sony

Street Fighter All-Star
/// Former Sega West CEO Mike Hayes has 
joined up with a small, England-based 
mobile/smart TV startup called Caperfly. 
Caperfly makes interactive titles for iOS, 
Android, and smart TV platforms.

/// Ex-Yahoo! CFO Blake Jorgensen has left 
for a similar role with Electronic Arts, filling 
the gap left by Eric Brown, who resigned 
earlier this year.

/// Relic Entertainment co-founder 
Ron Moravek has rejoined THQ as the 
executive vice president of production, 
and will be focusing on the company’s 
new digital business model strategy. He 
initially joined THQ when it purchased 
Relic in 2004, and left in 2006 to work at 
Electronic Arts Canada.

/// Several ex-Epic Games staffers, led 
by Gears of War 3 gameplay designer 
Lee Perry, have formed a studio called 
BitMonster Games. Their first game will be 
a mobile adventure RPG called LiLi, which 
will be built in Unreal Engine 3 and feature 
a “noncombat” battle system.

/// Former Zynga lead designer Dave 
Pottinger (CastLeViLLe), Robot Entertainment 
senior programmer John Evanson, and 
id Software senior character artist Jason 
Sallenbach are forming a new mobile game 
development studio called BonusXP. All three 
worked together on the aGe of empires series 
at Ensemble Studios.

/// Electronic Arts is merging its two 
Melbourne, Australia-based internal 
mobile studios (iOS DeaD spaCe developer 
IronMonkey Studios and fLiGht 
ControL developer Firemint) into one 
studio called Firemonkeys. In a public 
statement, EA said that the aim of the 
merger is to create a more focused team, 
though both studios will continue to work 
on separate projects.

/// Konami has announced plans to open 
a London-based studio devoted to its pro 
eVoLution soCCer franchise. The new studio 
will focus on pes titles for consoles and PC, 
and will look to “adopt and recreate local 
football culture” as a move to keep the 
series fresh.

Patrick Miller: Didn’t you 
start your professional 
career teaching 
philosophy? How’d you get 
into game dev?
Seth Killian: I got into game 
dev by playing and thinking 
about games for a lifetime, 
and then having a bit of good 
old “right time, right place” 
luck. I grew up in arcades, 
and while I was in graduate 
school, I was also one of the 
best street fiGhter players in 
the U.S. I’ve always played a 
lot of games—from poker, to 
chess, to the endless games 
I would make up for me and 
my friends as a kid—and 
even when I wasn’t playing 
games, I would study them. 

It may seem strange 
from the outside, but to me, 
philosophy and game design 
have a lot in common. Both 
deal pretty directly with 
balancing and manipulating 
complex, abstract systems. 
Sliding around variables, 
making up new variables, or 
simply inverting entirely the 
way people had approached a 
subject previously. There’s a 
surprising amount of overlap. 
I loved teaching, but also 
wanted to try something new, 
so when I got the chance to 
join Capcom help revive street 
fiGhter, I had to do it.

PM: Your new job title is 
lead game designer for the 
external group—exactly how 
does this work? 
SK: Sony is the publisher, 
and pays the bills for 
SuperBot’s work on aLL-stars, 
so at the end of the day, my 
responsibility is to make 
sure we’re on board with their 
vision. In practice, however, 
it’s simply collaborative.

PM: You seem to create job 
roles rather than fill existing 
ones. How do you pull that off?
SK: I do have a history of titles 
built around me, rather than 
the other way around. I’m not 
sure that’s always a good 
thing, but even at Sony, it was 

more of “we want you here—
how about this job and then 
whatever else you want to do” 
than it was an existing opening 
that needed to be filled.

I think I get oddball job 
titles because I tend to worry 
less about what I’m officially 
supposed to be doing, and 
focus on what needs to be 
done the most. I care a lot 
about the details, but I always 
come back to the big picture, 
so I gravitate toward whatever 
I feel isn’t getting the attention 
it needs, irrespective of my 
official duties. I’m like a free 
safety in football.

Sometimes people welcome 
that and it’s an easy win, other 
times it strains the bounds of 
the corporate organization. I 
just try and make everything 
better for the people that 
play our games. When I say 
that out loud, now it seems 
strange that there isn’t 
already a staff job to do that.

PM: Before working with Sony 
Santa Monica, you were with 
Capcom USA. Think you’ve 
developed any specialized 
skills that help with U.S.–
Japan collaboration?
SK: I think I was able to have 
some success at Capcom 
working with the Japanese 
teams for two reasons. First, 
I knew what I was talking 
about—I had studied their 
games deeply for most of my 
life, and played some of them 
at a world-class level.

Beyond that, I always try to 
listen carefully to what people 
are really saying. I think some 
Westerners struggle when 
dealing with Japan because 
the most important things 
being said are often implied 
rather than stated directly—
similar to the way artists can 
use negative space in powerful 
ways. In the West, implying 
things rather than stating them 
can be seen as confusing or 
obtuse, so lots of struggles 
start there. To get past it, listen 
to what people really mean, 
rather than simply looking 
at the words they are using. 
I think much of the nuance 
of Japanese communication 
can come through clearly 
even in translation, so if you 
can get a sense for that, it 
will help you immensely 
and not just with Japanese 
counterparts—it’s good 
training for communicating 
effectively with anyone. 

whowentwhere

mailto:editors@gdmag.com
http://WWW.GDMAG.COM


pixel pusher // steve theodore

game developer   |   september 201244

{ Be ready for cuts Before they happen }

Any pro knows the importance of 
good technique and efficiency. Too 
many of us, though, don’t look ahead 
to the inevitable bloodbath at the 
end of the project and prepare for it 
ahead of time. Planning is to games 
what “just fixing things” is to political 
problems—everybody wants it to 
work, but we’re all just a little fuzzy 
on how, exactly, it’s supposed to 
happen. As with politics, it helps 
if you get more actively involved. 
Here are a few tips for making sure 

that the art-cutting process is as 
painless as possible.

For Whom the Bell tolls
» The first things on the chopping 
block are the ones that haven’t been 
done yet. If an asset (or a cluster of 
assets) is still just a gray box when 
the budget ax starts to swing, it’s 
probably a goner. This means that you 
need to prioritize your scheduling a 
long time before the final sprint. You 
don’t want big holes in your game 

because some anxious producer 
decided to “simplify” things by nixing 
a bunch of models or animations you 
have already planned out but haven’t 
worked on yet. 

It’s safer to group assets in your 
schedules into logical units so that 
interrelated models, animations, 
and shaders come online—or get 
chopped—together. It’s painful 
enough to lose a bit of the game 
you’ve been planning for months or 
years, but it’s far more painful to lose 

those parts when you’ve already 
sunk precious time into subordinate 
pieces that don’t make sense on their 
own. For example, if you’re building a 
set of areas with diverse art styles, 
it’s better to schedule similarly styled 
pieces together so that you don’t find 
yourself with many megabytes of 
jungle-themed models and textures 
that will all get cut because the jungle 
animations never got done and 
the grim gods of scheduling have 
decreed that the jungle must go.  

Ideally, you would spend the last few weeks of any project adding the little tweaks and contextual details that take your work from good 
to great. All too often, though, you will instead be interrupted by frantic bouts of cuts; no matter how good you are, how efficiently you 
use your textures, how carefully you lay down your keys, or how tightly controlled your poly budgets are, it’s a given that at some point 
you will find yourself and your work trembling at the foot of the chopping block. You’ll have to see characters you’ve known for several 
months at a crisp high resolution be degraded with smudgier textures and cruder silhouettes, and you’ll probably see the big, important 
models and animations take the blow so less-important assets can escape deletion. Cutting is no fun. 



pixel pusher // steve theodore

www.gdmag.com 45

The exact boundaries of a 
logical unit are going to vary from 
one project to the next, of course. 
In games with a broad geographical 
reach, each unique landscape or 
climate might be a logical unit. In 
games with a tighter focus on story, 
it might be characters or scenes 
that are the primary scheduling 
chunk. The art team needs to think 
hard about how the pieces of the 
initial design and scope fit together, 
so that smart and relatively safe 
schedules can be negotiated early. 

Designing your content and 
scheduling your work to keep things 
grouped logically will make the 
cutting process less brutally random 
when things get crazy. The last 
thing you want to do is start with an 
alphabetized Excel sheet and work 
thorough it from A to Z (especially 
if you’re making a game in which 
zebras, yaks, or wildebeests are 
critical to gameplay). Revisit the 
schedule frequently, make sure 
you’re on track, and revise plans 
as things come up. Keep the things 
that are most important to the game 
at the top of your list to protect 
them from late-game panics. Don’t 
be afraid to revise your priorities 
as the game evolves. Above all, 
artists should be actively keeping 
an eye on how much content is 
done, how polished it is, and what’s 
expendable. When the inevitable 
scoping meetings start, the art 
team should be able to walk in with 
good, up-to-date numbers and ready 
recommendations when the other 
disciplines start looking for savings. 

A Living WiLL
» A good plan recognizes the need 
for fallback positions. Plan as much 
of your content as possible in sets, 
so that you have a good plan in 
place for replacing assets that fall 
before the executioner’s blade. If 
you’ve already got six different 
kinds of single-family houses in 
your game, cutting the seventh is 
not a bitter loss, particularly if the 
gameplay and setup for all of the 
house types are fairly similar and 
the swap is not so laborious. Ideally, 
you can get the game working with 
a subset of your pieces, and go on 
to refine its looks and gameplay 
progressively by swapping in more 
varied content as the project goes 

on. For example, it’s probably better 
to start with one tree and add more 
gradually, instead of creating a 
large library of trees right at the 
outset of the project before the 
limits on memory and processor 
power define the foliage budget.

Unique individual pieces, 
on the other hand, present 
more difficulties when the ax 
is swinging—they will have 
idiosyncrasies that can’t be easily 
mapped onto other content, but 
also they tend to have a significant 
impact on the way the game feels 
to the players. These capstone 
pieces are tricky to plan for. One 
school of thought says that the 
precious artist time devoted to 
one-offs is better spent on assets 
with high reuse value that get 
more playtime. Unfortunately, 
this pushes many of the game’s 
most interesting and identifiable 
visuals onto the back end of the 
schedule, where they are exposed 
to the cruelty of the budgeteers. 
If things go badly, the result is 
a dry, functionalist game that’s 
lacking in character and memorable 
moments. On the other hand, 
finishing the capstone pieces early 
can make for awkward gaps or 
sparsity when the game is scoped 
down—a beautiful fantasy fortress 
loses a lot of its impact when it’s 
placed in a town that contains only 
two different cottages. If you’re 
careful to find logical scheduling 
units, this problem is somewhat 
simplified because it’s not an all-
or-nothing choice—the capstones 
are set in the context of a unit that 
stands or falls together. 

DeAth by inches
» Of course, the death of a thousand 
cuts that we all fear doesn’t only 
come in the form of models or 
animations that don’t make the 
final game. The most wrenching 
cuts are those last-minute grabs 
for memory or performance that 
degrade assets that are already 
finished and looking good. There’s 
nothing more disheartening that 
firing up a playtest build to find 
a familiar character suddenly 
turned into a Minecraft model by a 
last-minute downsizing, or a finely 
crafted cityscape suddenly turned 
into a screenshot from the SiMS 

circa 2003. To add insult to injury, it 
is all too often the most important 
assets—the ones that get the most 
screen time and form the biggest 
impression on the players—that get 
cut the most brutally. To a desperate 
producer or engineer looking for 
quick savings, the character with 
16 megs of special detail textures 
looks a lot more immediate than a 
folder full of insignificant props that 
weigh in at 384k apiece. The fact 
that halving the texture resolution 
on that character will torture the art 
staff may not matter much to the 
lead who’s frantically scrounging 
for RAM.

To some degree, this is an 
inescapable problem. It’s certainly 
made more galling by the way 
graphics hardware works—the 
powers-of-two rule is a hard 
taskmaster when it comes to saving 
memory. So you can understand 

why the budget mavens swoop 
down on the most gorgeous assets 
when things get tight—but that 
doesn’t make it hurt less.

Sometimes, you can finesse 
your way past the budgeting 
problem. For example, you can get 
around the powers-of-two rule if you 
atlas several assets together into 
larger textures. This allows you more 
fine-grained control over memory 
use. Imagine, for example, that you 
have a set of six assets, each with its 
own 512-by-512 textures. If you atlas 
the textures for six of these assets 
together onto a single 1024-by-1024 
texture, you could go from two megs 
of texture memory to 1.33 megs, 
and the losses would be spread 
evenly over all six assets. The typical 

“across-the-board” cut would instead 
pick three of those six assets and 
halve their resolutions, which is a far 
more noticeable change.

Unfortunately, atlassed assets 
are a pain to work with—artists are 
notoriously bad at sharing files, 
and having six artists fighting for 
control of a single texture would be 
a nightmare, especially while the 
assets were still evolving. Manual 
atlassing is also fairly labor-intensive 
compared to simply choosing Resize 
Image in Photoshop. Nonetheless, 
it’s a valid option to consider when 
the headsman is at the door, 
particularly if you know the assets 
in question are in their final visual 
and gameplay forms. It’s a good trick 
when you really can’t stand to see all 
your pretty texture work go poof two 
weeks before gold master.

Like death and taxes, cuts are 
inevitable. If you manage to finish 

a project without major cuts, you 
are either a planning genius or just 
not ambitious enough. The rest of 
us should be ready to deal with 
the cuts when they arrive. Even if 
nothing can console you for the 
loss of a favorite bit, at least you 
can use a little foresight to make 
sure that the last-minute budgetary 
crises don’t flush months of solid, 
completed work down the drain. 

steve theoDore has been pushing pixels for 

more than a dozen years. His credits include 

Mech coMMander, half-life, TeaM forTress, 

counTer-sTrike, and halo 3. He’s been a 

modeler, animator, and technical artist, 

as well as a frequent speaker at industry 

conferences. He’s currently the technical art 

director at Seattle’s Undead Labs.

if you’re working on the next Crysis, you probably 
don’t want your bad guys to look like this.

http://WWW.GDMAG.COM


design of the times // soren johnsondesign of the times // jason Vandenberghe

game deVeloper   |   september 201246

Most game designers think that 
human play-style preferences can 
be mapped to a spectrum with 
player vs. player (PvP) on one 
side, and player vs. environment 
(PvE) on the other. Players who 
prefer PvP are aggressive and like 
competition. Players who prefer 
PvE are more passive and don’t 
want to compete—like Care Bears.
Most game designers are wrong.

While this PvP / PvE split may 
well be the best way to categorize 
some of the features of an MMO 
server, the research I have been 
doing over the past few years seems 
to indicate that this model has 
nothing to do with actual human 
motivations. From what I can tell, 
there is no such thing as someone 
who doesn’t enjoy winning in one 
form or another. Care Bears are 

a myth, and thinking about our 
players as PvP or PvE completely 
misses how humans are actually 
motivated—which in turn makes 
it harder for us to design games 
that appeal to them. The opposite 
of player vs. player is actually team 
vs. team. At least, that’s what my 
research subjects are telling me.

In the May issue of Game 
Developer, I wrote an article called 

“The Five Domains of Play,” in which 
I explained how I have been using 
the Big Five model from modern 
motivation psychology to study how 
game design elements can appeal to 
different kinds of players. In doing 
so, I’ve been conducting “qualitative 
interviews” with players, where I 
give them the Big Five test (you can 
take it for free here: www.personal.
psu.edu/~j5j/IPIP), and then I talk 

The Care Bear MyTh
Debunking a game Design urban legenD

IL
LU

ST
ra

TI
ON

 B
y 

jU
aN

 r
aM

Ir
ez



design of the times // soren johnson

www.gdmag.com 47

design of the times // jason Vandenberghe

to them about what satisfies them 
when they play games. Before I 
explain why Care Bears don’t exist, 
I’ll need to explain a bit more about 
the Big Five model, and how we 
think of competition as players.

What’s a Facet?
» In Big Five terms, a facet is one of 
the measurable atomic spectra of 
personality. Take adventurousness, 
for example: If you score high in 
adventurousness, you are more 
inclined to be interested in what’s 
over the next hill, around the next 
corner, inside the box, and so on. If 
you score low in adventurousness, 
you’re more interested in what 
you know, your stomping ground, 
the familiar cycle of routines, and 
the known. Humans, as it turns 
out, show something like a normal 
standard distribution along the 
spectrum of those two extremes.

The core of my research has 
been to correlate facets like that with 
game elements. Unsurprisingly, the 
adventurousness facet correlates 
remarkably well with, for high 
scorers, a preference for exploration 
and discovery in gameplay. Low 
scorers in this facet show a marked 
preference for base building and 
exploration through conquest. In the 
words of one of my interviewees, 
“I only explore something after it is 
part of my domain.”

Let’s jump to the 
competitiveness facet. Different 
researchers call this facet 
different names, most of which 
focus on the opposite end of the 
motivation spectrum: compliance, 
accommodation, and cooperation, 
for example. The International 
Personality Item Pool (seen 
at http://ipip.ori.org, where 
much of the core data for this 
research is stored) describes the 
competitiveness facet thusly:

Individuals who score on 
one end of this scale dislike 
confrontations. They are perfectly 
willing to compromise or to deny 
their own needs in order to get 
along with others. Those who score 
on the other end of this scale are 
more likely to intimidate others to 
get their way.

Sounds pretty straightforward, 
right? On one side, we should have 
nonconfrontational Harvest Moon 

and aniMal Crossing players, and on 
the other hand we should have tea-
bagging Halo campers. Right?

That’s certainly what I expected 
from this facet when I started 
this research, so I formulated my 
questions accordingly: “Do you 
seek games with competitive play 
in them?” “Do you prefer PvP, PvE, 
or something else?” “Do you play 
online multiplayer deathmatch?” 
Each of these questions would trigger 
conversations about respondents’ 
play styles and preferences.

I knew my theory was off-target 
in some of my earliest interviews. 
One of my very first interviewees 
was a low-competitive-scoring 
player who loved Harvest Moon, 
aniMal Crossing... and Halo 
deathmatch. Loved it. As in, one of 
her top five games of all time.

Player vs. team
» After the sixth or seventh person 
with a score on the cooperative 
side of things regaled me with tales 
of how awesome Call of Duty is, 
it was pretty clear that something 
was wrong with this theory. So I 
started interrogating my victims in 
new ways, looking for insight.

Looking at my surveys, I 
noticed something: While my 
cooperative players were often 
happy playing games like Call of 
Duty, Halo, and league of legenDs, 
my competitive players were 
playing a lot more starCraft. So I 
dug in and made the connection 
that would help fix my survey 
questions. (By fix, I mean that 
I started getting answers to 
my questions that lined up 
respondents’ personality scores 
with my predictions.)

Players with a high score in 
competitiveness often have little 
to no preference about whether 
they are on a team. They generally 
don’t care about the rest of the 
team, as long as they personally 
have an opportunity to crush their 
opponents. These players tend to 
prefer starCraft 1v1 and Call of 
Duty free-for-all. On the other end of 
the spectrum we have cooperative 
players, who rarely report getting 
much satisfaction from the 
personal victory of a starCraft 1v1 
match, but report a huge sense 
of satisfaction from their team 

winning. From what I can tell so far, 
there are few (if any) humans with 
a strong motivational desire for 
both of those experiences. They are 
motivational opposites.

But What aBout care Bears?
» Earlier, I said that Care Bears are 
a myth. That’s a slight exaggeration; 
if we reduce our examination to just 
this competitiveness spectrum, 
there is next to no one out there who 
doesn’t enjoy competition in some 
way. Care Bears are supposed to be 
wilting, super-friendly sweethearts 
who just don’t appreciate the finer 
points of a good win.

They don’t exist—or if they do, 
I haven’t found any. What I have 
found is Don’t-Care Bears.

Don’t-Care Bears are usually 
people with a competitiveness 
score somewhere in the middle 
of the spectrum. They are neither 
strongly competitive nor strongly 
cooperative, so they’ll be happy to 
take competition if it’s there (and 
enjoy it), but they just don’t seek it 
out as one of their primary sources 
of satisfaction. They may find 
greater satisfaction in other kinds 
of things, depending on their other 
motivation scores. For example, 
people with a high score in the 
thrill-seeking facet have reported 
that they like the “thrill-ride” of a 
competitive experience, but such 
a player may be just as happy to 
get that particular kind satisfaction 
from a single-player action ride 
as from winning a competitive 
multiplayer game.

So how does this revelation 
affect the way we design games? 
Well, people who are playing 
primarily single-victor competitive 
experiences want to feel like they 
are kicking ass at other people’s 
expense. People who are playing 
primarily team-based games want to 
feel like their personal contribution 
mattered to other people’s victory, 
regardless of whether they got the 
highest score on their team.

organize your Features 
accordingly.
» Of course, the best games 
already do this. This dilemma has 
been the primary constraint in 
the evolution of the way modern 
shooters are scored. In their online 

competitive modes, most modern 
shooters blend a “PvP” score 
(kills) with a “TvT” score (match 
score). Each is exquisitely balanced 
against the other: Personal kills 
have features like the “brag tag” 
and kill streaks to celebrate the solo 
warrior, yet the kill streak rewards 
often benefit the team, and the 
overall game is generally won and 
lost by some kind of team score. It 
wasn’t always this way. Originally, 
competitive multiplayer had only 
one mode: deathmatch. The idea 
of a team deathmatch was exotic 
until designers experimenting 
with human satisfaction quickly 
discovered that it rocked, and each 
new game has brought better and 
better ways of balancing these 
conflicting motivations together in 
the same game.

This isn’t accidental. We wouldn’t 
be such a wildly successful industry 
if we weren’t able to satisfy a 
broad spectrum of motivations 
for something as fundamental to 
playing games as the desire to win. 
But while we’re getting better and 
better at this every day, we still 
end up with games that have failed 
to accomplish this. As amazing 
as the online PvP play is in Dark 
souls, its team play consists mostly 
of ganging up on people. It is a 
satisfying PvP experience, but the 
way the team mechanic has been 
implemented puts a team player 
almost exclusively into the role of 
Bully #2. Oops.

If you believe that the people 
who like being nice to each other 
and cooperating together on tasks 
(PvE) do not also enjoy soundly 
thrashing their enemies in combat, 
you need to stop believing that, and 
organize your features according 
to the idea that they do want to 
compete, but together, against a 
common foe.

If you have one takeaway from 
this article, take the PvP / PvE 
mindset and delete it from your 
mind. Replace it with this: PvP / 
Don’t-Care Bears / TvT. 

Jason vandenBerghe is a creative director 

at Ubisoft, which he has to admit doesn’t 

exactly suck. You can read his intermittent 

blog and various scribblings at www.

darklorde.com. He can be reached by email 

at jason.vandenberghe@ubisoft.com.

http://ipip.ori.org
http://www.darklorde.com
mailto:jason.vandenberghe@ubisoft.com
http://WWW.GDMAG.COM
http://www.darklorde.com


Ne w s aNd iNformatioN about the Game de velopers CoNfereNCe® serie s of e veNts  www.GdCoNf.Com 

game developer   |    September 201248

Game Narrative Summit

a four-hour story iN 400 simple steps: 
Fallout dlC
Chris Avellone (Obsidian Entertainment, Inc.) 

» Using Fallout: New Vegas DLC DeaD MoNey as 
a test case, creative director Chris Avellone runs 
through the process of creating a small RPG game 
narrative from pitch to completion, detailing all 
the tasks along the way: pitch docs, narrative 
standards docs, thematic design, maps and level 
layouts, bug fixing, and more, until the game story 
is finally in a player’s hands. Focus and questions 
include specific studio tools and techniques, such 
as story flowchart creation, building emotional 
vistas, script proofing, and text editing and 
lockdown sessions. Participants will come away 
with a better understanding of specific layouts, 
formats for conversation editors, localization info, 
level and character design templates, approaches 
to character concept creation, research, as well as 
a “how to” and “what needs to be done” in terms 
of game narrative for an RPG. 

writiNG the romaNCe-able NpC: iCiNG the 
CoNteNt Cake
Heidi McDonald (Schell Games)

» McDonald’s “ICING” model for writing satisfying 
NPC romances is based on her survey data from 
more than 500 game players, in combination with 
scholarly works in games, writing, and psychology. 
McDonald calls the model “ICING” because NPC 
romance is to the single-player RPG what icing is 
on a cake: a delicious addition. Learn how to make 
your NPC romance writing more delicious!

the muppetatioNal Game writiNG Critique 
workshop
Richard Dansky (Red Storm Entertainment/
Ubisoft)
 » Not every writer working in games can 
count on having other writers or an editor 
on site to help critique, polish, and edit their 
work. This workshop is intended to give game 
writers experience in both giving and receiving 
professional critiques, and developing the skills 
to critique both themselves and others. (See 
GDC session listing for details.)

immersive storytelliNG for a 
misuNderstood audieNCe
Lisa Brunette (Big Fish Games)

 
» With more than 1.5 billion downloads to date, 
Big Fish Games made its mark in the casual 
space by delivering the right games to an 
often ignored, often misunderstood segment 
of gamers: women over 35. Brunette describes 
how to write game stories for an audience whose 
tastes are polar opposite to those in hardcore 
games and how you can transition from writing 
for a mostly young male audience to writing for 
women over 35.

DeSiGN track

what womeN waNt: how aNd why a womaN’s 
tastes iN Games ChaNGe as she aGes
Terry Redfield (Real Life Plus) 

» Traditional games targeted at men have 
proven to appeal to a wide variety of ages, 
and are often grouped by genre. But casual 
games have proven that what may appeal to a 
woman in her 20s may change drastically as 

she enters her 40s. Using the latest research 
on female hormone and neuroscience studies, 
this session will examine popular mechanics 
in the casual game market and examine how 
and why these appeal to three distinct female 
age groups: adolescent, middle-aged, and 
menopausal.

Attendees who are targeting a female 
demographic for casual games will take away 
exclusive knowledge about what is happening 
inside a woman’s brain and body as she ages 
and how this may apply to what she is looking 
for in an online experience.

behiNd the CurtaiN: usiNG mmo Game 
systems to tell bioware stories
Damion Schubert (BioWare)

 
» BioWare has a unique way of telling (and 
crafting) stories. So what happens when these 
concepts are introduced to an MMO? In this 
talk, Damion Schubert discusses how MMO 
mechanics both helped and hindered the 
development process of star wars: the olD 
republic and the startling discoveries made 
along the way.

psyCholoGy vs. struCture: the power of 
Numbers iN Game desiGN
Dave Mark (Intrinsic Algorithm)

 
» Numbers, visible or not, are often at the core 
of game design. They are the expression of 
the designer’s vision of how the world works. 
Through the selection of numbers such as 
scores, abilities, damage ranges, and even 
prices, designers are often crafting what a 
player perceives, believes, and even feels. This 
talk will demonstrate what the numbers may be 

GDC Online Preview
C a n ’ t - m i s s  s e s s i o n s  a t  G D C  o n l i n e

The stage is set for this year’s GDC Online, October 9–11 in Austin, Texas. Want a sneak peek of what you’ll see at the 
show (or what you’re missing)? Here is just a small selection of the 100+ sessions that will be available to game 

industry professionals. Please see www.gdconline.com for more information!

http://WWW.GDCONF.COM
http://www.gdconline.com


Ne w s aNd iNformatioN about the Game de velopers CoNfereNCe® serie s of e veNts  www.GdCoNf.Com 

www.gdmag.com 49

conveying and explore ways that designers can 
leverage the psychology of numbers to build 
more engaging games.

soCial Games: the Year iN review
Steve Meretzky (Playdom) and Dave Rohrl 
(FunSockets)

 
» With their exhaustive knowledge and up-to-
the-minute analysis of social games, Rohrl  and 
Meretzky distill a year of turbulent progress 
into a single hour. This talk focuses on the 
most interesting or significant social games of 
the past year, the lessons those games teach 
us, and the trends they portend. Whether you 
are unfamiliar with social gaming and want to 
quickly get up to speed on what’s happening, or 
you are deeply immersed in the space, this talk 
has something for you!

Production track

staCkiNG taleNt: GrowiNG the leaGue of 
leGeNds team
Travis George (Riot Games)

 
» It’s fairly easy for development teams to get 
bigger, but it’s really hard for development teams 
to get better at the same time. Travis George 
talks about how Riot Games has successfully 
balanced scaling the team while simultaneously 
leveling up its performance and processes and 
maintaining its company culture. 

Warhammer Online: takiNG a triple-a mmo 
free-to-plaY the other waY
Carrie Gouskos (BioWare Mythic)
 
» Plenty of big subscription MMOs have gone 
free-to-play, but what happens when your 
game doesn’t seem conducive to the model? 
With Warhammer Online: age Of reckOning, 
the answer was simple: Build a completely 
free-to-play game (Warhammer Online: Wrath 
Of herOes) from the ground up, using the 
best from the full-scale MMO (and applying 
the lessons learned from making it). Gouskos 
shares why she thinks there is more than one 
road for MMOs to go free-to-play.

