
SEPTEMBER 2002

G A M E D E V E L O P E R M A G A Z I N E

L E T T E R F R O M T H E E D I T O R

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Everard Strong estrong@cmp.com
Production Editor

Olga Zundel ozundel@cmp.com
Product Review Editor

Daniel Huebner dan@gamasutra.com
Art Director

Elizabeth von Büdingen evonbudingen@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Jonathan Blow jon@bolt-action.com
Hayden Duvall hayden@confounding-factor.com
Noah Falstein noah@theinspiracy.com

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Beemania
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed WildTangent

ADVERTISING SALES
Director of Sales/Associate Publisher

Michele Sweeney e: msweeney@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Account Manager, Northern California & Southeast
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Recruitment
Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225

Account Manager, Western Region & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Account Representative
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz

Advertising Production Coordinator Kevin Chanel

Reprints Cindy Zauss t: 909.698.1780

GAMA NETWORK MARKETING
Director of Marketing Greg Kerwin

Senior MarCom Manager Jennifer McLean

Marketing Coordinator Scott Lyon

CIRCULATION

Group Circulation Director Catherine Flynn

Circulation Manager Ron Escobar

Circulation Assistant Ian Hay

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Executive Vice President & CFO John Day

Chief Operating Officer Steve Weitzner

Chief Information Officer Mike Mikos

President, Technology Solutions Group Robert Faletra

President, Business Technology Group Adam K. Marder

President, Healthcare Group Vicki Masseria

President, Electronics Group Jeff Patterson

President, Specialized Technologies Group Regina Starr Ridley

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, HR & Communications Leah Landro

Vice President & General Counsel Sandra Grayson

Vice President, Creative Technologies Philip Chapnick

W W W . G A M A N E T W O R K . C O M

✎

T he topic of ethics in games

has been coming up more and

more recently. There has been

a lot of coverage in a variety

of media on game violence in

general and the case of GRAND THEFT

AUTO 3 and its astronomical popularity in

particular. One particularly thoughtful

example was Ren Reynolds’ article that

ran on the IGDA web site called “Playing

a ‘Good’ Game: A Philosophical

Approach to Understanding the Morality

of Games,” which used GTA3 as a basis

for a discussion on emerging ethical ques-

tions in games (www.igda.org/Endeavors/

Articles/rreynolds_intro.htm).

Morality? Ethics? In games? Talk like

this may be where a serious cleft emerges

between those game developers who

think they are creating fun playthings

and those who think they are the van-

guard of an art and entertainment revo-

lution for the 21st century.

Most mainstream critics discussing

morality in game design today don’t real-

ize that it’s not increasing violence or real-

ism that’s provoking such discussions, as it

may seem on the surface, rather it’s an

increase in the spectrum of player choices

in increasingly open-ended game designs.

One of the first things a player of BLACK

& WHITE needs to do is decide whether to

be a “good” or “evil” deity. In fact, games

with sandbox-style gameplay that do not

necessarily specify a victory condition,

such as BLACK & WHITE or THE SIMS,

might not even be properly called games.

And it’s the clever combination of open-

ended pure fun with interesting, linear

action that has made GTA3 the critical

and commercial darling it is.

Violence and killing have always

played a big role in games, whether rep-

resentational yet clearly fictitious (SPACE

INVADERS) or strictly symbolic but based

on reality (chess, for example, as a repre-

sentation of war and complex political

machinations). Yet whereas the gameplay

possibilities offered by earlier technology

usually centered around killing as a

means to self-preservation as an end,

newer, emergent forms of gameplay leave

motive to be determined by the player.

Thus, the open-ended fun of THE SIMS or

GTA3 which makes them so popular also

forces players to grapple with some

unexpected ethical questions.

I felt genuine sadness the first time a

Sim — whom I had been toiling for hours

to make happy — died while trying to

cheer himself up with a cookout. Yet

another time, when a Sim to whom I did-

n’t feel much attachment to accidentally

married a Sim for whom I had other plans,

well it was into the ladderless pool with

her, for a protracted, painful death by

drowning from exhaustion. I felt a bit bad

about it, but I did it all the same, because

it was expedient and because the game let

me. I even left her grave untended, punish-

ing her Sim soul well into the Sim hereafter

for what was, of course, my own slip of

the mouse click that got her in trouble in

the first place. I’m no philosopher

(although I did spend an entire semester in

college slogging through the fractured

Greek of Aristotle’s Nicomachean Ethics,
so it’s possible something might have sunk

in), but from a purely ethical standpoint,

that’s just as bad as flattening innocents

with your Yakuza Stinger, it just doesn’t

carry the same visceral zing that gets pop-

culture pundits in a panic.

So while the media pillories games like

GTA3 for their realistically depicted and

seemingly gratuitous violence, game devel-

opers need to start thinking about one of

the real issues to have come out of that

game’s success: the future of emergent

gameplay. Developers mustn’t focus singly

on the task of devising the design tools

they’ll need to implement emergent forms

of gameplay. Those who want to go

where no game has gone before should

also consider the ethical albatross they’re

hanging around players’ necks by handing

them new moral quandaries to face, when

linear self-defense is no longer the name of

the game.

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

4

Game Developer
is BPA approved

G A M E P L A N

Decisions, Decisions

Jennifer Olsen

Editor-In-Chief

3DO fights delisting. 3DO, trading at

under $1 and facing imminent dismissal

from the Nasdaq exchange, made a num-

ber of moves intended to keep the finan-

cial wolves at bay — at least temporarily.

3DO will fight to keep its place on the

exchange by executing a one-for-eight

reverse stock split to push the share price

comfortably over the $1 bar. Further-

more, the company is cutting $6 million

in expenses by relocating its U.S. and

U.K. operations, and is bringing in a new

$15 million line of credit, with CEO Trip

Hawkins pledging to back the line him-

self if 3DO is unable to find the addition-

al $4.6 million in equity it needs to

secure the credit. All of this is intended

to keep 3DO safely operating through

the end of fiscal year 2003, by which

time the company believes it will have

returned to profitability.

Midway shares cut in half. Midway

lost nearly half of its stock value in a sin-

gle day after lowering its second-quarter

guidance. The company cut its revenue

forecast for the quarter from $40 million

to $28 million and increased its projected

operating loss from $5 million to $11.5

million. The revised numbers were attrib-

uted largely to game delays and cancella-

tions, leading analysts to conclude that

Midway is suffering from poor manage-

ment oversight. The company is taking

that criticism to heart by creating the

new position of chief operating officer to

oversee and improve its overall process

management.

Vivendi Universal faces breakup.
Financial reporting irregularities and

mounting debt may lead to the breakup

of Vivendi Universal. Vivendi Universal is

the parent company of a wide swath of

the entertainment industry, including

game makers Knowledge Adventure,

Blizzard Entertainment, Sierra Enter-

tainment, and Universal Interactive. The

company is fighting to manage a crush-

ing debt of 30 billion euros, while at the

same time facing an investigation from

French stock market regulators. CEO

Jean-Marie Messier and CFO Guillaume

Hannezo, two of the men responsible for

building Vivendi from a water utility into

a media giant, have already resigned.

EA acquires Black Box Games.
Electronic Arts is purchasing Vancouver-

based Black Box Games. The 100-person

studio, noted for producing sports titles

that include Sega’s NHL 2K series and

Midway’s NHL HITZ, has worked with

EA on the NEED FOR SPEED and NASCAR

THUNDER franchises. Black Box Games

will become a wholly owned subsidiary

of Electronic Arts. Financial terms were

not disclosed.

SCEA takes management online.
Sony Computer Entertainment America

announced a change in its management

lineup, positioning itself for a battle in

the broadband online game arena.

Masayuki Chatani was appointed to

head Sony’s new Broadband Strategy

Group, which will work on the broad-

band gaming initiatives. Jack Tretton was

promoted to executive vice president and

will oversee SCEA’s internal game devel-

opment group, formerly under the direc-

tion of SCEA president Kaz Hirai. Jim

Bass, formerly the vice president of

finance, was promoted to CFO, while

Andrew House was promoted to execu-

tive vice president and will continue to

work with the third-party publishers.

EA joins the S&P 500. While 3DO

faces delisting from the Nasdaq,

Electronic Arts is stepping up to the S&P

500. Standard and Poor’s added the

game publisher to its widely referenced

stock index after the close of trading on

July 19, promoting EA from the S&P

Midcap 400 index. q

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r6

I N D U S T R Y W A T C H
T H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e rJ

D I G I T A L H O L L Y W O O D
BEVERLY HILLS HILTON HOTEL

Beverly Hills, California
September 23–25, 2002
Cost: $495 all access,
$295 day pass
www.digitalhollywood.com

U P C O M I N G E V E N T S

CCAALLEENNDDAARR
READY TO FIGHT. 3DO, publisher of such
games as HEROES OF MIGHT AND MAGIC IV, is fac-
ing dismissal from the Nasdaq exchange.

MIDWAY ON THIN ICE? The company, known
for publishing such sports titles as NHL HITZ

2002, recently lost half its stock value.

XX

W ith Axel Edge 1.5,

a modeling, ani-

mation, and pub-

lishing tool avail-

able for the PC

and Macintosh (OS 9 and X), Canada’s

MindAvenue continues its pursuit of stal-

warts such as Macromedia’s Director.

Version 1.0 showed promise as an easy-

to-use product with a pure web focus,

and newly released version 1.5 builds on

that foundation. I’ll take a look at this

new release with an eye toward its suit-

ability for creating web games.

Axel comes in two different flavors:

Axel Edge (retailing for $950) is the flag-

ship product, while Axel Core (retailing

for $350), is the light version, lacking the

IK, advanced reactions, and Lightwave

import features of its big brother. Both

the PC and Macintosh versions have

modest system requirements and should

run well on virtually any studio machine.

Testing on a dual P3-800 workstation

with 512MB RAM and an Nvidia

Quadro 2 graphics card found the soft-

ware to be both stable and speedy.

In addition to its animation and inter-

active capabilities, Axel differs from most

3D web-authoring packages by including

a relatively full-featured polygonal mod-

eler. In most other systems, you create

3D content in a stand-alone package and

then import the scene file into the

authoring system. With Axel you get a

full modeling environment with an inter-

face (on the PC) that is a happy combi-

nation of 3DS Max and Maya. Object

hierarchies, and indeed everything else,

are viewable through the Project

Manager, a complete tree view of the

entire 3D world and current project set-

tings. Individual object parameters are

also easily accessible through a parame-

ter editor window.

Internal modeling tools were impor-

tant in Axel 1.0, as its 3D import capa-

bilities were limited to VRML. With

Version 1.5, you can now import

Lightwave objects and scenes, as well as

2D shapes in .EPS format, and a 3DS

Max importer is currently in beta testing.

Axel’s modeling tools include all of the

usual suspects, such as extrusion and

lathing. Text can be displayed either as

extruded 3D geometry or a 2D overlay.

Axel Edge also provides a capable skele-

tal (bones) system with forward and

inverse kinematics.

Object shading and texturing is basic

but more than sufficient for most web

purposes. Vertex shading is supported, as

are animated textures (AVI, QuickTime,

MPEG, and Flash). Texture maps can be

up to 512�512 pixels in size, but projec-

tion methods are limited to cylindrical or

planar. Environment mapping is support-

ed to simulate reflections. Axel also smart-

ly provides the option to stream large tex-

ture files to minimize the initial download

time. Also new to this latest release are

multiple rendering styles (standard, car-

toon, or wireframe) that can be assigned

on a per-object basis. Scenes can be lit

with directional, point, or spotlights.

Building animation is also straightfor-

ward. Axel utilizes a standard keyframe

MindAvenue’s
Axel Edge 1.5

by steve boelhouwer

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r8

P R O D U C T R E V I E W S
T H E S K I N N Y O N N E W T O O L S

S T E V E B O E L H O U W E R | Steve is the vice president of creative services for The
Vendare Group, a Los Angeles–based network of game, entertainment, and marketing com-
panies. Contact Steve at steve@vendaregroup.com.

Animation and control frames and menus available in Axel Edge 1.5.

metaphor, and all animated parameters

are represented in a timeline, which Axel

refers to as the Sequencer. It’s interesting

to note that Axel measures animation in

seconds, not frames, with the smallest

keyframeable time slice being 1/10th of a

second. As such, it’s not possible to set a

specific animation frame rate (the play-

back system’s capabilities determine the

frame rate). A capable constraint-and-

joint system allows for the creation of

logical object hierarchies. The package

does not include a physics system per se,

but it does include a nifty spring con-

straint to create a springy joint between

two objects. There’s also a usable particle

system, and shape morphing for geome-

try is supported. Individual animation

clips can also be encapsulated as an ani-

mation reaction, which takes the clip off

the main timeline and makes it available

for playback based on an interactive trig-

ger such as a mouse click.

Speaking of interactivity, Axel’s

approach is a bit different from that of

similar products. Interaction is built pri-

marily using a visual schematic editor.

Similar to the metaphor used in high-end

compositing programs, the interaction

editor allows you to link sensors (triggers

based on time, mouse, keyboard, and

other inputs) to reactions (animation

queues, sound playback, web page func-

tions, and so on). It’s a very intuitive sys-

tem that should appeal to those artists

who dislike using script-based tools —

such as Director or Flash — to build

interactivity. That being said, this latest

release of Axel Edge has a basic scripting

utility to allow for the creation of custom

sensors and reactions. Similar in syntax

to JavaScript, it’s far from a complete

programming environment, but it allows

access to most numerical and Boolean

parameters of scene objects and supports

a good set of mathematical operations.

Once a project is complete, publishing

for the web is cake. The program creates

a stream (content) file, which is embed-

ded into a web page using standard

<OBJECT> and <EMBED> tags. A download

simulator allows content authors to repli-

cate the dial-up experience. Axel can also

publish windowless animations if the host

browser supports them. By default, the

Axel web player renders content using its

own software renderer, although hard-

ware rendering (OpenGL) can be enabled.

MindAvenue doesn’t have statistics on

the installed base of Axel players, but it’s

safe to assume it’s far smaller than web

old-timers like Shockwave and Flash. For-

tunately, the Axel player download is

quick and painless, and Flash export is

promised for Fall 2002.

The mostly scriptless interface makes

Axel Edge very easy and flexible to use in

terms of building projects. For game

developers, however, it’s also its biggest

drawback. The lack of any user-definable

data structures means there are no vari-

ables, no dynamic or user-entry text

capabilities, and no internal tools to

query server-side data. Therefore, com-

mon game functions such as scorekeep-

ing can’t be accomplished practically

with Axel. The built-in sensors and reac-

tions address most of the basic tasks for

projects such as an interactive product

demonstration, and the basic scripting

interface does allow for some customiza-

tion, but they fall short for creating

games of any serious depth.

