
SEPTEMBER 1999

G A M E D E V E L O P E R M A G A Z I N E

T his past July I was fortunate
to fly out to Monte Carlo for
Medpi, a gathering of game
publishers and representa-

tives from the largest French game dis-
tributors. In a sense it’s like E3, except
that the entire Medpi exhibition area
could have fit within Nintendo’s E3
booth. During my second day at the
show, I met a developer on the show
floor who works for a major game
development/publishing company. As
we toured his company’s booth and he
demonstrated their upcoming titles for
me, we began discussing movies — The
Phantom Menace, specifically. This guy
told me that the official release date for
TPM wasn’t until October 13, but con-
fessed he’d already seen the movie —
he had downloaded it from the Inter-
net. I was taken aback.

Ethical issues aside, the thought of
downloading a few hundred individual
movie segments from alt.binaries.multi-
media, piecing them together, and then
watching the results on my 15-inch
computer monitor just isn’t appealing
to me. Sadly, I have to admit it’s not the
risk/reward ratio that deters me, it’s the
work/reward ratio. The consequences of
downloading an illegal movie, game, or
song from the Internet are virtually
nonexistent. While I’m pretty sure that
the effort required to do so forces many
people simply to use the legal channels,
it’s still way too easy these days to
download digital content illegally. The
sheer volume of pirated media available
leaves little doubt that enforcing intel-
lectual property laws is going to be one
of the biggest law enforcement chal-
lenges in the coming century. It will
exert downward pressure on publisher
revenues and developer royalties, and
keep game (and probably movie and
CD) prices higher than necessary.

And then there’s the flip side to the
coin. What happens when other enter-
tainment media embrace the Internet
as a (or the) primary means of deliver-
ing their content? Music, of course, is
well down this path already, thanks to
formats such as MP3 and RealAudio,
and support hardware like the Dia-

mond Rio. If major motion picture stu-
dios, television networks, radio sta-
tions, and record labels decide that the
time’s right to push their content onto
the Internet (I’m talking in a major
way — not the half-hearted attempts
we’re seeing today), what will that do
to game sales? Will the competition
from other forms of digital entertain-
ment mean opportunities for game
developers, or will it threaten the pre-
eminence of games as computer-based
digital entertainment?

While the current retail model for
games is far from dead and competition
from other forms of digital entertain-
ment is still nascent, we all need to be
prepared for a completely wired, digital-
ly integrated world. The Internet will
have a major impact on game develop-
ment and distribution next century,
and I’m convinced that as the Internet
matures as a delivery mechanism, it will
continue to benefit the game industry.

To what extent we’ll feel the pinch of
piracy and competition from other
forms of media as the Internet evolves
is anyone’s guess. Piracy enforcement
itself may be too tough to overcome. It
may require gigantic changes in the
current business model of game pub-
lishing, or an advanced licensing
scheme based on advanced encryption
technology not yet invented. Much of
tomorrow’s popular software (such as
Linux) will be a free commodity which
drives ancillary money-making busi-
nesses, like training or consulting. In
gaming, the model might be to distrib-
ute free games and charge a fee to par-
ticipate in professional leagues or
against other players online.

Like the title of Errol Morris’s wacky
1997 documentary, the Internet of the
next century is going to be “fast, cheap,
and out of control.” In that climate,
governments must be prepared to step
up enforcement of intellectual property
laws, and games companies must step
up to compete against (or cooperate
with) other forms of media. ■

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9

6

P L A NG A M E

Fast, Cheap, and

Out of Control

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

www.gdmag.com

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228 w: www.gdmag.com

Publisher
Cynthia A. Blair cblair@mfi.com

EDITORIAL

Editorial Director
Alex Dunne adunne@sirius.com

Managing Editor
Kimberley Van Hooser kvanhoos@sirius.com

Departments Editor
Jennifer Olsen jolsen@sirius.com

Art Director
Laura Pool lpool@mfi.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Mel Guymon mel@surreal.com
Omid Rahmat omid@compuserve.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook id Software
Susan Lee-Merrow Lucas Learning
Mark Miller Harmonix
Paul Steed id Software
Dan Teven Teven Consulting
Rob Wyatt DreamWorks Interactive

ADVERTISING SALES

Western Regional Sales Manager
Jennifer Orvik e: jorvik@mfi.com t: 415.905.2156

Eastern Regional Sales Manager/Recruitment
Ayrien Houchin e: ahouchin@mfi.com t: 415.905.2788

International Sales Representative
Breakout Marketing e: breakout_mktg@compuserve.com
t: +49 431 801703 f:+49 431 801797

ADVERTISING PRODUCTION
Senior Vice President/Production Andrew A. Mickus
Advertising Production Coordinator Dave Perrotti
Reprints Stella Valdez t: 916.983.6971

MILLER FREEMAN GAME GROUP MARKETING
Group Marketing Manager Gabe Zichermann
MarComm Manager Susan McDonald
Marketing Coordinator Izora Garcia de Lillard

CIRCULATION
Vice President/Circulation Jerry M. Okabe
Assistant Circulation Director Sara DeCarlo
Circulation Manager Stephanie Blake
Assistant Circulation Manager Craig Diamantine
Circulation Assistant Kausha Jackson-Crain
Newsstand Analyst Joyce Gorsuch

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

CEO/Miller Freeman Global Tony Tillin
Chairman/Miller Freeman Inc. Marshall W. Freeman
President/CEO Donald A. Pazour
CFO Ed Pinedo
Executive Vice Presidents Darrell Denny,
Galen A. Poss, Regina Starr Ridley
Sr. Vice Presidents Annie Feldman, Howard I. Hauben,
Wini D. Ragus, John Pearson, Andrew A. Mickus
Sr. Vice President/Development Solutions Group KoAnn
Vikören
Group President/Division SF1 Regina Ridley

h t t p : / / w w w. g d m a g . c o m S E P T E M B E R 1 9 9 9 G A M E D E V E L O P E R

New Products
by Jennifer Olsen

Whip 3D Models into Shape

RAINDROP GEOMAGIC has introduced
Shape, a new 3D modeling tool
designed to relieve artists and designers
of the ponderous methods associated
with creating high-quality NURBS mod-
els. Not all designers are great mathe-
maticians, after all, and vice versa.

With Shape, users can start with
data from a physical object scanned
and modeled in Geomagic Wrap, or
import polygonal data from various
3D file formats. Shape then generates
NURBS patches based on an automati-
cally computed patch layout, lays a
grid structure on each patch, and fits a
NURBS patch to each grid. Adjacent
NURBS patches are guaranteed to be
connected seamlessly, unless the user
specifies otherwise. Shape's tolerance
function can then evaluate the
approximation of the NURBS surface
by comparing it to the original polygo-
nal data, and map a color-coded toler-

ance computation directly onto the
NURBS surface.

Shape runs on Windows 95/98/NT
and IRIX. It’s available as a stand-alone
or as a component of the new Geo-
magic Studio, which also includes the
polygon-reduction tool Decimator and a
new version of Geomagic Wrap.
■ Raindrop Geomagic Inc.

Research Triangle Park, N.C.

(800) 251-5551 or (919) 474-0122

http://www.geomagic.com

Party with Particles

DIGIMATION has released Particle Studio,
its new particle generation plug-in for
3D Studio Max and the successor to
Sand Blaster.

It’s difficult to imagine a game today
that wouldn’t incorporate some kind
of particle system in its architecture.
Particle systems are useful for handling
a variety of common effects such as
smoke, fireworks, fountains, stars, and
did I mention explosions?

Particle Studio works with an event-
driven paradigm, breaking the particle
system up into time-based events. Most
particle systems work under a set of

parameters created at
the beginning of the
system. In order to
control the system
over time, the user
must either alter the
original parameters,
or use other tools
such as space warps.
With Particle Studio,
users can define a
new event with its
own set of parameters
at any point along the
life of the particle sys-
tem. Users can acti-
vate or deactivate
space warps in a simi-
lar fashion when each
new event is created.

Particle Studio comes with three
plug-ins: Particle Studio, Particle Studio
helper, and the Particle Studio Snap-
shot utility. It is priced at $595, with
discounts available to current Sand
Blaster users.
■ Digimation Inc.

St. Rose, La.

(504) 468-7898

http://www.digimation.com

DV Effects in Real Time

DIGITAL ORIGIN has begun shipping
RotoDV, its new Macintosh-based digi-
tal video manipulation tool for roto-
scoping, special effects, animation, and
touch-ups. RotoDV offers real-time
playback at full resolution, depending
on RAM availability, enabling users to
view their work quickly as they go.

With native QuickTime architecture,
RotoDV promises to make fast friends
with many other non-linear video edit-
ing tools you and your team might be
using, including Adobe Premiere and
Digital Origin’s EditDV, and it plays well
with compositing applications such as
Adobe After Effects.

Users can customize RotoDV’s
brushes by setting and linking differ-
ent parameters, enabling a wide vari-
ety of effects. Replicator brushes can
transfer certain images or entire frame
sequences from frame to frame or
layer to layer, even during playback.
The Media Stack offers unlimited paint
and video layers for endless combina-
tions, and the layers are non-destruc-
tive — handy for anyone who has ever
accidentally marred a treasured video
clip in a fit of creativity.

Available for Mac OS 8.5 or higher,
RotoDV has a suggested retail price of
$699, with special introductory pricing
available on a limited basis.
■ Digital Origin Inc.

Mountain View, Calif.

(650) 404-6000

http://www.digitalorigin.com

New Products: Raindrop Geomagic
simplifies NURBS, Digimation dishes
out Particle Studio, and Digital Origin
debuts RotoDV. p. 9

Industry Watch: Nintendo’s Dolphin
strategy, Activision’s big game hunt,
and the latest from EA Sports. p. 10

Product Review: Dan Teven takes
Virtools’ NeMo for a test drive in rapid
game development. p. 12News from the World of Game Development

9

RotoDV’s Media Stack features unlimited layers, enabling

users to implement just about any wacky idea.

B I T B L A S T S - I N D U S T R Y W A T C H

Industry Watch
by Dan Huebner

CHANGES AT LUCASARTS. The summer
of Star Wars may have tempted some
Lucas employees to follow Anakin
Skywalker’s lead by leaving the nest. A
series of recent departures from Lucas-
Arts Entertainment, including ROGUE

SQUADRON project leader Mark Haigh-
Hutchinson, GRIM FANDANGO lead pro-
grammer Brett Mogulefsky, along with
several others in various departments,
culminated in the resignation of eight-
year Lucas veteran and director of pro-
duction Steve Dauterman. Though
Dauterman’s parting was amicable and
there doesn’t seem to be a connection
between the departures, rumors around
the ranch suggest that other executive
exit visas may be pending.

CHEAP FISH. Nintendo seems to be
planning to follow the example of its
own Game Boy by bringing its next-
generation console to market at the
lowest price possible. Though competi-
tors Sony and Sega are offering pricey
thrills such as 56K modems and DVD
movie playback, Nintendo plans on cre-
ating a stripped-down version of its
upcoming Dolphin that some analysts
believe could be priced as low as $99.
This low-cost Dolphin would not be
able to play CDs or DVD movies, nor
would it be likely to include a modem.
Nintendo’s partner, Matsushita, will
produce a fully loaded model with DVD
and CD functionality. Though $99 may
be a bit unrealistic, anything approach-

ing that would still put Dolphin well
below the $340–$440 Playstation 2 price
that was floating around the Tokyo
Game Show.

ULTIMA ASCENDANT. Origin Systems is
consolidating its efforts into massive
multiplayer online worlds. Following on
the success of ULTIMA ONLINE, Origin is
canceling production of JANE’S A10
WARTHOG at its Austin, Tex. studio.
Those working on the fighter jet title
are to be relocated to other projects
within the company. WARBIRD flight fans
need not worry, Origin parent
Electronic Arts plans to continue Jane’s
Simulations series at another studio.

ACTIVISION BAGS BIG GAME HUNTER.
Demand for hunting games has
remained strong, and Activision has
renewed its commitment to this unex-
plainable market segment by acquiring
Florida-based Elsinore Multimedia.
Despite a name that conjures up images
of a brooding Hamlet, Elsinore is the
creator of Wal-Mart favorites CABELA’S
BIG GAME HUNTER I and II. Elsinore had
previously been published by Activision
label Head Games, and now joins as a
wholly owned subsidiary.

EA GOES HANDHELD. Slackers who
spend weeks at a time tied to EA
Sports’ football and hockey offerings
may finally have a reason to get off the
couch. Electronic Arts has entered into
a deal with Radica Games, best known
for developing shaking electronic bass
fishing games, to take EA’s sporting
line mobile. Radica will bring these
franchises to market as EA Sports brand
handheld electronic games, which will
more than likely beep and vibrate their

way into the hearts of Madden fans
everywhere. Radica will also hold the
right of first refusal over any game in
the EA line.

FURNITURE-FRIENDLY DEATHMATCH.
Deathmatches are about to become a
whole lot safer when Hasbro and
Visionary Media bring us NERF ARENA

BLAST.Though it may seem a bit incon-
gruous at first glance, Nerf and 3D first-
person shooters are actually very simi-
lar: both allow players to kill each other
violently with exotic looking weaponry
without scuffing the furniture. Put the
two together and you have mayhem the
whole family can enjoy. The game was
developed using the UNREAL engine. ■

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

10

ECTS ‘99

OLYMPIA CONVENTION CENTRE

London, England
September 5–7, 1999
Cost: variable
http://www.ects.com

Game Developers Conference
1999 Road Trips

BATTERYMARCH CONFERENCE

CENTER

Boston, Mass.
September 8, 1999

NAVY PIER CONFERENCE CENTER

Chicago, Ill.
September 10, 1999

RALEIGH CONVENTION AND

CONFERENCE CENTER

Raleigh, N.C.
September 13, 1999

SEQUOIA CONFERENCE CENTER

Buena Park, Calif.
September 27, 1999

Cost: $120 ea. (discounts available)
http://roadtrips.gdconf.com

UPCOMING EVENTS

CALENDAR

Activision is making sure they stay

where the action is.

Radica’s handheld line will soon fea-

ture EA Sports titles.

B I T B L A S T S - P R O D U C T R E V I E W

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

12

Virtools’
NeMo

by Dan Teven

V irtools wisely avoids the
phrase “Rapid Application
Development” when it

describes NeMo. So-called RAD tools
make me think of the control I’m giv-
ing up, not the speed I’m gaining. So I
was pretty amazed when I realized that
NeMo is a Rapid Game Development
tool — and I like it.

NeMo comes in two flavors, NeMo
Creation and NeMo Dev. Both let you
create a 3D world populated with
dynamic objects and assign behaviors
to those objects. Using Creation, you
can develop simple games that run in a
special player or “gamelets” that run in
a browser. With Dev, which adds an
SDK for C++, you can integrate NeMo
into your own application.

To its credit, Virtools doesn’t push
you to buy Dev right off the bat. They
believe most people need to create 3D
prototypes, demos, or multimedia pre-
sentations. If you need the extra flexi-
bility of Dev, you can upgrade easily.
CONCEPTS. At its heart, NeMo is a
library that implements the concept of
a behavior, coupled with a scene man-
agement database, a simulation
engine, and a library of more than 200
stock behaviors. It’s not a rendering
engine, but it can use Direct3D or
OpenGL. You use the NeMo environ-
ment built on top of these compo-

nents to engineer your content; you’re
only exposed to the low-level inter-
faces through the SDK.

NeMo organizes data into levels,
scenes, places, and groups. These con-
tain 2D and 3D entities: 3D objects
(made of meshes, materials, textures,
and sounds) plus sprites, curves, cam-
eras, and lights. Characters are just col-
lections of 3D entities. Although some
behaviors are character-specific, most
are generalized, so you can build a 2D
sprite game if that’s your goal.

You’ll need to create most of your
data with third-party tools. Although
NeMo can handle the .X file format, it
seems better suited to .3DS — many of
the standard behaviors seem to map
directly to 3D Studio Max modifiers.
You can import the usual 2D and audio
formats. Afterwards, you can do all the
integration, behavioral scripting,
debugging, and tuning work in the
NeMo environment.

A behavior is a program associated
with an object, allowing the object to
change during the simulation. In NeMo,
anything can have a behavior. An obvi-
ous character behavior is “wait for a
mouse click, then walk to the clicked-on
object.” But behaviors can also be used
to make tracking cameras, procedural
textures, levels that keep score, and just
about anything else.
THE ENVIRONMENT. NeMo’s user inter-
face is a mixed bag. Virtools deliber-
ately strove for a tool that looks differ-
ent from other Windows applications,
and the result has loads of style. I love
the overall look, the way you can
accomplish almost anything with drag
and drop, and the way you can play
your content without having to wait
for compilation.

I really love the filter graph (flow-
chart) metaphor for creating behaviors.
You don’t need to write a line of code
— just drag behaviors from the Build-
ing Blocks pane into the Schematic,
click to connect the appropriate pins,
set parameters through a dialog box,
and you’re ready to roll.

You can really get work done in this
environment. The Trace mode (show-
ing the active behaviors in real time by
highlighting them in red) is cool, and

there’s breakpoint and single-step sup-
port. There’s also an integrated profiler.

Although it’s attractive, the UI is
maddeningly inconsistent. Only a few
of the commands are available from the
menu bar, so you have to learn a lot of
special-case controls. Sometimes right-
clicking works, sometimes it doesn’t.
Many controls are close at hand on the
window borders, but few are associated
with tool tips. The help is not context-
sensitive. And it’s risky to click blindly,
because there’s no undo.

I’m not crazy about the windowing.
On-screen, there are three tiled, non-
resizable window frames, and each can
hold multiple tabbed panes. You zoom
windows to full screen by double-click-
ing on the tab, not the top border. You
can drag panes from one frame to
another to make the best use of space,
but it’s too easy to inadvertently open a
new pane, which causes the one you
were working with to vanish (actually,
the tab scrolls out of view). And, there’s
no consistent way to close windows.

