
T O O L B O X : P I X E L A C T I V E ' S C I T Y S C A P E 1 . 7

T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E

VOL16NO8SEPTEMBER2009

0909gd_cover_vIjm.indd 10909gd_cover_vIjm.indd 1 8/20/09 11:05:54 AM8/20/09 11:05:54 AM

http://www.eyetronics.com

GAME DEVELOPER | XXXXX XXXX 1
COVER ART: JOE MITCH

CONTENTS.0909
VOLUME 16 NUMBER 8

P O S T M O R T E M

22 KINGSISLE ENTERTAINMENT'S WIZARD101
WIZARD101 is an MMO with a unique business model. The game not
only offers the free-to-play (with microtransactions) model, but also
a subscription alongside it. Texas-based KingsIsle shares with us the
very honest ups and downs of developing a new MMO, from the boons
of free trials to botched UI. By James Nance

F E AT U R E S

7 ALTERNATIVE GEOMETRY
Polygons rule the game development roost, there's no question of
that. But that doesn't mean voxels, NURBS, and other methods of
achieving non-polygonal geometry have nothing to offer. This article
investigates the state of the art and how you can try to implement
non-polygonal 3D into your game, or at least your pipeline.
By Bijan Forutanpour

15 DEMYSTIFYING MATRIX LAYOUTS
Matrices tend to live in shaders, physics systems, and other time-
critical portions of games. These important structures are often
difficult to optimize and design, so here the authors show best
practices for getting the most out of your matrix operations on
modern systems, both console and PC. By Jelle Van Der Beek and
Arjan Janssen

D E PA R T M E N T S

 2 GAME PLAN By Brandon Sheffield [E D I T O R I A L]

Clone Versus Genre

 4 HEADS UP DISPLAY [N E W S]

Vintage computing tools, Game Developer advisory board
update, free Game Career Guide, and more.

 36 TOOL BOX By Marc-André Guindon [R E V I E W]

PixelActive's CityScape 1.7

39 PIXEL PUSHER By Steve Theodore [A R T]

Jumping to Occlusions

 43 THE INNER PRODUCT By Noel Llopis [P R O G R A M M I N G]

Data-Oriented Design

 47 DESIGN OF THE TIMES By Damion Schubert [D E S I G N]

Resonance

 50 AURAL FIXATION By Rob Bridgett [S O U N D]

Stereo Downmixing

56 ARRESTED DEVELOPMENT By Matthew Wasteland [H U M O R]

My Story Isn't Dumb

0909gd_toc_vIbs.indd 10909gd_toc_vIbs.indd 1 8/20/09 11:00:49 AM8/20/09 11:00:49 AM

GAME PLAN // BRANDON SHEFFIELD

HEADLINE
DEK

Think Services, 600 Harrison St., 6th Fl.,
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

 www.gdmag.com

CLONE VERSUS GENRE
WHEN ART IMITATES ART

WE OFTEN TALK ABOUT “CLONES” OF GAMES, OR COPIES

of ideas—but at a certain point, if an idea is copied,
expanded, and massaged enough times, nobody says
clone anymore. When does an idea become large
enough to lose its own identity, and flourish into a full-
blown genre? Perhaps it’s better said that the idea gains
a new identity, one that’s more generally applicable.

Most recently, we stopped referring to “TOWER
DEFENSE clones,” and began discussing tower defense
games as an entire genre, which has since been
expanded to include a number of variations, by
companies as diverse as Square Enix and PopCap.
“DOOM clones” stopped appearing around the time
QUAKE came out, and we started to deal with the FPS as
a genre. BEJEWELED, itself inspired by earlier matching
puzzlers like COLUMNS, is no longer copied per se, we
now have the “match-three” genre, which includes the
robust PUZZLEQUEST in its ranks.

WILL THE ORIGINAL CONCEPT
PLEASE STAND UP?

» The question occurs to me as I work
on an iPhone game that’s heavily inspired
by one specific existing game. This
original game has had one or two “clones”
already, but they’re not well known
enough to have become pervasive. So
how do I know if I’ve expanded my own
version of the concept enough to safely
claim I’m not making a “clone?”

Let’s consider some existing
examples. PopCap’s ASTRO POP
successfully iterates on a concept
popularized by the Data East game
MAGICAL DROP (grab colored balls from
a well, form groups of three to remove
them) by adding powerups and changing
the setting to outer space. MAGICAL DROP’s
creator Data East was no longer around to
make another entry in the series, so who
would begrudge PopCap’s renewal of the
still-enjoyable concept? One step further,
there’s the mobile game puzzler CRITTER
CRUNCH, which looks familiar, but changes
the chaining structure to such an extent that it feels like
a totally different game.

Then there’s ZUMA—also from PopCap—versus
PUZZ LOOP from Mitchell Corp. In this case, only
the scenario was changed, the gameplay was not
significantly altered or upgraded from the two existing
PUZZ LOOP titles. This is much more likely to be labeled
a clone, because while the platform has changed
from the original arcade game to the PC (and other
devices), the game feels very similar. The game I’m
working on may well be more similar to the original

than it is different. Though the platform, characters,
and controls will have all changed significantly, the
core concept is still quite reminiscent of the original.
So how will my game be labeled?

I AM NOT A REPLICANT

» So where is the line drawn? How much is “enough”
concept evolution to make a game a step forward
within a genre shard versus being labeled a clone?
I say “shard,” because as games evolve, genres
themselves become more granularly defined. Though
TETRIS, SOKOBAN, SUDOKU, and BEJEWELED are all puzzle
games, you wouldn’t paint them with the same brush.
Falling-block puzzle, action puzzle, brain puzzle, and
match-three are the more correct terms.

SOKOBAN (a game in which you push boxes into
the correct areas, trying not to trap yourself) is an
interesting one, because most games based on its

concept are in fact true clones, to the
point that they use the SOKOBAN name in
their titles, and reuse the puzzle maps
from the original. Variants like CHIP’S
CHALLENGE and BOULDER DASH seem
to escape the “clone” distinction by
adding different goals and scenarios.

Then we have genre-defining games
like GRAND THEFT AUTO’s 3D iterations.
Certainly open world games had existed
previously, and sandbox games were
used to describe something like SIMCITY
rather than GTA. But after GTA III, any
game with any similar elements was
called “GTA-like,” and to some extent
that’s still true. Perhaps this is because
we heard a lot of publishers saying
“Make it more like GTA” at the time.
But perhaps it’s also partially the fault
of the press for wanting to compare
everything to a specific gold standard.

In the case of the game I’m working
on, the original concept is simple. I think
that’s the major factor here. It seems
that the simpler the core concept, or
the fewer core concepts exist within

one game, the more likely a successor is to be labeled
a clone. But of course, we don’t call MADDEN and NCAA
clones of each other, nor clones of the sport on which
they’re based, even though they follow the original core
concept of American football to the letter. Ultimately,
it’s a question of semantics, evolution, and feeling. If a
game simply feels too much like another, it’s going to
get called a clone. If it works to distinguish itself within
a solid concept, every game like it will work in concert to
create a new genre.

—Brandon Sheffield

Data East's MAGICAL DROP and

Capybara Games' CRITTER CRUNCH.

GAME DEVELOPER | SEPTEMBER 2009 2

SUBSCRIPTION SERVICES

FOR INFORMATION, ORDER QUESTIONS, AND
ADDRESS CHANGES

t: 800.250.2429 f: 847.763.9606
e: gamedeveloper@halldata.com

EDITORIAL

PUBLISHER

Simon Carless l scarless@gdmag.com
EDITOR-IN-CHIEF

Brandon Sheffield l bsheffield@gdmag.com
PRODUCTION EDITOR

Jeffrey Fleming l jfleming@gdmag.com
ART DIRECTOR

Joseph Mitch l jmitch@gdmag.com
SENIOR CONTRIBUTING EDITOR

Jill Duffy l jduffy@gdmag.com
CONTRIBUTING EDITORS

Jesse Harlin l jharlin@gdmag.com
Steve Theodore l stheodore@gdmag.com
Noel Llopis l nllopis@gdmag.com
Soren Johnson l sjohnson@gdmag.com
Damion Schubert l dschubert@gdmag.com
ADVISORY BOARD

Hal Barwood Designer-at-Large
Mick West Independent
Brad Bulkley Neversoft
Clinton Keith High Moon Studios
Bijan Forutanpour Sony Online Entertainment
Mark DeLoura Independent
Carey Chico Pandemic Studios

ADVERTISING SALES

GLOBAL SALES DIRECTOR

Aaron Murawski e: amurawski@think-services.com
t: 415.947.6227
MEDIA ACCOUNT MANAGER

John Malik Watson e: jmwatson@think-services.com
t: 415.947.6224
GLOBAL ACCOUNT MANAGER, EDUCATION
AND RECRUITMENT

Gina Gross e: ggross@think-services.com
t: 415.947.6241
COORDINATOR, EDUCATION AND RECRUITMENT

Rafael Vallin e: rvallin@think-services.com
t: 415.947.6223

ADVERTISING PRODUCTION

PRODUCTION MANAGER

Robert Steigleider e: rsteigleider@ubm-us.com

REPRINTS

WRIGHT'S REPRINTS
Ryan Pratt e: rpratt@wrightsreprints.com
t: 877.652.5295

THINK SERVICES

CEO THINK SERVICES Philip Chapnick
GROUP DIRECTOR Kathy Schoback
CREATIVE DIRECTOR Cliff Scorso

AUDIENCE DEVELOPMENT

GROUP DIRECTOR Kathy Henry
e: khenry@techinsights.com
DIRECTOR Kristi Cunningham
e: kcunningham@techinsights.com
LIST RENTAL Merit Direct LLC t: 914.368.1000

MARKETING

SERVICES MARKETING COORDINATOR Laura Robison
e: lrobison@think-services.com

UBM TECHNOLOGY MANAGEMENT

CHIEF EXECUTIVE OFFICER David Levin
CHIEF OPERATING OFFICER Scott Mozarsky
CHIEF FINANCIAL OFFICER David Wein
CHIEF INFORMATION OFFICER Kevin Prinz
CORPORATE SENIOR VP SALES Anne Marie Miller
SENIOR VP, STRATEGIC DEV. AND BUSINESS ADMIN. Pat Nohilly
SENIOR VP, MANUFACTURING Marie Myers

W W W . C M P G A M E . C O M

0909gd_gameplan_vIjf.indd 20909gd_gameplan_vIjf.indd 2 8/19/09 4:19:38 PM8/19/09 4:19:38 PM

http://www.gdmag.com
mailto:gamedeveloper@halldata.com
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:jfleming@gdmag.com
mailto:jmitch@gdmag.com
mailto:jduffy@gdmag.com
mailto:jharlin@gdmag.com
mailto:stheodore@gdmag.com
mailto:nllopis@gdmag.com
mailto:sjohnson@gdmag.com
mailto:dschubert@gdmag.com
mailto:amurawski@think-services.com
mailto:jmwatson@think-services.com
mailto:ggross@think-services.com
mailto:rvallin@think-services.com
mailto:rsteigleider@ubm-us.com
http://wrightsreprints.com
mailto:khenry@techinsights.com
mailto:kcunningham@techinsights.com
mailto:lrobison@think-services.com
http://WWW.CMPGAME.COM

We are tired of stupid zombies populating games.
Help us and give ’em brain. Sign up NOW for FREE
and download the NEW xaitment BrainPack SDKs

Set up and control complex game logic in a few steps. Generate your perfect
navigation mesh with a single click. Create realistic behavior in no time.

Join the xaitment community now and turn your idea into a stunning prototype without
paying any license cost. By signing up for free, you’ll receive our complete modular AI Engine
plus our world-class support. Experience the future of next gen game technology and work
with the smartest AI technology available.

Contact xaitment today for more information about the BrainPack Program under
brainpack@xaitment.com or visit our website www.xaitment.com

mailto:brainpack@xaitment.com
http://www.xaitment.com

HEADS-UP DISPLAY

Designed by Steve Wozniak and
released in 1977, the Apple II
pioneered the mass-produced,
preassembled computer concept
and started an enormous following
that continues to this day. While
limited in graphical and sound
capabilities compared to later 8-
bit machines, the Apple II’s open
nature allowed programmers and
hardware hackers alike to squeeze
the most out of the system, a
practice they continue to this day.

http://dreher.net/?s=projects/
CFforAppleII&c=projects/CFforAppleII/
main.php
Price: TBA
» With 1970s-era floppies and disk
drives growing more unreliable with
each passing year, developing new
software for an old machine can seem
like a risky proposition. That’s why the

wonders of flash storage technology
have taken the retrocomputing
community by storm in recent years,
and the Apple II is no exception.

The CFFA is a plug-in board for
the Apple II series that allows users
to store data on CompactFlash
cards or IDE hard disks. Through its
CompactFlash support, it allows
relatively easy data transfer between
a modern PC and an Apple II.

The original CFFA is currently sold
out, but its creator is working on an
improved version called the CFFA3000
that may become available soon.

As the best-selling computer model of
all time, there’s no doubt that many
game developers today got their start
on Commodore’s inexpensive but
powerful wunderkind. The Commodore
64, released in 1982, shipped with
64KB of RAM, impressive color
graphics capabilities, and the world-

famous SID synthesizer sound chip
that remains highly coveted by
“chiptune” artists today.

www.c64-wiki.com/index.php/MMC_
Replay
Price: About 79 Euros (MMC Replay)
or 50 Euros (RR-Net)
» The MMC Replay combines an
impressive number of
functions into one
standard-sized
Commodore 64
cartridge. It simulates
two C64 disk drives by
loading floppy disk image files off
of Secure Digital (SD) flash storage
media. It also contains a hardware
clone of the classic Action Replay
cartridge which includes development
tools, game cheating functions, and
the ability to dump the entire C64’s
memory contents to disk. Even
better, one can buy an add-on RR-Net
Ethernet module to add TCP/IP access
to the C64.

A reliable place to purchase the
MMC Replay can be hard to pin down
since the device is manufactured by
several different groups. If all else
fails, try eBay.

www.ajordison.co.uk
Price: Free
C64prgGen (short for “Commodore
64 Program Generator”) provides a
modern Windows environment in
which programmers can type BASIC
or machine language programs. The
software will then convert the program

into a .prg binary file that can be
executed on a real or emulated C64.
This provides an excellent environment
for beginners who might not be familiar
with classic C64 development tools.

The Atari 8-bit computer line,
originally intended to be a follow-up
game console to the Atari 2600,
emerged in 1979 with the release

of the Atari 400 and 800. The
original models shipped

with 8KB of RAM, but
the 800 could later be

expanded to 48KB. Both
included impressive sound and

sprite-handling abilities for the
time. Over the next ten years, Atari
refreshed the 8-bit line with newer
models like the 1200XL, 800XL,
130XE, and the XEGS.

www.atarimax.com/flashcart/
documentation
Price: $24.99 (1Mbit) or $39.99
(8Mbit)
» The Atarimax flash multicarts are
user-programmable cartridges that use
built-in flash media to store multiple
Atari 8-bit programs, usually games.
Maxflash fans typically provide sets
of Atari games that one can easily
place on the cartridge, which is
programmed via software executed on
Atari computer itself. Even better, with
the right tools (provided by Atarimax)
and the proper know-how, one can
also flash one’s own homebrew Atari
projects onto the cartridge.

GAME DEVELOPER | SEPTEMBER 20094

Atarimax SIO2PC Universal Interface.

0909_hud_vIjf.indd 40909_hud_vIjf.indd 4 8/19/09 4:20:39 PM8/19/09 4:20:39 PM

http://dreher.net/?s=projects/CFforAppleII&c=projects/CFforAppleII/main.php
http://dreher.net/?s=projects/CFforAppleII&c=projects/CFforAppleII/main.php
http://www.c64-wiki.com/index.php/MMC_Replay
http://www.ajordison.co.uk
http://www.atarimax.com/flashcart/documentation
http://www.c64-wiki.com/index.php/MMC_Replay
http://www.atarimax.com/flashcart/documentation
http://dreher.net/?s=projects/CFforAppleII&c=projects/CFforAppleII/main.php
http://vintagecomputing.com

WWW.GDMAG.COM 5

GAME DEVELOPER’S
CAREER GUIDE AVAILABLE

GAME DEVELOPER’S ANNUAL CAREER GUIDE

issue, which is oriented toward students
and prospective game developers, does
not ship to subscribers, who should
already be familiar with most of the
introductory content.

However, for those entry-level readers
who would like to get ahead in the industry,
or those who would simply like to see what horrible lies we’re
trying to propagate among today’s youth, the editors are pleased to
announce that the entire Game Career Guide can be viewed online in
interactive PDF form, at no cost.

The special supplement this year focused on simply going ahead and
making games, perhaps the single most important thing employers look for
in potential employees.

Read the special issue here: http://gamedeveloper.texterity.com/
gamedeveloper/2009fall

www.atarimax.com/usbcart/
documentation
Price: $59.99 (USB) or $29.99
(Serial)
» An essential tool for any modern
Atari 8-bit developer, the SIO2PC
interface allows transfer of data
between an Atari 8-bit computer and
a modern Windows or Mac machine
with a serial or USB port. (“SIO” was
Atari’s name for its 8-bit serial-based
peripheral bus.) Better yet, it allows
a PC to act as a disk drive emulator
for an Atari 8-bit machine, making
storing and loading software a
snap.

Commodore conceived the VIC-20
(released in 1980) as a low cost home
computer, and it shows. The VIC-20
included a mere 5KB of RAM and could
only generate a 22-column by 23-line
text display. Despite this, the VIC-20
sold by the millions due to its low
retail price and is fondly recalled by
many who had their first programming
experiences on the endearingly
primitive machine.

www.mega-cart.com
Price: $99.95

» Aside from containing every VIC-20
cartridge game ever released (and
more) in a single cartridge, the Mega-
Cart also includes built-in 32K RAM
expansion and many software tools
for VIC-20 programmers. The only
downside is its very high price.

The following tools work with multiple
computer platforms.

www.cc65.org
Price: Free
» cc65 is a freeware C cross compiler
for computers that use the MOS 6502
microprocessor
and its derivatives.
The cc65 compiler/
assembler itself
resides on a host system running
Windows or Linux. From a C program
written in a text editor of your choice,
it produces binaries executable on
6502-based target systems like
the Apple II, Atari 800, Commodore
64, and even the Nintendo
Entertainment System.

www.protovision-online.de/catalog
Price: 8 Euros
» The 8-Bit Baby is a hardware
development breadboard for multiple
8-bit computer systems. It’s unique in
that it includes four different built-in
card edge connectors that plug into
slots on the Commodore 64, VIC-20,
Plus/4, and the Apple II. If you’ve ever
wanted to build a novel C64-to-toaster
interface, here’s your chance.

GAME DEVELOPER ANNOUNCES
REVAMPED ADVISORY BOARD

IN A CONTINUED DRIVE TOWARD

supreme excellence above all
things, Game Developer is pleased
to announce its newly-refreshed
advisory board. Some of these folks
have been on the board for a while
now, but with this lineup, we’re
confident we have our board set for
the foreseeable future.

Now working with us will be:
HAL BARWOOD Independent
designer known for his work on
many venerable LucasArts titles
and for co-writing the Dragonslayer
screenplay.
BRAD BULKLEY A tech director
at Neversoft, and frequent
contributor to Game Developer.

CAREY CHICO Executive art
director for Pandemic Studios,
and regular Game Developer Tool
Box reviewer.
MARK DELOURA Independent tech
consultant, previous Sony and
Ubisoft exec, and former Game
Developer editor-in-chief.
BIJAN FORUTANPOUR Senior
graphics and tools engineer at
Sony Online Entertainment and
software tools author.
CLINTON KEITH Agile and SCRUM
trainer, and former tech director for
High Moon Studios.
MICK WEST Independent
programmer, co-founder of
Neversoft, and ex-code columnist
for Game Developer.

The CFFA plug-in board for

Apple II computers.

IEEE SYMPOSIUM
ON COMPUTATIONAL
INTELLIGENCE AND
GAMES
· Politecnico di Milano
· Milan
· September 7–10
· Price: $300–$580
www.ieee-cig.org

GAME DEVELOPERS
CONFERENCE AUSTIN
· Austin Convention

Center

· Austin, TX
· September 15–18
· Price: $895–$995
www.gdcaustin.com

GO3 ELECTRONIC
& ENTERTAINMENT
EXPO
· Perth Convention

Exhibition Centre
· Perth, Australia
· October 1–4
· Price: See web site
www.go3.com.au

KOREA GAMES
CONFERENCE
· COEX
· Seoul
· October 7–9
· Price: See web site
www.kgconf.com

GDC Austin.

C A L E N D A R

0909_hud_vIjf.indd 50909_hud_vIjf.indd 5 8/19/09 4:20:41 PM8/19/09 4:20:41 PM

http://www.atarimax.com/usbcart/documentation
http://www.mega-cart.com
http://www.cc65.org
http://www.protovision-online.de/catalog
http://gamedeveloper.texterity.com/gamedeveloper/2009fall
http://www.ieee-cig.org
http://www.gdcaustin.com
http://www.go3.com.au
http://www.kgconf.com
http://WWW.GDMAG.COM
http://www.atarimax.com/usbcart/documentation
http://gamedeveloper.texterity.com/gamedeveloper/2009fall

EVEN IF YOU
GOT YOUR

OFFICE CHAIRS
FROM THAT
DUMPSTER

BEHIND THE
BUILDING,

your game can be Unreal.

No matter what size your budget. No matter what type of game.
Unreal can be your game engine. Email Mark Rein at getunreal@epicgames.com

mailto:getunreal@epicgames.com

WWW.GDMAG.COM 7

B I J A N F O R U T A N P O U R

Thanks to science fiction-like advances in technology, games have taken a large step forward in image quality and
photorealism during the past ten years. Games are the killer app of graphics hardware, and are a huge part of the raison
d’etre of that industry. In turn, if video cards did nothing more than drive the monitor, we’d all still be playing PONG.
Because graphics hardware development and game development are so intertwined, many of the decisions made by
one side affects the other. A primary example is the use of the triangle as the core rendering primitive. GPUs have been
designed to process hundreds of millions of triangles per second, and so game engines are forced to express the game as
triangles, the art tools have to output artistic vision as triangles, and finally, artists have to think in triangles.

Even though rasterization of triangles clearly has a stronghold on
today’s rendering pipelines, there are other methods and technologies
that are available today. They may not be appropriate for rendering the
entire game, but they may be appropriate for rendering parts of a 3D
scene at interactive speeds. Alternatively, they may be useful in other
parts of the game development process, such as tools for creating art
assets. In this article, we will review technologies that are alternative to
the triangle, but still make sense for use today.

E X P L I C I T G E O M E T R Y

» First, let's begin with a brief summary of the drawbacks of using
triangles. Triangles are very explicit; a lot of data is required to describe a
single triangle. The location, normal, and texture coordinate of each vertex
add up to a lot of data very quickly, especially for models with curved
surfaces. This produces a bottleneck for data transfer between CPU and GPU,
not to mention a lack of storage space in video memory for all that data.

This leads to the need for a series of programming optimizations to
help manage the data efficiently. Examples include triangle stripping,
creating data-aligned vertex buffers for position, normal, and texture
coordinates, followed by index buffers to access them correctly, and
sorting vertices such that they are used in sequential order to minimize
missed hits to the hardware vertex cache. It's not really what one would
consider part of the pleasures of graphics programming, unlike creative
lighting, materials, and effects algorithms.

Sorted triangles with per-vertex and connectivity information
are at the lower levels of the language of expressing geometry. One
could think of it as akin to programming in assembly. You can express
anything in assembly, and if used correctly it is faster than any other
language, but it is way too detailed and explicit a language to be
fun or practical for daily coding of large systems. Yes, given current
hardware architectures, any form of geometry supplied to the system
will eventually be converted to triangles before final display anyway,

THINKING OUTSIDE THE TRIANGLE

0909gd_geometry_vIjf.indd 70909gd_geometry_vIjf.indd 7 8/19/09 4:22:25 PM8/19/09 4:22:25 PM

http://WWW.GDMAG.COM

GAME DEVELOPER | SEPTEMBER 2009 8

but that shouldn’t necessarily dictate the need to push triangles all the
way up to the engine and art pipeline.

P A R A M E T E R I Z E D G E O M E T R Y

» At the other end of the geometry definition spectrum comes the
class of parameterized geometry, described by mathematical equations.
Curves and curved surfaces fit into this category, as do subdivision
surfaces, Bezier patches, NURBS (Non Uniform Rational B-Splines),
and quadric surfaces. There are at least four advantages to using
parameterized curves and surfaces over triangle meshes. First, they
require much less data than explicit meshes do. That means less memory
storage, fewer transformation calculations, and less bus bandwidth.
Second, they are scalable, providing any amount of detail desired. For
instance, a curved patch can be tessellated into just a few triangles, or
many thousands of triangles, depending on the distance to camera. The

third advantage is that they simply look better, and represent rounded
characters, terrain, or terrain objects such as trees or rocks better
than triangles do. Lastly, for per-frame calculations such as animation
or collision, they require fewer calculations. The geometry hull which
contains fewer vertices can be used for any calculations, and then the
smoother and higher resolution mesh can be generated and rendered
afterward directly by the graphics hardware.

 Even though today’s GPUs process triangles faster than curved
primitives, the advantages of surfaces are compelling enough to
encourage researchers and hardware companies to keep trying. One
relatively recent idea is N-patches, short for “normal patches,” also called
PN triangles. The goal of PN triangles is to improve the shading and

silhouettes of flat triangles by generating a curved surface to replace
each triangle. The curved surface is created by generating new triangles
which approximate the curved surface on the fly. This actually can be
accelerated by hardware because it can generate the surface using
only the normals and positions of the original underlying triangle. No
information from neighboring triangles is needed.

ATI in fact has implemented hardware acceleration of N-patches in
some of its chips. Beginning with the 8000 series of chips, this hardware
feature was called TRUFORM, and was available in many games—QUAKE,
QUAKE 2, UNREAL TOURNAMENT 2003 and 2004, MADDEN NFL 2004 and
WOLFENSTEIN: ENEMY TERRITORY, among others.

But beginning with the Radeon X1000, the feature was no longer
advertised, probably because of a lack of wider acceptance among
developers. It also didn’t help that NVidia didn’t have a similar feature in
its hardware at the time. NVidia had a competing tessellation solution
based on quintic-RT patches, which did not receive much attention
from developers. QuinticRT patches are based on quintic equations—
polynomial equations of degree five. Quintic equations have some
interesting properties, although I can’t help but be reminded of the scene
in Spinal Tap where Nigel declares, “This one goes to 11,” while describing
his amp. Usually third and fourth degree polynomials are more than
sufficient to represent the needed curvature.

Beginning with the R600 GPU found in the ATI Radeon HD2000–4000
series, new hardware tessellation units were added. The new hardware
is placed before the vertex shader stage in the GPU pipeline. It does not
calculate the final vertex positions, nor store them in video memory.
Instead the tessellator generates new vertices and their positions as
parametric coordinates, which are then passed to the vertex shader,
along with the vertex indices of the base mesh. It is then the vertex
shader's responsibility to convert the parametric coordinates to world
coordinates, as well as to apply the desired surface evaluation function.
This may be any algorithm for evaluating any higher order surface, such
as Bezier, NURBS, or Catmull-Clark subdivision surfaces.

 Its important to note that the tessellation is done in one pass
through the GPU pipeline, and no extra video memory is needed to
store the generated data. The tessellation unit can generate up to
411 triangles from a single source triangle. In one of the technical
demonstrations from ATI, realtime tessellation of terrain geometry is
performed with a model of 4050 triangles being tessellated to over
1.6 million triangles, with a frame rate of 110 frames per second. See
Figure 1 or visit www.gametrailers.com/video/tessellation-tech-ati-

radeon/20445 for a video of the demo.
 Access to the new hardware

is not part of OpenGL or DirectX 10,
but is available as an extension to
DirectX 9 and Direct X 10 from ATI's
website, along with an excellent
paper by Tatarchuk, Barczak, and
Bilodeau, "Programming for Real-
Time Tessellation on GPU" which also

discusses the upcoming DirectX 11 tessellation architecture (see
http://developer.amd.com/gpu/radeon/Tessellation).

Clearly, there is a vision and desire for graphics hardware handling
curved surfaces at interactive frame rates. They haven’t become
ubiquitous yet, but it may simply be a matter of time. Working with
curved patches in a production pipeline does have its drawbacks though.
One problem to overcome is the need to maintain continuity of the
curved surface between patches. Manipulating the control hull (and thus
the surface) of one patch may create tears and seams with neighboring
patches. Subdivision surfaces address this problem nicely, as the control
hull mesh can have any arbitrary topology and is smoothly evaluated
between neighboring faces. Subdivision surfaces have already made

FIGURE 1 An example of real-time tessellation on a GPU from AMD's ATI Radeon HD

2000 series demo.

Even though today’s GPUs process triangles faster
than curved primitives, the advantages of surfaces
are compelling enough to encourage researchers
and hardware companies to keep trying.

0909gd_geometry_vIjf.indd 80909gd_geometry_vIjf.indd 8 8/19/09 4:22:45 PM8/19/09 4:22:45 PM

http://www.gametrailers.com/video/tessellation-tech-atiradeon/20445
http://developer.amd.com/gpu/radeon/Tessellation
http://www.gametrailers.com/video/tessellation-tech-atiradeon/20445

their way into current art pipelines with mainstream art tools such as
ZBrush and Mudbox.

Even though there currently doesn’t seem to be any effort focused
on creating subdivision-based game engines, it clearly is possible. One
option is hardware tessellation, mentioned above, but the other is a
method known as valente subdivision, by David Brickhill. The technique
is a high-speed rendering algorithm for subdivision surfaces that was
implemented in a game engine running on a PlayStation 2. The algorithm
achieves interactive speeds by avoiding recursion and its disadvantages,
namely very inefficiently accessing memory across areas too large to fit
into a scratch pad or data cache.

I M P L I C I T , V O L U M E N T R I C G E O M E T R Y

» One of the more interesting methodologies for 3D modeling is voxels.
The term voxel is short for volume element, akin to the pixel’s meaning
of picture element. It follows then that three dimensional space can be
thought of as a three dimensional grid of voxels, in the same way that a
digital image is a two dimensional grid of pixels. Looking at past usage of
voxels in games, aside from the basic definition just mentioned, different
people speak of voxels in different terms and contexts. For instance, the
assumptions on a voxel set's uniformity of size, adjacency, or alignment
requirements are all left to the individual algorithm and context. Even the
data contained in a voxel and how it is rendered is open to interpretation.

As an example, NovaLogic Inc, creator of the COMANCHE and DELTA
FORCE series, was awarded a patent in 2000 for a voxel-based terrain
rendering algorithm used in the VoxelSpace game engine. However,
the terrain was actually a 2D heightfield array, and each grid in a two
dimensional horizontal grid is extruded to a given height, yielding a tall
volume, thought of as a voxel. This algorithm for terrain generation and
rendering was very innovative for its time. It used the CPU for the bulk of
the work, and produced results that were impossible to achieve with the
underpowered GPUs of its time.

Fast forward to present day. CRYSIS’ art toolset, Sandbox, includes
a terrain creation and editing system, which includes voxel editing
capabilities. The particular use of voxels in this context is to allow for
freedom from a fixed single-layer topology, and allows for creation of
caves, overhangs, and other complicated configurations. The definition

of voxels in this context is more in line with the scientific community’s
definition of a voxel.

Another great example of the use of voxels in current games
is Maxis’ SPORE. The creature building part of the game involves
constructing an arbitrarily-shaped body, followed by attaching any
number of limbs, of varying types. The limbs can be placed anywhere
along the body, using any topology the user wishes. This is done using
metaballs, also known as blobbies, which are part of a voxel-based
algorithm. The difference between metaballs and regular voxels is
that instead of each voxel containing only one of two values (inside or
outside the model), the voxel defines a weighting factor, or probability
that a surface exists. This allows for the creation of a smooth surface
attaching and blending two different models together.

True voxels began with the medical visualization community and are
used in Magnetic Resonance Imaging to uniformly sample 3D space.
Therefore all voxel are adjacent, same-sized cubes, defined by a single
number specifying whether they lie inside the model volume or outside.

Voxels have several advantages over polygonal geometry. The first
is smaller data size. A voxel is a single element in space, a single number
determining if the voxel is inside or outside of the model’s volume.
Unfortunately, depending on the application, a lot of voxels may be

FIGURE 2 The "Marching Cubes" algorithim creates a triangulated isosurface from voxel data.

NovaLogic's COMANCHE 4 employs voxel-based terrain rendering.

WWW.GDMAG.COM 9

0909gd_geometry_vIjf.indd 90909gd_geometry_vIjf.indd 9 8/19/09 4:23:16 PM8/19/09 4:23:16 PM

http://WWW.GDMAG.COM

GAME DEVELOPER | SEPTEMBER 2009 10

FIGURE 3 SPORE CREATURE

CREATOR uses metaballs, a

variation of voxels.

required to render an object or scene, so smart solutions for handling
this problem are still required.

The second is its uniform sampling of space, as compared to a
polygon. In a polygon-based artist tool for sculpting 3D models, if a
vertex is placed too far relative to its neighboring vertices, stretching will
occur, which may result in texturing artifacts, and reduced geometry
resolution for placing more details, and a possible loss of smoothed
curvature. In a voxel-based modeling program, there are no such
limitations, as the volume of space is evenly sampled, and new vertices
are automatically added to the model surface when the voxels are used
to generate the polygonal mesh for rendering.

The third advantage voxels have is that they don’t have any
topological constraints relative to other parts of the model geometry.
Again, this can be very useful when sculpting a character model where
limbs and appendages can freely be removed or attached.

There are very few commercial voxel-based 3D sculpting applications
available today. One that comes to mind is 3DCoat, which clearly
demonstrates the advantages mentioned above.

How to render true voxel data, and whether it can be done at
interactive speeds for games, has been the million dollar question. There
is also the question of the interaction of voxel data with the remaining
elements of a game—for instance, physics calculations of rigid body
dynamics, interaction with particles, game characters, and so forth.

There are a few approaches to rendering voxel data. The first is to create
an isosurface, essentially connecting the dots and creating a triangle mesh
to be rendered by the GPU. The most well-known method is the “marching
cubes” algorithm, which until recently was under patent and not available
for wide, unlimited use. However, the patent has expired, and there has
been renewed interest by developers. The algorithm basically visits each
voxel cube (thus the name “marching cubes”), and generates the needed
triangles. It does so by looking at the eight corners of the voxel, which is
a single point in space with a number associated with it specifying if it
is inside the 3D model (one) or outside (zero). For each of the voxels, if
an edge has one vertex with a value of zero and one vertex with a value
of one, then a triangle vertex is created at the midpoint of the voxel edge.

Adjacent triangle vertices are connected to create a triangle. The triangle
creation step is sped up by creating an array of all 256 possible triangle
configurations, and indexing into the array. Figure 2 shows the 15 unique
cases of the 256 configurations, the rest are rotated or mirrored variations.
For instance a cube with vertices valued 0, 1, 0, 1, 1, 0, 0, 0 will produce
01011000 in binary format, or 56 in decimal.

One of the problems with voxels is that even though a single voxel
may itself may be lightweight, when converted to triangles they can
create an incredible amount of data—triangle bloat. Each voxel can
produce up to four triangles, which means twelve vertices. The number of
voxels needed to cleanly represent a 3D scene can be quite large, quickly
leading to gigabytes' worth of triangle vertex data.

Marching cubes is not the only method for creating triangulated
isosurfaces from voxel data. Another algorithm, found in Graphics Gems
III, "Compact Isocontours from Sampled Data," was used in SPORE's
creature builder. Other algorithms exist as well, using other shapes, such
as “marching tetrahedrons,” originally intended to circumvent the patent
on marching cubes.

Much research has gone into fast rendering of voxel data sets on
current graphics hardware. The research and implementation challenge
comes down to creating a real-time implementation of marching cubes,
and there has been significant work done in this area. Interestingly, NVidia
released a geometry shader in its GeForce 8800 series of cards, and

created a very compelling demonstration
in the Cascades demo, discussed
at GDC 2007. The demo consists of
generating voxel data to create a rock
formation by rendering voxel density
values into a 3D texture. Then, using the
geometry shader, the marching cubes
algorithm is used to generate a triangle
mesh. Afterward, water particles are

dynamically generated and physics calculations are used to determine
collision between particles and the rock geometry. Additionally, swarms
of dragonflies fly around, avoiding the rock as well. Although a very
compelling demonstration of the new geometry shader hardware units, it
remains to be seen how effectively it will be used in a 3D game. As a first
step, the hardware shaders may be better suited for use in an art tool as
part of the source art creation pipeline.

Another interesting project in voxel rendering is "High Speed Marching
Cubes Using Histogram Pyramids" by Dyken and Ziegler, and can be
found at www.mpi-inf.mpg.de/˜gziegler. The HistoPyramid algorithm,
which is usually used in data compaction for GPUs, was used here for
data expansion of voxels into triangles. The algorithm does not use

One of the problems with voxels is that even though
a single voxel may itself may be lightweight, when
converted to triangles they can create an incredible
amount of data—triangle bloat.

0909gd_geometry_vIjf.indd 100909gd_geometry_vIjf.indd 10 8/19/09 4:24:20 PM8/19/09 4:24:20 PM

http://www.mpi-inf.mpg.de/~gziegler

Get More Change Management
with Seapine Integrated SCCM
TestTrack Pro + Surround SCM = infi nite SCCM possibilities. Seapine’s integrated software change and
confi guration management (SCCM) tools do much more than competing tools, and at a much lower price
point. Start with TestTrack Pro for change management and add Surround SCM for confi guration management—
two award-winning tools that together give you the best integrated SCCM solution on the market.

 • Link issues, change requests, and other work items with source code changes.

 • Manage simple or complex change processes with fl exible branching and labeling.

 • Coordinate distributed development with RSS feeds, email conversation tracking, caching proxy
 servers, change notifi cations, 3-way diff/merge, and other collaboration features.

 • Enforce and automate processes with incredibly fl exible work item and fi le-level workfl ows.

Built on industry-standard RDBMSs, Seapine’s SCCM tools are more scalable, give you more workfl ow options,
and provide more security and traceability than competing solutions.

Get more, do more with Seapine tools. Visit www.seapine.com/gamescm.

www.seapine.com/gamescm
Satisfy your quality obsession.[[

© 2009 Seapine Software, Inc. All rights reserved.

Te
st

Tr
ac

k®
 P

ro

Te
st

Tr
ac

k®
 T

CM

Te
st

Tr
ac

k®
 S

tu
di

o
Su

rr
ou

nd
 S

CM
®

Se
ap

in
e

CM
®

Q
A

W
iz

ar
d®

 P
ro

Iss
ue

 M
an

ag
em

en
t

Te
st

 C
as

e
M

an
ag

em
en

t
Te

st
 P

la
nn

in
g

&
Tr

ac
ki

ng

Co
nfi

 g
ur

at
io

n
M

an
ag

em
en

t
Ch

an
ge

 M
an

ag
em

en
t

Au
to

m
at

ed
 Te

st
in

g

Q
A

W
iz

ar
d

Iss
ue

 M
an

ag
em

en
t

Te
st

 C
as

e
M

an
ag

em
en

t
Te

st
 P

la
nn

in
g

&
Tr

ac
ki

ng

Co
nfi

 g
ur

at
io

n
M

an
ag

em
en

t
Ch

an
ge

 M
an

ag
em

en
t

Au
to

m
at

ed
 Te

st
in

g
Iss

ue
 M

an
ag

em
en

t
Te

st
 C

as
e

M
an

ag
em

en
t

Te
st

 P
la

nn
in

g
&

Tr
ac

ki
ng

Co

nfi
 g

ur
at

io
n

M
an

ag
em

en
t

Ch
an

ge
 M

an
ag

em
en

t
Au

to
m

at
ed

 Te
st

in
g

St
ud

io

Su
rr

ou
nd

 S
CM

Iss
ue

 M
an

ag
em

en
t

Te
st

 C
as

e
M

an
ag

em
en

t
Te

st
 P

la
nn

in
g

&
Tr

ac
ki

ng

Co
nfi

 g
ur

at
io

n
M

an
ag

em
en

t
Ch

an
ge

 M
an

ag
em

en
t

Au
to

m
at

ed
 Te

st
in

g
TC

M

Te
st

Tr
ac

k
Iss

ue
 M

an
ag

em
en

t
Te

st
 C

as
e

M
an

ag
em

en
t

Te
st

 P
la

nn
in

g
&

Tr
ac

ki
ng

Co

nfi
 g

ur
at

io
n

M
an

ag
em

en
t

Ch
an

ge
 M

an
ag

em
en

t
Au

to
m

at
ed

 Te
st

in
g

Iss
ue

 M
an

ag
em

en
t

Te
st

 C
as

e
M

an
ag

em
en

t
Te

st
 P

la
nn

in
g

&
Tr

ac
ki

ng

Co
nfi

 g
ur

at
io

n
M

an
ag

em
en

t
Ch

an
ge

 M
an

ag
em

en
t

Au
to

m
at

ed
 Te

st
in

g

http://www.seapine.com/gamescm
http://www.seapine.com/gamescm

a geometry shader, but runs three to four times faster than running
marching cubes with hardware acceleration on the geometry shader.

Finally, as mentioned earlier, creation of a triangle mesh isn’t the
only method of visualizing voxels. The other option is volume raycasting.
Like raytracing, rays are cast from the camera, through each pixel on the
screen, into the voxel data, sampling it and making the final calculations.
The advantage of ray casting is that it inherently removes hidden surfaces
as well. Voxels that are not seen are not used, and no computation time
is wasted on them. Another benefit is that partially transparent surfaces
can be taken into account when calculating the final pixel color. One
disadvantage of ray casting is that it does not produce any geometry,
which may be desirable for physics or collision calculations.

S P A R S E V O X E L O C T R E E S

» During Siggraph 2008, id Software demonstrated the concepts
behind the company’s latest game engine, id Tech 6. The goal of the
new engine is to achieve an unlimited amount of unique texturing and
unique geometry. This is accomplished by ray casting into an octree
structure of voxels. Octrees are spatial data structures used to partition
three-dimensional space by subdividing a scene into eight octants
of identical size, and recursively subdividing only each octant that
contains geometry to the smallest desired level of detail. The sparse
voxel octree algorithm is conceptually easy to understand, but nontrivial
to implement. As part of the art processing pipeline, polygonal source
art must first be broken down into voxels, called voxelization. There are
different methods of voxelization, such as 3D scan conversion, volume
projection, and subdivision.

The created voxels are then hierarchically stored in an octree. Each
voxel contains the color of the surface model at that position in space.
The octree is now considered to be the object that is rendered, there
are no polygons so to speak. During runtime, rays are cast from the
camera position through each pixel location on screen, and the octree is
sampled. If the voxel in the octree that intersects the ray is larger than
the size of a pixel, the subvoxels stored in the lower level of the octree
are retrieved and the ray stepping is continued. When the ray stepping
intersects a voxel that is less than the size of a pixel, its color is used to
set the value of the pixel on screen.

One way to think of sparse voxel octrees is as mip-mapping for
geometry. As mentioned earlier, the details of implementation are non-
trivial. The final result of creating octree data for a typical 3D scene for
a game will be very large, on the order of tens of gigabytes. This is way
beyond the memory capacity of graphics hardware of many PC systems.
So, the next required system is a streaming paging system designed
and optimized for hierarchical storage and retrieval of octree data.

Sparse voxel octrees are intended mostly for creation of large static
objects with unique detail, namely terrain. For dynamic, animated objects,
more work is required and may not be worth the effort. The animation data
would be used to deform the octree voxels, and as rays are cast through
the screen pixel into the deformed octree, rays would have to be bent to
follow the same deformations. Although possible in theory, in practice it
still makes sense to follow the traditional triangle rasterization approach.

Further interesting research similar to sparse voxel octrees has been
done in a paper called "Interactive GigaVoxels" by Crassin, Neyret, and
Lefebvre and can be found at http://artis.imag.fr/Publications/2008/
CNL08. The work is based on a dynamic generalized octree with mip-
mapped 3D textures at the lowest level leaves of the octrees.

C O N C L U S I O N

» In reviewing NURBS, subdivision surfaces, and voxels, it's clear that
they are viable alternatives to triangles. Although, like triangles, they
have their weaknesses, and each method provides a good solution to a
specific problem.

 NURBS are ubiquitous in the CAD industry, and are still the
preferred method for hard surface modeling of objects with smooth
curves. For a car racing game, using NURBS at least in the art pipeline
makes sense, both for their ease of use and flexibility when it comes to
final tessellation.

Subdivision surfaces avoid the seaming problems of NURBS
surfaces, and are a great approach to modeling organic surfaces such
as characters and creatures. Subdivision surfaces have been used in at
least one game engine on the PlayStation 2, and already have a strong
foothold in the art creation pipeline in tools such as Zbrush and Mudbox.

Voxels have traditionally been used for terrain rendering in game
engines, as a fast method to avoid using the GPU. Currently voxels are
still ideal for authoring terrain because they allow more complex terrain
type creation such as caves, arches, and overhangs. They also are ideal
for modeling sheer vertical cliffs, since voxels provide uniform sampling
of 3D space and avoid the stretched triangle problem.

 Voxels can also be used as the basis for a game engine, as they can
provide a stylized look to the game and are perfect for implementing
completely destructible environments. Additionally, voxels can be used
in limited scale in game engines where flexible character geometry
topology is needed, as seen in SPORE CREATURE CREATOR.

As graphics hardware advances are made, whether in speed and
memory capacity, or new features such as hardware tessellation, these
methods may very well become as ubiquitous as the triangle.

BIJAN FORUTANPOUR is a senior graphics programmer at Sony Online …ntertainment

in San Diego with 16 years experience in the visual effects and games industries. He

is also the author of Enzo 3D paint for Photoshop (www.enzo3d.com). …mail him at

bforutanpour@gdmag.com.

GAME DEVELOPER | SEPTEMBER 2009 12

FIGURE 4 An example of 3D

modelling that uses sparse voxel

octrees from Jon Olick's SIGGRAPH

2008 presentation.

0909gd_geometry_vIjf.indd 120909gd_geometry_vIjf.indd 12 8/19/09 4:24:41 PM8/19/09 4:24:41 PM

http://artis.imag.fr/Publications/2008/CNL08
http://www.enzo3d.com
mailto:bforutanpour@gdmag.com
http://artis.imag.fr/Publications/2008/CNL08

http://www.ccpgames.com/jobs

WWW.GDMAG.COM 15

J E L L E V A N D E R B E E K A N D A R J A N J A N S S E N

MATRICES ARE OFTEN USED IN THE MOST TIME—CRITICAL PARTS OF A
game. For example, most shaders, scene graphs, and physics systems
make heavy use of matrices. Often special hardware is available to
run matrix code efficiently. Ideally, matrices should make optimal
use of this hardware. Designing an efficient matrix type is mostly
about choosing the right matrix layout. But choosing the matrix layout
is not as straightforward as might be expected. The optimal matrix
layout depends on multiple factors like target hardware, storage type,
vector type, and the particular matrix type that you need to interface
with. All of this can be quite confusing. This sometimes results in
misconceptions: We found that programmers sometimes wrongly
assume that the choice between row- and column-vectors affects
performance. In this article, we will explain how to design an efficient
matrix type for modern CPU and GPU architectures. Hopefully, we will
demystify matrix layouts for the reader.

One important aspect when designing a matrix type is deciding
how to store the matrix in memory. There are a few things to consider
when choosing storage. One is how this layout is compatible with
other matrix types. DCC tools, platform APIs, physics engines,
and shader compilers all have their own way of storing matrices.
Understanding how your matrix implementation should communicate
with other matrix implementations can help you decide what matrix
format to use. It can even improve performance. Another thing to
consider is how the layout in memory affects matrix multiplication
performance. Different implementations may have different
performance characteristics, depending on the target hardware.

We begin by reviewing the basics of matrix layouts, and will later
ramp up and show if and how different matrix layouts can affect
performance using SSE, SSE4, and AltiVec SIMD instruction sets and
the Cg shading language. CONTINUED ON PAGE 16

0909gd_matrix_vIjf.indd 150909gd_matrix_vIjf.indd 15 8/19/09 5:17:19 PM8/19/09 5:17:19 PM

http://WWW.GDMAG.COM

Matrix layout is determined by two concepts: the vector notation type
used (row or column vectors) and storage type used (row-major or column-
major storage).

Vectors can be written in two ways: either as a row (a 1x4 matrix) or a
column (a 4x1 matrix). Using one vector form or another has implications on
the order of multiplication with matrices. Let us define a row vector vrow , a
column vector vcol and a square matrix M:

vrow = [x y z w]

 [x]

vcol

=
 [y]

 [z]
 [w]

Multiplication of vrow with M is only defined if vrow is pre-multiplied with M,
and it yields another row vector:

v'row = vrow M

Multiplying vcol and M is done by post-multiplying vcol , and it yields a column
vector:

v'col = Mvcol

However, matrix multiplication is not commutative. In other words, we
cannot just switch the multiplication order around. To see the implications of
switching multiplication order, let us look at the following definition:

vM = (MTvT)T

This means multiplying a vector with a matrix is equal to: 1) transposing
the matrix, 2) transposing the vector (this converts the vector from row to
column or the other way around), 3) reversing the order of multiplication,
and 4) transposing the resulting vector (this converts the resulting vector
back to a row or column vector). Generally, C/C++ APIs do not expose specific
types for row and column vectors. Instead, the use of a vector determines
whether it is interpreted as a row or column vector. Often C/C++ APIs do so
by offering a pre-multiply and post-multiply operation. For instance, in Cg
and HLSL the mul operation has multiple overloads, one with the vector as
the first argument and the matrix as the second argument. In this case the
vector is interpreted as a row vector.
When the arguments are switched,
the vector is interpreted as a column
vector. Transposing the vector is not
done by explicitly transposing the
vector, but by using it differently.

This leaves us with the
transposed matrix. And this is
exactly what is important. When
using row vectors, the matrices are
the transposed versions of what
would have been used when column
vectors were used, and vice versa.

The second factor in
understanding matrix layouts is the
way matrices are stored in memory.

There are two ways matrices can be stored in memory: in row-major and
in column-major format. This means that either a matrix’s row or column is
stored consecutively in memory. It is easy to see that transposing a matrix
has the same effect as switching rows and columns. So, when you need to
convert a matrix from storage format, transposing the matrix will do just that.

A factor that seems related to matrix layouts is the way matrix types are
named and how they are indexed. In mathematics, matrix dimensions are
written as rows x columns. Matrix types are generally named in the same way
in C/C++ APIs. For instance, in Cg and HLSL, the float 4x3 type is a matrix with
four rows and three columns. This definition is completely independent from
how a matrix is actually stored in memory. Likewise, indexing elements of a
matrix is performed in the same order, with row number preceding column
number. So, APIs often have operator overloads that index in the same way. For
instance, matrix(2, 3) will generally mean: “row two, column three,” regardless
of the matrix’s storage. It’s important to remember that naming and indexing
have actually nothing to do with matrix layout.

 So, there are two factors to consider when converting matrices: the
type of vector that is used (row or column vectors) and the type of matrix
storage (row or column major). We have seen that both the vector type and
the matrix storage can be converted to their counterparts by transposition.
There are three possible scenarios when converting:

• Both the vector- and storage type are equal. This means that no
transposition is required before converting.

• Either the vector- or the storage type differ. This means that the
matrix needs to be transposed, either with a vector type change or
a storage type change.

• Both the vector type and storage types differ. The matrix needs to
be transposed twice, resulting in the original matrix. Hence, the
matrix does not need to be transposed.

For example, imagine a DirectX matrix that needs to be converted to an
OpenGL matrix. DirectX uses row vectors and stores its matrices in row-
major format. OpenGL uses column vectors and stores its matrices in
column-major format. So we need to switch from row to column vectors and
from row-major storage to column-major storage. This falls into category
three, meaning no changes are required.

 If you want to design a matrix class in such a way that it encapsulates
the matrix contents properly, there is no alternative but to make a copy of
the matrix upon conversion. Although encapsulation is a very good software
engineering practice, a matrix implementation should often be designed for
performance. We can gain performance by exploiting the fact that the memory
contents of the objects are interchangeable. We call these matrices binary

 m11 m12 m13 m14

M =
 m21 m22 m23 m24

 m31 m32 m33 m34
 m41 m42 m43 m44

GAME DEVELOPER | SEPTEMBER 2009 16

listing 1
const Vector4 Transform(const Matrix4x4& a_Matrix, const Vector4& a_Vector)
{
 return Vector4(a_Matrix(0, 0) * a_Vector.X() + a_Matrix(0, 1) * a_Vector.Y() +
 a_Matrix(0, 2) * a_Vector.Z() + a_Matrix(0, 3) * a_Vector.W(),

 a_Matrix(1, 0) * a_Vector.X() + a_Matrix(1, 1) * a_Vector.Y() +
 a_Matrix(1, 2) * a_Vector.Z() + a_Matrix(1, 3) * a_Vector.W(),

 a_Matrix(2, 0) * a_Vector.X() + a_Matrix(2, 1) * a_Vector.Y() +
 a_Matrix(2, 2) * a_Vector.Z() + a_Matrix(2, 3) * a_Vector.W(),

 a_Matrix(3, 0) * a_Vector.X() + a_Matrix(3, 1) * a_Vector.Y() +
 a_Matrix(3, 2) * a_Vector.Z() + a_Matrix(3, 3) * a_Vector.W());
}

CONTINUED FROM PAGE 15

0909gd_matrix_vIjf.indd 160909gd_matrix_vIjf.indd 16 8/19/09 5:17:25 PM8/19/09 5:17:25 PM

WWW.GDMAG.COM 17

compatible. You can exploit binary compatibility
by copying the contents of the matrix object into
another object. Often it is possible to just pass
the address of a matrix so that it is interpreted as
another matrix. A more exotic (and dangerous)
form of exploiting binary compatibility is to test the
contents of two matrices for equality using a fast
memory compare.

But be advised, compatible vector- and storage
types between matrix classes do not necessarily
guarantee equal memory layouts. The matrix’s
data is assumed to be stored consecutively in
memory and no additional data members should
precede or follow the matrix data. In C++, a matrix
class also should have no vtable, as this affects
the memory layout as well. This means that there
should be no virtual methods in your matrix class.
Finally, compilers may decide to pad data to data
members because of data member alignment.
The contents of the padded data are undefined
and will most probably differ per object. This is
why comparing the contents of C++ objects by
performing a memory compare is dangerous.
Dedicated compare code is much safer, more
portable and, unlike the conversion tricks, does
not impose a performance penalty.

Exploiting binary compatibility between C++
objects is generally considered bad software
engineering practice. It breaks encapsulation
completely and it is often hardly portable. Matrices
could be an exception to the rule, but understanding
the dangers such as the ones described above is
important when designing your own matrix class.
For more information about this subject refer to item
96 in C++ Coding Standards (see Resources, pg. 20).

 Single Instruction Multiple Data (SIMD) is a form
of data-parallelism in which a single instruction
is executed on multiple data elements at a time.
Nowadays SIMD hardware is available in the form of graphics cards, PCs, and
gaming consoles.

Matrix multiplication lends itself particularly well to optimization using
SIMD techniques. By using SIMD hardware it’s often possible to double or
even quadruple the performance of a matrix-vector multiplication compared
to a completely sequential implementation.

Most current SIMD hardware is extremely picky about data layout. We can
only achieve optimal performance by organizing our matrices in memory in
such a way that they can be handled efficiently by SIMD hardware. Of course,
which memory layout is the most efficient depends on the particular SIMD
hardware used. In the remainder of this article we will discuss how to optimize
matrix multiplication using GPU shaders, SSE, and AltiVec. We assume the use
of column-vectors from here on after. If the reader understands the preceding
part of this article, he or she should have no problem adapting the same
principles to a system that uses row-vectors instead.

 Before we move on to SIMD implementations of multiplying a matrix with
a column-vector, here is a generic C++ implementation (see Listing 1).

This code contains little information about the order in which the
multiplications and additions should be executed. In principle, a compiler
should be able to reorder the operations and generate efficient vectorized
code. In practice, however, most current compilers do a bad job at vectorizing

code. This means, unfortunately, that we have to assist the compiler by
manually reordering instructions and using compiler intrinsics.

Matrices are passed to shaders as uniform parameters. Uniform
parameters are stored in shader registers. These shader registers are four
floats wide, so an entire 4x4 matrix cannot be stored in a single register. The
shader compiler therefore allocates multiple registers for a single matrix. The
way these registers are allocated depends on the shader compiler. In HLSL,
matrices are stored in column-major format by default. This means that
one column is stored per register. At first glance this seems peculiar since
DirectX stores its matrices in row major format. If you are using row vectors in
your shader, a transposition of the matrix is required before passing it to the
shader. DirectX hides these details in most cases, but not in all cases. When
you pass a uniform parameter by using direct register allocation, you have to
know for sure how the compiler allocates the registers and whether you need
to transpose the matrix before passing it, or not. The reason why the HLSL
compiler prefers column-major format will become clear after we have seen
how vectors and matrices are multiplied using shader assembly.

GPUs are equipped with a large number of instructions that can be
used for computing matrix-vector multiplications. All GPUs that support
shader model 1.1 and upward are equipped with dot product, multiply, add,

listing 2
const Vector4 Transform(const Matrix4x4& a_Matrix, const Vector4& a_Vector)
{
 __m128 rhs = GetSSEVector(a_Vector);

 __m128 broadCastX = _mm_shuffle_ps(rhs, rhs, 0x00);
 __m128 result = _mm_mul_ps(broadCastX, GetSSEColumn(a_Matrix, 0));

 __m128 broadCastY = _mm_shuffle_ps(rhs, rhs, 0x55);
 __m128 rowResult = _mm_mul_ps(broadCastY, GetSSEColumn(a_Matrix, 1));
 result = _mm_add_ps(result, rowResult);

 __m128 broadCastZ = _mm_shuffle_ps(rhs, rhs, 0xAA);
 rowResult = _mm_mul_ps(broadCastZ, GetSSEColumn(a_Matrix, 2));
 result = _mm_add_ps(result, rowResult);

 __m128 broadCastW = _mm_shuffle_ps(rhs, rhs, 0xFF);
 rowResult = _mm_mul_ps(broadCastW, GetSSEColumn(a_Matrix, 3));
 result = _mm_add_ps(result, rowResult);

 return Vector4(result);
}

listing 3
const Vector4 Transform(const Matrix4x4& a_Matrix, const Vector4& a_Vector)
{
 __m128 sseVector = GetSSEVector(a_Vector);
 __m128 xComponent = _mm_dp_ps(GetSSERow(a_Matrix, 0),
 sseVector, 0xF1);
 __m128 yComponent = _mm_dp_ps(GetSSERow(a_Matrix, 1),
 sseVector, 0xF2);
 __m128 zComponent = _mm_dp_ps(GetSSERow(a_Matrix, 2),
 sseVector, 0xF4);
 __m128 wComponent = _mm_dp_ps(GetSSERow(a_Matrix, 3),
 sseVector, 0xF8);
 __m128 result = xComponent;
 __mm_add_ps(result, yComponent);
 __mm_add_ps(result, zComponent);
 __mm_add_ps(result, wComponent);
 return CreateVector4FromSSEVector(result);
}

0909gd_matrix_vIjf.indd 170909gd_matrix_vIjf.indd 17 8/19/09 5:17:27 PM8/19/09 5:17:27 PM

http://WWW.GDMAG.COM

GAME DEVELOPER | SEPTEMBER 2009 18

and fused multiply-add instructions. These instructions are all extremely
efficient and can often execute in a single cycle. This gives the programmer
a lot of flexibility in choosing an appropriate matrix layout.

 We can use the dot-product instruction to multiply a matrix with a
vector. For each component of the resulting vector we have to compute
a dot-product between a row of the matrix and the vector itself. If matrix-
vector multiplication is computed in this manner, it is most efficient to store
the matrix in row-order. This way a constant register can hold a single row
of the matrix, and the dot product can be computed directly between the
constant register and the register holding the input vector. The next code
sample shows the code generated by the Microsoft HLSL compiler for a
multiplication between a 4x4 matrix and a 4D vector.

 vs_3_0

 dcl_position v0

 dcl_position o0

 dp4 o0.x, v0, c0

 dp4 o0.y, v0, c1

 dp4 o0.z, v0, c2

 dp4 o0.w, v0, c3

Alternatively, we can use the multiply and fused multiply-add instruction to
multiply a matrix with a vector. Instead of computing the result component-
wise, we compute the entire result vector by taking a linear combination of
matrix columns. We multiply each component of the input vector with the
corresponding column of the matrix. The results of each component of the
input vector are separately accumulated to get the final result. This can be
done most efficiently if the matrix is stored in column-order. Each component
of the input vector can be replicated in all components of a register and
multiplied with the corresponding column in the matrix. The final result vector
can be efficiently computed using a number of fused multiply-add instructions.

The following shader code sample shows the generated shader
assembly for a shader that is compiled with column-order first matrices.

 vs_3_0

 dcl_position v0

 dcl_position o0

 mul r0, c1, v0.y

 mad r0, v0.x, c0, r0

 mad r0, v0.z, c2, r0

 mad o0, v0.w, c3, r0

In terms of efficiency, there is probably not much difference between the
two code samples. The generated shader assembly uses the exact same
number of instruction slots, and all instructions execute in a single cycle.

The difference becomes more apparent when we are dealing with non-
square matrices. For example, suppose we need to transform a 3D vector
by a 3x4 matrix. In this case row-order first storage requires one constant
register more than column-order first storage. Also, an extra dot-product
instruction is necessary to compute the result.

By now you should understand why HLSL prefers column-major storage
in shader registers even while DirectX uses row-major storage in system
memory. HLSL expects users to use row vectors in vertex shader code. This
can be done most efficiently by using column-major storage. Likewise, the Cg
compiler uses row-major storage, while OpenGL uses column-major storage
because it is expected that users will use column vectors in shader code.

Another interesting case is the use of square 4x4 matrices where the
last row of the matrix is ultimately not used in the shader. This can be the
case when the w component of a vector that was the result of a matrix-vector
multiplication is ultimately not used in the shader. This is sometimes easier to
spot for a compiler than it is to the human eye, so this may require a careful
look at your vertex shader code. The fact that the last row does not result in
any significant output means that it could have been stored in a 3x4 matrix.

This is often the case since the last row is generally only used for projections.
Shader compilers can detect whether the last row of a 4x4 matrix is used.
Some compilers, like the sce-cgc compiler on the PlayStation 3, require a
special flag to use this optimization. Other compilers, like the HLSL compiler,
will perform this optimization by default. In these situations, the HLSL compiler
will only allocate three registers instead of four. This optimization is very
dangerous when performing direct register allocation. If you assume that four
registers are allocated and assign values to the register that was optimized
out, the results are undefined. So if you are not using the last row of the matrix,
it is good practice to use 3x4 matrices instead of 4x4 matrices.

Some shader compilers, such as the Microsoft HLSL compiler, give the
programmer the ability to specify the matrix layout. This is very convenient
because it enables the programmer to experiment with both options. The
programmer can select the option that is compatible with the CPU matrix
layout and avoid transposing, or evaluate the generated shader code and
select the most efficient shader assembly. If a shader compiler has no
packing option, like the Cg compiler, the same effect can be obtained in a
more cumbersome way by switching between row- and column-vectors in
the shader code.

 The latest trend is to move more and more operations onto the GPU in
order to achieve more data parallelism. However, current CPUs are much more
flexible than GPUs, and therefore most current games still have to perform a
substantial number of matrix multiplications on the CPU. Transforming a vector
by a matrix can eat away a significant portion of the total CPU time required
for running a game. Hence, it often makes perfect sense to optimize the
performance of these operations, for example by using SIMD techniques.

 Almost all modern CPUs are equipped with SIMD multiplication and add
instructions. Some CPUs even have a fused multiply-add instruction, which
can make matrix-vector multiplication substantially faster. Certain CPUs are
equipped with a SIMD instruction set that includes a dot product operation.
For these CPUs, the programmer has the same flexibility in choosing matrix
layout in memory as on a GPU. The dot product instruction is available on
recent Intel processors with SSE4 support and on PowerPC processors with
the AltiVec instruction set.

The dot-product instruction available in SSE4 is powerful, but unfortunately
it is only available on the latest Intel processors. Most PC games still have
to run on older systems that lack SSE4 support. Intel processors starting
with the Pentium 3 are equipped with SSE, which stands for Streaming SIMD
Extensions. The SSE instruction set works on 128-bit registers that hold four
single-precision floating point values at a time. SSE does support unaligned
loads. To achieve optimal performance, vectors should be aligned on 16-
byte boundaries. The original SSE instruction set architecture (ISA) lacks
both a fused multiply-add and a dot-product instruction. However, we can
still achieve pretty good SIMD parallelism by executing the vector-matrix
multiplication in a different order as we have shown in the previous section.
We can multiply one component of the input vector at a time by replicating,
sometimes called broadcasting or splatting, a component of the input vector
into all four slots of an SSE register. Then we multiply this register with the
appropriate column of the matrix and add the results to the register storing
the output vector. The code sample in Listing 2 shows how to transform
a vector by a matrix using SSE intrinsics. Note the similarity to the GPU
assembly using column-order first storage. We can even further optimize this
code if we know that the vector is a position vector (w=1), or a direction vector
(w=0). In the first case, we can avoid the last multiplication and just add the
fourth matrix column to the result. In the latter case, we can avoid computing
for the fourth matrix column entirely.

 Because the GPU and CPU have very different SIMD instruction sets, it can
be necessary to use different memory layouts on the CPU and GPU to achieve
good performance on both systems. This should not be a problem, because we

0909gd_matrix_vIjf.indd 180909gd_matrix_vIjf.indd 18 8/19/09 5:17:30 PM8/19/09 5:17:30 PM

All trademarks and registered trademarks are property of their respective owners.

Our global support teams are always available to share their

expertise in person – no scripted responses, answering services,

or dispatch centers. At Perforce Software, our highly experienced

technical support engineers take pride in providing fast

turnarounds with precise answers.

Keeping your projects on track requires a support team that is

ready to help right when you need it. You can count on Perforce’s

Fast SCM System and legendary technical support to give you the

winning advantage.

Perforce Technical Support
Fast Turnarounds. Precise Answers.

Perforce The Fast Software Configuration Management System

Download a free copy of Perforce, no questions
asked, from www.perforce.com. Free technical support is
available throughout your evaluation.

Perforce_PStop_GameDev_HI: Page 1

http://www.perforce.com

can transpose matrices in memory during GPU/CPU communication. Having to
transpose matrices during communication hardly affects the performance of
the game, as GPU/CPU communication is often inefficient by itself and a matrix
transpose is a relatively inexpensive operation.

 The availability of a dot-product instruction in SSE4 gives the programmer
more freedom in choosing memory layout. Intel processors with the Intel
Core microarchitecture and AMD K10 processors come with SSE4 support.
The first processors with a subset of the SSE4 instruction set are the Intel
processors with the 45nm Penryn core. Using the dot-product instruction,
the programmer can write code that looks similar to GPU code. This
eliminates the need for matrix transpositions in shader bindings.