Business and Marketing 
track

bet oN ip aNd platform
Kristian Segerstrale (Electronic Arts) 

» Success in the video game industry isn’t about 
delivering your game on the right platform; it’s 
about creating entertainment that resonates with 
consumers so they’ll play on any device, in any 
location. From the sims to fifa, EA has focused 
on taking big brands and turning them into their 
own platforms to deliver a unified experience, 
while trying to create a direct relationship with 
the consumer. Digital EVP Kristian Segerstrale will 
cover how EA has turned the industry’s biggest 
titles into a 365-day-a-year service.

publiC relatioNs 101: make Your owN media 
maGiC
Valerie Massey (CLARA) 

» Small studios often lack the budget for public 
relations staff, but that doesn’t negate the need. 
For the uninitiated or those who’ve been burned 
by bad press in the past, the idea of striking out 
on your own can be daunting. CLARA’s Valerie 
Massey will introduce some essential tools of the 
trade that will prepare you for some low-cost but 
successful do-it-yourself media outreach. Prepare 
to be prepared and launch your own mini-media 
blitz with confidence. Attendees should leave the 
session armed with key information for putting 
together a basic media kit and contact list, kicking 
off their PR efforts, and gaining awareness of 
common mistakes to avoid when dealing with the 
press.

start-uP suMMit

exitiNG / CashiNG out: strateGies to be 
aCquired, merGe, Go publiC
Jim Charne (Law Offices James Charne), James 
Niesewand (Illyriad Games), Rob Shillingsburg 
(Jetbolt Games), Dan Offner (Loeb & Loeb), David 
Rosenbaum (Law Offices of David S Rosenbaum), 
David Baszucki (ROBLOX), Bill Graner (Crater House), 
Don Daglow (Daglow Entertainment), and Gary 
Gattis (Spacetime Studios) 

» Every business needs a goal. The time to start 
thinking about this is at the formation stage. The 
time to start planning for it is when you begin to 
take outside equity financing. How you finance 
will have a strong influence on how and when 
you may look to cash out. The panel will discuss 
expectations of founders, angels, venture, and 
institutional investors, how those expectations 
may influence decisions made by the board of 
directors or managers, and what founders can 
expect when the time comes for the endgame.

PrograMMing track

html5 realitY CheCk
Jiri Kupiainen (Disney Interactive)
» This talk is a hype-free look at HTML5 as a 
game development platform today. Common 
pitfalls and ways to avoid them, real-world 
adoption numbers and estimates based on 
long-term trends, and silly anecdotes from over 
two years of building games with only HTML5. 
If you’re considering using HTML5 for your next 
project, this is the session for you. After this 
session, you will be better equipped to decide 
whether HTML5 is the right choice for your next 
project. And if you decide to go with HTML5, you’ll 
have a good understanding of what the common 
pitfalls are and how to work around them.

CitYville: lessoNs learNed aNd tools used 
to ruN a larGe soCial Game
Kartik Ayyar (Zynga)

» cityVille at its peak was one of the largest social 
games of all time as measured by monthly active 
users. All along, the team made multiple code 
pushes a day. A little-known fact about cityVille: 
Many of our smartest engineers don’t work on 
the game itself, and instead work on parts of the 
product that are invisible to the user. Specifically, a 
lot of the work behind cityVille has been about just 
building the right set of tools and improving the 
performance and server efficiency of the game. 
This session will go behind the scenes of the tools, 
performance, infrastructure, and scaling work 
that has been silently been happening behind 
the scenes of cityVille, and show what happens 
behind the curtains to keep the show running. 

http://WWW.GDCONF.COM
http://WWW.GDMAG.COM


AURAL FIXATION // DAMIAN KASTBAUER

INVISIBLE TOUCH
» Is it any wonder that the extreme 
sounds of early arcade game music 
have grown up, left the living room, 
and found their way into popular 
music? Everything from chart-
toppers Ke$ha, Beck, and Nelly to 
Crystal Castles, Daft Punk, and Owl 
City have brought the iconic style of 
vintage game audio to the masses. 
What was once the exclusive 
pursuit of composers living on the 
edge of game hardware technology 
has now become knowingly 
referenced and nostalgically 
mined via chip tunes, trackers, and 
hardware hacking. These days, it 
may be a shade easier to cue up 
a sampler or soft-synth than it 
was to program a sequence using 
assembly language back in the day, 
but the real virtue of classic game 
music came from the overcharged 
composition techniques that 
emerged from the technological 
constraints of the time. Wildly 
cycling arpeggios flying off the rails 
in a syncopated flood of operatic 
musicality, noise-as-percussion 
relentlessly driving emotional 
epiphanies—these techniques 
are immediately recognizable as 
coming from a brief moment in 
time. Regardless of whether you 
grew up during its initial explosion, 
the chip tune brings with it the 
power of the past, in the same way 
that string instruments can’t help 
but carry classical connotations.

When these techniques and 
iconic sounds are applied to a 
game with a retro-leaning art 
style, the combination can be both 
futuristic and nostalgic. Polytron’s 
Fez does this by combining a clear 
vision of a pixelated utopia with 
the progressive chip-tune stylings 

of Rich Vreeland. Vreeland is a 
graduate of the esteemed Berklee 
College of Music, and brings an 
intelligent progressive-rock flavor 
that, when coupled with old-school 
technique and tonality, grounds 
the mind-bending puzzle-game 
experience with an expansive, 
retro-futurist soundtrack that seems 
to have emerged fully formed. The 
symbiosis comes from finding the 
right “voice” to support the game’s 
design intentions. Other examples 
that nail the aesthetic connection 
include Lifeformed’s soundtrack for 
DustForce, Anamanaguchi’s for scott 
Pilgrim vs. the WorlD: the game, 
and Jim Guthrie’s singular sWorD & 
sWorcery e.P. space opera.

IN TOO DEEP
» While maintaining a connection 
to the roots of game sound honors 
the groundbreaking work of those 
that came before us, it’s all too easy 
to get wrapped up in the way things 
were. While every soundtrack’s 
coupling must begin with the game, 
it needn’t follow in the familiar 
footsteps of past pairings. Take, 
for example, the “acoustic frontier 
trip-hop” of Bastion, which swept 
across the gaming community like 
a breath of fresh air last year. It 
was the first game for composer/
sound designer Darren Korb, 
and the aesthetic for the music 
developed during production. 
Following the Kid’s progress in the 
game, the soundtrack feels more 
like a concept album when listened 
to outside the game due to the 
way song lyrics are used to convey 
parts of the story. 

Bastion is by no means the 
first game to cross-pollinate music 
genres, nor is it the first to weave 

story concepts into the music, but it 
is noteworthy for how easily it could 
rub shoulders with the likes of Ben 
Harper or the Black Keys. (Imagine 
it cranking out of speakers at your 
next party.) This is where things get 
interesting. Having been involved 
in a few projects that employ 
one or many music remixers, it 
seems there would be no stopping 
popular music from performing 
the reverse crossover into game 
soundtracks. Today the potential to 
take any music and apply adaptive 
techniques such as generative, state 
based, or intermittency is just too 

great as potential not to explore. The 
question is whether there are games 
that would be well served by using 
existing music as part of a fluid 
and dynamic gaming experience. 
Other games that have successfully 
leveraged this paradigm include 
Les Claypool and Midlake for the 
mushroom men soundtrack, New 
Orleans swamp-funk band Galactic/
über-drummer Bryan “Brain” Mantia 
on inFamous 2, ssX, and the neeD For 
sPeeD: shiFt 2 unleasheD remixes.

AGAINST ALL ODDS
» Sometimes, you won’t know the 
right musical style for your game 

until you see them together. Take the 
standout soundtrack for Botanicula, 
which features Czechoslovakian 
music group Dva. The game fits into 
the Amanita Design mold that has 
been evolving since samarost, and 
continues the company’s tradition of 
integrating unique and appropriate 
music with whimsical storytelling. 
Dva’s characteristic Bjork-meets-
cocktail-era-Stereolab exotica 
sound gives Botanicula a skittering, 
organic, and playful score, which 
complements the game’s focus on 
illuminating the joy of discovery 
and interaction. This is music that 
already exists on the fringe of 
popular culture, but found its perfect 
match in the independent adventure 
game. It’s inspiring to hear such 
creative pairings. As the interactive 
landscape continues to embrace 
new experiences, it’s good to know 

that music in all forms can exist in 
the same space. For examples of 
exotic game music couplings, listen 
to Play Dead’s limBo soundtrack 
from Martin Stig-Andersen, and Mona 
Mur’s “Industrial Terror Ambience” for 
IO Interactive’s Kane anD lynch 2. 

“Everybody’s talkin’ ’bout the new 
sound. Funny, but it’s still rock ’n’ 
roll to me” —Billy Joel

DAmIAN KASTBAUEr is a technical sound 

design time-traveler who has been tortured 

by a jukebox of ’80s songs looping in his 

head at LostChocolateLab.com and on 

Twitter @LostLab.

gAME DEvELOpER   |   SEpTEMBER 2012 50

POP wILL EAT ITSELf
Could games mix in popular musiC samples?

For people of a certain age, the characteristic video game sound is inexorably bound to the echoing 
arcade caverns of hardware synthesis, in just the same way that using gated reverb on drums recalls 
Phil Collins’s pop music dominance in the ’80s. But now game tech is advanced enough that we can 
include the same music we’re used to listening to in our daily lives as part of the games we play. While 
retro-inspired tunes call to mind a certain era, we can use music from any era to inspire a certain mood. 
These days, any genre can be turned interactive, and at a certain point it becomes a matter of choice.

Bastion.

http://LostChocolateLab.com


the business // dave edery

How to avoid messing up your first free-to-play game
Free-to-Play PitFalls

www.gdmag.com 51

If you’ve never made a free-to-play game, you can find dozens 
of articles describing how to do it “right.” Most of those articles 
harp on the same handful of issues: Make sure you’re properly 
employing analytics and A/B testing, do everything you can 
to maximize your one-day and seven-day retention, and so 
on. Those issues are important, but in my limited experience, 
I’ve observed a whole set of major errors made by developers 
(including my company, Spry Fox) that rarely get talked about. 
So let’s talk about them.

Don’t assume other games are ProFitable
» Triple Town was Spry Fox’s first serious attempt at making a F2P 
game. We were inspired by the success of Bejeweled BliTz, which had 
rocketed up the charts on Facebook and was supposedly raking in the 
dough. Except at the time, it really wasn’t raking in the dough! In reality, 
Bejeweled BliTz had a very low ARPU that was only offset by an enormous 
population of players that most games could never hope to match. Had 
we simply bothered to ask any of our friends at PopCap about Bejeweled 
BliTz, they would have honestly told us the game wasn’t performing as 
well as we believed. But we didn’t ask, and so we based our monetization 
design in large part on faulty assumptions.

I wish we were the only studio making this kind of mistake, but I’ve 
met plenty of indies who were in process of building games inspired 
by Game X, where Game X was something popular but not necessarily 
profitable. Unfortunately, a game’s popularity doesn’t necessarily correlate 
to revenue. If, for example, Apple or Google feature a mobile title a couple 
of times, that’s more than enough to give it a sizable audience—but that 
doesn’t mean you can assume the game is profitable!

Don’t Design yourselF into a corner
As of today, Triple Town only has two ways to generate revenue: We sell 
you turns, and we sell you items that help improve your performance in 
the game. Some in-game items are only available for cash, and some can 
be purchased with freely earned currency. Unfortunately for us, it turns 
out that very few people are willing to spend real money for any of the 
in-game items in Triple Town. More people are willing to spend money 
for turns (or unlimited turns in the mobile version of the game), but the 
percentage of paying users is still lower than we expected.

All of that would be okay if we could easily come up with additional 
things to sell. Unfortunately, because of the nature of the game, we can’t. 
Triple Town, as it stands today, is a single-player game with a very simple 
economy, limited social interactivity, and no meaningful persistence. 
Individually, each of these things make Triple Town harder to monetize 
effectively; together, they make it nearly impossible.

We’ve been working on making the game more social, and we’ll soon 
unveil an update that adds meaningful persistence...but these changes 
have taken a tremendous amount of time and effort, and their payoff is 
as-yet unproven. Had we started with a more spacious and fertile design, 
we wouldn’t have hit this wall so quickly.

Don’t exPect recognition For your restraint
 » We are proud of the fact that we chose to limit how many in-game items a 
player can purchase during a session of Triple Town. We made that decision 
in part because we wanted it to be clear to everyone that Triple Town was a 

game of skill, not a game you could pay to win. And certainly there have been 
some people who have recognized this. Unfortunately, countless others 
have bashed us for being a mini-Zynga and for nickel-and-diming them.

We’ve unquestionably traded away revenue, but it’s unclear 
what (if anything) we received in return. Most players who hate F2P 
games still hate what we do in Triple Town. Everyone else seems to be 
okay with the concept of the in-game store, regardless of whether it has 
limited items. In fact, plenty of players have asked us to remove the store 
limits because they find them annoying!

In the future, we’re going to keep trying to do right by players and keep 
trying to make games that you can’t pay to win. But we won’t make the 
mistake of assuming that we’ll be recognized or rewarded for it. Make no 
mistake: Most people buy things in a game because they really want those 
things—not because they are interested in rewarding your good behavior 
as a game designer. The latter is called charity, and hoping for it won’t get 
you very far.

Don’t exPect miracles
» Right now, the mobile F2P game space is brutally competitive. Consider 
this: Triple Town was featured three separate times by Apple, received 
tons of positive press, and was generously promoted by our friends at 
Halfbrick in their mobile games (thanks guys!). And yet Triple Town has 
never broken into the top 50 free apps on iOS.

This isn’t the good old days, when simply being new and noteworthy 
could drive you into the top 20 all by itself. (If it does, it is because you got 
very, very lucky.) Cross-promoting with other developers won’t get you 
there. Nor will great press. It takes all of that, simultaneously, and more, 
whether that’s paid user acquisition, driving traffic via a web-based version 
of your game, or any other promotional strategies you employ.

Some of your competitors in the F2P space are spending hundreds of 
thousands of dollars over a very short period of time to push their games 
to the top of the mobile charts. If you want to see your game at the top of 
the charts, you need to be prepared to push equally hard, or find markets 
that aren’t quite so competitive.

the list goes on...
» There are many other common mistakes that we fortunately avoided 
with Triple Town, but that I often observe other developers making. 
For example: not having consumable items as a source of revenue, 
excessively relying on a single platform (which is a potentially fatal flaw 
whether you’re making paid games or F2P games), emphasizing aesthetic 
virtual goods instead of functional virtual goods (for more on this, see 
my recent GDC lecture: http://gdcvault.com/play/1015659/Realm-of-the-
Counter-Intuitive), and so on. 

Making a F2P game is difficult! If you’ve never done it before, there’s 
a very good chance you’ll blow your first attempt. Take the time to talk to 
folks who have bitten the dust before you. Take advantage of the many 
online resources available to you. And most of all, make sure you’ve given 
yourself plenty of time to experiment and to fail gracefully! Even the best 
of us need that. 

DaviD eDery is the CEO of Spry Fox and has worked on games such as realm of The mad 

God, STeamBirdS, and Triple Town. Prior to founding Spry Fox, David was the worldwide 

games portfolio manager for Xbox Live Arcade.

http://gdcvault.com/play/1015659/Realm-of-the-Counter-Intuitive
http://WWW.GDMAG.COM
http://gdcvault.com/play/1015659/Realm-of-the-Counter-Intuitive


educated play!
STUDENT gamE PROFILES

www.souvenirgame.com

Souvenir
You probablY remember the daY You moved Your stuff out of Your parents’ house, sorting through old games and knickknacks and reliving their associated 

memories. throw in a rather flexible form of gravitY in an m.c. escher-inspired world, and You’ve got souvenir, an experimental narrative game produced as part 

of a thesis project for a design and technologY mfa at parsons.

game developer   |   september 201252

Patrick Miller: How’d you 
come up with the idea for 
Souvenir?
Ben Norskov: We intended 
to create a game that 
would inspire some awe 
in the player and have 
strong narrative elements. 
Storytelling in games is 
one of the most unexplored 
areas of game development, 
so we wanted to tell a 
compelling story. We knew 
that the gravity-shifting 
mechanic would disorient 
players and put them in a 
magical or dreamlike space, 
where the possibilities 
seem endless. We also 
needed a mechanic that 
would be fun, because we 

knew that simply walking 
around could get tedious. 
We originally planned on 
more of a hard narrative, 
but realized through early 
prototypes that it wouldn’t 
fit well with the game.

PM: Tell me about the 
team. Who did what?
BN: Mohini, robert, and i 
all graduated from Parsons 
MFA in the Design and 
Technology program. our 
animator and concept 

artist, Shin Huang, was 
visiting for a year from 
China, and Alejandro Ghersi 
is an incredible DJ and 
sound engineer i had the 
pleasure of working with 
once before.

PM: Whose story are you 
telling in Souvenir?
Mohini Dutta: The 
protagonist in Souvenir is 
a young woman about to 
leave home to begin the 
next chapter of her life. 
However, transitions are 
never without baggage, 
and the game is a 
representation of all the 
things that tie her to her 
old life: her high school, 

her family, her relationship 
to religion. To truly begin 
anew, she needs to look 
back and choose what to 
take with her into the future 
and what to leave behind.

When i left home 
after my undergraduate 
degree to work and move 
out of my parents’ home, 
i was amazed at how 
much junk i had collected 
over the years. each little 
souvenir—an old book, a 
broken CD player, some 

old tapes—each of them 
was attached to a memory 
or an event, and i didn’t 
want to let go of any of it, 
but i couldn’t move out if 
i took all of it with me. The 
experience of sorting out 
all my things to pick what 
to save and what to let go 
was very rewarding for me, 
making me finally deal with 
a lot of loose ends, and 
eventually allowing me to 
move on with confidence 
and space in my life for the 
new souvenirs to come.

PM: What did you draw 
inspiration from while 
making Souvenir?
BN: our first and strongest 

influence is Terry 
Cavanagh’s vvvvvv, which 
is simply a stunning game. 
We were searching for 
a mechanic, and robert 
had suggested vvvvvv’s 
mechanic in 3D, but then 
rejected it quickly for some 
reason. Then he showed 
up after a weekend with 
a basic prototype of the 
mechanic and it felt really 
awesome. other game 
influences are PSychonautS, 
Portal (for level design), 

and ProteuS. Art influences 
are remedios varo, Giorgio 
de Chirico, and many other 
surrealist architectures, 
both physical and painted.

PM: The Escher-inspired 
level design is really neat. 
Did you have any problems 
modeling such an abstract 
environment and turning 
it into a playable game 
space?
Robert Yang: We had 
millions of problems. We 
kept iterating the player 
physics—trying to make 
it smoother, adjusting 
friction and drag, changing 
controls—which would 
make movement feel 
better, but would alter 
the relationship to the 
environment. We couldn’t 
just say, “These are the 
player physics, now they’re 
done,” because game design 
can’t really work like that; 
you don’t know whether 
something works until it’s 
done. it was a chicken-and-
egg problem, like designing 
platformer levels when you 
don’t know how high or far 
the player can jump. The 
only way through is to just 
accept how much waste 
you’ll have to throw away.

PM: At the moment, the 
game is still incomplete. 
Are you planning on 
developing any of the 
concepts in Souvenir 
further?
RY: We want to add an 
ending of some sort. We’ve 
had conversations about 
what would be appropriate, 
but it’s hard to go back to 
this project because we’re 
all kind of moving on to our 
own things—we graduated, 
so why go back to this? 

emotionally, we have very 
different mind–sets now. 
So we want to, but i’m not 
sure if we will. i imagine 
every student project 
encounters this shift.

PM: What’s with the 
crows?
MD: The crows have been a 
crowd favorite throughout 
our development! one 
of our older prototypes 
had a stronger boss-
fight element in it, and 
we had devised a few 
anthropomorphic animal 
bosses that represented 
oppressive characters from 
the protagonist’s past. 
eventually our game design 
evolved out of that phase, 
but the crow still remained.

The crow represented a 
bastardization of the wise 
raven character trope from 
myths; a crow is almost a 
raven, but represents all 
the base and vile elements 
of its character. i imagined 
the mean teacher character 
to be a crow to the general 
ravenness of teachers who 
represent wisdom and the 
bigger things in life. The 
crow began to represent 
the passive-aggressive 
antagonists who don’t do 
anything overtly terrible, 
but cause damage and fear 
nonetheless. 

release Date: May 2012 
for proof of mechanic and 
narrative prototype
Development Time: 1 year
Development Budget: 
<$1,000 (not counting the 
price of Parsons’ tuition)
# of lines of code in the 
game: about 4k–5k
Fun Fact: A 12-year-old 
playtester told us that “You 
know you’re inside a girl’s 
mind because everything’s 
all messed up.”

http://WWW.SOUVENIRGAME.COM


BECOME A LEADER IN DIGITAL MEDIA
With digital media in mind from conception to completion, the new CENTRE FOR DIGITAL MEDIA 
features student apartments, project rooms and classrooms all designed to inspire creativity and 
collaboration. Located in Vancouver, Canada the new CENTRE FOR DIGITAL MEDIA o�ers a full and 
part-time Master’s program that focus on real-time, industry-facing collaborative projects.

Learn more about our MASTERS OF DIGITAL MEDIA PROGRAM and EXECUTIVE MASTERS OF 
DIGITAL MEDIA PROGRAM at www.thecdm.ca/programs

The future of work is at the new CENTRE FOR DIGITAL MEDIA.

CENTRE FOR DIGITAL MEDIA | www.thecdm.ca

>> GET EDUCATED

53W W W . G D M A G . C O M

http://www.thecdm.ca/programs
http://www.thecdm.ca
http://WWW.GDMAG.COM
http://www.3DSquare.be
http://www.howest.be
http://www.digitalartsandentertainment.com


>>
GE

T 
ED

UC
AT

ED

54 S E P T E M B E R  2 0 1 2  | G A M E  D E V E L O P E R  

http://DesignLAFilm.com
http://www.lafilm.edu/disclosures
http://gamasutra.com


Get the best Game Developers Conference content at the touch of your fingertips, on 

demand, any time you want. If you missed last year’s GDC Online 2011 in Austin, TX 

or even GDC 2012 in San Francisco, CA – there’s no need to worry. GDC Vault contains 

video, audio, and slide presentations from 1996-2012. Access a library of GDC sessions 

from Production, Visual Arts, Programming, Sound/Audio Design, Game Design and more 

from veteran game developers to today’s rising stars of the industry.

To Publishers and Developers: from mainstream to indie and everything in between. 

Want to share your inspirational talk with those who couldn’t make it to the conference? 

Want to share the latest discussion on game metrics and analytics from the top Casual/

Social game developers? Want to see who took home the most hardware during the Game 

Developers Choice Awards and Independent Games Festival? Then what are you waiting 

for – Check out GDC Vault: http://www.gdcvault.com/

For those of you who are part of a game development studio, 

we offer Studio Subscriptions. To find out more you can contact 

Gillian Crowley at gcrowley@techweb.com

STUDIO AND EDUCATION 
GROUP RATES AVAILABLE!

ACADEMY OF ART UNIVERSITY             19

EPIC GAMES               6

HOWEST  DAE                           53

LOS ANGELES FILM SCHOOL             54

MASTERS OF DIGITAL MEDIA PROGRAM            53

PERFORCE SOFTWARE              C2

RAD GAME TOOLS              C4

TWOFOUR54               3

VANCOUVER FILM SCHOOL             23

COMPANY NAME PAGE COMPANY NAME PAGE

ADVERTISER INDEX

gd Game Developer (ISSN 1073-922X) is published monthly by UBM LLC, 303 Second Street, Suite 900 South, South Tower, San Francisco, 
CA 94107, (415) 947-6000. Please direct advertising and editorial inquiries to this address. Canadian Registered for GST as UBM LLC, GST No. 
R13288078, Customer No. 2116057, Agreement No. 40011901. SUBSCRIPTION RATES: Subscription rate for the U.S. is $49.95 for twelve issues. Coun-
tries outside the U.S. must be prepaid in U.S. funds drawn on a U.S. bank or via credit card. Canada/Mexico: $59.95; all other countries: $69.95 
(issues shipped via air delivery). Periodical postage paid at San Francisco, CA and additional mailing offices. POSTMASTER: Send address changes 
to Game Developer, P.O. Box 1274, Skokie, IL  60076-8274.  CUSTOMER SERVICE:  For subscription orders and changes of address, call toll-free in 
the U.S. (800) 250-2429 or fax (847) 647-5972.  All other countries call (1) (847) 647-5928 or fax (1) (847) 647-5972.  Send payments to gd Game 
Developer, P.O. Box 1274, Skokie, IL  60076-8274. Call toll-free in the U.S./Canada (800) 444-4881 or fax (785) 838-7566.  All other countries call (1) 
(785) 841-1631 or fax (1) (785) 841-2624. Please remember to indicate gd Game Developer on any correspondence. All content, copyright gd Game 
Developer magazine/UBM LLC, unless otherwise indicated. Don’t steal any of it.

>> GET EDUCATED

55W W W . G D M A G . C O M

http://www.gdcvault.com/
mailto:gcrowley@techweb.com
http://WWW.GDMAG.COM
javascript:openPopup('abrash-excerpt2')


game developer   |   september 201256

/// Welcome to The Gamemasons, 
acolyte. We’re a select group of 
game industry elites who have 
banded together in order to hobnob 
with each other in clandestine, 
highly secretive events, sharing 
gossip and laughing over the 
finest caviar and contraband whale 
sashimi hors d’oeuvres. We also 
have an online forum!

Most don’t know that we exist. 
Those who do live in the quivering 

hope that we’ll take notice of 
them and bestow upon them 
membership in this hallowed group. 
It’s not that easy, of course—to be 
considered for our organization in 
the first place, one must first be 
known to me, the Grand Admin, as 
a cool person who’ll fit in here (or 
else you can be famous).

That’s why you, newly anointed 
with the sacred “user” and 
“password” that grants you access 

to our storied and long-running 
phpBB installation, must take our 
vows as seriously as your life. And 
you must do more than simply 
safeguard the knowledge of our 
Great Board from any and all who 
would seek to escape with our 
precious secrets. You must also 
work constantly to maintain the 
trust that binds you to our ranks.

Understand that any violation, 
no matter how slight, can result 
in a little thing I like to call 
“excommunication.” Don’t let the 
religious overtones of that term 
scare you, of course. All I would 
really do is permanently deny you 
access to the True Knowledge and 
forever shut you away from bathing 
in the illuminating light of the 
Chosen Few ever again.

The Rules
» Play by my rules, acolyte, and I 
think you’ll come to like the life here. 

The first ironclad rule of the 
Gamemasons is you don’t talk 
about the Gamemasons. Never 
at all to anyone. It’s true that 
sometimes we have looked past 
a few exceptions—for example, 
after members have had a couple 
of drinks at the hotel bar at an 
industry conference, or if they 
wanted to seem “in” to their 
co-workers at lunch, or if their 
parents asked them what they’ve 
accomplished lately.

But generally, please take this 
rule very seriously. The last thing 
we need is anyone with any relation 
to the sniveling rumormongers 
of the press finding out about 
our secret forum for information 
exchange! Remember, we share 
highly privileged, high-level 
discussion, and you are not to 
repeat what you see or read here to 
anyone, under the punishment of 
excommunication.

(Of course, this rule does not 
apply to me, the Grand Admin. I’ll 
occasionally publicly broadcast the 
information I hear from acolytes 
such as yourself!)

How do you recruit new 
members if you can’t talk about 
us, you ask? Well, if you know 
a supercool, elite, famous game 
developer person, you can 
formally “propose” that person 

to me by filling out this form and 
asking the applicant to perform the 
Ritual of Obeisance. And I’ll decide if 
I feel like accepting the application. 
Also, be sure to tell that person 
not to get his or her hopes up. 
Membership feels more elite if you 
make applicants wait. We’re like 
that hip downtown nightclub with 
the really long line outside...except 
inside our club, we party it up and 
talk about games!

Anyway, the second rule of the 
Gamemasons is that all members 
must contribute to the discussion. 
There is no freeloading here. Gossip 
about where you work. Give us 
secret info and insider stories. 
Tell us about the time a guy who 
worked on a major FPS did that 
crazy thing. Did you get screwed by 
your publisher? Tell us.

Questioning other studios’ 
strategies is also a great way to 
contribute to the discussion. Go on 
and be snarky about games you 
don’t like or other popular things 
you “never understood.” Dis and 
stomp on famous game industry 
people that aren’t here, too! 
Remember, the press isn’t invited, 
so you can be as petty, snarky, 
small-minded, and spittle-flingy as 
you want!

The InneR CIRCle
» Now, I hereby bestow upon you 
the Badge of Membership. Look 
at that cool-looking pin with the 
picture of Vishnu on it. People might 
think you’re in a secret religious 
cult wearing that. And they’d be 
right! Co-opting another culture’s 
religious imagery for our group is 
just the kind of bad-ass behavior 
you should expect from us. So go on 
and affix that to your collar as soon 
as you can—you’ll need it to get 
into the party later tonight.

What’s that? You don’t like 
this? What’s the matter with you? 
Look, it’s just a fun little thing. If 
you don’t like it, you can leave. Why 
are you taking this all so seriously, 
anyway? Wow...what a jerk. 

matthew wasteland writes about 

games and game development on 

his blog, Magical Wasteland (www.

magicalwasteland.com). email him at 

mwasteland@gdmag.com.Il
lU

st
Ra

tI
On

 B
Y 

jU
an

 R
am

IR
ez

arrested developmeNt // mattHeW WastelaNd

gamemasOnsthe
The secreT order of game developers 
welcomes you

Who posts in forums at night about how other game developers 
don’t understand anything? Who knows the real story behind the 
publisher drama a few years back that surrounded that WiiWare 
title that most people forgot exists? Who represents leading lights 
of the video game developer community, collected together in 
a rarefied fraternal atmosphere that excludes the chaff of game 
journalists, managers, entry-level employees, and anybody we 
don’t like?

We do.

http://www.magicalwasteland.com
mailto:mwasteland@gdmag.com
http://www.magicalwasteland.com


http://www.GDCONF.com


http://www.radgametools.com

	Contents
	postmortem
	PIXELJUNK 4AM

	features
	FIGHT THE LAG!
	SCALE YOUR ONLINE GAME
	LEVEL UP YOUR STUDIO

	departments
	EDITORIAL - GAMEPLAN
	NEWS - HEADS UP DISPLAY
	REVIEW - TOOLBOX
	PROGRAMMING - INNER PRODUCT
	CAREER - GOOD JOB
	ART - PIXEL PUSHER
	DESIGN - DESIGN OF THE TIMES
	NEWS - GDC NEWS
	SOUND - AURAL FIXATION
	BUSINESS - BUSINESS
	EDUCATION - EDUCATED PLAY
	HUMOR - ARRESTED DEVELOPMENT