Tree controls let you explore the data
and behavior hierarchies. These are ade-
quate, but limiting. It would be nice if
certain behaviors appeared more than
once under Building Blocks. For exam-
ple, Character Prevent from Collision
should be listed under both Collision
and Character.

I found NeMo to be very keyboard-
unfriendly. For some reason, Alt-F
doesn’t bring down the File menu,
even though the F is underlined. The
behavior that steers a character around
in the tutorial works with the keypad
arrows, but not the special-purpose
arrow keys. And, if you play your scene
in full screen mode, the only way to
get back is by Alt-Enter. (I tried mouse
clicks, Esc, Enter, spacebar, all the func-
tion keys, Alt-Tab, and Ctrl-Alt-Del
before I figured this out.)

Even the color scheme — blacks and
grays — is problematic. By shunning
color in the interface, Virtools makes
the content look better. But this makes
it harder to tell when a control con-
tains editable text, or even which win-
dow has the focus.
BEHAVIORS. Creating reusable behaviors
with NeMo couldn’t be easier. You can
collapse a filter graph into a black box
that behaves just like an atomic behav-
ior. You can name your compound
behavior and annotate it with com-
ments and screen snapshots. When

Dan Teven specializes in systems architecture for game development. He’s always
wondered why a solitaire game comes with Windows. Sue him for pointing this out
at dteven@ici.net.

Excellent Very Good Average PoorBelow Average

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

14

you use it, NeMo will create the “Edit
Parameters” dialog box on the fly.

With Dev, you can create new
behaviors in Visual C++. These will
show up in Building Blocks and the
help system, and they’ll work normally
in the schematic, except you won’t be
able to expand the black box. All the
stock behaviors were built with the
SDK, and their source is included.

Some of the stock behaviors go far
beyond what I expected. There are lots
of mesh modifiers, including a mor-
pher and a skin-join, and there are
eight kinds of particle systems. There
are some interesting camera effects,
such as vertigo. There’s an interpolator
that works in HSV color space and one
that works along a 2D Bézier curve.
Many rendering effects, such as
motion blur, are also available. The
leverage you get with NeMo, right out
of the box, is really impressive.
DOCUMENTATION. Except for the lack of
an undo function, the UI problems
are superficial. If you’re looking for an
Achilles heel in NeMo, look to the
documentation.

Creation has a paper manual that will
get you up and running, but it runs out
of steam soon after that. Parts of the
Advanced Topics section read like a pro-
grammer’s notes on a napkin. There’s
also an online reference; the two

together are barely adequate. Dev has
plenty of sample code and another
online reference, labeled “under con-
struction,” and it assuredly is.

What’s missing? High-level informa-
tion about the architecture, so you can
understand how NeMo is put together,
and how you can extend it through the
SDK; more step-by-step, task-oriented
tutorials; the technical details of behav-
iors and parameter operations; docu-
mentation of the debugging tools; doc-
umentation of preferences; a full index;
and searchability. Dev would benefit
from templates for behaviors, or even a
wizard that generates them for you.

Since Virtools is a French
company, there are occa-
sional bad translations. The
meaning is usually obvious
— as in “2ème param” —
but in a few places the awk-
ward translations affect “lisi-
bility.” The terminology can
be strange: I might have
chosen the terms “local”
and “global” instead of
“place” and “trans-place.”

At least there’s an active
user group. On Virtools’
web site, you can ask ques-
tions, share techniques, and
show off your work. Since
NeMo will introduce a lot
of newcomers to real-time
3D, Virtools hopes the user
group can provide the back-
ground culture required to
master concepts, such as
efficient collision detection
and optimized rendering.
PROTOTYPE OR PRODUCTION?

Currently, Dev lets you create
behaviors, integrate the engine into
your application, plug in your own ren-
derer, and create import plug-ins. The
architecture looks modular, and in the-
ory you can interface NeMo to just
about any external engine. Discreet is
currently using NeMo as a test bed for
releasing core 3D Studio Max R3 char-
acter animation algorithms as game
engine components.

NeMo Dev has tremendous poten-
tial, but until the documentation’s fin-
ished I can’t recommend it for produc-
tion. NeMo Creation has some 1.0
flaws, but it’s Rapid Game Develop-
ment at its best. ■

Virtools S.A.
Paris, France
+33 (1) 42-71-46-86
http://www.nemo.com

Price: Creation is $990 per
seat. Dev is $3,490 plus
a negotiable license fee.

System Requirements:
Pentium 200, 48MB
RAM,Direct3D or OpenGL
accelerator, 60MB disk
space, Windows
95/98/NT 4.0, DirectX,
Internet Explorer 4.

Pros:

1. Flowchart metaphor lets
you create behaviors
rapidly without coding.

2. Behaviors can be
smoothly reused, com-
bined, and extended.

3. The impressive selection
of canned behaviors
makes it a great proto-
typing tool.

Cons:

1. The documentation
ranges from spartan
(Creation) to woeful
(Dev).

2. Inconsistent user inter-
face.

3. Dev isn’t mature enough
to rely on for production
— yet.

NeMo Creation: NeMo Dev:

b y J e f f L a n d e r G R A P H I C C O N T E N T

those geeky discussions broke out
about pool table physics. Pool, like
many sports, is dominated by the laws
of physics. Good players have an excel-
lent sense of the application of force,
the physics of collisions, and the influ-
ence of friction on objects in motion.

Last month I described how friction
could be used to increase the realism of
the physics model in real-time games.
The demo program made it possible to
see how various coefficients affected a
mass-and-spring model. However, it
wasn’t very much fun. In order to
demonstrate how a solid physical foun-
dation can actually create interesting

game play, I need to pull some of these
concepts together into a real applica-
tion. A pool table simulation is a natur-
al choice. It will allow me to apply
many of the techniques I have covered
as well as provide some ideas that can
be converted easily to other sports such
as golf or tennis.

Two Ball, Corner Pocket

In order to understand pool, I need to
understand collisions between bil-

liard balls. Fortunately, billiard balls are
all spheres of equal size and weight.

That makes the collision calculations a
bit easier. Let me begin by looking at
the frictionless case. I suspect that if I
ignore the ball’s rotation and do not
consider friction, the ball collision will
behave exactly like a particle at the
ball’s center of mass. That would be
great, as I could use the code from a pre-
vious column. However, I want to make
sure. Figure 1 shows a typical collision.

Ball A is moving at a speed of 20
feet per second and collides with ball
B at a 40 degree angle. In order to
determine the velocity of each ball
after the collision, I need to apply
dynamics. A collision between two

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 9 G A M E D E V E L O P E R

17

Physics on the Back

of a Cocktail Napkin

Iam generally pretty disciplined about working normal hours during the week.

However, on Fridays I like to shoot pool and eat pizza at the local sports bar.

Since happy hour starts at three, I sometimes need to move work down the

street. I was working out how to win a serious game of nine ball when one of

When not wasting time at the pub eating hot wings and shooting pool, Jeff can be found at Darwin 3D. There he creates real-time
3D graphics for a variety of applications. Drop him a line at jeffl@darwin3d.com.

Like most things in life, pool provides an excellent venue for a physics lesson.

v	 Velocity of body (vector)

m	 Mass of a body

ε	 Coefficient of restitution

n	 Line of collision or collision normal

t	 Line tangent to collision

j	 Impulse force

N	 Force normal to surface

g	 Gravitational force

µ
S
	 Coefficient of sliding friction

µ
R
	 Coefficient of rolling friction

R	 Radius of the ball

I	 Inertia tensor

v	 Angular velocity

a	 Angular acceleration

r	 Vector from center of mass to
	 point of contact

TA B L E 1 . A summary of the notation

used in this article.

rigid bodies, which occurs in a very short time and during
which the two bodies exert relatively large forces on each
other, is called an impact. The force between these two
bodies during the collision is called an impulsive force,
which is symbolized by j. The common normal to the sur-
faces of the bodies in contact is called the line of collision,
represented as n in Figure 1.

The first step is to break the initial velocity of ball A into
its components along the line of collision, n, and the tan-
gent to the collision, t.

The impulsive force acting during the collision is directed
along the line of collision. Therefore, the t component of the
velocity of each ball is not changed.

In order to determine the new velocity along the line of
collision, I need to look at the impulsive force between the
bodies. The impulse acts on both bodies at the same time.
You may remember Newton’s third law of motion, the forces
exerted by two particles on each other are equal in magni-
tude and opposite in direction.

Since the impulse forces are equal and opposite, momen-
tum is therefore conserved before and after the collision.
Remember that the momentum of a rigid body is mass times
velocity (mv).

(Eq. 1)
This equation can’t be solved without some more infor-

mation. In my column “Collision Response: Bouncy,
Trouncy, Fun”(Graphic Content, March 1999), I discussed
the coefficient of restitution. This is the scalar value
between 0 and 1 relating the velocities of bodies before and

after a collision via the formula:

(Eq. 2)
For this example, I’m using a coefficient of restitution ε

of 0.8. I can use this formula to create a second equation.

(Eq. 3)
Solving Equations 1 and 3, I get the velocities of the two

billiard balls after the collision.

In order to solve this problem in the simulation, I need to
derive the impulse force directly. The impulse force creates a
change in momentum of the two bodies with the following
relationship.

(Eq. 4)
These formulas can be combined with Equation 2 to deter-

mine the impulse force given the relative velocity and the
coefficient of restitution.

(Eq. 5)
You can plug Equation 5 back into the example problem

and make sure it works. Remember that because of Newton’s
third law, the impulse is equal and opposite for the two col-
liding bodies. When you apply Equation 5 to the B ball,
remember to negate it.

Those of you who read Chris Hecker’s column on colli-
sion response (“Physics, Part 3: Collision
Response,” Behind the Screen, February/March
1997) will recognize Equation 4 as the impulse
equation for a general body that does not
rotate. When we do not consider the rotation
of the billiard balls, they behave exactly like
the particles used in my March 1999 mass-and-
spring demo. My suspicion was correct, and I
can use the particle dynamics system as a base
for the demo.

For many applications, this would probably
be more than enough to get a decent physical
simulation. In fact, I imagine many pool simu-
lations end right there. This level of simulation
is probably sufficient for other games, such as
pinball. However, anyone who has played
much pool knows that this is not the end of
the story. The rotation of the ball caused by the
reaction with the table makes a tremendous
difference in the realism of the simulation.

j
v n

n n
m m

AB

A B

=
− + ⋅

⋅ +

()1

1 1

ε

m v jn m v

v v
j

m
n

m v jn m v

v v
j

m
n

A A A A

A A
A

B B B B

B B
B

+ = ′

′ = +

− = ′

′ = −

′ = −

′ =

v

v

A

B

(. , .)

(. , .)

1 53 12 86

13 79 0 0

 ft / sec

 ft / sec

() () [() ()]

() () . [(.) ()]

() () .

′ ⋅ − ′ ⋅ = ⋅ − ⋅

′ ⋅ − ′ ⋅ = −

′ ⋅ − ′ ⋅ =

v n v n v n v n

v n v n

v n v n

B A A B

B A

B A

ε

0 8 15 32 0

12 26

() () [() ()]′ ⋅ − ′ ⋅ = ⋅ − ⋅v n v n v n v nB A A Bε

m v n m v n m v n m v n

m m m v n m v n

v n v n

A A B B A A B B

A A B B

A B

() () () ()

(.) () () ()

() () .

′ ⋅ + ′ ⋅ = ′ ⋅ + ′ ⋅

+ = ′ ⋅ + ′ ⋅

′ ⋅ + ′ ⋅ =

15 32 0

15 32

() .

()

′ ⋅ = −

′ ⋅ =

v t

v t

A

B

12 86

0

 ft / sec

 ft / sec

v

v n v

v t v

A

A A

A A

=

⋅ = =

⋅ = = −

20

40 15 32

40 12 86

 ft / sec

(ft / sec

(ft / sec

) cos() .

) sin() .

G R A P H I C C O N T E N T

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

18

A B
40˚

V(A) = 20 ft/s

n

t

F I G U R E 1 . A simple collision between two billiard balls.

Slip Sliding Away

W hen a billiard ball is hit with the cue
stick, the ball starts moving across the

table. If the ball is struck along its center of mass,
the ball is not initially rotating.

However, soon the ball starts rolling along.
Friction between the ball and the table causes
this roll to occur. You can see this situation in
Figure 2.

The ball is traveling with the forward veloci-
ty, v. In last month’s column (“The Trials and
Tribulations of Tribology,” Graphic Content,
August 1999), I discussed the use of kinetic
friction via the Coulomb dry friction model.
For our purposes, I’m going to call this force
“sliding friction.” The force of friction applied
to a body sliding over a surface is given by the
following formula:

(Eq. 6)
The friction force is applied in the direction opposite the

velocity. Since this force is applied to the surface of the ball
and not its center of mass, the frictional force causes angular
acceleration in the ball. As the ball rolls across the table, the
angular velocity increases because of this sliding friction
force. This continues until a time of equilibrium is reached,
where the velocity of the point contacting the table equals
the velocity of the center of mass. At this time, the ball is no
longer sliding and is now rolling on the table. This situation
is called a natural roll or rolling without sliding. In mathe-
matical terms, this situation happens when

(Eq. 7)
where v is the velocity of the ball, v is the angular velocity of
the ball, and R is the ball’s radius.

Now I need to show how the angular acceleration actually
changes. This is going to mean bringing up another term,
the inertia tensor, or I. You may remember from Chris
Hecker’s column on 3D physics (“Physics, Part 4: The Third
Dimension,” Behind the Screen, June 1997) that the inertia
tensor relates the angular velocity of a body to the angular
momentum of that body. For arbitrarily complex objects,
creating the inertia tensor can be quite difficult. However,
for a uniform sphere where the density is uniform across the
sphere, it’s quite easy. The inertia tensor for a sphere is

(Eq. 8)
Therefore, the product of this matrix with any vector is a

simple scaling of that vector. The relationship between the
angular acceleration and the friction force then becomes

(Eq. 9)
If I now take a look at the problem in Figure 2, I can calcu-

late how long it will take for the ball to achieve natural roll

given an initial velocity v. From the principle of impulse and
momentum, I know some information about the linear
momentum and angular velocity of the ball at a later time.

In other words, the momentum at some later time is the
initial momentum minus the impulse created by the friction
force, f. I know the friction force from Equation 6.

At the point of natural roll, I know the state of equilibri-
um between angular and linear velocity from Equation 7.

So you can see that as a result of the friction force of the
table, a sliding billiard ball will always reach a point where it
is rolling without sliding on the table. This is the type of
realism I want to have in the simulation. A ball when struck
should slide across the table, slowly settling to a state where
it is rolling without slipping.

How Do I Stop This Crazy Thing?

O ne glaring problem remains. I can run the simulation
with all of the physics discussed so far. When struck

hard, a billiard ball will slide and then roll. Once the ball has
reached this natural roll, there is nothing in my simulation
that will keep it from continuing to roll forever. The friction

′ = ′

= −

+ =

=

v r

r
g t
r

v g t

g
g t v

t
v
g

S
S

S
S

S

ω

µ µ

µ µ

µ

5
2

5
2

2
7

()
()

()()

∆
∆

∆

∆

mv mv mg t

v v g t

g t
r

S

S

S

′ = −

′ = −

′ =

µ

µ

ω µ

()

()

()

∆

∆

∆5
2

mv mv f t

f t r
I

f t
mr

′ = −

′ = =

()

() ()

∆

∆ ∆ω 5
2

α

α

= ×

= × = ×

r f
I

r f

mR

r f
mR2

5

5
22

2

()

I
mR=

2
5

1 0 0
0 1 0
0 0 1

2

v R= ω

f N mgS S= =µ µ

G R A P H I C C O N T E N T

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

20

V

mg

f

F I G U R E 2 . A billiard ball sliding across the table.

force is gone since the point of contact is not moving rela-
tive to the table. I need to add another force that will slow
down a rolling ball. I can add another frictional force, called
rolling friction, which is applied when the ball is in natural
roll. The form of rolling friction is

It is applied exactly like the sliding friction whenever the
natural roll conditions apply. It is important to note that
the coefficients of rolling and sliding friction are not neces-
sarily the same. Think of a ball moving on a rubber surface.
The coefficient of sliding friction would be very high. How-
ever, the rolling friction would be comparatively low, allow-
ing the ball to roll across the surface easily.

Bumpin’ the Cush

C ollision with the table’s side cushions can be handled in
a couple of ways. If I consider the table to be completely

3D, I will need to handle 3D collision between the ball and
the cushion. That would be the most realistic. It would allow
the balls to move up and down as well as side to side. This
might be interesting if I wanted to be able to perform a jump
shot (when the cue ball jumps up and over other balls on the
table). However, I’m not really ready to tackle the physical
and interface issues involved in making this happen.

If I’m willing to give up the flexibility of allowing the balls
to move in 3D, things become a bit easier. For one thing, I
can eliminate the gravitational force acting on the ball. A
ball sitting on a table is in a constant collision battle with
the table top. By getting rid of the gravitational force, I save
having to deal with the ball constantly interpenetrating the
table. I still need to keep track of the gravitational force as it
is used in calculating the friction force applied by the table.
However, I just assume the balls are in constant sliding or
rolling contact with the table.

Also, if I ignore vertical motion of the balls, I can turn the
collision with the side cushions into a 2D computational
geometry problem. The boundaries of the table are now line
segments and I can use the 2D collision detection routines
developed in my column “Crashing into the New Year”
(Graphic Content, January 1999).

Later, I may wish to allow the balls to jump. It would then
be easy enough to convert the collision back to 3D. These
kinds of decisions are made all the time during the game
production process. Since game simulation is all about speed
versus realism, simplifying the problem if it works for your
particular application makes sense.