In SSE4, dot-products can be computed using the DPPS (Dot-Product of
Packed Single-Precision Floating-Point Value) instruction. The dot-product
instruction is very flexible. Using a bit-mask the programmer can specify for
which scalars in the SIMD registers the dot-product should be computed.
This way 2D, 3D, and 4D dot-products can be computed. The programmer
can specify to which scalars in the destination register the result should
be written. Scalars that are not written are set to zero. This is unfortunate
because it forces us to use an extra add instruction to accumulate the
results of all dot-products. Modern GPUs can handle this more efficiently
using write-masks (see Listing 3).

A total number of seven instructions are required for the matrix
multiplication. This is slightly better than the SSE implementation. Depending
on the particular processor architecture, this implementation of a matrix-vector
multiplication might run at increased speeds. Possibly even more performance
can be gained because this alternative implementation gives the programmer
more flexibility in choosing matrix layouts and avoiding data conversions.

AltiVec is a SIMD instruction set owned by IBM, FreeScale Semiconductor,
and Apple. AltiVec is also referred to as VMX (by IBM) or Velocity Engine (by
Apple). Interestingly, every major game console from the current generation
is equipped with a PowerPC processor with AltiVec support. Microsoft's Xbox
360 has an IBM PowerPC processor with its own version of AltiVec named
VMX128. It is not fully compatible with AltiVec, because a number of integer
instructions were removed. The code we provide in this section relies solely

on floating-point instructions and
should work on Xbox 360. The
VMX128 instruction set contains
several new instructions specifically
designed for accelerating games.
The Cell processor used in Sony's
PlayStation 3 and the IBM Broadway
processor used in Nintendo's Wii
also come with AltiVec support.

AltiVec registers are 128 bits
wide and can hold several types of
values such as characters, short
integers, and single precision
floating-point values. AltiVec
supports unaligned loads, but
data should be 16 byte aligned to
achieve optimal performance.

As we have shown in the
section about SSE, a matrix-vector
multiplication can be computed
efficiently by computing the linear
combination of columns using
vector multiply and add instructions.
We have seen that this can be
computed most efficiently by storing

matrices in column order. Using AltiVec, matrix multiplication can be performed
efficiently using the fused multiply-add instruction vec_madd. The following
example shows a 4D matrix-vector multiplication using AltiVec (see Listing 4).

The code assumes that both the matrix and the vector are aligned to
16 byte boundaries. Note that the vector is loaded into an AltiVec register.
Then, each vector component is splatted and multiplied with a column of the
matrix. This result is added to the result vector.

AltiVec also has two horizontal instructions vec_msum, and vec_sums.
These intrinsics can be used in conjunction to compute a dot-product
efficiently. Unfortunately, these instructions cannot be used for accelerating
the typical floating-point matrix-vector multiplications in games, because they
support only integer vector operands. For games, we are mostly interested
in floating-point matrix multiplications. Therefore, we will not further consider
AltiVec matrix-vector multiplication using vec_msum and vec_sums intrinsics.
For optimal performance on AltiVec machines, floating-point matrices should
be stored column order first. The VMX128 instruction set supported by the
Xbox 360 includes a dot product instruction, so row order matrix storage
should be efficient on Xbox 360. Refer to the Xbox 360 SDK documentation for
more information.

 We have described a way to
build a matrix implementation that
can interface properly with other
types of matrices, as well as the
details of shader register allocation
for matrices: how to save precious
register space and how to avoid some of the common pitfalls. You should now
be aware of the design trade-offs necessary to achieve optimal performance
on modern CPU SIMD architectures such as AltiVec and SSE. We hope we have
stuffed your backpack with enough information so you can make the right
decisions for your particular codebase and target platforms.

We would like to thank Willem H. de Boer.

JELLE VAN DER BEEK and ARJAN JANSSEN like to make each others lives miserable competing

for the best GEOMETRY WARS 2 score. When they’re not playing they are probably working on

W!Games’s proprietary multiplatform game engine. Email them at jvanderbeek@gdmag.com.

resources
Sutter, H. and Alexandrescu, A.,

C++ Coding Standards, Addison-
Wesley (2005)

GAME DEVELOPER | SEPTEMBER 2009 20

listing 4
const Vector4 operator*(const Matrix4x4& a_Matrix, const Vector4& a_Vector)
{
 Vector4 result(Utility::NoInit);

 __vector float zero = (vector float)(0.0f, 0.0f, 0.0f, 0.0f);
 __vector float *resultVector = reinterpret_cast<__vector float*>(&result.x);

 __vector float column0 =
 vec_ld(0, reinterpret_cast<__vector float*>(&a_Matrix[0].x));
 __vector float column1 =
 vec_ld(0, reinterpret_cast<__vector float*>(&a_Matrix[1].x));
 __vector float column2 =
 vec_ld(0, reinterpret_cast<__vector float*>(&a_Matrix[2].x));
 __vector float column3 =
 vec_ld(0, reinterpret_cast<__vector float*>(&a_Matrix[3].x));
 __vector float simdVector =
 vec_ld(0, reinterpret_cast<__vector float*>(&a_Vector.x));

 __vector float simdResultVector;
 simdResultVector = vec_madd(vec_splat(simdVector, 0), column0, zero);
 simdResultVector = vec_madd(vec_splat(simdVector, 1), column1, simdResultVector);
 simdResultVector = vec_madd(vec_splat(simdVector, 2), column2, simdResultVector);
 simdResultVector = vec_madd(vec_splat(simdVector, 3), column3, simdResultVector);
 vec_st(simdResultVector, 0, resultVector);

return result;
}

0909gd_matrix_vIjf.indd 200909gd_matrix_vIjf.indd 20 8/19/09 5:17:32 PM8/19/09 5:17:32 PM

mailto:jvanderbeek@gdmag.com

http://www.techexcel.com

CONTINUED ON PAGE 24

GAME DEVELOPER | SEPTEMBER 2009 22

Our core team was made up of the usual suspects—
promising aspirants and industry veterans from Origin,
Midway, and beyond. Josef Hall (senior director of software
engineering), Todd Coleman (creative director), and I were
founders of Wolfpack Studios, and still proudly wear the
scars from SHADOWBANE.

At the time of writing this article, we’re almost one
year after launch and the response has been phenomenal.
A fun game with interesting differences to what’s currently
available has made for a compelling combo, but it’s still
gratifying to hear from parents and kids who love the
game and educational to hear from those who don’t. I’ve
personally learned a lot from this project, and I’m pleased
to have the opportunity to share some of that.

W H A T W E N T R I G H T

1) RIGHT IDEA AT THE RIGHT TIME. At the time we
started the project, Disney’s TOONTOWN was the only

massively multiplayer online game on the market that

catered to the kids’ demographic. Our goal was to address
this audience with a product that had more depth.

The market was ripe for a new game, and Todd
Coleman’s idea of wizardry and CCGs based in a fantasy
world was a wonderful framework for a game. Josef Hall,
proud parent, made the connection that the kids’ and
tween market was wide open.

It’s always fun to work on an original IP, and we honed
the vision through countless brainstorming sessions.
The decision was also made to make the game very story
driven, with an emphasis on the player being the central
character and hero in an epic magical adventure.

Players enter the game as new students recruited
by the headmaster to combat a deadly magical threat
to all of creation. The idea quickly grew beyond the
scope of a school for wizards, and encompasses many
different magical worlds. The concept of our different
schools of magic mapped perfectly onto types of cards
for the CCG.

0909gd_pm_wizard101_vIjf.indd 220909gd_pm_wizard101_vIjf.indd 22 8/19/09 4:25:52 PM8/19/09 4:25:52 PM

WWW.GDMAG.COM 23

0909gd_pm_wizard101_vIjf.indd 230909gd_pm_wizard101_vIjf.indd 23 8/19/09 4:26:08 PM8/19/09 4:26:08 PM

http://WWW.GDMAG.COM

We tried to keep the story simple and easy
to understand by incorporating a fun cast of
characters with an old-school hero’s journey. We
also wanted to make a game that would appeal to
families; Pixar’s ability to appeal to parents and
kids alike with movies like Cars, Toy Story, and
The Incredibles was our shining example.

2) SCOPE, SCOPE, SCOPE. We had a team of
fewer than fifty developers at our peak,

and an aggressive schedule. We wanted to
deliver a top-quality game in under three years.
The veterans among us were skeptical, but
determined. The only way it worked was to keep
the game design tightly scoped; we knew feature
creep would kill the project.

We had some leeway in that our target market
was fairly free of competitors, so we were able to
initially cut features that, in another market, we
wouldn’t be able to ship without. Anything that
wasn’t deemed critical to the core game experience
was deferred or cut. Guilds, crafting, mounts,
player housing, auction houses, grouping, player-
versus-player combat—all these things could wait
until after launch. We’ve added most of them in the
year since the game opened, but we never would
have shipped on schedule if we’d tried to do it all.

Our internal milestones were built around core
features taken from the overall game design. We’d
identify one or two major features to finish and
polish, estimate them, and let those estimates
determine the milestone duration. Then we’d fill out
the milestone task list with smaller features as time

and resources allowed. Repeating this process in
bursts of roughly eight to twelve weeks allowed us
to focus on a few features at a time. We drew only
from the master design, which kept the scope of the
game from growing too much over time.

We didn’t launch with as much content as
we’d have liked, but you never do. We elected to
ship with four major adventure areas and quickly
added a fifth area three months after launch.
This was a small enough amount of content to
allow us to manage the work, but still enough to
provide several hundred hours of game play. We
recognize that content is vital in MMOs, but you
still have to launch the game!

3) PROTOTYPE AND ITERATIVE DESIGN. The
idea of a turn-based MMO collectible card

game for kids was a bit risky, to say the least. We
knew that the card game combat was our core
unit of gameplay, so we had to get it right.

Our initial prototype of the combat system
consisted of hand-drawn cards (art courtesy of
game visionary Todd Coleman), some ten-sided
dice, and colored glass beads (for power points
and health). We spent hours playing the game
against each other (there were no monsters
initially), changing card values as we went with a
quick erase and pencil scratch iterative approach.

The second prototype was on the computer,
with a client and independent server—a
multiplayer version with 2D cards and data
stored in tables for easy iterations and balancing.
Limited A.I. for computer controlled opponents

came later, and served as the basis for our full
monster A.I. system.

The critical part of this early work was to see
if the basic core gameplay was fun, and to refine
the combat rules. Those rules evolved into our
current combat resolver. Prototyping was critical
to our later success; locking down core gameplay
early allowed us to focus on other elements of the
game instead of going through multiple project
restarts we couldn’t afford.

This iterative approach to development was
applied to all new systems, though not to the same
degree. Each time a new system was brought
online, we’d get it functional as quickly as possible
and try it out. Feedback was gathered from anyone
and everyone in the company, and incorporated.

As the game’s development progressed,
we also took the opportunity to focus test.
Art direction, pricing model, story elements,
characters, combat—almost everything was put
in front of kids and parents at some point during
production. We listened to the customer, and
reaped the benefits.

4) DIGITAL DOWNLOAD AND FREE TRIAL.

There was great debate about whether to
go retail or direct download, adopt a free-to-play
model or give the standard free 30 days. Those
of us with shipped MMO game experience were
more comfortable with a traditional approach, but
our company founder Elie Akillian maintained that
digital download was the best way to get our game
into the hands of the casual masses. He was right.

GAME DEVELOPER | SEPTEMBER 200924

PUBLISHER KingsIsle

DEVELOPER KingsIsle

NUMBER OF FULL-TIME

DEVELOPERS Approximately 40
at peak

NUMBER OF CONTRACTORS

Roughly 30 including QA

LENGTH OF DEVELOPMENT

Six months pre-production, 36 months
of full development

RELEASE DATE September 2, 2008

SOFTWARE Microsoft Developer's
Studio, G++, 3D Studio MAX, Adobe
Photoshop

TECHNOLOGY Gamebryo, Miles, Open
Dynamics Engine

PLATFORM PC/Online

GAME DATA

CONTINUED FROM PAGE 22

0909gd_pm_wizard101_vIjf.indd 240909gd_pm_wizard101_vIjf.indd 24 8/19/09 4:26:17 PM8/19/09 4:26:17 PM

As a new, independent studio, we didn’t have
the pull of a big studio that is able to demand
shelf space and end caps. Our game was fun, but
no one had heard of us. The obvious answer was
to let the game sell itself, and the best way to do
that was to let people try it for free.

Going with direct download had many
challenges, however. Even now, we’re constantly
concerned with download size, since it’s a major
barrier to getting into the game. Each game
update is scrutinized and pared down so that we
aren’t increasing the download to a new user.

One of our better features is our ability to
stream the game to the user. This was a huge
technical win for us, and basically means that
we can deliver game content to the player just
before they need it. We have a small initial
download that allows the player to create a
new character. While character creation is
taking place, the game is downloading the
tutorial—while the player is in the tutorial, we
are downloading the starting area. Although
most players will never notice, it means they
don’t have to incur a giant download to start
playing the game.

Finally, our server architecture needed to be
scalable and robust. A free-to-play or free trial
game with millions of players coming through
needs to be able to handle the load without
turning away potential players!

Digital download is a hard road, but
considering the millions of players who have
given WIZARD101 a try, it was the right choice.

5) MIN SPEC AND SMART TECH. Who still has
a GeForce2 in their rig? Who actually uses

the integrated video chipset that comes with the
motherboard? Who still has less than a gig of
RAM? Millions and millions of casual users and
kids on hand-me-down machines, that’s who.

We did exhaustive research early in the
project to try and determine what min spec would
allow our target market to play the game, and it
was pretty scary. Our research indicated a much
higher min spec than what we chose, because all
data at the time came from gamers, who typically
have much more powerful machines than casual
users. We took a gamble and went with a much
lower min spec, and it really paid off.

We set a tight budget on polygons and texture
sizes for every piece of art in the game, and created
our areas to support a fixed number of players so
that we could limit the load on the graphics card.
Clever use of portalling and other tricks in world
building allowed us to hide high-polygon pieces of
art, and restrict how many concurrent combats a
player could see on screen (another big poly hit).

The programming team was very careful
about how much data is kept in memory, and
spent a lot of time optimizing the code to use

minimal RAM and processing power. Additionally,
whenever driver problems arose during
compatibility testing we wrote code workarounds
so that our casual users would not be faced
with the daunting prospect of having to update
drivers to play the game. We also knew most
casual users and kids would be on older operating
systems with outdated service packs and drivers,
so we went out of our way to support all that.

Finally, we made the decision to go with
a very stylized look to the game. The art style
is funny, approachable, and
casual, but more importantly,
the game looks good on low
end machines and will age well,
since we aren’t competing in the
realm of hyper-realistic, bleeding
edge graphics.

W H A T W E N T W R O N G

1) MODULAR WORLD BUILDING.

With a small team and
aggressive schedule, we made a
decision early on that we should take
a very modular approach to world and
level creation. The idea was that if you
use generic building blocks and let the
level builders snap them together, you
can get a lot of re-use and will be able to
create more content for less art time. It

WWW.GDMAG.COM 25

0909gd_pm_wizard101_vIjf.indd 250909gd_pm_wizard101_vIjf.indd 25 8/19/09 4:26:24 PM8/19/09 4:26:24 PM

http://WWW.GDMAG.COM

didn’t really work—custom areas are better and
take just about as much time to create.

We came up with a list of “snappable” pieces
(L-shape, T-intersection, end caps, boss rooms,
etc.) and had the artists create them for each
world with texture variations and decorate them
with props appropriate to the different areas. The
world designers knew the size of each piece and
would create vast adventure area maps on grid
paper while the art was being created. In this way,
we hoped the designers and artists would be able
to work concurrently on the tasks. After the art
was created, the designers would snap the pieces
together, export them, and the artists would go
back for a decoration, polish, and lighting
pass. Even though the individual pieces of
art were excellent, the end result was
fairly generic levels that all looked the
same and were boring. The more
we re-used pieces, the worse the
problem became.

The solution seemed
obvious—we would create
custom pieces that we could
drop in among the generic
pieces to provide points of reference to the
player in the area and break things up. Examples
were gardens with statues, hedge mazes, camps
with pavilions, and the like. That really didn’t
work that well either. Even though the custom
pieces looked great, we weren’t able to create
enough of them to make a difference.

Another approach we tried was to make
adjacent areas appear very different by changing
the decoration and textures between areas. For
example, on Wizard City (our starting world) we
themed the adventures areas by element (nature,

fire, ice, etc.) and added icicles, snow, pools of lava,
and burning trees to the different zones. That helped
some, but it served to hide the problem rather than
solve it. The areas still felt very much the same.

For our latest world, Grizzleheim, we finally
made it work. We took a totally custom approach to
level building; each area was individually concepted
and designed, then hand crafted by an artist. The
result was a much-improved visual appeal, and all
the areas combined took about as long to make as
it takes to create a set of snappable pieces.

2) WE CHANGED THE BUSINESS MODEL

CLOSE TO LAUNCH. Naturally, getting
people to give us money for the game was

key to our longevity and success as
a company, and so the business

model was a hotly debated topic
during early production. We

finally settled on a subscription
model that was family-friendly

and had a good price point.
Fairly close to launch, however,

we re-opened the subject for
discussion and decided to

take a more hybrid approach—we’d allow for both
subscribers and micropayment customers. At
the same time, we also decided to allow users to
play the first part of the game for free. By adding
a free trial, we increased the number of players
the architecture had to support by an order of
magnitude. It’s a testament to the scalability of
what our engineers built that it was even possible
that late in development.

We’ve seen promising results from catering to
users that want to pay us in different ways, but
because we chose to offer micropayments fairly

late in the development cycle our implementation
was less than ideal. For example, rather than
having a micro-payment shop available to the
users at the touch of a button, we had to use
an automated in-game character as our micro-
payment shopkeeper. Players have to find him
in-game to be able to make micro-transactions.
Additionally, the types and variety of items
available for micropayments are limited and not
altogether compelling.

Another challenge to using the hybrid approach
has been the fine line we have to walk with our
users; we want to entice our subscribers to make
microtransactions, but we don’t want to make
them feel like they are getting less value for
their monthly payments or being forced to use
microtransactions. The approach we’ve taken is
that for every item available in the game for a
micropayment, that item is also available in the
game by other means—for gold, as a rare monster
drop, or as a PvP reward. By doing this we have an
answer to our subscribers’ concerns about value,
but it makes for a lot more data work, is error-
prone, and can create game balance issues.

If we had the chance to do it all over again, we
would pursue a hybrid business model earlier in
development. That way we could have created a
much smoother experience and more compelling
micro-transaction offerings to the users.

3) USER INTERFACE MISTAKES. To be frank,
our graphic user interface is kind of a

mess. The GUI is in many ways the face of the
game, and supposed to be the user’s best friend.
It’s one of the pieces of the game that speaks
to the overall quality of the product, and ours
isn’t great.

We failed, at the start, to come up with our
user interface language—a bible of rules that
should make your GUI elegant and intuitive, if
followed. As a result, our GUI is often clunky,
crowded, and inconsistent. Sometimes buttons
are round with icons; sometimes they are square
with words. Sometimes we navigate menus with
side tabs; other times it’s with circular icons at the
top of the page. It is critical that you think through
how your players will use the interface, and iterate
and polish it until it shines—we didn’t do that.
Although some of our HUDs (deck configuration,
for example) did go through dozens of revisions,
without a set of established guidelines the result
was inconsistent and unpolished.

On the technical side, for reasons beyond
our control, we were forced to make the
decision to build our own graphical interface
system and have struggled with it ever since.
We used a homegrown tool for interface layout
that was difficult to use and hard to learn.
This means that designers and artists had
trouble making (and fixing) the GUI, so it fell to
programmers to implement HUDs and fix bugs.
As a result, programmers spent more time than
they should have fixing interface issues, and

GAME DEVELOPER | SEPTEMBER 200926

0909gd_pm_wizard101_vIjf.indd 260909gd_pm_wizard101_vIjf.indd 26 8/19/09 4:26:35 PM8/19/09 4:26:35 PM

our screens lack the visual polish an artist
would have provided.

Additionally, our interface elements don’t scale
and resize with the game’s screen resolution.
We support 800x600 at the low end, so you can
imagine that the HUDs become so small they are
almost unusable at high resolutions.

Lastly, our user interface screens are all
static; we don’t have the capability to animate
them, so they seem to lack polish compared to
other games made with Flash-based GUIs.

We’re currently in the process of migrating
our system and all interface elements to Flash,
and will soon share the level of quality many of
our competitors display.

4) STATS AND METRICS PROBLEMS. The
collection, representation and mining of

data related to player activities can provide the
developer with the keys to tweaking their product
to perfection. The trick is to collect enough of the
right data, and to make that data accessible to the
right audience. If you fail in any of these respects
you’re in for some headaches. We have headaches.

We weren’t sure which facts were going to
be important in understanding the success of
our game and how we’d need to slice and dice
those facts in order to make decisions. We also
could have done a better job of making sure the
metrics supported the different groups within our
company. For example, marketing and operations
may both be interested in unique logins, but may
require different dimensions—demographically
by week for marketing, peak activity hours for
operations. We still struggle with asking the right
questions and getting the right answers to the
people who need them.

Our plan for growth underestimated the
amount of data we would need to gather and the
number of reports we’d need to run. The activities
of millions of players add up quickly. We had
some issues scaling our data warehouse with the
increasing data set, and had to scramble to keep
up. Beyond larger and faster disks, we needed
a reporting, retention, and aggregation strategy
that would keep our data warehouse manageable
after a year of data and billions of facts.

It’s not that we weren’t warned—our
unfortunate data expert told us we needed to
make smart choices, but in the heat of making a
fun game, we didn’t listen. A year after launch, we
have a mountain of data, and are having to work
very hard to able to parse through it all to see
valuable trends and statistics.

5) POOR PLAYER GROWTH STRATEGY. This
was a rookie mistake, and we should have

known better. MMOs grow over time, and have
a lifespan of five to ten years. A smart designer
would plan for plenty of room to grow the game
and grow the characters along with it. We, however,
chose to box ourselves in and make it difficult.

The first basic problem is that we chose to
use a percent scale for many of our equipment
and advancement modifiers. Accuracy, damage
increase, damage resistance, and other attributes
lie along on a scale of 1–100 percent (some with
caps lower than 100 percent). This means that we
have a hard ceiling on how much power we can
award the player through the course of the game.

Here’s an example: players use power points
(pips) to cast spells in combat, and more powerful
spells require more pips. Players gain a pip at the
beginning of each turn in combat. As players earn
power and equipment, they gain the chance to
get a double pip. Here’s the sad part—the double
pip chance is on a scale of 1–100 percent, and we
launched the game with players able to achieve
near 90 percent. Given that 100 percent is the max,
we have very little room to make more powerful
equipment or grow the player beyond what they
could achieve when we launched. Additionally the
equipment upgrades we designed ended up not
being very compelling. With only 100 points to
grant, we have upgrades that go from 2 percent
Fire Resistance to 3 percent—not very exciting.

The second problem is that we didn’t give
characters very many attributes. We thought
that because we were making a collectible
card game, we wanted the majority of player

power to come from
collecting cards
and building decks.
However, when you only
have a few attributes
on the character, you
don’t have many ways
to create valuable

equipment, so your loot and advancement
options become very limited.

The last major problem related to player
advancement was that we didn’t launch the game
with any true boss fights. Really, the only way we
had to make fights more difficult was to increase
the health of the monsters, which just resulted
in longer fights. Additionally, we added some
scripted boss fights after launch, and there was a
huge backlash from our player community.

Now that we’re well past launch and it’s
quickly becoming time to increase the power
scale, we’re faced with some difficult challenges.
The prospect of building and testing a new
equipment and character development scheme is
daunting, not to mention re-balancing thousands
of pieces of gear. The anticipated community
response alone is enough to make me cringe.

C L A S S D I S M I S S E D

» Some game projects are sprints, some are
marathons. An MMO game project feel like sprinting
a marathon. We learned just how much you can
accomplish with a small, talented team. We learned
there is no substitute for good planning, and that
polish happens all the time, not just at the end.

The best thing about an MMO is that it doesn’t
go away after launch, so we can correct some
of the mistakes we’ve made along the way and
apply what we’ve learned in making the pre-
launch product to the live product.

By anyone’s standards, WIZARD101 is a
phenomenal success, and it’s absolutely the best
project I’ve ever worked on. There are a few things
I’d do differently, and some good lessons learned,
but overall it was an immense pleasure to work
on such a great game.

JAMES NANCE is the senior producer for WIZARD101. His

career started in 1991 when Nance joined Origin Systems

as a QA tester. He was the lead designer on SHADOWBANE

and an executive producer at Wolfpack Studios prior to

joining KingsIsle. Email him at jnance@gdmag.com.

WWW.GDMAG.COM 27

P
H

O
TO

 B
Y

 T
O

M
 H

A
L

L

WIZARDS101 principles Josef Hall, J. Todd Coleman, James Nance, and Diego.

0909gd_pm_wizard101_vIjf.indd 270909gd_pm_wizard101_vIjf.indd 27 8/19/09 4:26:47 PM8/19/09 4:26:47 PM

mailto:jnance@gdmag.com
http://WWW.GDMAG.COM

Best New Weapon Set, and �fth place for Best Graphics
in Map. Angels Fall First: Planetstorm is scheduled for
completion in October 2009.

Prometheus, which won second place in the Best FPS
category, is a community favorite thanks to its clever
time travel mechanism in which players collaborate
with ghosts of their past selves to solve time-based
puzzles.

Sanctum mod for Unreal Tournament 3

Sanctum, a total conversion that won fourth place for
Best FPS Mod, is a �rst-person tower defense game
with a unique art style. The student developers of
Sanctum plan to add co-op multiplayer, di�erent game
types and additional turret, enemy and weapon types.

UT2D Killing Time, an updated version of the popular
UT2D side-scrolling mod for PC and PS3, won second
place in the Best Non-FPS category.

There are many other mods, including characters,
weapons, levels and more that have been recognized at
www.makesomethingunreal.com.

Thanks to everyone in the Unreal community who has
supported the contest with advice, critiques, content,
code and creative genius.

We are extremely grateful to have so many talented
developers working with Unreal Engine technology.

MOD TEAMS ON THE RISE IN $1,000,000 INTEL
MAKE SOMETHING UNREAL CONTEST

Epic Games and Intel announced Phase 3 winners of
the $1 Million Intel Make Something Unreal Contest at
SIGGRAPH 2009.

What is clearer now more than ever before is that all
kinds of unique, high-quality game content can be
created with the Unreal Engine 3 toolset – without even
touching the engine’s source code.

Thanks to the Unreal development community,
hundreds of free mods for Unreal Tournament 3 are
available for PC, and many have made their way to
PlayStation 3 as well.

The Haunted is a third-person survival horror total
conversion that took home top honors for Best Non-FPS
Mod, Best New Weapon Set, and Best Graphics in Map,
plus �rst and �fth places in Best Level for a Game Mod.

The Haunted mod for Unreal Tournament 3

While anyone can play The Haunted in single-player
mode, its multiplayer experience shines with four-
player co-op, demons versus humans Battle mode, and
Demonizer mode.

Another breakout mod is The Ball, an episodic action
puzzle game that won �rst place for Best FPS Mod,
second place for Best Level for a Game Mod, third place
for Best Graphics in Map, and �fth place for Best Use of
Physics.

The Ball is also a UT3 total conversion, meaning it uses
all original game assets, and like The Haunted, it has
won recognition in previous phases of the contest.

Angels Fall First: Planetstorm, an assault-style game
featuring massive ground and space battles, took home
third place in the Best FPS category, fourth place for

Canadian-born Mark Rein is
vice president and co-founder
of Epic Games based in Cary,
North Carolina.

Epic’s Unreal Engine 3 won
Game Developer magazine’s
Best Engine Front Line Award
for three consecutive years,
and it is also the current Hall of
Fame inductee.

Epic’s internally developed
titles include the 2006
Game of the Year “Gears of
War” for Xbox 360 and PC;
“Unreal Tournament 3” for
PC, PlayStation 3 and Xbox
360; and “Gears of War 2” for
Xbox 360.

Upcoming Epic
Attended Events:

CEDEC
Tokyo, Japan
September 1-3, 2009

Austin GDC
Austin, TX
September 15-18, 2009

Tokyo Game Show
Tokyo, Japan
September 24-27, 2009

KGC
Seoul, Korea
October 7-9, 2009

Please email:
mrein@epicgames.com
for appointments.

For UE3 licensing inquiries email:

licensing@epicgames.com

For Epic job information visit:

www.epicgames.com/epic_jobs.html

W W W . E P I C G A M E S . C O M

Unreal Technology News
by Mark Rein, Epic Games, Inc.

Epic, Epic Games, the Epic Games logo, Gears of War, Gears of War 2, Unreal, Unreal Engine, Unreal Technology, the Powered by Unreal Technology logo, and the Circle-U logo are trademarks or registered trademarks of Epic Games, Inc. in the United States of

America and elsewhere. Other brands or product names are the trademarks of their respective owners.

Advertisement

mailto:mrein@epicgames.com
http://www.makesomethingunreal.com
mailto:licensing@epicgames.com
http://www.epicgames.com/epic_jobs.html
http://WWW.EPICGAMES.COM

Learn. Network. Inspire.

Game Developers Conference®

March 9–13, 2010 | Moscone Center, San Francisco
www.GDConf.com

http://www.GDConf.com

1

Admit it. For the past 25 years, you ain’t been
afraid of no ghosts. thanks to a certain movie about
four intrepid heroes, we all know a well-aimed proton
stream and a handy trap can bag any ghoul within range.
the venerable Ghostbusters* franchise has spun out at
least eight different video games since 1984, each taking
advantage of the movie’s supernatural feel and sci-fi
effects. the newest version Ghostbusters: The Video
Game has received good reviews since its release earlier
in 2009, thanks in no small part to its updated effects.

As Mark Randel, president and chief technology offi cer
of terminal reality, Inc. described it in his blog at
http://software.intel.com/en-us/blogs/author/mark-randel/,
“the results of having a massively parallel game engine
were stunning. When we fi nally got rendering and
simulation of the game in parallel in the last weeks of
Ghostbusters, the game became solely render-bound. Jobs
were totally asynchronous, and we were able to fully utilize
three to four cores. When there wasn’t any action in the
game, the game was waiting on the vertical blank. With a
lot of action, the job model allowed the heavy lifting to be
absorbed over as many processors as the system had.”

the game is published by Atari, who wanted a great
mainstream game to reach the largest possible target
market. Atari pushed the team to make sure the game

was optimized for integrated
graphics systems, in

order to maximize their
investment and ensure good
performance.the developers at
terminal Velocity took extensive
advantage of Intel® Graphics
performance Analyzers (Intel® GpA) and
their membership in the Intel® software
partner program to bring out the best special effects
required to chase down vapors, slimers, and poltergeists.
Intel’s tools helped identify a performance bottleneck so the
game could be optimized for desktops and laptops that use
Intel® Graphics processors. And once performance problems
are solved for the Intel® Graphics world, they are essentially
solved for the rest of the graphics universe.

Thanks to fi ne-tuning for multi-core and extensive
testing for bottlenecks, Ghostbusters: The Video Game
really shines, especially on the newest Intel-based
systems. What follows is a step-by-step analysis
performed on an exceptionally low-performing scene in
Ghostbusters: The Video Game by a team consisting of
both Intel and terminal reality developers. the team’s
comprehensive work is a model for anyone who wants to
troubleshoot similar game-performance issues.

Optimizing a Slow Game Scene
Jeff laFlam and shankar swamy, application

engineers with the Intel® Visual Computing enabling
team, worked with mark randel, president and

chief technology offi cer of Terminal Reality,
Inc., to detect and analyze a serious

bottleneck in a specifi c scene in
Ghostbusters. this scene was
running so slowly,
and with a barely

updated tools spice up
new Ghostbusters* Game
Terminal Reality used the popular Intel® Graphics Performance
Analyzers to bring the newest Ghostbusters* game to life.

Intel-sponsored supplement

http://software.intel.com/en-us/blogs/author/mark-randel/

Intel-sponsored supplement

2

acceptable frame rate, that the gameplay was visually
stuttering. this scene had stymied progress in optimizing
the game’s overall performance.

the troublesome scene contains about 200,000 books
in a library where two human characters and a “ghost”
character might interact. When the characters are fully
outside the library they cannot see the books; hence, there
is no need for the game to render the books. However, as a
character enters the library, the books are gradually
exposed to the viewer and displayed in the gameplay scene.

the team of laFlam, swamy, and randel analyzed this
scene to determine solutions for increasing the frame rate.

Step 1: Visually Analyze the Scene
the team began by visually analyzing the entire

scene sequence in order to determine a direction for
further investigation.

the team observed that when a character was staring
at the wall and the books were partially exposed, the
frame rate was very low and the scene stuttered (Fig. 1).
When they then advanced the scene and moved a
character closer to the wall but with no books visible in the
scene, the frame rate did not change noticeably. this
indicated to the team that the books were being rendered
in the scene even when they were not visible.

Step 2: Render with Z-Test Disabled
the goal of the second step in the analysis was to

determine how many occluded objects were being
rendered in the library scene. this was done by rendering
all the objects in the scene with the Z-test disabled.

In Figure 2, notice that the character is standing very
close to the wall and staring directly at it. prior to
optimizing this scene, during normal gameplay (with the
Z-test enabled), the books shown would not be visible
because of the direction the character is looking. However,
because the team disabled the Z-test for Figure 2, all the
books being rendered by the game are also now visible.

This confirmed that books are being rendered all the
time—even when they are completely occluded during normal
gameplay. of course, only the books that are visible to the
characters at any point in the game play need to be rendered.

Step 3: Conduct a Single-Frame Analysis
the team wanted to investigate other possible hot

spots in the scene by using the Intel® GpA Frame Analyzer.

According to the Intel® GpA Frame Analyzer, the
library scene had 12,564 draw() calls (Fig. 3). However,
other scenes in the game typically had about 3,000

Figure 1. Scene showing a character staring at the
wall of the library.

Figure 2. Library scene rendered with the walls forced to
render “transparently,” showing that the books occluded by
the wall are still being rendered.

Figure 3. Output from the Intel® Graphics Performance
Analyzers Frame Analyzer for the scene inside the library.

Figure 4. Output from the Intel®
Graphics Performance Analyzers
Frame Analyzer of the scene inside
the library.

Figure 5. Output from the Intel® Graphics Performance Analyzers
System Analyzer with all the books removed from the scene.

3

draw() calls, and those scenes had higher frame rates. the
conclusion was that there were too many draw() calls in
the library scene, indicating to the team that further
testing should be aimed at reducing the number of draw()
calls in the troublesome scene. the team also wanted to
investigate how many of these calls were coming from the
rendering of the books.

Step 4: Estimate the Cost
of Rendering the Books

the team placed the camera in
front of a wall that had no objects
behind it. Because this is a third-person view game, the
characters in the library scene are still rendered—as they
should be. However, the books, which are now behind the
camera, are invisible and should not be submitted for
rendering due to the game’s culling algorithm.

the team wanted a reliable estimate of the cost of
rendering the books. By submitting the scene

to the Intel GpA Frame Analyzer (Fig.4), the
team discovered the scene had 14,731

Draw() calls, confi rming that the
books were quite
expensive to render. In
fact, the overhead of
rendering the books is

signifi cant enough that it negatively affected the frame
rate when the books were occluded yet still rendered.

Step 5: Verify the Potential Gains
next, the team included a software switch in the

graphical user interface (GuI) that allowed them to
completely turn off rendering for all the books (whether

visible or occluded). they then
rendered the scene by
dynamically turning this switch
on and off, allowing them to
determine the change in frame
rate when books were rendered
versus when they weren’t.

When book rendering was turned off, the frame rate
increased by approximately 2.5 times, as shown by the
data from the Intel® GpA system Analyzer within the red
oval in Figure 5. this indicated that the cost of rendering
the books in the scene was quite high.

At this point in the analysis, the obvious options for
increasing the performance of this scene were either:

don’t render the books that aren’t visible in •
the scene, or
reduce the number of books in the scene.•

Intel-sponsored supplement

Intel-sponsored supplement

4

Step 6: A Third Solution is Created
When the Intel team shared their fi ndings with the

developers at terminal reality, mark randel suggested—
and implemented—a third solution: a “pixel height test.”

Figure 6 shows the idea behind the pixel height test.
the bounding sphere of an object is shown as circles in
Figure 6 and indicates the pixel coverage on the screen
required for that object either when the object is close to
the camera or when it is farther away.

using the pixel height test on the objects in a scene,
the test can determine which objects contribute less than
one full pixel to the displayed frame. to approximate the
pixel coverage, the test determines the object height in

screen space in pixels. this
testing code is executed on
the processor. As a result of
the pixel height test, if the
pixel height of an object is
less than a pixel, the object is
not submitted for rendering.

In the troublesome library
scene, the fact that the
objects (books) all had identical
dimensions—because they
are instantiations of a single
object—made the test easier
and faster to run because the
bounding spheres for all tested
objects (books) were identical.

Step 7: The Results of the
Pixel Height Test

Figure 7 shows the result of
implementing the pixel height test

on the library scene in Ghostbusters.
using the software switch created by
randel, developers were able to turn
the test on and off. When the pixel
height test is running, objects (books)
that are less than one pixel in height in
the scene, are not rendered. As shown
by the data in the green oval in Figure 7,
where the test was turned on, the
frame rate of this scene doubled
when the books less than one pixel in
height were not rendered.

the data in Figure 7 also shows that the overall usage
of the graphics resources went up, with the test indicating
that the game was now using resources more optimally.

Figures 8 and 9 are the screen
captures of the scene before and
after the test was
enabled. there is no
visual difference
between the two
renderings, because no visible object
was affected by the change.

When the team fi rst started this analysis,
the scene was rendering so slowly that it was

Figure 7. Frame rates with the pixel-height-test solution in place.

Camera
Position

Camera
Position

Scene Object
Pixel Occupancy of the Object

(Sphere)

IMAGE
PLANE

IMAGE
PLANE

Figure 6. The basis of the pixel height test.

considered the major issue preventing the game from being
highly playable. Based on a thorough analysis and the
implementation of the pixel height test that followed, the
scene ended up rendering at double the original frame rate.
other scenes in the game enjoy even higher frame rates.

New Features for Intel® GPA, Version 2.1
As good as the Intel® GpA tool was for the development

of the latest Ghostbusters game, several new features
have been added subsequent to that project. randel
reports that he is fi nally enjoying a little downtime after
working since 2006 on Ghostbusters, but he’s already
looking forward to the next project. “It will be really nice to
have the new Intel GpA tools,” he said recently. “there are
still a few more things we can do to add those key details
to a highly believable, fully destructible environment.”

Here are some of the key new features that have been
added to the Intel GPA to make it even easier to fi nd and
quickly address performance issues in games, as well as
debug rendering problems:

Pixel History
pixel history is a great new feature in Intel GpA that

provides a wealth of information on any pixel in any render
target. A zoom feature (using the mouse wheel) was also
added for a more exact selection of a particular pixel of
interest. to select a pixel, simply left-click a pixel in any
render target. After a pixel is selected, the history of all Gpu
operations (draw calls, clears, and so on) that affected that
pixel is displayed in the pixel history tab, which is
automatically opened. this lets you see exactly which draw
calls affected that pixel location for the render target from
which it was selected. For each draw call in the list, the
number of times the pixel was touched and the fi nal pixel

color are also displayed. If the pixel was rejected, for
example if Z-test was enabled, the reason for the rejection
is noted as well.

pixel history enables two key use cases: visual debug
and overdraw analysis. The visual debug workfl ow allows
you to diagnose why a pixel was rendered incorrectly. It also
shows which draw call in the history caused the selected
pixel to be the color that it is. the overdraw analysis
workfl ow depicts how much overdraw exists at any pixel
location and specifi cally which draw calls contribute to it.

Overdraw Visualization per Render Target
the Intel GpA render target viewer has a new overdraw

visualization mode. When enabled, each render target is
visualized in gray scale. overdraw corresponds to lighter
pixels in the gray-scale visualization. By enabling this
mode, you can immediately see which portions of the
render target are being written to most often.

Intel GpA also allows you to combine the usage of both
pixel history and overdraw visualization. this allows you to
seamlessly fi nd overdraw hotspots with the visualization
and then immediately select any of the hot pixels to
understand which draw calls are contributing to overdraw
at that location.

Vertex Shader and Pixel Shader Durations
shader durations are now enabled as metrics for all

directX* devices. these metrics are available in three
places: the bar chart graph at the top of the user interface,
the scene overview spreadsheet view on the left, and the
details tab on the right.

With the bar chart, you can now select any metric in
the x- and y-axis. For example, you can confi gure vertex
shader duration in the x-axis and pixel shader duration in

Figure 8. The scene rendered when
the pixel height test was disabled.

Figure 9. The scene rendered after
the pixel height test was enabled.

Intel-sponsored supplement

5

Intel-sponsored supplement

Intel-sponsored supplement

6

the y-axis. By looking at the shape of each rectangle in the
bar chart you now can compare two metrics at the same
time. Within the scene overview, you can view these new
metrics in spreadsheet form by clicking the Customize
button, and then selecting any metrics of your choice.
Finally, the details tab always lists all possible metrics and
enables you to view their values summed across the
current draw call selection set.

Single Step Frame
Intel GpA has a new single step feature that enables

better control over the frame to be captured and analyzed.
When using the system Analyzer, simply press the pause
button to pause the game in real time, then press the single
step button as many times as needed to reach a frame of
interest. the capture button can be pressed at any time.

In-Game Hot Key
the new hot-key feature allows easy frame captures on

a single computer while playing the game. simply launch
the game using Intel GpA, run it full screen, and then press
CTRL+SHIFT+C (or confi gure any keys you want to use) for
each frame you want to capture. When you are ready to
analyze, close the game, and then open the Frame Analyzer
on the same computer or a remote system for analysis.

Export Metrics to a CSV File
With CSV (comma separated value) fi le export, detailed

frame performance data can be saved and later pulled into
microsoft excel* or any other program that can process CsV
fi les. This feature allows you to track game performance
changes over time, compare game performance with various
game options enabled, or even compare game performance
on various graphics cards—all at a per-draw level of detail.

Because this feature is draw call selection set-based,
you can select the draw calls you are interested in (or
the whole frame) and export only those calls, so
you don’t have to wade through large amounts
of data to fi nd the details you want.

Conclusion
Intel GpA tools help game

developers make sure that
performance issues don’t detract
from a game’s entertainment value.
developers can run code
experiments that measure and
report performance results in real
time. Intel GpA provides open, accessible
libraries that can both customize tools for specifi c needs
and pull data for deeper analysis. Better use of screen real
estate avoids the intrusive display overlay of other
interfaces, and the ability to share captured frames with
team members increases the effi ciency of optimization.

thanks to the Intel® GpA tools, developers can learn
more about what’s going on “behind the curtain” on
their games. the new features take an already strong
engineering toolset and turn it into a formidable asset
manager. thanks to interaction with game developers
around the world, Intel continues to fi ne-tune these
tools. priced at usd 299, the Intel GpA tools are free
to anyone willing to take the time to fully register. Go
to www.intel.com/software/gpa and grab the tools and
the documentation, read the case studies and white
papers, and get involved in the developer forums. Your
game’s performance—and fun factor—are at stake. •

to Get more GreAt ArtICles lIKe tHIs one,
VIsIt tHe Intel® VIsuAl AdrenAlIne WeB sIte:

http://visualadrenaline.intel.com

to Get more GreAt ArtICles lIKe tHIs one,
VIsIt tHe Intel® VIsuAl AdrenAlIne WeB sIte:

http://visualadrenaline.intel.com

Intel does not make any representations or warranties whatsoever regarding quality, reliability, functionality, or compatibility of third-party vendors and their devices. All products, dates,
and plans are based on current expectations and subject to change without notice. Intel, Intel logo, and Intel Core are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others. | Copyright ©2009. Intel Corporation. All rights reserved. 08/09/RHM/SM/CS

For more InFormAtIon
to learn more about the Intel® Graphics

performance Analyzers, visit www.intel.com/software/gpa

to download a free version of the Intel® Graphics
performance Analyzers, join the Visual Adrenaline
developers program by completing the form at:
https://ssl.software.intel.com/en-us/register/visual-adrenaline/

For more details about the breakthrough performance
of the Intel® Core™ i7 processor extreme edition, visit:
www.intel.com/products/processor/corei7ee/

For more information about Ghostbusters*:
The Video Game, visit http://www.ghostbustersgame.com/

6

http://www.intel.com/software/gpa
http://www.intel.com/software/gpa
http://www.intel.com/products/processor/corei7ee/
http://www.ghostbustersgame.com/
https://ssl.software.intel.com/en-us/register/visual-adrenaline/
http://visualadrenaline.intel.com

TOOLBOX

WHEN IT COMES TO OPEN WORLD
game development, set design and
set dressing are crucial milestones.
They reflect the capabilities of your
game engine and are instrumental
in immersing players in your game’s
virtual space. Of course, coding
entire cities from scratch carries
extra time and cost, so for games
situated in urban landscapes, why
not use a specialized tool to build
these essential sets? CityScape
1.7 from PixelActive is exactly that,
and is intended to speed up your
environment creation tasks.

CITYSCAPE IN A NUTSHELL

» CityScape is focused entirely
on quickly creating urban
environments as part of your
production pipeline. That is to say,
the main use for CityScape in the
game industry would be for rapid
prototyping and design iteration,
not as a full-featured level editor.

From villages to full cities (as
large as 100km in diameter), this
software can manage huge sets
assembled from library assets
such as buildings, roads, vehicles,

trees, and anything else you might
need. Big scenes are manageable
thanks to a strong level of detail
algorithm. The scene can then
be exported to your preferred
software and modified to suit your
needs, or it can be integrated into
commercial or custom real time
rendering engines.

USING CITYSCAPE

» When you first open a
CityScape scene, you will be
presented with a flat world grid.
This grid can be used as a canvas
on which to paint a height map
using different brush types and
options. These brushes can either
be kept in the scene for later
interactive manipulation, or they
can be baked into the terrain
to make the edits permanent.
Alternatively, you could also use
a standard greyscale height map
to automatically get the proper
terrain geometry. It is important
to note that any given point
can only go up or down, so you
cannot create tunnels or caverns.
PixelActive informs us that it is

currently at work adding tunnel
support for future versions.

You next build on the terrain
geometry. Even though CityScape
ships with basic assets, you will
have to model entire libraries
of assets in order to suit your
productions. If your scenario is
a medieval village or a futuristic
metropolis, you will have to create
these assets manually in a 3D
modeling package, then import
them individually or as entire
directories into CityScape in order
to lay them in the scene.

Importing 3D models in
CityScape is done using COLLADA.
For instance, if you would like to
create a building (using Maya,
Max, XSI, SketchUp, Modo, etc.),
you would model it normally out of
polygons and texture it using file
textures and shaders. Once that is
done, you can export the models
with COLLADA and create a new
asset in CityScape.

You can also export a
CityScape scene through
COLLADA. Doing so is probably
imperative for most game studios
since touch-ups will need to be
done to clean the scene of any
glitches before compiling the
models for the game engine.

There are several options
to export a scene since every
studio has different ways of
exporting files. PixelActive has
been really good at listening and
implementing features to make
their files compatible with their
client requirements. For instance,
you can export files compatible
with OpenFlight or Gamebryo.
You can also export the terrain in
square lots using automatically-

generated level of detail. The assets
can be exported as full geometry
or as locators defining the different
attributes and metadata of each
asset instances.

One of the bright feature
of CityScape is certainly the
interactive placement of the assets.
At any point during the creation of
an environment, you can decide
to change the relief of the terrain,
move streets, or create a water
surface, and the assets will deform
and follow accordingly. This is
a very important feature while
designing a city, since you never
know when or where modifications
will happen.

There is also a multi-user
feature that allows splitting the city
into sections so different artists
can modify different portions of
the city. This comes in very handy
when terrain exceeds several
kilometers in diameter and is
simply too much for a single artist
to handle.

SOME ROADBLOCKS

» Prototyping large urban
environments in only a few hours
is a plus for any production, but
CityScape only allows you to
generate a terrain and assemble
assets together. Any modeling,
texturing or animation will need
to be done in your preferred 3D
modeling package, and any game
logic or features will still need to
be created in your game engine.
However, the software can export
procedurally-generated traffic data
in XML and the company tells us it
is working to include features for
adding game data standalone or
attached to scene props.

PIXELACTIVE

CITYSCAPE 1.7
REVIEW BY MARC-ANDRÉ GUINDON

GAME DEVELOPER | SEPTEMBER 2009 36

0909gd_toolbox_cityscape_vIjf.in36 360909gd_toolbox_cityscape_vIjf.in36 36 8/19/09 4:19:57 PM8/19/09 4:19:57 PM

WWW.GDMAG.COM 37

A recurring problem I
experienced while using CityScape
involved building cities on uneven
terrain, which resulted in a
building partially floating above
the ground. If your production
requires a city on an uneven
surface then these situations will
require special attention.

Though the basic library offers
some good customizable models,
the models you will import in
CityScape will most likely be static.
I was really impressed when I tried
building my first demo city since
every default asset model had
variables that you can tweak to
customize the look of each object.
Later on, when I created my own
assets, I noticed there was no
explanation for how to change the
model’s look, such as per-object
textures, procedural blend shapes
or optional model visibility (such as
using a variety of antenna or door
styles for houses).

I would have also appreciated
other import and export formats.
The PixelActive staff is currently
working on FBX file format
support, which would greatly
simplify the process going in and
out of popular 3D platforms.

As a solution to some of my
problems, I wanted to turn to
the CityScape SDK, but there is
no such thing at this time. Any
custom solutions will need to be
implemented by the PixelActive
team and the features will
eventually make their way into
a future release. I also tried
searching for more information
or client testimonials on the web,
but found that the CityScape
community had very limited
shared information. This is
probably due to the fact that the
software is relatively young and
the price is limiting the users.

MASS MARKET DEVELOPMENT
TOOL? NOT JUST YET ...

» CityScape is pleasingly fast
for dressing up environments,
but from a gaming point of view
it is not a straight “out of the box”
solution. While it uses industry
standard control schemes and
can import and export to a variety
of formats, the tool will need
to be completely undertaken
by the modeling and texturing
department and every bit must
be customized, including game
engine integration.

The CityScape software is
relatively new, and is not yet
considered a mass market
tool. The pricing is steep, but
PixelActive includes one full year
of support and is committed to
custom engineering to support
its clients, and will implement
any features that could make
the product more suitable for a
wider range of situations. Buying
a license can be thought of as
getting the PixelActive team on
board rather than only buying
a technology.

With all the different game
studios out there, each with a
different way of working, the tool
might not do exactly what you would
expect. But it’s worth considering
that the cost involved in building
a similar tool for your own usage
might be much higher than the price
of a CityScape license.

MARC-ANDRÉ GUINDON has been in the

visual effects and games industries

for 10 years, specializing in pipelines

using MotionBuilder and Maya. He is the

founder of NeoReel inc., a production and

consultation studio located in Montreal.

Email him at mguindon@gdmag.com.

PixelActive Inc.
CITYSCAPE 1.7

¤ STATS
PixelActive Inc.
2382 Faraday Ave. #150
Carlsbad, CA 92008
http://pixelactive3d.com

¤ PRICE
Single Seat License is $19,000 and

includes 1 year of full support.

¤ SYSTEM REQUIREMENTS
Windows XP (SP2 or higher) or
Windows Vista, Pentium 4 2.0 GHz
(Pentium 4 2.8 GHz recommended), 1
GB RAM (2 GB or more recommended),
150 MB hard disk space, 128 MB
video memory (256 MB or more
recommended), video card with
support for Shader Model 3.0 or better.

¤ PROS
1 Fast learning curve.
2 Simple set dressing using libraries.
3 Great interactive placement logic.

¤ CONS
1 High price (but includes 1 year

support).
2 Creating unique designs requires

more resources.
3 Uneven terrain needs manual

tweaking.

0909gd_toolbox_cityscape_vIjf.in37 370909gd_toolbox_cityscape_vIjf.in37 37 8/19/09 4:20:00 PM8/19/09 4:20:00 PM

http://pixelactive3d.com
mailto:mguindon@gdmag.com
http://WWW.GDMAG.COM

THE LEADING PROFESSIONAL
GAME SOURCE FOR JOB SEEKERS

AND EMPLOYERS
Access the Web’s Largest Game Industry

Resumé Database and Job Board

Take Control of Your Future Today!
Log onto www.gamasutra.com/jobs

http://www.gamasutra.com/jobs

PIXEL PUSHER // STEVE THEODORE

WWW.GDMAG.COM 39

JUMPING TO OCCLUSIONS
THE AMBIENCE OF AMBIENCE

WHAT SUMS UP ALL THE

indefinable qualities of a place or
time, the mysterious element that
binds it all together into a distinct
experience with a character of
its own? There’s a word for it in
French. They call it “ambience.”

Take away the italics and put a
nice, nasal American A up front, and
it becomes ambience. For those
of us in the game business, that
means all the light bouncing around
in a scene that is not emitted
directly from a single light source.

Two fonts, and two completely
different words ... but maybe not
quite so different as you think. For
artists, ambience and ambience
are almost interchangeable.
Ambience plays three key visual
roles. First, it is the balance
between ambient and direct light
that convinces our eyes that a
humble LDR monitor can depict
everything from a dingy dungeon to
a brilliantly sunlit desert. Ambience
is also an index of emotional
intensity—strong diffuse lighting
with little ambience is the classic
trick for creating tension (as in
a film noir movie), while bright
ambience is a stereotypical symbol
of relaxation and peace. Finally, and
particularly important for games,
is the fact that ambient lighting
ties the disparate forms in a scene
together. Without ambient light
bouncing between them, the planes
of a 3D scene can look like they
were cut and pasted in Photoshop,
rather than creating a believable
3D space.

Far too often though, our tools
don’t capture all this subtlety.
Common shading tactics, such as
the Phong and Blinn shaders, try to
cram it down into a single ambient
color parameter. Almost as bad,
many games do create beautifully
lightmapped environments with
nice bounced lighting effects—and
then plop characters in front of

them with only direct lighting,
which makes them to stand out
from the background as if they
were in a different game. Despite
the incredible power of our fancy
shaders, it’s embarrassingly
common to see worlds with neither
brand of ambience.

TROMPE L’ŒIL

» To set things right, we need to
make deliberate use of the limited
tools we do have. Most shaders
have some kind of single-value
ambience control—this might not be
the greatest tool, but far too many

artists simply ignore it. Don’t! Even
a boring ambient color or ambience
coefficient can be very useful.

Ambience control is important
for contrasting materials. Typically,
we categorize surfaces along
a continuum between “shiny”
and “matte,” but this distinction
leaves out differences in ambient
response. For example wool
and wood are both matte, since
neither shows a strong specular
highlight. But cloth reacts much
more strongly to ambient light.
At the microscopic level wool is
extremely rough and hairy, so

it catches incoming light from
every angle. Wood, being more
structured and less chaotic on the
microscopic level, picks up ambient
light less aggressively. In general
softer, rougher and more textured
surfaces (for example fabric,
concrete, unfinished stone) will
have a higher ambient response
than smooth, hard, or shiny
surfaces. Convincingly capturing
these differences makes materials
seem rich and physical.

Annoyingly, the tool most of us
have to embody these subtleties is
a single coefficient value between
0 and 1. This makes sense if you’re
a graphics card but it’s hardly
user-friendly. Besides the whole
arbitrary-number / technobabble
aspect, nothing in the real world
would ever have an ambient
coefficient of 1—that would mean
that the surface only picked up
ambience and completely ignored
direct lighting. In reality even
something like chalk, which is
extremely sensitive to ambient
light, would still have an ambient
coefficient of only about .5. Don’t
let the slider range fool you!
Also, remember that diffuse and
ambient lighting work in tandem.
Turning up the ambience should
mean turning down the diffuse
reflectance, or vice-versa—
otherwise you’ll wash objects out
or make them seem to glow.

OOH LA LA!

» The real drawback to the one-
slider version of ambience is that it
flattens out 3D forms by removing
the shading our eyes expect. The
effect is inescapably clear in Figure
1. Even though ambient light is
coming from all directions at once,
it’s still light—and thus, it still
can be shadowed. Deep folds and
crevices don’t receive as much
ambient light as exposed ones, so
they should be darker. The fancy

FIGURE 1 This series of pictures illustrates clearly how ambient occlusion helps the

eye to pick out detail and understand the 3D space of a scene. The first image at the

top left uses only a conventional directional light, and seems visually disjointed.

Shadows in the second image (top right) help tie the scene together, but still don't

reveal many of the details. Ambient occlusion, in the larger image, clearly picks out

important bits of modeled detail and spatial relationships the other images lose.

0909gd_pixel_vIbs.indd 390909gd_pixel_vIbs.indd 39 8/19/09 4:18:44 PM8/19/09 4:18:44 PM

http://WWW.GDMAG.COM

PIXEL PUSHER // STEVE THEODOREPIXEL PUSHER // STEVE THEODORE

name for this diminution of ambient
light is “Ambient Occlusion.”

The results speak for
themselves. Ambient occlusion
brings out the shading we need,
enhancing subtle details in
normal maps and clarifying the
relationships between forms. There
is, as it happens, serious academic
research to back up the claim
(often heard from artists) that AO
makes it easier to pick out detail
and understand forms. It should
hardly be necessary, though;
the results in Figure 2 should be
enough to convince any skeptic.

Though the name sounds like
something you’d hear on the bridge
of the Enterprise during a Klingon
attack (“Captain, ambient occlusion
is approaching critical! She can’t
take much more of this!”), the
actual concept is something even
we artists can grasp. Occlusion
simply means “blocking,” or “hiding.”
Ambient occlusion is just a measure
of how much (or how little) a given
point on an object will be affected
by ambient light. In the days before
shaders, this was the sort of thing
we’d paint into a texture by hand.

Nowadays it’s easier to use
a render-to-texture function and
bake out an ambient occlusion
texture. Max and Maya both offer
their own versions, though the
most popular flavor is probably
Mental Ray’s. Regardless of the

package, the basic strategy is the
same. Imagine that each texel
shoots out a hemisphere of rays,
and then counts how many of
them hit something and how many
zip off to infinity. The occlusion
of that point is basically the
percentage of the rays that were
blocked (See Figure 3). Naturally
deep folds show lots of occlusion,
while exposed surfaces are
unblocked. The resulting value is
stored as a grayscale map which
looks a lot like a soft shadow map.

You can tell that ambient
occlusion is a neat idea, simply
because it looks so nice. Raw
ambient occlusion maps have an
ethereal quality like the carefully
lit statues in a coffee table book.
It’s not surprising that AO renders
instantly became the standard
mode for modelers’ demo reels; the
broad range of tones and the nicely
defined details sell themselves.
Even so, to get the most out of AO
you need to pay careful attention to
your setup.

The most crucial element
in any AO render is the dropoff
distance. Its job is to control how
far a ray goes before it is assumed
to be unblocked. Large dropoffs will
produce very soft, faint, smooth
shadows. Shorter dropoffs make
for tighter, clearly-defined areas of
dark shadows alternating with large
blank areas.

Setting dropoffs isn’t just
a matter of taste. Dropoffs also
influence your audience’s perception
of scale. If you set your dropoffs
too large so that everything in your
model occludes everything else,
you get a very attractive set of soft
shadows, but your model tends to
read as if it were physically very
small, rather like a close up photo
of a tabletop miniature figure.
Conversely, very short dropoffs

can make an object seem too large
and may suppress details you
want to emphasize. It’s critical,
thought, that whatever settings
you pick are aligned between
different characters, objects, and
environments. The whole point
of ambient occlusion is bringing
different elements together into a
coherent environment, so getting
too individualistic with the settings
undercuts the whole enterprise.

CUL-DE-SAC?

» The smooth soft tones of a large
dropoff setting have an appealing
painterly quality. Unfortunately,
they also emphasize the biggest
weakness of current-generation
AO: since it’s pre-calculated, it’s
not dynamic. For environments
that’s not a big deal, but for moving
or deforming objects, particularly
characters, it’s a serious limitation.

In the short term, you should
be careful to avoid creating
ambient maps that will emphasize
the fact that the occlusion isn’t
static. For example if you’re
casting occlusion maps for a tank,
you might want to omit or paint
out the occlusion from the gun
barrel, since that would leave a
visible shadow on the deck of

FIGURE 3 A simple example of how ambient occlusion is calculated: From a given point on

the surface shoot a bunch of rays out in a hemisphere around the normal (yellow) and see

how many hit geometry (red) within a specified cutoff (blue). In this case the point will be

shaded about 20%, since about 4/5ths of the rays don't hit anything.

FIGURE 2 Screen space ambient

occlusion in CryEngine is shown.

Image courtesy of Crytek.

GAME DEVELOPER | SEPTEMBER 200940

0909gd_pixel_vIbs.indd 400909gd_pixel_vIbs.indd 40 8/19/09 4:18:47 PM8/19/09 4:18:47 PM

WWW.GDMAG.COM 41

the tank even when the turret was traversed. Shorter
dropoffs will also help limit potential embarrassments.

For characters, casting in a spread eagle pose will help
prevent arms and legs from casting too strong a shadow.
When working with paper-doll characters that can add or
remove equipment, you should consider adding shadow
cards to objects to make sure they blend in properly when
added to a character that is otherwise nicely tied together
by AO. And of course, don’t be afraid to hand edit an AO
map to get rid of an annoying artifact—unlike a normal
map, AO values are simple grayscales that require no
special processing.

ENFANTS TERRIBLES

» For now, good-looking ambient light requires a lot of
attention and tweaking. In the near future though, these
tricks may become obsolete. CRYSIS has already shipped
with a clever new technique that applies ambient
occlusion in real time to an entire image. Screen Space
Ambient Occlusion, or SSAO for short, allows deforming
characters and moving objects to occlude correctly in
ways that pre-rendered AO maps cannot. For the time
being the detail can’t compete with the polished results
of an offline mental ray occlusion bake. But that’s beside
the point: the immersive power of having everything
on screen showing live occlusion is enormous. Lots of
other engines are scrambling to add support for SSAO, so
expect this to be a common feature in the near future.

Another extremely interesting technology that bears
on ambience is a new middleware lighting engine from
Geomerics, which advertises radiosity in real time. The
possibility of doing a full radiosity simulation in real time
sets the heart of any lighting enthusiast on fire. The
screenshots in Figure 4 show how nicely the pervasive
ambient lighting ties scenes together. Most importantly,
there’s no question that lighting will be better when
lighting artists count their iteration times in seconds
rather than hours.

It’s nice to think that this under-appreciated but
supremely important aspect of graphics is finally
getting some serious love from the whiz-bang brigade.
With a little attention to detail, and some help from
our friends in engineering, we can finally wring
some serious ambience out of our ambience. In the
meantime, au revoir.

[For more on the relationship between direct and
ambient light, check out “Let There Be Light,” in the
March-April 2005 editions of Game Developer, Megan
Fox and Stuart Crompton's "Ambient Occlusive Crease
Shading" in the March 2008 Game Developer, or Jeremy
Birn’s Texturing and Lighting.]

STEVE THEODORE has been pushing pixels for more than a dozen

years. His credits include MECH COMMANDER, HALF-LIFE, TEAM FORTRESS,

and COUNTER-STRIKE. He's been a modeler, animator, and technical

artist, as well as a frequent speaker at industry conferences. He’s

currently content-side technical director at Bungie Studios. Email

him at stheodore@gdmag.com.

FIGURE 4 This series of screenshots

illustrates the potential of real-time

radiosity—a step up from ambient

occlusion that we should be seeing

in games soon. Images courtesy of

Geomerics.

0909gd_pixel_vIbs.indd 410909gd_pixel_vIbs.indd 41 8/19/09 4:18:49 PM8/19/09 4:18:49 PM

mailto:stheodore@gdmag.com
http://WWW.GDMAG.COM

http://sijm.ca
http://sijm.ca

THE INNER PRODUCT // NOEL LLOPIS

WWW.GDMAG.COM 43

DATA-ORIENTED DESIGN
OR WHY YOU MIGHT BE SHOOTING YOURSELF IN THE FOOT WITH OBJECT-ORIENTED PROGRAMMING

PICTURE THIS: TOWARD THE END OF THE DEVELOPMENT CYCLE, YOUR GAME
crawls, but you don’t see any obvious hotspots in the profiler. The culprit?
Random memory access patterns and constant cache misses. In an attempt
to improve performance, you try to parallelize parts of the code, but it takes
heroic efforts, and, in the end, you barely get much of a speed-up due to all
the synchronization you had to add. To top it off, the code is so complex that
fixing bugs creates more problems, and the thought of adding new features
is discarded right away. Sound familiar?

That scenario pretty accurately describes almost every game I’ve been
involved with for the last 10 years. The reasons aren’t the programming
languages we’re using, nor the development tools, nor even a lack of
discipline. In my experience, it’s object-oriented programming (OOP) and the
culture that surrounds it that is in large part to blame for those problems.
OOP could be hindering your project rather than helping it!

IT’S ALL ABOUT DATA

» OOP is so ingrained in the current game development culture that it’s
hard to think beyond objects when thinking about a game. After all, we’ve
been creating classes representing vehicles, players, and state machines
for many years. What are the alternatives? Procedural programming?
Functional languages? Exotic programming languages?

Data-oriented design is a different way to approach program design
that addresses all these problems. Procedural programming focuses on
procedure calls as its main element, and OOP deals primarily with objects.
Notice that the main focus of both approaches is code: plain procedures
(or functions) in one case, and grouped code associated with some
internal state in the other. Data-oriented design shifts the perspective of
programming from objects to the data itself: The type of the data, how it is
laid out in memory, and how it will be read and processed in the game.

Programming, by definition, is about transforming data: It’s the act of
creating a sequence of machine instructions describing how to process the
input data and create some specific output data. A game is nothing more than
a program that works at interactive rates, so wouldn’t it make sense for us to
concentrate primarily on that data instead of on the code that manipulates it?

I’d like to clear up potential confusion and stress that data-oriented
design does not imply that something is data-driven. A data-driven game
is usually a game that exposes a large amount of functionality outside
of code and lets the data determine the behavior of the game. That is an
orthogonal concept to data-oriented design, and can be used with any
type of programming approach.

IDEAL DATA

» If we look at a program from the data point of view, what does the ideal
data look like? It depends on the data and how it’s used. In general, the
ideal data is in a format that we can use with the least amount of effort. In
the best case, the format will be the same we expect as an output, so the
processing is limited to just copying that data. Very often, our ideal data
layout will be large blocks of contiguous, homogeneous data that we can
process sequentially. In any case, the goal is to minimize the amount of
transformations, and whenever possible, you should bake your data into
this ideal format offline, during your asset-building process.

Because data-oriented design puts data first and foremost, we can
architect our whole program around the ideal data format. We won’t always
be able to make it exactly ideal (the same way that code is hardly ever by-
the-book OOP), but it’s the primary goal to keep in mind. Once we achieve
that, most of the problems I mentioned at the beginning of the column tend
to melt away (more about that in the next section).

When we think about objects, we immediately think of trees—
inheritance trees, containment trees, or message-passing trees, and
our data is naturally arranged that way. As a result, when we perform an
operation on an object, it will usually result in that object in turn accessing
other objects further down in the tree. Iterating over a set of objects
performing the same operation generates cascading, totally different
operations at each object (see Figure 1a).

To achieve the best possible data layout, it’s helpful to break down each
object into the different components, and group components of the same
type together in memory, regardless of what object they came from. This
organization results in large blocks of homogeneous data, which allow us to
process the data sequentially (see Figure 1b).

A key reason why data-oriented design is so powerful is because
it works very well on large groups of objects. OOP, by definition, works
on a single object. Step back for a minute and think of the last game
you worked on: How many places in the code did you have only one of
something? One enemy? One vehicle? One pathfinding node? One bullet?
One particle? Never! Where there’s one, there are many. OOP ignores that
and deals with each object in isolation. Instead, we can make things easy

0909gd_inner_product_vIjf.indd 430909gd_inner_product_vIjf.indd 43 8/19/09 4:17:59 PM8/19/09 4:17:59 PM

http://WWW.GDMAG.COM

for us and for the hardware and organize our data to deal with the common case of having
many items of the same type.

Does this sound like a strange approach? Guess what? You’re probably already doing this in
some parts of your code: The particle system! Data-oriented design is turning our whole codebase
into a gigantic particle system. Perhaps a name for this approach that would be more familiar to
game programmers would have been particle-driven programming.

ADVANTAGES OF DATA-ORIENTED DESIGN

» Thinking about data first and architecting the program based on that brings along lots
of advantages.

Parallelization. These days, there’s no way around the fact that we need to deal with multiple
cores. Anyone who has tried taking some OOP code and parallelizing it can attest how
difficult, error prone, and possibly not very efficient that is. Often you end up adding lots of
synchronization primitives to prevent concurrent access to data from multiple threads, and
usually a lot of the threads end up idling for quite a while waiting for other threads to complete.
As a result, the performance improvement can be quite underwhelming.

When we apply data-oriented design, parallelization becomes a lot simpler: We have the input
data, a small function to process it, and some output data. We can easily take something like
that and split it among multiple threads with minimal synchronization between them. We can
even take it further and run that code on processors with local memory (like the SPUs on the Cell
processor) without having to do anything differently.

Cache utilization. In addition to using multiple cores, one of the keys to achieving great
performance in modern hardware, with its deep instruction pipelines and slow memory systems
with multiple levels of caches, is having cache-friendly memory access. Data-oriented design
results in very efficient use of the instruction cache because the same code is executed over
and over. Also, if we lay out the data in large, contiguous blocks, we can process the data
sequentially, getting nearly perfect data cache usage and great performance.

Possible optimizations. When we think of objects or functions, we tend to get stuck optimizing
at the function or even the algorithm level; Reordering some function calls, changing the sort
method, or even re-writing some C code with assembly.

That kind of optimization is certainly beneficial, but by thinking about the data first we
can step further back and make larger, more important optimizations. Remember that all a
game does is transform some data (assets, inputs, state) into some other data (graphics
commands, new game states). By keeping in mind that flow of data, we can make higher-level,
more intelligent decisions based on how the data is transformed, and how it is used. That kind of
optimization can be extremely difficult and time-consuming to implement with more traditional
OOP methods.

Modularity. So far, all the advantages of data-oriented design have been based around
performance: cache utilization, optimizations, and parallelization. There is no doubt that as
game programmers, performance is an extremely important goal for us. There is often a conflict
between techniques that improve performance and techniques that help readability and
ease of development. For example, re-writing some code in assembly language can result in a
performance boost, but usually makes the code harder to read and maintain.

Fortunately, data-oriented design is beneficial to both performance and ease of
development. When you write code specifically to transform data, you end up with small
functions, with very few dependencies on other parts of the code. The codebase ends up being
very “flat,” with lots of leaf functions without many dependencies. This level of modularity and
lack of dependences makes understanding, replacing, and updating the code much easier.

Testing. The last major advantage of data-oriented design is ease of testing. As we saw in the
June and August Inner Product columns, writing unit tests to check object interactions is not
trivial. You need to set up mocks and test things indirectly. Frankly, it’s a bit of a pain. On the
other hand, when dealing directly with data, it couldn’t be easier to write unit tests: Create some
input data, call the transform function, and check that the output data is what we expect. There’s
nothing else to it. This is actually a huge advantage and makes code extremely easy to test,
whether you’re doing test-driven development or just writing unit tests after the code.

GAME DEVELOPER | SEPTEMBER 2009 44

THE INNER PRODUCT // NOEL LLOPIS

DRAWBACKS OF DATA-ORIENTED DESIGN

» Data-oriented design is not the silver bullet to
all the problems in game development. It does help
tremendously writing high-performance code and making
programs more readable and easier to maintain, but it
does come with a few drawbacks of its own.

The main problem with data-oriented design is that
it’s different from what most programmers are used
to or learned in school. It requires turning our mental
model of the program ninety degrees and changing
how we think about it. It takes some practice before it
becomes second-nature.

FIGURE 1B Call sequence with a data-oriented approach

FIGURE 1A Call sequence with an object-oriented approach

0909gd_inner_product_vIjf.indd 440909gd_inner_product_vIjf.indd 44 8/19/09 4:18:01 PM8/19/09 4:18:01 PM

WWW.GDMAG.COM 45

Also, because it’s a different approach, it can be challenging to interface
with existing code, written in a more OOP or procedural way. It’s hard to write
a single function in isolation, but as long as you can apply data-oriented
design to a whole subsystem you should be able to reap a lot of the benefits.

APPLYING DATA-ORIENTED DESIGN

» Enough of the theory and overview. How do you actually get started with
data-oriented design? To start with, just pick a specific area in your code:
navigation, animations, collisions, or something else. Later on, when most
of your game engine is centered around the data, you can worry about data
flow all the way from the start of a frame until the end.

The next step is to clearly identify the data inputs required by the system,
and what kind of data it needs to generate. It’s OK to think about it in OOP
terms for now, just to help us identify the data. For example, in an animation
system, some of the input data is skeletons, base poses, animation data,
and current state. The result is not “the code plays animations,” but the data
generated by the animations that are currently playing. In this case, our
outputs would be a new set of poses and an updated state.

It’s important to take a step further and classify the input data based on
how it is used. Is it read-only, read-write, or write-only? That classification
will help guide design decisions about where to store it, and when to
process it depending on dependencies with other parts of the program.

At this point, stop thinking of the data required for a single operation, and
think in terms of applying it to dozens or hundreds of entries. We no longer
have one skeleton, one base pose, and a current state, and instead we have a
block of each of those types with many instances in each of the blocks.

Think very carefully how the data is used during the transformation process
from input to output. You might realize that you need to scan a particular field in
a structure to perform a pass on the data, and then you need to use the results

to do another pass. In that case,
it might make more sense to split
that initial field into a separate block
of memory that can be processed
independently, allowing for better
cache utilization and potential
parallelization. Or maybe you need
to vectorize some part of the code,
which requires fetching data from
different locations to put it in the same
vector register. In that case, that data
can be stored contiguously so vector
operations can be applied directly,
without any extra transformations.

Now you should have a very good understanding of your data. Writing
the code to transform it is going to be much simpler. It’s like writing code
by filling in the blanks. You’ll even be pleasantly surprised to realize that
the code is much simpler and smaller than you thought in the first place,
compared to what the equivalent OOP code would have been.

If you think back about most of the topics we’ve covered in this column
over the last year, you’ll see that they were all leading toward this type of
design. Now it’s the time to be careful about how the data is aligned (Dec
2008 and Jan 2009), to bake data directly into an input format that you
can use efficiently (Oct and Nov 2008), or to use non-pointer references
between data blocks so they can be easily relocated (Sept 2009).

IS THERE ROOM FOR OOP?

» Does this mean that OOP is useless and you should never apply it in your
programs? I’m not quite ready to say that. Thinking in terms of objects is not
detrimental when there is only one of each object (a graphics device, a log
manager, etc) although in that case you might as well write it with simpler

C-style functions and file-level static data. Even in that situation, it’s still
important that those objects are designed around transforming data.

Another situation where I still find myself using OOP is GUI systems.
Maybe it’s because you’re working with a system that is already designed in
an object-oriented way, or maybe it’s because performance and complexity
are not crucial factors with GUI code. In any case, I much prefer GUI APIs that
are light on inheritance and use containment as much as possible (Cocoa
and CocoaTouch are good examples of this). It’s very possible that a data-
oriented GUI system could be written for games that would be a pleasure to
work with, but I haven’t seen one yet.

Finally, there’s nothing stopping you from still having a mental picture
of objects if that’s the way you like to think about the game. It’s just that the
enemy entity won’t be all in the same physical location in memory. Instead, it
will be split up into smaller subcomponents, each one forming part of a larger
data table of similar components.

Data-oriented design is a bit of a departure from traditional programming
approaches, but by always thinking about the data and how it needs to be
transformed, you’ll be able to reap huge benefits both in terms of performance
and ease of development.

Thanks for Mike Acton and Jim Tilander challenging my ideas

over the years and their feedback on this article.

N O E L L L O P I S has been making games for just about every major platform in the last

ten years. He's now going retro and spends his days doing iPhone development from local

coffee shops. Email him at nllopis@gdmag.com.

Performance and
Good Data Design by
Mike Acton (www.
cellperformance.com/
mike_acton/2006/04/
basic_principles_of_
good_data.html)

resources

0909gd_inner_product_vIjf.indd 450909gd_inner_product_vIjf.indd 45 8/19/09 4:18:06 PM8/19/09 4:18:06 PM

mailto:nllopis@gdmag.com
http://WWW.GDMAG.COM
http://www.cellperformance.com/mike_acton/2006/04/basic_principles_of_good_data.html
http://www.cellperformance.com/mike_acton/2006/04/basic_principles_of_good_data.html
http://www.cellperformance.com/mike_acton/2006/04/basic_principles_of_good_data.html
http://www.cellperformance.com/mike_acton/2006/04/basic_principles_of_good_data.html
http://www.cellperformance.com/mike_acton/2006/04/basic_principles_of_good_data.html
http://www.spiel-s.com
mailto:info@spiel-s.com
mailto:info@spiel-s.com

http://activision.com

DESIGN OF THE TIMES // DAMION SCHUBERT

WWW.GDMAG.COM 47

RESONANCE
DOES YOUR GAME HAVE LASTING APPEAL?

THERE ARE SONGS THAT ARE KIND

of catchy. Others you just can’t get
out of your head. And then, ever so
rarely, there are those songs which
are so memorable, you could swear
you had heard them before. Song
taste is highly personal—different
people react to different songs in
different ways—but the breakout
hits are the ones that resonate
on this level with a large number
of people.

Creating a breakout hit is no
easy task, in part because the
songwriter’s instincts can often be
wrong. Steven Tyler of Aerosmith
was reportedly surprised that “St.
John” from Permanent Vacation
was met by collective yawns from
concert-goers. He thought he knew
what made a hit—the song had an
interesting riff, topical lyrics, was
meaty to play live—but somehow
just didn’t reach the fans. Today,
the song is a footnote in the band’s
music catalog.

All creative fields are like this.
Sometimes films and books just
catch fire from nothing. Sometimes,
sure-handed directors stumble.
Pop radio is full of songs like “The
Macarena” and “I’m Too Sexy,” all
done by bands that later proved
to be one-hit wonders unable to
repeat their success. This is true of
games as well.

BASIC RESONANCE

» Resonance—the idea that some
art is simply more immediately
arresting and intriguing than other
art—exists in games as it does in
film and music. But how much of a
black art is it, really? Is resonance
something that can be willfully
added, shaped, and controlled? Or
is the concept that some games
just stick better than others best
left to luck and fate?

Most people reading this
magazine are probably pretty
comfortable with the idea that

games are fun and sell well for
quantifiable reasons having to do
with good design, technique, and
craftsmanship. The idea that part
of game design is left to fate can be
somewhat unnerving. But this can
be a trap—the idea that there is a
formula to good art is seductive,
but it also ignores the subjective
nature of art. Sometimes, a book,
a movie, or a game just feels good
the first time the players get their
hands on it.

In his book Blink, author
Malcolm Gladwell cites several
studies that point out most
people decide whether they like
or dislike something in seconds,
if not nanoseconds. Whether a
song lingers is often decided by
the opening bars. Whether a film
resonates can often be decided
before the opening credits finish.
Whether you’re going home with
the girl at the bar can often be
decided before you blurt out your
pickup line.

THE FIRST 15 SECONDS

» It’s no secret among game
designers and executives that
we have a very short period of
time in which to earn a player’s
trust and attention. What may be
underestimated is how short that
time period is. Producers love to
press other developers about the
“first five minutes of gameplay,”
when in actuality, a customer
may only give the game designer
15 seconds. The player may play
beyond that, but by then his initial
impressions are set and must be
overcome. If Gladwell is right, then
it’s useful for the game developer to
obsess over whether those first 15
seconds are resonating with test
audiences. Think that’s too short?
Consider the fact that the viral
hit YouTube video of a prairie dog
turning his head to the camera is
eight seconds long.

I once heard of a programmer
who, in an interview asking what
he was most proud of, said he
crunched and worked overtime for
a month in order to get the jumping
exactly perfect in his last game. His
interviewers were not impressed
by his answer, but I am. What is a
player more likely to do in his first 15
seconds but to run, and then jump?

Good, smooth movement is
the cornerstone of many games,
especially platform games.
Having smooth jumping increases

the chance of resonance. More
importantly, bad jumping is
incredibly dissonant—if players
feel the movement controls in the
first 15 seconds are clumsy or
sluggish, they are likely to extend
this prejudice to the game as a
whole. The designer then has to
work harder to overcome these
initial judgments.

A game designer’s job can
be thought of as trying to build
resonance, and whenever possible,
to remove game aspects that are
dissonant for the player. There are
undoubtedly elements that are
impossible to predict or ascertain,
but some aspects are certainly
within the control of the game
developers and should not be left to
pure chance.

RESONANCE OF FAMILIARITY

» So what is resonance
composed of? One cornerstone
is a certain level of player

comfort—feeling comfortable with
the setting and mechanics and
his role as quickly as possible.
If getting into the game feels
to the player like he is slipping
into a comfortable pair of shoes,
the game designer has probably
successfully built resonance. This
is one reason why licenses are so
attractive to game designers, but
even those working with original
designs can leverage this.

ALPHA CENTAURI was a solid
and needed evolution to the

gameplay found in its predecessor,
CIVILIZATION II. It offered more depth
and strategy than previous CIV
games, while still streamlining
it in ways the classic CIV design
needed streamlining. And yet, when
I played it, I mostly felt an urge to
find my old CIV disks.

ALPHA CENTAURI was more
polished, more streamlined,
prettier, and more atmospheric as
a whole, but I just couldn’t get into
the game the way I could into CIV.
I found it’s easier to get excited
over discovering writing, building
catapults, and crushing the Greek
Empire than discovering applied
gravitronics, building super tensile
solids and crushing the human
hive. The former mean something
to me and my life. These ideas have
resonance, and they grant that to
the game.

A similar example in gaming
can be found in EVERQUEST vs.
ASHERON’S CALL. EVERQUEST's

Pop radio is full of songs like “The
Macarena” and “I’m Too Sexy,” all done

by bands that later proved to be one-
hit wonders unable to repeat their

success. This is true of games as well.

0909gd_design_vIbs.indd 470909gd_design_vIbs.indd 47 8/19/09 4:16:44 PM8/19/09 4:16:44 PM

http://WWW.GDMAG.COM

DESIGN OF THE TIMES // DAMION SCHUBERT

developers chose to populate
their worlds with standard D&D
fare—trolls, orcs, gnomes, and
dragons. By contrast, ASHERON’S
CALL went to great pains to create
an entirely invented bestiary—no
orcs and trolls here, instead players
fought creatures with names like
Mattekars, Lugians, and Mosswarts.
AC may have won points for
originality, but for EVERQUEST
players, most of whom were playing
an online RPG for the first time,
the familiar setting and enemies
undoubtedly made the game feel
like a sort of homecoming.

A HINT OF NEW

» But familiarity can be (and
often is) taken to a fault. Right
now, there are musicologists
diligently working on algorithms
to detect whether any given pop
song will be a megahit—and trying
to define algorithms to write the
next hit song. Some musicians are
concerned about this—I’m not.
Could the result be anything other
than formulaic?

The games industry is sequel-
heavy—it is one of the few creative
fields where sequels frequently out-
earn the original—but at the same
time, the market demands novelty.

Players want new ways to interact
with their old classics, and games
with little new to offer are viewed as
glorified expansion packs.

At the same time, if the player
loves a game or a genre, they don’t
look kindly on adjustments to the
classic game design they see as a
step backwards. Players, essentially,
want new features that feel like
they should have been there the
whole time. Studios that trade
in sequels, such as EA’s MADDEN
team, are acutely aware of this
delicate balance, and take great
pains to try to find the franchise’s
logical extensions. Sometimes,
they stumble—the Quarterback
Vision feature from MADDEN ‘06 was
received by many fans as making
their beloved game more difficult
and wonky to play. But sometimes,
they score—when they announced
the ability to manage your MADDEN
team from the web this E3, the first
words out of my mouth were "that’s
so obvious!" If you find yourself
saying "that’s so obvious!", it’s very
likely you’ve found a new feature
with resonance.

CHANGING TIDES

» Tastes are always changing as
well. What resonates today may

not have that sort of impact in the
future. “Spirit in the Sky” was a
monster hit in 1969, selling more
than 2 million copies, and it was
named one of the top 500 songs of
all-time by Rolling Stone. Would the
song have nearly the impact if it had
been released last year? Doubtful.

Tastes change just as quickly in
the game space as well—ask any
adventure game fan. What’s more,
the skills of game players tend to
graduate as well. Competitors to
Blizzard hoping to make the next
great WOW-killer have a tricky
balancing act to achieve. On one
hand, you want the gameplay to
be familiar and inviting to the WOW
population to maximize resonance.
On the other hand, though, WOW
is now four years old, and even
devoted fans are now eagerly
looking ahead to the next logical
evolution of the genre.

This has some unexpected
side effects. Modern FPS players
who go back and play CASTLE
WOLFENSTEIN are often shocked
at how far the genre has come—
since then, the genre has added
full 3D environments, multiplayer,
jumping, crouching, rolling, cover,
alternative fire modes, and full
physics simulations. What the

designer has to be wary of is the
opposite—that the player who
has never played a first-person
shooter now must learn all at once
the skills other FPS players have
learned over 20 years. Any time a
game has a steep learning curve,
the barrier to resonance is all that
much higher.

DISSECTING RESONANCE

» Still, resonance has a large
intangible component to it.
Personally, I find it intriguing to
consider the one-hit wonders
and unusual hits. What was
it about “Song 2” that Blur
could never replicate? Why did
KATAMARI DAMACY catch on? Even
more intriguing is the internet
meme. Did "All Your Base" really
merit exploding into the public
consciousness? Lessons of
resonance abound.

Building games that stick is
a black art, but not unteachable.
Designers striving for resonance
should learn to balance the
familiar with the new, be obsessive
about the first 15 seconds of
gameplay, and do everything
to remove dissonant gameplay
elements, especially early in the
game experience. And don’t just
trust your gut—developers are
too close and familiar with the
game to be objective about it. Run
playtests as early and often as
you can.

I remember a designer on
GUITAR HERO saying, shortly after
the game shipped, that the studio
had no idea if the game would
succeed. The series has since sold
more than 25 million units and
Activision claims it to be the third
largest franchise in video game
history. It’s easy to see why—the
game just resonates.

DAMION SCHUBERT is the lead combat

designer of STAR WARS: THE OLD REPUBLIC

at BioWare Austin. He has spent nearly a

decade working on the design of games, with

experience on MERIDIAN59 and SHADOWBANE

as well as other virtual worlds. Damion

also is responsible for Zen of Design, a blog

devoted to game design issues. Email him at

dschubert@gdmag.com.

GAME DEVELOPER | SEPTEMBER 2009 48

Sega's 1991 hit SONIC THE HEDGEHOG continues to resonate in the minds of players almost two decades after its release.

IL
L

U
S

T
R

A
T

IO
N

 B
Y

 M
A

T
T

 B
R

A
LY

0909gd_design_vIbs.indd 480909gd_design_vIbs.indd 48 8/19/09 4:16:46 PM8/19/09 4:16:46 PM

mailto:dschubert@gdmag.com

Supported
by www.GDCChina.com
Supported

Game Developers Conference® China

October 11–13, 2009
Shanghai International Convention Center

Shanghai, China

Reach a unique vertical market of Chinese industry
professionals in online games, game outsourcing,

and mobile games at the Game Developers
Conference® China’s second developer event.

Visit www.GDCChina.com
for more information.

*Discounts cannot be combined with other GDC China discounts or other promotions including
group registrations and alumni discounts. Discount may be applied to Early Bird rates. GDC China

reserves the right to review and end this promotion before the end of online registration.

Register with code:

GDCCHINA09
and receive 10% off

Attendee and VIP Passes*

http://www.GDCChina.com
http://www.GDCChina.com

STEREO DOWNMIXING
HOW DOES YOUR GAME SOUND ON ENTRY-LEVEL SETS?

CATERING A GAME MIX FOR THE WIDE

variety of audio systems available
to consumers is a huge challenge.
There is a plethora of surround
configurations these days, such as
Dolby Digital, Dolby Pro Logic II, DTS
(and now DTS Neural 7.1), and the
PS3’s many discreet PCM surround
streams. This vast array of choices
ensures that the audio team mixing a
game has some difficult decisions to
make. The sheer number of settings
and listening configurations that an
end user is capable of using severely
complicates the mix decisions
that need to be made at the end of
production for the game. At best, a
game will be mixed in a 5.1 calibrated
mix suite, but with significant
attention paid to what happens
when the game is heard through TV
speakers or a stereo receiver and
speaker system. But as the “HD world”
evolves, attention to such detail is
becoming an exception rather than a
rule. Many development studios are
not well-enough equipped to mix high-
end content, and some gamers with
stereo televisions are missing out
on a lot of really great audio, much of
which has high gameplay value.

There has been a lot of
independent research commissioned
to get to the bottom of exactly
what system gamers use for audio
playback, to better understand the
priorities for mixing decisions. All
the research that I have seen (but
sadly am not at liberty to divulge)
shows differing results based on
the slightly different nature of the
questions asked. I can however give
ballpark numbers, and roughly 40
percent of console owners connect
their consoles to home theatre
systems (5.1 or surround-enabled),
while around 10 percent own a home
theatre sound system but don’t
actually have their console hooked
up. The remaining majority, 50
percent, are listening to stereo only.
This does not mean that support for
the higher end systems should be in
any way de-prioritized, but at the very

least more consideration needs to be
afforded to the stereo mix.

Having recently experienced
the high end of surround game
mixing while mixing PROTOTYPE for
DTS Neural 7.1 on the Xbox 360 and
PS3’s discreet PCM 7.1, it became
critical to check and tweak the
mix on all the different “lower”
supported configurations, testing
both stereo fold-down as well as 5.1
fold-down mixes regularly in order
to maintain the general balance of
sounds on all possible systems.
In hindsight, it occurs to me now
that rather than compromise the
amazing potential and immersion
of a 7.1 mix, or even the 5.1, the
best thing to do is to provide unique
mixes for all three configurations
and play to the strengths of each
mix. As far as I am aware, full
separate in-game mixes have not
yet been attempted in video games,
but are certainly just around the
corner, at least in terms of both
separate 5.1 and stereo mixes.
Providing richer options for the
gamer seems to be the way to go,
and GTA IV recently demonstrated
how easy it is to offer differing
surround set-ups in it’s audio
options screen, allowing for choice
of rear or side surround positioning.

One approach to catering
for both surround and stereo
consumers has been to provide
two versions of any offline
surround content—for example,
cutscenes or music tracks—so
that both a surround version and
a specially remixed stereo version
of those assets sit on the disc
simultaneously. Extra assets mean
added disc footprint, so instead
of just a stereo music track, you
now have a separate six channel
surround music track taking up
space, even more so if you factor
in multiple localized languages
on the disc. Several games have
already pushed the boundaries in
this regard by providing both stereo
and 5.1 surround assets that get

switched depending on the outputs
used by the console. Most recently
HEAVENLY SWORD, SACRED 2, and
WIPEOUT HD have gone down this
route and make a clear statement of
how important supporting a unique
stereo mix is to certain developers.

However, one could certainly
argue, in light of the fact that the
majority of gamers listen only in
stereo, that if extra effort is being
put into the cut-scenes and music,
then even more effort should be
put into a completely different mix
of all the in-game sounds that are
authored in 3D surround in real-time
by the game engine. This is because

in-game 3D sounds are considerably
more problematic and unpredictable
when downmixed than pre-authored
music or cinematics.

While downmix algorithms are
designed to represent surround audio
as accurately as possible through
only two speakers, they are mainly
tailored to movie mixes, particularly
in their modest use of surround
channels. In games, certain sounds,
particularly in-game 3D sources, can
behave unpredictably when summed.
Games use surrounds extensively,
often mixing in 3D source sounds at
the same output levels of the front

lefts and rights to further maintain
immersion in the 3D world. While
this approach works well when heard
in surround and makes the most of
surround channels to immerse the
player in the 3D world, in stereo those
“rear” sounds are down-mixed back
into the front left and rights, and often
end up summing far louder than any
movie mix, drowning out important
dialogue or even more important
events in front of the player. This
approach then, of supporting two
separate in-game mixes, would have
the benefit of bringing consistency
to all the content (both cinematics,
music and in-game sound) in a video
game, and ensure that the levels are
heard the way the sound designers
intended, whether the game is
enjoyed on a high-end surround
sound system or a stereo television.

Theatrical movie soundtracks
are often given exactly this kind of
careful attention when presented
in the home environment via
a specialized DVD remix. With
games, the switching needs to be
similarly dynamic and intelligently
implemented, fully catering to high
end surround systems as well as the
most basic stereo TV speakers.

It’s true that providing separate
mixes requires more time and
attention at the end of production,
time that is set aside specifically
to mix and balance the sounds in
the game. That time is already at a
high premium, and rarely available
the closer the developer gets to the
gold master date. This places more
emphasis and pressure on having
meticulously well-planned and
well-executed post-production audio
phase at the end of development, but
the gains in quality, for all gamers,
regardless of their set ups, can
simply no longer be ignored.

ROB BRIDGETT is senior audio director at

Radical Entertainment in Vancouver. Recent

titles include 50CENT: BLOOD ON THE SAND,

PROTOTYPE, and SCARFACE: THE WORLD IS YOURS.

You can email him at rbridgett@gdmag.com.

AURAL FIXATION // ROB BRIDGETT

GAME DEVELOPER | SEPTEMBER 200950

BURNOUT 2, 3, and 4
PS2 Stereo, PS2 Dolby PL2,
Xbox Stereo and Xbox Dolby
Digital

HEAVENLY SWORD
separate 5.1 and stereo
mixes for cut scenes,
ambiences etc

SACRED 2
separate 5.1 and stereo
music mixes

WIPEOUT HD
separate 5.1 music mixes

GAMES THAT USE
SEPARATE SURROUND
AND STEREO ASSETS

0909gd_aural_fix_vIjf.indd 500909gd_aural_fix_vIjf.indd 50 8/19/09 4:16:06 PM8/19/09 4:16:06 PM

mailto:rbridgett@gdmag.com

HTTP://WWW.GDMAG.COM/DIGITAL

Game Developer magazine’s 6 month and 1 year Digital Edition
 subscriptions give you new issues delivered promptly, full

 searchable access to more than 50 back issues, plus downloadable
 PDF versions, easy access from any web browser, and more!

 Subscribe today!

A C C E S S I T I N R E A L T I M E

http://www.gdmag.com/digital

{ A D V E R T I S E M E N T }

GAME DEVELOPER | SEPTEMBER 200952

P
R

IV
A
TE

 C
O

LL
E

G
E

Education, Location, Imagination
Since 1989 DigiPen has been helping students prepare for careers in the
electronic gaming and animation industry with a formula of world-class
faculty, an ongoing tradition of academic excellence, hands-on experience
and strong industry connections.

Top Five Reasons to Choose DigiPen
RECOGNITION To date our students have been recognized 25 times at the Independent
Game Festival – more than any other school in the world. We are also the only school
to have finalists in the IGF’s Main professional category. Over the years, DigiPen has
also been covered by numerous news sources from Wall Street Journal to Rolling
Stone. Electronic Gaming Monthly also ranked DigiPen as the #1 school in the world
for Game Development.

LOCATION The Redmond/Seattle area is home to over 150 game-related companies. For
many of these companies, DigiPen is the preferred choice for recruiting new employees.
This allows DigiPen students and graduates unparalleled access to networking,
internships and job opportunities. Class of 2008 DigiPen programmers had a 91%
employment rate in fields utilizing their degrees. In 2007 DigiPen accepted the invitation
of the Singapore government to open a second campus in Singapore to facilitate that
country’s growth as a leader in the interactive digital media industry in Asia.

CONNECTED DigiPen has the world’s first game development degree program. In the
last two decades, DigiPen has garnered a strong reputation as an established, quality
institution. We place our graduates and interns at Microsoft, Nintendo, ArenaNet,
Valve, Bungie, Sony, Monolith, Big Fish Games, LucasArts, Rhythm & Hues, Intel,
Activision and many others.

HANDS-ON DigiPen education goes beyond theory to applied. It’s not enough that
our students learn about games – they have to make them. Every year at DigiPen,
students must form into groups for a project class. Whether they are developing a
game for competition at the IGF or an animated short film, the students must create
everything themselves, from complete game engines and AI to storyboarding and
sound development.

SPECIALIZED Specializing your education should never mean compromising your
education. Our faculty are 92% full-time and are comprised of PhDs and experienced
game and animation industry leaders. Our students spend a full four years in their
chosen program. This allows a depth of knowledge far beyond that of a traditional
school. As a result, undergraduate interns from DigiPen have worked on published AAA
title games, assisted in Microsoft research projects and they have helped to develop
the device drivers for the Wii.

We invite all prospective students to see first hand why DigiPen is
considered among the very best of game development degrees.
Prospective students are welcome to shadow our students, sit in on
classes and attend a monthly information session in person or online.

Dave Bolton – BFA Production Animation.

2009 IGF Best Student Game award
goes to TAG: The Power of Paint.

DIGIPEN INSTITUTE OF TECHNOLOGY

5001 150th Ave. NE
Redmond, WA 98052
Toll-free: 866.478.5236
Email: admissions@digipen.edu

WWW.DIGIPEN.EDU

“Over the past decade, Valve has
continuously hired individuals
and teams from DigiPen who
are ready and equipped to
make material contributions
to professional projects
immediately out of school.”
Kathy Gehrig

HR Director

Valve

“Because of DigiPen’s focus on
game design/development and
real-world approach to the game
development cycle, graduating
students have a clear leg up on
other college students seeking
jobs in the games industry.”
James Pfeiffer

Test Manager

Microsoft Games

mailto:admissions@digipen.edu
http://WWW.DIGIPEN.EDU

S E P T E M B E R 2 0 0 9 | G A M E D E V E L O P E R 53

>>
CREATIVE CAREERS

GDP09012009_00055 8/17/09 10:13 AM Page 47

http://bradic.org
http://gamecareerguide.com
http://www.gamecareerguide.com
http://www.gamecareerguide.com

A N I M A T I O N | D E S I G N | E N T E R T A I N M E N T B U S I N E S S | F I L M | R E C O R D I N G A R T S | S H O W P R O D U C T I O N | V I D E O G A M E S | W E B

Create the Game

Game Art

Game Development

Game Design

©
 2

00
8

Fu
ll

Sa
il,

 In
c.

Master’s | Bachelor’s | Associate’s Degrees

fullsail.edu

Game Design at Vancouver Film School
shows students how to make more
enemies, better heroes, cooler levels,
and tighter connections to the industry.

In just one year, you’ll learn every
aspect of game design. Your portfolio
project is a playable video game.

VFS grads get snapped up by top
companies like BioWare, Radical, Relic,
and Ubisoft, and the LA Times named
VFS a top 10 school "most favored by
video game industry recruiters".

VFS student work by
Moo Won Kim vfs.com/enemies

>>
GE

T
ED

UC
AT

ED

54 S E P T E M B E R 2 0 0 9 | G A M E D E V E L O P E R

GDP_09012009_00054 8/14/09 4:03 PM Page 44

http://fullsail.edu
http://vfs.com/enemies

Financial assistance and career services available.
Now accepting applications.

Game Developer (ISSN 1073-922X) is published monthly by United Business Media LLC, 600 Harrison St., 6th Fl., San Francisco, CA 94107,

(415) 947-6000. Please direct advertising and editorial inquiries to this address. Canadian Registered for GST as United Business Media LLC,

GST No. R13288078, Customer No. 2116057, Agreement No. 40011901. SUBSCRIPTION RATES: Subscription rate for the U.S. is $49.95 for twelve

issues. Countries outside the U.S. must be prepaid in U.S. funds drawn on a U.S. bank or via credit card. Canada/Mexico: $69.95; all other

countries: $99.95 (issues shipped via air delivery). Periodical postage paid at San Francisco, CA and additional mailing offices. POSTMASTER:
Send address changes to Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. CUSTOMER SERVICE: For subscription orders and changes

of address, call toll-free in the U.S. (800) 250-2429 or fax (847) 647-5972. All other countries call (1) (847) 647-5928 or fax (1) (847) 647-5972.

Send payments to Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. For back issues write to Game Developer, 4601 W. 6th St. Suite B,

Lawrence, KS 66049. Call toll-free in the U.S./Canada (800) 444-4881 or fax (785) 838-7566. All other countries call (1) (785) 841-1631 or fax (1)

(785) 841-2624. Please remember to indicate Game Developer on any correspondence. All content, copyright Game Developer magazine/

United Business Media LLC, unless otherwise indicated. Don’t steal any of it.

Activision .46

Autodesk. .C3

BRADIC. .53

CCP . 14

Center for Digital Imaging Arts 55

Digipen .52

Epic Games . 6,28

Eyetronics .C2

Full Sail University54

Havok. 13

Intel .30–35

Perforce Software. 19

RAD Game Tools C4

Seapine Software11

Spiel Studios .45

TechExcel . 21

University of Advancing Technology. .55

Vancouver Film School54

Xaitment . 3

S E P T E M B E R 2 0 0 9 | G A M E D E V E L O P E R 55

[GEEKED AT BIRTH.]

You can talk the talk.
Can you walk the walk?

Here’s your chance to prove it.
Please geek responsibly.

www.uat.edu > 877.UAT.GEEK

LEARN:

ADVANCINGCOMPUTERSCIENCE

ARTIFICIALLIFEPROGRAMMING

DIGITALMEDIA

DIGITALVIDEO

ENTERPRISESOFTWAREDEVELOPMENT

GAMEART&ANIMATION

GAMEDESIGN

GAMEPROGRAMMING

NETWORK ENGINEERING

NETWORK SECURITY

OPEN SOURCE TECHNOLOGIES

ROBOTICS & EMBEDDED SYSTEMS

SERIOUS GAME & SIMULATION

TECHNOLOGY FORENSICS

VIRTUAL MODELING & DESIGN

WEB & SOCIAL MEDIA TECHNOLOGIES

>> GET EDUCATED

GDP09012009_00055 8/14/09 4:05 PM Page 47

http://www.uat.edu
http://cdiabu.com

ARRESTED DEVELOPMENT // MATTHEW WASTELAND

MY STORY ISN'T DUMB
A NINJA MASTER TAKES ON HIS CRITICS

HELLO, I’M KEN OGAWA. YOU MAY REMEMBER ME FROM THE XBOX 360
smash hit, NINJA BLADE, in which I single-handedly saved Tokyo from
an infestation of the virulent and seemingly unstoppable Alpha-worms,
using only my bare hands and a little bit of ninja magic. (Please do not
compare me to NINJA GAIDEN’s Ryu Hayabusa. We are very different.)

I have decided to write this editorial because lately it seems like a
lot of people have been talking about story in games. In particular, they
are complaining about how stories in many games are, in their words,
“stupid,” or “dumb.” To be honest, sometimes I have to struggle to keep
myself from using my fully-upgraded Stonerender Sword’s devastating
Heavenly Slam attack against such people. Who are they to call these
stories “stupid?” It makes my alien blood boil just thinking about it.
Oops—spoiler alert.

The tale of NINJA BLADE, just to pick a random example—which,
incidentally, is available in stores everywhere, like right now—is one
of a life-or-death battle against dangerous foes, such as the colossal
Plague Snail. I can say with confidence that for me, this was no
laughing matter. When this fiendish monster was not belching flaming
cars at me, his tongue, which had a ball of spikes on the end of it,
had to be carefully dodged. The only thing that saved me was that
he fortuitously decided to regurgitate an undamaged and perfectly
functional motorcycle with a key already in the ignition, so that I could
start it up, drive it down several buses that were floating in the air due
to his continuous eructations, and detonate its gas tank inside his
mouth, causing a large explosion.

Critics claim that the performance of such feats comes off as silly
or absurd, and prevents the story from being “serious.” But I ask you,
what is really the absurd thing here? The idea that the Prime Minister
of Japan would call in a squad of elite ninjas to fight an outbreak of
parasitic worms? Or the critics’ jealous reactions to the kinds of feats
that my many long years of difficult ninja training have enabled me
to perform?

That’s right, I said it: jealousy. It doesn’t take Ninja Vision to see
that these critics are motivated by simple envy. And I have to admit,
stopping a crashing jetliner by digging my heels into the ground and
mashing some face buttons is pretty impressive. (It’s a good thing
my late, lamented father ordered me to constantly practice the secret
airplane-stopping techniques that have been handed down in our
ninja family for many generations. At the time, I wondered what the
point was, but his wisdom turned out to be unquestionable. It really
is a testament to my father’s incredible strength of character that he
allowed himself to be infected by Alpha-worms in order to become one
of them, and therefore discern their headquarters. It turned out to be
the gigantic meat-tower on the horizon. Who would have guessed?)
Why else would they find fault with what I do? Especially given that I
saved ... well, I don’t know what was on that plane, exactly. I threw all
the cargo off. Maybe it was passengers? The plane was really beat up
by the time it crash-landed. I don’t think anyone could have survived.
Anyway, the point is, I fought off the flying hydra monsters and got
the plane out of the sky, just like they asked me to do. Or did they ask
that? Whatever.

And for the people who say they want more complexity and depth
in their narratives, NINJA BLADE also features unprecedented subtle
shades of meaning—with just as much of a hidden message as, say,
BRAID has. You don’t believe me? I’ll give you some hints. Why did the
guy say “we evacuated this area days ago,” just before the camera
panned down to show traffic-clogged city streets? Why did the driver
of a tank I was riding persist in driving down the train tracks even
though an infected train (called the Parasite Train) was pursuing us,
instead of just driving off to the side? Think about it. See? Jonathan
Blow’s got nothing on this kind of stuff.

Of course, only time will tell which stories stand the test of the
ages and which fade away into obscurity forever. Will one of the
images that persist in the minds of generations to come be the way I,
beautifully backlit by the full moon, cleverly utilized a giant wrecking
ball, which was serendipitously perched for some reason at the very
top of one of Tokyo City Hall’s towers, to defeat a menacing arachnid
beast by knocking the ball into the air with my sword and riding it
down on top of the foul creature’s head? Or that stupid part in NINJA
GAIDEN II in the colosseum where Sonia shows up in a helicopter
and shoots missiles at all the werewolves populating the stands?
Because that was ridiculous.

M A T T H E W W A S T E L A N D is a pseudonymous game developer who has a fairly

common first name. Email him at mwasteland@gdmag.com.

GAME DEVELOPER | SEPTEMBER 200956

IL
L

U
S

T
R

A
T

IO
N

 B
Y

 J
O

N
A

T
H

A
N

 K
IM

0909gd_arrested_dev_vIbs.indd 560909gd_arrested_dev_vIbs.indd 56 8/19/09 4:15:40 PM8/19/09 4:15:40 PM

mailto:wasteland@gdmag.com

Autodesk Games Insight
The latest scoop from Autodesk Media & Entertainment

Advertisement

Autodesk, Maya, MotionBuilder, Mudbox, Softimage, and 3ds Max are registered trademarks or trademarks of Autodesk, Inc., in the USA and/
or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter
product offerings and specifications at any time without notice, and is not responsible for typographical or graphical errors that may appear in
this document. © 2009 Autodesk, Inc. All rights reserved.

Welcome to this issue of Autodesk®
Games Insight, our monthly column on
what’s new with Autodesk in the games
industry. In this issue, I’ll cover Digital
Entertainment Creation, the launch of
our suites, and the new 2010 versions
of our software.

Digital Entertainment Creation
This recession is putting the spotlight
on the rising costs of entertainment
production. At Autodesk, we believe
that the key to improved efficiency
and effectiveness in production is
to empower artists with better and
faster tools that communicate well
together. That’s our vision for Digital
Entertainment Creation.

The way games are created – from
complex environments to believable
characters – is improved by using
new real-time, immersive, interactive
technologies. We are focusing our
tools on creative exploration and
collaboration. Our products now
feature higher-quality interactive
rendering in viewports to make better
creative judgments on assets. Our real-
time animation tools can be integrated
more tightly with games engines, for a
better understanding of how animation
impacts game play.

Our solutions bring together game
design, art creation and game
programming. With faster turnarounds
and more iterations, Digital
Entertainment Creation helps you
improve both quality and efficiency.

New Autodesk Entertainment
Creation and Real-Time Animation
Suites with 2010 software
Implementing this vision involves
multiple Autodesk products, and we
want to offer you more value. We’re
introducing two new Suites – offering
more than 35%* savings. The Autodesk®
Entertainment Creation Suite combines
the choice of Autodesk® Maya® or
Autodesk® 3ds Max® software, plus
Autodesk® Mudbox™ and Autodesk®
MotionBuilder® software, in one
package. The Autodesk® Real-Time
Animation Suite includes Maya or
3ds Max, plus MotionBuilder. These
suites include the new 2010 software
versions, and are available for
commercial and educational facilities.

New 2010 Versions and One Maya
We’ve just announced new versions
of our software, including Maya 2010,
Autodesk® Softimage® 2010 software,
Mudbox 2010 and MotionBuilder 2010.
I invite you to check out all the exciting
new features on our website.

I’d like to highlight what we’ve done
with Maya. In Maya 2010, we have
combined Maya Unlimited and Maya
Complete into one single product. We
have also integrated compositing and
match moving functionality, making
Maya 2010 an ideal solution for the
creation of games assets, and also for
end-to-end movie-quality cinematic
production.

Area v3
We love to hear from you and see your
work. Over a quarter million artists
have joined the AREA, our Digital
Entertainment and Visualization
Community, and it keeps on growing.
We’ve just revamped the site and new
content is posted regularly. Join us
online for dialogue, downloads, learning
and fun.

Enjoy the ride,

Marc Petit
Senior Vice President
Autodesk
Media & Entertainment
marc.petit@autodesk.com

“Time was our biggest challenge
with Gears of War 2. 3ds Max, Maya,
and MotionBuilder allowed us to
iterate quickly and create content in
record time. It also enabled us to go
beyond anything we’ve done before.
Without Autodesk’s software,
combined with our own proprietary
Unreal® Engine 3 toolset, we would
have been hard-pressed to finish the
game in such a short development
cycle.”

— Chris Perna, Art Director
Epic Games

Gears of War 2, image courtesy of Epic Games, Inc.

New Releases:

- Autodesk Entertainment
Creation Suite

- Autodesk Real-Time Animation
Suite

- Autodesk Maya 2010
- Autodesk Softimage 2010
- Autodesk Mudbox 2010
- Autodesk MotionBuilder 2010
- Autodesk 3ds Max 2010

Connection Extension

To learn more, visit:
www.autodesk.com/me2010 or
area.autodesk.com.

*International savings may vary.

http://www.autodesk.com/me2010
http://area.autodesk.com
mailto:marc.petit@autodesk.com

http://www.radgametools.com

	Contents
	Postmortem
	Kingsisle Entertainment's Wizard101

	Features
	Alternative Geometry
	Demystifying Matrix Layouts

	Departments
	Editorial
	Game Plan

	News
	Heads Up Display

	Review
	Tool Box

	Art
	Pixel Pusher

	Programming
	The Inner Product

	Design
	Design of the Times

	Sound
	Aural Fixation

	Humor
	Arrested Development