MindAvenue’s web site

(www.mindavenue.com) hosts a few

clever examples of game content (includ-

ing a cute first-person shooter where the

object is to blast clogged noses with

nasal spray) and there are some ingen-

ious workarounds to the limitations of

the scripting system.

But game development at that level

isn’t really what Axel was designed for.

Instead, the program excels at what could

best be termed “interactive animations.”

Obviously, many game projects actually

fall into this category, and Axel would be

an ideal tool for those. It should appeal in

particular to web designers, especially

those working on a Macintosh, who have

limited experience with 3D and/or a

scripting language. Its integrated modeler

is a plus for those who don’t own a

stand-alone 3D package, but those devel-

opers who need more depth and power

will require bigger guns than Axel.

ANALOG DEVICES’
SOUNDMAX SMART
TOOLS

by todd m. fay

I n the past, audio professionals have

managed without dedicated middle-

ware tools, relying on in-house toolkits

to incorporate and manipulate propri-

etary audio technologies. However, with

more and more developers striving to

create relevant audio content for their

products, a need for more sophisticated

interactive audio tools has arrived.

Analog Devices answers the call with

SoundMAX SMartTools. SMartTools

grants sound designers the power of so-

XP R O D U C T R E V I E W S

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r10

AXEL EDGE 1.5 XXX

STATS
MINDAVENUE

Montreal, Quebec, Canada
www.mindavenue.com

PRICE
$950 (MSRP)

SYSTEM REQUIREMENTS
PC Software: Windows 98/Me/2000/NT 4

(SP 3 or higher)/XP; QuickTime 5.
PC Hardware: Intel Pentium II processor

(350MHz or faster); 128MB RAM; 45MB
available hard disk space; 16-, 24-, or
32-bit color display adapter; monitor
resolution of 1024�768 or greater;
three-button mouse.

Macintosh Software: Mac OS 9.2 with
OpenGL 1.2 and CarbonLib 1.4, or Mac
OS X (v. 10.1); QuickTime 5.

Macintosh Hardware: PowerPC G3 or G4
processor (450MHz or faster); 128MB
RAM; 45MB available hard disk space;
1024�768 resolution monitor.

PROS
1. Integrated 3D modeling tools.
2. Intuitive visual interaction editor.
3. Strong web-publishing features.

CONS
1. Embedded scripting language not

powerful enough for serious game
development.

2. Limited 3D file import options.
3. Web player penetration smaller than

competitive products.

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

called “animated audio.” With it, sound

designers can create interactive and non-

repetitive audio content. Gone are the

days when you hear the bird sample

tweeting every seven seconds, the

same exact way, over and over and

over and . . . you know what I mean.

SoundMAX is based on the Staccato

Sound System, an API and toolset

released in the late 1990s by Staccato

Systems; Analog Devices (ADI) acquired

Staccato Systems in 2001. Anyone famil-

iar with Staccato Systems might remem-

ber the company as “those guys that

make that audio thing for racing games

. . . So what? I don’t make racing

games.” Well the ADI ARTG (Advanced

Rendering Technology Group) is busy

creating audio tools beyond physically

modeled car engines. And let me tell you,

you won’t believe your ears when you

hear what you can do with SMartTools.

So what exactly is included? Right

now SMartTools ships with two tools

for sound designers (along with the API

for audio coders). The first, SMart-

Animator, relies on a series of audio

playback algorithms to create nonrepeti-

tive audio streams. The other tool is the

SMartSynth, a sound generation tool

that uses physical modeling synthesis to

create realistic sounds. Both tools are

professional grade and would cost you a

ton of money to acquire. That is, if ADI

weren’t giving it away for free. (More on

this ingenious pricing later.)

SMartAnimator currently ships with

one algorithm: Crossfader. Crossfader

employs complex sets of (you guessed it)

cross-fades and other parameters, which

can react to the game state in real time.

This algorithm is built with persistent

sound effects in mind, such as engines,

crowds, and other ambient effects. It’s

slightly annoying that some of the

parameters are named for engine sound

controls, but this is a small price to pay.

A session with SMartAnimator goes

something like this: You create your

sound palette like you would in any

other situation. Once you have your

sound set together you import them into

SMartAnimator and use the easy-to-com-

prehend GUI to design “sound behav-

iors.” You then test out your sound

behaviors and export your final file. The

audio coder drops the file into the latest

build, and magically you have animated

audio for your game.

The toolset is cross-platform between

PC, Playstation 2, and Xbox, with each

platform having a dedicated export but-

ton built into the SMartAnimator GUI.

You create your audio behaviors once in

SMartAnimator, click on the export but-

ton for the platform your title is ship-

ping on, and that’s it. Once you export

the behavior for one platform, you can

export for the other two as well simply

by clicking on the appropriate buttons.

How easy are they going to make this

for us?

ADI is working on three additional

algorithms, all of which will serve unique

purposes. ParticleBurst will be ideal for

nonrepetitive one-shots, ParticleFlow will

randomly recombine short sound clips

and is designed with soundscapes and

ambience in mind, and ParticleCycle will

allow sound designers to create nonrepet-

itive cyclical sounds (footsteps, machine-

gun fire, and the like). Assuming this last

one is an improvement on the footstep

algorithm I heard at the Game Devel-

opers Conference, we should all be very,

very impressed. Keep in mind I have yet

to test these in-progress algorithms, but if

they function as well as Crossfader does,

things are looking up for game audio

content creators.

If you are familiar with the progres-

sion of this technology, beginning with

its roots in the Sondius project through

its first incarnation under ADI, you

know that SoundMAX game audio tools,

due to their dependency on physical-

modeling (read: highly processor inten-

sive) algorithms, weren’t always ideal

solutions. Well, the SoundMAX team

reevaluated their approach to developing

audio tools for game developers, and

SMartTools is now a true success.

Developer-friendly, SmartTools’ newer

algorithms depart from strict reliance on

physical modeling for real-time sound

generation, depending more on event-

modeling synthesis (the SMartAnimator

algorithms, for instance).

Physical-modeling solutions are still

available through the use of SMartSynth.

The focus has shifted on using

SMartSynth to generate sound clips for

use in SMartAnimator. The synth models

sound outrageous. SMartSynth is a great

solution for creating a variety of sound

effects on a strict budget. It is also per-

fect for creating common sound effects

that aren’t canned (read: licensed from a

sound FX library).

These tools are extremely easy to use.

Let’s face it, it doesn’t matter how great

a particular technology makes your

game sound. If it’s a monumental task

for your audio team to learn the tool, it

just isn’t worth it. It’s a huge improve-

ment over ADI’s first attempt at a

SoundMAX toolset. Additionally, the

toolset and the API are meticulously

documented in clear language.

This is the part that will convince your

producer why this cool audio app

belongs in your company’s next game:

It’s free. What’s the catch? ADI wants

their SoundMAX logo on the game’s

box, a splash screen, and on sell sheets.

Not a bad deal.

This technology has created a world of

unparalleled potential for interactive

sound designers. It’s pretty obvious to me

that, given the newness of this system,

game audio developers haven’t even

scratched the surface of what SMartTools

can do for interactive sound designs. q

|SoundMAX SMartTools
Analog Devices | www.soundmax.com

Todd M. Fay (a.k.a. LAX) is an audio
content creator and author. Contact him
at todd@lax-element.com.

XP R O D U C T R E V I E W S

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r12

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

XXXXX

SMartAnimator, one of the ingredients of the
SoundMAX SMartTools.

L aura Fryer is the director of

Microsoft’s Advanced Tech-

nology Group for Xbox. She

started out at Microsoft 10

years ago supporting games

and multimedia titles before moving to

Microsoft Games Studios in 1995. There

she helped launch the MSN Gaming Zone

and conceived and produced the first

Microsoft release of the Zone. She then

went on to produce numerous titles,

including FIGHTER ACE and CRIMSON

SKIES. In May 2000, while Microsoft was

laying the groundwork for Xbox, she

joined the Advanced Technology Group

and helped build the team — and a new

console — from scratch.

Game Developer. Is it a big responsibility
having Seamus Blackley’s old job?

Laura Fryer. Running ATG is a big

responsibility, but my day-to-day job has-

n’t changed that much since I joined

Xbox. When we started the Advanced

Technology Group, we split the responsi-

bilities. Seamus focused on his evangelism

role and I focused on hiring, building, and managing the

worldwide team with the help of people like Mark Thomas.

So, the transition itself was very smooth because Seamus and I

basically continued doing what we’d always been doing.

GD. What are the main goals of the Advanced Technology Group?
LF. Our mission is simple: we want to help developers make

great games. We do that in a lot of different ways; for example,

we provide whitepapers, tools, samples, developer events, and

the fastest turnaround on questions in the industry. We also

provide unique services like code performance reviews. Xbox

developers are smart and can figure out their own bottlenecks,

but we can save them a week and will probably find issues that

they haven’t seen before given how much code we review.

GD. What about for other members of the development team?
LF. If a developer wants to understand how to get more fidelity

out of their textures or how to fully take advantage of the audio

chip, they can contact our experts any time during the ship cycle

and get help. We also provide a game evaluation team which can

play the game and give feedback on specific issues, like solving a

control problem, or general gameplay feedback.

GD. Give them half a chance and developers can usually find
something to complain about when it comes to working with con-
sole manufacturers. What have Xbox developers taught ATG since

its inception, and how has ATG incorporated
that feedback into its process?

LF. Developers never complain, they

suggest! Seriously, ATG’s job is taking

care of developers, so we love getting

feedback and we’re always looking for

new ways to improve our offerings.

Everything from the hardware to the certi-

fication process has been improved by

developer feedback. One of the tools

we’re working on right now enables

artists to preview their art on the Xbox,

and that tool is the result of feedback our

art director, Dave McCoy, received from

the Xbox artist community.

GD. With your bird’s-eye perspective,
what major differences do you see in
approach between smaller developers and
larger ones?

LF. In general, larger development

companies are better funded and are

therefore able to hire specialists for each

area of the game. Smaller teams have to

wear multiple hats, where you have a

programmer that is also the lead designer

or an associate producer that acts as the chief tester. If you

have a small team, you need to really focus on hiring, because

a single mistake can cost you the project. Both types of devel-

opment teams have passionate people working on them, but

smaller teams are usually a little hungrier and more focused

because if they don’t ship their project, they may not have

jobs. I really admire the small shops that break through with

great games, because they bring a lot of vitality, creativity, and

passion to our industry.

GD. Tell me about some of Microsoft’s efforts to get more women
involved in the game industry.

LF. This year we held an event at GDC for women to get

together and network called “Celebrating Women in

Gaming.” It was a huge success and gave women a chance to

meet and discuss issues that they saw in game development.

We also sponsor several annual events to increase awareness

about technology jobs for women. Last year we participated

as a company in the “High Tech Camp for Girls,” where we

bring in high school girls interested in technology and give

them presentations around the company. The teachers had

trouble getting the girls to voluntarily leave our game evalua-

tion lab! Hopefully in a few years we’ll see some of those

young women again as employees. q

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r14

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | j e n n i f e r o l s e n

Laura Fryer
Taking Care of Developers

Laura Fryer, director of the Xbox Advanced
Technology Group.

A R T I S T ’ S V I E W h a y d e n d u v a l l

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r22

T he room was well lit if some-

what stark. The basement of

what was once the town hall

hadn’t been built for com-

fort, and the heavy stone

walls had been painted white so many

times that the room was probably six

inches smaller because of it.

The bare wooden floors, warped and

spotted with more than a century’s worth

of unidentifiable stains, seemed barely

solid enough to hold the weight of the 14

nervous teenagers glancing around

uncomfortably under the fluorescent light-

ing. It wasn’t that we didn’t want to be

there; on the contrary, most of us would

have sold our grandma’s best teeth to be

granted a place there. But the unknown is

always frightening, and we all watched

the door, anxious in our anticipation.

Finally, after what seemed to be an

age, the heavy oak doors swung open

and in she stepped. Heart rates around

the room soared to dangerous levels.

Mouths went dry as 28 palms began to

sweat. Confidently and without the

slightest hesitation, she walked into the

corner, removed her robe, and stood

before us naked.

My first life-drawing class was both

educational and unnerving. The timing

of it was perhaps partly to blame. Mid-

teen hormones make for a rocky ride at

the best of times. Add in a two-hour ses-

sion staring at a naked woman, and

there was bound to be some danger of

chemical overload.

Fortunately, I survived without serious

incident, the worst moment being the

teacher’s very public ridicule of the fact

that I used a 5H pencil in a life-drawing

class (she was obviously trying to stifle

my self-expression). Was it worth it? I

think so. I learned two important things:

First, how to draw the human figure, and

second, that it is impossible to draw a

nude female without appearing to stare

at her nipples.

Drawing the human figure has long

been an integral part of any classical

artist’s training. I doubt that even now

any legitimate art school would be with-

out life-drawing classes or some variation

thereon. Understanding the process behind

drawing people, among other things, edu-

cates a student in disciplines such as fore-

shortening, weight, mass, light, and com-

position, all of these concepts being

invaluable to the well-rounded artist.

But is this relevant to us? Do we need

these skills when working in the game

industry? The power of our tools has, in

many ways, removed the need for an

artist to be versed fully in all aspects of

traditional art. Is there any real value to

be had walking in the past footsteps of

the paint-pushing, one-eared masters of

the visual arts? Will the lessons they

learned bring us the same rewards? The

answer is both yes and no.

Having an accurate understanding of

the final color produced by mixing burnt

umber and cadmium yellow won’t get you

very far in Photoshop. Appreciating non-

medium-specific concepts, however, can

elevate someone working on a game’s

visuals from being a technician well-versed

in the operation of extremely advanced

software, to an artist. What’s the differ-

ence? This is perhaps an argument for

another day, but one area where a tradi-

tional understanding of artistic technique

can be most helpful to the game artist is

that of creating a character.

It is almost too obvious to point out

(but I will anyway), that characters in a

game can be anything from a yellow disk

with a wedge cut out to a rather stunted

Italian plumber with an unfashionably

bushy mustache. Character design and

creation is a vast topic in itself, and much

has been written on the subject, but here

we will look at the rules involved in creat-

ing a human character as they are applica-

ble to a game aimed toward realism.

Proportion

A s far as the human figure goes,

there is a variety of methods for

maintaining correct proportions, but

perhaps the easiest and most commonly

H A Y D E N D U V A L L I Hayden started work in 1987, creating
airbrushed artwork for the games industry. Over the next eight years,
Hayden continued as a freelance artist and lectured in psychology at
Perth College in Scotland. Hayden now lives in Bristol, England, with
his wife, Leah, and their four children, where he is lead artist at
Confounding Factor.

FIGURE 1. The human body follows fairly
strict rules when it comes to proportion. This
male figure stands eight heads tall, with other
physical features occurring naturally at the
intervals indicated.

Character Matters: Part 1
The Human Figure

used is looking at the body in terms of

the human head.

The female form is proportionally dif-

ferent from that of the male, but on aver-

age, a figure is approximately seven and a

half heads high. Male figures are often

depicted as being eight heads high, and

women seven, with the tall, powerful male

stereotype being pretty standard in games

(Mario being a notable exception).

As you can see in Figure 1, the crotch

is located at three heads below the chin,

which, when using a total of eight head

lengths for the male, is exactly the

halfway point. Interestingly enough, the

nipple line is around the two-head mark,

the navel at three heads, and the bottom

of the knee area at six heads. While this

may seem a very rudimentary measure of

proportion, it works surprisingly well,

subject to alteration if unusually long

legs or some other unique feature needs

to be accommodated.

In addition to height measurements,

male shoulders are approximately two

head lengths across. Female shoulders

measure around one and a half head

lengths across.

Chest and Pelvis

T he trunk of the body gives a feeling

of mass and solidity to a character

and is defined by the two large bone

structures that underpin it: the pelvis

and the rib cage. Ribs are essentially

arranged in the same way for both men

and women. The pelvis, on the other

hand, is higher and narrower for the

male, and shorter but wider for the

female, as Figure 2 shows.

The barrel shape of the rib cage defines

the primary mass in the chest area, while

the pelvis governs the width of the hip

area. Female hips are about equal in

width to the distance across their shoul-

ders. Male hips are somewhat narrower

than the shoulders.

Limbs

I n terms of proportion, once again

using the head as a unit of measure-

ment, the distance from the top of a

male figure’s head to his fingertips,

when his arms are at his side is about

five head lengths (for a female it is

about four and a half). Legs are about

four head lengths, crotch to toes, in the

male, three and a half in the female.

Head

Barring deformity, the average human

head when viewed from the front is

just less than one and a half times as tall

as it is wide. Often, problems in head con-

struction arise in terms of depth, where a

head can either stretch too far backward

and end up looking like Giger’s alien, or

be squashed too far forward.

Looking at the human skull (which,

funnily enough, governs the shape of the

head) in Figure 3, we can see that the

distance from its back surface to the

front of the jaw comes to about 90 per-

cent of the distance between the top of

the head and the base of the chin.

What often leads to misjudgments in

this respect is the fact that the neck

(which starts from about halfway along

the lower jaw) extends all the way back

to the rear of the skull, with only the

rounded extremity of the occipital plane

(that’s the back of the skull) overhanging.

As far as neck width from left to right

is concerned, it’s clear that the female

neck is narrower than that of the male.

Still, both are essentially defined by the

sterno-mastoid muscles, which come

from behind the ear to the base at the

front of the neck, and the trapezius mus-

cles, where the neck joins the shoulders

on either side. Proportion here depends

on the musculature of the specific figure

under construction, but the usefulness of

the neck to convey strength and power

or grace and elegance should not be

underestimated. The most beautiful of

faces perched on top of a Mike Tyson

neck is unlikely to work, and vice versa.

Face

F inally, we come to the face. It often

disappoints me how little apparent

effort is put into the faces of some game

characters. In the real world, we are

vastly more interested in looking at peo-

ple’s faces than we are other areas of

their body (I know what you’re think-

ing, but the evidence is quite clear).

If your game offers little chance of

ever getting close to another human

before you shred them with your twin-

barreled, plasmatronic Annihilator 4000,

facial features are unlikely to play a sig-

nificant role. However, it is important to

remember that a face is the center of

emotion, the hub of a body’s senses, and

a focus for communication. If we are

w w w . g d m a g . c o m 23

FIGURE 2 (left). Differences between the male pelvic bone (red) and the female (blue).
FIGURE 3 right). The human skull is just slightly less deep than it is tall.

aiming to create characters in a game

that actually have character, we cannot

afford to neglect the face.

Until fairly recently, the vast majority

of facial definition in games had to be

done in texture. It was not uncommon

for a nose to be little more than a six-

triangle protrusion with the mouth

hardly modeled at all. Today, we bask in

the luxury of polygon-pushing hardware

that lets a face become the artist’s play-

ground. This is not to say that every

eyelash and every fold of skin should

now be fully modeled; on the contrary,

texture detail will still add much to the

definition of a face (Figure 4). But at the

very least, we can finally go crazy and

add nostrils.

There are a number of ways that the

layout of the face can be summarized.

One of these is to use a single unit of

measurement as a point of reference, as

we did with the head when looking at

overall bodily proportions. The most

obvious thing available is the eye.

As you can see in Figure 5, the eye-line

is classically halfway down the face. At

this point, the average head is about five

eyes wide. The central eye space is essen-

tially the bridge of the nose, the two

spaces to either side of this are where the

eyes are actually placed, with the spaces

on either side of the eyes reaching the out-

side of the head. None of these measure-

ments is meant to be exact — faces vary

from one person to the next, and more so

between different races — but these pro-

portions are basically accurate.

Still using the eye as a reference, the

width of the base of the nose is approxi-

mately the same as that of the width of

an eye, and the distance from the base

of the nose to the bottom of the lower

lip is also about the same as the width

of one eye turned vertically.

Additionally, an inverted equilateral

triangle, whose top edge goes from the

outside corner of one eye to the outside

corner of the other eye, should find that

the other two edges meet just below the

lower lip.

These rules can help in the correct

placement of facial features relative to

each other. Humans are so sensitive to

nuances of others’ faces that even a

small error can result in the kind of mis-

aligned face that only the unfortunate

stars of “When Plastic Surgery Goes

Wrong” possess.

Symmetry

A ll in all, the whole of the human

body is remarkably symmetrical. In

real life, subtle variations in feature place-

ment, limb length, blemishes on the skin,

and other minor imperfections unbalance

this symmetry slightly. For game charac-

ters, however, tiny differences of this kind

should generally go unnoticed.

Mastering the human figure in three

dimensions is not an easy task, but learn-

ing the basic rules of proportion and

becoming familiar with rudimentary

anatomy will make the job easier. Next

month, I’ll discuss the process of taking

the human figure in to 3D as a fully

modeled character. q

A R T I S T ’ S V I E W

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r24

FIGURE 5. A drawing of a face, shown normally (left), and enhanced with eye-based proportional
measurements (right).

FIGURE 4. Low-polygon heads (left) of games past have given way to greater detail available for
features modeled in geometry, such as nostrils (right).

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r26

Say you’ve just bought a

piece of software or hard-

ware for your audio rig to

crank out your next triumph

of a soundtrack or sound set

for your latest title. Or perhaps you’re

excited to be working on audio for a

console game and you get to use the

magic SDK that comes with it in addi-

tion to whatever third-party software is

available. What happens?

Typically, you pop on the web or trun-

dle down to your local pro audio shop.

And when you first get that shiny new

box, this is where things, for a few of us,

get confusing. Don’t laugh — its true.

Some people tear open that box, plug

everything in, and hope that it works.

Sometimes, this magically happens. Most

of the time, though, it doesn’t. When it

doesn’t, whom do you talk to? Where do

you go? When something breaks, how do

you fix it?

These may sound like simple ques-

tions, but whereas sometimes getting a

problem solved is as easy as picking up a

phone, opening a web browser, or firing

off an e-mail, other times it’s the worst

kind of hell on Earth. Following are a

few tidbits that can help you streamline

the inevitable troubleshooting experi-

ence, so you can get yourself back into

the game more quickly.

Before you dismiss the following infor-

mation as too simple to be effective, keep

in mind how many people don’t actually

do these things, including you.

Let us audio gods forsake our

overblown egos and realize that the

eagerness to get our rigs up and working

in a split second can blind us to the fact

that our gear needs regular maintenance

and, at times, just as much attention as a

car when it breaks down. You might be

amazed at how much faster you can get

things rolling following these simple

steps, in order:

Analyze the problem. Isolate it. Make

sure you know what’s broken. Don’t stop

with “It doesn’t work.”

RTFM. Although doing so is as appeal-

ing as drinking gasoline, read those blast-

ed README files and manuals that

come with your product. Manufacturers

do take the time to put very helpful

information in them.

Check the web and newsgroups. Console

folks usually have oodles of online infor-

mation to wade through. Download the

latest drivers and patches, look at the

FAQs, and search around manufacturers’

web sites as well as user-run sites.

Get on the horn. If none of the above

leads to a conclusion (granted, those

FAQ files and updates aren’t all perfect),

its time to call or e-mail someone. Some

vendors, such as Sweetwater Sound, staff

tech experts who can solve your problem

without having to go to the OEM (origi-

nal equipment manufacturer), but if you

buy direct or through vendors without

that added bonus, you need to call the

people who built your gear. Contact

information for company representatives

is usually readily available on the web or

in the packaging. If you find someone

was particularly helpful, remember his or

her name and put it in your address

book for (the inevitable) next time.

Let me briefly describe how I went

through this process just the other day

when I was dealing with my PC/Roland

XP-80 setup. Like any programmer who

wants to take an SDK or dev kit and

gleefully set it on fire when bugs over-

whelm him or her, I was ready to do the

same to my gear.

My previous knowledge of MIDI

sequencing led me to believe that all one

had to do was put the synth workstation

in “Local Control: Off” mode to control

it with a sequencer on the PC. Not so

with the XP-80 and Cakewalk’s Sonar. I

couldn’t for the life of me select the

patches I wanted or change banks. I

couldn’t even send information to more

than one MIDI channel. I’ve used

Cakewalk products for 10 years, so this

situation understandably made me feel a

bit, well, green.

After about an hour of frustration

fiddling with buttons and drop-down

menus, I took a deep breath and fol-

lowed the preceding troubleshooting

steps. After figuring out exactly what I

needed to do, I found a link on Sweet-

water Sound’s Knowledge Base

(www.sweetwater.com/support/ts) that

described a procedure. Let me tell you,

it was no easy solution, but it did work.

Even though I was ready to call some-

one up and let them taste my pain, it

turned out that taking it easy and being

more methodical worked after all.

While this may be hard to accept for a

musician, now I’m back to writing

again, which is what I wanted to be

doing in the first place. q

a l e x a n d e r b r a n d o n

ALEXANDER BRANDON | Alex is busy gathering old game sound-
tracks for a massive compilation and is the audio director for Ion Storm
Austin. He is also a member of the board of directors for the Game
Audio Network Guild (www.audiogang.org) and is on the steering com-
mittee of the Interactive Audio Special Interest Group (www.iasig.org).
Contact him at alexb@ionstorm.com.

Shoot TroublesYour

S O U N D P R I N C I P L E S

When you first get that

shiny new box, this is where

things, for a few of us, get

confusing.

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r28

In the July 2002 Better by Design,

I posed a challenge. I set forth the

rule “Let players turn the game

off,” which stated that the player

should always be able to save and

exit the game at any point, losing at most

a few seconds of progress as a result.

Then I invited readers to comment on

other rules that trump this rule or are

trumped by it.

Most of the responses I’ve received

were emphatic in their endorsement of

this rule. More than one reader said that

there should never be any reason to

require the player to replay a section of a

game. Although there was one suggestion

dismissing the save-game issue as a reli-

gious one with no solution, even that

person agreed with the substance of the

rule. The more I delve into applying rules

to game design, the more I find that

characterizing conflicts as insoluble “reli-

gious issues” is just a convenient way to

dismiss thoughtful discussion.

Disbelieving disbelief. I had suggested

that maintaining suspension of disbelief

might justify freezing out the save-game

option for a period, to keep from

reminding the player that it’s only a

game. But Jin Choung of Gigawatt

Studios challenged me on that one. He

reminded me that “the alternative [to

saving at any time] for a poor player is

having to repeat a segment of game over

and over and over. That is not immersive

or fun. For a good player, the effect

would be heightened suspense. For the

bad player, it ends in tedium and monot-

ony.” He’s right. If we want to keep

growing our audience, then certainly our

obligation as developers is to support the

novice or subpar players at least as much

as the experienced, talented ones. Jin’s

argument implies that our biggest win

comes from making the save-game

process so smooth and transparent that

players can use it intuitively without con-

scious consideration.

Take small bites. Two readers suggested

that the technical limitations of consoles

or hand-held systems sometimes make it

easier to limit saves than to allow them

at any time. But both pointed out that

this is the lazy developers’ excuse for the

problem, and it’s better either to find a

solution to the technical problem or to

come up with a more elegant design that

finesses it. David Bunnett of Stormfront

Studios was particularly eloquent about

this, pointing out that HALO had “solved

this problem effectively with frequent

checkpoints at which the action is briefly

abated and games can be restored.”

Breaking up large action segments of a

game into smaller segments is good

advice in most cases. There’s a rule lurk-

ing in there, trumped perhaps by the

occasional specific need to arrange those

smaller segments into a larger continuous

whole in order to move a story along or

build tension or excitement in a critical

sequence of a game. Certainly it’s always

a good idea to break up long, noninter-

active segments into shorter pieces or

find ways to achieve their purpose in the

interactive part of the game.

David 3, Goliath 0. David Bunnett had

some other good points I’d like to relate.

He came up with one of the best poten-

tial exceptions to the rule — extreme

sports games that depend on the player

putting together elaborate sequences of

moves. “Such sequences wouldn’t be

meaningful if players could save in the

middle; they have to be live end-to-end

to be fun,” he says.

This caveat could apply to any game

with a time-critical sequence of moves. It

would be tempting to try to come up with

specific exceptions. But David was ahead

of me with that one and suggested this

refinement of the rule: “Hold the frustra-

tion and inconvenience associated with

saving and quitting to a minimum, but

use common sense when doing so. Don’t

cut the heart out of your game just so

players can save at any time. Do consider

the genre and platform(s) of your game

when designing the save feature.”

The sixth sense. Perhaps the best advice

embedded in that rule is the concept of

using common sense. “Use common

sense when applying rules” is a great

uber-rule with tremendous trumping

power. No rule is so universal or flawless

as to preclude the application of common

sense. Of course, that can apply not just

to game design, but life in general. Can

we apply other game design rules to our

lives? Maybe I’ve spent too much time in

front of the computer. After all, real life

doesn’t have saves. That reminds me,

how long has it been since I backed up

my computer? q

n o a h f a l s t e i n

N O A H F A L S T E I N I Noah is a 22-year veteran of the game
industry. You can find a list of his credits and other information at
www.theinspiracy.com. If you’re an experienced game designer inter-
ested in contributing a game design rule to this column, please e-mail
Noah at noah@theinspiracy.com (include your game design back-
ground) for more information about how to submit rules.

The Story So Far

HALO’s frequent checkpoints enable quick
saves.

B E T T E R B Y D E S I G N

j e f f l a n d e r

Continuum Mechanics:
Bending Stuff Past the

Brea Point

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r30

C O N T I N U U M M E C H A N I C S

king

Continuum Mechanics:
Bending Stuff Past the

Brea Pointking

T
ake the following scenario: Fully
decked out in your battle armor,
you head down the smoke-filled
corridor of the latest gothic/
techno dungeon you are attemp-

ting to plunder. You reach the edge of a deep pit,
whose bottom is lined with sharp spikes that
could do your body a great deal of harm. Jumping
over the pit laden with all your battle gear is out
of the question, and you’re not going to face
the demon hell-kitty without it.

Luckily, there is a long wooden plank in the
wreckage of that tavern you just destroyed. Not
as strong a board as you would like, but it will
have to do. You fetch it and stretch it across the
span. As you take a step, the board wobbles and
creaks a bit, but it seems like it will hold up. On
your next step, the board creaks even louder.
You debate whether to lighten your load a bit
but decide to take a chance. On the next step

the board breaks, and body piercing
has just taken on a new meaning.

L ike many game developers, I really enjoy building

stuff. I don’t mean a polygonal tree trunk or a

bathing beauty built from a multi-resolution mesh.

I’m talking about building large physical objects,

things that you can actually hold in your hand and

would hurt like crazy if dropped on your foot. It probably has

something to do with the way that the virtual world where

most of us spend our days building things competes with our

primitive needs to create physical stuff that we can wave

around and thereby look impressive. Often, however, it’s as

much fun to bend and break things as it is to build them.

The virtual 3D worlds we create for today’s games look fairly

nice: there are impressive amounts of detail all over, and people

move around in a fairly realistic manner, interacting with each

other and the environment. With only a few notable exceptions,

however, these worlds are largely static and unchangeable. Even

when you can break something up, it happens in a largely prede-

termined manner: an object explodes in a shower of particles of

fire and smoke to reveal a new, “broken” version of the object.

We need to go quite a bit beyond this level of interactivity to

appeal to the builder-destroyer in all of us.

Step Inside the Continuum

I n order to make a dynamic scenario where wooden planks

wobble, creak, and possibly break, we need to understand

how objects behave when various forces are applied. The study

of materials subjected to external influences is known as contin-

uum mechanics. Bonet and Wood’s Nonlinear Continuum
Mechanics for Finite Element Analysis (see For More Informa-

tion) provides a complete explanation of the summary of contin-

uum mechanics that follows.

External influences can be a variety of different things, from

very common forces such as gravity to a foolish player jumping

up and down on a rickety bridge. Other influences could be

more abstract in nature, such as fire or a corrosive chemical

that can change the strength of a material.

For this discussion, an object represents a continuous materi-

al that is connected by internal forces. On an atomic level,

interaction between the atoms that make up the object hold it

together and give the object its strength. If the object has the

same internal strength in all directions, it is said to be isotropic.

For simplicity, I will be dealing only with isotropic materials.

However, it is important to understand that many materials,

such as wood, can behave in a much more anisotropic manner.

Material can be further classified by how it behaves once

deformed by external applied forces. If the object returns to its

undeformed shape once the applied forces are removed, the

object is said to be made of an elastic material. If the object

does not return to its undeformed shape when the forces are

removed, it is made up of a plastic, or inelastic, material. For

example, a plank of wood is generally an elastic material, while

a lump of clay is quite plastic. It should be obvious, however,

that the properties of a material can change based on the same

external forces that can deform it. For instance, a sheet of glass

is generally elastic and breaks easily, However, once the exter-

nal influence of heat is applied, it becomes much more plastic

and can be bent to retain a shape.

To understand how this works, let me take the example of a

small piece of bungie cord. When the cord is at rest, it will have

an initial length, L, and a surface area, A, as shown in Figure 1.

Once stretched by pulling on each end, the cord increases in

length, l, while decreasing in area, a. As anyone who has ever

stretched a bungie cord knows, the act of stretching the cord

creates a large strain on the cord. If the strain becomes too

great, the cord can break. In order to be useful, it’s important

to be able to measure this strain. One easy measurement of

strain is the change in length of the material divided by the rest

length. This is commonly known as the engineering strain,

defined by the notation εE.

Engineering strain is just one example of a measurement of

strain. Another similar example is Green strain, εG, named after

George Green, the early 19th century mathematician. While the

Green strain formulation is a bit more complicated, it can be

useful for some applications:

For measuring the strain in a one-dimensional system such as

a spring, Green strain is probably not appropriate, since it acts

like l 2. However, for 2D and 3D problems, it performs better

than simple engineering strain.

Another important concept in describing continuum mechan-

ics is the notion of stress, σ. Stress is defined as a value of force

per unit area. Stress is related to strain by the use of a propor-

tionality constant know as the Young’s modulus (or elastic

w w w . g d m a g . c o m 31

FIGURE 1. A bungie cord at rest (top) and stretched (bottom). The strain
on the cord is one component of continuum mechanics.

J E F F L A N D E R | When not spending his time developing PC
and console games, Jeff is busy working on building his first house.
Hopefully he can make it a bit stronger than his virtual stuff. Send
your master carpentry tips to jeffl@darwin3d.com.

εE

l L
L

=
−

εG

l L
L

=
−2 2

22

L

l
a

A

modulus), E. This constant, usually a pretty large value, can

also be thought of as the “stiffness” of the material. For a sim-

ple linear, elastic material, stress is defined as:

This is the first part of Hooke’s law of elastic materials. This is

the same Hooke who described the behavior of spring forces that

we often use in game development (see For More Information).

The second part of the law describes the fact that there is a strain

contraction that is perpendicular to the stretch direction. This

proportionality is a constant know as the Poisson’s ratio, ∆.

For a bar with a width w, height h, and length l that is

deformed, the strain in both w and h is equal and proportional

to the strain in the direction of stretch, l. Which, said different-

ly, is simply the relationship between the elastic properties of a

material. This constant is generally a positive number less than

0.5. If the Poisson’s ratio of a material were equal to 0.5, the

material would be incompressible and its volume would remain

constant no matter how much it was deformed. If a ratio of less

than 0.0 were used, the material would actually gain volume as

it was deformed.

That adds up to quite a few formulas and terms to throw out

there, but the concepts are actually very simple. Together, the

Young’s modulus and the Poisson’s ratio describe the properties

of the material. The two constants are sufficient to account for

many of the differences between materials such as metal and

rubber and pretty much any kind of elastic material you would

want to simulate.

London Bridge

A couple of years ago there was a shareware game released

called BRIDGE BUILDER by Alex Austin, now of Chronic

Logic. This game allowed you to create a bridge by connecting

steel spans across various obstacles. This level of physical sim-

ulation is a simple example of the kind of dynamic deforma-

tion that can be created using the definition of stress I

described above.

Back in March 1999, I wrote a “Graphic Content” column

for Game Developer on mass-and-spring dynamics. In that arti-

cle, I used point masses that were connected by springs to simu-

late dynamic soft-body objects. A spring was defined as a con-

nection between two point masses. The rest length between the

two points was saved at initialization. As the simulation pro-

gressed, the points were free to move around, subject to external

forces such as gravity. As the points moved, the spring forces

were then applied. The spring force acting on a particle, p, took

the form:

In this formula, the force acting on the point p is equal to a

negative spring coefficient times the current length of the

spring minus the rest length of the spring. This formula

requires much of the same information as the definition I gave

for stress and strain. I can easily calculate the value of stress

on any particular spring in my simulation. This measurement

of stress gives me an easy picture of what is going on with all

of the springs. When the stress of a particular spring is equal

to 0, the spring is at its rest length. If the value of stress is pos-

itive, the spring is being stretched. If the stress value is nega-

tive, the spring is in compression.

I can establish an arbitrary failure point for the springs in the

system. For example, if the springs are stretched too far or com-

pressed too much, they could break. As an additional control

over the simulation, the Young’s modulus can be used to define

different types of springs that are made up of different materials.

You can see an example of my “civil engineering” simulator

in Figure 2. In this simple example, I have created a rope

bridge. The calculated stress values in each spring have been

color coded from white, representing no stress, to red, repre-

senting the breaking point for the rope. By adjusting both the

spring constants, the Young’s modulus, and the stress breaking

point, I can create a bridge that simulates everything from stiff

and brittle to flexible and forgiving.

Elementary Problems

I t may seem like this system would be enough to create all

sorts of deformable and destructible objects. For the most

part that is true. However, anytime you start trying to build

objects from a mass-and-spring system, you almost immediately

run into a fairly fundamental problem. Objects that are made

up of groups of springs tend to have problems holding their

volume. In fact, with connected springs there really is no vol-

ume, so volume needs to be implied by the connectivity of the

springs themselves. To make sure the volume of an object is

preserved, a large number of extra springs must be created as

crossbeams, as you can see in Figure 3.

This is a terribly inefficient way to create solid models. It

would make much more sense to begin with a primitive building

block that represents a chunk of volume. In continuum mechan-

ics, one method for calculating the deformation of a solid mate-

C O N T I N U U M M E C H A N I C S

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r32

FIGURE 2. A rope bridge made of springs. The force of the stress on the
ropes increases from white to red.

σ ε

σ

=

=
−

E

E
l L

L

∆ ∆ ∆w
w

h
h

l
l

= = −

< <

ν

ν0
1

2

f k l Lp s= − −()

rial is to divide the continuous material into a finite number of

elements. In this finite-element method, a shape function and the

nodes along the boundary define the element structure. Several

graphics researchers have explored the use of finite-element

methods for computer animation. In particular, the work of

James O’Brien and Jessica Hodgins is well suited to the task of

interactively deformable objects (see For More Information).

Their method made use of tetrahedral finite elements. This

choice makes a lot of sense for game developers, as we are quite

familiar with creating complex surfaces with triangular meshes.

You can see an example tetrahedron in Figure 4.

The volume of a tetrahe-

dron is defined by starting

from any vertex, then making

vectors from the three edges,

a, b, and c, that connect the

other vertices to that vertex.

The volume is:

In mechanical-engineering

applications, a finite-element

system is solved by computing

the stress and strain factors

for each node in each element

in the entire object. In many

applications, these factors are then combined into a large global

stiffness matrix, creating a linear matrix equation. That equation

needs to be solved numerically and then the node positions can

be updated and the finite-element system advanced. As you can

imagine, solving a large linear system of equations can be quite

time consuming. In the paper by O’Brien and Hodgins as well as

another paper by Gilles Debunne and others (see For More

Information), a more efficient technique is used. In this method,

each element is solved independently, greatly increasing the speed

of simulation.

For the finite-element system, you must take care when

establishing the coordinate system. Each node (or vertex) in the

finite-element mesh has an initial, undeformed position. Once

forces are applied, the object begins to move and the node posi-

tions change. However, just because the nodes have moved

doesn’t mean that the object has deformed.

As an example, think of a single tetrahedral element in space.

If we were to apply a simple rotation to the object, the posi-

tions of all the nodes would change. However, relative to each

other, the nodes have not changed position and the object has

not deformed. It is clear that we need a method for computing

whether an object has deformed within its own local coordinate

system. This is analogous to other general 3D problems such as

when we have to transform objects into a different local space

in order to perform lighting calculations.

Getting Barycentric

S ince an object can deform, coming up with a consistent

base frame of reference is difficult. One method is to use

barycentric coordinates to establish a consistent frame of refer-

ence within each element.

By looking at Figure 5 (on page 34), we can see how this

works on a triangle. The center of mass of a body is the point

at which it would be balanced under the influence of gravity.

This center point is also known as the barycenter. In the case

where the mass at each vertex is equal, this point can be calcu-

lated a number of ways. If lines are drawn from each vertex to

the center of the opposite edge, the point at which the lines

intersect is the barycenter, b. (This point is also simply the aver-

age of the three vertices.)

The barycenter and the three vertices define a coordinate sys-

tem for that triangle. In this system, each point on the triangle

is defined by three barycentric coordinates. The vertices make

up the boundaries of the system: p0 = (1, 0, 0); p1 = (0, 1, 0);

p2 = (0, 0, 1). The barycenter of the triangle has the barycentric

coordinates (1/3, 1/3, 1/3). The length of the barycentric vector

must be 1, meaning the sum of the barycentric coordinates

must add up to 1. Given the barycentric coordinates (b0, b1,

b2) of a point p, and the three triangle vertices (p0, p1, p2), the

position of that point is:

Finding the barycentric coordinates for a point is as easy to

compute with a few more calculations:

With a coordinate system in place, it can be used to describe

the shape of a triangle. If the barycenter is projected onto each

edge of the triangle, you will get the points e0, e1, and e2. The

barycentric coordinates of these points encode the shape of the

triangle. For example, in an equilateral triangle, the points e0,

e1, and e2 divide the edges in half. In this case, the barycentric

coordinates would be (0, 0.5, 0.5), (0.5, 0, 0.5), and (0.5, 0.5,

0) respectively.

For a triangle in any orientation, the barycentric coordi-

nates of these test points can be calculated. This provides a

w w w . g d m a g . c o m 33

V a b c= ⋅ ×
1

6
()

FIGURE 3. Spring objects unsupported (left) and with crossbeam volume
supports (right).

FIGURE 4 Tetrahedrons serve a
variety of interactive simulations
well with their triangular meshes.

p0

p1

p2

p3

denom p x p x p y p y p x p x p y p y= − − − − −(. .)*(. .) (. .)*(. .)1 0 2 0 2 0 1 0

b
p x p x p y p y p x p x p y p y

denom
=

− − − − −(. .)*(. .) (. .)*(. .)
0

1 2 2 1

b
p x p x p y p

=
− −(. .)*(.

1
2 0 ..) (. .)*(. .)y p x p x p y p y

denom
− − −0 2

(. .)*(. .) (. .)*(. .)
b

p x p x p y p y p x p x p y p y
denom

=
− − − − −

2
0 1 1 0

p b p b p b p= (* , * , *)0 0 1 1 2 2

method for measuring the shape deformation of a triangle,

regardless of its orientation. Obviously, this method only

measures the deformation of shape. The size or scale of the

triangle can increase as long as the shape is preserved and the

barycentric coordinates will stay the same. To counteract

that, forces are applied at the vertices drawing toward the

barycenter that preserve the area of the triangle. While the

method I described here is for a triangle, the same method

applies to a tetrahedron. However, in the 3D case with a

tetrahedron, there are four barycentric coordinates to

describe a point, and the test points are projected onto the

face opposite each vertex.

Using this technique, a simple matrix transformation will

convert world position back into the base reference frame so

the displacement of each node can be determined and the strain

value can be calculated. Using the material properties of the

object, the strain values of the nodes, and the volume of the

tetrahedron, forces are then applied to each element node to

attempt to return the object to its rest shape.

Those Numbers Are Lame

T he O’Brien and Debunne papers use a different set of prop-

erties to describe the elastic solids rather than the Young’s

modulus and Poisson’s ratio that I described here. To simplify

some of the calculations, they use the Lamé coefficients, λ, rep-

resenting the rigidity of the material, and µ, representing the

incompressibility of the material. I have also seen these referred

to as the Lamé modulus and shear modulus, respectively. In any

case, there is an easy conversion between the Lamé coefficients

and the Young’s modulus and Poisson’s ratio:

Since these are both constants for each material, they can be

easily looked up from a table of material properties. A nice list

of materials can be found at www-mtl.mit.edu/users/lincc/

constants.html.

The complete mathematics behind the finite-element calcula-

tions get pretty involved, but the concept is fairly easy to grasp.

The key concept involves tracking each element as it travels

through space and applying forces in that local material frame

to maintain the element shape.

You can see my simple finite-element simulator in action in

Figure 6. The two bars are meshed identically, the only differ-

ence being the material properties. They are anchored at the

back, and gravity is being applied across the rest of the object.

How Do I Use This?

T hese techniques can be used literally as the building blocks

for deformable objects and to exhibit various properties

associated with real, flexible objects. For example, you should

now be able to create a dynamic rope ladder that a player can

climb, which may stretch and break if overloaded.

While finite-element methods look daunting at first, they are

actually very similar to mass-and-spring systems. In both cases

we are simply applying forces to a system of nodes. Finite ele-

ments use a geometric relationship between the nodes to describe

the object’s shape rather than simply the distance between them.

Even the complete finite-element system I just described is

capable of handling large, complex objects with various proper-

ties in a much more efficient manner than could be accom-

plished with a mass-spring system. In particular the system

doesn’t suffer from the volume preservation problems that are

sometimes associated with mass-spring systems.

CEL DAMAGE, from Pseudo Interactive, provides further

proof that these techniques can add an interesting element to

realism, as well as physical consistency in a variety of new

gameplay ideas. This game is the first I know of to create a

world where all of the objects in the world are governed by

continuum mechanics. The developers used a low-resolution

finite-element representation for the physics of the system.

m o n t h 2 0 0 2 | g a m e d e v e l o p e r34

C O N T I N U U M M E C H A N I C S

λ
ν

ν ν

µ
ν

=
+ −

=
+

E

E
()()

()

1 1 2

2 1

FIGURE 6. A stiff finite-element bar (top) and a flimsy one (bottom), as
produced by the author’s simulator.

FIGURE 5. Barycentric coordinates. The barycenter is where lines drawn
from each vertex to the center of the opposite edge intersect. It is also
the average of the three vertices.

p0 p0

p1

e1 e2

e0
p2 p2

b

p1

b

Instead of the linear tetrahedral shape function I described

here, they used a quadratic basis function. This representation

makes it quite easy then to deform the higher-resolution visual

models using a technique similar to free-form deformation.

Future Issues

T here are some places where this kind of system will not be

useful for games. The finite elements as described will

always return to their base shape when all external forces are

removed. That is to say that the system is designed for totally

elastic materials. If you wanted to create a more plastic materi-

al, such as a lump of clay, you would need to investigate some

other techniques.

In my sample application (available for download from the

Game Developer web site at www.gdmag.com), it is not cur-

rently automatic that you can load in an object and it will gen-

erate the finite-element tetrahedral meshing for you. It needs to

be done manually in the modeling program or by connecting

nodes into elements. This sort of connect-the-dots work is a bit

of a pain, so automatic meshing would be a good thing.

There is a lot of information out there on this topic. In fact,

meshing is an entire field of research of its own. Many of the

methods involve a technique know as Delaunay triangulation.

You can find a great starting point at the web site run by

Steven Owen called the Meshing Research Center. He has listed

links to pages, algorithms, and commercial meshing packages.

I also didn’t get into the topic of collision detection between

objects. Tetrahedron-to-tetrahedron collision detection is actually

pretty easy. Collision response, however, is more difficult. I am

currently using simple penalty methods to handle the response.

However, this method does not handle certain things such as fric-

tion very well.

The O’Brien paper goes into great detail about a tech-

nique for breaking these finite-element objects into lit-

tle pieces. While the complete technique is much too

computationally expensive for a real-time application

at this time, it is a really interesting technique. I have

implemented a simple fracture system by just break-

ing elements at node points. I am currently exploring

how to extend this simple system and create a much

more realistic effect without any further speed penal-

ty.

I hope this article has gotten you thinking about

ways of making our game worlds more physically

interactive. By creating a world for the player that is complex

and physically self-consistent, we can start to achieve forms of

emergent gameplay where the solutions to in-game problems

are not restricted by scripted

actions. q

w w w . g d m a g . c o m 35

F O R M O R E I N F O R M AT I O N

BOOKS
Basics of continuum mechanics:
J. Bonet and R. Wood. Nonlinear Continuum Mechanics for Finite

Element Analysis. New York: Cambridge Univ. Press, 1997.

GGAAMMEE DDEEVVEELLOOPPEERR

Dynamic spring behavior:
J. Lander. “Collision Response: Bouncy, Trouncy, Fun.” Graphic

Content, March 1999: pp. 15–19.

PAPERS
Elastic deformation:
G. Debunne and others. “Dynamic Real-Time Deformations Using

Space and Time Adaptive Sampling.” In Computer Graphics

(Proceedings of SIGGRAPH 2001). August 2001: pp. 31–36.
Finite-element methods for object deformation:
J. O’Brien and J. Hodgins. “Graphical Modeling and Animation of

Brittle Fracture.” In Computer Graphics (Proceedings of SIG-

GRAPH 99). August 1999: pp. 111–120.
www.cs.berkeley.edu/~job/papers/obrien-1999-GBA.pdf

The physics of CEL DAMAGE:
D. Wu. “The Physics That Brought CEL DAMAGE to Life: A Case Study.”

Game Developers Conference 2002 Proceedings.
See www.pseudointeractive.com/about.shtml

WEB SITES
PONTIFEX, sequel to Alex Austin’s BRIDGE BUILDER

www.chroniclogic.com
Barycentric coordinates

http://mathworld.wolfram.com/BarycentricCoordinates.html
Conversion factors, material properties, and constants

www-mtl.mit.edu/users/lincc/constants.html
Steven Owen’s Meshing Research Center

www.andrew.cmu.edu/user/sowen/mesh.html

A C K N O W L E D G E M E N T S

Thanks to James O’Brien of the University of California at Berkeley
and David Wu of Pseudo Interactive for their input on this article.

CEL DAMAGE took the concept of continuum mechanics to a car-
toonish (and successful) extreme.

T here are a lot of silly little things about the game

industry that I love, and a lot of that I could do

without. One of the things I love is that whether

it’s game design or a piece of code, there’s always

something new to learn about the business, even

from seemingly unlikely sources.

A lot of what I have learned about the game industry in my

lifetime hasn’t come from the trenches; it’s come from the part

of my life that’s not involved in games. Through observation,

movies, comics, and experiences interacting with people, I’ve

learned more about creating an interactive world than I ever

have from actually playing one.

If what follows in this article appears to be non–game related

at first, stick with it; it may be entertaining at the very least,

and hopefully educational for you if you’ve had your morning

cup of coffee. Like many things in life, there’s something rele-

vant to making games somewhere in there.

One big challenge developers face in our medium is that

game design is one of those gray areas that’s extremely difficult

to teach in school (and up until very recently no one taught it

at all). To complicate matters further, there are many different

approaches to game design. While a simple game such as SPACE

INVADERS doesn’t need much more than a page to design, large

modern games need a great deal of thought before the first line

of code is written. Some games have many contributors to the

overall design, while others divide resources and conquer. Of

course, there’s no single correct way to design a game, it’s as

varied in approach as authoring a book, planning a revolution,

or making a documentary on beetles.

Despite the challenges game designers face in figuring out

exactly what it is they are doing, there are some universal foun-

dation pebbles that designers of all large, complex games can

identify and use. I’ve got a few of these pebbles right here in a

bucket, so let’s reach in and look at one.

Starbucks

I go to Starbucks a lot. There are two locations I frequent

daily: one near my house, the other near the office. I know

almost everyone there by name, and they regret knowing me.

The Starbucks near my house is also near a bunch of other

houses, so it’s full of teenagers, real estate brokers, and so

forth, while the one at the office gets everyone from Sears

employees to truck drivers to office folk.

More than a few times a week I sit around at Starbucks and

watch life go by. Really, there is nothing better than a Starbucks

for watching the patterns of life reveal themselves to you. There

are patterns both in the macroscopic day of the week and in the

microscopic time of day. Some are quite subtle, but you can

observe all of them in action with a comfortable seat and a hot

cup of coffee. It’s chaos theory on caffeine. My interest in

observing these patterns is furthered by the fact that the two

locations each has its own distinct patterns.

Now, I could have used any location for such important

game design research, I suppose, but Starbucks is good for a

few reasons. First, it doesn’t serve alcohol, so my memory of

what happens there isn’t impaired as the time passes, and I can

generally stay focused. (To that end, I valiantly tried several

other locations that served Guinness, none of which worked

out well for game design research.) Second, Starbucks has very

comfortable seating. Comfortable seating is extremely impor-

tant in any long-term experiment. And finally, they have wire-

less Internet access. O.K., perhaps that should have been higher

on the list.

Most weekdays I go see what’s going on at either location

first thing in the morning. Generally there’s a line to get caf-

feine, a few people sitting down, and a lot of traffic going

through the store. Now is not the time to chat to the staff, and

if you persist, your chances of getting a free coffee later in the

day degrade rapidly. The smile they have for you is the smile

they have for everyone. You say hello to a few regulars who

appear there at the same time as you every day, and you move

on with your day.

Weekend mornings are different. I go up there with my

daughter and we pass through. On these days I am not so much

me as I am simply the man who accompanies his daughter.

Some regulars hang out there on weekend mornings, lingering

longer, perhaps with a paper or a friend, and several “week-

enders” hog the comfortable chairs. There are unwritten meet-

ing times every weekend for casual groups.

How does any of this apply to computer games? Well, I think

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r

G R A E M E J . D E V I N E | Graeme is currently programming for
DOOM III, in production at id Software.

g r a e m e j . d e v i n e

Game Design Lessons
from Real Life:

Game Object Interactions

36

O B J E C T I N T E R A C T I O N

w w w . g d m a g . c o m 37

Ill
us

tr
at

io
n:

 K
ev

in
 M

cS
he

rr
y

of everything in a game as an object, be it a soldier, a tavern, an

airplane, or a villain. They are all objects. Most of the time we

forge ahead with these objects and, in our eagerness to

get on with populating a game world, add them into

our game environment without much thought.

This brings us to the second part of a game,

the environment, within which the objects

interact: deep space, open fields, and under-

water caverns are kinds of environments.

Environments provide the binding fabric for

the objects — think of it as the code that

provides the laws of nature. Physics, light-

ing, time, and particles would all be coded

as part of the environment. The environ-

ment is the conduit that passes the outputs

of the various game objects to the inputs of

others, ensuring that the objects exist,

look, and feel right to the player.

Objects

B ecause the majority of

player time is spent inter-

acting with objects or causing

objects to interact with each

other in the environment,

designers cannot afford to

dump them into the game

world with giddy abandon.

Objects serve as shells for the

components of a game. They

have defined input parameters,

and based on that input they

affect the environment and per-

haps other objects within the game

system. Let’s look at a well-defined object

and something poorly defined.

Say we’re making a massively multiplayer online

game and we need a tavern. We’ll call our tavern

“Novapounds.” Novapounds serves all, accepts gold, and dis-

penses ale that gives you some small amount of health, but at

the expense of some dexterity. Sounds nifty, doesn’t it? Because

of its extreme popularity in this online world, Novapounds tav-

erns open up all over the place.

So far with this game object, we have gold coming in and

some not necessarily tangible benefits coming out. However, it’s

a good place to meet people; you can load up on six-packs of

ale to go, and you’re set for a fine evening killing monsters.

Now, to vastly oversimplify a game system here for the pur-

pose of an example, what happens to all the gold?

A well-designed MMOG creates an economy that cycles

what it has and allows for gold to flow back into the game sys-

tem. But in our case with Novapounds, we just zap the gold

into the ether and it’s gone from the world forever. Pretty soon

there’s no gold, and you’re left inserting new gold into an econ-

omy that is never going to balance.

A simple solution might be to have a well-armored wagon

stop by several times a day, pick up the gold, and carry it off to

a bank. But all we’ve done here is move the problem to another

building, albeit an aptly named one. How do we cycle the

gold back into the game system?

There are several design opportunities here to

explore. First off, we could build the concept of rob-

bery into the tavern, the wagon, and the bank. Each

of these has increasing risk/reward scenarios that

seem well suited toward a game system. Second, we

could also use a “game tax” to pay for the various

objects we have in and around the environ-

ment doing bidding on behalf of the

game. For example, 10 percent of

what you take from monsters and

looting is paid to the city upon

entering its gates. (Someone’s got to

pay to keep the golf courses green.)

Third, we could make the

owner of Novapounds the

hooded villain behind

the curtain, which

would be a poor

choice, since now

you’re tying the

design of an object to

some game story ele-

ment.

These opportuni-

ties are fraught

with problems

themselves, but they

illustrate how a sim-

ple object, badly

designed, can corrupt

the complete game.

Objects need a diverse set

of input parameters that

make sense in order for that

object to work well.

When Good Objects Go Bad

A well-defined object goes on to provide additional interest

to the world it serves. Just as my local Starbucks is

observed to change given the store’s location and time of day,

each object in a game should change based on its location and

time within the game system. And as an object changes during

the course of a game, it is important that it continue to behave

correctly at all times.

What exactly does that mean? A well-defined object, even

something as complicated to define as a tavern, needs to oper-

ate as a good citizen in the environment at all times. If there’s a

morning rush, an afternoon lull, or a sudden urge among all the

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r38

O B J E C T I N T E R A C T I O N

other game objects to hang out around it, the tavern object

needs to continue operating per its set of rules, so it can present

good information to the player in the spirit of the game. These

other game objects know nothing about being a tavern — and

shouldn’t — but the tavern should provide input to them that

allows them to behave appropriately, just as we receive input

upon entering a coffee shop that tells us what is going on there

and how we should behave.

The best example of a game whose objects behave well

together may be the original SIMCITY. There are so few objects

in that game but so, so many possibilities. Many an evening I

would spend carefully placing industry blocks far away from

my commercial and residential blocks, always trying to create

Utopia but inevitably ending up with Detroit. On the flip side,

a game that initially presented many balance issues was ULTIMA

ONLINE. The bunnies outside the cities were hunted to extinc-

tion, bringing down fiercer animals looking for food, which

made it impossible for newbies to leave the city walls lest they

become an easy meal.

Another example of poorly thought out object interaction

can be found in action games, which often do not allow for

player death. A player can be armed to the teeth, get beaten by

some bad guy, and then come back to the same spot with

nothing more than a large stick. Thus players are unable to

fend off an attack from any kind of enemy around their cur-

rent position. While a large stick is sufficient defense against

bunnies, it doesn’t serve you so well when the other guy has a

rocket launcher.

Those are perhaps extreme examples, but almost every game

has something in it to illustrate some kind of breakdown in

object interaction. I worked on an RPG once that, in theory,

had you spend many hours gathering a party to undertake a

great quest fraught with danger and peril. Right before the

game went gold, we noticed that if the player character made a

beeline for the end of the game, skipping the middle, it was

possible to complete the game in a matter of minutes. No rules

were broken, but it was obvious that we had taken a singular

avenue of thought making the game, following the written story

as we tested rather than exploring everything. Because of our

slavish devotion to our story as written, we had ignored the

obvious path.

Circumstances such as the examples I’ve just described might

seem like egregiously obvious design flaws, but the fact is I’ve

read a lot of game designs that fail to think through and docu-

ment how all the objects will interact with each other in the

environment. Such a lapse in object design can end up in a

great-looking but direly flawed beta that leads to late changes

— changes that try to fix these flaws but never really do,

because it’s too late in the process. Very little can be done at

that point to prevent late-emerging flaws from becoming flaws

that ship with the game.

How can you as a designer avoid flawed object interactions?

Thinking of all the possibilities while standing in the shower,

driving your car, and dreaming are preferred methods (remem-

ber, switch the shower on) among game designers to address

this and many other game design problems. Such techniques go

to show that effective tools for game design are still few and far

between, so you will have to rely on classic tools such as Word

and Excel to outline the ins and outs of various game objects in

the world, show their relationships, and provide the day-to-day

roadmap for project development. The act of actually creating

these object profiles often sheds most of the light, and should

help you avoid problems down the road.

Documenting Object Interactions

L et’s think about how we would communicate an object’s

parameters in a game design document. If we were to

spend a few words on our Novapounds tavern in a game

design, it might go something like this.

This example object description not only gives a brief

overview of the object with brief headings describing its name

and use, but more importantly it describes how the object inter-

acts with the world. It would be one of many such objects in a

game design, each with a brief overview describing how it fits

into the world, before a much more detailed overview later in

the document. If you think through all your characters, func-

tional places, vehicles, and so forth in this manner and give

them a way to fit into the environment naturally, you’ll have a

good, concrete basis from which to move forward. This basis

w w w . g d m a g . c o m 39

Name: Novapounds

Type: A Tavern Building

Use: Spending gold here will give you health at the cost

of some dexterity. For every one gold coin spent here, you

gain four points of health and lose half a point of dexteri-

ty. You can only go four points past your maximum

health; the dexterity loss is temporary and lasts for 10

game minutes.

Notes: Novapounds was founded in EA 35 by two small,

furry creatures that happened to have a love for smol-

grass, the base of the warm liquid that tastes not totally

unlike tea, sold here. They ran the business successfully

until EA 42, whereupon lawyers finally caught up to

them, nailed them to the wall, and bound them with so

much red tape that they were never heard from again. The

business fell into the hands of the state and has been a

source of profit for the inner worlds ever since. The funds

collected at each Novapounds are used in various non-

profit rehabilitation programs for the local criminal popu-

lation. Unfortunately, this has proved to be a complete

and utter failure, but since no one has a better idea, the

practice continues.

Bottom Line: Money comes in here, and goes out to

rehabilitate bad guys, making the loop complete and the

need to just make money appear out of thin air go away.

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r40

O B J E C T I N T E R A C T I O N

GREAT GAME
GREAT GAME is a massively multiplayer online

game; it’s set in the future, which is surprisingly full

of goblins, elves, and furry creatures large and small.

[Go on to describe universe.]

GREAT GAME revolves around a “living economy.”

That is to say, there’s a strong attempt with the game

system to cycle everything in the world, mirroring the

way a real-world economy works. There could be times

of growth, spurring grand quests and adventures, and

times of despair, whereupon a large percentage of the

players may turn to crime as a way to stay alive.

[Go on to describe role of players.]

In each of the towns, we’ve established several

franchises that can equip players with clothing,

weapons, the finest footwear this side of Proctus

Glandus, information, and health. These gathering

places provide some of the core mechanics to the liv-

ing economy, as gold is cycled from the monsters, to

the players, and back to the monsters.

something like this:

And so we’re on our way

to a good game design doc-

ument. There’s much

more to a game design

document than just

these components, of

course, but there’s no

doubt that the up-front

thought and work done

here on how game objects

interact together can break

or make a game.

Not every kind of game

requires such in-depth documen-

tation, and indeed there is a grow-

ing antidocumentation sentiment

among some designers and producers

out there for certain kinds of games.

However, large games that represent a

vast, complex environment with many inter-

actions between the game objects absolutely need to be docu-

mented. Without sufficient documentation for game objects in

particular, your project will run late, be open to mistakes, and

lack specific goals that allow the game to finish. Mark my

words.

As I sit here in Starbucks wrapping this up, there are people

chatting, others are reading books, and perhaps a business deal

or two is in the works. It’s all going along well, cycling the

world, behaving properly within its parameters. Starbucks has

taught me quite a bit about game design so far, and surely

there’s more to learn, perhaps even another pebble or two.

won’t connect all the pieces together, but as you complete, pol-

ish, and finish the design off, it should provide a logical rule set

for your game world and characters.

Before you even get to the level of detail present in these

notes, there should already be a very broad game overview that

fits all the pieces together in the grand scheme of things. If we

were to insert Novapounds into such an overview, it might go

Origin’s ULTIMA ONLINE (left) and Maxis’ SIMCITY (right) are both games that allow plenty of interaction between different objects within the game.

G ame worlds are becoming

increasingly complicated.

As programmers, we write

rules that determine how

the game world behaves.

Those rules need to produce increasingly

complex results as output; as for input,

they need to deal with larger volumes of

world state, and the world state describing

any particular entity is becoming ever

more intricate.

As a result, unsurprisingly, games are

becoming harder to create. One way we

might cope with this reality is simply by

becoming better, more experienced pro-

grammers. But there’s a limit to how far

we can push before we snap or something,

so we need other options. One option is

to use ever-larger teams of programmers

to create games, but it’s clear from experi-

ence that that doesn’t work very well.

So what can we do? We can adopt

more powerful methodologies; this has

benefited us greatly in the past, as we

program in C++ now instead of assem-

bly language, and we’re much better for

it. Unfortunately, new methods and con-

cepts don’t come along very often. So

we need to actively seek them out, or

invent them.

Statistics

O ur game worlds contain huge

amounts of information, and we

need to process all of it to produce mean-

ingful results. I propose turning to the

well-studied field of statistics to find

ideas that can help us here. One of the

purposes of statistics is that you can

summarize large amounts of data in use-

ful ways, and you can perform well-

defined mathematical operations on that

summarized data.

Statistical methods can be extremely

robust in the presence of noise or incor-

rect inputs, where discrete algorithms

would fail outright. This is important

because rigid algorithmic failures are a big

source of headaches in modern games.

Stochastic algorithms can provide a terrif-

ic speed boost as well; for example,

Monte Carlo Ray Tracing (MCRT) and its

algorithmic descendants are widely

believed to be the best methods of high-

end scene rendering. But game program-

mers’ statistical tool-sets tend to be very

small, so I’d like to introduce a tool that I

call the “covariance body.”

You can find brief presentations on the

idea of covariance on various web sites or

in statistics or physics books. That materi-

al is often unfocused, difficult to wade

through, or just hidden in a place where

most game developers won’t come across

it. The purpose of this article is to present

covariance bodies in a utilitarian way.

Two months ago I made a passing ref-

erence to covariance matrices, in my col-

umn about transmitting vectors over a

network (“Transmitting Vectors,” July

2002). I discussed the fitness of squares

versus hexagons for tiling the plane and

said that covariance matrices can tell you

their relative compactness. This month

I’ll show how.

“Covariance Body”

Covariance body is a nonstandard

term that I chose to represent a cer-

tain set of values that we can manipulate

as a coherent entity. A covariance body

can summarize a set of vectors in any

number of dimensions; for simplicity, we’ll

restrict ourselves to 2D here, but the gen-

eralization is straightforward.

The quantities that make up a 2D

covariance body are a 2�2 matrix, repre-

senting the covariance of the vectors; a

two-vector, the mean of the input vectors;

and a scaling factor that I will call

“mass,” which is the sum of the masses of

the input vectors. In the simplest case, the

input masses will be one, but it’s often

useful to weight the contribution of vari-

ous vectors (for example, weighting them

according to how confident you are that

they belong in this particular set).

People who have done a lot of physics

programming will find covariance bodies

extremely familiar; they consist of the

same stuff that you work with when

rotating a physical body in space. This

correspondence to physical bodies is nice,

because when you think about what will

happen when you manipulate these things,

your intuition will usually be right.

Mathematically, these quantities together

represent an ellipse positioned in space, as

Figure 1 shows.

The covariance matrix determines the

shape of the ellipse. So what is “covari-

ance,” exactly? In games we often deal

with scalar time-series data, and we know

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r16

j o n a t h a n b l o w

My Friend, the

JONATHAN BLOW I Jonathan is a thinking of leaving the USA.
Where should he live instead? He would prefer someplace that
has no software patents and doesn’t say things like “axis of evil”
when explaining its foreign policy. Send e-mail to jon@number-
none.com and let him know.

FIGURE 1. A set of data points and an ellipse
that summarizes them. The ellipse is drawn
at 1.7 standard deviations.

Covariance Body

I N N E R P R O D U C T

that the variance measures how much the

input value tends to change from sample

to sample. But for today’s purposes, we

want to visualize the distribution of input

values and think of the variance as charac-

terizing the approximate width of the dis-

tribution of input values (Figure 2).

When you have multidimensional

inputs, you can compute the variance for

each dimension separately. But you can

also compute the correlation between the

dimensions, and that is what I mean by

covariance. In the literature you will also

see the term “variance-covariance

matrix,” which for the purposes of this

article means the same thing as “covari-

ance matrix.”

Computing a
Covariance Body

S o, you’ve got a bunch of input

points. These could be positions in

the game world, pixels in a bitmap, or

whatever. Each point has a certain mass

associated with it, representing its rela-

tive importance. The total mass of all the

points is m
total

� �mi, where mi is the

mass of an individual input. The weight-

ed mean of these points, analogous to

their center of mass in the physical

world, is: v
center

� m
total

-1�mivi where vi is

the ith position.

Let v�i be the position of a point relative

to its center of mass, that is,

v� � vi � v
center

Then the covariance matrix, which

describes how mass is distributed in space

around the center, is the outer product:

m
total

-1�miv�iv�i
t. Expanding this product

for the 2D case gives us the 2�2 symmet-

ric matrix:

where vi � (xi, yi).

The covariance body consists of these

quantities, the n�n symmetric covari-

ance matrix C, the n�1 vector for the

center of mass x, and the scalar total

mass m. Occasionally I will refer to a

particular covariance body using the

notation {C, x, m}.

Visualization

T he covariance matrix C tells us the

variance of our mass as a function of

direction. That is not very much informa-

tion compared to the large amount of

data with which we started, but it can

serve as a tidy summary. We can take a

simple shape that has the same variance

as our input data and visualize that.

Another way to think of this is that by

computing the variance of our input

mass, we have least-squares fitted this

simple shape to the input.

The Gaussian curve is one of the most

natural shapes for talking about the distri-

bution of mass. The Fuzzy Central Limit

Theorem states that when you sum

together enough arbitrary random

processes, the result is a “normal distribu-

tion” (a Gaussian; see For More Inform-

ation). Since most sets of data result from

the interaction of a large number of ran-

dom-seeming processes, the Gaussian is a

good way to describe them.

The 2D version of a Gaussian is known

as a Gaussian bivariate distribution; it has

two variances, a maximum and minimum.

The level sets of this Gaussian — points

for which the function has a constant

value — are ellipses. One way to visualize

this Gaussian in 2D is to draw a charac-

teristic ellipse.

The eigenvalues of a covariance matrix

tell you the maximum and minimum vari-

ance of its Gaussian as a function of direc-

tion; you square-root the eigenvalues to

get the length of each axis of the ellipse.

This is because variance is computed in

squared units, and you want lengths in the

native units of your input. Thus, you want

the standard deviation, which is just the

square root of the variance. The square

root operation won’t cause any problems,

since the eigenvalues are guaranteed to be

nonnegative (though they might be zero).

The eigenvectors of the covariance

matrix tell you the direction in which

each eigenvalue is achieved; this provides

the ellipse’s orientation. The mean tells

you where the ellipse should be posi-

tioned. That’s all the information you

need to draw the ellipse on the screen.

Manipulation

O ne nice property of covariance bod-

ies is that you can quickly combine

two bodies A and B. The body you get as

a result is the same thing you would have

computed if you had reiterated over all

the input masses comprising A and B.

You can speculatively combine covari-

ance bodies in hierarchies and speedily

diagnose the resulting shape. This was

very useful to me in a recent image-pro-

cessing application, which required

churning through a large number of

shape combinations.

Suppose you wish to add two covari-

ance bodies, {C
1
, x

1
, m

1
} and {C

2
, x

2
, m

2
}.

Intuitively, the mass of the resulting body

is m
3

� m
1

� m
2
. It’s also not difficult to

figure out that the new mean is a weight-

ed average of the old means, depending

on each body’s mass: x
3
� (m

1
x

1
� m

2
x

2
) /

(m
1

� m
2
). To compute C

3
, we need to

shift C
1

and C
2

so that they represent each

body’s mass distribution with respect to

the new mean. Then we can add the

matrices together, and that gives us C
3
.

To see how to shift a covariance

matrix to a new reference point, expand

the expression m
total

-1�mi(xi � s)(xi � s)t

where s is the vector from the old refer-

m
x x y

x y y
total

i i i

i i i

− 











∑1
2

2

I N N E R P R O D U C T

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r18

FIGURE 2. We consider the one-dimensional
statistics of the data points by projecting them
down to the X-axis (projection shown by red
vertical lines).

ence point to the new one. Expanding this product gives you: C
� sxt

� xst
� sst

, where x was your old reference point (until

now, the center of mass).

Other linear operations can be summed with similar ease. In

my image-processing application, I wanted to least-squares fit a

set of planes to the RGB values that comprised each covariance

body so that I could later reconstruct a linear approximation to

the color over the whole region. Interestingly, the math for this

least-squares fit used the same covariance matrix that I was

already computing; it just used it in a slightly different way,

where I would solve an Ax � b problem to get the results,

instead of an eigenvector problem. So the only additional infor-

mation I needed to keep around was the b vector for the right-

hand side of this equation. When summing covariance bodies, I

would just compute b
3

� b
1

� b
2
, and suddenly I had an aggre-

gate least-squares color fit over the summed body. It was cool.

Compactness

I n my “Transmitting Vectors” column, I talked about using

the hexagon versus the square to tile the plane, in order to

transmit the position of an entity over the network. I said that

the hexagon was a better choice, because it is more compact

than the square.

Covariance provides one method for finding the compact-

ness of a shape. In 1D, given two distributions of the same

amount of mass, the distribution with the smaller standard

deviation is more compact. The situation is more confusing in

2D, where a distribution can be compact in one dimension but

widespread in the other. I tend to measure compactness using

the average standard deviation with respect to direction, which

you can find by integrating over one quarter of the ellipse:

This works out to (a � b) 2/�, where a and b are the lengths

of the axes. If we only care about relative compactness, we can

throw out the scaling factor and just use (a � b).

If we’re dealing with shapes of constant density and area,

like the square versus the hexagon, a circle represents the most

compact possible shape. This is verified by our compactness

measure: if Area � 2�ab, then ab � k � Area / 2�, thus b �

k/a; if you allow a to vary and you minimize (a � b), the

answer you get is

which is a circle.

So to find the compactness of a 2D shape, we just need its

covariance. You can compute the covariance for a 2D shape in

closed form; just integrate the covariance matrix over each

point in the shape. You can generically handle polygons with-

out writing a specific equation for each one; all you need is the

closed-form equation for the covariance of a triangle (an exer-

cise left to the interested reader). Then, to find the covariance

of a polygon, you just triangulate it, compute the covariance

body for each triangle, and combine those bodies.

Sample Code, and Next Month

T his month’s sample code illustrates the construction and

combination of covariance bodies to summarize data. You

can input a bunch of masses by clicking on the screen, and the

program draws the resulting ellipse. So far this has all been a

little bit divorced from the day-to-day concerns of game pro-

gramming, but I’ll apply covariance to a concrete and relevant

topic next month, when I’ll look at scripting languages. Until

then, you can download this month’s sample code from the

Game Developer web site at www.gdmag.com. q

a b k= =

2

0

2

π
θ θ θa b d

x

cos sin+()∫

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r20

I N N E R P R O D U C T

F O R M O R E I N F O R M AT I O N

Central Limit Theorem

http://mathworld.wolfram.com/CentralLimitTheorem.html

P O S T M O R T E M b a r t o s z k i j a n k a

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r42

Gas Powered Games’
DUNGEON

SIEGE

The development of DUNGEON SIEGE was
about much more than the RPG you

may have played by now. DUNGEON

SIEGE was a Herculean effort by a
small group of people who simul-
taneously started Gas Powered
Games, built their first RPG, and
made a hit game.

w w w . g d m a g . c o m

P rior to his career as a

prophet, Chris Taylor, Gas

Powered Games’ president

and founder, was respon-

sible for the creation of

both the hit RTS game TOTAL

ANNIHILATION, as well as Cavedog

Entertainment, from which it came. For

reasons that are now obscured by the

mists of time, Chris was inspired to try

his hand at something new, and Gas

Powered Games was born. A number of

us who worked with Chris in the past,

primarily on TOTAL ANNIHILATION, had

similar passions, and it wasn’t long

before we found ourselves cozy once

again in a closet office in Kirkland,

Wash. We had just finished work on a

successful RTS game, a genre we loved

working on, but for a number of reasons

we opted to try a different genre. We

knew we were skilled enough to make

another RTS, but the world was swim-

ming in them at that time, so it seemed

like a good opportunity to try something

new. We all liked the fantasy aesthetic

and there were very few good RPG

games at that time, so somehow doing an

RPG seemed like the natural choice.

We were starting completely from

scratch. We had to find an office and buy

phones, fax machines, desks, and all

those little things most of us take for

granted working at an established com-

pany. Our first engineering meeting was

held at Chris’s house with a whiteboard

on the floor and a half dozen of us hud-

dled around it. A month later, when we

finally did find a space, we had to make

it usable. I remember Chris crimping net-

work cables and climbing up on ladders

through ceiling tiles running the network

wire in the new office. I also clearly

remember my first day in that office,

when I built my own PC from random

parts we bought, unfolding a cheap

Costco table on which to set it all up. I

loaded up MS Dev and faced an empty

header file, which at that moment repre-

sented our entire technology base.

Chris repeatedly told us we were in

for a wild ride, but I don’t think that

prophecy sank in until years later.

So merrily and naively, we set out on

what turned out to be a four-year

journey that was as challenging as it

was educational.

What Went Right

1. Exceptional team. It’s clear to

me that the single best thing thing

about DUNGEON SIEGE is the team that

created it. So many things are right about

our team that it’s difficult to elaborate on

this without sounding as if I’m gushing.

From the beginning, Chris Taylor set the

tone for the company with strong values

and an outrageous personality. Chris

might be best described as a force of

nature; he can help an old lady cross the

street, tell you a joke that will make you

seek psychological counseling, make a

shrewd business transaction, and con-

vince you that an impossible feature is

actually easy, all in the span of about five

minutes. He is certainly the hardest-

working and most driven person any of

us know. He instills the kind of respect

that is pivotal in binding a team into a

single, coherent unit.

The team itself is consistently calm in

the face of pressure, persistent in the face

of adversity, and absolutely dedicated to

success. I have never worked in a group

of so many selfless, dedicated, and posi-

tive people. At times we can be so

focused and single-minded that by some

definitions we might be considered a cult.

Another positive trait that contributed

to the team’s efficacy was that we

shunned any kind of classism. At GPG,

we have a culture where everyone is val-

ued. We don’t single out contractors or

junior people as different, everyone’s

ideas get heard, and it’s implicitly under-

stood that every single person plays an

important role in creating the game.

2. Exceptional art. Somewhere

between the prototype and our

first E3, something magical happened. It

may have been when our technology

started to hobble along such that people

could finally see what the game might

look like, or maybe it was when our

tools became really usable. For whatever

reason, since our first E3 and for about

three years thereafter, the game just kept

looking better every day. Art director

G A M E S T A T S

PUBLISHER: Microsoft
NUMBER OF FULL-TIME DEVELOPERS:

27 at ship date
NUMBER OF CONTRACTORS: 5

LENGTH OF DEVELOPMENT: 3 years, 8 months
RELEASE DATE: April 5, 2002

PLATFORM: PC
DEVELOPMENT SOFTWARE USED: MS Dev C++,

3DS Max with Character Studio, Visual
SourceSafe, CodeWright, ICQ, RAID (bug

tracking), Photoshop, Excel
DEVELOPMENT HARDWARE USED: Ranged over
course of development from 400–1000MHz

CPUs with128–512MB RAM
NOTABLE TECHNOLOGIES:

Bink, Miles, SmartHeap
PROJECT SIZE: Approximately 800,000

lines of source code for game, editor, and
associated tools; 60,000 lines of scripts; 21

million total lines of .GAS configuration files;
8,500 textures, 2,000 animations, 2,600 object

and actor meshes, 3,700 terrain meshes

43

B A R T O S Z K I J A N K A | Bartosz served as the tech lead for DUNGEON SIEGE while
also acting as VP of technology at Gas Powered Games. Feedback on this article is wel-
come at bkijanka@gaspowered.com.

Steve thompson and his team straddled

an exponential curve of outdoing them-

selves and rode it to the very end. Over

time the models morphed from “Hey, is

that a bear or a giant rat?” to “Wow,

let’s see that again!”

Similarly, the level designers did a

remarkable job. As the editor settled,

their productivity skyrocketed. Near the

end of production the volume of their

output was stupefying. I’m still shocked

when I think of our multiplayer world,

which is far larger than the already large

single-player world, and how it was built

in a tenth of the time. Amazingly, as the

level design team picked up speed, the

quality of the output and attention to

detail also improved.

From very early in the project we had a

flexible effects system that was only mar-

ginally used because we were short of peo-

ple, so not many assets took advantage of

it. Late into the game’s development, the

art was already quite far along when we

had an additional and surprising growth

spurt. Eric Tams, our overworked content

engineer, went ballistic and added so many

special-effects embellishments that we

were, quite frankly, astonished. Suddenly,

the effects system was working overtime as

swords were flaming, staffs were sparking,

and so many other things we don’t have

names for were happening. It was a nice

surprise, and one example among many of

team members working with inspiration to

make a difference. This sort of inspiration

really helped the game evolve on all fronts.

3. Extreme flexibility. As a small

company our flexibility is a dis-

tinctive advantage over a large company.

Compared to what I’ve seen of many

large companies, we can make important

decisions 100 times faster. If you’re try-

ing to innovate, the ability to make deci-

sions quickly is absolutely critical. At a

large company, I’ve seen people discuss a

minor issue for days on end. At GPG, if

we need a resource, or if we’ve identified

a project course correction, we meet with

Chris Taylor and most of the time we

will decide upon and commit to a specif-

ic course of action in under five minutes

— very refreshing.

One of the more extreme examples of

this sort of flexibility was our temporary

test team. Deep into the debugging stage

of the project, we were experiencing

increasing frustration with the process.

Up to this point, Microsoft, our publish-

er, was doing most of the testing, and

although they were on-site for some

time, they had moved back to the moth-

er ship, complicating matters. Try as

they might, the scope of the game was

simply enormous. We needed more help.

We realized this on a Friday, and by

next Monday morning we had config-

ured our own test lab. By the end of the

week the lab was fully staffed and run-

ning double shifts.

We could be this flexible as a company

only because our teammates were this

flexible. Everyone carried multiple

responsibilities, and some of us carried so

many it was hard to keep track. As one

example, Jacob McMahon wore the hats

of VP, designer, producer, HR, account-

ing, bill paying, payroll, legal, and who

knows what else. He also managed to

place all the monsters in the game and

gameplay-balance the entire thing, while

only occasionally speaking in tongues.

Such effort is representative of what we

had to do in order to succeed.

4. Solid architecture. The engine

underwent numerous architec-

tural changes during development, and

ultimately we were left with an engine

that’s both powerful and flexible.

Because development included a lot of

research, the architecture was forced to

evolve through repeated reengineering to

support new discoveries as well as new

requirements.

Based on our experiences during the

development of TOTAL ANNIHILATION, we

knew even before we wrote the first line

of code that we had to focus on a data-

driven design. So although much

changed about the architecture over

time, the critical concept and goal of a

data-driven engine persisted. Today it

seems more fashionable to take this

approach, but four years ago there didn’t

seem to be much focus on this issue. At

that time, many game engines would

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r44

Initial sketches of characters and creatures
that inhabit the world of DUNGEON SIEGE (from
top to bottom): Gargoyle, Droog, and Krug.

P O S T M O R T E M

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r46

inevitably stumble onto being data-driv-

en, but it seems that few game engines

were doing this in a premeditated and

planned fashion.

Our goal of data-driving the DUNGEON

SIEGE engine was to support all the fea-

tures of an action RPG but not hard-

code how these features interact in order

to create the look and feel of the game.

Aside from the actual art assets, the look

and feel of the game is defined by a com-

bination of configuration, text files, and

scripts. We used a general-purpose script-

ing language for AI, animation control,

and spells, and a specialized language for

scripting special effects.

The scripting system, Skrit, played a

key role in the architectural success of

DUNGEON SIEGE. Written by Scott Bilas,

it is implemented unlike any other script-

ing system we’ve seen to date. The lan-

guage itself is conventional, but extend-

ing it by exporting engine functionality is

easier than ever. Exporting a function is

as simple as adding a single tag in the

C++ code. Additionally, because Scott

had to create a powerful back end to

support Skrit, it became the basis for a

remote procedure call (RPC) mechanism

that made implementing multiplayer

much easier. We leveraged the same tech-

nology for save and load and for many

other systems.

Based on another early architecture

decision, the editor was essentially built

on top of the game. Specifically, it was

built on top of what we called the

“world” layer of the game. The world

contains all of the game mechanics, less

the user interface. The world layer has

no knowledge of a user interface, or

even high-level gameplay goals such as

quests. It’s simply the game environment

containing the map and all its life forms.

The actual game executable is built by

using the world as a foundation and

adding a game component above it. The

game component gives you the user

interface, creates your hero, and has all

the other trappings required to present

the gaming experience to the user.

Alternatively, the editor is simply the

world layer with an editing component

on top instead of a gaming component.

The editor component allows you to cre-

ate and manipulate the world, whereas the

gaming component restricts you to a par-

ticular experiencing of it. The benefit of

this approach was that the editor took

advantage of much of the work we did for

the game engine. The drawback was that a

careless change in the world layer for the

sake of the game component could break

the editor component. Chad Queen, who

built the editor, was relentless in keeping

the editor running such that this vulnera-

bility wasn’t ever much of a problem.

5. Instant messaging. We faced

the typical set of communication

challenges that plague most development

teams. However, we had at least one suc-

cess worth mentioning.

Consider the typical means of commu-

nication in the office: Normally when

you urgently want to speak to someone,

you call them. At other times, when you

need a more formal and structured medi-

um for communication, you e-mail some-

one. And sometimes, when you’re sitting

next to someone and just want to ask a

quick informal question, you look over

your shoulder to see whether they’re in a

good place to be interrupted.

In our first year, as a small group of

fewer than a dozen people, we worked on

the same floor and essentially in the same

space. Because of our proximity, all of our

informal communication happened in per-

son. (It’s amazing how much important

work is facilitated through informal com-

munication.) But when we started to grow

we found ourselves in a communication

conundrum. When engineering moved to

a different floor of the building, that

informal channel of communication with

the other groups in the company was lost.

After a brief period of disorientation

we identified the problem and called

upon ICQ instant messaging to the res-

cue. It’s a powerful tool and at times can

actually be more effective than informal-

ly speaking to someone. Because ICQ is

so informal, you can be very direct with-

out being perceived as terse. You simply

type in your question and you’re done.

No chitchat or small talk needed, no

pressure to introduce yourself or your

topic gracefully.

Instant messaging works very well in

conjunction with formal e-mails and

semiformal phone calls. It allows us to

direct without offending anyone and is

more efficient than waiting in line to

speak to someone. If it’s not a good time,

the recipient of your message can simply

Early explorers Fedwyrr and Klars discovered much of the route traveled in DUNGEON SIEGE.

P O S T M O R T E M

ignore your request until his or her next

convenience. Instant messaging had such

a positive impact on our work that I

can’t imagine ever working without it.

What Went Wrong

1. Extreme ambition. Extreme

ambition can be empowering, but

it can also bring much pain. A large por-

tion of Gas Powered Games consists of

extraordinarily ambitious people. Every-

one has their own reasons, but collective-

ly, we all want to win, and want to win

badly. While this drive helped us perse-

vere through some of the challenges we

encountered during development, it also

created some new ones.

Our ambition translated into a num-

ber of painful symptoms such as feature

creep, over-optimism, and a project

scope that was ultimately larger than our

ability. The problem was compounded

by the fact that nobody on the team had

really worked on an action RPG before.

We looked at the “leading brand” RPG

and said to ourselves, “Hey, this is a fun

genre. Let’s make something like this

except, much, much bigger, in 3D, with-

out loading screens, and push the tech-

nology to its absolute breaking point!”

Clearly we couldn’t have imagined the

sheer amount of work required to build

the kind of RPG that we wanted. And

we wanted all kinds of interesting things:

lip-synching, cooperative networked level

editing, dual monitor support, wavelet

terrain compression, deformable terrain,

and many other gems. Some of these fea-

tures ultimately didn’t fit into the vision

of our game, while others were simply

extraneous. To our credit, we killed most

of these before even starting develop-

ment, but we were left with many others

to be enthusiastic about for months.

Our ambition when mixed with our

pride also set us up for some hard les-

sons. The first year of Gas Powered

Games was the honeymoon period.

Everyone was full of ideals and had the

boundless energy required to discover

their inevitable pitfalls. Many of us were

excited to have shed the shackles of Big

Brother software companies and finally

be in charge of our own destinies. No

more lame meetings, no more stupid

schedules, no more dog-and-pony shows.

We were not going to adopt any of the

stale, dated, and oppressive habits of

game companies past.

Four years later, we have a deep

appreciation for organization. Chain of

command, ownership, discipline, and

planning are things that we hold in very

high regard and are further developing

for the future. We still don’t like Big

Brother, but we realize that Little Cousin

may help us get more work done.

2.Aborted efforts. We spent too

much time exploring dead ends

and implementing unnecessary features.

The game’s basic gameplay principles and

aesthetic goals remained consistent from

the beginning of the game to the very

end. Unfortunately, although we were

clear on how we wanted the game to

look and feel, the technical requirements

weren’t obvious. We were feeling opti-

mistic, and anything and everything

sounded like a good idea at the time.

Design meetings felt like a shopping spree

at the supermarket. We loaded up the

cart and set out on a rather long road of

trial-and-error punctuated with discovery.

The animation editor we attempted to

build is a good example of the trial-and-

error approach. At the time we had a

developer who was both skilled and

extremely passionate about creating our

own animation tool. Given our ambi-

tious state of mind, we were easily sold

on it, and the developer spent a better

part of a year working on the tool.

Unfortunately, a year into it his calling

took him elsewhere, and the editor work

came to a screeching halt. This serious

setback forced us to reconsider the neces-

sity of this custom art tool. Almost

immediately we reexamined what was

possible with 3DS Max as senior pro-

grammer Mike Biddlecombe dove in to

create a few plug-ins that did the job

beautifully. Lesson learned: always use

third-party tools when they’re available.

Although the aborted editor is our

poster child of inconclusive work, there

were many other technologies we spent a

lot of time on but didn’t use. For example,

we started on OpenGL but ultimately

moved to Direct3D. We also wrote level-

of-detail systems and sophisticated collision

algorithms that we ultimately scrapped.

3.Complex engine. We have creat-

ed a powerful but ultimately com-

plex engine. To our credit, the engine is sta-

ble, relatively well commented, and the

source is consistent in terms of coding stan-

dards. However, the engine is sufficiently

complex to make debugging and mainte-

nance times often longer than expected.

Complexity arose from several factors.

First, the engine is large enough that

although in the local sense things are doc-

umented, in the global sense there are

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r48

P O S T M O R T E M

A panorama of Castle Ehb. The Fury unleashes its wrath. One of many serene alpine environments.

implicit rules that are not. This unfortu-

nately translated to a larger number of

nonobvious bugs. The nonobvious bugs

tended to be in the “incorrect result” cat-

egory rather than in the critical program-

failure category, which made them harder

to track and slowed debug times. The

implicit rules in the system made it more

likely that a seemingly simple change

might create an unwanted side effect

down the road even if we did get correct

behavior in the short term. The best

examples of this problem were single-

player changes that worked absolutely

great but broke something in multiplayer

or simply failed to work in multiplayer.

Additional complexity can be attrib-

uted to a few elements of the engine that

should have been abstracted but weren’t.

One example of this is our node-based

coordinate system. The coordinate sys-

tem reflects the segmented nature of our

terrain. Every position primitive includes

an ID of a terrain block (node) and a 3D

coordinate within that node. Global

coordinates aren’t valid for more than

one simulation, so if you want to work

with a point outside of your particular

node, you have to do space conversions.

This introduced extra steps to every

space calculation and increased the risk

of human error. We got used to working

with this system and shipped the game

without abstracting these artifacts away,

but we paid a high price in maintenance

of affected code. In the future we hope

to wrap this up in a cached global coor-

dinate system that would make our vec-

tor math look like the math to which

everyone else is accustomed.

4. Slipped schedule. When I

started this Postmortem, I want-

ed to avoid talking about the two most

common problems faced by development

teams, communication and schedule.

Every single project seems to have trou-

ble here. I’ve managed to steer clear of

communication rants, but I must men-

tion our schedule, since we made a spec-

tacular game but spectacularly late.

Originally we were aiming to finish in

just about two years, but ultimately we

shipped in almost four.

During this time, however, we weren’t

just building a game, we were also build-

ing a company. We spent a considerable

portion of our time simply learning how

to be a company and learning how to

make an RPG, something that we had

never made before. Learning and ambi-

tion aside, our schedule first slipped con-

siderably when three out of

the six engineers left the

company about a year

into the project. They

each had their own rea-

sons and they didn’t

leave in unison, but the

blow dealt to our plan-

ning put the engineer-

ing schedule into a

permanent state of

shock.

After that first

year, the turnover at

the company was very

low, and it certainly wasn’t the only cul-

prit regarding the slipping schedule. In

order to make a competitive title that

was original, we essentially had to

invent new features that we would use

to compete with existing games. This

goal simply required a lot of research,

which is inherently difficult to plan or

schedule. It also tends to lead to . . .

5. Epic crunch. Our crunch was

not your garden-variety crunch.

Our crunch was not measured in

months, but in years of long hours and

few free weekends. It was a crunch of

sheer astronomical proportions. The

kind of crunch that will make you weak

in the knees to think about and give you

a thousand-yard stare when you’re done

with it. The kind of crunch that bites the

top of the beer bottle off and spits it out

at you before taking a drink.

This kind of crunch can only take root

in fertile soil, so we certainly are respon-

sible for our own discomfort. Being the

ambitious bunch that we are, not only

did we want to make a great game, we

wanted to make the best game we could

afford, given the time and resources.

This line of reasoning, taken to its limit,

translated to most of us simply living for

the game.

Our ambition was so strong we neg-

lected our bodies, our relationships, and

our spiritual well-being. I know many of

us did this past a point that most profes-

sionals would consider healthy, sane, or

possibly ethical. The level of focus on

our work was simply amazing, but the

sheer self-neglect this fostered was simply

irresponsible. We didn’t crunch to make

up for lost time, we crunched out of

uncertainty. Since this was our

first RPG, we crunched to

implement all those extra

features. And at some point

we crunched because we

could no longer remember

doing anything else.

A wise person once said

that your passion can

become your prison. We

were so passionate about

making DUNGEON SIEGE

that we completely lost

ourselves in its creation.

Having a tremendous desire to succeed is

a noble trait, but being unable to recon-

cile that desire with the actual cost of

attaining your goal is not. It’s difficult to

be critical of ourselves when we all cared

so deeply about the game and worked so

very hard to build it. But we must

remember that we make games. We are

toy makers, and we have a responsibility

to our own humanity as well as to our

trade. We must strive to live balanced

and enriched lives so that we may always

have inspiration from which to draw.

Lessons from the
Dungeon

D UNGEON SIEGE was an extremely

challenging project. Four years is a

long time to work on a game. By com-

parison, it’s long enough to earn a bache-

lor’s degree in college, or go back for a

Ph.D. Four years is time enough for

births, deaths, weddings, breakups, and

earthquakes. A lot of life happens in four

years, and a lot of learning takes place.

Clearly, we walk away from DUNGEON

SIEGE with valuable experience, both

from what we did well and from our

missteps. With experience comes perspec-

tive, and our perspective is much broader

now than when we started. For better,

for worse, and for everything in between,

we will feel the reverberations of this

experience for a long time to come. q

w w w . g d m a g . c o m 49

O ver the past decade or

so, the vast majority of

computer games have

been published under

a business model

that looks something like the fol-

lowing: After a year or two (or

more, frequently less) of devel-

opment by a developer, a game

gets handed over to the publish-

er, who manages manufactur-

ing, package design, and assem-

bly, then arranges for distribu-

tion via retail outlets.

Prompted by a slick market-

ing campaign, a consumer

spots the title on the shelf and

makes a purchase. The developer

(sometimes) gets a fat royalty check,

the publisher (occasionally) gets lots of

sales, the retailer moves units, and the

consumer gets a wonderful gaming expe-

rience. A perfect example of market

forces at work, right?

For the most part we’d be correct. Like

many young industries do, the gaming

industry has undergone a phase of mete-

oric growth. Market forces pressure

strong publishers to become larger and

more efficient, while weaker publishers

scramble to form partnerships, find prof-

itable niches, or close their doors.

From the standpoint of the independ-

ent game developer, the current system

increasingly favors large software pub-

lishers with the distribution and market-

ing muscle needed to get vital shelf pres-

ence at retail outlets. Excluding in-house

production via publishers and the dozen

or so developers who have the resources

to remain largely independent, taking

even a small computer game from con-

cept to shiny box at the local Wal-Mart

can be a feat of Herculean proportions.

Recent developments in digital game

distribution are beginning to offer a

glimpse of a future where many games —

as purely digital content — could be dis-

tributed in their entirety over the Internet,

giving small game developers new oppor-

tunities to get their wares to market.

At one end of this spectrum is the sale

of small games over the web, currently

being championed by such online servic-

es as Real One Arcade and

Shockwave.com. Users play a free ver-

sion of a small game online, then pony

up a small fee — usually somewhere

between $10 and $20 — to download

the entire game. Most of these games

aren’t available in normal retail channels,

giving independent developers a new way

to reach paying consumers.

At the other end of the spectrum, digi-

tal content delivery systems — optimized

for broadband Internet connections —

promise to allow full-price commercial

PC games to be rented online (via

streaming media technology) or pur-

chased and downloaded outright.

A host of new start-ups and tech-

nologies have emerged to make

digital game distribution both

secure and a viable profit

stream for retailers and pub-

lishers. TryMedia’s

ActiveMark technology

enables retailers and pub-

lishers to create secure digi-

tal distribution networks of

their own, or rely on

TryMedia’s own distribution

service.

TryMedia thinks consumers are

ready for digitally distributed con-

tent. According to their research, 73

percent of people who purchased a game

online said they would prefer to buy and

download all of their games.

Arguably one of the most talked-about

of the new digital distribution technolo-

gies is Valve’s Steam platform, which

Valve president Gabe Newell announced

at GDC 2002. Like other content delivery

systems, Valve hopes Steam will supple-

ment the physical distribution and sales

of game software by allowing broadband-

equipped users to purchase and down-

load games directly over the Internet.

As promising as digital distribution

may look, one need only look at the

plight of the music industry to see how

the future may look threatening to nerv-

ous game publishers and retailers.

Thanks to Napster and its brethren, the

music industry has been reeling from the

proliferation of readily available file-

swapping utilities and an Internet with a

seemingly limitless appetite for free con-

tent. Why should game players buy what

a few mouse clicks and a fat download

could obtain for free?

Steam seeks to solve that problem by

S O A P B O X j e f f j a m e s

s e p t e m b e r 2 0 0 2 | g a m e d e v e l o p e r56

continued on page 55

Ill
us

tr
at

io
n

by
 Ia

n
M

itc
he

ll

Boiling Hot or Blowing Steam?
Today’s Digital Game Distribution Market

making the shrink-wrapped product and

the online component two parts of a

cohesive, inseparable whole.

“It’s pretty hard to pirate code that is

always trying to call back to its creators,”

says Newell. “As games look more like a

service — connecting to servers to acquire

new content, to connect with mods and

other players — it’s going to be increas-

ingly difficult to pirate, as you have to

figure out how to pirate an entire system,

including back-end servers you can’t get

physical access to.”

Since the dawn of the PC, the advent

of significant new technologies — VGA,

CD-ROM, 3D graphics, and the Internet

— have offered challenges for existing

players in the market and new opportu-

nities for those quick and smart enough

to see the often-imperceptible scribbles

on the wall. Savvy retailers and publish-

ers will undoubtedly harness digital game

distribution to help them push the com-

puter gaming industry to new and even

greater heights. Those same technologies

should also empower small game devel-

opers to create new and exciting game

content that may have never seen the

light of day under the current system.

That’s what Valve’s Newell would like

to see happen. “We certainly hope it

opens up the world for a wider group of

developers, and we also hope that it will

allow for riskier game designs and alter-

native content development models to

flourish,” he says. “I was talking to

Warren Spector . . . and he summed it

up as ‘This is the way all developers

want to be — it’s just a question of when

the transition will occur.’” If the advent

of digital game distribution results in

more innovative game designs, additional

avenues of distribution, and increased

competitive pressure, then game players,

developers and the gaming industry as a

S O A P B O X

w w w . g d m a g . c o m 55

J E F F J A M E S | Over the years Jeff has
worn many hats: starving freelance author,
game magazine editor, web site manager,
and videogame producer. He is currently a
senior producer for the Internet division of
the LEGO Company. Comments are wel-
come at jeff.james@america.lego.com.

continued from page 56

	04gameplan
	06indwatch
	08prodrev
	14profile
	22artview
	26soundp
	28betterby
	30f-lander
	36f-devine
	36innerp
	42postmort
	56soapbox

	return:

