


http://www.scaleform.com


WWW.GDMAG.COM 1
COVER ART: JOE MITCH AND THE SINGULARIT Y ART TEAM

CONTENTS.0910
VOLUME 17 NUMBER 8

D E PA R T M E N T S

2  GAME PLAN   By Brandon  Sheffield [ E D I T O R I A L ]

The Power of Mystery

4  HEADS UP DISPLAY [ N E W S ]

HALO 2600 and Hirokazu Yasuhara's design notebook.

 27  TOOL BOX   By Tom Carroll [ R E V I E W ]

CrazyBump 1.101

31  THE INNER PRODUCT   By Noel Llopis  [ P R O G R A M M I N G ]

Data-Oriented Design

34  PIXEL PUSHER   By Steve Theodore [ A R T ]

Big Screen Blues

 36  DESIGN OF THE TIMES   By Soren Johnson [ D E S I G N ]

The Chick Parabola

 39 AURAL FIXATION  By Vincent Diamante [ S O U N D ]

SFX Frequency Mapping 

40  GOOD JOB!  By Staff [ C A R E E R ]

Chris Archer Q&A, who went where, and new studios.

 42  EYE ON GDC  By Staff [ G D C ]

GDC Online announces new panels and lectures.

 44  EDUCATED PLAY  By Tom Curtis [ E D U C A T I O N ]

DREAMSIDE MAROON

48  ARRESTED DEVELOPMENT   By Matthew Wasteland [ H U M O R ]

Consensus Reached

P O S T M O R T E M

20  RAVEN SOFTWARE'S SINGULARITY
After creating a number of high-profile licensed titles, the developers 
at Raven Software had an idea for an original shooter with a unique 
time shifting mechanic. To convince their parent company, the team 
rapidly built a demo that made judicious use of pre-existing assets 
and engine technology. This approach paid off over the course of 
the project by putting the design focus for SINGULARITY squarely 
on gameplay.  By Rob Gee, Brian Raffel, Steve Raffel, Jon Zuk, Dan 
Vondrak, and Gustavo Rasche

F E AT U R E S

7  BIG WARS
Massively multiplayer combat is the new frontier for First-Person 
Shooters. While there are a number titles that combine fast-paced, 
FPS gameplay with a persistent MMO-style world, hosting truly 
large numbers of players at once remains a technical hurdle. Here, 
veteran networking engineer Lin Luo proposes a new approach to 
client-server architecture that uses a central server to coordinate the 
distribution of data across multiple server systems.  By Lin Luo

15  HOT FAILURE
Large-scale playtesting is usually a luxury that only big studios and 
publishers can enjoy. While it is a crucial step in tuning gameplay, how 
can small teams and individual developers gather playtest data? As a 
one-man Android developer, Chris Pruett approached the problem by 
building an event-logging system into his game REPLICA ISLAND that 
gathered player performance data automatically. After being aggregated 
and drawn onto a heat map, the resulting metrics quickly showed where 
gameplay needed to be tweaked in order to provide a smooth user 
experience.  By Chris Pruett

http://WWW.GDMAG.COM


GAME PLAN //  BRANDON SHEFFIELD

HEADLINE

 www.gdmag.com

GAME DEVELOPER   |   SEPTEMBER 20102

600 Harrison St., 6th Fl., 
San Francisco, CA 94107 
t: 415.947.6000  f: 415.947.6090 

THE POWER OF MYSTERY
HOW THIS SUBSET OF LUCK CREATES THAT "JUST ONE MORE" FEELING

“NOTHING IS SO FRIGHTENING AS WHAT’S BEHIND THE 
closed door. The audience holds its breath along with 
the protagonist as she/he (more often she) approaches 
that door.” So writes Stephen King in his non-fiction 
book on horror, Danse Macabre. King was not the first 
to make this point, nor will he be the last—with the right 
setting, the closed door, with all its possibilities, can 
be a frightening thing. Contrast that with an open door 
with light streaming through it, a traditional symbol of 
hope. But the closed door nags at you—don’t you want 
to know what’s on the other side? The real power of 
the closed door is the mystery behind it. So long as it’s 
closed, the possibilities remain infinite. That constant 
barrage of mystery is incredibly enticing to players, and 
is often directly responsible for that “just one more ...” 
feeling that many games aspire to.

This idea has been used in games for years, 
occasionally in ways that are analogous to the one 
King discusses, such as the simple build of tension 
you might see in the SILENT HILL series. As the player 
approaches a locked door, disconcerting noises 
increase in intensity, and maybe the world begins 
to erode, as happens in the series. The player has to 
go through the door, there’s no other way—but they 
almost don’t want to. The player is complicit in the 
act of approaching the door, which by turns increases 
or decreases the horror, depending on how much the 
player already knows. In film, the viewer is less likely 
to have advance knowledge of what lies beyond—but 
in games, we might have gone through the same 
scenario a few times, diminishing the effect.

UNREALIZED DREAMS
» Unfortunately, the payoff is usually not as 
exciting as that anticipation of terror. Essentially, the 
imagination usually cooks up something far more 
exciting than anything we can deliver as developers. 

The concept is similar to the classic “Pavlov’s Dog” 
experiment, in which researcher Ivan Pavlov rang a 
bell (or gave some sort of other stimulus) every time 
a dog was given some food—over time, the dog would 
start salivating as soon as it heard the bell, regardless 
of whether it got any food, because it associated the 
sound with a reward. In games, as long as there are 
constantly new things to anticipate, the mind can 
continue to invent new potential rewards.

This is basically the way we condition players with 
things like treasure chests and monster drops. They 
know there’s something in there, so they’ll fight through 
hell and back to get to it, even if (in the case of JRPGs 
especially, but also in Western stalwarts like DIABLO) it 
could be a trap, or a monster in disguise, or have some 
other sort of ill effect. Over the years, we’ve come up 
with a pretty well-accepted formula for this, used (with 
some variation) by games from WORLD OF WARCRAFT to 
PERSONA to BORDERLANDS. Chests will generally have 

something good in them—the excitement is in not 
knowing just how good it’ll be. This keeps players 
digging for more chests to get that epic loot. The same 
applies to items grabbed from felled monsters.

Taking it further, this idea of mystery applies to 
dialog-heavy RPGs like DRAGON AGE or the PERSONA 
series. Whenever the player is given a set of response 
choices in a dialog scenario, there is an air of 
mystery—how will the other character respond? You 
generally have some sense of it—choices generally 
yield semi-predictable responses—but again, you don’t 
know just how it will affect your relationship with this 
character in the long term. Therein lies the mystery.

This not only helps strengthen the illusion 
that you’re building a relationship with a character 
(alongside positive and negative feedback, which both 
aforementioned games provide), it also keeps players 
digging to see what will happen. The “just one more” 
idea returns.

MYSTERY VERSUS LUCK
» This sort of mystery I’m talking about is a subset 
of luck. It’s far more specific, and as a result is easier 
to control. It can be frustrating in a game like PUZZLE 
QUEST to have your opponent hit you with a huge 
chain of “random” attacks, or to have your weapon 
randomly break in an RPG. That sort of luck can be 
frustrating. With the mystery of a treasure chest that 
may drop an epic weapon though, the outcome is 
always positive, which makes for higher engagement 
and less frustration. 

Mystery isn’t always good though—choosing a 
difficulty level before you’ve started the game, for 
example, tends to lead to frustration.

Genres other than RPGs seem less able to use 
the more straightforward tricks. BORDERLANDS is an 
exception with its randomly generated weapons found 
in treasure chests, but by and large FPS games have 
to rely on a set group of weapon drops from downed 
enemies. So how do we get this “just one more” 
phenomenon in other genres? It’s a very “gamey” 
sort of interaction, which potentially goes against the 
realism many games strive for, but MMOs and some 
online FPS use the anticipation of leveling up in a 
similar way, and fighting and racing games often use 
unlockable characters or outfits. These are far less of 
an addictive gameplay element than they are a bonus, 
but the concept is similar.

In all, I think most games would be well served by 
including some element of mystery. It adds stickiness, 
and keeps players playing long after they might 
otherwise have stopped. It forms a strong link with 
the player, so that they keep playing “without knowing 
why.” Games that don’t do this tend to fall by the 
wayside. Seems an obvious choice to me! 

—Brandon Sheffield

SUBSCRIPTION SERVICES

FOR INFORMATION, ORDER QUESTIONS, AND 
ADDRESS CHANGES
t: 800.250.2429  f: 847.763.9606
e: gamedeveloper@halldata.com

FOR DIGITAL SUBSCRIPTION INFORMATION
www.gdmag.com/digital

EDITORIAL

PUBLISHER
Simon Carless  l  scarless@gdmag.com
EDITOR-IN-CHIEF
Brandon Sheffield  l  bsheffield@gdmag.com
PRODUCTION EDITOR
Jeffrey Fleming  l  jfleming@gdmag.com
ART DIRECTOR
Joseph Mitch  l  jmitch@gdmag.com
PRODUCTION INTERN
Tom Curtis
CONTRIBUTING EDITORS
Jesse Harlin
Steve Theodore 
Daniel Nelson
Soren Johnson 
Damion Schubert 
ADVISORY BOARD
Hal Barwood   Designer-at-Large
Mick West   Independent
Brad Bulkley   Neversoft
Clinton Keith   Independent
Brenda Brathwaite   Independent
Bijan Forutanpour   Sony Online Entertainment
Mark DeLoura   Google
Carey Chico   Independent

ADVERTISING SALES

GLOBAL SALES DIRECTOR 
Aaron Murawski  e: amurawski@think-services.com  
t: 415.947.6227 
MEDIA ACCOUNT MANAGER
John Malik Watson  e: jmwatson@think-services.com  
t: 415.947.6224
GLOBAL ACCOUNT MANAGER, RECRUITMENT
Gina Gross  e: ggross@think-services.com 
t: 415.947.6241
GLOBAL ACCOUNT MANAGER, EDUCATION
Rafael Vallin  e: rvallin@think-services.com 
t: 415.947.6223

ADVERTISING PRODUCTION

PRODUCTION MANAGER  
Pete C. Scibilia  e: peter.scibilia@ubm.com
t: 516-562-5134

REPRINTS

WRIGHT'S MEDIA  
Ryan Pratt  e: rpratt@wrightsreprints.com
t: 877.652.5295  

AUDIENCE DEVELOPMENT

TYSON ASSOCIATES  Elaine Tyson 
e: Elaine@Tysonassociates.com
LIST RENTAL  Merit Direct LLC  
t: 914.368.1000

MARKETING

MARKETING SPECIALIST  Mellisa Andrade  
e: mandrade@think-services.com  

W W W . U B M . C O M

mailto:gamedeveloper@halldata.com
http://www.gdmag.com/digital
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:jfleming@gdmag.com
mailto:jmitch@gdmag.com
mailto:amurawski@think-services.com
mailto:jmwatson@think-services.com
mailto:ggross@think-services.com
mailto:rvallin@think-services.com
mailto:peter.scibilia@ubm.com
mailto:rpratt@wrightsreprints.com
mailto:Elaine@Tysonassociates.com
mailto:mandrade@think-services.com
http://WWW.UBM.COM


http://twofour54.com


GAME DEVELOPER   |  SEPTEMBER 20104

HEADS-UP DISPLAY

THE CLASSIC GAMING EXPO, 
held in Las Vegas at the 
beginning of August 2010, 
was host to the usual 
museums, swap meets, 
and panels, all surrounding 
gaming’s storied past. 
Particular attention is 
paid to Atari systems, 
so it’s no surprise that 
the largest buzz at the 
show surrounded a new 
homebrew game for the 
Atari 2600, the first truly 
mainstream game console.

That game is HALO 
2600, coded by Ed Fries, 
who was vice president of 
the Xbox division during 
the lifetime of the original 
console. He had gotten his 
start programming Atari 
800 games in high school 
and college, and was a very 
early Microsoft employee, 
taking over the game 

division out of personal 
interest (and against the 
warnings of several other 
execs, he says). 

Fries left Microsoft 
in January 2004, but 
as he got further from 
game creation, that itch 
to make something new 
returned. After reading the 
book Riding the Beam, he 
decided to try his hand 
at programming a 2600 
game, in spite of not having 
written 6502 assembler 
code in almost 30 years. 
For lack of a better idea, 
he decided to make a little 
Master Chief run around in 
an environment—and the 
game was born. But not 
without difficulty.

“The thing you need 
to realize about the 
Atari 2600 is that it is 
an incredibly limited 

machine,” said Fries in 
a post on the Atari Age 
forums. “It has only 128 
bytes of RAM and without 
bank switching, the 
maximum program size 
is just over 4,000 bytes. 
There are just two 8 pixel 
wide monochrome sprites, 
two one pixel bullets, a 
'ball' and a 40 pixel wide 
background (and even 
that is exaggerating). 
There is no memory to 
store the screen image 
like any modern console 
or PC; instead it has to be 
drawn a line at a time by 
changing the values of the 
registers that control the 
sprites and background. 
The processor is so slow 
that only 76 clock cycles 
occur while a line of the 
screen is being drawn, 
and the simplest 6502 

instructions take at 
least 2 clock cycles. So 
just to draw an image 
of the Master Chief is 
pretty tough. To create a 
complete game while living 
within these constraints is 
much harder.”

But create it he did, 
thanks to the multitudinous 
homebrew tools that now 
exist for the console, as 
well as the help of the 
vibrant hobby community. 
The game is currently 
available for download 
from freeware rom sites, 
and a limited number of 
2600 cartridges were sold 
at the expo. And for those 
adventurous souls who 
find themselves completely 
absorbed by the game, you 
might want to investigate 
a few of the buggier areas 
a bit more closely. Fries 

explains how he found 
himself in “the magic land.” 

“I was working on a bug 
with the boss encounter 
and accidentally found 
myself completely outside 
the 64 room map,” he 
writes. “I was wandering 
through memory that 
was never intended to 
be interpreted as part 
of the map but the code 
was doing the best it 
could to interpret what 
was being thrown at 
it. Strange, misshapen 
monsters attacked me in 
even stranger ways as I 
wandered through this 
bizarre land that I had 
unintentionally created. I 
left a bug or two in the final 
game to allow others to find 
and explore this strange 
landscape as I did.”

—Brandon Sheffield

HALO 2600 RELEASED 

DEMOSCENE-DOKUMENTTI CHRONICLES 
FINLAND’S DEMOSCENE HISTORY
The demoscene in Finland is the root of that country’s rich game 
development heritage, from STARDUST to MAX PAYNE. Thomas Puha, editor 
of Finnish consumer game magazine Pelaaja, has put together a series of 
interviews that preserve the memories and histories of those involved in 
the scene from its origins in the early 1990s up until today. The series will 
spread across seven 10-minute episodes, beginning with a segment on 
the legendary Future Crew. The documentary will be released in full at the 
Alternative Party Finnish demoscene event, but will also be available online 
for free. See http://demoscenedoc.com for more info.              —Brandon SheffieldTHE FUTURE CREW'S VINTAGE LOGO

http://demoscenedoc.com


Sonic the hedgehog level deSigner hirokazu YaSuhara drew complex 

pen and paper deSignS for the mapS in naughtY dog'S racer Jak x. he 

haS uSed paper prototYping aS part of hiS deSign proceSS throughout 

hiS career, including hiS work on the uncharted SerieS.

Designer's notebook: 
Hirokazu YasuHara

www.gdmag.com 5

http://www.gdmag.com


http://www.seapine.com/gamebook


www.gdmag.com 7

L i n  L u o

Contemporary reaL-time muLtipLayer first-person shooter (fps) game server systems faCe two 

problems that, at the practical level, limit the maximum number of players that can be hosted during any one 

game session: the Cpu intensive real-time world simulation for all the in-game objects on the server, and the 

input/output (i/o) intensive network bandwidth consumption for synchronizing in-game object states to all the 

connected clients in a real-time fashion. this article will introduce an innovative server architecture that aims 

to defeat the above limitations, and enable 256 or more players to engage in real-time multiplayer fps game 

sessions. however, please don’t confuse this with existing mmo server cluster technologies that are able to host 

thousands of players but do so with a much slower non-real-time pace.

http://www.gdmag.com


game developer   |  September 20108

/ / / / /  T h e  C u r r e n T  Li mi TaT i o n s

A typical real-time FPS server system works like 
this: the server, being authoritative on the  game 
world, simulates all the in-game objects, based 
on the latest input information from each client, 
at a predefined frame tick rate (typically 30 
frames per second). For each connected client, 
the server also synchronizes those object states 
that are relevant to the client at a predefined 
network tick rate (typically 20 times per second). 
This high synchronization frequency for each 
connected client is necessary to maintain the 
accuracy of any real-time FPS game session. The 
server-side authoritative world object simulation 
is necessary to defeat client-side cheating and 
avoid inconsistent world object states that could 
happen if the simulation were distributed on the 
client side.

Suppose we are running a 32-player real-time 
FPS game in a typical client/server setup, and 
each client is able to request the server to spawn 
a small number of dynamic physics objects in the 
world (let’s say 4). The server then has to do an 
authoritative object simulation (mostly physics) 
for 128 (4x32) in-game objects, which doesn’t 
sound too bad for a real-time multiplayer FPS 
session. However, when the number of players 
grows to 256, the number of dynamic objects 
simulated on the server side balloons to 1,024, 
which requires a much more powerful server to 
handle in real-time.

If we attempt to tackle the problem with 
a client-side authoritative object simulation 
approach, the server now has to handle much 

more intensive incoming data from each client. 
Each authoritative client also has to tell the 
server all of the client-side simulated object 
states, which yields a much higher chance of 
client-side cheating.

A simplified but quite optimized server 
synchronization update logic would look 
something similar to Listing 1 (Note: the code is 
pseudo, and utilizes some C++0x range-based 
for-loop syntax to make the reading easier).

As we can see from the code logic in Listing 1, 
even this quite optimized server update function 
is still bound to the number of connected clients 
and the number of objects that are relevant to 
each client. In a real-time game server system, 
we have to avoid any lengthy iteration logic inside 
each tick of the game update loop. Furthermore, 
when the number of connected clients grows, 
the server-side outgoing bandwidth requirement 
grows proportionally. So as the number of 
clients increases, the server tick rate will drop 
proportionally while the bandwidth requirement 
expands proportionally. At some point, when 
the synchronization frequency drops below an 
acceptable figure for each client to maintain a 
reasonably real-time gameplay update, we have 
to stop adding more clients to the game session. 
That’s why most of the real-time multiplayer FPS 
games have a maximum number of players (64 is 
the largest number to date) that can be supported 
in one game session.

However, a multiplayer game that could 
support even more users playing at the same 
time in the same world would be much more 

immersive. Just as we push graphics, artificial 
intelligence, character animation, and physics 
to their limits, we should be looking at ways to 
expand player connectivity. Without innovations 
in these areas, we would probably still be playing 
text-based multiplayer games!

Contemporary massively multiplayer online 
games easily host a high number of simultaneous 
players but with a trade-off: MMOs are usually 
not real time as far as the in-game characters/
objects movement updates are concerned. MMO 
game servers generally don’t perform tick-based 
object synchronization to each of the connected 
clients (the number could be huge). Instead, 
these servers only send reliable object state 
change updates to relevant clients through 
Transmission Control Protocol (TCP) connections 
instead of User Datagram Protocol (UDP), so that 
no object state changes are lost. Character and 
object movements in MMO games (on both the 
server and client side) are also more predictable 
through deterministic path calculations and 
kinematics simulation, and they don’t require any 
dynamic rigid body simulation at all. This means 
less CPU power demand on the server-side for 
object simulation as well as smaller server-side 
bandwidth requirements for the changed object 
states that are synchronized to relevant clients.

We often hear of multiplayer games that 
claim to be MMO first-person shooters such as 
Sudden AttAck and croSS Fire. However, I believe 
that to be a misnomer for most of these games. 
Many MMOFPS games do feature persistent 
player statistics but there is no real persistent 

FPs games that aim to provide a persistant 
world like that found in the mmo EvE OnlinE 
can face steep technical hurdles when using 
traditional client-server architectures.



world similar to the ones provided by EVE OnlinE 
or WOrld Of Warcraft. Also, while their server 
farms can host thousands of simultaneous 
players playing inside hundreds of independent 
short game sessions, each short game 
session is only able to host a maximum of 32 
simultaneous players (16-player game sessions 
are actually the most common). Each of these 
short game sessions adopts a traditional client/
server architecture that employs a client-side 
authoritative simulation to minimize server load 
(with the game server acting only as a message 
relaying hub). This is why multiple server 
processes in these games can be arranged to 
run on a single server machine, resulting in 
a large number of game sessions that can be 
hosted simultaneously on a server farm with a 
relatively small number of hardware units. So as 
we can see, although thousands of players are 
able to play simultaneously with a persistent 
player statistic system, each battle can still only 
support a maximum of 32 players, which is not 
really a great technical innovation.

To create a truly massive multiplayer FPS, 
we have much harder requirements compared to 
other MMOs:

¬	 The	multiplayer	game	session	must	be	in	
real	time.

¬	 The	multiplayer	game	session	must	host	up	
to	256	simultaneous	players.

¬	 The	perceived	synchronization	latency	must	
be	minimal,	or	as	unnoticeable	as	possible.

¬	 The	multiplayer	game	session	must	be	
server-side	authoritative	to	avoid	any	
possible	client-side	cheating	and	world	
state	inconsistencies.

With these requirements in mind, is it still possible 
to create a multiplayer game that can host 256 or 
more players simultaneously while still running 
in real time? I believe the answer is yes, and the 
solution lies in distributing CPU and I/O load across 
multiple physical server systems with the help of 
a central coordinator. 

/ / / / /  A d d i n g  M o r e  Pl Ay e r s

Let’s visualize our MMOFPS server system as 
a distributed server cluster arranged in the 
following fashion (see Figure 1):

As shown in Figure 1, each Battle Server 
does authoritative simulation for those 
objects that are “owned” by that Battle Server. 
Each Battle Server is responsible for the 
player characters controlled by the clients 
connected to that server, as well as all the 
dynamically spawned objects requested from 
the connected clients. A Battle Server would 
authoritatively simulate dynamically spawned 
objects resulting from its server logic, as well 
as whatever statically configured objects are 
generated when it starts up. These are the only 

class Server
{
public:
 void Update(float elapsed)
 {
  typedef std::set<Client::ptr> Clients;
  Clients synchronizableClients;

  typedef std::map<ObjectId, ClientSet> ObjectClientsMap;
  ObjectClientsMap objectClients;

  // Build up a processed registry that has the information on
  // the set of clients that each object is relevant for (since
  // each object could be relevant for more than one client!)
  for (auto entry : m_clients)
  {
   const Client::ptr& client = entry.second;
   if ( client->ShouldSynchronize(elapsed) )
   {
    synchronizableClients.insert(client);

    ObjectSet& objects = client->GetRelevantObjects();
    for (auto object : objects)
   {
    ClientSet& clients = objectClients[object];
    clients.insert( client.GetId() );
   }
  }
 }

  // Serialize each object's state exactly once, and cache the object 
  // state data to each client that this object is relevant for
  // Note: only changed objects are serialized!!
  for (auto entry : objectClients)
  {
  ObjectId object = entry.first;
  ClientSet& clients = entry.second;
  if ( m_changedObjects.find(object) != m_changedObjects.end() )
  {
   Buffer buffer;
   Serializer ser(buffer);

   // Message ID
   MessageTypeParameter p0 = { MESSAGE_UPDATE_OBJECT };
   p0.Serialize(ser);

   // Object ID
   UpdateObjectParameter p1 = { object };
   p1.Serialize(ser);

   // Object State
   const DistributedObjectInterface::ptr& pobject =
    m_boundObjects[object];
   pobject->Serialize(ser);

   // Cache the state data on relevant clients
   for (auto client : clients)
    m_clients[client].AddCache(object, buffer);
  }
 }

  // Synchronize object state data cached on each synchronizable client
  for (auto client : synchronizableClients)
  {
   Cache& cache = client->GetCache();
   for (auto entry : cache)
    client->Send(entry.second, false); // unreliable
  }
 }

private:
 typedef std::set<ObjectId> ObjectSet;
 typedef std::set<ClientId> ClientSet;
 typedef std::map<ObjectId, Buffer> Cache;

 std::map<Cliental, Client> m_clients;
 std::map<ObjectId, DistributedObjectInterface::ptr> m_boundObjects;
 std::set<ObjectId> m_changedObjects;
};

www.gdmag.com 9

http://www.gdmag.com


GAME DEVELOPER   |   SEPTEMBER 201010

owned in-game objects that a Battle Server 
would need to simulate.

The server system itself is a client/server 
environment, where each Battle Server is a client 
connected to the central HUB Server. Within this 
server-side client/server architecture, each Battle 
Server acts like an authoritative object simulation 
client, and periodically tells the central HUB 
Server in real time what the latest object states 
are for those objects that are owned, and thus 
authoritatively simulated on the Battle Server. 
The central HUB Server maintains the latest 
copy of all the in-game object states reported 
in real time from each connected Battle Server. 
The HUB Server, at a predefined high frequency, 
then distributes the world object states to all the 
connected Battle Servers, with the exception of 
the objects owned by a given Battle Server. Each 
Battle Server, in turn, distributes the relevant 
object states to its connected clients, at each 
server’s predefined synchronization rate.

The central HUB Server maintains the object 
states for the entire world, but does not perform 
any kind of object simulation. Instead, it merely 
relays the world object states to other Battle 
Servers if those objects are not owned, and thus 
not authoritatively simulated on each Battle 
Server. Each Battle Server, similarly, will only 
simulate its owned objects and takes all the other 
non-owned world object states from the central 
HUB Server “as is,” and then relays the object 
states to its connected clients.

This way the CPU intensive world object 
simulation load is distributed to all the participating 
Battle Servers. The I/O intensive operations are also 
distributed across the Battle Servers, each of which 
only handles synchronization with its connected 
clients. In this new server architecture, the CPU and 
I/O load for each Battle Server does not increase with 
the number of clients and objects. Since one game 
session can now have more objects, the bandwidth 
consumption and synchronization overhead 
will increase for each Battle Server (but it's not 
proportional to the number of clients added). 
So if each Battle Server can host 32 players 
simultaneously, and it is theoretically feasible 
for a central HUB Server to handle 8 connected 
Battle Servers with a small overhead inside a 
LAN environment, then we could finally host 256 
players simultaneously in a real-time multiplayer 
game session!

Now that all the high-level concepts are laid out, 
let’s discuss some important implementation details.

/ / / / /  R E M OT E  O B J E C T  S PAW NI N G

The entire client/server framework is actually 
a hierarchical distributed object system, where 
each in-game object requiring some kind of 
synchronization should have a representation 
within it. Like all other distributed object systems, 
there is one master copy of each distributed 
object on the server side, while there is one proxy 

copy of the respective object on the client side. 
Both the server side and the client side can be 
authoritative on a given object no matter whether 
the object is the master copy or a proxy.

For the hierarchical distributed object system 
we are discussing, there is also only one master 
copy of each distributed object, which resides on 
the central HUB Server. If the central HUB Server is 
not present, i.e. the game is running on a traditional 
client/server setup, the master copy of each object 
would be residing on the individual Battle Server.

To achieve a consistent distributed object 
management mechanism, the central HUB Server 
acts as the ultimate distributed object spawner. 
Simply put, a distributed object that comes into 
existence during a game session starts from a 
master copy created by the central HUB Server. A 
distributed object is created via a request from one 
of the connected Battle Servers based on its object 
creation logic (such as automatically spawning a 
health pack at a given spot on the map). A request 
could also originate from a client (such as a client 
shooting a rocket from a rocket launcher).

When the central HUB Server receives a 
request from one of the connected Battle Servers 

to spawn a distributed object (probably together 
with its creation parameters), it first allocates a 
locally unique object ID not occupied by any exiting 
object, and creates the master copy of the object 
based on its creation parameters. Then it assigns 
the allocated object ID to the master copy of the 
newly spawned object. The central HUB Server also 
maintains a registry of which objects are spawned 
from which individual Battle Server requests, so 
it knows to distribute object states only to those 
Battle Servers that are not the original requestor.

Since both the central HUB Server and the 
connected Battle Servers keep all the distributed 
object states in the game session (each Battle 
Server would appear to its connected clients as if 
it were hosting the whole game by itself), the HUB 
Server can simply send out an object creation 
message to each connected Battle Server so 
that object proxies can be spawned at the Battle 
Server level. For the Battle Server that requested 
spawning of a new object, the HUB Server would 
turn on a flag saying: "The object is created 
per your request, and from now on, you are 
authoritative for the states of this object." When 
other Battle Servers receive an object-spawning 

struct DistributedObjectInterface
{

virtual void RetrieveCreationParameters(Buffer& prams) = 0;
virtual bool Serialize(Serializer& ser) = 0;
virtual void bind(ObjectId object) = 0;
virtual bool Invoke(Cliental client, const String& signature, const Buffer&  
 params) = 0;

};

FIGURE 1  The HUB Server, Battle Server, and client server hierarchy is shown.



message from the HUB Server, they create an 
object knowing they are not authoritative on the 
object (the authoritative flag would be turned 
off). They will only update the object states from 
the HUB Server “as is,” and will not perform any 
local simulation on the object. The central HUB 
Server-side unique object ID is embedded into 
the object creation message sent out to each 
Battle Server, and this ID will be used for later                            
state-synchronization.

The object creation requests from the 
connected Battle Servers and the actual object 
creation messages sent from the HUB Server are 
totally asynchronous—the Battle Servers send 
out the object creation request to the HUB Server 
and then forget about it. They only assume that an 
object creation message will be received later so 
an actual proxy can be created with a HUB Server 
unique object ID. The object creation requests 
could either be reliable or unreliable, but the actual 
object creation messages from the HUB Server 
to all the connected Battle Servers would always 
be reliable. An object creation request doesn’t 
have to always succeed based on game logic (a 
request for spawning a rocket could be lost), but 
if the HUB Server does receive such a request 
and creates a master copy, it has to be reliably 

reflected on all the connected Battle Servers in 
a consistent manner; in the end, all the Battle 
Servers should maintain the same set of objects, 
so their respective connected clients can have 
consistent gameplay. If an object creation request 
is important, the Battle Server should send a 
reliable request message to the HUB Server.

When the HUB Server receives an object 
creation request from one of the connected Battle 
Servers, it simply instantiates a concrete object 
with necessary parameters, probably through a 
conventional object factory mechanism. Careful 
readers will have already concluded that the 
distributed object system we are discussing 
features a deterministic object spawning 
mechanism. Object spawning on the central HUB 
Server is always by request—there is no implicit 
object spawning in this system at all!

Object deletion logic resembles that of object 
spawning in that it is always a Battle Server 
that sends a reliable object deletion request to 
the central HUB Server. When the HUB Server 
processes the deletion request, it deletes the 
master object, and an object deletion message 
will then be sent to all the connected Battle 
Servers so they can properly destroy their proxy 
copies, and the object deletion message will in 

turn be propagated to the relevant clients of each 
Battle Server. Object deletion requests from any 
Battle Server should always be reliable since it is 
an important event that cannot be ignored.

Objects inside the distributed object system 
must implement the same interface so they can 
be managed in a uniform fashion (see Listing 2).

The DistributedObjectInterface in Listing 
2 is the contract that every distributed object 
must keep in order for them to be successfully 
registered and managed by the distributed 
object system.

The RetrieveCreationParameter method, when 
implemented by a specific game object, retrieves 
the parameters necessary to create a proxy object 
that has valid starting states from the HUB Server 
(or a Battle Server, if it is in turn creating the 
second-level client-side proxy object remotely).

The Serialize method is used for automatic 
object state synchronization. Each concrete 
game object would implement this method so 
that a selected subset of the object state could be 
serialized. See Listing 1 for a typical use case.

The Bind method binds the unique object ID to a 
concrete proxy object after it is created remotely.

The Invoke method is used for Remote Method 
Invocation (RMI), which we will cover next.

www.gdmag.com 11

BUILD THE 
FUTURE!

MORE POSITIONS AVAILABLE:

• Player Investment Designer

• Lead Writer

• Lead UX Designer

• SDET Lead, Server

• Lead AI Programmer

• Senior Simulation Engineer

• Infrastructure Engineer

• Software Development Engineer in Test

• Lead Concept Artist

Send your resumé and/or
demo reel to JESSICA OWENS 
at jobs@bungie.com

www.bungie.net/jobs

The team that created HALO™ 

is going to change the world again. 

Be a part of it.

Micosoft and Halo are registered trademarks of the Microsoft group of companies. Portions © 2010 Microsoft Corporation. All rights reserved. Bungie, the Bungie Logo and the “Work at Bungie” logo are registered trademarks of Bungie, LLC. Graphic design © 2010 Bungie, LLC. 

NOW HIRING

Senior Server Programmer

Server Programmer

“Create and control some 

of the most load-intensive 

server-side game features the 

world has ever witnessed.”

            - Bungie Infrastructure

mailto:jobs@bungie.com
http://www.bungie.net/jobs
http://www.gdmag.com


game developer   |   September 201012

/ / / / /  O b j e c t  e v e n t  P r O Pa g at i O n

Besides automatic object state synchronization, 
there are also many kinds of game object events 
that need to be distributed across the entire 
hierarchical distributed object system. The object 
event propagation is achieved through Remote 
Method Invocation (RMI) on Battle Servers and 
clients, and relayed by the central HUB Server.

The RMI system is a natural extension to the 
traditional Remote Procedure Call (RPC) system 
that is applied in an object-oriented distributed 
environment. The RMI system is seamlessly 
embedded into the broader distributed object 
system discussed previously, which features 
deterministic object creation and deletion. 
Other distributed object systems may have an 
implicit create-by-call mechanism, but they are 
not suitable for our needs since we need this 
kind of determinism.

RMI is always object-oriented in that any 
remote method invocation is carried out on 
a distributed object. In local object method 
invocation, the context of the method invocation 
is the local object, whether it is a concrete object 
or a reference. In a distributed environment, 
however, the context is always remote, so 
the unique object ID comes into play to act as 
a remote object context moniker. The way a 
method is remotely invoked changes from its 
local form object.Method(params) to server.
InvokeRemoteMethod(client, object, signature, 

params) or client.InvokeRemoteMethod(object, 
signature, params). The server version bears an 
extra client argument because an RMI can be 
both unicast and multicast, but when a client 
invokes an RMI, it is always destined to the 
connected server. There can also be several 
server-side InvokeRemoteMethod variations to 
support both unicast and multicast RMI, which I 
leave to the readers to complete.

As mentioned, RMIs can only execute on the 
Battle Server and client side, while they are only 
relayed on the HUB Server. RMIs executed on the 
client side are mainly used for propagating events 
on the object proxies that are perceivable to the 
client side, while RMIs executed on the Battle Server 
side are for those object proxies that are owned by 
the specific Battle Server. If a client requests an RMI 
on an object residing on a Battle Server (client.
InvokeRemoteMethod(object, signature, params)), 
the receiving Battle Server only executes the RMI 
if it is authoritative on the object requested. If the 
Battle Server happens not to have ownership of 
the object requested, then it would not execute 
the RMI request locally; instead, it would forward 
the RMI request to the central HUB Server (battle.
InvokeRemoteMethod(object, signature, params)). 
When the HUB Server comes to process this RMI 
request from the Battle Server, it searches its object 
ownership registry and locates the owning Battle 

Server of the object in question. Then the HUB 
Server relays this RMI request to the owning Battle 
Server (hub.InvokeRemoteMethod(battle, object, 
signature, params)). When the Battle Server that is 
authoritative on the RMI-requested object receives 
the RMI request, it executes the RMI locally, which 
finishes the entire calling chain. The object states 
that were updated on the executing Battle Server, 
which is authoritative on its owned objects, will be 
synchronized to the HUB Server in the next Battle 
Server-to-HUB Server synchronization tick. Those 
object updates will then be propagated to other 
Battle Servers in the next HUB synchronization tick.

For illustration purposes, I simplified the 
prototype of InvokeRemoteMethod, which, in a 
production codebase, utilizes advanced C++ 
templates and Boost.Function features to achieve 
a typed variadic parameter marshaling. 

Like remote object spawning, RMIs are also 
completely asynchronous and one-way. They 
are used to trigger events without concern for 
possible return values. The result of an RMI to the 
server will be reflected back to the client through 
object state updates.

At this point, a good question may have arisen 
from curious readers: would the added hierarchy 
on the server side introduce extra lag? The answer 
is unfortunately yes. The server system would 
preferably be configured in a LAN environment 
using high capacity network connections, so 
the communication latency between the HUB 
Server and the connected Battle Servers would be 
negligible (around 1 millisecond (ms)) compared 
to the communication latency between a Battle 
Server and its connected clients. The major 
latency actually comes from the synchronization 
frequency for the communication between the 
HUB Server and the Battle Servers.

A Battle Server synchronizes its owned 
object states to the HUB Server at a predefined 
frequency, and this frequency is interlocked with 
the Battle Server’s tick rate. It is practical to have 

a Battle Server synchronize its owned object 
states to the central HUB Server at a rate of 20 
times per second. This means that the latency in 
reflecting an object state change on the owning 
Battle Server to the central HUB Server could be up 
to 50ms. A HUB Server would also distribute the 
world update states to relevant Battle Servers at 
a rate of 20 times per second, so the latency here 
could add another 50ms. So in the worst case, the 
server cluster would incur an extra 100ms of delay 
in addition to the normal client-to-Battle Server 
communication latency experienced by players.

The biggest impact of any lag is on object 
interaction across physical Battle Server processes 
on the client side. Here are some typical scenarios:

A Battle Server-owned client player shoots a 
remote player that is connected to another Battle 
Server. The remote player under this scenario 
merely appears to be a client with some extra 
100ms latency. There are existing server-side lag 
compensated hit detection techniques (like the 
one found in Counter-Strike) which would apply 
here. The tricky part is that we now have to deal 
with the hit in the hierarchical server environment.

When a local client player fires an instant hit 
weapon (including those weapons that fire bullets 
which could take some time to travel, but follow 
a deterministic path), the first level hit detection 
would be carried out on the player connected 
Battle Server. The Battle Server detects the hit 
by rewinding the object states it maintains back 
in time, taking into account player lag and the 
lag incurred by the server hierarchy, together 
with interpolation techniques. If the Battle Server 
detects a hit, but the hit target is an object that is 
owned by another Battle Server, the current Battle 
Server would send a hit RMI with necessary firing 
information to the HUB Server, which will in turn 
forward the hit request to the owning Battle Server. 
The Battle Server that owns the hit target would 
perform the same check, and if the hit is on the 

Counter-Strike employs server-side lag 
compensated hit detection techniques.



owned object, the respective object states will be 
updated (force applied, health decreased, etc.), 
and the updated states will be propagated to other 
Battle Servers on the next synchronization tick. 

A Battle Server-owned object “bumps” into a 
remote object owned by another Battle Server. 
Since the original Battle Server does not own 
the bumped target, it sends a “bump” RMI to the 
central HUB Server. The request is then forwarded 
to the owning Battle Server, which in turn 
processes the bump message in its authoritative 
physical environment. The bump target will then 
be updated if the bump is actual. Because a bump 
is bilateral (object A bumping into object B is 
also object B bumping into object A!), the original 
Battle Server would also receive a bump request 
from the remote Battle Server. It will then update 
the relevant object state should it decide a bump 
actually happened based on its local object states. 

A Battle Server-owned C4 charge explodes. On 
the owning Battle Server, it adds force to all the 
locally owned objects that are in the range of the 
explosion. For those objects that are not owned 
by this Battle Server but are also within the 
explosion range, it sends an explosion RMI on 
each of those potentially affected remote objects 
to the central HUB Server. The HUB Server then 
forwards the requests to their respective owning 
Battle Servers. Each owning Battle Server would 
then apply respective explosion effects to the 
affected objects (adding forces, etc.).

Of course, the above case analyses may 
not be 100 percent complete, but they at least 
give a good starting point on object interaction 
problems in the hierarchical server system, with 
the concern for added communication latency.

Note: Remote objects are not simulated at all 
on local Battle Servers and clients, so all remote 
objects appear in the local physical environment 
as “static” objects—they move according to the 
updates from a remote server. On the client side, 
it only performs a physical simulation on client 
controllable objects, and only does interpolation 
(no extrapolation at all!) on remote objects. By not 
simulating those remote objects locally on a Battle 
Server, we lower the CPU power consumption.

/ / / / /  e x c h a N gi N g  o w N e r s hi p

Now let’s briefly discuss how object ownership 
transfers from one Battle Server to another. In 
a game session, when an object owned by one 
Battle Server is somehow bound logically to 
an object owned by another Battle Server (for 
instance: a player connected to a Battle Server 
picks up a weapon dropped by another player 
connected to a different Battle Server), the object 

ownership is transferred to the binding object’s 
owning Battle Server to minimize latency and 
inconsistency issues.

Ownership requests are a special type of 
system message that are always processed on 
the HUB Server exclusively. Any Battle Server can 
claim ownership of a remote object through the 
HUB Server if the Battle Server’s game logic sees 
fit. The HUB Server would unconditionally respect 
the request and update the ownership registry. It 
would then send an ownership change message to 
the old owning Battle Server and the new owning 
Battle Server to confirm the ownership transfer. It 
is the game logic’s responsibility to prevent object 
ownership competition, and whichever Battle 
Server claims ownership of a remote object first is 
assigned ownership through the HUB Server.

/ / / / /  s e r v e r  s ta r t  U p

Finally, we can discuss how this hierarchical server 
cluster could be configured and bootstrapped, and 
a typical sequence for handling client connections.

We need to first understand that the server 
architecture we are discussing is still designed 
for short-sessioned real-time multiplayer games. 
We are lucky in that we don’t have to deal 
with issues such as dynamic load balancing, 
fault tolerance, and other concerns that are 
fundamental to normal MMO server architectures.

With that in mind, the server cluster startup 
sequence is fairly straightforward:

¬	 Due	to	the	added	complexity,	it	is	preferable	
for	the	server	cluster	to	be	started	by	a	
master	lobby	server,	rather	than	being	
started	up	by	individual	players.

¬	 There	is	a	server	spawner	process	residing	
on	each	physical	server	machine	in	the	
server	farm,	and	all	of	them	are	connected	
to	the	master	lobby	server.	

¬	 The	master	lobby	server	maintains	
information	on	which	physical	machine	is	
free	to	spawn	a	new	server	process	through	
information	advertised	by	each	connected	
server	spawner	process.

¬	 Game	clients	always	connect	to	the	lobby	
server	first,	and	a	client	can	decide	to	start	
a	new	game	session	with	a	HUB	Server	
involved.

¬	 Per	client	request,	the	lobby	server	picks	
a	free	server	machine	based	on	the	
information	advertised	by	the	connected	
server	spawner,	and	first	notifies	the	
spawner	to	start	a	central	HUB	Server	on	a	
preconfigured	port.

¬	 The	lobby	server	then,	based	on	the	total	
number	of	players	requested	in	a	game	
session	and	the	maximum	number	of	
physical	clients	that	can	be	supported	for	
each	Battle	Server,	picks	the	right	number	

of	free	server	machines,	and	requests	
them	to	spawn	one	Battle	Server	on	each	
machine.	At	the	same	time,	the	lobby	
server,	through	the	respective	spawners,	
gives	the	HUB	Server’s	IP	address	and	port	
number	to	the	newly	spawned	Battle	Server	
processes,	so	each	Battle	Server	could	then	
connect	to	the	central	HUB	Server.

¬	 The	lobby	server	then	advertises	the	least	
connected	Battle	Server	IP/port	information	
to	each	new	client	requesting	to	join	the	
game	session,	so	new	players	will	be	
added	to	the	game	session	in	a	round	robin	
fashion	(i.e.	static	load	balancing	during	
bootstrapping).

¬	 The	lobby	server	will	coordinate	the	game	
session	start	once	all	the	connected	clients	
are	ready.

¬	 The	spawned	Battle	Servers	will	communicate	
server	status	to	the	lobby	server	through	
the	server	spawner	residing	on	the	same	
server	machine,	while	in-game	messages	
are	only	communicated	among	connected	
clients	and	the	central	HUB	Server.

This concludes the server cluster startup sequence 
in a typical use case; other sequences are possible 
based on specific needs and configurations.

/ / / / /  p U s hi N g  t h e  Li mi t s

At the beginning of this article, I mentioned 
client-side authoritative simulation as an 
alternative means to offload server load (with 
pros and cons). It is actually feasible to combine 
client-side authoritative simulation and the 
server architecture discussed in this article to 
potentially achieve even better results, but I’ll 
leave the brainstorming to interested readers.

As you can see, with the innovative server 
architecture discussed in this article, we could 
theoretically achieve a much higher number of 
simultaneous players in a real-time multiplayer 
game session. I hope this article will provoke 
some brilliant ideas to further push the limits 
of real-time networking in games, just as we 
have always pushed the limits of graphics, AI, 
animation, and physics. 

LiN LUo has many years of professional experience in the 

field of multiplayer networking programming. Email him at 

lin.luo@live.com.

Unreal Networking architecture
http://unreal.epicgames.com/Network.htm

source multiplayer Networking
http://developer.valvesoftware.com/wiki/
Source_Multiplayer_Networking

www.gdmag.com 13

mailto:lin.luo@live.com
http://unreal.epicgames.com/Network.htm
http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
http://www.gdmag.com
http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking


Download a free copy of Perforce, no questions

asked, from www.perforce.com. Free technical support is

available throughout your evaluation.

The Perforce Plug-in for Graphical Tools, P4GT, makes version control

painless by seamlessly integrating Perforce with leading graphical tools.

Drop-down menus allow access to Perforce from within 3ds Max, Maya,

Softimage XSI, and Adobe Photoshop.

Art and development teams can standardize on Perforce to version and

manage both source code and digital assets. Enhanced collaboration

during the design process helps teams to work together in real time to

release small patches or create whole new worlds.

P4GT is just one of the many productivity tools that comes with the

Perforce SCM System.

Introducing P4GT,
a productivity feature of Perforce SCM.

P4GT

Perforce Fast Software Configuration Management

All trademarks and registered trademarks are property of their respective owners. Adobe screen shot reprinted with permission from Adobe Systems Incorporated.

Perforce_SpaceS_GameDev_HI

http://www.perforce.com


www.gdmag.com 15

C
h

r
i

s
 

P
r

u
e

t
t

http://www.gdmag.com


game developer   |   September 201016

/ / / / /  s ta r t i n g  s i m pl e

I got my start in the industry writing Game Boy Advance games. Back then, 
our idea of playtesting was pretty straightforward: we would get some local 
kids to come in, hand them a special GBA that was hooked up to a VCR, let 
them play for a bit, and then go back and review the tapes. This procedure 
yielded immediate, dramatic bugs. Areas that the team took for granted were 
often sources of tremendous frustration for our testers. When a member of 
the target audience fails continuously in a specific area, it is usually a clear 
message that something needs to be fixed. A couple iterations with real live 
kids and the side-scrollers we were making would be vastly improved.

Nowadays, I work on and advocate games for Android phones. My first 
Android game, Replica island, is a side-scroller, not so different from the 
GBA games I was making ten years ago. But some things have changed: 
I’m no longer working for a game studio; I wrote Replica island on my own, 

with the help of a single artist, 
mostly on my free time. I also 
no longer have access to a pool 
of young playtesters, and even 
if I did, my target audience is 
a bit older. Finally, there’s no 
easy way to record the output 
of a phone while somebody is 
playing—the only way to really 

see what’s going on is to stand over their shoulder, which is awkward and 
can influence the way the tester plays.

What is an indie phone game developer to do? As I reached feature 
completeness for Replica island, I realized that I really had no way to 
guarantee that it was any fun. The game had been developed in a vacuum, 
and I needed to get more eyes on it before I could feel confident releasing it.

The first thing I tried was user surveys. I put the game up on an internal 
page at work and sent out an email asking folks to play it and give me 
feedback. I even set up a feedback forum with a few questions about the 
game. This approach was pretty much a complete failure; though many 
people downloaded the game, very few (less than 1 percent) bothered 
to fill out my five question survey. Those who did fill out the survey often 
didn’t provide enough information; it’s pretty hard to tell if “game is too 
hard” indicates a failure in the player controls, or the level design, or the 
puzzle design, or the tutorial levels, or what.

t hi n k i n g  a b o u t  m e t r i cs

After that setback, I remembered reading about the player metrics system 
Naughty Dog developed for the original cRash Bandicoot. The system wrote 
statistics about play to the memory card, which could then be aggregated 
offline to find areas that took too long or had a high number of player 
deaths. These problematic areas were reworked, and the data was also 
used to tune the dynamic difficulty adjustment system in that game. One 
of the most interesting principals that fed into the design of this system 
was Naughty Dog’s idea that the game over screen must be avoided at all 
costs. Their end goal was to remove “shelf moments,” moments in which 
the player got stuck and could not continue.

I thought this was a pretty cool idea, but I wasn’t sure how feasible 
it would be on a phone. I asked around a bit to see what the current 
state of metrics recording is on big-budget games, and found that many 
companies have some way to report statistics about player actions. 
Several people told me that while they collect a lot of information, they 
have trouble parsing that data into results that suggest specific design 
changes. On the other hand, some studios have tools that can recreate a 
player’s path through a level, and produce statistics about which weapons 
users prefer, which enemies are particularly tough, and which parts of the 
map are particularly visible. It seems that collection of player metrics is 
applicable to a wide variety of games, but that it only benefits the studios 
who also take significant time to build tools to crunch all the data that 
they collect. (For an example of how this kind of system can be taken to 
the extreme, see Goerg Zoeller’s talk about the crazy system they have at 
BioWare.) It turns out that collecting the data is the easy part—rendering it 
in a way that is useful for designers is much harder.

That sounded discouraging, as my goal was to keep my tool chain as 
simple as possible. But I decided to experiment with some metrics recording 
anyway, starting with just a few key metrics. My Android phone didn’t have 
a memory card, but it did have a persistent internet connection. Maybe, I 
thought, I could log a few important events, send them to a server, and get 
results from players that way. My goal was to try to understand as much as 
possible about my players while keeping the system as simple as possible.

t h e  b a s i c  s y s t e m

The event logging system that I wrote has three parts: a thread in the game 
runtime that collects player events and sends them to a server; the server 
itself; and finally a tool to parse the data recorded by the server. “Server” is a 
strong word in that second component. My server is actually a PHP script that, 
in about 30 lines of code, validates the HTTP Get query it is sent and writes 
the results to a MySQL database. The query itself is dead-simple: it’s just an 
event name, level name, xy location, version code, session id, and time stamp. 
These fields are recorded to the database verbatim. The actual processing of 
the data is also done in PHP (a poor choice, in the long run; more on that later), 
though only on demand when a special dashboard page is loaded. 

I started with just two events: player death and level completion. Each 
time a player dies or completes a level, the game reports that event to the 
server. From this data, I was able to construct a pretty detailed overview 
of the game flow. I could see which levels took the longest, which had the 
most deaths, and which were unusually short. By dividing my values by 
the number of unique players, I could also see what percentage of players 
died on certain levels, and the average number of deaths for each player. 
By looking at the spatial location of the event, I could tell the difference 
between a death from an enemy and a death from a pit. As a first-pass 
implementation, my simple metrics system proved to be pretty detailed.

hi gh li gh t i n g  Fa i l u r e  i n  b r i gh t  r e d

Once I had the basic reporting system up and running, I released an 
update to my testers and watched the data flow in. Very quickly, patterns 
emerged; there were some levels where almost 100 percent of players 

There’s noThing like waTching somebody else play your game. over the course of development, you’ve played the game daily, 
and have, perhaps unconsciously, developed a particular play style. but putting your work into the hands of a novice gives you a 
chance to see what happens to your design when it’s played without the benefit of daily practice. every collision pop, animation snap, 
confusing tutorial message, and intermittent bug seems amplified when a beginner plays. no matter how much you polish or how 
many bugs you fix, your play style and intimate familiarity with the content can bias you away from problems that other users will 
immediately encounter. That is why playtesting is a vital part of making a good game. in order to truly get the most from playtesting, 
you’re going to have to take some data from these sessions—this article chronicles my experience with gathering gameplay metrics.

Replica island.



www.gdmag.com 17

Heat maps generated from player death 
statistics in Replica island.

http://www.gdmag.com


died at least once, and other levels in which players were getting stuck 
for hours (indicating a pretty major failure for a level designed to take five 
minutes). Just by looking at the numbers, I had a clear picture of which 
levels needed the most work.

But identifying problematic levels wasn’t enough. Sometimes I couldn’t 
tell why a particular level was a problem.

So I went a step further. Using the same data, I wrote a tool to plot the 
death positions on top of the level art so that I could see exactly where users 
were dying (and where they were not). The first pass of this system just 
drew a little dot on the level art when a player died, but once the number 
of players grew to be large, I switched to rendering heat maps of death 
locations over the levels, which was much easier to read (see sidebar).

G A M E  D E S I GN  FA I L U R E S  A S  O B J E C T  L E S S O N S

The combination of high-level play statistics and plotted death locations 
was illuminating. I learned, for example, that a huge number of players 
were dying at the very first enemy. This was not because the enemy was 
particularly hard; after considering the problem, I realized it was because the 
enemy appeared in a spot where the main attack—a crushing butt stomp, 
performed from the air—was difficult to accomplish due to a low ceiling. 

I also learned that my simple dynamic difficulty adjustment system 
needed adjusting itself. This system secretly increases the player’s life 
and flight power after a certain number of consecutive deaths, and by 
looking at the data, I could see that it needed to kick in a lot earlier.

I also made sweeping changes to my level geometry. I had a few levels 
with very high completion times but very few deaths, and I realized that 
players were simply getting lost. I reworked these levels to make the paths 
through them clearer; in one or two cases, I scrapped an entire level and 
made a new one from scratch.

But the biggest problem that I identified was with pits. REPLICA ISLAND 
is a platformer, and as you can guess, it involves a lot of jumping over pits. 
But unlike certain spinning marsupials and pipe-dwelling plumbers, my 
character’s main mode of transport is flight. I needed a control system 
that did not require a D-pad, so the protagonist in REPLICA ISLAND, the green 
Android robot, flies using rocket thrusters on his feet. The basic movement 
model involves getting momentum up while on the ground before jumping 
into the air and using that momentum, along with the thrusters, to fly 
around. The thrusters run out of juice quickly but refill when you land, so 
the idea is that a player will jump into the air and then carefully expend his 
fuel to reach distant ledges or line up a precision butt stomp.

All that is well and good, but when I looked at the death data coming 
back from my playtesters I found that they were dying in bottomless pits 
en masse. Droves of players were falling down even the smallest of holes. 
And of even greater concern, the death-by-pits numbers did not decrease 
over the course of the game; players were not getting better at making 
jumps as time went on.

With this information in hand, I reviewed my core game and level 
design and came up with a number of theories. The basic problem, I 
decided, was that players could not see the pits they were jumping over. 
First of all, there was no visual indication that a pit of death is a pit of death; 
since my levels are often very tall, it’s hard to tell which pits lead to some 
underground level segment and which lead to a grisly demise. Second, and 
most important, my camera was not doing a good enough job of keeping 
the floor visible when the player jumped into the air. Almost as soon as 
the player leaps into the air the ground would scroll off the bottom of the 
screen, making it hard to judge where to land. 

Master platformers like SUPER MARIO BROS. almost never scroll 
vertically; Mario has a whole set of complicated rules dictating which 
specific circumstances allow the camera to move up and down. In REPLICA 
ISLAND, however, the flight mechanic meant that I had to allow vertical 

scrolling in the general case. After a bunch of tweaking, I came up with a 
smarter camera that does not begin to scroll vertically unless the player is 
close to leaving the visible space themselves.

After making these changes, I shipped another update to my beta 
testers and compared the results to the previous version. The deltas were 
very reassuring; deaths were down overall, level completion times were, 
for the most part, back into normal ranges, and pit deaths dropped by a 
pretty huge margin. I iterated several more times with these testers before 
I was ready for release, but with the metrics reporting system in place, it 
was easy to see whether my changes were having an influence on how my 
testers were playing.

H E LLO  W O R L D

After several iterations with my test group, my graphs started to align to 
the bell curve I was looking for. It was time to ship the game, and I decided 
to leave the metrics system in place. I wondered if the data I collected from 
live users would look different from the data produced by my test group. 
There was only one way to find out.

GAME DEVELOPER   |   SEPTEMBER 201018

Generating heat maps isn’t hard, 
but information on the exact 
procedure can be hard to find. 
I used a method similar to the 
one described here: http://blog.
corunet.com/how-to-make-heat-
maps

The basic procedure is as follows:

× Prepare a grayscale image of 
a circle that goes from black in 
the center to transparent on the 
edges in a radial gradient. This is 
your event spot image.

× Prepare a color gradient image. 
The bottom should be white, or 
red, or whatever color you choose 
to indicate “most intense” on the 
heat map. The top of the image 
should be black, and with several 
other colors in between. This 
image will be used as a lookup to 
colorize your output later.

× Generate a list of event 
positions. 

× Calculate the maximum 
number of overlapping data points 
(i.e. the number of events that 
occurred at the most common 
xy position). This is the value of 
maximum heat.

× For each unique location on 
the event list, draw the spot 
image to a canvas at the location 
of the event. Draw the image 
at ((number of events at this 

location) / (maximum heat) * 
100%)) opacity. Use the multiply 
transfer mode (src * dest) to 
blend each spot to the canvas.

× When finished, you should 
have an image with a bunch 
of black spots on it of varying 
shades of darkness. This is the 
intermediate output image.

× Take the output image and 
remap its color table using the 
gradient image. Take the alpha 
value of each pixel and use it to 
look up a Y offset in the gradient 
image to find the color value for 
that pixel. 

× Take the resulting image and 
blend it over your level art. The 
event hotspots in the level will be 
shown as colored areas, with the 
intensity of color increasing in 
areas where more events occurred.

When doing this work, make 
sure that you keep your color 
space (particularly the opacity 
calculation in step 5) within 
r eg u la r  8 - bits - per- cha n nel 
ranges (or consider using a 
format that supports floating 
point pixels).  It  is easy to 
introduce precision bugs that 
will only manifest when there 
are so many data points that the 
contribution of a single event 
falls below 1 percent. Tools like 
ImageMagick (see Resources) 
can help you do this.

http://blog.corunet.com/how-to-make-heat-maps
http://blog.corunet.com/how-to-make-heat-maps
http://blog.corunet.com/how-to-make-heat-maps


Of course, any time an app reports data back to a server, it’s best to 
let the user know about it. The first time REPLICA ISLAND is launched, a 
welcome message appears that details the latest game improvements. 
That message also informs the user that anonymous, non-personal play 
data will be uploaded to a remote server in order to improve the game, and 
that players who do not wish to participate may turn the reporting system 
off in the options menu. This approach seemed like the best solution: 
though the code is open source and anybody can look at the content of 
the data packet itself (and I ensured that nothing about the metrics data 
can be tied to any specific user or device), allowing users to opt-out gives 
them an opportunity to say “no thanks.” By comparing my Android Market 
installs with the number of unique users reporting in, it looks like less than 
20 percent of my users chose to opt out of metrics disclosure.

As a result, I have a huge amount of data now—over 14 million data 
points, close to a gigabyte of event information generated by my user base 
(which, as of this writing, is about 1.2 million players). In fact, the volume 
of data broke my data processing tools pretty quickly; I have a snapshot 
of statistics from the first 13,000 players (which I have published on the 
REPLICA ISLAND website—see Resources), but after that, a lot of my tools 
failed. The good news is the first 13,000 players produced aggregate data 
that was very similar to the smaller test group, which probably means that 
the test group results can be applied to much larger groups of players.

S O M E H O W,  T HI S  PL A N  W O R K E D  O U T

I have been extremely satisfied with the event reporting system in REPLICA 
ISLAND. For very little work, almost no cost (the server back end that records 
events costs less than an Xbox Live account), and using only two types of 
events, I was able to quickly and effectively identify areas where players 
were having trouble. Furthermore, once I started collecting this data, I was 
able to compare the aggregate result of my metrics between versions, 
which made it easier to see if my design changes were effective.

Using PHP and MySQL as my back end server language was a good 
choice; the actual recording of events is so trivial that I’m sure any 
language would have worked, but with PHP, the whole server took less than 
30 minutes to put together.

Using a separate thread to report events from the game was a good 
move as well. I didn’t want any sort of UI to block HTTP requests, and 
moving the web communication to a separate thread made sense, but I 
initially had some concerns about overhead. I needn’t have worried; the 
overhead is so small, I can’t even get it to show up in my profiler.

Finally, keeping the system as simple as possible was a really positive 
decision. I considered a lot of potential event candidates, but for my game, 
tracking player death and level completion provided more than enough 
information. More statistics would have complicated the processing of the 
data, and possibly made it harder to reduce the feedback to a concise view. 
Now that I’ve had some experience with automatic metrics reporting, I’ll 
probably increase the volume of data that I send back in the future, but 
starting simple was definitely a good move.

B U M P S  A LO N G  T H E  WAY

Not everything about the event reporting system worked out well, however. I 
made a few decisions that ultimately turned out poorly, or just wasted time.

The decision to use PHP for the reporting server was a good one. It 
was a mistake, however, to use PHP to do the processing of the data. My 
idea had been to do everything via a web dashboard (I even wrote my level 
editor in PHP and Javascript), but PHP fell down hard when the amount of 
data I needed to manage exploded. PHP runs in pretty strict memory and 
speed requirements, and I found myself hacking around these limitations 
almost immediately. Once I passed 20,000 users, most of my PHP-based 
tools simply stopped working.

Bitmap processing was particularly painful in PHP. I did all of the heat 
map generation in PHP, but I should have just written something that could 
run locally instead of on a web server. I ran into a number of bugs in the PHP 
GD interface (compositing bitmaps with alpha is pretty broken), and ended up 
having to reduce the size of my level art images in order to do the processing. 
For this article, I rewrote this tool using Python and ImageMagick, and the 
results are far superior. I've provided the code for this implementation, which 
can be found at www.gdmag.com/resources/code.htm

Finally, though this data tells me all about where players die and how long 
it takes them to complete levels, it doesn’t help me identify shelf moments that 
are not related to death. I ended up shipping with a few key level design failures 
that my metrics never caught; in the most egregious case, players get stuck 
at a puzzle where they do not understand how to progress, and end up giving 
up before they complete the level. This never shows up in my metrics because 
an event condition is never reached; I only learned about it when users started 
complaining about being stuck in the same spot. Automatic metrics are super 
useful, but they can’t show you a complete view of the game. In my case, the 
metrics were good at finding problematic level layouts but were particularly 
ineffective at identifying design failures related to rule communication. 

T H E  F U T U R E

For my next game, I’ll definitely employ automatic metrics reporting again. 
In addition to death positions, I may add events based on different forms 
of death; it’d probably be useful to know how exactly a player died, not just 
where. And, depending on the game, it might be useful to report a history of 
positions before the death so that an individual player’s path through a level 
can be traced. However, the key to this kind of system is simplicity; collecting 
data isn’t useful unless I also have reliable tools to process it later. For the 
next title, I’ll probably leave the basic reporting and storing mechanism alone 
and focus most of my time on writing better tools for crunching the numbers.

I’m also wondering whether aggregated output from this form of player 
metric can be used to inform runtime dynamic difficulty systems. If the 
game were capable of reading aggregated output back from a server, it 
could change itself based not only on the play of a single player, but on the 
average habits of millions of players. The availability of this data opens up 
all sorts of interesting possibilities.

Player metrics are not a perfect replacement for user testing, but they 
are a pretty useful approximation. And because they allow you to test a 
much larger group of users than would be possible with individual testers, 
metrics can tell you more about your game in the long run. The cost to 
benefit ratio was extremely positive for REPLICA ISLAND; by keeping the 
runtime and server dead simple, I learned much about my level designs 
and the habits of my players, and my game got a lot better as a result. My 
only regret is that I did not employ this kind of system on earlier games—it 
seems applicable to pretty much any genre on pretty much any platform. 

CHRIS PRUETT is a game developer advocate at Google, focused on Android. Under the 

cover of night he writes indie games and blogs about horror game design. The views 

expressed in this article are his alone and not those of his employer. Chris lives in 

Yokohama, Japan with his wife and daughter.

WWW.GDMAG.COM 19

Goerg Zoeller’s BioWare telemetry talk
http://gdc.gulbsoft.org/talk

Replica Island player metric snapshot
http://replicaisland.net/index.php?view=en/player_metrics.php

ImageMagick
www.imagemagick.org 

http://www.gdmag.com/resources/code.htm
http://gdc.gulbsoft.org/talk
http://replicaisland.net/index.php?view=en/player_metrics.php
http://www.imagemagick.org
http://WWW.GDMAG.COM


game developer   |   September 201020



www.gdmag.com 21

After working for yeArs 
on licenses like Star Wars, 
Star Trek, and Marvel, the 
team at Raven Software 
decided it was time to 
return to our roots: to 
create an original IP as we 
had with games like Hexen, 
Heretic, and Soldier of 
fortune. A new license is 
not an easy proposition 
due to the much larger 
budget. Today’s games 
often require teams of 
more than 70 people; 

compare that to the less 
than 15 people we had 
when Raven first began. 
We knew we would have 
to create a great prototype 
to convince Activision 
to give us our shot, and 
that this would take some 
“under the radar” work. 
We put together a small 
team and had them work 
for three months behind 
the scenes, creating a 
demo that encapsulated 
the core concepts of 

Singularity. When it was 
done, it looked better than 
we had hoped. We were so 
confident in the prototype 
that we set up a meeting 
with upper management 
and sat them to down to 
demo our vision. We turned 
off the lights and showed 
them the game. There was 
nothing but silence. We 
thought it was all over; our 
hopes for creating a new IP 
were dead, and Activision 
management was going 

to lynch us for wasting 
their time. But when the 
lights came back up, we 
were surprised to find that 
they loved it—they wanted 
to see this game get 
made. We left Activision 
confident the toughest 
part was over. Naturally, 
that wasn’t the case. As 
we began our journey 
creating Singularity, we 
discovered a new IP brings 
out challenges from all 
directions.   >>>

B y  R o B  G e e ,  B R i a n  R a f f e l ,  S t e v e  R a f f e l , 
G u S t a v o  R a S c h e ,  D a n  v o n D R a k ,  a n D  J o n  Z u k

http://www.gdmag.com


game developer   |   September 201022

[ W h a t  W e n t  r i g h t ]

1 )  F o c u s  o n  g a m e p l a y  W i t h  r e u s e  o F  a s s e t s .  The initial 
Singularity prototype team comprised a small number of experienced 
developers along with a group of enthusiastic new hires working together 
under a tight deadline to prove out a new game concept. This smaller team 
structure inspired better communication and allowed for quicker feedback 
and iteration time. Almost daily reviews allowed us to track our progress, 
and gave everyone on the team a chance to contribute ideas and provide 
constructive critiques. The smaller, more agile team allowed us to try things 
that we wouldn’t have been able to do with a larger team, like changing 
direction easily and quickly.

At the center of Singularity is the TMD (or Time Manipulation Device) 
and the time shifts that transport the player between the past and present. 
The TMD primarily allows the player to control the age of specific objects 
in the game. These ideas were the genesis of the game and came on-line 
early in the design and development prototype. It was our main “hook,” and 
in order to prove out the mechanics for it in terms of puzzles and combat, 
we decided we needed to create examples of each TMD function in order to 
get a handle on the final gameplay possibilities. These functions included 
removing barriers to create new paths, discovering hidden assets (that 
old rusty barrel could be “renewed” and used in battle), and using time 
manipulation directly against enemies in combat. 

The short development time required that we be creative when using 
pre-existing assets from previous Raven games, and to really pick our 
battles when it came to creating new assets and code. We chose an engine 
we were familiar and comfortable with as well as models and textures we 
had created in previous games to quickly dive into gameplay creation. A 
large gun from another project was used as a TMD stand-in and music from 
appropriate film scores was inserted as placeholder to set the mood. Most 
of the new assets were created to demonstrate the effects of the TMD and 
the different time periods on the environment.

2 )  s W i t c h i n g  t h e  p e r s p e c t i v e  b a c k  t o  F i r s t - p e r s o n . 
Singularity shipped as an FPS, and the initial demo was an FPS as well, 
but at a certain point, the decision was made to investigate the game’s 
potential as a third-person shooter (see the what went wrong section for 
more on this). After working with various third-person camera systems, 
alongside art assets and gameplay design, as well as animation, rigging, 
and so forth, we decided to return to the first-person camera system used 
in the prototype. This decision was a hugely positive change, allowing us 
to greatly reduce the number of development challenges we faced. It also 
allowed us to take advantage of our collective decades of FPS development 
experience, while focusing on a smaller set of robust features instead of 
a wider range of shallower features. With the challenges of creating and 
shepherding a brand new IP, defining and developing a new range of time 
manipulation gameplay, learning a new engine and tools (Unreal), and 
ramping up a third development team at Raven, the challenge of making 
a third-person game on top of everything else was just one risk too many.

The first-person camera returned the focus of the game back to the TMD, 
instead of on the main character. We figured that the best way to use our 
limited development time was to reduce our scope and depth while achieving 
higher quality. We stopped spending time trying to perfect a third person 
camera or a main character with a full set of interactive animations. Instead, 
we put our efforts into presenting the TMD as our main character, and put 
more attention and detail to time-manipulating dynamic objects and enemies, 
environmental time shifts, and creating a completely immersive environment 
to bring the setting and back story of Singularity to life. 

3 )  s h o r t  t e r m  g o a l s  W i t h  p u r p o s e .  The first playable build is 
generally where everything is figured out—all the main features of the 
game are functional, and a vertical slice of the game can be shown in a 



www.gdmag.com 23

polished state. From a solid first playable build, 
everyone should know to “just do more of that” 
and build the rest of the game. One issue with 
getting to that milestone is the distance from 
the prototype phase. When a project is longer 
than two years, six months can pass before the 
game needs to be shown again. To keep the team 
moving forward, we needed to set some short 
term goals.

The first thing we did was sit down and hash 
out a plot for the rest of the game and nail down 
what levels we wanted. The team was forced 
to wait this out for a week or two but it was an 
important foundation. From there, we split the 
team into two separate groups and gave each of 
them a level with a goal to have it planned and 
blocked out in two weeks, refined in another 
two, and ready for polish in a few after that. We 
thought that this would flow gracefully into the 
next set of levels. The plan from there was to 
choose the best section of the game, add a little 
polish, and show off our vertical slice. Although 
production had a long term plan for the whole 
project, we kept the team thinking more about the 
next few weeks ahead of them.

As we worked through this plan for the next 
few months, an opportunity arose to possibly get 
a major magazine cover. This was great because it 
would let people know what the game was about, 
build buzz, and generally just get the game into 
people’s consciousness. Because we had the 

team operating on short term goals, it was easy to 
adjust and insert this new goal into the pipeline.

We decided to continue working on normal 
production but peeled some people off to add 
polish to the Freighter level for our presentation 
to the magazine. We worked for a solid four or five 
weeks to tighten up game mechanics, optimize 
the level, work on the HUD, and more. At the end 
of that time period, we presented the game to the 
magazine and found out a few weeks later that 
we would get the cover. Having that short term 
goal with a solid purpose (get magazine cover) 
really spurred the team into action.

4 )  F o c u s  o n  P l ay e r  e x P e r i e n c e .  When 
Singularity went into its final phase of production, 
we focused on the player experience, making sure 
the player felt attached to the world around them. 
We removed almost all third-person cutscenes, 
and replaced them with first-person moments. It 
was important to us that the player felt the story 
and events were happening to them. 

To that end, we removed the main character’s 
voice entirely. The voice was in the game for 
some time, but there were a couple problems 
with this. The biggest was the “disembodied 
voice talking to you” factor. It was hard for 
people to understand that it was the main 
character talking, and we’d see focus testers 
looking around as the voice played, wondering 
where it came from—we even caught ourselves 

doing it from time to time. Plain and simple, it 
was just awkward. 

We also decided to insert bigger action 
moments to help pace out the slower story-driven 
areas and TMD puzzles areas. These included 
areas like “the escape” at the end of the first level, 
where your hands are bound and you’re being 
hunted down. There were other areas like the 
“Rescue Kathryn” chase, “the Grom” (a big boss) 
throwing you around in a train car and fighting him 
on the bridge later—all of these were created so we 
could spike our intensity pacing at select points in 
the game. 

5 )  F P s  v s .  T h i r d - P e r s o n  M u lT i P l ay e r . 
Singularity’s multiplayer pits soldiers against 
creatures. One of our goals was for the creatures 
to control and play as though they were in a third-
person action adventure game, while the soldiers 
would play in typical FPS fashion. The creatures 
had a pulled out third-person camera, melee 
moves, and special attacks. In essence, we were 
pitting two totally different game types against 
each other in asymmetric combat. 

This was a challenging undertaking with a fair 
share of hurdles, but the result is fun and unique 
and in the end, proved to be successful. The main 
contributor to this success is the fact that part 
of the production team had just come off a third-
person action game—Wolverine: uncaged. We 
were able to leverage a good amount of existing 

http://www.gdmag.com


game developer   |   September 201024

technology and expertise from that project, 
including several important tools for creating 
character moves and melee attacks, to quickly 
get a proof-of-concept up and running. This 
allowed us to quickly gauge how successful this 
feature would be.

From there, we went about actually designing 
the game mechanics and match modes. Creatures 
were picked from the single player portion of the 
game. Each creature is unique, so a great deal 
of thought went into what defines the class, and 
what its abilities and attributes would be. 

On the FPS side, we designed four soldier 
classes to each have their own TMD power. 
Considering the asymmetric nature of the combat, 
and how hard (or impossible) it would be to achieve 
true balance, we decided early on to go with a two 
round match. The teams switch sides from round 
to round, giving players a shot at each scenario. 
This allowed us some wiggle room in terms of how 
truly balanced the factions are against each other. 
The biggest fear was that no matter how balanced 
we were able to make it, the chance would still be 
there for players to find exploits and tip the scales 
toward one faction or the other. The two round 
matches eliminate that chance, and keep the game 
fresh and interesting. 

[ W h a t  W e n t  W R O n G ]

1 )  n O t  e n O u G h  f O c u s  O n  s t O R y 
O R  a d d i t i O n a l  G a m e p l a y  b e y O n d 
p R OtOt y p e .  Since the prototype was primarily 
intended as a proof of concept of the TMD, not 
as much time as we had hoped was put into 
developing the story and supporting fiction 
beyond some general points. We knew what type 
of gameplay we wanted and that the game would 
involve a storyline that jumped between two time 
periods, but we were too short on specifics such 
as characters, creatures, key locations, etc. This 
made for a difficult transition into pre-production 
as people came off other projects and Singularity 
ramped up rather quickly. 

Also, when we had the main character Renko’s 
voice in the game, it was really difficult to find the 
right voice actor, and to nail the dialogue. We tried 
a number of variations; Renko always seemed to 
come across in a negative way—too funny, too 
cocky, too serious, or too whiny. Once we removed 
his voice, we had the new challenge of rewriting 
the dialogue for other characters, since they had 
no one to play off. But overall, dropping his voice 
really helped the player experience and made the 
moments in the game more impactful to the player.

2) indecisiOn and bluRRy VisiOn. Singularity was 
not only an important title for Raven—Activision 
had a big stake in the game as well. There were 
many different ideas from all sources in terms of 
what would make a triple A hit. As mentioned in 
“right” number 2, one thing that came out of early 

focus testing was the idea of making Singularity 
a third person shooter. Other popular games had 
moved in that direction, so we took a long look at it. 

When we finally got a prototype of the game 
running this way, it was accepted internally and 
at Activision, but there were still some questions 
regarding whether or not this was the right move 
for the game. We had a gut feeling that sticky 
cover wasn’t the right “fit” for Singularity, but at 
the time, we weren’t exactly sure why. 

We knew it felt better to play our original 
prototype than our current game, and we began 
to compare differences. It was a really tough 
time of reflection for us, but ultimately, we came 
to the conclusion that all the changes we made 
to the game design during early pre-production 
left us with an assorted mix of semi-similar game 
features, many of which had little to do with what 
made the original prototype so cool—the TMD.

Armed with that knowledge, we proceeded 
to list the current game features and evaluated 
whether each one supported or detracted from 
TMD use, and how it was presented to the player. 
When put in such a severe light, it was clear 
which features were right for Singularity and 
which weren’t. Cutting sticky cover was just the 
beginning. Even though it meant we would be 
losing a lot of work, we knew we had to make the 
essential change of going back to a first-person 
shooter. That’s when things really started going 
right during Singularity’s pre-production phase. 

3 )  t R y i n G  tO  p l e a s e  e V e R y O n e  l e aV e s 
n O  O n e  h a p p y.  Filtering out which feedback 
and suggestions to listen to and which to ignore 
is an extremely difficult challenge, we learned. 
With the heightened importance of Singularity 
as a new IP, we found that feedback, suggestions, 
and direction came from multiple directions, both 
from inside the team and out. 

While gathering feedback and suggestions 
is a crucial part of the development process, the 
team has to be strong in its convictions and push 
back on things we don’t agree with. We also found 
it important to make sure that everyone has 
accountability for their direction and feedback. 
It’s a painful lesson to learn, but once Raven 
learned it, we were able to move Singularity 
toward completion. 

4 )  t O O  m u c h  s t u f f,  t O O  l i t t l e  t i m e . 
Singularity was an ambitious project from the 
start, and going into that final phase of production, 
we bit off quite a lot, ultimately more than we 
should have given the time we had. For example, 
at one point, we re-modeled and re-textured all the 
weapons. We also changed functionality for many 
of them, and of course tweaked out all the weapon 
data, such as damage, aim friction, and turn 
speed. We expanded TMD and weapon upgrades, 
layering on a light RPG system to provide more 
choice and customization (which was a good 
thing, but still added considerable work). Lots of 
other work went into the final phase—we added 
more enemy types, reworked the UI, added the 
all-new multiplayer with our third-person action 
versus FPS environment, and then of course had 
to polish everything that was already in the game. 

This really left us short-handed at the end. 
We did cut features to help ourselves out, though. 
We had a time teleport system, for example, 
which allowed players to retry levels and would 
ultimately allow them to go back and solve 
puzzles with their upgraded TMD that couldn’t 
be solved the first time through the level. But 
we had to drop it because there was no way we 
could have gotten it tested for all the possibilities 
players could come up with. There is internal 
debate to this day regarding which features we 
never should have started, or should have cut 
earlier. As Singularity’s development was winding 
down, we already started talking about building 
more polish time into the next project—and doing 
a little more pre-production early to test out the 
ideas we have—so we can cut the bad or overly-
complex ideas earlier.

5) multiplayeR match a la mOde. Multiplayer 
match design is often postponed until the later 
stages of the development cycle. The main 
reason is that by that point, mechanics are 
more solid and MP modes can be more easily 
established. But due to the asymmetrical nature 
of Singularity’s MP concept, we knew that the 

G a m e  d a t a
publisheR Activision

deVelOpeR Raven Software

numbeR Of deVelOpeRs 65 core team, 50 additional

lenGth Of deVelOpment 4 years

Release date June 29, 2010

sOftWaRe ZBrush 3.5, 3DS Max 2010, Photoshop CS4, 
CrazyBump, MotionBuilder, Maya, Vegas Movie Studio, 
Visual Studio 2008, Perforce 2009

platfORm Xbox 360, PS3, and Windows PC



www.gdmag.com 25

primary mode had to be something special, and that we needed to design it 
alongside the mechanics. 

We could still have the standard team deathmatch type mode, but we 
also needed something that would cater to the differences between our 
two MP factions and the asymmetrical nature of the combat in Singularity’s 
MP. “Extermination” is the primary mode we ended up shipping with, and 
it accomplished our goal fairly well. The problem is how long it took us to 
get there. We went through three or four different mode design iterations, 
and too much work was thrown out at every transition. Even after we had 
decided on and fleshed out this mode, we still spent a lot of time iterating 
exactly how the mode mechanics would work.

The root of the problem goes back to the asymmetrical nature of our 
combat: FPS soldiers, with their ranged attacks, have the advantage in open 
areas with long lines of sight. Creatures on the other hand, thrive in close 
quarters. To further complicate matters, the creatures are primal by nature, 
and look very odd performing “smart” actions such as carrying objects, 
interacting with mechanical objects, or anything else of that nature.

The first modes we tried were centered on control points, but felt too 
symmetrical and not appropriate given the factions. Also, battles often 
degenerated into chaos with creatures cluttered around the control points 
while the soldiers stood back and fired into the mob. We quickly realized 
that having multiple control points fractured the action, which is a bad thing 
when you have a maximum of 12 people playing at any one time. Teamwork 
was almost non-existent.

A long time and several re-designs later, including one mode where teams 
had to destroy each other’s primary targets, we arrived at what is now known 
as Extermination, which much better caters to the asymmetry in combat: 
creatures are always on defense, and soldiers on offense. This way, creatures 
aren’t forced to expose themselves in open areas if they don’t want to. Instead, 
they can keep to the areas that benefit them, and strategically defend their 
turf. There are still control points, called beacons, but only one is available at a 

time. When creatures lose that beacon to the soldiers, the action moves on to 
the next area and the subsequent beacon becomes the focus.

It worked out in the end, but ideally, we should have gotten there much 
quicker and with less wasted work. It is easy to say that we should have 
done better with the initial design, and should have foreseen these issues 
before implementing them, but the truth is that it’s often very difficult to 
predict exactly how something will play. Sometimes it’s not until you have 
the controller in your hand—and in this case, with 11 other people playing—
that you can see whether an idea is fun, and what the issues might be. If 
we were to do it over again, perhaps we would focus more on identifying the 
strengths and possible issues associated with each of the game’s mechanics 
early on. Furthermore, presenting the idea to a much wider audience before 
proceeding with implementation would help as well.

[ a  s t i t c h  i n  t i m e ]

Now that all's said and done, we are very proud of Singularity, and feel we 
delivered on the core concept for the most part. There are things we would 
have loved to do differently, but that’s the case with almost every game 
we’ve made. Emotionally, this was one of our most difficult titles, but also 
one of the most important for Raven, as everyone at the studio had a hand 
in creating Singularity and it went through many changes. The biggest 
lesson we took away from this process is to stick with our gut on the vision. 
Questions will always be raised internally and externally, but the initial gut 
vision of the game and your first thought is usually correct. Our final lesson 
was to focus our talent on one project rather than spreading too thin by 
planning to release three titles within three months of each other. The order 
of the day for Raven Software has got to be quality over quantity.  

By Rob Gee (project lead), Brian Raffel (studio head), steve Raffel (creative director), 

Gustavo Rasche (MP lead), Dan Vondrak (senior project lead), and Jon Zuk (project lead).

http://www.gdmag.com


CELEBRATING 25 YEARS

Game Developers Conference®

February 28–March 4, 2011

Moscone Center | San Francisco, CA

Visit www.GDConf.com for more information. 

http://www.GDConf.com


www.gdmag.com 27

TooLBoX

The Basics
» Just to cover the basics, mapping 
is a way to use 2D textures to add 
sophistication to 3D models. In all 
subsequent discussions, I will use a 
basic sphere as the 3D model unless 
otherwise specified.

Diffuse: The most basic map is 
the diffuse, or color map. It gives 
a 3D model the color information 
necessary to simulate an object 
in real life. In our test case, let’s 
assume that the diffuse map is the 
orange and bumpy looking color 
information that describes a navel 
orange. Appetizing, isn’t it?

Bump: Now, to add additional 
sophistication, the Bright Person 
Consortium, or BPC (an imaginary 
organization made up of all the people 
who came up with all the cool stuff in 

the world), invented the bump map. 
To make a long story short, bump 
mapping changes the brightness of 
the pixels on the surface in response 
to a particular height map specified 
for the surface. For instance, our 
sphere, now covered in a diffuse 
map that looks like a navel orange, 
renders fine because the surface 
looks like you’d expect an orange 
to look, but animate a light in the 
scene and you instantly see that 
it’s still just a smooth sphere. Add a 
bump map to your diffuse texture 
and you get  complex surface 
depressions, all without increasing 
the complexity of the sphere itself. 
Move the light now and the shadows 
in the pockmarks shift with it. 
Rendering the finished orange with 
a bump map takes much less time 
than it would if all the deformations 
were created using geometry.

Normal: The BPC went into overtime 
when they created the normal map. 
Instead of a simple grayscale map 
used to create the bump mentioned 
above, a normal map is a 2D image 
used to replace or modify the 
normals of a 3D surface. A surface’s 
normal is essentially the direction 
that the surface faces.

Specular: Specular maps use a 
simple texture to simulate a complex 
process, in this case: shininess. 
Specular maps are 2D textures used 
to determine how “shiny” a surface 
is, how discriminating the shine, and 
what color that shine should be at 
any given point.

Ambient Occlusion: Another set of 
maps that help add realism to local 
reflection models by taking into 
account attenuation of light due 

to occlusion. Ambient occlusion 
attempts to approximate the way 
light radiates in real life, especially 
off what are normally considered 
non-reflective surfaces. In short, 
it makes shadows more realistic, 
while simplifying the process of 
making them.

Old days/Old Ways
» It seems hard to imagine, but 
not that long ago, none of the maps 
described above were used at all. 
In the world of 2D side-scrolling 
video games, the idea of using 2D 
maps to obtain 3D results probably 
was bandied about around the 
water cooler, but it wasn’t actually 
being done.

Then, because of advances in 
graphics tools and display cards, it 
became possible to make the maps, 
but they still weren’t much use to 

crazyBump allows for 
a real-time preview of 
adjustments made to 

texture maps.

sOMe say ThaT cONFessiON is GOOd FOR The sOUl. If that's true, then I'd better hit the game developer confessional two or three times in quick 
succession. You see, I’ve been attempting to write this review of CrazyBump, a straightforward 2D map-making tool, for some months now, but really, it 
seems like years. To put this in perspective, I ran through the NextEngine 3D scanner in about a month, broke apart Motionbuilder in only a couple of weeks, 
put 3DS Max into the “Istanbul Twist” and took that mutha down in a little more than 10 days (though I’d already been using a previous version of Max not 
long before). But CrazyBump is a different kettle of fish altogether. It’s so ... well, simple; so simple that it got under my skin. But within that simplicity is a 
very powerful range of tasks that can be accomplished to generate or fine tune useful textures.

cRazy BUMp

cRazy BUMp 1.101
R e v i e w  B y  T o m  C a R R o l l

http://www.gdmag.com


TOOLBOX

game deveLOper   |   SepTemBer 201028

Unity vs Unity Pro
anyone except owners of top-of-the-
line graphic workstations. In fact, 
if you could make a normal map in, 
say 1993, you wouldn’t know what 
the hell to do with it except maybe 
hang it in an experimental art 
gallery somewhere in San Francisco.

But technology marches 
onward, and it was soon possible to 
make practical use of maps using 
consumer-level hardware. Now new 
types of mapping schemes are 
appearing every day. Parallax maps 
are a good example ... very sexy.

workflow takes a Hit
» Now that even the most modest 
system can employ numerous 
shader textures, it becomes 
necessary to be able to make them 
quickly and efficiently, and in that 
respect the workflow champion is 
CrazyBump.

CrazyBump is a simple to use 
but deep utility that replaces the 
Nvidia Photoshop filter for turning 
diffuse maps into normal maps, and 
also creates specular and ambient 
occlusion maps from either a diffuse 
map or a normal map.

Just get CrazyBump running 
and you’ll see your first example of 
its simplicity, though in this case, 
it’s not deceptive. In the lower left 
corner of the main screen is a line of 
text that says, “Click This Button To 
Begin” ... Aaah, simplicity.

You’re then given the option 
of three types of files to open: a 
photograph (aka: diffuse map), a 
heightmap, or a normal map.

Let’s start with a photograph/
diffuse map. After the map is loaded, 
you’re fully into the CrazyBump 
interface. If it’s your first time in, 
experiment by tweaking some 
settings and watch how the live 
preview is changed by each of your 
actions. Notice that all the maps you 
can create are listed as tabs along 
the bottom of the preview window. 

Click on each one and look 
in the slider section: the normal 

map sliders stay the same, but 
below them are new sets of sliders 
that reflect changes you can 
make to displacement, occlusion, 
specularity, and diffuse. Again, in 
incredibly simplistic terms, once 
you are satisfied with the look of 
your texture, hit the save button 
and you can save all the maps to 
your hard drive. From there, just 
apply them to an object in the game 
engine of your choice.

You can also start the process 
with a normal map and there are a 
lot of reasons why you should. For 
instance, if you create a complex 
model in ZBrush (or perhaps you 
enhance your simple model within 
ZBrush), you can export a normal 
map from ZBrush and load that 
normal map into CrazyBump. You 
can then preview the results and 
spit out specular and ambient 
occlusion maps based on it. Just 
so you’re not seeing apples and 
oranges in the preview window, 
you can also load your model into 
CrazyBump so the maps lay over 
the surfaces they’re intended for. I 
ask you, what could be easier than 
that? The only hiccup in the process 
occurs when the tool’s graphics 
card compatibility can sometimes 
disable the preview window (while 
CrazyBump does support pretty 
much every graphics card out there, 
it needs up-to-date video drivers).

Within the game development 
field, shaders can be constructed 
that will use all the maps generated 
as separate elements, but for other 
work, you can use Photoshop 
to blend the ambient occlusion 
map into the diffuse map so as to 
cheaply and directly obtain some of 
the depth an ambient occlusion map 
will provide, but within the diffuse.

Your first duty is to adjust 
the Normal map parameters 
using seven slider bars that are 
prominently displayed. The sliders 
are: Intensity, Sharpen, Noise 
Removal, Shape Recognition, Fine 

Detail, Medium Detail, Large Detail, 
and Very Large Detail. The sliders 
run from -100 to +100, with 0 being 
neutral or no change. Right next 
to the slider bars is an interactive 
display shape that shows the 
texture you’ve selected mapped 
naturally on a column (other 
shapes, such as roller, sphere, and 
box, are available from a pull-down 
menu). For instance, if you move 
the slider for Very Large Detail from 
0 to +100, you’ll see it reflected 
immediately in the lit shape next 
door. Move the +100 to -100 and the 
shapes that formerly pushed out 
in the display will push inward by 
an equal amount. Be careful when 
working with the sliders because 
they can give you a lot of freedom to 
tweak, sometimes making it difficult 
to know when you’re really done. 

You can use the same map 
to adjust for specularity map. As 
we discussed before, a specular 
map indicates how shiny various 
parts of your object will be in the 

final render. The darker the map, 
the shinier that part will be. But 
you don’t have to worry about dark 
or light, because you’re making 
adjustments to the sliders and 
watching the results in the preview 
window with the knowledge that, if 
you like it in the window, you’ll like 
the results in your game engine 
just as much. Finally, you can make 
similar adjustments to create an 
ambient occlusion map, too.

Perhaps simplest of all, 
CrazyBump’s interface actually has 
words on it that make sense. I love 
that. Instead of bizarre text like 
“Write Config,” you’ve got a big disk 
icon that says “Save.”

CrazyBump is a middleware 
tool that fills an old art pipeline void 
very, very well. Sure, we all know 
that the big modeling suites like Max 
and Maya can render shadow and 
specular maps to texture, but not 
with the ease of use of CrazyBump. 
And you don’t get to preview your 
results in real time, like you do in 
CrazyBump.

And really, I ask you, why boot 
up Max or Maya when all you want 
to do is load a normal map and 
spit out the ambient occlusion and 
specularity?

wraPPing UP
» I hear that Albert Einstein, the 
techie, once said, “Everything 
should be made as simple as 
possible, but no simpler,” and that 
Leonardo Da Vinci, the artist, once 
said, “Simplicity is the ultimate 
sophistication.” Saying stuff like 
that is okay if you’re a certified 
genius, but for the rest of the game 
artists pumping polygons and pixels 
to simply make a living, there’s 
CrazyBump. The easy-to-understand 
wording, sliders that have definable 
ranges that make sense, and a 
preview window that reflects your 
changes within the flick of a whisker 
makes this the best tool that money 
can buy.

With apologies to Leo and 
Einie, CrazyBump really is as 
sophisticated as it needs to be. Try it 
yourself; I think you’ll agree. 

tom Carroll is a video game artist 

currently with a prominent game studio. 

He is a contributor to myIPD.com, an 

intellectual property portal.

PriCe 

Professional: $299
Personal: $99
Students: $49

system reQUirements

1GHz processor (Dual cores 
recommended), 1GB RAM (2GB 
recommended), DirectX 9-compatible 
video card, Windows 7/Vista/XP/2000

Pros

1  Common sense, easy-to-understand 
instructions, and labels throughout.

2  Real-time previewing.
3  Friendly pricing structure.

Cons

1  The sliders can give you too much 
freedom to tweak.

2  Compatibility with all models of 
graphics cards can disable the 
preview window unless up-to-date 
drivers are present.

3  The online training video could use an 
audio track.

Crazy Bump version 1.101
www.crazybump.com
   

[ B i t s  a n d  P i e C e s ]

You can download a free 30-day trial of CrazyBump at the developer’s 
website: http://crazybump.com. There are also student discounts and 
other offers there. The CrazyBump website also features a support 
forum and an online demo video that, while effective, could use even 
the tiniest audio track to help explain things, (even if it’s in Pig Latin).

http://crazybump.com
http://myIPD.com
http://www.crazybump.com


with the latest updates through the Unreal Developer 

Network, which allows them to converse with not only 

Epic, but other Unreal licensees.

During development of this massive new game, which 

features an epic single-player campaign and an intense 

multiplayer experience, the team was able to use 

Unreal Engine tools to bring the war-ravaged American 

landscape to life.

“As a player runs through this ravaged world, things 

happen, and we create those dramatic moments using 

Kismet triggers,” explained Votypka.  

“We were able to use Matinee, for example, when 

you’re running through a fire scene in a strip mall 

parking lot and North Koreans are firing at you. When 

the car blows over you, nearly decapitating you, that’s a 

Matinee piece.  We also used Matinee with our mo-cap 

scenes and authored a lot of our in-game cinematic 

and storytelling moments using that toolset.”  

Votypka said Homefront will feature online combat on 

par with the 50-player battlefield chaos from Front-

lines, replete with flying and ground-based vehicles.

“We’re continuing in the large-scale warfare footsteps 

of Frontlines,” said Votypka. “We built the foundation 

for large-scale warfare in multiplayer using the Unreal 

Engine, so for Homefront we hit the ground running.  

We’ve focused on polishing and iteration, as opposed 

to just getting helicopters and tanks working in the 

engine.”

“The places you lived and grew up in have been twisted 

by this North Korean occupation that occurred after 

an energy crisis and a financial collapse,” explained 

Votypka. 

“We wanted to make that familiar landscape alien. We 

wanted to explore what would happen if the world’s 

most powerful country was under occupation and 

what would it be like to fight within that world.”

Players will be able to defend America in the first 

chapter of a transmedia experience that also includes a 

web-based documentary and a SyFy Channel TV movie.

Thanks to Kaos Studios for speaking with freelance 

reporter John Gaudiosi for this story.

UNREAL ENGINE 3 POWERS HOMEFRONT, THQ’S 

AND KAOS STUDIOS’ NEW SHOOTER 

In THQ’s Homefront, North Korea has occupied the 

United States in 2027 after a series of ripped-from-

the-headlines political happenings. It’s within this 

nightmare scenario that a band of freedom fighters 

takes the war to the enemy stronghold in San Francisco. 

THQ-owned Kaos Studios recently elaborated on using 

the Unreal Engine to bring this near-future America in 

ruins to life for gamers on PC, Xbox 360 and PlayStation 

3. Like Kaos Studios’ last game, Frontlines: Fuel of War, 

the Manhattan-based studio built this new shooter 

using Unreal Engine 3 technology.

“We chose Unreal Engine 3 for Frontlines because we 

were starting our studio and wanted to get the product 

out within two-and-a-half years,” explained Dave 

Votypka, design director, Kaos Studios.

 “Using Epic’s tech, so we could focus on building our 

content, fit into THQ’s strategy. Unreal allowed us to hit 

the ground running.”

Votypka said that it was nice to have the Unreal Editor 

and tools on day one. His team has extended its Unreal 

Engine 3 technological foundation by adding features 

like light map streaming and different types of tone 

mapping. 

One of the things Kaos Studios has benefited from since 

Epic released Unreal Tournament 3 on PlayStation 3 is 

the ability to create Homefront from the ground up as a 

cross-console title. 

Votypka said that Epic has provided excellent support 

for the Unreal Engine on PS3, allowing his team to 

develop the Xbox 360 and PS3 versions of the game 

hand-in-hand. 

The programmers on his team have been keeping up 

Canadian-born Mark Rein is 

vice president and co-founder 

of Epic Games based in Cary, 

North Carolina. 

Epic’s Unreal Engine 3 has won 

Game Developer magazine’s 

Best Engine Front Line Award 

four times and is also one of 

the few Hall of Fame inductees.  

Epic’s internally developed 

titles include the 2006 

Game of the Year “Gears of 

War” for Xbox 360 and PC; 

“Unreal Tournament 3” for 

PC, PlayStation 3 and Xbox 

360; “Gears of War 2” for Xbox 

360; and “Gears of War 3” for 

Xbox 360.

Upcoming Epic  

Attended Events:

PAX 

Seattle, WA 

September 3-5, 2010

Tokyo Game Show 

Tokyo, Japan 

September 16-19, 2010

GDC Online 

Austin, TX 

October 5-8, 2010

Please email:  

mrein@epicgames.com  

for appointments. 

For UE3 licensing inquiries email: 

licensing@epicgames.com 

For Epic job information visit: 

www.epicgames.com/epic_jobs.html

W W W . E P I c G A m E S . c O m

Unreal Technology News
by Mark Rein, Epic Games, Inc.

Epic, Epic Games, the Epic Games logo, Gears of War, Gears of War 2, Unreal, Unreal Development Kit, Unreal Engine, Unreal Technology, Unreal Tournament, the Powered by Unreal Technology logo, and the Circle-U logo are trademarks or registered 

trademarks of Epic Games, Inc. in the United States of America and elsewhere. Other brands or product names are the trademarks of their respective owners.

Advertisement

Kaos Studios’ Homefront

mailto:mrein@epicgames.com
mailto:licensing@epicgames.com
http://www.epicgames.com/epic_jobs.html
http://WWW.EPICGAMES.COM


 

http://migs.ca
http://migs.ca


THE INNER PRODUCT //  NOEL LLOPIS

www.gDmag.COm 31

Data-OrienteD Design
Now aNd IN the Future

Last year, i wrOte abOut the basics Of Data-OrienteD Design in this 
column (see the September 2009 issue of Game Developer). In the time 
since that article, Data-Oriented Design has gained a lot of traction in game 
development and many teams are thinking in terms of data for some of the 
more performance-critical systems.

As a quick recap, the main goal of Data-Oriented Design is achieving 
high performance on modern hardware platforms. Specifically, that means 
making good use of memory accesses, multiple cores, and removing 
any unnecessary code. A side effect of Data-Oriented Design is that code 
becomes more modular and easier to test. 

Data-Oriented Design concentrates on the input data available and the 
output data that needs to be generated. Code is not something to focus on, 
as it is with traditional Computer Science, but something that is written to 
transform the input data into the output data in an efficient way. In modern 
hardware, that often means applying the same code to large, contiguous 
blocks of homogeneous memory.

appLying Data-OrienteD Design 
» It’s pretty easy to apply these ideas to a self-contained system that 
already works over mostly homogeneous data. Most particle systems in 
games are probably designed that way because one of their main goals is 
to be very efficient and handle a large number of particles at high frame 
rates. Sound processing is another system that is naturally implemented by 
thinking about data first and foremost. 

So, what’s stopping us from applying it to all the performance-sensitive 
systems in a game code base? Mostly just the way we think about the code. 
We need to be ready to really look at the data and be willing to split up the 
code into different phases. Let’s take a high-level example and see how the 
code would have to be restructured when optimizing for data access.

Listing 1 shows pseudo code for what could be a typical update 
function for a generic game AI. To make things worse, that function might 
even be virtual and different types of entities might implement the code in 
different ways. Let’s ignore that for now and concentrate on what it does. 
In particular, the pseudo code highlights that, as part of the entity update, 
it does many conditional ray casting queries, and also updates a state 
based on the results of those queries. In other words, we’re confronted with 
the typical tree-traversal code structure so common in Object-Oriented 
Programming.

Ray casts against the world are a very common operation for game 
entities. That’s how they “see” what’s around them, and that’s what allows 
them to react correctly to their surroundings. Unfortunately, ray casting is a 
heavyweight operation, and it involves potentially accessing many different 
areas in memory: a spatial data structure, other entity representations, 
polygons in a collision mesh, etc.

Additionally, the entity update function would be very hard to parallelize 
on multiple cores. It’s unclear how much data is read or written in that 
function, and some of that data (like the world data structure) might be 
particularly hard and expensive to protect from updates coming from 
multiple threads.

If we reorganize things a bit, we can significantly improve performance 
and parallelization.

http://www.gdmag.com


THE INNER PRODUCT //  NOEL LLOPIS

gamE DEvELOPER   |   SEPTEmbER 201032

Break Up and Batch
» Without looking at any of the details inside the entity update, we can 
see the ray casts sticking out like a sore thumb in the middle. A ray cast 
operation is fairly independent of anything else related to the entity; it’s 
heavyweight, and there could be many of them, so it’s a perfect candidate to 
break up into a separate step.

Listing 2 shows what the broken up entity update code would look like. 
The update is now split in two different passes. The first pass does some of the 
updating that can be accomplished independently of any ray casts and decides 
which, if any, ray casts need to be performed sometime during this frame.

The game code in charge of updating the game processes all AI entities 
in batches (Listing 3). So instead of calling InitialUpdate(), solve ray casts, 
and FinalUpdate() for each entity, it iterates over all the AI entities calling 
InitialUpdate() and adds all the ray cast query requests to the output data. 
Once it has collected all the ray cast queries, it can process them all at once 
and store their results. Finally, it does one last pass and calls FinalUpdate() 
with the ray cast results on each entity.

By removing the ray cast calls from within the entity update function, 
we’ve shortened the call tree significantly. The functions are more self-
contained, easier to understand, and probably much more efficient because 
of better cache utilization. You can also see how it would be a lot easier to 
parallelize things now by sending all ray casts to one core while another 
core is busy updating something unrelated (or maybe by spreading all ray 
casts across multiple cores, depending on your level of granularity).

Note that after calling InitialUpdate() on all entities, we could do some 
processing on other game objects that might also need ray cast queries and 
collect them all. That way, we can batch all the ray casts and compute them 
at once. For years we’ve been drilled by graphics hardware manufacturers 
about how we should batch our render calls and avoid drawing individual 
polygons. This works the same way: by batching all ray casts in a single call, 
we have the potential to achieve a much higher performance.

Splitting thingS Up
» Have we really gained much by reorganizing the code this way? We’re 
doing two full passes over the AI entities, so wouldn’t that be worse from 
a memory point of view? Ultimately you need to measure it and compare 
the two. On modern hardware platforms, I would expect performance to be 
better because, even though we’re traversing through the entities twice, 

we’re using the code cache more efficiently and accessing the entities 
sequentially (which allows us to pre-fetch the next one too).

If this is the only change we make to the entity update, and the rest of 
the code is the usual deep tree-traversal code, we might not have gained 
much because we’re still blowing the cache limits with every update. We 
might need to apply the same design principles to the rest of the update 
function to start seeing performance improvements. But at the very least, 
even with this small change, we have made it easier to parallelize.

One thing we’ve gained is the ability to modify our data to fit the way we’re 
using it, and that’s the key to big performance boosts. For example, after 
seeing how the entity is updated in two separate passes, you might notice 
that only some of the data that was stored in the entity object is touched on 
the first update, while the second pass accesses more specific data.

At that point we can split up the entity class into two different sets of 
data. Then the most difficult task is to name these sets of data in some 
meaningful way. They’re not representing real objects or real-world concepts 
anymore, but different aspects of a concept, broken down purely by how 

the data is processed. So what before was an AIEntity has now become 
an EntityInfo (containing things like position, orientation, and some high-
level data) and an AIState (with the current goals, orders, paths to follow, 
enemies targeted, and so forth).

The overall update function now deals with EntityInfo structures in the 
first pass and AIState structures in the second pass, making it much more 
cache friendly and efficient.

Realistically, both the first and second passes will have to access some 
common data such as the entity’s current state: fleeing, engaged, exploring, 
idle, etc. If it’s only a small amount of data, the best solution might be to 
simply duplicate that data on both structures, which goes against all “common 
wisdom” in Computer Science. If the common data is larger or is read-write, it 
might make more sense to give it a separate data structure of its own.

At this point, a different kind of complexity is introduced—keeping track 
of all the relationships from the different structures. This can be a particular 
challenge while debugging because some of the data that belongs to the 
same logical entity isn’t stored in the same structure, making it harder to 
explore in a debugger. Even so, making good use of indices and handles 
helps this problem become much more manageable (see "Managing Data 
Relationships" in the September 2008 issue of Game Developer).

conditional execUtion
» So far things are pretty simple because we’re assuming that every AI 
entity needs both updates and some ray casts. That’s not very realistic 
because entities are probably very bursty—sometimes they need a lot of 
ray casts, and sometimes they’re idle or following orders and don’t need any 
for a while. We can deal with this situation by adding a conditional execution 
to the second update function.

The easiest way to conditionally execute the update would be to add an 
extra output parameter to the FirstUpdate() function that indicates whether 
the entity needs a second update or not. The same information could then be 
derived from the calling code depending on whether there were any ray cast 
queries added. Then, in the second pass, we only update those entities that 
appear in the list of entities requiring a second update.

The biggest drawback of this approach is that the second update went 
from traversing memory linearly to skipping over entities, potentially 
affecting cache performance. So what we thought was going to be a 
performance optimization ended up making things slower. Unless we’re 

gaining a significant performance improvement, it’s often better to simply 
do the work for all entities whether they need it or not. However, if on 
average less than 10 or 20 percent of the entities need a ray cast, then it 
might be worth avoiding doing the second update on all the other entities 
and paying the conditional execution penalty.

If the number of entities to be updated in the second pass were fairly 
small, another approach would be to copy all necessary data from the first 
pass into a new temporary buffer. The second pass could then process 
that data sequentially without any performance penalties, which would 
completely offset the performance hit that comes from copying the data.

Another alternative, especially if the conditional execution remains fairly 
similar from frame to frame, is to relocate entities that need ray casting 
together. That way, the copying is minimal (swapping an entity to a new 
location in the array whenever it needs a ray cast), and we still get the benefit 
of the sequential second update. For this to work, all your entities need to be 
fully relocatable, which means working with handles or some other indirection, 
or updating all the references to the entities that swapped places.

Data-Oriented Design means making good use of memory accesses, 
multiple cores, and removing any unnecessary code. A side effect of Data-
Oriented Design is that code becomes more modular and easier to test. 



www.gdmag.com 33

Different MoDes
» What if the entity can be in several totally different modes of execution? 
Even if it’s the same type of entity, traversing through the modes linearly by 
calling the update function could end up using completely different code for 
each of them, resulting in poor code cache performance.

There are several approaches we can take in a situation like this:
¬ If the different execution modes are also tied to different parts of the 

entity data, we can treat them as if they were completely different entities 
and break each of their data components apart. That way, we can iterate 
through each type separately and get all the performance benefits.

¬ If the data is mostly the same, and it’s just the code that changes, 
we can keep all the entities in the same memory block but rearrange 
them so entities in the same mode are next to each other. Again, if you 
can relocate your data, this is very easy and efficient (it only requires 
swapping a few entities whenever the state changes).

¬ Leave it alone! Ultimately, Data-Oriented Design is about thinking 
about the data and how it affects your program. It doesn’t mean you 
always have to optimize every aspect of it, especially if the gains aren’t 
significant enough to warrant the added complexity.

the future
» We might wonder if thinking about a program in terms of data and doing these 
kinds of optimizations is a good use of our time. Is this all going to go away in the 
near future as hardware improves? As far as we can tell right now, the answer 
is a definite no. Efficient memory access with a single CPU is a very complicated 
problem, and matters get much worse as we add more cores. Also, the amount 
of transistors in CPUs (a rough measure of power) continues to increase much 
faster than memory access time. That tells us that, barring new technological 
breakthroughs, we’re going to be dealing with this problem for a long time. We’ll 
have to face it right now and build our technology around it.

There are some things I’d like to see in the future to make Data-Oriented 
Design easier. We can all dream of a new language that will magically allow 
for great memory access and easy parallelization, but replacing C/C++ and 
all existing libraries is always going to be a really hard sell. Historically, the 
best advances in game technology have been incremental, not throwing 
away existing languages, tools, and libraries (that’s why we’re still stuck 
with C++ today).

Here are two things that could be done right now and would work 
with our existing codebases. I know a lot of developers are working on 
similar systems in their projects, but it would be great to have a common 
implementation released publicly so we can all build on top of them.

Language. Even though a functional language might be ideal, either 
created from scratch or reusing an existing one, we could temporarily extend 
C to fit our needs. I would like to see a set of C extensions where functions 
have clearly defined inputs and outputs, and code inside a function is not 
allowed to access any global state or call any code outside that function 
(other than local helper functions defined in the same scope—see Listing 
4). This could be done as a preprocessor or a modified C compiler, in order to 
remain compatible with existing libraries and code.

Dependencies between functions would be expressed by tying the 
outputs of some functions to the input of other functions. This could be done 
in code or through the use of GUI tools that help developers manage data 
relationships visually. That way, we can construct a dependency diagram of 
all the functions involved in every frame.

Scheduler. Once we have the dependencies for every function, we can 
create a directed acyclic graph (DAG) from it, which would give us a global 
view of how data is processed in every frame. At that point, instead of running 
functions manually, we can leave that job in the hands of a scheduler.

The scheduler has full information about all the functions as well as 
the number of available cores (and information from the previous frame 
execution if we want to use that as well). It can determine the critical path 

through the DAG and optimize the scheduling of the tasks so the critical path 
is always being worked on. If temporary memory buffers are a limitation 
for our platform, the scheduler can take that into account and trade some 
performance time for a reduced memory footprint.

Just like the language, the scheduler would be a very generic component, 
and could be made public. Developers could use it as a starting point, build on 
top of it, and add their own rules for their specific games and platforms.

Data now
» Even if we’re not yet ready to create those reusable components, every 
developer involved in creating high-performance games should be thinking 
about data in their games right now. Data is only going to become more 
important in the future as the next generation of consoles and computers 
rolls in. 

noeL LLoPis has been making games for just about every major platform in the last twelve 

years. He's now a one-man band making iPhone and iPad games.

L i s t i n g  1

void AIEntity::Update(float dt)
{
 DoSomeProcessing();
 if (someCondition && Raycast(world))
  DoSomething();
 if (someOtherCondition && BunchOfRayCasts(world))
  DoSomethingElse();
 UpdateSomeOtherStuff();
}

L i s t i n g  2

void AIEntity::InitialUpdate(float dt, RayCastQueries&queries)
{
 DoSomeProcessing();
  if (someCondition)
   AddRayCastQuery(queries);
  if (someOtherCondition)
   AddBunchOfRayCasts(queries);
}

void AIEntity::FinalUpdate(const RayCastResults& results)
{
 UpdateSomeOtherStuff(results);
}

L i s t i n g  3

RayCastQueries queries;
for (int i=0; i<entityCount; ++i)
 entities[i].InitialUpdate(dt, queries);

// Other update that might need ray casts

RayCastResults results;
for (int i=0; i<queries.count; ++i)
 PerformRayCast(queries[i], results);

for (int i=0; i<entityCount; ++i)
 entities[i].FinalUpdate(results);

L i s t i n g  4

void FirstEntityUpdate(input Entities* entities, input 
int entityCount, output RayCastQueries* queries, 
output int queryCount);

http://queries.co
http://www.gdmag.com


pixel pusher //  steve theodore

game developer   |   september 201034

Big Screen BlueS
With some key learning, game animators needn't envy their film counterparts

JoB interviewS can Be StreSSful, So you 
have to cut a little slack for the goofy things 
candidates say. Here’s a free tip for future 
hopefuls, though: if somebody asks you, “So, why 
do you want to work in games?” don’t say, “Well, 
it seemed like an easy way to work on my demo 
reel so I could get a job in Hollywood.” 

The game industry’s relationship with 
Hollywood is dysfunctional. The conventions of 
cinema run deep in our DNA, and the last hundred 
years of film provide a huge wealth of experience 
to all of us who tell stories with moving images. 
That said, games and movies are fundamentally 
different media—a lesson easily reinforced by a 
glance at the checkered history of film-to-game 
“convergence” in recent history. When we treat 
our own work as a subset of Hollywood, we’re 
selling ourselves short. 

Nobody suffers from the game industry’s 
inferiority complex more than animators. 
Compared to most game specialties, animation 
has a great sense of its own history as an art 
form. It’s strongly rooted in the traditions of 
Walt Disney, Chuck Jones, and the Nine Old Men, 
reinforced by the brilliance of studios like Pixar 
and the powerful influence of animation schools 
like CalArts and Animation Mentor. Animators 
who study their craft and its history can’t help 
but measure themselves against the intimidating 
giants of film animation.

The artistic legacy and accumulated 
experience of generations of animators is 
inspiring and filled with useful insights, but can 
also be a bit oppressive. It’s hard not to feel like a 
second class citizen when comparing your work—
constrained as it is by runtime performance, 
game design, and the tastes of hyperactive 
teens—to carefully crafted performances 
designed for only one viewpoint. 

liMB froM liMB
» In that very obvious way, it’s literally impossible for game animators to compete with their 
counterparts in film. Interactivity is what makes games so powerful, but interactivity is also the 
antithesis of authorial control. Most games turn over control of the camera to the player. That’s perfect 
for gameplay but terrible for traditional visual storytelling. Without the camera to frame and direct the 
audience’s attention, game animators are often forced to catch the player’s eye with overdone gestures 
and highly conventional stock poses.

The fixed camera also makes it easier for film animators to cheat. The laws of physics are a lot 
easier to evade with forced perspectives and carefully chosen angles; heck, Hollywood animators will 
happily rip an arm or a leg right off a character in pursuit of a golden pose or strong silhouette, safe 
in the knowledge that the camera won’t expose their tricks (and that some poor sucker in post has to 
paint out the giveaway shadows). 

We don’t get the luxury of at-will 
dismemberment (outside of zombie games, 
anyway). Learning to live without a fixed camera 
is unpleasant for classically trained animators, 
but it’s the necessary first step out of the 
shadow of the film tradition. Teams and leads can 
certainly help the process along with some fairly 
simple arrangements: The quickest way to escape 
the tyranny of the too-well-framed shot is to 
make sure reviews are done in the round. Don’t do 
critiques and approvals on playblasts or AVIs, do 
them in the game engine or a dedicated animation 



www.gdmag.com 35

preview tool. If possible, view your work with real game characters and lighting—this makes it much 
easier to catch hitches, weak poses, or clipping that could be hidden with a fixed viewpoint. 

If you don’t have the ability to see animations in their real context, start complaining. It’s vital. Until 
your team builds the tool you need, though, you can still do reviews in the round using QuickTime’s FBX 
support (www.apple.com/quicktime/resources/components.html) to view 3D animations in real time 
in the QuickTime viewer. Alternatively, teams that use Granny or Morpheme can use those tools to do 
reviews. However you do it, viewing everything in the round all the time makes it easier to spot hitches 
and awkward poses that could be hidden by a fixed camera. Spending more time in an interactive 
environment (and less time in the safe confines of Max or Maya) helps you take ownership of the real 
end product: the game character. 

Learning to focus on the end result, rather than the process, is critical. Even in Hollywood, 
animators often feel alienated from the final results of their work. After a shot leaves the animator’s 
hands, it gets passed along through many layers of specialist TDs to add lights, effects, secondary 
animation, cloth sims, and the other glorious visual paraphernalia we can only dream of. This certainly 
makes for pretty pictures, but it also diminishes the direct authorial control of the individual animator; 
it’s hard to reconcile the daily business of submitting shots to the busy machinery of a film pipeline 
with the lofty acting and storytelling ideals of Ed Hooks and Richard Williams. For game animators, 
though, the path from Max or Maya to living character in the game world has so many twists and turns, 
it can feel like an endless maze.

It sometimes feels as if everything in the runtime environment—whether it’s stuttery transitions, 
brutal keyframe compression, or designers retiming animations for gameplay—is conspiring to undermine 
your lovingly-placed keys and carefully-chosen poses. “It looked great in Maya!” is the animator's 
universal, pathetic lament. Unfortunately, that sense of alienation leads far too many animators to disown 
their work once it gets out of their hands and focus only on demo reel friendly renders.

Unfortunately, audiences and reviewers will never know how good it looked in Maya. Very few of 
us get to appear in the “making of” trailers where those carefully-staged playblasts occasionally see 
the light of day. The only reality in game animation is the game itself—with all the compromises and 
shortcuts imposed on us by runtime budgets, wonky code, and impossible design directives. Love it 
or hate it, runtime animation is what most of us do. The question we face as artists is whether we are 
content to merely suffer through it—taking refuge in our demo reel full of pretty AVIs and the sympathy 
of our fellow sufferers on the animation team—or whether we can embrace the reality of the medium.

RUNTIME FUNTIME
» Embracing the medium doesn’t mean just sucking it up and accepting lousy results. Interactive 
animation is hard, but it has unique potential to speak to users. Games like AssAssin’s Creed and 
UnChArted show how much can be achieved in the field despite the demands of runtime performance 
and gameplay. A character whose animations are crafted to work with the gameplay of movement or 
combat is a vital conduit between the player and the game world. It’s precisely the union of interactivity 
and top-notch animation that literally transforms us into Mario, Kratos, or Shaquille O’Neal when we 
pick up our controllers. The meshing of AI and animation can create characters that don’t simply hit 
their marks like puppets, but take on a virtual life of their own—an illusion of life that Ollie Johnson 
could only envy. Game animation is not just film animation with a lower quality bar, it’s a vital art form 
that is constantly breaking new ground and speaking to players in new ways. 

The possibilities of interaction are bracing. So, unfortunately, are the challenges. As sandbox 
games continue to attract customers, the spreadsheet of animation tasks explode in all directions. So 
many characters times so many items times so many vehicles times so many gameplay states ... the 
combinatorial math is brutal and it only gets worse over time. Add in the need to provide transitions 
between all of those options (“put away the sword while dismounting the hippogriff, looking left, 
wounded”) and the future blurs into a Dickensian treadmill of fill-in-the-blanks drudgework (or, just as 
bad, outsourcing more and more to hordes of cheaper overseas contractors). The relationship between 
designers who want to add more features and animators who know they’ll be doomed to months of cut-
and-paste work often spirals into mutual suspicion and acrimony.

The future doesn’t have to look that grim, though. The increasing demands of modern games are 
forcing animators to deal with new tools and techniques, often in ways that don’t seem very close 
to the classic heritage of the discipline. But determination and willingness to experiment can help 
animators escape from drudgery and concentrate on the fundamentals.

On the lowest level, real-time animators need to understand technologies like IK, ragdolls, and 
animation blending. The runtime versions of these tools are often simpler and less controllable 
than the tools we’re used to in Maya, but they’ll only get better when there’s well-informed 
input from animators. It’s easy to grumble, and advocating for the right tools can be extremely 
frustrating, but this is a crucial skill for the ambitious animator who really wants to push the 
boundaries of interactive animation. Peek under the hood of any game with cutting edge animation 
and you won’t just see great tech, but also a lot of feature requests from smart animators who 

knew enough to negotiate effectively with 
design and engineering.

On the higher level, systems for managing 
transitions and animation states also have 
tremendous impact on the lives of virtual 
characters. No amount of keyframing mojo can 
sustain the illusion of life when every change of 
action or direction interposes a glaring robotic 
hitch. Thankfully, artist-driven tools like Morpheme 
and Unreal’s AnimTreeEditor put this vital visual 
task into the hands of artists, where it belongs—at 
least, in theory. In practice, all too often this critical 
job gets dumped in the lap of a junior animator or 
technician because it involves a lot of sliders. In 
a modern game, good transitions and blends are 
just as necessary as traditional keying. Animators 
need to be involved in transitions, blended 
variations, and physics interactions, even if that 
means buckling down and learning some ugly 
tools and intimidating technologies. This may be 
alien territory today, but there was a time, not that 
long ago, when “inverse kinematics” sounded like 
mumbo jumbo to animators too. 

TO THE FUTURE, AND BEYOND!
» Does all this invalidate the core of 
animation? Do modern games really demand 
that every animator become a coder? Of course 
not. Timing, posing, and acting remain the 
indispensable building blocks of interactive 
animation, just as they were in the days of 
pegboards and celluloid. The big difference is 
that we need something a lot more complicated 
than a pen and a pair of white gloves to realize 
them. If we want that to happen in an artist 
friendly way, it’s up to us to set the agenda and 
push for the features we need. The important 
thing is that the technology is informed by 
artists who know both where the medium has 
come from and where they want it to go.

Unlike film animation, our medium is still 
in its infancy. While we owe a great debt to the 
giants of the past, we also owe it to ourselves to 
push the boundaries of what our medium can 
accomplish artistically. Just as importantly, we 
must continue to innovate or we’ll be swamped 
with ever-increasing content demands. In the last 
few decades, we’ve done a good job of moving from 
the world of pen-and-ink to a world of polygons and 
pixels without losing touch with our roots. As we 
move into a world where IK, blends, and physics are 
also primary tools, we’ll do the same thing. If we can 
do it right, evolving tools and artistic conventions 
that empower us and make our characters more 
truly interactive, we’ll find those other guys envying 
us, rather than the other way around. 

STEvE THEODORE has been pushing pixels for more than 

a dozen years. His credits include Mech coMMander, half-

life, TeaM forTress, counTer-sTrike, and halo 3. He's been a 

modeler, animator, and technical artist, as well as a frequent 

speaker at industry conferences. He’s currently a consultant 

helping game studios perfect their art tools and pipelines.

http://www.apple.com/quicktime/resources/components.html
http://www.gdmag.com


game developer   |   September 201036

deSign of the timeS //  Soren JohnSon

The ChiCk Parabola
on MarCh 11, 2009, during The 
Three Moves Ahead Strategy Gaming 
Podcast, freelance journalist Tom 
Chick introduced a phenomenon 
which has come to be known as the 
Chick Parabola: 

"My experience with EmpirE: ToTal 
War is this parabola of fondness. 
At first I don't like it, so I'm at the 
bottom of the curve. I don't like it 
because they do a terrible job with 
their documentation—it's got a 
terrible manual; they want you to 
play through this scripted campaign 
if you want to learn anything; the 
tool-tips are really screwy. So, I'm 
hating it. 

But I'm playing it, and I'm 
learning it, and I'm liking it, so I'm 
climbing up that parabola. At the very 
top of the curve, I think, 'Hey, I sort 
of figured it out. I like this game.' But 
then I start to discover that the AI is 
terrible, that it's a dumb game, and I 
start coming down the far end of the 
parabola, and I am no longer fond of 
EmpirE: ToTal War. 

Commonly, there's this curve 
where I enjoy a game, and then 
I master the system, and then—
unless it's got a good AI—I lose 
all interest because I realize that 
mastering the system is where the 
challenge ends. Once I reach that 
point, the game is dead for me, and 

I hate that! That's when the game 
should really start to take off."

Many veteran gamers will 
recognize this feeling from their own 
experiences—the rising enjoyment 
that comes from learning an 
interesting game system followed 
by an inevitable deflation as the 
challenge slowly disappears. 

Sometimes a simple technique 
or exploit can render the rest of the 
game balance irrelevant. Usually the 
culprit is a weak adversary, as the 
artificial intelligence cannot grasp 
certain core game mechanics to offer 
the player a robust challenge. The 
problem is that the game's designers 
have made promises on which the 
AI programmers cannot deliver; 
the former have envisioned game 
systems that are simply beyond the 
capabilities of modern game AI. 

SyMMeTry MaTTerS
» Still, not all games suffer from 
the Chick Parabola. Many are so 
fundamentally asymmetrical—SupEr 
mario BroS., Grand ThEfT auTo, World 
of WarcrafT, half-lifE—that the AI 
is simply a speed bump that can 
be easily tuned to provide the right 
level of challenge. The games which 
suffer the most are ones where the 
computer is forced to play the same 
game as the human.  

These symmetrical games—
STarcrafT, STrEET fiGhTEr, puzzlE 
QuEST, halo—have a unique challenge 
in that each game mechanic must not 
simply be judged on its own merits 
but also by asking whether the AI can 
reasonably understand the option and 
execute it successfully. Unfortunately, 
asking this question often disqualifies 
many interesting ideas. 

Artificial intelligence is 
notoriously poor at handling issues 
of trust and betrayal, of long-term 
investments, of multi-front wars, 
and of avoiding traps obvious to 
any human. The question of trust, in 
particular, has torpedoed multiple 
attempts to make a viable single-
player version of the classic board 
game Diplomacy, which relies so 
acutely on being able to read one's 
enemies, one's friends, and one's 
supposed friends. 

Thus, to avoid the Chick Parabola, 
designers of symmetrical games 
must weigh carefully the implications 
of various game mechanics. An 
interesting play option which over-
taxes the AI runs the risk of making 
the game more interesting in the 
short-term, but less interesting 
in the long-term once the player 
masters the system and can use the 
mechanic to run rings around the 
artificial intelligence. 

Of course, designers of 
symmetrical games built primarily 
for multiplayer—such as the 
BaTTlEfiEld series or the fighting 
genre—can choose to sacrifice 
single-player longevity for 
multiplayer depth. Non-conventional 
weapons are fine if we assume 
that veterans of the game are only 
interested in playing the game with 
each other. 

The human brain is remarkably 
flexible, with the ability to easily 
process novel mechanics which 
are orthogonal to the rest of the 
game. This approach has many 
advantages; Valve has been able to 
radically change the multiplayer-
only TEam forTrESS 2 with each 
character update (giving the 
Demoman a sword and shield, for 
example) without having to worry 
about toppling over an increasingly 
rickety AI. 

deSigning for The ai
» Symmetrical single-player games 
need to be designed as much for the 
artificial intelligence as for the humans 
themselves. Even if it's painful, 
designers must be willing to leave 
some of their most orthogonal—and 
often most creative—ideas off the 
table for the sake of the AI. Game 
design is a series of trade-offs, and 



www.gdmag.com 37

Tom Chick's experience 
playing EmpirE: ToTal War 

inspired the Chick Parabola.

empowering the AI is important for 
avoiding the downward slope of the 
Parabola. 

Creative developers can solve 
this problem at the design stage 
before it even reaches some 
doomed AI programmer. One game 
mechanic that pushed Chick over 
the edge with EmpirE: ToTal War was 
amphibious invasion. The AI was 
simply incapable of coordinating 
its land and naval forces together 
to launch a coherent and effective 
invasion of an overseas target. 
Smart players would quickly learn 
that if the AI could not attack 
amphibiously, the strategic balance 
could be gamed easily. Maybe 
England's troops are not such a 
threat after all? 

This problem is not unusual; 
strategy games with transportation 
units almost always suffer from 
ineffective artificial intelligence. 
Coordinating land and naval units 
to be ready in the same place and 
at the same time—along with the 
necessary escort ships—is a non-
trivial task. 

risE of NaTioNs, Big Huge Games's 
historical RTS, presented a blunt but 
effective solution to this problem; land 
forces that approach the shore simply 
turn into boats to carry themselves 
across the water. Once they reach 

their destination, the boats transform 
back into the original land units. Thus, 
there were no transportation ships to 
build or manage. 

With one simple stroke, Brian 
Reynolds, the game's designer, 
removed a classic AI problem, 
ensuring that water maps would 
remain interesting for veteran 
players. The design may have 
sacrificed the "realism" of requiring 
the player to build transport ships 
along with other naval units, but the 
upside was a significant extension of 
the game's longevity. 

Furthermore, many design 
changes meant to bolster AI by 
simplification often have the side 
effect of making the game itself 
more enjoyable for the player. Quite 
a few players did not miss having to 
build and herd transports in risE of 
NaTioNs. CivilizaTioN 3 and CivilizaTioN 
4 introduced global unit support 
and city production overflows, 
respectively; both changes helped 
the AI manage its resources but also 
made the game more enjoyable for 
the average player by drastically 
reducing micromanagement. 

Tough DeCisions
»The designer's biggest challenge 
comes when a mechanic which 
is demonstrably fun or core to 

the game's theme needs to be 
simplified or dropped. Occasionally, 
a game can get away with 
assuming that a certain option 
will be human-only; in the original 
CivilizaTioN, Sid Meier added nukes 
to the end-game but didn't allow the 
AI to use them. He reasoned that 
because the super-weapon came 
only at the end of a game with such 
scope, players who used them were 
not abusing the game; they were 
simply having a bit of crazy fun at 
the end. 

Further, if the designer wants 
to maintain a mechanic that the AI 
can't use, cheating is not a viable 
solution for balancing away the AI's 
disadvantage. Allowing too many 
human-only systems effectively 
turns a symmetrical game into 
an asymmetrical one, which will 
eventually affect the strategic balance. 

In EmpirE: ToTal War, once 
players know that the AI will never 
launch an effective amphibious 
invasion, the rest of the game 
changes immediately. Maybe 
players don't need to bother 
defending their coastal territories? 
Maybe land-based allies are more 
important than water-based ones? 
Maybe the AI can be tricked into 
wasting its resources on futile 
invasions? Most importantly, the 

player is no longer playing like a 
queen—she is playing like a gamer 
who knows that the AI doesn't work, 
one who is on the downhill side of 
the Parabola. 

Ultimately, the designer may 
have to make a tough choice: drop a 
beloved mechanic, or risk shortening 
the replayability. Many options do exist 
to extend a game's longevity outside 
of pure balance—scripting a variety 
of scenarios, supporting procedural 
content generation, providing robust 
mod support, developing post-release 
content, and so on. 

However, for robust replayability, 
nothing compares to pure 
strategic depth with a competent 
computer opponent. Sacrificing the 
game's longevity to provide a few 
moments of fun for the human is 
essentially eroding the design at the 
foundation. As Chick puts it, when 
the player finally learns a system, 
"That's when the game should really 
start to take off." The joy of learning 
is a big reason why games are fun, 
but no one wants to study for a test 
that doesn't exist. 

 
soren Johnson is a designer/programmer at 

EA, working on browser-based strategy games 

at www.strategystation.com. He was the lead 

designer of Civilization iv and the co-designer 

of Civilization iii. Read more of his thoughts on 

http://www.strategystation.com
http://www.gdmag.com


Game Developers Conference® Online

October 5–8, 2010 | Austin, TX
Visit www.GDCOnline.com for more information

www.GDCOnline.com

http://www.GDCOnline.com
http://www.GDCOnline.com


www.gdmag.com 39

Vincent diamante //  aural fixation

SFX Frequency Mapping
Why your audio map should begin With a hard look at frequency

The deSign docuMenT. The developMenT wiki. 
The game bible. Whatever you call it, in your video 
game production, there’s probably some sort of 
repository of design decisions made well before 
anyone on the team creates a production quality 
asset. In this document, game designers might 
put in things like: whether certain levels are 
hub-and-spoke models as opposed to funnels. 
Artists might note that the main character is 
primarily green and rectangular as opposed to 
the antagonist’s purple trapezoid of a body.

And sound designers ... well ... they usually 
just have lists of things that need to get done. 
Gunshots here, switches there, screams here, and 
so forth. Seems like there’s a dearth of information 
there compared to the other disciplines, right?

There are plenty of reasons why this is the 
case. Often the sound department is significantly 
smaller than art and design, so there’s less need 
to have essential design concepts communicated 
in a document. Also, audio so often follows the 
visual execution, that it makes it hard to decide 
early on the exact aural ideas to execute. And 
then there’s the old standby: relative to other 
components, all that sound pre-production work 
becomes useless once you’re in the thick of 
actually making sounds. Still, this doesn’t mean 
that we can’t try! 

hiT The doc
» Other than the sound effects that need to be 
filled, what else do you put in that early audio 
design document? Just as the art director might 
decide beforehand on basic colors and shapes 
that comprise the game’s visual aesthetic, the 
basics of frequency (low or high) and shape 
(simple or complex) should also make their 
presence known early on. Where the art director 
might suggest that the hero of our cartoonish 
fantasy DS adventure game looks like a rotund 
green elf, the sound designer would decide 
that his main action of casting attack magic 
should have a fundamental frequency around 
500 Hz and be pretty harmonically thick, like a 
square wave tapered temporally, with a bit of a 
presence peak around 3 kHz but absolutely no 
energy past 5 kHz.

You might consider that to be a lot of arbitrary 
sound design decisions based on the fact that 
he’s a fat green magician. But making decisions 
like the above allow us to start putting together 
the puzzle that is the game’s audio design. And 

besides, it’s not that arbitrary; attacking is the 
main way for the player to communicate with 
the game, so having the attack magic carry 
properties of the human voice isn’t a bad idea.

So we’ve got a place for the attack magic; 
where do we put the other stuff? Let’s start 
placing the puzzle pieces next to each other and 
see what works out. Maybe put the UI sounds 
a bit above the voice. Let’s give enemy sound 
effects a place just slightly below our main 
character in the frequency spectrum, but make 
them less harmonically rich, more of a sine wave 
than a square wave, so that they don’t feel as 
powerful as the player. The cartoonish, sparkly 
explosions? How about placing them right at the 
upper limit of musical sounding, about 4–5 kHz 
with a cool little delay effect.

How do we know that these sound effects 
are in the right place? It’s mostly guess work, 
but it’s well-informed guess work. If we want a 
particular sound to stand out, giving it its own 
dedicated space on the frequency spectrum—
away from other sound effects—will help. If 
we’re dealing with a group of creatures that are 
visually different but effectively the same from 
a gameplay perspective, having them occupy 
approximately the same frequency range might 
help to convey that.

Are there existing sounds that you know have 
to be in the game? Things that the designer/
publisher/fan expects? Go ahead and analyze 
it, then throw it into the frequency spectrum. 
Then you can build around that with everything 
else the game needs. Is there a particular voice 
actor that the producer is keen on bringing in 
to the project? Figure out where he sits on the 
frequency spectrum and how much space he 
takes, then work around that. Got a composer that 
has a predilection for those high french horns? 
Make a note to be careful what you put into the 
500–1000 Hz range. 

opinion noTed
» So, you’ve made some decisions about 
sound design; how are you going to notate 
them? Maybe it’s just a matter of making a 
slightly more elaborate table in the design wiki. 
I personally like to put things on a traditional 
piano grand music staff. Besides offering me a 
familiar space, it has lines and spaces where I 
can just write where sound effects should go, 
providing a way to cleanly translate aural ideas 

into a visual aid. If you’re not adept at reading 
music, know that you can draw musical notes 
pretty much anywhere on the staff. The bottom 
staff holds stuff from 100 to 500 Hz, while the 
top staff holds it from 500 to 2000 Hz (see 
Figure 1).

You can go lower than 100 Hz; just place 
whatever you want even lower on the staff. You 
can go higher than 2000 Hz; just place it even 
higher, in the white space way above the staff. 
The important thing is using this tool to make 
sure no one is stepping on anyone else’s toes ... 
unless that’s exactly what you’re going for.

Having all of this preparation done before 
getting into the messy business of actually 
crafting sounds should help make the job a 

bit less messy. Knowing some specifics of the 
sounds we need to make from scratch keeps 
us from being paralyzed by creative choices. 
Keeping those early design decisions in mind 
will help us trawl more quickly through library 
sounds for the needed sound effect. As we know 
all-too-well: you can never be too efficient in 
game production.

The next time you see some pre-production 
game documentation, you might want to try your 
hand at designing a bit more extensively well 
before you touch Pro Tools or Sound Forge. A little 
bit of info on those basic components of sound 
goes a long way. 

vincenT diaManTe is a music composer and educator 

in the Los Angeles area. He penned the score for 

ThatGameCompany’s Flower and currently teaches at USC. 

Email him at diamante@gmail.com.

Figure 1  using a traditional music staff is a good  way to 
note the frequency spacing of sound effects.

mailto:diamante@gmail.com
http://www.gdmag.com


game developer   |  September 201040

good Job! Hired someone interesting? Let us know at editors@gdmag.com!

ArcHer Aims At sOe

whowentwhere

H i r i n g  n e w s  a n d  i n t e r v i e w s

Chris Archer, former game director at Treyarch and executive producer at Activision 
on the publishing side, has recently made the move to Sony Online Entertainment; he 
was picked to run the company’s Seattle division, which is currently working on the 
shooter MMO The Agency. We spoke with Archer about his transition from the console 
to online space, and what it takes to lead a studio.

Game Developer: You were an executive producer and game director at Activision for quite a 
long time. Which of these best prepare one to run a studio, or is it the combination?
Chris Archer: As a game director at treyarch, i was responsible for the creative vision of the 
project from conception to completion and ultimately responsible for one thing: making a great 
video game. 

When asked from people outside the industry, i would compare my role of executive producer 
as a combination of the director and producer on a feature film. As an executive producer for 
treyarch and Activision, i was tasked with leading a 150+ person team, and was responsible for 
making sure the game was on budget, on time, and of the highest quality. 

i think both roles are really critical experiences for running a successful studio. You need to 
understand what makes a game fun, how the games are built, how to lead a large scale team and 
keep all of those developers happy, on time and on budget.

GD: What are the new challenges you face as your role changes to studio head at SOE?
CA: the biggest challenge for any person coming in to a new team is gaining the trust and respect 
of their team. 

my previous positions both on the developer and publisher side have provided me with a lot of 
insight and experience in not only the day to day operations of managing large teams, the business 
side of making great games on time and on budget, but also what publishers’ expectations are and 
how to communicate on both sides of the fence. the biggest challenge in terms of the role change 
has been the transition from traditional console and Pc development to mmO development. i have 
much to learn about these games, but i am really excited about what is ahead in the mmO space 
and i truly believe that online play is where all development is headed.

GD: How has the shift to a much more online-focused 
organization worked? Did you have to study up for this 
at all?
CA: the cool thing about the video game business is there 
is always something new and exciting to sink your teeth 
into. this was no exception when i moved over to sOe. Not 
only have i learned a lot about the mmO business and how 
it works, but also how differently these games are built.

is it really studying when you are having fun doing it? 
my studying consisted of playing a lot of different mmO 
titles, as well as nearly all of the FPs products both current 
and past. 

GD: Console games have made a consistent drive toward 
better visuals, while online games generally put that 
second to “just one more”-style of addictive play. How do 
you see that progressing in the future?
CA: the parity between mmO games and top tier console games is narrowing quickly. i can tell you i 
see it on my screen every day: the next wave of mmO titles that you will see come out will not only 
look as good as those top console titles, but provide hundreds more hours of play comparatively, 
with little to no difference in fidelity of gameplay. The Agency, in particular, i believe will be one 
of those titles. Our goal, and we are proving it right now, is to provide graphics and game fidelity 
that rivals or beats the top shooters on consoles, while at the same time still providing hundreds 
and hundreds of hours of compelling mmO type “just one more” gameplay. customization, 
socialization, and twitch gameplay all in one place, in one game. i can’t wait.

Ex TrEyarch ExEcuTivE prEsidEnT lEads sEaTTlE division

Michael Rawlinson, director general of UK 
trade body the Entertainment and Leisure 
Software Publishers Association, has been 
appointed vice chairman of the Alliance 
Against IP Theft, a coalition of professional 
associations and enforcement organizations 
that aim to protect intellectual property 
rights in the UK.

Activision Blizzard has announced that 
advertising executive Eric Hirshberg will 
take the reins as the CEO of the company’s 
publishing division, following the resignation 
of Mike Griffith.

Happy aquarium developer CrowdStar appointed 
four game industry veterans to its management 
team: Pete Hawley as product development 
VP, Mark Hull as product marketing and 
community VP, Mike Ouye as monetization and 
merchandising VP, and Robert Einspruch as 
business development director.

Cryptic Studios announced that Daniel Stahl 
has been promoted to executive producer 
of Star trek Online, after working at the 
company as a producer on the game, as well 
as on CHampiOnS Online.

new studios
Games industry veterans Brenda Bailey 
Gershkovitch and Kirsten Forbes have founded 
Silicon Sisters Interactive, a Vancouver-based 
studio focused on creating games for a female 
audience. Silicon Sisters is the first female-
owned development studio in Canada, and has 
an all-female design staff.

Pitbull Studio has opened its doors a year after 
the closure of Midway Studios Newcastle, with 
the intention of carrying on the shuttered 
studio's legacy of developing racing games.

Scott Martins, former head of Sony Online 
Entertainment Denver, and other SOE 
veterans have opened Dire Wolf Digital Game 
Studio, a Denver-based studio specializing in 
online trading card games, digital collectibles, 
and social titles.

Ex-Game Developer columnist Alexander 
Brandon, who worked on series such as 
unreal and DeuS ex, has announced the 
formation of Funky Rustic, a Texas-based 
multimedia audio production studio.

mailto:editors@gdmag.com


>> CREATIVE CAREERS

41W W W . G D M A G . C O M

GDP CC RHP TEMPLATE  8/11/10  9:44 AM  Page 41

http://WWW.GDMAG.COM
http://dreamtools.com
http://gamecareerguide.com
http://www.gamecareerguide.com
http://www.gamecareerguide.com


GAME DEVELOPER   |   SEPTEMBER 201042

NEWS AND INFORMATION ABOUT THE GAME DEVELOPERS CONFERENCE SERIES OF EVENTS

WWW.GDCONLINE.COM 

GDC ONLINE ANNOUNCES NEW PANELS, LECTURES
GDC ONLINE ADDS ZYNGA, 
DISNEY, PLAYDOM, 
TENCENT LECTURES
As momentum builds 
for GDC Online (formerly 
GDC Austin) in Texas this 
October, organizers have 
announced key new 
lectures from the world’s 
leading online game 
firms, including Zynga, 
Disney, Playdom, Tencent,             
and more.

The Austin, Texas-based 
GDC Online conference and 
expo—taking place October 
5–8, 2010—is focused on 
online games of all kinds—
including social network 
titles, free-to-play web 
games, kid-friendly online 
titles, large-scale MMOs, 
and more.

With a leading 
advisory board guiding 
the evaluation and choice 

of lectures, and the newly 
announced GDC Online 
Awards honoring the 
leading games in the space, 
the conference is a must-
attend for those working in 
online games.

Some of the highlights 
from newly announced 
sessions—as the August 4th 
alumni registration deadline 
for GDC Austin 2008/2009 
attendees and speakers 
approaches—include:

///  "AAA To Social Games—
Making the Leap" sees 

Playdom VP John Donham, 
most recently at Metaplace 
and a 20-year veteran of 
online games, discussing 
why “developing games 
for social networks is a 
dramatic shift from making 
titles for PCs, consoles, 
or even the Internet.” 
The session will “provide 
you with a solid basis for 
revising your strategy 
as you approach social     
game development.”

///  In "Scalability for Social 
Games: YOVILLE, MAFIA 
WARS, and FARMVILLE," 
Zynga’s Robert Zubek 
expands on his GDC 
2010 Summit talk from 
the leading Facebook 
game firm to “describe 
architectures and 
proven techniques for 
building scalable server 

infrastructure, particularly 
for social web games, 
operating on the web and 
social networks.”

///  In a talk called "The 
Chinese Game Market: 
Planning To Win," Tencent 
Boston VP and GM Jeff 
Goodsill discusses an 
overview of Chinese 
game opportunities from 
the U.S. division of one 
of the biggest Chinese 
firms in the space. The 
talk will include “practical 
strategies to improve your 

odds of winning,” alongside 
“a summary of some of the 
top publishers and games 
in China and a broad 
overview of some of the 
regulations and regulatory 
bodies in China.”

 ///  A practical lecture 
called "MMO 101: Building 
Disney's Server System," 
Disney Online Studios’ 
director of architecture 
and R&D, Roger Hughston, 
presents on the system 
underlying titles like 
WORLD OF CARS and PIXIE 
HOLLOW ONLINE. This 
technical discussion—
“with heavy emphasis 
on server systems”—will 
describe approaches 
that have been taken by 
Disney Online Studios 
in the development of 
their MMO environments, 
including “candid 
discussion about what is 
good, bad, and ugly.” 

In addition to the main 
conference content, 
GDC Online will present 
specialized summit 
programs with in-depth 
business and technical 
advice on major up-and-
coming facets of the game 
industry, including the 
3D Stereoscopic Games 
Summit, the iPhone 
Games Summit, the iPad 
Gaming Summit, and the 
Game Narrative Summit 
(formerly the Game 
Writers Summit).

GDC ONLINE ANNOUNCES 
"LIVE" TRACK SESSIONS
Organizers of GDC Online 
(formerly GDC Austin) 
have announced the first 
set of lectures for this 
October’s pre-eminent 
conference related to 
online games, including a 
"Live" track featuring Sony 
Online, WIZARD101, and 
IMVU speakers.

While there are already 
over 25 confirmed lectures 
across the entire event, 
organizers are focusing on 
the "Live" track, which will 
discuss the vital topic of 
successful strategies for 
online games post-launch. 

The rise of swiftly 
iterated social games and 
microtransactions have 
led to a wide array of new 
techniques and technologies 
that can help increase fun, 
profitability, and retention; 
the "Live" track will deal with 
many of these.

Some of the highlights 
of the GDC Online "Live" 
track, as announced thus 
far, include:

/// In "From SHADOWBANE 
to WIZARD101: Strategies 
for Expanding Player 
Communities and 
Sustaining Enthusiasm 
After Launch," J. Todd 
Coleman and Josef Hall of 
KingsIsle Entertainment 
will reference their 
10-million-registered-
user online game and 
previous experience. 
They will focus on 
“sustaining a community 
that transcends genre 
and generation, the 
importance of always 
having new content in 
queue, and strategies 
for communicating 
milestones, and methods 
for remaining engaged in 
public conversation.”

/// "Surviving Social 
Media: Advice From The 
SOE Playbook" sees Sony 
Online Entertainment’s 
Linda Carlson discussing 
how the FREE REALMS and 
upcoming DC UNIVERSE 
ONLINE creators “identify 
the best outlets for ROI, 
implement efficiencies 
in time and money, 
involve all departments 
for the common good, 

craft audience-specific 
messaging, execute proven 
strategies to engage and 
motivate fans, manage 
multiple games in social 
media, maintain brand 
strength”—with “plenty of 
war stories and scars to 
prove points!”

 /// IMVU’s Brett Durrett 
will present "Building A 
Successful Business After 
Launch Through Rapid 
Iteration," showing how, 
by “creating systems that 
utilize A/B testing, instant 
customer metrics, and a 
sophisticated deployment 
process, IMVU is able to 
shorten the iteration loop 
and deploy new software 
to production up to 50 
times per day”—leading 
to an avatar-heavy online 
environment with over 100 
million registered users.

In addition to the main 
conference content, 
GDC Online will present 
specialized Summit 
programs with in-depth 
business and technical 
advice on major up-and-
coming facets of the game 
industry, including 3D 
stereoscopic games and 
iPad development. 

The event is also 
hosting the first ever Game 
Developers Choice Online 
Awards—honoring the 
accomplishments of the 
sometimes overlooked 
creators and operators of 
persistent online video 
games—from large-scale 
MMOs through free-
to-play titles to social             
network games. 

To learn more about 
the newly announced 
lectures across all tracks 
for GDC Online, for which 
registration is now open, 
please visit the official 
GDC Online web site: www.
gdconline.com.

PIXIE HOLLOW ONLINE.

http://WWW.GDCONLINE.COM
http://www.gdconline.com
http://www.gdconline.com


Gaming Artwork by Rob Arnold Gaming Artwork Collaborative Student Project Gaming Artwork Collaborative Student Project

enroll now

earn  
your aa, ba, bfa, ma, mfa or  
m-arch accredited degree 
engage  
in continuing art education courses

explore  
pre-college scholarship programs

www.academyart.edu
800.544.2787

79 new montgomery st, san francisco, ca 94105

Accredited member WASC, NASAD, Council for Interior  
Design Accreditation (BFA-IAD), NAAB (M-ARCH) 
*Degree program not currently available online.

take classes online or  
in san francisco

advertising

animation & Visual effects

architecture*

art education*

fashion

fine art

game Design

graphic Design

illustration

industrial Design

interior architecture & Design

motion Pictures & television

multimedia communications

music for Visual media

Photography

web Design & new media

http://www.academyart.edu


EducatEd Play!

Tom Curtis: Tell me about the team’s approach 
to design for DreamsiDe maroon. What process 
did you use—prototyping? Paper sketches?
Terraced: Our initial meetings started when 
we were trying to form the team. Both Ian 
Eller and Matt  Anderson had game concepts 
they wanted to explore, but unfortunately 
(or perhaps fortunately) there was little to 
no overlap between their ideas. Additionally, 
neither was terribly interested in the other’s 
concept. We eventually decided to scrap all 
(those early designs) and start from scratch. 

From there, we held a series of brainstorming 
sessions where we just generated as many 
game ideas as possible. The concept of 
DreamsiDe maroon first took root in one of our 
meetings when Matt suggested, “How about 
we grow a vine to the Moon?” For whatever 
reason, this simple thought resonated with all 
of us. Nobody had any idea how that thought 

would translate into a game, but nonetheless, 
it was our spark. Over the many following 
brainstorming sessions we continued to flesh 
out the idea. Would the player climb the vine 
like Jack and the Bean Stalk? Would this be 
a platforming game where the player leads 
the vine around? Would it be 2D or 3D? What 
should the world look like? 

Drawing inspiration from childrens’ stories 
like Le Petit Prince and Harold and the Purple 
Crayon, we decided on a surreal, dream-like 
world of floating islands, where the player 
would direct the vine’s growth using lantern 
light. One of our professors, Ben Ellinger, 
helped early on by painting a mental picture 
of our little character “flying” through swarms 
of fireflies atop a hearty vine on the way up to 
the Moon. The atmosphere and the images that 
Ben conjured up convinced us all. From there, 
we began building the engine and the game.

TC: What tools did the team use on DreamsiDe 
maroon? Did you build your own engine?
T: It is worth noting that DigiPen is a school, and 
as such, all of our courses are designed to help 
us learn. Often times when you tell someone you 
are taking a game (GAM) class, the first thing 
that pops into their head is, “Oh, you just play 
games.” Be assured that although it sounds like 
a joke, the GAM courses are both difficult and 
time consuming. We create games in order to 
facilitate learning, and as such, we are limited in 
the amount of middleware our games can use. 

For DreamsiDe maroon, we used OpenGL 
for our graphics API, FMOD for sound, SDL 
as a windows wrapper, the STL for various 
containers, and Lua as our scripting language. 
Outside of those, we wrote the game in its 
entirety, with the engine in C++ and the higher 
level gameplay portions in LUA. It was the 
biggest project any of us had undertaken, as 
well as the first 3D game we had created.

TC: DreamsiDe maroon seems to shy away 
from concrete player objectives in favor of 
open exploration. How did this affect your 
implementation of objectives?
T: Interestingly, it wasn’t until the end of the 
development cycle that we completely opened 
the game up and removed as many restrictions 
as possible from the player. Throughout the 
creation of the game, we kept trying to force 
the player to do this, that, or the other thing, 
with the result always being frustration. Our 
original idea was to direct the player along a 
loose path by forcing them to “dock” with an 
island to allow the vine to replenish its nutrients. 
To facilitate this, various limits were put on how 
the vine would grow, such as a length cap or a 
maximum distance it could grow from the last 
island it had attached to. Everything we tried felt 
cumbersome and unintuitive. 

Finally, after months of almost succeeding, 
we listened to our focus testers and simply 
opened up the player’s movement, placing 
elements in the world to entice the player to 
explore. In hindsight, this was one of the best 
choices we made. It didn’t make much sense 
to give the player the freedom of flight and 
then drastically limit where they could go and 
how they could get there. The result is that the 
player is left to do as they please with the hope 
that they want to explore.

TC: The game seems to put a lot of emphasis 
on creating a mood and telling a story. Did 
you start with the story, or the mechanics, or 
did it naturally evolve?
T: Without a doubt, nailing the gameplay was 
our primary goal. Crafting the atmosphere 
came as a secondary objective, simply 
because it was so natural. On the other hand, 
we had little reference material to help us 
decide on DreamsiDe maroon’s mechanics. After 
about three months of work, we had the basic 
game engine running, and focus testing began.

Initially, we concentrated simply on 
making the growth mechanics intuitive, 
and then gradually progressed toward 
general gameplay testing. The islands went 
from being large to small; we removed the 
“docking” mechanic, along with need to 
collect seeds; variations on firefly behavior 
were explored, and lanterns and poetry and 
dynamic instrumentation were added. It 
was a long process, and the design phase 
actually ended only a few weeks before the 
IGF deadline. Including a story was more of a 
desire than an objective; we tossed around 
several different notions, but with gameplay 
taking priority, we didn’t give it extensive 
thought. The poetry hidden in each lantern 
represents the themes we would have 
explored in a more complete narration.

TC: How much playtesting did the team do for 
the project? What was the overall reaction of 
players when they were first introduced to 
the concept?
T: We began a heavy regime of focus testing 
in January 2009, one that gradually petered 
out and was closed more or less by April. As 
was previously mentioned, these playtesting 
sessions were meant mainly to help us refine 
the controls, and later on to evolve the overall 
gameplay design. Through studying our testers, 
we came to realize our game needed—inverted 
control options, separate controls for camera 
and player movement, camera zooming, better 
feedback for player/world interaction, and an 
option to turn off the poetry. And of course, we 
learned to stop trying to limit the distance the 
player could grow.                          —Tom Curtis

dreamside maroon
T h e  T w i s T s  a n d  T u r n s  o f  i n d i e  d e v e lo p m e n T

e d u C a T i o n  n e w s  a n d  s T u d e n T  p r o f i l e s

Created as a sChool projeCt by four students from the digipen institute of teChnology, dreamside maroon allows players to explore a 
surreal landsCape while riding a magiCal vine. the game was featured in the 2010 igf student showCase and was a finalist in the 2010 indie 
game Challenge. we talked to terraCed, the team behind dreamside maroon, to disCuss the game’s origins, and why the team ConsCiously shied 
away from traditional game design tropes.

dreamside maroon: 
http://sites.google.com/site/dreamsidemaroongame

gamE dEvEloPEr   |   SEPtEmbEr 201044

http://sites.google.com/site/dreamsidemaroongame


Game Art & Animation
Associate’s Degree

MADISON
MEDIA INSTITUTE
College of Media Arts

MINNEAPOLIS
MEDIA INSTITUTE

College of Media Arts

MADISON:  2702 Agriculture Drive  |  Madison, WI  |  madisonmedia.edu       MINNEAPOLIS:  4100 West 76th St.  |  Edina, MN  |  minneapolismediainstitute.com

Launch your career today!
Madison: 800.236.4997     Minneapolis: 877.416.2783

Careers Include:

Animator
Modeler
Technical 
Animator
Level 
Designer

Additional Emphasis:

Story development

Performance

Cinematography

Traditional art 

Color theory

Program Highlights:

Motion Capture 
facilities

Utilizing: Unreal 
III Engine, Maya, 
Motion Builder, 
Mudbox, Body 
Paint, & more

ad_mmi_gamedev_2010_07.indd   1 7/9/10   1:29 PM

>> GET EDUCATED

45W W W . G D M A G . C O M

GDP GE RHP TEMPLATE  8/10/10  9:43 AM  Page 45

http://madisonmedia.edu
http://minneapolismediainstitute.com
http://WWW.GDMAG.COM
http://www.piedmontcc.edu
mailto:hindmap@piedmontcc.edu


©
 2

01
0 

Fu
ll 

S
a

il,
 I

n
c

.

Game Art 
Bachelor’s Degree Program 

Campus & Online

Game Development
Bachelor’s Degree Program

Campus

Game Design 
Master’s Degree Program

Campus

Game Design 
Bachelor’s Degree Program

Online

fullsail.edu

Winter Park, FL

800.226.7625  •  3300 University Boulevard

Financial aid available to those who qualify  •  Career development assistance

Accredited University, ACCSC

Campus Degrees

Master’s

Entertainment Business 

 Game Design

Bachelor’s

Computer Animation

Digital Arts & Design

Entertainment Business 

Film

Game Art

 Game Development

Music Business

Recording Arts

Show Production

Web Design & Development

Associate’s

Graphic Design

Recording Engineering

Online Degrees

Master’s

Creative Writing

Education Media  
Design & Technology

Entertainment Business 

Entertainment Business: 
with a Sports Management 

Elective Track

Internet Marketing 

Media Design

Bachelor’s

Computer Animation

Entertainment Business

Game Art

 Game Design

Graphic Design

Internet Marketing

Music Business

Music Production

Web Design & Development

>>
GE

T 
ED

UC
AT

ED

46 A U G U S T  2 0 1 0  | G A M E  D E V E L O P E R  

GDP GE LHP TEMPLATE  8/10/10  9:55 AM  Page 46

http://fullsail.edu
http://www.ci.neu.edu


Academy of Art University . . . . . . . . . . . . . . . . 43

Bungie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Epic Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Full Sail Real World Education . . . . . . . . . . . . .46

Havok. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C3

Madison Media Institute. . . . . . . . . . . . . . . . . . 45

Montreal International Game Summit. . . . . .30

Northeastern University. . . . . . . . . . . . . . . . . .46

Perforce Software. . . . . . . . . . . . . . . . . . . . . . . . 14

Piedmont Community College . . . . . . . . . . . . 45

Rad Game Tools. . . . . . . . . . . . . . . . . . . . . . . . . . C4

Scaleform Corporation . . . . . . . . . . . . . . . . . . . C2

Seapine Software . . . . . . . . . . . . . . . . . . . . . . . . . 6

Simpson Strong-Tie . . . . . . . . . . . . . . . . . . . . . . 41

TwoFour54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

University of Advancing Technology. . . . . . . 47

COMPANY NAME PAGE COMPANY NAME PAGE

ADVERTISER INDEX

Game Developer (ISSN 1073-922X) is published monthly by United Business Media LLC, 600 Harrison St., 
6th Fl., San Francisco, CA 94107, (415) 947-6000. Please direct advertising and editorial inquiries to this 
address. Canadian Registered for GST as United Business Media LLC, GST No. R13288078, Customer No. 
2116057, Agreement No. 40011901. SUBSCRIPTION RATES: Subscription rate for the U.S. is $49.95 for twelve 
issues. Countries outside the U.S. must be prepaid in U.S. funds drawn on a U.S. bank or via credit card. 
Canada/Mexico: $69.95; all other countries: $99.95 (issues shipped via air delivery). Periodical post-
age paid at San Francisco, CA and additional mailing offices. POSTMASTER: Send address changes to 
Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. CUSTOMER SERVICE: For subscription orders and 
changes of address, call toll-free in the U.S. (800) 250-2429 or fax (847) 647-5972. All other countries call 
(1) (847) 647-5928 or fax (1) (847) 647-5972. Send payments to Game Developer, P.O. Box 1274, Skokie, 
IL 60076-8274. Call toll-free in the U.S./Canada (800) 444-4881 or fax (785) 838-7566. All other countries 
call (1) (785) 841-1631 or fax (1) (785) 841-2624. Please remember to indicate Game Developer on any 
correspondence. All content, copyright Game Developer magazine/United Business Media LLC, unless 
otherwise indicated. Don’t steal any of it.

W W W . G D M A G . C O M 47

>> GET EDUCATED

Baby tattoo Computer (game)

GDP GE RHP AD INDEX TEMPLATE  8/13/10  9:44 AM  Page 47

http://WWW.GDMAG.COM
http://www.gamasutra.com/jobs
http://www.uat.edu


GAME DEVELOPER   |   SEPTEMBER 201048

CONSENSUS REACHED
CHRONICLES OF AN OVERZEALOUS PRODUCER

ARRESTED DEVELOPMENT //  MATTHEW WASTELAND

MEETING REQUEST: SPACE BATTLER - HELMET KICK-OFF
AGENDA: The purpose of this meeting will be to decide how to proceed with 
the design of the helmet section of the body armor for SPACE BATTLER.

The open questions that will receive a drive toward clarity in this meeting 
are the following:
1.  What kind of helmet is the most optimal to forward the goals for SPACE 

BATTLER’s character, as set out in the SPACE BATTLER Character Bible 
document (see attached)?

2.  What color should the helmet be? (If multiple colors, what color scheme 
should be employed to ensure that the multiple colors do not clash with 
each other?)

3.  What is the overall purpose of the helmet?
4.  Will there be other characters that need helmets? If so, will they share 

a similar helmet design, or do they need independent helmet designs? 
Can geometry between helmet types be shared in order to speed up 
construction time without sacrificing quality? If yes, what percentage 
of geometry will experience re-use?

5.  After art, design, engineering, production, audio, and QA sign-off on a 
direction for the helmet, what are the next steps and checkpoint dates?

NOTES: SPACE BATTLER - HELMET KICK-OFF
A meeting was held to determine the direction of the helmet design for SPACE 
BATTLER. The meeting was attended by art, design, engineering, production, 
audio, and QA. The results of the meeting are as follows.

• It was agreed that the helmet for SPACE BATTLER should be of the “science 
fiction” type. Since the setting of the game is science fiction, it follows 
that SPACE BATTLER’s helmet should fit in with a science fiction universe.

• According to the writing department, which participated in the meeting 
via conference call, the purpose of SPACE BATTLER’s helmet is to protect 
his head from possible injury.

• A concern was raised by engineering that an overly complex helmet 
may reduce the game’s frame rate.

• It was agreed upon by all parties that the helmet should “look cool.”

WARNING: The color of the helmet is still not decided. Different helmet colors 
need to be explored before the final helmet color can be locked. However, 
the art director stated that whatever color the helmet ends up being, it 
should need “no more than two or three” different colors on it.

A checkpoint date was set for tomorrow.

MEETING REQUEST: SPACE BATTLER - HELMET CHECK-IN
AGENDA: Assess the current progress of SPACE BATTLER’s helmet.

1. Is the helmet science fiction, as was decided upon in the kick-off 
meeting (see notes)? Do we need to adjust course?

2. Helmet color discussion continued.
3.  Next steps and any other business.

NOTES: SPACE BATTLER - HELMET CHECK-IN
Progress on the helmet design was reviewed by art, design, engineering, 
production, audio, and QA. Possible helmet designs were narrowed down to 
three main options:

1.  A helmet with rivets on the side and top that accentuate the feeling of 
strength possessed by SPACE BATTLER.

2.  A helmet with an organic shape meant to evoke the alien technology 
that Nalana, Princess of Andromeda, gives to SPACE BATTLER. CONCERN: 
Players may not understand that this helmet was designed with alien 
(non-human) technology. Consider ways to explain SPACE BATTLER’s 
possession of an alien helmet in a follow-up meeting.

3. A helmet made out of garbage that SPACE BATTLER had put together 
himself from junkyard parts. This would showcase resourcefulness 
and highlight the severe lack of resources the Earth has after the 
devastating alien invasion. It could also make him look more heroic, as 
he is fighting to save the world but with poor equipment.

Another meeting was scheduled to settle on one of the options.

Animation entered the meeting to ask why QA was included in a discussion 
about helmet design but not an animator.

MEETING REQUEST: SPACE BATTLER - HELMET FOLLOW-UP
AGENDA: Decide on the final helmet design approach and achieve sign-off 
from all parties. 

This is the meeting where the helmet design will be locked. If you have 
any additional concerns about the helmet design, now is the time to bring 
them up.

NOTES: SPACE BATTLER - HELMET FOLLOW-UP
The SPACE BATTLER helmet design was reviewed by art, design, engineering, 
production, audio, and animation with final sign-off as the goal.

1.  Animation brought up a concern that none of the options make it 
possible for SPACE BATTLER to tilt his head.

2.  Engineering expressed some reservations about the alien helmet 
design, saying it might require complex shaders. There was also 
concern about the junkyard design, as it may require too many 
polygons. Finally, the riveted design may be too memory-intensive due 
to its high-resolution normal maps.

3.  The color discussion was settled and locked. The helmet will be gray.

MEETING REQUEST: SPACE BATTLER - HELMET PROCESS POSTMORTEM
AGENDA: Discuss the design process of the SPACE BATTLER helmet.

1.  What worked well about the SPACE BATTLER Helmet Design Process (SBHDP)?
2.  What didn’t go as smoothly as hoped?
3.  What process improvements can we carry forward into the design 

process for SPACE BATTLER’s kneepads?

NOTES: SPACE BATTLER - HELMET PROCESS POSTMORTEM
Meeting was postponed indefinitely. 

Due to time constraints, participants decided to begin the SPACE BATTLER

kneepad design immediately and discuss process at a later date. 

MATTHEW WASTELAND writes about games and game development at his blog, Magical 

Wasteland (www.magicalwasteland.com).

http://www.magicalwasteland.com


http://www.havok.com


http://www.radgametools.com

	Contents
	Postmortem
	Raven Software's Singularity

	Features
	Big Wars
	Hot Failure

	Departments
	Editorial
	Game Plan

	News
	Heads Up Display

	Review
	Tool Box

	Programming
	The Inner Product

	Art
	Pixel Pusher

	Design
	Design of the Times

	Sound
	Aural Fixation

	Career
	Good Job!

	GDC
	Eye on GDC

	Education
	Educated Play

	Humor
	Arrested Development