Rack ‘Em Up

Using these techniques, I have created a demonstration
of a simple pool table. The simulation uses rolling and

sliding friction to simulate the way a real billiard ball
moves across a table. Collision between balls is handled
through conservation of momentum and the elastic colli-
sion model. There are several areas that still need work. Of
course, I didn’t talk about applying “English” to the shot
by striking the ball off the center of mass. This technique is
what makes shots such as a Masse, draw, or topspin possi-
ble. This is largely just a matter of where the impulse from
the cue stick is applied. Also, the lack of friction between
colliding balls does not allow effects such as collision-
induced spin.

Another problem arises when we consider simultaneous
collision between several billiard balls. When calculating
the resulting force when two balls collide, it was fairly easy
to determine the resulting force. However, when several
balls collide simultaneously, the law of conservation of
momentum becomes much harder to enforce. In order to
calculate the resultant forces correctly, I need to solve sev-
eral simultaneous equations. Obviously, this tends to com-
plicate things quite a bit.

Alas, that will have to wait for another time. Until then,
see if you can modify the source code to handle these
effects. You can download the source code and the exe-
cutable application off the Game Developer web site at
http://www.gdmag.com. ■

f mgR R= µ

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 9 G A M E D E V E L O P E R

21

• Beer, Ferdinand and E. Russell Johnston. Vector Mechanics

for Engineers: Statics and Dynamics, Sixth Ed. New York:

WCB/McGraw-Hill, 1997.

• Hecker, Chris. “Behind the Screen,” Game Developer

(October/November 1996–June 1997). Also available on

Chris’s web site, http://www.d6.com.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

b y M e l G u y m o n A R T I S T ’ S V I E W

shortly thereafter, and now many devel-
opers consider it the standard target
platform, a view that might have
seemed naïve just a few years ago. While
the advent of these revolutionary plat-
forms set the stage for RT3D to become
a standard, the next generation of con-
soles (Sega’s Dreamcast, Sony’s Play-
station 2 and Nintendo’s much rumored
Dolphin) and hardware accelerator
cards promise to expand the technologi-
cal boundaries of game development by

a quantum leap, exponentially increas-
ing the amount of digital canvas we
developers have to work with.

With this increase in capability
comes a correspondingly higher level of
expectation on the part of the con-
sumer, and an increased burden on us
as developers to evolve with and take
full advantage of the new hardware.
This month we’ll scratch the surface
and attempt to predict some of the
ways in which the artistic aspects of the

development process will be affected by
the latest and greatest technology.

More and Faster

A t the most basic level, the tech-
nology advances can be distilled

down to the following statement: You
can display and manipulate much
more content then ever before, and
you can do this faster than ever before.

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 9 G A M E D E V E L O P E R

23

Raising the Bar: Content Creation

for Next-Generation Hardware

R ecent years have seen the emergence of real-time 3D (RT3D) as the

dominant venue for computer gaming. With the arrival of the Sega

Saturn, Sony Playstation, and Nintendo 64, RT3D became an integral

part of mass-market gaming. The “hardware-accelerated PC” followed

Mel Guymon has worked in the games industry for several years, with past experience at Eidos and Zombie. Currently, he is work-
ing as the art lead on DRAKAN (http://www.surreal.com). Mel can be reached via e-mail at mel@surreal.com.

Sony Playstation 2 Specifications
CPU: 128-bit "Emotion Engine"

• 300MHz system clock frequency

• Cache memory instruction: 16KB, Data: 8KB + 16KB (ScrP)

• Main memory: Direct Rambus (Direct RDRAM)

• 32MB memory size

• 3.2GB per second memory bus bandwidth

• Co-processor FPU (Floating Point Unit)

 	 Floating Point Multiply

 	 Accumulator x 1, Floating Point Divider x 1

• Vector Units VU0 and VU1

 	 Floating Point Multiply

 	 Accumulator x 9, Floating Point Divider x 3

• 6.2 GFLOPS Floating Point Performance

• 66 million polygons/sec 3D CG geometric transformation

Graphics: "Graphics Synthesizer"
• MPEG2 compressed image decoder

• 150MHz clock frequency

• 48GB per second DRAM bus bandwidth

• 256-bit DRAM bus width

• RGB: Alpha: Z-Buffer (24:8:32) pixel configuration

• 75 million polygons/sec maximum polygon rate

Sound: "SPU2+CPU"

• Number of voices ADPCM: 48ch on SPU2 plus

 definable, software-programmable voices

• 44.1KHz or 48KHz selectable sampling frequency

CPU Core

• Playstation (current) CPU

• 33.8MHz or 37.5MHz selectable clock frequency

• 32-bit sub bus

• Interface types: IEEE1394, Universal Serial Bus (USB)

• Communication via PC-Card (PCMCIA)

Disc Device

• CD-ROM and DVD-ROM

Sega Dreamcast Specifications
CPU: Hitachi SH-4

• 200MHz clock rate

• 360MIPS (millions of instructions per second)

• 1400MFlops (900MFlops with external memory)

• 64-bit data bus

• 100MHz bus frequency

• Capable of 5 million polygons/sec

• 800MB/sec bus bandwidth

• 32-bit integer unit

• 128-bit floating point bus

GPU: NEC PowerVRSG
• 100MHz clock rate

• 32-bit bus

• 9 billion operations/sec

• 3.5 million polygons/sec

• 120 million pixels/sec fill rate

• Perspective-correct texture mapping

• Bilinear and trilinear filtering

• Anisotropic filtering

• Gouraud shading

• 32-bit Z-buffer

• Colored light sourcing

• 16 levels of transparency

• Full-scene edge anti-aliasing

• Fog vertex

• Per-pixel fogging

• Bump mapping

• 24-bit color

Sound: Yamaha ARM7 ASIC
• 45MHz clock rate

• 40MIPS

• 64 sound channels

• Full 3D sound support

	 (continued next column)

(Dreamcast, continued)

Modem
• Upgradable 33.6KB per second transfer rate	

	
CD-ROM

• Designed by Yamaha

• 1GB data storage

• 12 speed

• 1800KB data transfer rate

Memory
• 16MB main RAM

• 8MB video RAM

• 2MB sound RAM

3dfx Voodoo3 3500 Specifications

AGP Texturing

16MB SGRAM

Internal clock and memory speed of 183MHz

366 Megatexels/sec peak fill rate

8 million polygons/sec

Single-pass multi-texturing

128-bit 2D/3D processor

350MHz RAMDAC

D3D, Glide, OpenGL support

Video acceleration for DirectShow and MPEG 1&2

Nvidia Riva TNT2 Specifications

 AGP Texturing

 32MB SDRAM/SGRAM

 9 million triangles/sec, 300 million pixels/sec

 2.9GB/sec bandwidth

 300MHz RAMDAC

 128-bit TwiN-Texel architecture

 Optimized Direct 3D and OpenGL acceleration

 Video accelerated for DirectShow, MPEG1 and 2,
and Indeo

F I G U R E 1 . A sampling of the next-generation hardware specifications that developers must contend with in the near future.

How much and how fast? See Figure 1
for some of the nitty-gritty details.
Depending on the game premise, it’s
not unfeasible to be looking at on-
screen polygon counts in the tens of
thousands, and characters animating
upwards of 60 frames per second. Our
challenge as developers is to create
enough content to showcase the tech-
nology while at the same time main-
taining the high level of quality and
polish which players have come to
expect in today’s RT3D games.

Managing Polygon Counts

O ne of the toughest restrictions to
meet in RT3D development is the

target on-screen polygon count. Since
almost every object displayed on-screen
is made up of polygons, each object
contributes to the total on-screen count.
In order to keep the game running at an
acceptable frame rate, artists are forced
into a balancing act that pits quality
against quantity; trying to keep the
polygon count of each individual object
high enough to maintain a certain
graphical feel, yet low enough so that
you can put enough interesting things
on-screen to keep the player continu-
ously occupied. With the latest hard-
ware advances, on-screen polygon
counts of 20–30,000 polygons per frame
are now feasible. As artists, we can take
advantage of this by creating hyper-real-
istic characters, or by populating our
worlds with vast numbers of objects.

Consider the images in Figure 2; the
face on the left is the now familiar

image from the early PSX2 demos, while
the character on the right is our much
beloved Rynn, from DRAKAN. In the case
of the facial close-up, it’s obvious that
much of the detail has been spent on
the character’s head and face. In Rynn’s
case, a more uniform polygon distribu-
tion results in a more curvaceous body.
The extra polygons in the face are not
needed for Rynn because her character
is usually a set distance from the cam-
era. Figure 3 shows a landscape scene
from DRAKAN with its current polygon
count on the left (around 5,000 on-
screen polygons) and a higher-resolu-
tion scene, where all of the trees have
been pumped up to around 1,000 poly-
gons each (this yields an on-screen poly-
gon count of around 50,000 polygons).

So now we’re back to the balancing
act again, trying to decide where best
to spend the extra polygon budget.
This decision largely depends on the
focus of the game play. For example, in
a ground-based adventure game, where
having an immersive environment is

critical, it’s easy to imagine spending
10,000 polygons per frame on trees,
rocks, and undergrowth. In a character-
based fighting game, most of your
detail can go directly into the charac-
ters, modeling fingers and faces as well
as weapons and special effects.

In either case, the increased detail and
definition comes at a high development
cost in that the artists’ time increases
disproportionately with the detail in the
models. Consider how long it would
take one of your artists to generate a
model with only half as many polygons
as the girl in Figure 2. What method
would the artist use? Traditional poly-
gon modeling methods would be
tedious and time-consuming. More like-
ly, the model would be built first with
NURBS, patches, or some other surface
tool, and subsequently converted to
polygons. The task, which might previ-
ously have taken two to three days, may
end up taking a week or two. And that’s
assuming your artists are already famil-
iar with the techniques necessary to cre-
ate the higher-resolution geometry.

Don’t fall into the technology trap.
Adding polygons to objects just for
detail’s sake can waste valuable time
that should be spent on other areas.
Take the time to plan out each scene
efficiently, and prioritize the objects in
the scene as they relate to game play
and art direction.

Texture Generation

E ven more important than polygon
construction, textures on a RT3D

object serve to flesh out the wireframe
foundation and give the illusion of
depth and detail. One of the main rea-
sons you don’t want to go overboard
on the modeling is that you need to

A R T I S T ’ S V I E W

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

24

F I G U R E 2 . Know when to splurge on polygons. At left, the polygon budget has

been spent in facial details; at right, a more uniform polygon distribution.

F I G U R E 3 . The landscape at left is comprised of 5,000 on-screen polygons. At

right, each tree is around 1,000 polygons, causing the on-screen total to skyrocket.

save enough time to add as much detail as possible to the
textures in your game. And with texture memory footprints
of 10MB or more, and data transfer rates clocking in giga-
bytes per second, it seems odd to speak in terms of “limits.”

Thankfully, the days are behind us when our textures had
to be 16 colors and 64 pixels square. With texture resolutions
of 256 pixels square and higher, along with true-color bit
depths, there’s no limit to the level of realism we can achieve.
And whereas we are usually forced to generate high-detail tex-
tures for characters and limit the texture size for environ-
ments, with the increased texture memory (upwards of 16MB
or more on some cards and platforms), it’s now possible to
achieve photo-realism and a uniform pixel density in both
the characters and environments concurrently. Additionally,
we can now use streaming MPEG video as textures mapped
onto 3D surfaces (an excellent tool for creating believable
water, smoke, and pyrotechnics).

Here again, the hardware’s increased capabilities prove to
be a double-edged sword. The larger and more detailed the
texture, the longer an artist has to spend generating it — and
consequently, fewer textures can be created in any given time
period. Where once we only had to worry about a single tex-
ture with its alpha component, now each texture has a multi-
tude of options and fancy gimmicks from which to choose.
Figure 4 shows an example of how a single texture map can be
modified with the addition of several modifier maps. In addi-
tion to the main texture map, we also have the following:
luminescence, for self-illuminating maps (objects that have a
glow about them); environmental maps for reflective surfaces
(water, metals, glass, and so on); “detail” textures to add ran-
dom diversity to surfaces (fractal- or noise-based, these can act
independently of existing mapping coordinates so that as you
get closer to the object, the perceived detail remains high);
bump maps to give definition and form to an otherwise flat
surface; and masks to combine with any and all of these. And
all of these effects can be animated.

Obviously, very few textures will use all of the potential
variations available to them. Most will only use one or two
variations, although this still increases the overall production

time, especially if there is any reworking of textures.
Previously, texture changes could be made at any time in the
production cycle, even late into the beta period. Now with
each level of complexity added to the texture, the overhead
required to adjust or rework the texture is multiplied, so that
instead of changing just one texture, you can end up having
to rework several.

Animation at Break-Neck Speed

W ith graphics processors capable of manipulating
geometry at rates greater than 50 million polygons

per second, games such as Namco’s SOUL CALIBUR (shown in
Figure 5) can boast animation frame rates of 60 frames per
second and higher. What’s so special about 60 FPS? Well, it
just so happens that 60 FPS is very close to the critical flicker
frequency (CFF) for normal human vision. When this speed
is reached, the images on screen stop looking like a sequence
of frames and start looking like a solid, continuous data
stream, just like the one we get when we look at the world
around us.

Steven Schwartz (Visual Perception: A Clinical Orientation,
1st ed. Norwalk, Conn.: Appleton & Lange, 1994), explains
the CFF of human visual perception as follows: “Consider a
light that is pulsing, such as the blinking cursor on a com-
puter screen. It is easy to discern that the light is blinking
because of the low frequency, or rate at which it flashes.
Imagine gradually increasing the frequency. As the light
blinks faster and faster, it would eventually reach a rate
where it would no longer be possible to detect that the
light is flashing, it would look like a ‘solid,’ or continuous
light. We say that our visual system has fused the flicker.
The frequency at which that occurs is called the critical
flicker frequency (CFF) or flicker fusion frequency (FFF).
The CFF for human vision can vary with several environ-
mental and psychological factors, but in general it varies
between 50 and 70 FPS.”

What this means to animators is that in animations of suf-
ficiently high-fidelity (60 keyframes per second, or lower
with an effective interpolation system), characters on-screen
will display a stark, startling reality not seen before in the
gaming world. Meeting this challenge means generating a
lot of keyframes, either through procedural methods,
motion capture, or by sheer, grunting hand-animation. All

A R T I S T ’ S V I E W

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

26

F I G U R E 4 . Gone are the days of single textures with alpha

components. Today’s textures have large extended families

of modifier maps, compounding the artist’s workload.

F I G U R E 5 . A frame rate of 60 FPS, as in SOUL CALIBUR, can

fool the eye into perceiving a continuous data stream.

this translates into a potentially more
complicated and time-consuming
process of character animation, further
increasing the time involved in the
development process.

In addition to the basic advances
which allow us increased capabilities in
modeling, texturing, and animation,
there have been significant improve-
ments which may bring even more
drastic changes in the way we develop
content. To engineers, the radically
increased processor power and avail-
ability of dedicated geometry proces-
sors add up to more particles in our
particle systems, faster and more accu-
rate collision detection, more realistic
and higher-resolution lighting and
shadow casting, and the potential for
trading out the normal polygon ren-
dering routines for Bézier curves and
even NURBS surfaces. One of the
recent rumors swirling around Ninten-
do’s Dolphin platform is that it will
support an advanced NURBS renderer.
As unlikely as this may seem, consider
the potential benefits and correspond-
ing upheaval in the development
world if our real-time characters and
environments had the smooth-edged
look and feel of NURBS surfaces.

Ask Not for Whom the Bell Tolls

W hile all this increased capabili-
ty offers us artists the chance

to produce games with more flash,
dazzle, and realism than ever before,
the price we pay is an across-the-board
increase of the time it takes to develop
the content. A project which two
years ago may have taken a ten-man
art team 18 months to develop, could
easily take the same team 36 months.
Since publishers are still loathe to go
beyond a two-year development cycle,
without significantly changing the
techniques we use to generate con-
tent, we will be obliged to add person-
nel, reduce the scope of our games, or
both. Considering how hard it is to
find talented, experienced artists in
the gaming industry, it’s easy to imag-
ine a situation where the larger pub-
lishers with the most money begin
siphoning off all their artists and ani-
mators to meet the demands of a more
robust production cycle. This could
ultimately leave many of the smaller
development houses out in the cold,
since they wouldn’t have sufficient
personnel to carry on the develop-
ment of an A-title.

In a related side note, the word on
the street is that Sony is aggressively
pursuing development teams experi-
enced in producing content for the PC.
This is a sound strategy for two rea-
sons. First is the obvious tactic that
Sony wants to snatch up as many
uncommitted development houses as
possible to develop exclusively for their
platform, thus reducing the market
share and viability of its competitors.
Second, those developers who have
developed on the previous generations
of consoles are used to working within
the restrictions imposed on them by
these soon-to-be-outdated platforms.
Conversely, developers who have been
working on PC games have been deal-
ing with a constantly evolving plat-
form, whose capabilities are at present
only slightly below that of the next-
generation hardware. Theoretically
then, they are already familiar with the
production levels required to create a
product on the newer hardware. It will
be interesting to see whether this strat-
egy ultimately pays off.

Wrap Up

T he history of videogames is, of
course, also the history of the lum-

bering juggernaut of technology.
Consumers do their part by dutifully
soaking up the latest advances in tech-
nology, but the real burden of the tech-
nology race will always be shouldered
by developers. With the imminent
release of Sony’s Playstation 2 and Nin-
tendo’s Dolphin platform lurking
behind it, developers need to start
preparing now in order to be ready. The
tidal wave of technology is looming on
the horizon, and we can either ride its
crest or flail about in its wake.

And this wraps it up for me as well.
I’ll be taking a much needed couple of
months off to do some research and
replenish my creative juices. In the
interim, id Software’s Paul Steed has
magnanimously agreed to man the
Artist’s View. I’ll see you all again in a
few months’ time, tanned, rested, and
ready to render. ■

A R T I S T ’ S V I E W

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

28

Special thanks to Louise Smith, Vince

Desi, Wyeth Ridgeway, Dave Coathupe,

and Stuart Denman.

Acknowledgements

b y O m i d R a h m a t H A R D T A R G E T S

was a tough year for Matrox, a time
when it had dropped off most game
developers’ radars as a hot technology
company. I guess everyone was too
busy with 3dfx and Nvidia, and then
along came S3 to don the mantle of
comeback kid. So, having sat in the
pole position in the 2D graphics arena,
Matrox seemed an almost-ran in the
era of high-performance 3D graphics,
driven as it is by the gaming communi-
ty. Now, with the G400, a product that
sits more comfortably in the worlds of
both 2D and 3D performance graphics,
Matrox has shown itself to be a peren-
nial favorite of reviewers and con-
sumers. The secret to Matrox’s success
cannot be easily explained, and is often
shrouded in mystery, even to those in
the industry that have known the com-
pany for all its years.

The Backgrounder

Matrox likes to be in the back-
ground. It is secretive and

unapologetic. It is focused completely
on its customers and products. It
shouldn’t be any mystery why the
company is successful, but it’s unusual
for any graphics company to continue
to ride new product cycles and remain
with the leaders. The graphics busi-
ness is supposed to keep knocking its
winners off their pedestals, and the
amount of investment required to
compete in the modern world of high-
ly complex 3D circuitry should be
enough to bar all but a handful of
heavily financed players. But Matrox
remains insular, and less vain than its
competitors.

Matrox was born as Matrox Elec-
tronic Systems, based in Montreal,
Quebec. The company has always
been privately held, and as a result, it
has been subject to all kinds of specu-
lation from its competitors. Initially,
that didn’t matter. Matrox made its
money supplying multi-display sub-
systems to Wall Street traders, and
stayed below the radar of other graph-
ics companies more interested in the
drawing power of CAD. It wasn’t until
the 1980s that Matrox got into sup-
plying CAD graphics accelerators, but
even then Matrox was eclipsed by big-
ger companies ranging from Video
Seven and Hercules to, eventually,
ATI, the other Canadian graphics
company of note.

The company won a $100 million
contract to supply the U.S. Army with
a video disk training system in 1986.
For many years, Matrox’s competitors
assumed that it was this single con-
tract that kept the company afloat,
and allowed it to build up its expertise
in the PC graphics arena. Of course,
there is no way of knowing the truth
behind such rumors, but had Matrox
not come out with the MGA chipset
and Millennium graphics boards in
1993, they would have been unlikely
to continue in the graphics business.
In fact, in 1994, when the company
established Matrox Graphics Inc. as an
independent company, it was partly
gambling on the success of the Millen-
nium, and partly protecting itself from

the vagaries of a graphics market that
had decimated many of its pioneers.

Having dealt with the company as
both a competitor in Europe and as an
analyst, I assume that most of
Matrox’s success has come from a
built-in confidence and determination,
exemplified by people such as Lorne
Trottier, Matrox Graphics’ president
and one of its cofounders. This may be
part of the Matrox mystique as well,
that the company receives an influx of
young talent from local technical col-
leges, and senior management instills
enthusiasm for Matrox and its prod-
ucts in the minds of a smart, young set
of employees who aren’t tempted the
way their counterparts are in Silicon
Valley; Matrox is a high-tech haven
and breeding ground for its own
biggest fans. To this day, I continue to
be amazed by the strength of convic-
tion among ordinary Matrox employ-
ees, and this element is as important
to Matrox’s success as its products.

Getting Sex Appeal

S till, all the OEM presence and dis-
tribution channels in the world

have done little to enhance Matrox’s
reputation in a consumer market that
is highly influenced by game develop-
ers. That may all change with the
G400, which is aimed specifically at
improving Matrox’s retail awareness,
and restoring some sex appeal to the

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 9 G A M E D E V E L O P E R

31

Matrox: Rolling with the Punches

and Coming out Swinging

T he graphics industry has a few old veterans, battle-scarred and a little

weary, but one company continues to defy the aging process, and seems to

be growing in strength. Matrox, a Canadian company founded in 1976, is

still one of the leading brands in the business. It must be said that 1998

Omid Rahmat is the proprietor of Doodah Marketing, a digital media consulting
firm. He also publishes research and market analysis notes on his web site at
http://www.smokezine.com. He can be reached via e-mail at omid@compuserve.com.

brand. Matrox’s 2D performance
remained unchallenged for many
years, but in the 3D arena the compa-
ny has been sorely lacking in any sig-
nificant technology or market posi-
tion, despite having an incredible
pedigree in developing 3D drivers and
hardware since the 1980s. The results
of Matrox’s lack of 3D sex appeal is
reflected in the big revenue hit the
company’s graphics business took in
1998, as shown in Chart 1.

O.K., so the figures are from a pri-
vate company’s press releases, but
they’re probably not too far off the
mark. The Matrox folks keep their
cards close to their chest, but they also
tend to be quite honest when they do
share information. Although Matrox
continued to maintain most of its
market share and unit sales in 1998, it
took a big hit on the selling price of
its chips because it didn’t have a per-
formance graphics part to compete
with the likes of Nvidia, or 3dfx.
Furthermore, Matrox was suffering
from a squeeze on profit margins
brought on by Intel’s entry into
graphics in 1997, a situation that
resulted in almost every other graph-
ics vendor taking a hit on pricing as
well. Only 3dfx escaped the worst
impact of the pricing pressures of
1998, and the gaming community
became the focal point of all the
graphics vendors. Matrox just didn’t
have enough to offer at the time.

Back on Track

However, the G400 gives Matrox a
unique position in the perfor-

mance graphics market of 1999 —
namely, environmental bump map-
ping in hardware. Of course, Matrox
has also gone back to its roots in
multi-screens, and provides a dual-
screen output from a single G400
board. The dual-screen feature is not
unique to Matrox (Diamond has had
it available on its high-end Fire GL
boards for a number of years), but
Matrox is providing this feature on
what is, in effect, a consumer, game-
enthusiast product. And, as if Matrox
wanted to confirm that it understands
the new world of graphics, the G400
hits all the usual specification points
for performance 3D: It has AGP 2X
and 4X support, a 32-bit rendering

pipeline, a 32MB memory load, and
an 8-bit stencil buffer, with a dash of
DVD video playback acceleration
thrown in for good measure.

Then there are the usual flourishes
by Matrox; the company has always
added a wealth of software and utili-
ties to its retail products, and with the
G400 you get a Matrox software DVD
player, MicroGrafx Simply 3D 3 and
Picture Publisher 8, PointCast Net-
work and Expendable from Rage Soft-
ware, which, naturally, showcases the
bump mapping capabilities of the
board. However, even more com-
mendably, Matrox has stepped up its
online support and game oriented
information sections of its web site.
Matrox is as good as any of its com-
petitors at developer relations,
although the company continues to
lag behind ATI, Nvidia, S3 and most
definitely 3dfx in the consumer mar-
keting stakes. With the G400, there
seems to be a change of emphasis on
the part of the company; gone are the
days when Matrox preached to game
players and developers to make up for
its shortcomings, replaced by a clear-
cut message that the company now
gets gaming.

The game section of the company’s
web site is not the sexiest of the hard-
ware vendors’ 3D gaming sites, but it’s
practical and comprehensive, reaching
the casual gamers who are most likely
to be interested in the company’s
products. It’s as efficient and unam-
biguous as anything else you’d see

coming out of Matrox. Perhaps the
word I am searching for is profession-
al, but with oomph.

Epilogue

In the past year Matrox has success-
fully transformed itself, and had a

drink from the fountain of youth.
Whereas in 1998 the market was con-
tent to keep Matrox in the back-
ground, today Matrox is looking like
an aggressive player: It has well
reviewed and well received products; it
has established its credibility in the
gaming market with the G400 in a
very short space of time; it is covering
its traditional OEM and system inte-
grator markets as well as ever, while
leveraging a higher consumer profile
with the G400’s unique features.

In addition, under the surface,
Matrox has reorganized its manufac-
turing operations to take advantage of
better pricing in Asia, and is courting
the Taiwanese motherboard makers to
increase its market share in the PC
graphics chip business. The company
looks less and less like the Matrox
graphics board company of Millenni-
um days, and more like a competitor
to ATI, Nvidia, S3, and 3dfx, just as it
should be. Now there are five strong
brands in the graphics business.
Matrox’s timing couldn’t be better
because around the corner, waiting to
spoil the show again, is Intel. This
time, Matrox is ready. ■

H A R D T A R G E T S

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

32

'93�

'94�

'95�

'96�

'97�

'98�

500

600

700

400

300

200

100

0

30

500

210

75

690

473

Fiscal Year

M
il

li
o

n
s

 o
f

D
o

ll
a

rs

C H A R T 1 . Matrox Graphics’ revenues, in millions of U.S. dollars. (Source: com-

pany press releases.)

L E S S O N S I N C O L O R T H E O R Y F O R

SPYRO THE DRAGON
L E S S O N S I N C O L O R T H E O R Y F O R

SPYRO THE DRAGON

B Y C R A I G A . S T I

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 9 G A M E D E V E L O P E R

35

n a relatively short period of time, videogame art has gone from

the single white blocks found in PONG to thousands of colors

wrapped around thousands of polygons. This in turn has

allowed the worlds in games to evolve from a single black screen to

immense 3D worlds. For those of us who find ourselves in the lucky

position of being game artists, the trick is to find ways to leverage this

cache of materials and palettes to create powerful, realistic worlds that

draw in players. How does one do that? By educating yourself about

the elements of color and production design and applying these

lessons to your games, you can focus the player’s emotion within a

world, as we did at Insomniac Games in our recent Playstation title,

SPYRO THE DRAGON. In addition to color theory, SPYRO’s production

design is explored by Insomniac Games artist John Fiorito (see p. 42).

THE DIFFICULTY OF COLOR Consider the example of the traditional painter.

Subject matter, design, composition, and color must all be balanced

together for the painting to come alive. Now take the example to the

next level: A movie director or cinematographer has the same issues

as the painter, plus the added complexities of motion, changing

I T T

After finishing a degree in Art Education from San Jose State, Craig Stitt started making videogames for
Sega in 1991. While at Sega, he worked creating 2D textures and animations on Genesis title’s KID

CHAMELEON, SONIC 2, and SONIC SPINBALL. In 1996, Craig joined Insomniac Games and began creating
both 2D and 3D art for Insomniac’s debut title, DISRUPTOR, followed by their hit title, SPYRO THE DRAGON.
He, and everybody else at Insomniac, is currently busy working on the soon-to-be-released SPYRO 2. Visit
Insomniac Games’ web site at www.insomniacgames.com.

perspectives, and timing. In games, we face the challenge of
making a movie in which the viewer can go anywhere and
do anything whenever he or she wants. Our “viewers” can
see our world from any distance or perspective anytime they
want. How much harder does that make our jobs? We not
only have to worry about what is in front of the “camera,”
or more precisely, in front of the player, but what is behind,
below, above, and all around him or her, in real time — and
it has to be fun to boot (see Figure 1).

One cornerstone of traditional art and great games is the
careful use of color. What makes getting color “just right” so
complicated is the fact that color has a powerful effect on
our senses, and we’re also very sensitive to subtle color
changes. A little too much blue in a scene, and the mood of
the whole world changes. Fortunately, there are a couple of
techniques that can make the process of coloring a game
world more manageable.

A Gallery of Worlds and Emotions

O nce your basic game design has been completed, as an
artist or level designer you ought to start thinking

about specific ways that the world you are creating will draw
the player in. Which emotions will your world or your level
need in order to draw players in and entice them to stay?
When selecting a level’s color palette, you’re also making a
decision about the underlying emotion that the level will
convey to the player.

I have found that it helps for me to think of the game as a
gallery of paintings. In a gallery, each painting must stand
by itself, yet it should also support and strengthen those
paintings around it. This happens only if each painting in
the gallery is balanced; each painting has been placed with
complementary paintings which have been thoughtfully
selected, and carefully arranged and lit. So it must be with
the art and colors in a game. Each level’s colors and textures
should be chosen to support and strengthen not just the
level itself, but the whole game.

Broad Strokes of Color

I like to work in broad strokes of color, picking two or
three colors that will be the foundation for the color

design for each individual level. It’s important to ask your-
self, what emotions do I want to evoke in players when they
first step out onto the playing field? The color palette you
choose will naturally depend on the nature of the terrain,
the architecture of buildings, time of day, and the effects of
weather. However, if you’re trying to evoke a particular emo-
tion as well, you’ll have to take that into account. Do you
want to fill the player with awe and wonder, or fear and tur-
moil? Do you want them to feel comfortable and at home,
or unsettled and far from home? Once the core emotions are
laid out for each level, decide which colors best elicit those
emotions from the player and also work well with the other
level elements (terrain, architecture, and so on).

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

36

S P Y R O A R T

Consider how each of the various characters within the
game will fit into your color scheme. For SPYRO THE DRAGON

(a character-based platform game with a cast of dragons set
in a medieval fantasy world), we made Spyro green in the
earliest stages. But we quickly discovered that this didn’t
work with many of our primarily green environments —
Spyro kept disappearing into the environment. We experi-
mented with over a dozen different colors for Spyro before
we finally found one that satisfied all our concerns: purple.
As purple, Spyro didn’t disappear into the grass on many
levels, he was no longer the same color as several of our
competitors’ characters, the detail in his textures stood out,
and he was a bright, fun character.

These same questions had to be asked for each and every
object and creature in SPYRO’s world. It also was important
for game objects. For example, a great amount of treasure
has to be found and collected in SPYRO, so it was important
that players could easily identify treasure at great distances.

We made this easier by applying motion and a little animat-
ed sparkle to the gems to make sure they were always the
brightest thing around.

A level’s core palette should contain only two or three
base colors. Using these base colors, a level’s detail is then
defined using various shades and values along with small
amounts of complimentary or contrasting colors. Be careful
when extending this core palette because using too many
colors can lessen the impact of any one color and you end
up with emotional mud — just as if you mixed too many
different colors of paint together. A variation to this rule is
that some worlds may have multiple, distinct palettes, one
for each area found within that world. For example, one
palette for inside a building versus outside it. Even in these
cases though, each of these distinct palettes should be limit-
ed to two or three colors, and there will still be one master
palette, of two or three colors, which sets the tone for the
entire world.

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 9 G A M E D E V E L O P E R

37

F I G U R E 1 . An artist’s job is complicated by the fact that in the 3D worlds, players can now see everything from everywhere.

One way to check the overall state of your “gallery” — the
color continuity between game levels — is to view screen-
shots or test swatches from each of the levels side by side, as
if they were a color wheel or contiguous screenshots in a
consumer game magazine. Decide if each individual level’s
look supports and strengthens the others. If not, rework the
colors in one or more of the levels. More often than not, it
doesn’t take much of a change to find that balance if you
catch the problem early. With SPYRO, as soon as we had a
rough design document with its specified worlds, we put up
a white board in the art room with a brief description of the
sky and the core palette for each of the levels. Further along
in the development process, small color print outs of screen-
shots augmented the white board (see Figure 2).

The Power of the Sky

I f your game takes place outdoors, one of the dominant
colors in the master palette will be that of the sky. Time

and time again at Insomniac we have been surprised at the
tremendous impact that the color and nature of the sky has
on a world. Many times when we had a difficult time getting
the right emotional impact from a SPYRO level, someone
would suggest that we try a different sky. Every time we were
surprised at the extent of the change brought to the level by
the new sky. We learned that unearthly colors in a sky can
create unexpected emotions, which is sometimes good if you
want to make the player uncomfortable (as if he’s in an alien
environment), but if that’s not your goal, use caution when
dealing with sky colors (see Figure 3).

Recently, I designed a sky that was one of my all-time
favorites. It was a misty green sky, filled with wispy clouds
and distant planets. It complemented the world it was
designed for, but something wasn’t right. While beautiful, it

also evoked negative reactions from people. Finally someone
pointed out that it looked poisonous. That would have been
great if that was what we intended, but this particular world
wasn’t supposed to be poisonous; threatening yes, but not
poisonous. In the end, we went with a more naturally-col-
ored night sky, which contained several moons and a haunt-
ing red glow on the horizon.

Consider the relative contrast between a world and its sky,
and the differences in their color saturation. If the terrain is
bright and saturated, then often it’s helpful to color the sky
using softer, desaturated colors. The reverse is also true. This
helps set off the horizon against the skyline, which in turn
gives the player some depth cues and aids navigation. When
the terrain and sky are too similar in color or saturation,
they lack the necessary contrast and appear to flatten out.
Definition gets lost, and players often do as well.

Wallpapering Worlds

A t Insomniac, we try to keep both the contrast and the
color saturation down and still keep colors bright in

our textures. Typically televisions, especially NTSC-based
ones, pump up both the contrast and saturation of game col-

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

38

S P Y R O A R T

F I G U R E 2 . During the development of SPYRO, a white board

was used to display all 30 levels and their respective colors.

It went through many changes before the end of the project.

F I G U R E 3 . By experimenting with different skies, the

nature and emotion of an entire world can be radically

altered.

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

40

S P Y R O A R T

ors, pushing the images over the top into a cartoonish look.
Sometimes that’s the goal of the game developers, but more
often then not, a slightly softer, more realistic look is better,
even on a cute or light-hearted game.
SHADING AND LIGHTING The final major source of color comes
from shaded textures, from techniques such as colored ver-
tex shading. The addition of colored shading on top of rich
textures can create a spectacular look, but sometimes it can
be too rich. The problem is that the cumulative effect of col-
ored vertex shading can over-saturate or intensify the con-
trast of texture colors. This is one more reason to keep the
base textures somewhat desaturated — there is plenty of
room to apply color shaders with out blowing the colors
over the top (see Figure 4).

Where Am I, Where is it Safe to Stand?

T he two practical aspects of videogame art show the play-
er where it is safe or unsafe to travel, and to give him

visual landmarks so that he doesn’t spend too much of his
time wandering around lost and confused.

The simplest way to show the player safe areas to walk is by
defining edges. It’s a time consuming task, but making sure
that a real-time strategy game, for instance, has terrain with
carefully highlighted nooks and crannies will add reality to
the game and alleviate much of the frustration a player is
bound to feel if he keeps getting killed because he inadver-
tently walks off cliffs, into quicksand, and so on. Sometimes
edge definition requires a not-so-subtle value or color varia-
tion to properly indicate the edges of a walkway or where a
ledge exists on the far side of a canyon. Proper texture design
can also help define edges and boundaries.

Creating navigational landmarks can be helped by careful
level design, but it also depends upon careful coloring.
Sometimes it’s the case of simply color coding similar look-
ing objects so the player can differentiate between them.
Sometimes it is difficult, when “landmarking” an area, to set
aside the desire to create a truly realistic environment. There
may not be a good reason why one section of the wall is col-
ored differently from the rest, or why one cave would emit a
blue light and another cave had a red light, but the player
won’t care about that nearly as much as they will if the caves
aren’t color coded and they repeatedly get lost because the
caves look alike (see Figure 5).

Ageless Principles

O verseeing the color management within any game is
an ongoing process. One of the most important things

to do during development is to regularly take a step back
and view the game as a whole. Examine each level and make
sure that it works on its own and also supports the overall
gestalt of the game. The textures and shaders should
strengthen the settings, the settings should strengthen the
game play, and the player, at a glance, should be able to see
what’s important what’s simply eye candy. It’s constantly a
surprise to me, and everyone here at Insomniac, how power-
ful a role color plays in pulling all these elements together,
or in tearing them apart.

Take advantage of the lessons learned from the traditional
schools of art. Basics such as color theory, balance and com-
position are ageless, and we must understand them and keep
our creative edge sharp by using them. It is all too easy to get
caught up in tile counts and polygon limits, and miss the fact
that a level is lifeless or confusing because we failed to show
adequate respect for the power of basic artistic concepts.

F I G U R E 4 . Top: A model with only simple vertex shading

and no background sky. (Note the use of the different col-

ored shaders on the island, bridge, and tunnel.) Middle: The

same model with shading and the sky in place (Note how

the color of the sky is reflected in the use of color in the

shaders.) Bottom: The finished world with models, shaders,

textures, and sky.

F I G U R E 5 . Using color to differentiate or “landmark” areas

can prevent players from getting too lost or confused.

42

F or the Playstation title
SPYRO THE DRAGON,
Insomniac Games
faced the challenge of

creating a unique look for a new
game. The production design
needed to be strong and consis-
tent enough to endure a year-
and-a-half development sched-
ule, yet even more significant
was the need to set SPYRO apart
from an already crowded field of
platform games and various
titles that involved dragons and
medieval worlds. To do this, our
team established and followed a
rigorous set of production
design guidelines while making
the game.

Our goal was to make SPYRO

THE DRAGON visually unique,
coherent, and memorable. Well
before starting production we
developed a set of artistic guide-
lines that we came to know as
our “production design bible.” Our
basic rules were as follows.
USE BRIGHT, SATURATED COLORS. We felt
that too many games, especially 3D
games, achieved their look of realism
by using muted color palettes which
favored gray, brown, and black. By
applying bright, vivid color schemes
throughout SPYRO THE DRAGON, we
would stand out from the start.
LEVERAGE THE LOOK OF CAMELOT AND FAIRY

TALES. While there were many games
set in medieval and fantasy worlds,
most seemed to favor a darker more
serious “Dungeons and Dragons”
look. To complement our use of satu-
rated colors, we pursued a lighter
medieval style, closer to Camelot
than to D&D.
CHARACTERS SHOULD COMPLEMENT THE ENVI-
RONMENTS. SPYRO was going to be a
character-based game, and much of
its personality came from its anima-
tion. Therefore it was necessary to
make the characters stand out
from the environment while
maintaining our fantasy theme.
Often much of a character’s
body was gouraud shaded which
allowed its design and move-
ment to stand out to the player.

By keeping the colors of the charac-
ters bright, we further emphasized
their appearance while maintaining
our global color palette.
USE SOFT TEXTURES AND SIMPLE DECORATIVE

MOTIFS. Our early tests showed that
the Playstation’s display sharpened
textures to the point where highly
detailed artwork degenerated into
distracting visual noise. By avoiding
hard outlines, high contrast, and too
much detail in individual tiles, we
were able to create a soft atmospher-
ic quality which was aesthetically
pleasing, yet not distracting to game
play.

These basic rules formed the foun-
dation of the game’s appearance and
helped us achieve visual consistency
throughout the title. With these rules
established and understood by our
entire team, there was little room for
miscommunication or confusion
since we had established a look and

a definitive way of qualifying it.
(Figure 6).

SPYRO’s universe comprises six dis-
tinct worlds, dozens of animated
characters, bonus flying rounds, a
secret level, and introductory and win
sequences. With so many characters
and locations, adhering to our pro-
duction design was essential. Yet at
the same time we needed to give each
world as distinct a look as possible
without straying from our basic
design rules. One of our solutions was
to design extreme variation into the
game’s environments. Spyro begins
his adventure in a castle garden and
proceeds through a desert, snowy
mountain peaks, a swamp, dream-
scape, and finishes in a mechanical
world. Furthermore, the flying rounds
are made of glowing crystals. Finally,
to differentiate each world even more,
we designed a dramatic three-dimen-
sional panorama at the start of each

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

S P Y R O A R T

SPYRO Production Design

F I G U R E 6 . Insomniac Games’ production design for SPYRO THE DRAGON created a dis-

tinctive look for a new character and game. SPYRO’s medieval fantasy world was com-

posed with bright colors, soft decorative textures, and a cast of fairy tale characters.

B Y J O H N F I O R I T O

John Fiorito is an artist at Insomniac Games where he creates wireframe models, textures,
and conceptual sketches for SPYRO THE DRAGON. He received degrees in architecture from
the University of California, Berkeley, CA and illustration from Art Center College of
Design, Pasadena, CA. Contact him via e-mail at jwf@insomniac.unistudios.com.

44

S P Y R O A R T

world to give the player a memorable
first impression (Figure 7).

Within each of these worlds there
were three levels of game play, a boss
round, and a central navigational
hub. Again, we faced the production
design challenge of giving each level
an individual look while maintaining
a consistency to the overall world.
Our first method was to vary the
locations and geography of a level.
For instance, in the desert (or
“Peacekeeper”) world, the settings
include a fortress, pueblo village, ice
cavern, and volcanic crater (Figure 8).
We also created unique looks within a
level by depicting varied and dramat-
ic times of day. In the Artisan world,
the levels occurred at daybreak, mid-
afternoon, sunset, and under a full
moon.

In SPYRO’s worlds we developed a
series of visual motifs that empha-
sized the connection between them.
One such motif was a member of a
family of balloonists that Spyro had
to hire to travel from world to world
— so seeing one of these balloonists
indicated the way out of the level.
Likewise, within a world, a system of
portals gave access to each of the lev-
els and each portal was styled to fit its
world. Similarly, the architecture
within each world maintained
consistent design sensibilities which
included flared bases, crenellated tur-
rets, and decorative buttresses. For
added variety, we sometimes located
rival civilizations in a level, which
allowed us to display the contrasting

styles of the indigenous and invading
characters and their architecture.
Regardless of a level’s theme, each
one shared the same amount of orna-
mentation, and this gave each level a
rich appearance.

Some of our greatest production
design challenges arose within the
levels themselves. In these massive,
free-roaming, 3D environments, it
was very easy for a player to become
disoriented and lost. Just finding a
level’s exit often proved difficult.
Searching for that last piece of trea-
sure or completing a spatially-orient-

ed puzzle could be especially taxing.
Getting lost could even prove fatal in
any of our timed flying rounds. To
prevent players from getting too frus-
trated we needed to supplement our
production design rules with a series
of visual solutions that kept the navi-
gation of a level as straightforward as
possible. Here are the supplemental
design rules we created.
USE LANDMARKS WHENEVER POSSIBLE. A
landmark is a unique structure or
geographical feature that distin-
guishes one area from another,
which gives the player a reference

F I G U R E 8 . Different settings, climates, and times of day added variety to SPYRO’s levels while adhering to the overall pro-

duction design. Here, in the Peacekeeper world, locations include a pueblo village at sunset, an ice cavern at night, and a

desert fortress at midday.

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

F I G U R E 7. To give each of SPYRO’s six worlds a unique first impression, we

often employed a dramatic three dimensional panorama. This opening scene of

the Magic Crafters world established its basic characteristics and created a

memorable view.

46

point in the level.
Specific pieces of
architecture, such as
bridges, castles,
fortresses, or other
buildings that had a
strong presence and
appeared only once
in a particular level
proved to be the most
effective landmarks
(Figure 9). To
enhance the unique-
ness of a landmark,
we added specific nat-
ural features around
it, such as waterfalls,
rivers, rock forma-
tions, or trees.
CREATE GATEWAYS AND CHECKPOINTS. To
indicate that a player was making
progress in a level, we tried visually to
emphasize the transition between
specific areas. This could be as funda-
mental as entering a castle gate or
crossing a bridge, or as subtle as
adding more snow on the ground to
indicate higher elevations within the

level. These transitions would often
occur after passing through a narrow
corridor or completing a long glide,
and they served as memorable focal
points in a level.
BALANCE INTERIOR AND EXTERIOR SPACES. We
found that a variety of interior rooms
and exterior spaces throughout a level
provided a player with strong visual

references. It also gave us the oppor-
tunity to create unique geometry. By
placing a cavern between two valleys,
for example, we not only defined dif-
ferent zones of game play, we were
also able to change the look of the
environment markedly and naturally.
And by varying the types of spaces
using caves, halls, valleys, or court-

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

S P Y R O A R T

F I G U R E 9 . Specific pieces of architecture proved to be one of the most effective ways of creating

a landmark. From initial concept to the finished play field, we designed unique areas into the

game to help players maintain their bearings.

yards, we were able to create numerous unique locations
throughout a level.
CHANGE SCENERY LIGHTING. Varying the lighting in different
areas of a level created environments that were dramatical-
ly different. We lit interiors in a variety of ways, including
natural light, fire and torch light, and any number of col-
ored, glowing light sources. This helped players get their
bearings, and also gave us added aesthetic opportunities
throughout a level. Outdoor lighting varied as well. For
instance, where a mountain divided two valleys, one side
might be sunlit while the other lay in shade. Narrow
spaces such as canyons allowed us to create strong shad-
ows, while open places contained bright areas of sunlight.

In addition to our visual choices, a number of technical
and game-play elements influenced our production
design. Since Insomniac’s game engine for SPYRO did not
use fogging to reduce the on-screen polygon count, many
areas of the game were designed to hide large portions of
geometry in the distance. Wherever possible, the world
had to be built in solid, continuous masses, such as moun-
tain ranges, castle walls, cliffs, and buildings. Artistically,
we were careful not to build monolithic fortresses, walls,
or cliffs which dwarfed Spyro. Where we needed excep-
tionally large sections of geometry, we tried to reduce its
scale by varying the surface with unique textures, buttress-
es, or decoration. Fortunately, and not coincidentally, our
decorative approach, fairy tale theme, and softened tex-
tures also reduced the scale of Spyro’s world.

Spyro's ability to glide great distances forced us to
design areas that would contain him, yet not feel
enclosed. This meant that most of our worlds had a hori-
zontal orientation and simultaneously needed boundaries
to halt his free-roaming nature. Wherever possible, we
sought to vary the limits of the worlds. In addition to
walls, we employed bodies of water, cliff tops, or infinite
drops to define our outer edges — the more boundaries in
a level the better.

Our team soon learned that time was one of the biggest
limitations in creating SPYRO’s look. In every instance we
needed to streamline our production processes. We relied
heavily on sketches and diagrams in our production
design, because solving a visual problem on paper was
much faster than using a computer. Often, a series of pre-
liminary studies could be created in a matter of hours,
instead of the days or even weeks it might take to imple-
ment one finished design on the computer (Figure 10).

Ultimately, the production design methods we used to
create SPYRO THE DRAGON were as much common sense as
inspiration. We discovered, however, that defining them
as rules or guidelines aided and quickened our production
process. Our framework of visual motifs resulted in effi-
cient development as well as consistent presentation.
While we were always short of time, we used our produc-
tion design to streamline the creation of finished artwork.
Not only did the production design support the technolo-
gy and game design, it also unified the playing experience.
Players of SPYRO were rewarded with a game that was visu-
ally logical, possessed artistic continuity, and in the end
was memorable. ■

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

48

S P Y R O A R T

F I G U R E 1 0 . We found that solving a visual problem on paper

was much faster than using a computer. Modifications to an

area during the design phase could be completed in a matter of

hours instead of the days or even weeks it took to implement

the finished design on the computer.

Saxs is busy working on MESSIAH, so if you have any questions you don't want answered, try e-mailing him at saxs@softhome.net.

By Michael ‘Saxs’ Persson

BBeehhiinndd tthhee SScceenneess ooff
MMEESSSSIIAAHH’’ss CChhaarraacctteerr

AAnniimmaattiioonn
SSyysstteemm

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 9 G A M E D E V E L O P E R

51

his article is not a how-to guide, it’s a brain dump

from the perspective of the engine programmer (me)

of Shiny’s upcoming title, MESSIAH. Usually Game

Developer articles are littered with formulas, graphs, and

code listings that serve to up the intellectual profile of the

piece. However, I’m not a mathematician and I don’t feel

the need to state any information in the form of a graph

— in this article I describe problems, solutions, and

things I’ve learned in general terms, and that allows me

to cover a lot more ground.

My interest in character systems

started more than four

years ago, when I

was working at

Scavenger, a now-

defunct development

studio. I was assigned to

develop a “next-generation”

X-Men game for the Sega Saturn.

Sega wanted motion-captured characters and chose to use

pre-rendered sprites to represent them. I observed the

(I
llu

st
ra

tio
n

b
y

Sp
en

ce
r

Li
nd

sa
y.

 li
nd

sa
y@

et
ri

b
e.

co
m

)

planning of the motion-capture ses-
sions, examined the raw mo-cap data
that these sessions generated, saw it
applied to high-resolution characters
on SGIs, and then received the frames
which I was to integrate into the game.

The results were disappointing. The
motion-capture data, which could have
driven characters at 60 frames per sec-
ond (FPS), was reduced to little bursts
of looping animation running at12 to
15 FPS, and could only be seen from
four angles at most. The characters
were reduced to only 80 to 100 pixels
high, and still I still had problems fit-
ting them in memory. The models we
spent weeks creating came out as fuzzy,
blurry sprites.

Around that time, two new model-
ers, Darran and Mike, were hired for
my team (and the three of us still work
together at Shiny). These two talented
modelers wanted to create the best-
looking characters possible, but we
didn’t know how to justify the time
spent on modeling super-sharp charac-
ters when the resulting sprites came
out looking average at best.

Eventually, Sega Software stopped
developing first-party games and
X-MEN was canned. Soon thereafter we
were asked to develop our own game.
That provided me with the incentive to
figure out how to represent characters
in a game better. We knew we wanted
at least ten or more characters on the
screen simultaneously, but all the low-
resolution polygonal characters we had
seen just didn’t cut it. So I decided to
keep pursuing a solution based on
what I had been working on for X-
MEN, hoping that I’d come up with
something that would eventually yield
better results.

At first I flirted with a voxel-like solu-
tion, and developed a character system
which was shown at E3 in 1996 in a
game called TERMINUS. This system
allowed a player to see characters from
any angle rotating around one axis,
which solved a basic problem inherent
to sprite-based systems. Still, you
couldn’t see the character from any
angle, and while everybody liked the
look of the “sprite from any angle”
solution, many people wanted to get a
closer look at the characters’ faces. This
caused the whole voxel idea to fall
apart. Any attempt to zoom in on char-
acters made the lack of detail in the
voxel routine obvious to people, and

the computation time shot up (just try
to get a character close-up in West-
wood’s BLADE RUNNER and you’ll see
what I mean). I tried a million different
ways to fix the detail problem, but I
was never satisfied. The other problem
with a voxel-based engine was the
absence of a real-time skeletal deforma-
tion system. Rotating every visible
point on the surface of a character in
relation to a bone beneath the surface
was not a viable solution, so we had to
pre-store frames and again, as in X-
MEN, cut down in the playback speed
and resolution. At that point I was
ready to try a different solution.

When my team and I were hired by
Shiny a little less than two-and-a-half
years ago, I had done the prototype of
a new character system after leaving
Scavenger. Shiny was really excited
about it and I continued to develop the
system for the game that would even-
tually become MESSIAH. Let’s look at
that system and examine the solutions
I came up with.

System Goals

T here were a number of goals for
the new MESSIAH character anima-

tion system. The first was to put as few
limitations as possible on our artists.
Telling Darran to do his best in 600
polygons would surely kill his creativi-
ty. At the very least, it was an excuse to
create only so-so characters. At that
time for PC games, the polygon count
for real-time animated characters was
around 400 each, and TOMB RAIDER

topped the scale at about 600 to 800
polygons per character. My fear was
that this number was going to change
significantly during the time it would
take to develop MESSIAH, and apparent-
ly I was right in that assumption.

Another problem I wanted to solve
was the need for our artists to create a
low-resolution version of a character
for the game, a higher resolution for
in-game cutscenes, and a high-resolu-
tion version for the pre-game cinemat-
ics and game advertisements. Why, I
thought, should we have to do all this
extra work? I wanted the artists to have
no excuse for creating mediocre mod-
els, and I wanted to eliminate their
duplicitous work.

Whatever system I created had to be
console-friendly. My two targets at that

point were the Sony Playstation and
Sega Saturn. Both had a limited
amount of memory — in Sony’s case,
only 1K of fast RAM. So it was impor-
tant that the system could perform
iterative steps to generate, transform,
and draw the model.

Finally, I was convinced that curved
surfaces would rule supreme in a few
years time, so I wanted to make sure
my system had that aspect covered.

I liked the visual results of my limit-
ed-resolution voxel model, and decid-
ed to make that my quality reference.
The no-limit-on-the-artist modeling
method seemed to work, so we stuck
with that. This system supported auto-
matic internal polygon removal, and
using it Darran was able to dress the
characters like Barbie dolls: he could
stick buttons on top of the clothing,
or model an eyeball and move it
around without having to attach it to
the eyelid. Clothing looked great,
since all wrinkles were created using
displacement mapping. Clothing
shadows and light variations looked
just right. In fact, most characters in
MESSIAH now average 300,000 to
500,000 polygons to make the most of
the system.

After a bit of back and forth, I decid-
ed to develop a system that fits patch-
meshes as closely as possible to the
body, and then generates the texture
by projecting the original model onto
the patch-mesh. To accomplish that,
the following steps were necessary:

1. Slice and render a volume repre-
sentation of the model with all of
the internal geometry removed.

2. Connect the volume pixels into
strings of data so it’s apparent
what is connected to what.

3. Apply bone influences.
4. Separate the body into suitable

pieces, so a patch surface can be
fitted around it.

5. Unify the body parts.
6. Generate a special mesh that goes

between the separate patch pieces.
7. Prioritize the unified points.
Of course, somewhere in this

process, I also had to figure out how to
get the skeleton attached to the model.

STEP 1. RENDERING THE VOLUME MODEL,
REMOVING INTERNAL GEOMETRY. The first
step is to cut up a model into a prede-
fined number of horizontal slices. This
determines the resolution of the ren-
dering. A reasonable number is 400

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

52

C H A R A C T E R A N I M A T I O N

slices for models we’re testing, and
1,000 to 1,500 for final models.

The dimensions of each slice’s shell
(outer surface) must be determined. I
experimented with several methods,
but in the end the simplest one was the
one that worked best. (Usually, if a
solution is too complicated, it probably
wasn’t the best solution anyway.) I “x-
rayed” a character from four different
angles (side, front, quarter-left, and
quarter-right), noting the impact time
for each ray, giving first and last hits
priority since we know they belong to
the outer shell, and storing the whole
thing in four different databases, each
corresponding to the x-ray orientation.
Each database was cleaned for loose
points (points having no immediate
neighbor). Most internal points are
removed by looking at the ray data. A
combination of normal sign logic and
proximity removes the inner layers,
such as skin under clothing, and other
points just under the surface.
STEP 2. CONNECT THE DATABASES. The next
step is to connect the four databases
into strings of data for each slice. This
makes the final maps look a lot better
since I can safely interpolate between
points if I know they are connected.
The routine goes through the four
databases recursively, trying to find
neighboring points one at a time. It
finds neighboring points by taking
into consideration criteria such as the
surface continuity in the form of nor-
mal, continuous curvature, proximity
to other points, UV closeness to other
points, whether points lie on the same
face, and so on. After this, we have
neatly connected strings of data. A pic-
ture of the raw data can be seen in
Figure 1.
STEP 3. APPLY BONE INFLUENCES. When we
first began trying to apply an animated
skeleton to the model, we didn’t feel
that any of the commercial packages
would work for us. Neither Bones Pro
nor Physique provided enough control.
So Darran and I came up with the con-
cept of painting bone influences direct-
ly onto the model (see Figure 2). The
method is similar to using an airbrush:
you set the pressure, method of appli-
cation (average, overwrite, smooth),
and start “painting” the bone influ-
ences. It’s done in real time, so you can
play an animation, stop at a frame
when you see something that needs
correcting, and just paint on the new

influences. Using this method, we got
very good deformation data from the
start. Since the deformation is applied
directly to the high-resolution model,
you can regenerate your game model in
any resolution without having to recre-
ate all the influences. You can also
incorporate influences from another
model if its structure is similar, and just
clean up the influences later.
STEP 4. SEPARATE THE BODY INTO SUITABLE

PIECES. Before the model can be convert-
ed into the native game format, it is
necessary to define all body parts. This
is done using cutplanes. These planes
cleanly separate the body into various
parts (arms, legs, torso, and so on), and
at the same time these planes describe
the common spaces where patch mesh-
es must be generated to cover holes
between body parts that emerge during
tesselation (more about that shortly).

Attached to the cutplanes is the defi-
nition of projection paths. These define
the projection axis from which the
patch mesh (think of the patch mesh
as a tapered cylinder) is generated. The
number of horizontal and vertical seg-
ments is defined for each body part, so
you can change the output resolution
of the mesh. Figure 3 shows what pro-
jection paths look like.
STEP 5. UNIFYING THE BODY PARTS. At this
point, the model is ready for unifica-
tion. This is the stage in which the
mesh is fitted around the source mate-
rial, at the appropriate resolution
specified for each body part. It’s as if
you shrink-wrap cylinders around
each body part. The strings of raw
data are then projected onto the final
cylinder, extracted into a texture map,
and separated so it can be saved sepa-
rately, and UV coordinates are stored
for each mesh point. I don’t call these
points “anchor points,” because we
just use them as corner references for
triangles, not for use in curved-surface
calculations. Until now, it hasn’t been
feasible to do any spline interpolation
of the points since hardware perfor-
mance is still not able to handle the
resolution that we save the game
models in (about 10,000 to 16,000
points per model at full resolution),
but the resolution is fine enough so
we can snap to points when we tessel-
late down the model. It makes the
run-time version a lot faster.
STEP 6. PATCHING HOLES IN THE MESH.
Patching holes in meshes was an aspect

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

54

C H A R A C T E R A N I M A T I O N

F I G U R E 1 . This is how the data looks

after volume rendering is completed.

F I G U R E 2 . Here is an example of

how the bone influence is done on the

upper torso.

F I G U R E 3 . The flexible projection

paths and their editing.

of the character animation process that
proved to be very difficult to get right.
We wanted a way to generate a mesh
that would perfectly stitch up any hole
that might be created when two cylin-
ders of different resolution were joined
together. For instance, to attach an arm
to a torso, you cut away a round shape
on the torso that fits the diameter of
the cylinder representing the arm. A
hole might appear at any point around
the cylinder if connecting cylinders
didn’t match up perfectly.

The problem is especially acute
when cylinders of different resolu-
tions are connected; this generates a
sharp break where they are joined. I
changed the system so that the last
slice of cylinder being attached (for
instance, an arm getting attached to a
torso) wasn’t rendered prior to being
connected. Instead, it was drawn
directly onto the master cylinder, cre-
ating much better arm-to-torso transi-
tions, and especially good leg-to-torso
transitions.

Getting the texture mapping correct
was difficult. Since the system uses
intra-page mapping (to support the
Playstation and for a more efficient
video memory), wrapping is not sup-
ported. And because a character’s indi-

vidual body parts are basically just
tapered cylinders, it was never neces-
sary to have wrapping. However, dur-
ing the process of unifying the various
body parts into a single character,
some method of handling wrapping
had to be devised. To solve the prob-
lem of properly aligning textures so
that body parts appeared in alignment,
I generated a point on the master body
part, typically the torso, corresponding
to a UV coordinate of 0 on the body
part being attached, allowing textures
on different parts to match up correct-
ly. That solved the texture wrapping
problem.

Currently, I’m working on a routine
that sorts out the drawing sequence of
the patch mesh, since a bumpy master
body part can screw up the projection
and cause the drawing sequence to
generate some incorrect points, there-
by creating holes in the mesh. That can
become a big mess.
STEP 7. PRIORITIZING POINTS FOR TESSELLATION.
The final step is to prioritize the unified
points. For instance, you want to make
sure that the tessellator doesn’t col-
lapse the tip of a character’s nose in
favor of some less important surface
point. As such, you can weigh that
point so it won’t disappear until the

game turns off the priority routine
when the model is displayed at low-res-
olution — in which case the nose
doesn’t matter anymore. Similarly, you
can prioritize an individual slice of the
model if it’s important to the integrity
of the model. That way you can make
sure that the bend slice around the
elbow is always there so the bend is
kept clean. This process is vital for a
stable-looking model — as a model
drops polygons rapidly, there is a
chance it will remove vital parts.
Prioritizing slices and points goes a
long way towards solving that prob-
lem. You might assume that prioritiz-
ing points all over the body would add
a lot of polygons to your character, but
in reality the tessellator just works
around those points. In a wireframe
view, you can see it just dropping more
points in adjacent areas.

Working With the Final Model

T he final model is saved with a sep-
arate map file for each body part,

so you can easily load it into Photo-
shop to fix problems without having to
do so on the model itself. When the
run-time version of the character sys-
tem loads a model for the first time, it
reads in your preferences for the
model’s appearance, scales the maps to
fit your restrictions, and quantizes the
maps if you want indexed color. A
compressed file of the model is saved at
this point, so the system doesn’t have
to go through this routine every time
the model is loaded.

Figure 4 shows the model in differ-
ent resolutions. This shot was taken
before the patch mesh was finalized, so
there are some discontinuities in the
hip area, but they are gone in newer
versions of the tool.

System Pros and Cons

T he process of creating a final
model for MESSIAH is quite

involved. It gets easier with each revi-
sion of the tools, but it still takes a bit
of thought.

On the upside, we feel confident
that the models we’re creating are
“future proof” (yeah, yeah — I know,
nothing really is, but for the sake of
argument, let’s just let that comment

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 9 G A M E D E V E L O P E R

55

F I G U R E 4 . A composite of the different stages of the tesselation.

pass). When somebody gets the bright
idea of upping the average number of
polygons per character from 800 to
2000, we won’t have to pull out our
hair.

The tessellator is generally a lot bet-
ter than other solutions at finding the
right points on a model to eliminate. It
doesn’t create holes between each body
part because of the patch mesh that
stitches the holes.

Having separate body parts makes
cleanly amputating a limb easy, and
the model can still be tessellated away
even after a limb is severed.

Multi-resolution mesh (MRM) tech-
nology as described by Hugues Hoppe
(a researcher in the Computer Graphics
Group of Microsoft Research), has won
a lot of acceptance for its ease of use. It
is a good solution for static objects, but
if you have highly complex objects,
modeling them with a limited polygon
count and mapping restrictions is not
so easy. Using our system, we can map
each button on a shirt separately and
the program determines the final map
without screwing up the tessellation
effectiveness. Another drawback to
MRM is that as soon as you start ani-

mating MRM objects, you start seeing
artifacts. These visual artifacts are gen-
erated by the way MRM-generated
LODs bend, which in turn is due to the
“spider web” appearance of the mesh
around a collapsed vertex. The method
by which MRM determines which ver-
tex to collapse is based on the base
frame of the model, so an MRM-based
system wouldn’t notice that the arm is
bent in the animation and might
remove vertices that might adversely
affect the integrity of the model in that
particular pose.

For static objects, MRM is preferred
over the method I devised for MESSIAH,
since it only changes one vertex at a
time, so the mesh appears more stable.
In fact, I made my own demo version
of MRM for the Game Developers
Conference earlier this year. Our team
ended up using the routine for a few
high-resolution objects in MESSIAH,
and the technique worked nicely. On
our system, we found that the tessella-
tion artifacts get masked somewhat
due to the fact that everything is
moving and stretching with the
animation.

Another important thing to note
about our system is that the model
can be processed in sections. You only
need the rotation data from two slices
at a time in order to render a model
and make it fit easily in the cache.
Even next-generation consoles have
memory restrictions, so it’s vital to
control the temporary memory foot-
print that calculations require.
Because our system generates strips
and fans, the rendering speed of our
system sees big improvements on any
hardware.

Disclaimer

T his article is not meant as an
advertisement for MESSIAH or the

character system I’ve written; I merely
want to state an alternative to the con-
ventional approach to generating char-
acters. The process is being revised
continuously. It’s an on-going task to
improve the process of converting
models from 3D Studio Max to a game-
optimized format. For now, Darran is
keeping us busy with neat suggestions
on how to make his life easier (and in
doing so, we’re swallowing our week-
ends to make the modifications). ■

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

56

C H A R A C T E R A N I M A T I O N

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 9 G A M E D E V E L O P E R

57

A s the tools programmer for MESSIAH, one of the chal-

lenges I faced as I built our in-house development

tools was deciding how to handle the vast amounts

of raw data — a model with 400 rings contained

anywhere from 50,000 to 250,000 points (see Figure 1). Each of

these points is weighted with up to three bones, which further

slows the drawing process. Some design ideas were “borrowed”

from 3D Studio Max, which uses a frame-rate threshold that

drops the application from shaded mode into wireframe mode to

increase drawing performance. So in the tool, if the user is rotat-

ing, panning, or zooming in on the model and the frame rate is

too low, the program starts to skip points and slices to improve

the display speed. And as soon an operation is finished, the

model is redrawn again at the original resolution (see Figures

5 and 6).

Unfortunately, this method of boosting performance could not

be used to paint bone influences onto the points (see Figure 2) —

each point must be visible in order for the user to see the effect

that bones have on points as the influences are altered. And as

Saxs stated in his article, just drawing

a character model was slow (especial-

ly when we increased the number of

slices to 1,000 and we got a couple

million points). This forced us to rely

on regional updates when setting the

influences within the model. Each

time the model is redrawn, the 2D

location and information about each

point was stored in a huge buffer. So

when the user actually “paints” influ-

ence with the brush, we perform a 2D

region test (I actually use standard

Windows functions for this, which is

slow), recalculate the position (as the

influence just changed), and redraw

the data within this region. The results

are satisfactory, and it lets users

change influences within the model in

real time (using a reasonable amount

of points).

The first generation of the charac-

ter tools had statically defined linear

projection paths, which meant that if

a model had body parts that were

arced, curved, or bent, the generated

map would be skewed when unifying.

In other words, it was not a visual

process at all. When it was time to

upgrade the tools, the modelers had

come up with some not-so-humanoid

characters, which meant linear pro-

jections were bad. So we added visu-

al editing features and the ability to

save spline projection paths. A spline

projection path is a type of positional keyframe sys-

tem: you create position keys, move the positions

around, change tension, continuity and bias, and

give each position/key a time value. This time value gives resolu-

tion to the spline, which in turn defines the resolution within the

cylinder. This feature lets us change the resolution of the body

part/mesh as we traverse down an arm, for example, and we gen-

erate higher resolution around the areas of a body part that need

to bend, as we did in the case of the shoulder area shown in

Figure 3.

A SCALABLE ENGINE REQUIRES SCALABLE TOOLS The scalability of

the MESSIAH engine means more game data for developers to

work with, which in turn means that our game development tools

must be flexible enough to manipulate all that data. When we

first started on the game, there was a limit of 400 slices per char-

acter. However, when that limit was raised, exporting the models

from 3D Studio to raw rendering data became very slow. We had

trouble fitting everything into memory, and machines often had

to fall back and use swap drives to compensate (which is slow).

When the rendering process ran out of swap space, we really had

a problem. That’s when we heard that Interplay had a network-

rendering farm consisting of ten DEC Alpha workstations. We

headed over to Interplay’s offices to get some information on the

setup, and afterwards we created a distributed computing ver-

sion of our raw-data renderer. Using the new distributed render-

er, 1,000-slice models that used to be rendered overnight could

be rendered in one and a half hours.

The communication used for our distributed rendering system

is very simple. The server saves a command file containing com-

mands for rendering the slices from the different viewpoints to a

shared directory and each client exclusively opens this file and

looks for a command that hasn’t been taken by any other client.

The server checks this file at certain intervals to see if all the

commands have been rendered. If it finds that all commands

have been issued but some have not yet completed, it assumes

that a machine is either very slow or has crashed, and it will reis-

sue the command to another idle client.

When I started to write this article, the characters were ren-

dered with a slice resolution of 1,000, but as I’m wrapping up this

article, Darran has started to do 1,500 slices. That means that a

raw binary file coming into our tool is 150MB, and that the prob-

lem now isn’t just with drawing speeds anymore. It is actually

becoming a problem for the artist to work with the model.

Making sure that all the points are influenced and assigned to a

body part is in itself a challenge. The tools were written with 400

slices in mind, and work beautifully even at around 800 slices,

but with insane (Darran) resolutions, we need to come up with

better ways to influence and generate the finished model. More

sophisticated caching techniques and regional updates are going

to be used, and that will hopefully enable us to go to even higher

resolutions. In a year or so we’ll probably have 2,000 to 2,500

slices, and 1GHz Pentium IIIs with 1GB of direct Rambus memory

at our fingertips. When this happens, we want our tools to be

able to take advantage of that power.

MESSIAH’s Character Animation Tools (Or, Why I’m Losing My Hair)

F I G U R E 5 . A rota-

tion is in process so

detail is reduced on

the model.

F I G U R E 6 . When the

rotation is complete,

original detail level

is restored.

B y T o r g e i r H a g l a n d

Torgeir Hagland programs his way around the world while conveniently
dodging the Norwegian army. Write him at torgeir.hagland@powertech.no.

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

58

ast year I was quite dismayed to see that Alfred Hitchcock’s

Psycho was being remade. It’s one of my favorite films and I

couldn’t understand why anyone would think it necessary to

remake it. How could a remake possibly approach the brilliance

of the original? But then I noticed that Gus Van

Sant, a filmmaker whose work I admire, was head-

ing the project, so I thought the remake might have some merit. Still I

wondered, what could have provoked him to tamper with such a clas-

sic? The irony is that at the same time I was dubi-

ous about the prospect of a Psycho remake, I was

working on a new version of CENTIPEDE. The origi-

nal CENTIPEDE, as designed by Ed Logg and Donna

Bailey for Atari in 1980, is a work of art that I love

b y R i c h a r d R o u s e I I I

Leaping LizardÕs
CENTIPEDE 3D

P O S T M O R T E M

Richard Rouse III was Lead Designer and AI Programmer on CENTIPEDE 3D for both the PC and Playstation.
Before that, he created the games DAMAGE INCORPORATED and ODYSSEY - THE LEGEND OF NEMESIS under the
Paranoid Productions banner. Since working at Leaping Lizard Software, Richard has moved on to Surreal
Software, where he is glad to be working on neither a remake nor a sequel. Feedback and other musings are
encouraged at paranoid@panix.com.

LL

59

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 9 G A M E D E V E L O P E R

and revere just as much as Psycho. So why didn’t I have
moral reservations about working on its remake? Perhaps
looking at the Psycho remake from my point of view as a
Hitchcock enthusiast who isn’t a filmmaker, I could only see
the new version as sullying the name of a classic. But work-
ing as an artist in the computer game medium, I saw that a
new version of CENTIPEDE could be fresh and stimulating,
using the classic game as a springboard for a completely new
game playing experience. Without doubt, it would be a
tremendous challenge to create a game that could live up to
the reputation of the classic.

The Task at Hand

W ith plans for the PC and Sony Playstation as intended
platforms, Hasbro Interactive was very clear in

explaining that they wanted CENTIPEDE 3D to be true to the
spirit of the classic CENTIPEDE. Hasbro Interactive had a com-
mercial hit on its hands with FROGGER 3D, but at the same
time was listening to complaints about the game. It seemed
that many people enjoyed the first few levels of FROGGER 3D
the best. It just so happened that these were the levels that
most resembled the classic FROGGER. Because of this, Hasbro
Interactive wanted to make sure CENTIPEDE 3D was closely tied
to the original CENTIPEDE.

Leaping Lizard had already spent some time developing
its outdoor 3D engine, which up until CENTIPEDE 3D was
used exclusively by a flying combat game called RAIDER.
Hasbro Interactive saw the technology and thought it ideal
for their new version of CENTIPEDE. A prototype using the
RAIDER engine with CENTIPEDE game-play components was
created by Leaping Lizard in record time, and once deliv-
ered to Hasbro Interactive, the deal was soon signed. Eager
to work on a project with the challenge of creating a new
incarnation of CENTIPEDE, the team at Leaping Lizard was
concerned with exactly the same goal as Hasbro
Interactive: creating a distinctly modern game that still
captured the feel of the classic. At the end of 1997 work
began, using the existing RAIDER engine but without most
of the RAIDER game play in order to make a new version of
CENTIPEDE.

San Francisco art shop Mondo Media had impressed
Hasbro Interactive with its excellent work on INTERSTATE ‘76,
and it was brought in to do the cut-scenes for the new
CENTIPEDE. Hoping to match the art style of the cut-scenes
with the in-game art, Hasbro Interactive and Leaping Lizard
decided Mondo Media would also do some of the animated
game play art. The core CENTIPEDE game play demands that
there be a large number of monsters and mushrooms on the
screen at one time, and as such, a very low polygon count
was required for all the models. The RAIDER engine utilized a
level of detail (LOD) system, which swaps in lower polygon
versions of models depending on the game’s frame-rate and
a given object’s distance from the camera. Mondo Media,
more experienced with high-polygon work, at first found it
extremely challenging to stick to the 90-60-30 polygon limi-
tations for the monsters’ LODs. But as the project pro-
gressed, Mondo Media adapted to the polygon limitations
and produced some great work, creating more than 20 ani-
mated character models for the game.

Designing a Remake

A t Leaping Lizard, work began immediately on the pro-
ject. Programmers started porting the RAIDER engine

over to the Playstation, while designers and artists dove into
the first world of the game, Weedom. Six levels were pro-
duced rather quickly, with the first two levels attempting to
mimic the classic game play as much as possible. Hasbro
Interactive didn’t think these levels were close enough to
the original, however, and by March of 1998 asked that we
start work on a completely separate “classic game,” turning
what had been a one-game project into a two-game endeav-
or. As we studied the classic game by endlessly playing our
authentic, coin-operated CENTIPEDE, we not only developed
the mock-classic game, but started to rethink the design of
the modern game as well. Up until this point, the modern
game levels had not been very reminiscent of the original
CENTIPEDE, and as we studied the classic, we began to see
why.

Of the six original levels that we had designed, only two
survived without major retrofitting of the landscapes, while
one was completely overhauled and three were discarded.
We then spent approximately three months working up
three new levels, refining and balancing them until they
were fun and reminiscent of the original CENTIPEDE. With
these first six levels relatively finalized and armed with a bet-
ter idea of what was going to work well in CENTIPEDE 3D, we
spec’d out the rest of the game and designed and imple-

Leaping Lizard Software Inc.
Gaithersburg, Maryland
(301) 963-8230
http://www.lplizard.com

Mondo Media
San Francisco, Calif.
(415) 865-2700
http://www.mondomed.com

Real Sports Games, LLC
Elgin, Ill.
(847) 429-4670
http://www.realsportsgames.com

Release Date: October 1998 (PC); May 1999 (PSX)
Intended Platform: Windows 95/98, Sony Playstation
Project Length: 18 months
Team Size (PC): Seven full-project developers and two part-pro-

ject developers at Leaping Lizard, working with the artists at
Mondo Media.

Team Size (PSX): Three full-project developers and five part-
project developers at Real Sports Games, with five part-project
developers at Leaping Lizard, and the artists at Mondo Media.

Critical Development Hardware: (Beginning of project): 90MHz
Pentium with 64MB RAM. End of project: 350MHz Pentium II
with 128MB RAM.

Critical Development Software (PC): Watcom C++ 11.0a, Opus
Make, Emacs, 3D Studio Max, Adobe Photoshop, RCS source
control.

Critical Development Software (PSX): Metrowerks
CodeWarrior for Playstation, Opus Make, Debabelizer,
StarTeam source control.

CENTIPEDE 3D

mented 23 more levels in only three
months. By working initially on only a
few levels until they were actually
enjoyable to play, we were infinitely
more prepared to design the remainder
of the game, and hence had to do
almost no reworking for the rest of the
project.

The Playstation Version

A round April, both Leaping Lizard
and Hasbro Interactive became

concerned that Leaping Lizard wasn’t
going to be able to get the PSX version
of the game running by the holiday
season deadline. This was largely
because of difficulty finding an avail-
able PSX specialist, and a number of
PSX programmers that Leaping Lizard
had hoped to hire had backed out at
the last minute. As such, both Leaping
Lizard and Hasbro Interactive thought
it would be best to bring in another
team to handle the PSX conversion,
preferably someone who already had a
suitable engine running on the PSX.
That team turned out to be Real Sports
Games of Elgin, Ill. Real Sports Games
had a very nice looking Playstation
engine up and running its then-in-
development JEFF GORDON XS RACING

title, and thought they would be able
to get the conversion done for the all-
important Christmas deadline. The
deal was finalized at the 1998 E3 Expo,
and they started work on assessing and
porting the title immediately.

Real Sports Games was given an
extremely challenging goal: porting a
game which was not yet complete. This
made it more difficult to fully assess
the scope of the project and to see how
it would fit within the constraints of
the PSX. Further complicating matters
was the fact that, in order to get the

game to work with
their engine, they felt
they had to rewrite
large sections of the
PC game’s code from
scratch. Though the
decision was made to
use the exact same
level files as the PC
version, the project
became less of a
straight conversion
and more of a rework-
ing of the PC version
of CENTIPEDE 3D. Real
Sports Games ended
up neither doing truly
concurrent develop-
ment with the PC
team, nor porting a
completed game.

Following comple-
tion of the PC version
in October, I was
flown out to Elgin to
work with the Real
Sports Games staff on
wrapping up the con-
version and to make
sure all of the correct
design and game-play
elements were func-
tioning correctly. My
stay was initially to be
for two weeks. Once
there, however, I
observed how many of the game-play
elements had yet to be implemented,
and I began noticing how different sys-
tems in the game, though they might
work on earlier levels, were not going
to be adequate in later levels. My stay
in Elgin stretched to three months as I
started working on the coding of the
game, and got all of the game-play ele-
ments working correctly. During this
time, other members of Leaping Lizard

were flown out to help
finish the project, includ-
ing programmers Chris
Green and Gary Skinner,
artist Jane Miller, and
project manager Elaine
Albers. In December, the
game entered beta, where
it stayed for four months,
going through a particu-
larly long and arduous
quality assurance process.
Fortunately, after
December I was able to
work remotely on bug
fixes and to fine-tune
game play using the
excellent StarTeam source
control system, which
worked seamlessly over
the Internet.

Working on CENTIPEDE

3D was at once an
extremely gratifying, yet
terribly confounding
experience. The game’s
design seems to have
worked out particularly
well, with play that
instantly reminds people
of the original game.
Getting that design
implemented on the PC
side was a challenging,
yet rewarding experi-
ence. But then making

that design function on a system sig-
nificantly less powerful than the PC
proved mind-numbingly difficult and
unendingly frustrating. The entire
team was disappointed when the
product didn’t make its Christmas
ship date. Looking back on the whole
project, there are some things that
worked out gloriously well and other
things that only cause us to hide our
heads in shame.

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

60

P O S T M O R T E M

The evolution of a classic: From left, the original CENTIPEDE from 1981; how the mock-classic game looked at one point during

development; how the mock-classic appeared in the PC version; and the completely 2D incarnation of the classic game, found

in Playstation CENTIPEDE 3D.

PC screenshot taken of first

world, Weedom.

PC (top) and PSX (bottom)

screenshots taken of the

second world, Frostonia.

What Went Right

1.THE SCRIPTING

LANGUAGE. CENTIPEDE

3D made heavy use of
Leaping Lizard Software’s
proprietary scripting lan-
guage. Created to allow
easy implementation of
game-world objects with
unique behaviors, the lan-
guage was in part intended
to allow non-programmers
to make modifications to
the game. But, as it turned
out, this wasn’t really the
case; John Marzulli (a pro-
gramming intern) and I did
the vast majority of the
scripting work in the game,
and were able to do so only
because of our program-
ming backgrounds. Indeed,
we pushed the scripting
language far beyond what
its creator, Chris Green,
ever imagined it would be
used for. The support for “#define” and
“#include” style functionality made the
scripts quite versatile and powerful.
Except for the Centipede’s behavior, all
enemy AI in the game was implement-
ed using the scripting language.
Because the scripts are interpreted at
run time, no recompiling was required
when a script was changed, and only
the scripts used on a particular level
were even loaded into memory.

For the PSX version, however, Real
Sports Games decided early on that a
run-time interpreted scripting system
was simply not going to work. In addi-
tion, floating-point numbers were used
heavily throughout the scripts, and the
PSX is notoriously slow at floating-
point emulation. Some effort was put
into hand-converting scripts into C
code. But once the sheer number of
scripts used in the game was fully
understood, team members began to
realize that perhaps there were simply
too many scripts to convert in the time
available.

Chris Green came up with the idea
of writing a converter that would take
the scripts and convert them into C++
code, substituting fixed-point values
for floating-point numbers in the
process. The scripts, by their very
nature, were completely platform-
independent and lent themselves to

direct porting. Chris’s script converter
worked out extremely well, and its suc-
cess meant that once we had a one-to-
one correspondence between functions
called by the scripts and functions
available in the PSX version, we
instantly had all monster AI and other
world-object behaviors converted as
well. As a bonus, nearly all of the con-
verted scripts were bug-free, since they
had already been through a fairly rigor-
ous testing cycle on the PC. Due to
their strange syntax and frequent use
of nested function calls, CodeWarrior
took hours to compile the converted
scripts and it generated a fairly large
amount of code. But due to the PSX
version’s use of application chaining,
only the scripts used on a given level
were actually included in the exe-
cutable, thereby allowing the game to
fit in memory despite these inordinate-
ly large compiled scripts.

2.STUDYING THE CLASSIC GAME.
In creating the mock-classic

game that was included with CENTIPEDE

3D, we had to spend a lot of time
studying in fine detail the behavior
and balance of all the elements in the
original CENTIPEDE. We spent many
hours in front of our authentic 1981
CENTIPEDE coin-operated game analyz-
ing the game play. We came to under-
stand the vital game-balance depen-

dencies between the Flea,
Spider, Centipede, and the
mushrooms. Remove any
one of them or alter how
they work or when they
appear, and the game falls
apart.

Though the classic recre-
ation game included with
CENTIPEDE 3D didn’t live up
to anyone’s hopes, study-
ing the exact play mechan-
ics of the original
CENTIPEDE did help us
immeasurably in designing
the modern game.
Understanding the classic
game-play mechanisms was
key to recreating the feel of
the original game and
allowed us to mimic exactly
the movement patterns of
the core monsters. Though
the renderings of the
insects in the new game are
nothing like the classic,
when players watch the

monsters’ mimicked movement pat-
terns in the new game, they see a visual
echo of the classic, thereby instantly
reminding them of it visually. In the
end, much of the game play that suc-
ceeds in CENTIPEDE 3D is the direct
result of studying the game design
work that Ed Logg did nearly two
decades ago.

3.CORRECT PSX DECISIONS. In the
process of developing the PSX

conversion of CENTIPEDE 3D, several
seemingly insurmountable obstacles
presented themselves. Fortunately, at
these junctures the programmers were
able to make the right decisions,
which, had they been incorrect, could
have doomed the project completely.
Looking back now it’s easy to see that
the choices made were the only ones
that could have worked, but when the
decisions were made the programmers
were relying primarily on intuition and
gut instinct.

One of the earliest of these crucial
decisions was to write tools which
would convert the PC level and model
files into PSX-usable form, primarily by
removing all of the floating-point
numerical data. Real Sports Games had
bandied about the idea that perhaps
new levels should be crafted for the
Playstation version. But Real Sports
Games decided that there was nothing

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 9 G A M E D E V E L O P E R

61

PC screenshot taken of the

fourth world, Enigma.

PC screenshot taken of third

world, Infernium.

Concept art for the Evile levels.

that the PC levels did from a design
standpoint that couldn’t be accom-
plished on the PSX as well, and since
these were well balanced, thoroughly
tested levels it was the right decision to
use them in the console version instead
of discarding them.

As the PSX development proceeded
and the converted script files were
added to the game, it soon became
obvious that there was simply not
going to be any way to fit all of the
code into the two megabytes of main
RAM found in the PSX. Once we had
acknowledged that something had to
be done, PSX project lead Brian Rice
decided that application chaining was
the only way to get the game to work,
arguing down nay-sayers and cynics
along the way. As a result of Brian’s
quick and authoritative decision mak-
ing, the game has not just one, but 11
separate executables, with different
applications able to quit and run each
other as the player moves from menus
to game play, or from level to level in
the game. By separating out code that
was used only in certain sections of the
game and removing it from the exe-
cutables (something which Code-
Warrior’s dead-code stripping capabili-
ties simplified greatly), each of the 11

applications was
squeezed into the two
megabytes available.
Without this application
chaining, there is simply
no way the game would
ever have worked on the
Playstation.

4.SEPARATE “CLASSIC”
AND “MODERN”

VERSIONS OF THE GAME.
CENTIPEDE 3D started out
to be one game but
turned into two along
the way. Hasbro
Interactive, having
learned that what people
liked best in FROGGER 3D
were elements that most
resembled the original,
wanted CENTIPEDE 3D
players to have a game
very much like the one
they remembered from
the early 1980s. Initially,
the designers considered
including all of the fea-
tures that players would
expect from a new con-

sole-style game — level-based play,
exploration, power-ups, and so forth —
in some of the levels, while having
other levels which matched the classic
game play exactly. The two styles of
game play were to alternate through-
out the levels, thus giving players both
new and old style games in one.

But in attempting to mix the two
modes of game play, neither was going
to work out very well, and players
would be confused and frustrated by
the constantly shifting styles. The
whole team soon realized that having
completely separate games was the way
to go. One game would feature mod-
ern-style game play that would be rem-
iniscent, though quite different from,
the original CENTIPEDE, and this style
would be consistent through the whole
experience. The other “classic” game
would give the user game play identical
to that found in the original game,
though presented in a new isometric
3D view. For the PSX version, the clas-
sic game was taken one step further,
using 2D graphics and sounds identical
to the original game’s. In this way, the
two different styles of game play could
exist separately, with players who
wanted precise CENTIPEDE game play
able to get that, while the modern

game was allowed to flourish as a sepa-
rate entity, no longer tied down to the
constraints of the original game.

5.DESIGNER MULTI-TASKING. There
were two designers on

CENTIPEDE 3D, and both of us were
actively involved in the implementa-
tion of our design ideas. I served as
both designer and programmer on the
project, while Mark Bullock was both
designer and artist. Together we
worked out all the game’s design issues
and made all the levels found in the
game.

By being intimately involved with
both the programming and art in addi-
tion to our design responsibilities, we
were able to come up with design ideas
and then implement them almost
instantly. Mark could throw together a
concept sketch, model the piece, and
then I could make the game element
actually function in the game world.
Instead of having to explain our vision
to someone else, we were able to just
“make it so” and see how well it
worked in the game in a very short
time. Though I have nothing against
designers who are neither programmers
nor artists, our ability to multi-task
allowed us to achieve a certain Zen-like
state during the game’s creation, which
let us crank out the game’s levels in
record time. Though we delegated art
and programming responsibilities to
other members of the team, because we
had full understanding of the program-
ming and art limitations of the project,
we were able to avoid impractical or
unaccomplishable design ideas, and
instead focus on what we knew we
could get to work in the limited
amount of time we had to make the
Christmas deadline.

What Went Wrong

1.CLASSIC GAME SHOULD HAVE BEEN

EMULATED. Despite our best
efforts, the classic game that comes
with CENTIPEDE 3D is not precisely the
game that Ed Logg created. There are
differences which any hard-core
CENTIPEDE fan will notice, and both the
PC and PSX mock-classic CENTIPEDE

games don’t quite feel right. The new
3D visuals in the PC classic game don’t
really do anything to make the game
any more fun, and even though the
PSX goes so far as to look and sound

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

62

P O S T M O R T E M

The Wasp boss insect from the Infernium levels,

sketch and finished model.

The Wee Miner from the Infernium levels, sketch and

finished model.

exactly like the original CENTIPEDE, it
still just isn’t the classic.

Though many software companies
are wary of emulators and the income
they may be “stealing,” here is an
instance where one could have worked
wonders. Many such emulators exist
on the PC side, and one had even
appeared for the PSX, as used in
Midway’s ARCADE’S GREATEST HITS: THE

ATARI COLLECTION. Instead of the great
quantity of man-hours spent trying to
recreate the classic behaviors and game
play, the same amount of time could
have been invested in writing our own
emulator that would have permitted us
to include the authentic CENTIPEDE

with CENTIPEDE 3D. Perhaps if we had
realized early on that we were going to
end up with two completely separate
games, instead of the single game we
originally designed, we might have
seen that emulation was the best solu-
tion to the challenges that lay ahead.
No one fully realized how much work
would go in to recreating such a simple
game precisely and I firmly believe no
amount of work on the mock-classic
would have resulted in a game that was
as good as the original ROM. When
attempting to pay homage to the bril-
liance of a classic game, nothing does
as well as presenting the actual game
itself, functioning exactly as it did
when it was released.

2.GAME WAS TOO HARD. From the
beginning, CENTIPEDE 3D was

supposed to be a mass-market title, a
game anyone could pick up and play
fairly well from the start. Definitely not
aiming at the hard-core game player,
Hasbro Interactive had seen wild suc-
cess with its mass-market FROGGER 3D
and wanted CENTIPEDE 3D to appeal to
exactly the same consumers. It was said
that even FROGGER 3D was too hard in
places, and if we could make CENTIPEDE

3D easier, we’d be heading in the right
direction.

But it was not to be. In the end,
CENTIPEDE 3D turned out to be a far
more challenging game than FROGGER

3D. As a designer on the project and
the one largely responsible for balanc-
ing the levels from a game-play per-
spective, I take full responsibility for
this shortcoming. The usual problems
that lead to excessive difficulty can be
found to be true here. First of all, none
of the people playing the game during
its development — designers, program-
mers, producers, and testers — could
really be considered members of the
computer game mass-market. We were
all adept at a variety of games, includ-
ing many distinctly hardcore titles, and
as such, we were far
more experienced
than the target
audience. The
members of the
team who were not
such avid game
players were not
encouraged to play
the game as much
as they should
have been, and
consequently, they
didn’t voice com-
plaints about its
difficulty.

There were many
complaints early
on in the game’s
development that
it was too difficult.
Accordingly, I did
some work to reme-
dy this, and by that
time the com-
plaints had disap-
peared. I concluded
erroneously that
the tweaks I had
performed had
fixed the difficulty
problems, and

hence stopped worrying about them.
What had really happened, I suspect,
was that I made the game just slightly
easier, and that in the time it took me
to accomplish that, the people who
had been complaining about the
game’s difficulty had gotten a lot better
at it, and therefore stopped complain-
ing. The solution to the challenge of
testing the difficulty of a mass-market
game, it seems, is always to test the
product on a “newbie,” someone who
has never played the game before.
Only then will one know for sure if the
game is getting easier or harder.

Actually, I think CENTIPEDE 3D is just
about as hard as the original CENTIPEDE,

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 9 G A M E D E V E L O P E R

63

The Tarantula boss arachnid from the Enigma levels, sketch

and finished model.

The Cockroach insect from the Evile levels, sketch and fin-

ished model.

perhaps even a bit easier. A game on
the classic version only lasts a few min-
utes for the majority of players, and was
designed as such to maintain a steady
flow of quarters. Though CENTIPEDE 3D
was aimed at the home market from the
start and as such should have provided
a much longer average play experience
for users, I like to think it was the
game’s emphasis on being like the clas-
sic that made it so hard.

3.EXTENDED CRUNCH SCHEDULE

PREVENTED LONG-TERM PLANNING.
When I started working on the PSX
version of CENTIPEDE 3D in October of
1998, everyone involved with the pro-
ject was estimating that the conversion
had about two weeks remaining. Two
weeks later, after I had spec'd out all of
the game-play elements that were still
missing from the PSX version, it was
decided again that there were two
weeks left to get all of those game ele-
ments working. This pattern continued
as the project extended on for another
six months. No one involved fully real-
ized the scope of getting CENTIPEDE 3D
to function on the PSX.

From a business standpoint, the pro-
ject needed to be done in two weeks,
but unfortunately, from a program-
ming standpoint, there was no way
this could happen. Being in perpetual
crunch-mode and constantly thinking
the game was nearly finished, program-
mers were inclined to hack systems
together in the quickest way possible,
not fully considering all the problems
that might result from such hastily
constructed code. In the end, much of
the rushed code had to be rewritten to
fix all the bugs associated with it,
which further extended the develop-
ment time. The ongoing feeling that
the game was nearly finished, but then
not having it work out that way was
also horrible for morale. If anyone had
fully realized how much time was left
on the project, the programmers could
have taken the time to port systems
correctly, look at the project wholisti-
cally, and structure their work better.
In the end, coming up with a more
realistic schedule might have shaved a
month or two off the total project time
and resulted in a less stressful experi-
ence for the team.

4.INCOMPLETELY PORTED SYSTEMS. In
porting the game over to the

PSX, some of the key systems in the PC
game were initially rewritten without

fully understanding or considering all
the functionality they had to include.
In part because of the intense schedule
we were working under, programmers
would often look at how a given game
system worked in a few situations and
then make sure their implementation
of the mechanism would perform all
that they had observed, instead of
going over the PC code and converting
it line by line. Unfortunately, usually
only the early levels were considered
during this observation stage and it
would turn out that on later levels the
system had to do a number of addi-
tional things that its ported incarna-
tion could not. In the worst-case sce-
nario, the only way to get that system
to include this additional functionality
was to rewrite it from scratch.

One example of this problem was
water. CENTIPEDE 3D for the PC uses a
massive textured plane for its water,
which is drawn before any terrain
geometry is rendered instead of clear-
ing the screen, and which could there-
by extend to infinity past the edge of
the game world. This caused us to
design many of the game’s levels as
islands set in the middle of infinite
seas. The water also had the advantage
that it could trivially be made to rise to
any elevation, potentially flooding pre-
vious areas or the entire level, a feature
we exploited when designing the
game. Due to Z-buffer limitations on
the PSX, Real Sports Games realized
early on that it was impossible to
implement water in the same manner
in the console version. The developers
at Real Sports went out of their way to
create a water system for the PSX ver-
sion that in some ways looked far bet-
ter than the PC version’s water. Instead
of being a flat plane, its water was com-
posed of triangles which undulated up
and down in beautiful, wave-like for-
mations. This looked great on the early
levels that had relatively small quanti-
ties of water. Unfortunately, the more

space on the level the water filled, the
more memory it took up due to all the
vertex data. The levels that were tight-
est on memory were ones that featured
a lot of water, and a lot of time was
spent pruning other objects from these
levels in order to prevent them from
overflowing the PSX’s memory.
Furthermore, the PSX version’s water,
due to its memory-intensive nature,
could not extend forever as the PC ver-
sion’s water did, and consequently, the
island levels looked ugly. If from the
start the PC game’s water usage had
been looked at on all the levels instead
of just the first few, it is possible that a
completely different implementation
of the water on the PSX could have
been undertaken, one which would
have included all the necessary func-
tionality.

5.NO UPDATED DESIGN DOCUMENT. In
a project such as CENTIPEDE 3D,

where two separate teams were work-
ing on two separate code bases on
games that were supposed to share a
design, a living, up-to-the-minute
design document is an absolute neces-
sity. Unfortunately, beyond outlines
written early in the project, most of the

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

64

P O S T M O R T E M

The Shooter — the ship the player controls through the game — has four different

LODs. Since the default camera view is so far from the ship, most of the time play-

ers probably see LOD number three or four. Notice that Wally, the character in the

Shooter, has turned into a plane by LOD four.

The Centipede, Flea, Spider, and

Scorpion each appear throughout the

game, with different texture treat-

ments for each of the five worlds.

This helped give each world its own

unique look. Here is the Scorpion in

its five different incarnations.

design was understood by the two peo-
ple who had to make it work — Mark
Bullock and myself — and not by any-
one else. Indeed, for the PC version it
wasn’t necessary for anyone else to
understand all the intricacies of the
design, since we were working as such
a close-knit team, and when anyone
had questions about the desired func-
tionality of a particular piece of code or
art, they could come to us and ask.

Most of the game play and all of the
levels for CENTIPEDE 3D were created
between March and September. Given
that intense crunch schedule to get the
PC version out for Christmas, there
really wasn’t any time for either Mark
or me to maintain a complete and up-
to-date design document, nor did any-
one ever suggest we do so.
Unfortunately, with a PSX develop-
ment team a thousand miles away, a
document that completely spec’d out
everything that happened in the game
was vitally important for keeping the
two teams in sync. Without such a doc-
ument, the PSX team didn’t fully
understand all of the different bits of
game play and AI found in the PC ver-

sion, nor did they fully
comprehend the scope of
some systems.

How Does It Feel?

N eedless to say, every-
one who worked on

CENTIPEDE 3D grew stronger
as game developers from
the experience. I know that
I’ve come to understand a
lot about balancing game
difficulty and the impor-
tance of an up-to-date
design document in a pro-
ject of this size. Leaping
Lizard Software has since
moved all its console devel-
opment in-house, and its
current project has simulta-
neous development on
multiple platforms working
painlessly.

Remakes themselves are tricky propo-
sitions, especially of much-loved pieces
of art. Often it means that people are
expecting you to screw it up and to

have defiled a clas-
sic in the process.
But when remakes
work out well, they
can take the
strength of the orig-
inal work and add
to it their own inter-
pretation. Think of
the Jimi Hendrix
Experience covering
“Like a Rolling
Stone”or “Day
Tripper;” great
songs before, great
songs after (though
very different in
each rendition).
Whether or not
CENTIPEDE 3D suc-
ceeded in its aspira-
tions to rework a
classic into a fun,
new experience is

not something I can judge fairly from
my perspective, though its develop-
ment was a very stimulating creative
endeavor. But of course, I never did see
the new Psycho. ■

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 9 G A M E D E V E L O P E R

65PC (top) and PSX (bottom)

screenshots from the fifth

world, Evile.

from Zowie Intertainment, the Play-
skool key-top toy, products such as
Nerf Jr. Foam Fighters from Hasbro,
Mattel’s Barbie Digital Camera, and
more challenging products for older
kids, such as Intel’s PlayX3 Micro-
scope and Lego’s Mindstorms Robotics
Invention System.

All of these toys made it to E3 as well,
but the game industry was more
focused on poly-pushing to deliver the
latest in muscle-popping heroes and
big-breasted she-shooters. Color me
sensitive: I develop kids’ software.
Color me hypersensitive: most game
developers view smart toy development
as a dull undertaking — just another
input device, I hear, or, how hard is it just
to get the damned thing to play a bunch of
audio files? But as someone developing
them, I can tell you that smart toys
pose incredible challenges and rewards
for game developers.

First, whatever adults think of that
purple mush monster, Microsoft’s
Barney Actimate sold hundreds of thou-
sands of units in its first year and gener-
ated $50 million in revenues. Second,
the companies working in the field are
advancing technologies such as voice
recognition, infrared, and much more
complex peripherals — which provide
new ways for all audiences, not just
kids, to interact with games. Third, cre-
ating new ways for users to interact with
computers and each other poses truly
tasty challenges for developers — partic-

ularly when those users are incredibly
complex small creatures called children.

Designing kids’ products is both mad-
dening and delightful: children have
less manual dexteri-
ty, may not be
able to read,
enjoy a thor-
oughly
nonsensi-
cal humor,
and have
limited
attention
spans, yet possess
a bizarre ability to
obsess for hours
over some detail that may
be totally incomprehensi-
ble to adults. The challenge
(read: fun) is delicately bal-
ancing “game” and “toy” to
create a satisfying user expe-
rience that is greater than
the sum of its parts.

I call it a balancing act
because “game” and “toy” are in fact
contradictory concepts: a game is an
activity, governed by a collection of
rules and logic, while a toy is a physi-
cal object around or through which
play occurs. Game play is basically a
linear progression through a finite set
of interactions to a logical conclusion,
at which point a player “wins” or
“loses.” Play with toys, on the other
hand, is free-form and exploratory,

with no defined endpoint; it stops
whenever the child has had enough.

Applications written for smart toys
are not too different from traditional
computer games that we’re all comfort-
able with: logical units of code provide
rule sets that classify user input options
and specify potential outcomes. As
game developers, we’re very good at this
part. In order to find that game/toy bal-
ance, though, we have to crank our
thinking around to accommodate the

toy part of the equation.
PLAY PATTERNS. A toy is not just an

alternate input device. The goal of
designers is to keep the child feel-

ing comfortable and in control,
while providing a rich, sat-
isfying, and pleasantly
challenging play experi-

ence. Activities must first
and foremost be fun, requir-

ing minimal instruction.
The program must grace-

fully accommodate a
complex pattern of
user attention as it
shifts between the

screen and the toy. (In
our experience,
attention is split

about 50-50 between
the toy and the screen
when the toy is con-

nected to the computer.) Finally, the
child must have the latitude to explore:
tying the child to a strict linear path
and relying on error messages to keep
them there only leads to frustration and
the destruction of innocent plastic.

The program, in short, must be even
more responsive to the subtleties of user
interaction than is required in regular
game play development. Any activity
must be almost infinitely interruptible,
because you can’t dictate what the child
should be doing next. You can’t tell
them they’re wrong, but you had better
not lose them. This introduces substan-
tial complexities in the design of game

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

72

b y S e o n a i d h D a v e n p o r tS O A P B O X

Smart Toys:

Not Just Kids’ Stuff

Smart toys are hot. Very hot. Last February’s

American International Toy Fair was flooded

with new smart toys of all kinds: plush Tele-

tubby Actimates from Microsoft, full play sets

Seonaidh Davenport is the Executive Producer for Consumer Titles at Human Code,
an Austin-based developer currently producing REDBEARD’S PIRATE QUEST and ELLIE’S
ENCHANTED GARDEN for Zowie Intertainment. She thinks she's in pretty good touch
with her inner child. Contact her at seonaidh@humancode.com.

continued on page 71

illustration by Jackie Urbanovic

or activity structure, state tables, dialog
trees, asset loading strategies, error
recovery, and so on.
PHYSICAL OBJECTS. As well as being con-
scious of play patterns, developers
should get cozy with industrial design.
Aside from logistical issues, such as how
the connection works or where the toy
can live in relation to the computer, the
tactile experience must be satisfying for
the child, with the input and feedback
loop extending beyond what’s happen-
ing on-screen into the physical toy.
Physical toy design and software design
must inform one another, so the toy

and software representations should be
designed in a recursive cycle. Keep in
mind that the manufacturing cost of
the toy will frequently drive the func-
tionality of the software.

The physical toy radically affects soft-
ware production and testing processes
as well. Prototypes are expensive to pro-
duce (making them few in number),
tend to be fragile, and don’t work the
same way the manufactured unit will.

So how do you deal with all this
when designing and developing? How
do you know you’re on the right track?
Early, frequent, and ongoing kid test-
ing is absolutely critical. Developers

must be unflinching in receiving feed-
back, and rigorous in its application to
both the physical and software product
design. Be patient and allow time for
when your fundamental design
assumptions are blown away by some
tow-headed little darling.

I’ve only skimmed the surface of the
major issues our teams have dealt with
in smart toy development. While the
range of products on the market prove
that there isn’t one right formula for
the mix of toy and traditional CD-ROM
game development, we’re having
tremendous fun experimenting with
the mix. ■

S O A P B O X

71

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 9 G A M E D E V E L O P E R

continued from page 72

Ascension Technology Corp. 22
Atari Games Corp. 67
Auran Developments Pty. Ltd. 46
Big Fat Inc. 69
Black Ops Entertainment Inc. 67
Boss Game Studios 66
Cinram 69
Conitec Datensysteme GmbH. 71
Crave Entertainment 65
Credo Interactive 70
Cyberware 27
Digimation 16
Digimation 33
Digital Anvil 46
Discreet Monsters 56
Duck Corp. 41
Evans & Sutherland 45
Future Light 36,37
Hewlett-Packard C2,1
Immersion Corp. 19

Intel 7
Kinetix 2,3
MathEngine 29
Metacreations Corp. 30
Metrowerks Inc. C3
Motion Factory 43
Multigen 4
Nichimen Graphics 39
Numerical Design 8
Okino Computer Graphics 21
Professional Employment 63
Rad Game Tools Inc. C4
Resounding Technology 70
Retro Studios 68
Savannah College of Art and Design 67
Savannah College of Art and Design 69
Seneca College 70
Silicon Graphics Inc. 11
Silicon Graphics Inc. 13
Viewpoint 15

N A M E P A G E N A M E P A G E

A D V E R T I S E R I N D E X

	back:

