
SEPTEMBER 1997

G A M E D E V E L O P E R M A G A Z I N E

T he power that retailers have
over our industry today is
chilling. However, if you
think we have it bad, pick up

Rolling Stone #764 last July and read
about Wal-Mart’s recent antics in the
music industry. The article explains
how this giant chain of discount stores
has risen to prominence in the retail
music industry, due to the departure
and downfall of dedicated music
chains such as Musicland and The
Wherehouse. With more than 2,000
stores, Wal-Mart now represents almost
10% of the retail music market’s sales,
and it’s shooting to double that figure
within a few years. With this much
retail power, Wal-Mart has learned that
it now has the ability to shape content
within the music industry.

Wal-Mart is a “family values”-orient-
ed business. For this reason, they some-
time decline to carry music with objec-
tionable lyrics or cover art. As a huge
retailer, though, their decisions have
convinced some musicians to conform
to the chain’s tastes. John Mellencamp
decided to change the lyrics of one of
his songs to get on their shelves. Yanni
had to appeal to Wal-Mart executives
to carry his Christmas CD, which
showed him playing the saxophone for
his naked infant in front of a
Christmas tree. Musicians actually
release special Wal-Mart versions of
their albums, with changes made to
overcome the objections of Wal-Mart
executives.

I don’t consider Wal-Mart’s actions
censorship. The company has a right to
not sell any product, and the company
is quick to point that out. Wal-Mart
spokespeople maintain that it’s up to
the individual musicians to alter their
albums if they want to get Wal-Mart
shelf space, and that no arm twisting is
taking place. It’s simply their domi-
nance as a retailer that makes artists
reconsider their choice of lyrics and
cover art.

My concern is whether games could
be the next target of Wal-Mart’s family-
values crusade. As a developer, you
may someday have to contend with a
publisher calling the shots on game
content in order to obtain an ESRB rat-

ing acceptable to the retailer. You
might have to develop multiple “politi-
cally correct” versions of a game to get
maximum exposure in the retail chan-
nel. Publishers, on the other hand,
may find themselves taking on the role
of policemen to make sure that there
are no surprises in game content that
could sink distribution plans with the
retailer.

While the rating systems we now
have are adequate for today’s purposes,
I question whether they are ready to
bear the pressures that the above sce-
nario would put on them. RSAC ratings
are given by the developers themselves
— that won’t stand up to the scrutiny
of Wal-Mart management. The ESRB
system, on the other hand, uses three
(count ‘em, three) “demographically
diverse” people to rate a game. (And I
thought television’s Nielsen rating sys-
tem used a small sample set.) As the
stakes go up in the ratings game, the
threat of a publisher abusing our rat-
ings systems grows larger and larger,
and these two systems are not up to
the task. However, more complicated
rating schemes mean more administra-
tion of the system and therefore higher
costs, which of course will be passed
down to publishers in the form of
higher rating fees.

This scenario scares the hell out of
me for other reasons too. Who knows
what consumers will do if a major
retailer stops stocking a certain popular
game? Will consumers shop elsewhere,
simply shop at the same store and put
up with a limited selection to choose
from, or turn to catalogs or the
Internet for their game purchases? In
some sections of the country, Wal-Mart
is the game retailer for A titles, so con-
sumers may only have the last option if
they want a specific title.

What are your thoughts about the
current state of retail, and about the
prospect of retailers dropping your title
because of its content? Let me know.
I’ll print your stories and opinions in
an upcoming issue. ■

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7

2

P L A NG A M E

The Wal-Mart Effect
EDITOR IN CHIEF

MANAGING EDITOR

EDITORIAL INTERN

EDITOR-AT-LARGE

CONTRIBUTING EDITORS

ART DIRECTOR

ADVISORY BOARD

COVER IMAGE

PUBLISHER

ASSOCIATE PUBLISHER

REGIONAL SALES
MANAGER

SALES ASSISTANT

MARKETING MANAGER

MARKETING GRAPHIC DESIGNER

AD. PRODUCTION COORDINATOR

DIRECTOR OF PRODUCTION

VICE PRESIDENT/CIRCULATION

CIRCULATION MANAGER

CIRCULATION ASSISTANT

NEWSSTAND MANAGER

REPRINTS

CHAIRMAN/CEO

PRESIDENT/COO

SENIOR VICE PRESIDENT/CFO

SENIOR VICE PRESIDENTS

VICE PRESIDENT/PRODUCTION

VICE PRESIDENT/CIRCULATION

SENIOR VICE PRESIDENT/
SYSTEMS AND SOFTWARE

DIVISION

Alex Dunne
adunne@compuserve.com

Tor Berg
tdberg@sirius.com

Alex Clark
alex@mfi.com

Chris Hecker
checker@bix.com

Brian Hook
bwh@wksoftware.com

David Sieks
dave@ward1.com

Ben Sawyer
bensawyer@worldnet.att.net

Azriel Hayes
ahayes@mfi.com

Hal Barwood

Noah Falstein

Susan Lee-Merrow

Mark Miller

Josh White

PCA Graphics

KoAnn Vikören

Cynthia A. Blair
(415) 905-2210
cblair@mfi.com

Tony Andrade
(415) 905-2156
tandrade@mfi.com

Chris Cooper
(415) 908-6614
ccooper@mfi.com

Susan McDonald

Azriel Hayes

Denise Temple

Andrew A. Mickus

Jerry M. Okabe

Lisa Eversole

Glenn Wagner

Eric Alekman

Stella Valdez
(916) 983-6971

Marshall W. Freeman

Donald A. Pazour

Warren “Andy” Ambrose

H. Ted Bahr

Darrell Denny

David Nussbaum

Galen A. Poss

Wini D. Ragus

Regina Starr Ridley

Andrew A. Mickus

Jerry M. Okabe

Regina Starr Ridley

Miller Freeman
A United News & Media publication

www.gdmag.com

Oak’s 3D Chip Features
Warp Speed
OAK TECHNOLOGY introduced its
WARP 5 (Windows
Accelerator and Rendering
Processor) 3D chip, yet
another entry into the
growing market of 3D
acceleration hardware.
Oak’s WARP 5 chip com-
bines 2D acceleration,
video, a dual-clock gener-
ator, and RAMDAC func-

tions on a single chip. Oak uses a
region-based rendering approach,
promising better performance for
highly dynamic game scenery such as
that found in flight simulators. The key

to the way the WARP 5
renders is in the way it
partitions the screen into
subregions, and then
processes and renders
them one at a time. This
allows the image’s Z val-
ues and antialiasing
information to be stored
on the chip at the sub-

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

4

BIT BBBB LLLL
N E W S F R O M T H E W O R L D

D O U G L O W E N S T E I N was singing the E3
blues this summer, after the Atlanta show's
attendance numbers went south (no pun
intended). About 37,000 people showed up
this year, down considerably from last
year's event in Los Angeles, which hosted
about 57,000 people. What was surprising
was Lowenstein's candor with the press
about the decision to move the show to the
deep south. In an interview with the San
Francisco Chronicle, show organizer
Lowenstein admitted that "the show
belongs on the West Coast; we're acutely
aware of that.'' Unfortunately, the group is
tied to the venue for at least another year,
due to a multiyear contract signed with the
convention facility.
I F M I C R O S O F T wasn't getting the picture
that a large number of game developers
aren't happy with D3D and the company's
less-than-stellar support for OpenGL, yet
another open letter (following Chris
Hecker's first letter in June) from game
developers was mailed up to Redmond in
July. The second letter, written by Brett
Douville, pled with the company "to continue
its active OpenGL development, to ship its
DirectDraw bindings for OpenGL and the
Windows 95 MCD driver-enabled OpenGL,
and to continue to improve its implementa-
tion of the OpenGL API and its driver models
by aggressively supporting common exten-
sions and future." The letter was initially
signed by 253 people, and after it went off to
Microsoft and word got out, over 1,100 more
people threw their support behind it. You
can read the letter and see the signatories at
http://www.multiweb.nl/~henk/OpenLetter/.
S P E A K I N G O F D I R E C T X , the develop-
ment team (which is now led by Kevin
Bachus, since the departure of Alex St. John)
just sent out the final version of DX5. The
accompanying letter indicates that version 6
is scheduled for release next April 22 (beta
available around January 1), so if you want to
send the company feedback or feature sug-
gestions, send it to directx@microsoft.com.

Creating Intelligent Characters
THE MOTION FACTORY has released fa new suite of game development tools,
based on research into the fields of robotics and real-time process control. The
product, known as Motivate, specializes in creating 3D characters that act intelli-
gently. The software is based on a high-level, state-machine-like programming
system that analyzes and reacts to events in a game. The Motivate development
tools comprise three components:

• The Actor Editor, for importing the 3D model of a character (currently sup-
ports 3DS and MAX formats) and its associated motion capture data (Motivate
currently supports the BioVision format).

• The Skill Editor, for creating the motions and gestures of a character.
• The Behavior Editor, which combines a visual programming environment

with a JavaScript-like scripting language to create, modify, view, and debug
game logic scripts for game characters.

The system requires that you embed a small Motivate Runtime engine in the
game, and there is a Motivate Server for deploying multiplayer games over a network
or the Web. An SDK allows C++
programmers to create cus-
tom player views and other
extensions to the system.

The Motivate develop-
ment tools, runtime engine,
and optional server require
Windows 95/NT. Pricing is a
flat $25,000 for an unlimited
use license per title, plus a
$25,000 royalty for unlimit-
ed client distribution.
■ The Motion Factory

Fremont, CA

(510) 505-5150

www.motion-factory.com

I N D U S T R Y
W A T C H
I N D U S T R Y
W A T C H

b y A l e x D u n n e

Scene rendered with

WARP 5.

pixel level — no external storage is
required. Oak claims that WARP 5 can
process more than 50 million pixels per
second, with perspective correction,
trilinear MIP-mapped textures,
antialiasing, Z-buffering, Gouraud
shading, translucency, and fogging.
The WARP 5 architecture supports
Microsoft’s Direct3D as well as
Argonaut’s BRender 3D APIs. The
WARP 5 will begin sampling to OEMs
in July, and volume production will
begin in the fourth calendar quarter of
1997. It will be available for $35 in
OEM quantities.
■ Oak Technology

Sunnyvale, CA

(408) 737-0888

www.oaktech.com

A Low Bandwidth Voice,
Audio Solution
VOXWARE announced the the
Voxware Compression Toolkit (VCT)
1.5, a speech codec technology that is
especially good at transmitting voice
audio over limited bandwidths —
think Internet games, particularly if
you want to build in some type of
simultaneous chat. New to version
1.5 are stereo streaming technology
and VoiceFont voice-altering tech-
nology. Voxware’s VCT provides
improved sound quality over limited
bandwidth channels. The VCT’s
MetaVoice speech codecs don’t com-
press audio; they transmit instruc-
tions for recreating the voice on the
destination platform. The results are
accurate and require relatively small
bandwidth and storage space. If
you’re into helium-inhaling effects,
the product also incorporates
VoiceFont 2.1 technology, which
allows you to alter the sound of the
human voice. People’s voices can be
sped up or slowed down, made to

sound like several people, and other-
wise manipulated in real time to cre-
ate special effects. The VCT’s
MetaSound codecs let you deliver
music and audio effects while requir-
ing small storage and bit-rates.
Developers can license any combina-
tion of the MetaVoice and
MetaSound codecs, as well as option-
al VoiceFont and other API technolo-
gies. VoiceFont technology is only
available to licensees of MetaVoice.
Mono and stereo MetaSound codecs
are priced separately.
■ Voxware

Princeton, NJ

(609) 514-4100

www.voxware.com

Triple Threat Tool for
PowerAnimator
ALIAS|WAVEFRONT has announced
a new set of PowerAnimator add-on
tools specifically aimed at game devel-
opers. The product, called
PowerAnimator Worlds, helps develop-
ers create high-performance 3D
scenery. The performance gain comes
from three tools in the product. First, a
BSP Tree Builder lets you create, pre-
view, and display BSP trees and edit
them for your game environment.
Second, the Terrain Builder lets you
import images or geographical data,
convert it into polygonal wire files, and
edit the resulting model’s color and
details. Finally, there is a Level of
Detail (LOD) Manager for managing
the amount of detail displayed in
polygonal models as they get closer or
farther away from the viewer.
PowerAnimator Worlds is available for
$4,995 and runs on the SGI platform.
■ Alias|Wavefront

Toronto, Ontario, Canada

416-362-9181

www.aw.sgi.com

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 7 G A M E D E V E L O P E R

5

AAAA SSSS TTTT SSSS
O F G A M E D E V E L O P M E N T

I F Y O U A R E T A R G E T I N G the perennially
lucrative market of lazy federal employees
for your next game, you'd best make your-
self aware of the latest push on Capitol Hill
to wipe games off of computers in federal
agencies. Republican Senator Lauch
Faircloth introduced a measure to do
exactly this, after finding out how easy it is
to switch from games to work on a
computer. In his statement, the Senator
remarked, "The taxpayers don't need to be
paying the salaries of people who are play-
ing games while on official time." No word
on how the Senator's comment affects
Kenneth Starr's Whitewater hearings….
H A R D T I M E S are taking their toll on TEN,
which recently trimmed its workforce down
from 95 to 80. With more and more competi-
tion in the online games market, the compa-
ny better have some good cards up its
sleeve. Adding to TEN's headaches,
Activision just announced that it's going to
launch an online gaming service as well,
which will host all of the Activision's multi-
player games. Their service should be ready
by this fall, and will include player match-
ing, player rankings, automatic game
updates, and chat rooms. Hmmm. Sounds
like a familiar service.
U N C L E ! Yes, Matsushita has surrendered
— at least for now. The company
announced that it won't try to challenge
Nintendo in the 64-bit arena. Yoichi
Morishita, Matsushita's president, admit-
ted that its rival Nintendo grabbed too
large of a lead in the market, and that the
company was scrapping its plans to intro-
duce a 64-bit console by the end of the
year. Looks like Sony and Nintendo have
the run of the house for the foreseeable
future. Also in console news, Sega broke
news to 3Dfx that the next generation Sega
console system would not use a 3Dfx
graphics chipset. 3Dfx had been working
under contract with Sega since last March
to develop and license a proprietary
chipset for the new Sega console. Sega
had funded development of the chipset as
well. Looks like the lawyers could get
involved, too, as 3Dfx president and CEO
Greg Ballard pointed out in a not-too-
veiled threat: "We are disappointed with
this notification, and believe that it is with-
out legal justification…."

b y B r i a n H o o k G R A P H I C C O N T E N T

issue was that “hardware vendors
don’t know what software developers
want in an accelerator.” At the urging
of the crowd, I started writing a list of
things that game developers absolute-
ly need in order to develop cutting-
edge titles. Unfortunately, I never fin-
ished the list because we got
distracted by the Direct3D versus
OpenGL monster.

So, this month I’m going to try to
outline what I think are reasonable
requirements for baseline hardware
acceleration — the minimum reason-
able hardware accelerator for a game
shipping for Christmas of 1998. And
unlike some product manager weasel at
a board company, I’ll actually explain
why some of these features and targets
are important.

In this space next month, I’ll dis-
cuss my wish list for hardware accel-
erators that are aiming for a 1999 or
later release date (that is to say,
those accelerators beginning devel-
opment when this article is pub-
lished). In all likelihood, accelerators
coming out in that timeframe should
be reaching the knee of the curve for
the triangle rasterization model of
doing things.

A Baseline

B ecause of space constraints, I can’t
explain what each feature does. If

you don’t know what Z-buffering or
bilinear filtering is, I’d recommend

browsing the web for a good tutorial
on 3D acceleration.

The first thing I want to establish is
a baseline set of features that any self-
respecting 3D accelerator should pos-
sess, no matter how crappy the hard-
ware is. Any board worth its silicon
should have a feature set that
includes:

• Gouraud shading
• Dithering
• Subpixel/subtexel accuracy
• Perspective-correct, bilinear-filtered

texture mapping
• RGB rendering.

Barely Beyond The Basics

O kay, now for those things that are
“slightly beyond the basics.”

Many of these features are implement-
ed poorly on a lot of today’s 3D accel-
erators, but should be fairly robust by
Christmas 1998.

To all you hardware folks reading
this, please remember that giving
developers more options is a good

idea. While this guideline may seem
absurdly obvious, it seems to have
escaped many of the engineers who
design the chips that we’re stuck with
supporting. Just because we can’t come
up with a use for a particular feature
today, doesn’t mean that we won’t
tomorrow.
Z-BUFFERING. Can you believe some hard-
ware companies actually thought no
one would use Z-buffering? At the risk
of stating the obvious, Z-buffering is
necessary! We need more bits of depth
resolution — 16-bits of Z is barely
enough for today (GLQUAKE suffers

from Z-aliasing artifacts even with 16-
bit Z-buffering), but it’s a reasonable
baseline.

Some minor points to consider: The
ability to selectively enable writes to
the Z-buffer while still doing depth
comparisons is vital for things such as
rendering translucent surfaces. All of
the Z-comparison tests are absolutely
necessary.
ALPHA BLENDING. If you read last month’s

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 7 G A M E D E V E L O P E R

7

All I Want for Christmas ’98

Is a Hardware Accelerator

That Doesn’t Suck

A t the 1997 Computer Game Developer’s Conference, I hosted a

roundtable called “3D Acceleration, One Year After” to discuss the

experiences that hardware and software that the developers had with

3D accelerators over the previous year. At one of my sessions, a key

Unlike a “product manager

weasel” at a board company, Hook

explains what features 3D

hardware has to support.

column, (“Multipass Rendering and the
Magic of Alpha Blending,” August
1997) you probably realize that I think
alpha blending is a vital feature for
tomorrow’s games. A look at many
Nintendo 64 titles will show you why
— the translucent water effects in
SUPER MARIO 64 or WAVERACE 64 just
wouldn’t work without alpha blending.
Several titles for the PC also use alpha

blending to great advantage — TOMB

RAIDER (Core/Eidos) and GLQUAKE both
use alpha blending to render water.

A basic hardware accelerator should
support all blending factors. We need
to get away from the notion that alpha
blending is only used for translucent
surfaces. Different alpha blending fac-
tors can be used for achieving other
kinds of effects — GLQUAKE uses alpha
blending to render two-pass lighting
maps.
ALPHA TESTING. Alpha testing is vital for
doing sprites and partially transparent
texture maps. Alpha blending alone
doesn’t suffice, since we want a feature
that will actually reject a pixel instead
of just rendering it transparently
(there’s a very important distinction
between the two — the former won’t
write to the Z-buffer if a texel is trans-
parent, but the latter will, causing all
kinds of weird bugs). As with Z-buffer-
ing, all the alpha test functions are
vital, so no skimping.
PERFORMANCE. Obviously, game develop-
ers want as much performance as possi-
ble, so assume no upper bounds; but, it
would be nice to be able to expect a
certain minimum level of performance.
For Christmas 1998, it’s not unreason-
able to ask that a decent accelerator
have at least 50 megapixels/second of
usable performance. Thankfully, slower
fill rates can be made up for by switch-
ing to a lower screen resolution.

To make life easier for developers, it
would also be nice if the inverse rela-
tionship between enabled features and
performance wasn’t so… obvious.
There’s nothing more frustrating than
getting a new accelerator that claims a
bazillion megapixels, but by the time
you enable all the features, the acceler-
ator is outclassed by a drunk squirrel
with an Etch-a-Sketch.

From a more technical side, it would
be nice if hardware accepted both
DD33DDTTLLVVEERRTTEEXX data and OpenGL-style ver-
tex information (raw floating point)
directly. On-chip triangle setup is also
a necessity so that the CPU isn’t loaded
down — but make sure your triangle
setup is fast enough so that it won’t be
a liability when newer CPUs are
released.
LINE AND POINT RENDERING. Line and point
rendering have largely been neglected
by the hardware acceleration commu-
nity. To be honest, I haven’t missed it.
(Keep in mind, just because I don’t
think line and point rendering is use-
ful doesn’t mean it isn’t!) However,
when developing tools such as level
editors and modeling programs, the
ability to render antialiased lines and
points becomes vital. Hardware
designers have to keep in mind that
3D acceleration is slowly going to be
adopted by applications as well as by
games.
FOG. Fog is nice. Fog is even better if
you can use it without worrying about
some cheesy mutual exclusion by, or
dependency upon, another technique
(such as alpha blending). I’ll talk about
this later when I address flexibility.
Because of my work at 3Dfx, I have a
bias towards fog tables — the fog
curves that Direct3D and OpenGL use
simply aren’t nearly as useful as a gen-
eralized fog table.

Another concept I find intriguing is
vertex fog, that is a “fog iterator.”
This can be approached in one of two
ways : an iterated fog blending coeffi-
cient that is used to blend between
the pixel color and a global fog color,
or an iterated fog color (RGBA) that is
used to blend between the pixel color
and the iterated fog color. The iterat-
ed fog color approach is far more gen-
erally useful, since it allows an arbi-
trary blend between the computed
color and a separate iterated color. It
also requires significantly more gates
to implement and thus is more
expensive.
APPLICATION-MODIFIABLE GAMMA TABLES.
When game developers joined the
great migration from VGA Palette Land
to Hardware Accelerator RGB Land,
they lost the cool palette tricks that
VGA permitted. A lot of these palette
tricks simply enabled flare/flash/satura-
tion/wash-out effects. As a stop-gap
replacement, developers can use full-
screen alpha blended polygons to
achieve similar effects. However this
technique isn’t the greatest thing for
performance. An alternative to full-
screen alpha polygons is a programma-
ble gamma table — the Win32 API
even exposes this through the
GGeett//SSeettDDeevviicceeGGaammmmaaRRaammpp functions.
Unfortunately, very few drivers imple-
ment these functions.

Hardware companies should imple-
ment those Win32 API calls in their
drivers. With the Rendition Verite ver-
sion of QUAKE (VQUAKE), we used the
Verite’s application-accessible fog
tables to achieve flash and saturate
effects. So if you build it, we will come.
I promise.
FLEXIBILITY. Accelerators need to be flex-
ible — I want to be able to mess
around with all the different features
that OpenGL and Direct3D expose, but
at the same time I don’t want the
accelerator or driver to explode
because it can’t do feature X at the
same time as feature Y. Reasonable
independence between features is
absolutely vital if game developers are
to have the freedom to follow their
imaginations.

So no weird mutual exclusions or
dependencies, please. Game developers
hate hearing things like, “You can’t do
perspective correction if texture wrap-
ping is enabled,” or “You can’t fog
unless you’re texturing,” or “You can’t

G R A P H I C C O N T E N T

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

8

There’s nothing more frustrating than

getting a new accelerator that claims a

bazillion megapixels, but by the time you

enable all the features, the accelerator is

outclassed by a drunk squirrel with an

Etch-a-Sketch.

alpha blend and fog at the same time.”
Unreasonable mutual exclusions or
dependencies are evil.

Here’s a simple test: if you’re a devel-
oper relations engineer, and you find
yourself telling developers anything
resembling the following two phrases,
you’re screwing up:

“You can’t do [feature A] unless
[some other feature that has nothing to
do with feature A] is enabled.”

“You can’t do [feature A] if [some
other feature that has nothing to do
with feature A] is enabled.”
PALETTED TEXTURES. In general, I’m
against paletted anything, but paletted
textures do have their uses. Palettes
provide a form of cheap and easy com-
pression, and even today a lot of hard-
ware accelerators support four-and
eight-bit paletted textures.
NO TEXTURE DIMENSIONALITY LIMITATIONS.
Hardware accelerators need to accept
nonsquare texture maps (such as,
128×64) with arbitrarily high aspect
ratios. Also, there should be no arbi-
trary bounds on maximum texture size
— if there is enough texture RAM to
support a 2048×2048 texture, then
allocating a texture of that size should
be possible.

Obviously, nonsquare textures are
useful when trying to texture map non-
square images (duh); however, some
hardware designers don’t support non-
square textures. They think developers
should just pack several rectangular
textures into a single nonsquare tex-
ture and have texture coordinates
adjusted accordingly. This actually
works, except when you need to use
repeating textures. For this reason, we
need rectangular textures.

Unlimited texture map sizes are
handy when an application wants to
manage textures very precisely. For

example, a game could allocate a
1024×1024 texture and put a bunch of
smaller textures within it, assuming
that texture wrapping was not neces-
sary. This reduces state changes, since
only a single texture is being used at all
times, and also reduces texture RAM
fragmentation within the driver, since

only a single large block of RAM is
being allocated.
SUPPORT ALL TEXTURE FORMATS. A good 3D
accelerator should support every single
fundamental texture format that
OpenGL and Direct3D support, within
the capabilities of its texture storage
(not supporting 32-bit texture formats
is acceptable if a hardware accelerator
only stores 16-bit textures). That’s a
hard and fast rule — developers don’t
want to deal with having to convert art
on the fly, nor do they want to rely on
something like textures with alpha
channels only to discover that one par-
ticular accelerator doesn’t support tex-
tures with alpha.
STRAIGHTFORWARD TEXTURE ALLOCATION

SCHEMES. Texture memory should be
allocated in a straightforward, uncom-
plicated manner. There shouldn’t be
any unreasonably large minimum tex-
ture size — I’ve heard of some hard-
ware accelerators that specify a mini-
mum texture size granularity, which
means small textures are extremely
inefficient. For example, an accelerator
might have 1MB of texture RAM that’s
divided into 250 discrete 64×64 chunks
— even if you use a 16×16 texture, it
will consume one “slot” that is 64×64
texels in size, wasting over 90% of the
allocated texture RAM.
TEXTURE CLAMPING AND WRAPPING.
Hardware accelerators must allow each
texture coordinate axis to be clamped
or wrapped. There should be no con-
straints limiting the availability of

clamping or wrapping (for example,
some accelerators won’t allow perspec-
tive correction if texture wrapping is
enabled).
MORE TEXTURE RAM. Having limited tex-
ture RAM sucks. Bad. We need hard-
ware accelerators that give us at least
4MB of texture RAM, preferably more.
Even 2MB is barely sufficient, assuming
texture download performance isn’t
ghastly. I don’t know if AGP is the
answer here — until I see a hardware
accelerator that demand loads textures
across AGP, I’ll reserve judgment.
Somehow, we need to find a way to get
at least 4MB of texture RAM to the
developer, if not more.

If a 3D accelerator isn’t going to pro-
vide a lot of texture RAM, then at the
very least it will need to provide very
fast texture download performance,
preferably in an asynchronous fashion
using bus mastering.

Texture compression is one way of
solving this problem, but if it takes up
any CPU cycles, it’s not going to be
worth it. Games can’t suffer inconsis-
tent performance on one accelerator
simply because every texture download
or allocation kicks off a slow texture
compression operation on that acceler-
ator. You could potentially precompress
a texture during texture allocation
time, but this presumes that you’re not
dynamically generating your textures.
Since procedurally generated textures
are going to become more common in
the future, I don’t see texture compres-
sion really helping us out.

High Hopes

T o be honest, I think all of the
above features will be implement-

ed in most accelerators by the early
months of 1998, but there will proba-
bly be some stragglers in the market
who won’t get their acts together until
Christmas 1998. If we can guarantee at
least the above features in all accelera-
tors by Christmas in a year and a half,
game developers should be smiling. ■

Brian Hook was formerly an engineer
with 3Dfx Interactive and a contractor in
the games and semiconductor industries.
Today, he is a proogrammer for a small
game company known as id Software.
He’ll be working on QUAKE 2 and TRINITY.
You can contact him via e-mail at
bwh@wksoftware.com.

G R A P H I C C O N T E N T

10

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

We need hardware accelerators that give us

at least 4MB of texture RAM, preferably

more. Even 2MB is barely sufficient,

assuming texture download performance

isn’t ghastly.

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

12

A D D I N G
L A N G U A G E S
TO G A M E E N G I N E S

K, I’ll admit it. I'm a lazy programmer. Whenever I can

get away with it, I love to get other people to do my

job for me. And as a programmer focusing on game-

play and simulation, life keeps getting more and more

complex. Just as the things we used to toil away at for

hours – sound mixing, 3D rendering, interrupt pro-

cessing – are getting easier and easier, simulation pro-

gramming is getting harder and harder. Now that we

have DirectSound and DirectDraw, when can we

expect DirectGameplay?

I can remember a time not long ago when bits were

the solution for everything. Back then, when a designer

B Y R O B E R T H U E B N E R

S C R I P T SG A M E

OO

wanted some cool new feature, the
solution was to write some code, find
the next free bit in the CCoooollEEffffeeccttssFFllaaggss
bit vector, and recompile. Once the
designer enabled the bit, the new fea-
ture emerged, ready for action. But
lately, I’ve run out of bits.

The problem is, users are demanding
more interactivity and unpredictability
from their games. They aren’t satisfied
with 10 types of weapons when your
competitor has 20. Moving platforms
aren’t sufficient if some other game has
rotating platforms. So what’s a lazy
programmer to do?

Scripting languages have been an
integral part of games for many years.
Long before action games ran out of
bits, adventure game authors recog-
nized the need for scripting to cope
with the massive number of possible
interactions in their worlds. SCUMM
(Story Creation Utility for Maniac
Mansion), one of the original adven-
ture game languages, has survived vir-
tually intact until the present day, and
is still used for games such as MONKEY

ISLAND 3. As other game genres such as
action, simulation, and strategy
become more complex, they too are
incorporating scripting systems.

The best way to stay competitive in
the race for bigger and better games
and game engines is to keep the engine
as flexible, expandable, and robust as
possible. An internal scripting language
allows you to create a separate, crash-
proof environment inside your game
engine. This protected virtual machine
executes the complex and frequently
changing gameplay code, protected
from the “real” machine running the
game engine. By partitioning the code
in this way, you significantly reduce
the complexity of the core engine,
resulting in fewer bugs and a more
robust game. And since a language sys-
tem is far more flexible than a collec-
tion of “canned” effects, your engine
will be able to do more interesting
things, even things you didn’t original-
ly anticipate.

Using a script language allows the
engine programmers to focus on what
is important to them — refining and
optimizing the core technology of the
game — while the game designers can
handle the gameplay details. If the lan-
guage is simple and well-designed,
nonprogrammers can implement their
designs directly in the script language

without endangering the core engine
code or involving the engine program-
mers. And since programmer time on a
project is usually limited, recruiting
designers as scriptwriters allows more
of the original design to be realized,
resulting in a more interesting final
game. In fact, most designers jump at
the opportunity to directly implement
their ideas in script, even when it
requires learning a new language.

The Snowball Effect

O ver three years ago, the original
team developing DARK FORCES (the

sequel, with which this article is con-
cerned, is shown in Figure 1) took the
unconventional step of implementing
some of the important game systems
using a special parsed opcode language
called INF. INF (which, as far as anyone
on the original team can recall, doesn’t
stand for anything) was used for simple
tasks such as moving sectors and eleva-
tors around, tracking the mission goals,
and generating new enemies. INF didn't
require any complex parsing because
the format was simple and direct — the
script equivalent of assembly language.
One of the design goals in creating the
sequel was to expand and enhance the
INF language, making it more powerful
and user-friendly.

One of the main complaints from
level designers on the original project
was that INF required the use of a lot of
specific flags and opcodes to enable var-
ious features. A common fixture near
the designer’s workstation was a stack
of pages affectionately known as the
“Zen and the art of INF.” The first draft
of a replacement INF retained its basic
structure, but translated the numerical
codes and flags into text so this “bible”
would no longer be necessary.

One day, someone suggested that if
the language was expanded slightly, it
could take on the added responsibility
of scripting the results of powerups,
which were handled in-engine in the
original game. Shortly after making
these extensions, someone else suggest-
ed that it would be nice to add some
simple math and conditional opcodes
to the language, and these were also
added. And so it went, for a period of
weeks, as more and more systems were
absorbed into the rapidly expanding
snowball that was INF 2. It became

clear that there was a need for a more
flexible, all-purpose scripting language,
and the snowball transformed into
COG (which, true to the spirit of INF,
also stands for nothing).

The Paths Not Taken

T here were two primary goals for
our language. First, the syntax

should be powerful enough to offer
complex loops, conditionals, and nest-
ing, but familiar enough to be learned
and used by a nonprogrammer.
Second, the language must execute
quickly enough to be useful in a real-
time action game.

The first stop on any language shop-
ping trip should be the catalog of free
compilers at http://www.idiom.com/
free-compilers/. Here, you can find
dozens, if not hundreds, of existing
scripting libraries that can be linked
with your application. Each of these has
various advantages and disadvantages.
Some are very simple, such as LISP or
FORTH, while others are quite complex,
such as JAVA, Tcl, or LUA. Most of these
languages are also completely free, the
products of university or government
research projects. The main disadvan-
tage of using a ready-made language is
performance. Many of the languages are
at least partially interpreted, and many
do not provide source code for the
speed-critical execution kernel. If devel-
opment time is the primary concern, or
if your application is less dependent on
fast execution, there are several excel-
lent possibilities here.

Since execution speed was a primary
concern, the possibility of expanding
the game engine via dynamic link
libraries (DLLs) instead of a script lan-
guage was considered. The advantage in
execution speed was clear, but using
DLLs would have made it difficult for

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 7 G A M E D E V E L O P E R

13

F I G U R E 1 . JEDI KNIGHT: DARK FORCES 2

the game designers to use the language
directly. Even though we felt comfort-
able introducing them to a limited C
syntax and structure, we didn’t want to
take the further step of introducing
them to the complexities of compilers,
build environments, linking, and so on.

The final option, and the one that we
eventually implemented, was to create
a custom language execution kernel
and parser. The speed issue was
addressed by performing the important,
time-critical operations in native code
and exporting these support functions
to the language system as COG library
functions. These library functions could
be augmented via DLLs, which gave the
advantage of native-code speed with
the ease-of-use of a custom language.

COG

T he rest of this article focuses on the
language problems and solutions

that we used in creating the 3D action-
adventure game JEDI KNIGHT: DARK

FORCES 2 for the PC.
For the JEDI KNIGHT language, chris-

tened COG by the designers, we chose
to implement a custom, compiled lan-
guage that closely resembled the syntax
of C. Using the C syntax as a starting
point, we removed most of the obscure
keywords and constructs and even
removed some fairly major portions of
the language dealing with function dec-
larations and switch statements because
they were significantly more complex
to parse and execute than the rest of
the language. We chose the C language
as a starting point because of its famil-
iarity and the wealth of books and tuto-
rials available teach the language to
nonprogrammers.

Just as in C, the syntax of the
COG language is less important
than library of functions at its
disposal. The COG library pro-
vides about a hundred different
functions to the author, rang-
ing from environment manipu-
lation commands to informa-
tion queries. The author uses
these functions to control the
game environment while using
the language syntax to provide
branching and looping control.

The game engine executes the
scripts in an event-driven man-
ner. For example, when two

objects collide with each other in the
physics engine, any COG scripts linked
to either object receive a “touched”
event. This event contains parameters
that allow the script to identify which
objects were involved in the event and
the type of event that occurred. Based on
this information, the script can manipu-
late the game state in whatever manner it
wishes, or can simply ignore the event.
COG scripts can also contain links to
each other, which enable them to
exchange messages. These events make
up the primary interface between the
engine and the language system.

There are additional messages that are
delivered directly to the COG script
rather than through the objects to
which a COG script is linked. A ssttaarrttuupp
message is sent to each COG script at the
start of a level, and a rreessppaawwnn message is
sent each time the local player dies. Each
game object also has the ability to set a
repeating ppuullssee event or a one-time ttiimmeerr
event to be delivered at some point in
the future. This allows a combination of
event-driven and scheduled execution.

Because we removed the standard C
syntax for function declarations from
our language for simplicity, each script
is organized much like a large switch
statement. The entry points into the
code for various types of events are
labeled using the standard C label syn-
tax. Also, because COG expanded on
the standard C variable types with the
addition of game-specific resource vari-
ables (sector, thing, sound, and so on),
the script variables are declared in a
special header. The level editor (LEIA,
shown in Figure 2) also reads this head-
er so it can display the symbols to the
designers and allow them to view edit
the symbol values.

Execution Model

E ach script that exists in a level is
linked to any number of other

objects in that level: walls, enemies,
doors, other COG scripts, and so on.
COG scripts execute as separate virtual
machines, each with its own variables,
stack, and execution pointer. Because
of this, COG scripts are protected from
each other. One badly written COG
script can only affect itself and the
objects to which it is linked. Each
script is a separate resource that is
loaded along with a game level. A sin-
gle script can be placed in a level multi-
ple times, with each placement having
its own isolated environment.

A sample COG script is shown in
Listing 1. This script creates an animat-
ing neon sign which, if it is damaged,
will explode in a shower of sparks.
Symbols not marked local can be modi-
fied directly in level editor tool. The

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

14

G A M E S C R I P T S

F I G U R E 2 . JEDI KNIGHT’s level editor LEIA.

Message Description

TToouucchheedd An object or surface was touched by another object. References to

both collision participants can be retrieved.

EEnntteerreedd For sectors, called each time a new object enters the sector

DDaammaaggeedd Called whenever the object would take damage from weapons or

explosions. References to the cause of the damage and the type of

damage are provided to the handler.

CCrreeaatteedd Called on a new object when it if first created

KKiilllleedd Called when the object is about to be removed from the game

CCrroosssseedd Called for an adjoin plane whenever an object crosses it

AArrrriivveedd Called when a moving object reaches its destination

TTiimmeerr A timer event set by the script has expired

SSiigghhtteedd An object is seen by the player for the first time

TA B L E 1 . Sample COG event messages.

ddeesscc== field tells the editor what descrip-
tive string to display when the designer
is editing that variable.

Access Control

O ne important decision made with
COG was to disallow direct access

to internal engine variables and struc-
tures from the scripts. If a COG script
wishes to examine or modify these
internal variables, it can do so only via
library function calls. This is an impor-
tant step in making the language crash-
resistant. If a COG script could directly
manipulate variables in the engine,
there would be nothing to prevent
badly written or out-of-date scripts
from wreaking havoc with other sys-
tems. By requiring the use of access
functions, any amount of validity
checking and network synchronization
can be added without affecting the
scripts themselves. This requires a little
extra work for the language program-
mer, since more functions will have to
be written, but it pays off in terms of

code stability down the road.
The COG library functions are actual-

ly just C function pointers that are visi-
ble to the COG scripts as global sym-
bols. When the execution kernel
encounters a call to one of these func-
tions, it jumps to the native C code. The
C code then calls language support
functions to retrieve its arguments from
the stack and return the results of the
call back to the language. Since the

functions are in native code, they exe-
cute significantly faster than the script
language itself. For this reason, fre-
quently performed tasks are written in C
and called as library functions. Table 2
gives examples of the types of functions
contained in the COG function library.

Compilation

For the script code to be executed as
efficiently as possible, it must be

translated from the text source code to
some internal representation that can
be executed quickly. This process is
called compilation, and the compilation
of our language source is just a simpli-
fied version of what a normal compiler
does to translate source code into native
machine code. Instead of producing
Intel or PowerPC opcodes, we produce
our own virtual machine opcodes.

The language’s virtual machine is a
type of simulated CPU. For COG, we
use a very simple model called a “stack
machine.” The stack machine gets its
name from the fact that it performs all
operations on a single stack. Anyone
who has used an HP calculator will be
familiar with the system. To add 5 and
10 on a stack machine, we would exe-
cute the opcodes

PPuusshh 55

PPuusshh 1100

AAdddd

The stack machine contains very few
opcodes, making it simple to implement
and efficient when executing. Our goal
is to quickly compile the source code
written by the designer into our custom
stack machine opcodes. Any valid
sequence of commands in the COG lan-
guage can be broken down into these

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

16

G A M E S C R I P T S

0000__nneeoonnssiiggnn..ccoogg
##
tthhiiss ccoogg wwiillll ccyyccllee tthhrroouugghh ffrraammeess 00--((llaassttFFrraammee--11)),, aatt ffrraammeerraattee ffppss
iiff ddaammaaggeedd,, iitt wwiillll ggoo ttoo ffrraammee llaassttFFrraammee aanndd ssttoopp,, ccrreeaattee ssppaarrkkss aanndd ssoouunndd

ssyymmbboollss
mmeessssaaggee ssttaarrttuupp
mmeessssaaggee ddaammaaggeedd

ssuurrffaaccee ssiiggnn mmaasskk==00xx444488
ffllooaatt ffppss==22..00 ddeesscc==ssppeeeedd ooff aanniimm
tteemmppllaattee ssppaarrkkss==++ssppaarrkkss ddeesscc==ccrreeaatteedd wwhheenn sshhoott
ssoouunndd eexxpp__ssoouunndd ddeesscc==ppllaayyeedd wwhheenn sshhoott

eenndd

ccooddee
ssttaarrttuupp::

//// SSttaarrtt tthhee aanniimmaattiioonn llooooppiinngg bbuutt sskkiippppiinngg tthhee ffiirrsstt 22 ffrraammeess
SSuurrffaacceeAAnniimm((ssiiggnn,, ffppss,, 00xx55));;
rreettuurrnn;;

ddaammaaggeedd::
iiff ((GGeettWWaallllCCeell((ssiiggnn)) ==== 00))

rreettuurrnn;;

SSttooppSSuurrffaacceeAAnniimm((ssiiggnn));;

iiff ((eexxpp__ssoouunndd))
PPllaayySSoouunnddPPooss((eexxpp__ssoouunndd,, SSuurrffaacceeCCeenntteerr((ssiiggnn)),, 11..00,, --11,, --11,, 00));;

SSeettWWaallllCCeell((ssiiggnn,, 00));;
CCrreeaatteeTThhiinngg((ssppaarrkkss,, GGeettSSoouurrcceeRReeff(())));;
rreettuurrnn;;

eenndd

L I S T I N G 1 . Sample COG script.

Function Description

SSttaarrttAAnniimm Starts a page-flipping animation on a surface, sprite, or material

SSeeccttoorrTThhrruusstt Sets a thrust force for a sector

SSeettTThhiinnggFFllaaggss Sets bits in the thing’s flag field

GGeettCCuurrSSeeccttoorr Retrieves a reference to the sector a thing is currently contained in

CCrreeaatteeTThhiinngg Creates a new thing in the world

PPllaayySSoouunnddTThhiinngg Plays a sound spatially linked to the position of a thing

SSeettTTiimmeerr Sets a timer event for some future time

PPllaayySSoonngg Plays a redbook music track

AAIISSeettTTaarrggeett Sets the target an AI object is attacking

AAIISSeettMMooddee Sets the mode of an AI object

MMoovveeTTooFFrraammee Moves an object along a path to a specified position, used for mov-

ing doors, elevators, and so on

TA B L E 2 . Sample COG library functions.

basic operations, just as normal C code
can be translated into the basic opcodes
of your target CPU.

The COG compilation process hap-
pens in two steps. First, the code is bro-
ken down into its relevant language
parts or tokens. COG tokens, just like C
tokens, include all the language key-
words (iiff, tthheenn, eellssee) and operators (++, *,
&&). This stage of compilation is called
lexical analysis or “lexing.”

The second part of the compilation
process involves taking the tokens from
the “lexer” and assembling them into the
syntax of the language. This is a more
complicated process and is based on a
formal specification of the language. The
formal language specification defines in
detail every possible expression that can
be constructed with the language in a
recursive format. It seems a little awk-
ward at first, but becomes clear after
some study. For example, the formal def-
inition of an addition operation is

((aaddddiittiioonnEExxpprreessssiioonn)) :: ((eexxpprreessssiioonn)) ++

((eexxpprreessssiioonn)).
This defines an addition expression as

two separate expressions separated by the
“+” token. Since the addition expression
is just one of the many possible defini-
tions of the more general “expression,”
you can see how the processing the lan-
guage quickly becomes a recursive prob-
lem. The lowest level of the specification
— the “atoms” of the language, so to
speak — are the constants and variables.

Since parsing the language is a recur-
sive problem, we build a tree to repre-
sent the structure of the source code as
it is being parsed. As each language
construct is recognized, we add it to
the tree. The type of expression we rec-
ognize determines the structure of that
small part of the parse tree. When the
tree for the entire function or source
file is completed, we can simply tra-
verse the tree in depth-first order and
create the stack machine opcodes that
we will later execute.

Returning to the simple addition
example, our completed parser should
construct the parse tree in Figure 3 for
the source code aa==55++1100;;

Because the language parsing is done
recursively, the parse automatically
handles normally tricky problems such
as nesting and order of operations
automatically. When the code aa==((55*22)) ++
((aa^̂22)) is parsed, the parser will recognize
the subexpressions 55*22 and aa^̂22 first, and
will pass the completed parse trees for
these subexpressions to the code that
creates the tree for the addition expres-
sion, resulting in a single tree for the
entire expression.

The most complex expressions to
parse are those involving loops and
branches. These expressions require the
generation of code using the branching
opcodes, which means the parser must
know the address to which it needs to
jump. For example, to generate code
for iiff <<ccoonnddiittiioonn>> tthheenn <<eexxpprreessssiioonn>>, the
parser must know the address of the
code address immediately following
the eexxpprreessssiioonn subtree in order to gener-
ate a GGOOFFAALLSSEE opcode to jump to this
code if the conditional fails.

The trick to generating code for these
branches is to generate code in two
passes rather than one. The first pass,
known as “backpatching,” doesn’t gen-
erate code, but simply counts the num-
ber of opcodes produced by each node
of the parse tree. During this first pass,
as each node is encountered while tra-
versing the tree, the code address
(index into the array of opcodes) is
noted both before the opcodes from
the node are added and after. After this
first pass, each node now contains the
code address just prior to and just fol-
lowing its own subtree’s code. Now, on

the second pass, the branches that were
previously expressed in terms of eenndd ooff
nnooddee <<eexxpprreessssiioonn>> can be expressed as
actual code addresses.

This is obviously a complex topic
that we have examined only superfi-
cially. For more information on the
theory behind parsing and the use of
parse trees, the standard text is
Compilers: Principles, Techniques, and
Tools by Aho, Sethi, and Ullman.

The Silver Lining

F ortunately, it’s not nearly as diffi-
cult as it sounds. Writing compil-

ers is an old and well-established sci-
ence. There are numerous of tools to
simplify the creation of an efficient
parser. In fact, this is one of those rare
computer science problems that can
safely be called “solved.” The parsers
generated by the compiler tools are
consistently more efficient than what a
human programmer could create
because they deal with the parsing
problem as a complex state machine.
Even a simple language specification
results in a state machine with so many
possible states and transitions that a
mere mortal programmer would be dri-
ven (or bored) to tears.

One free tool called “lex” is com-
monly used to generate C code imple-
menting a lexical analyzer based on a
user-supplied grammar specification.
Since COG follows the C syntax, we
modified an existing free C lex specifi-
cation file from the Internet to create
the lexer for the language.This ANSI-C
lex specification can be found at
http://www.cis.ufl.edu/~fryman/
c.lex.spec.html.

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

18

G A M E S C R I P T S

Opcode Explanation

PPuusshh Pushes a constant of symbol onto the execution stack

PPoopp Pops the next value off the execution stack

GGooFFaallssee Pops the top stack value and jumps to a new execution address if it

is equal to 0

GGoo Jumps to a new execution address

SSttoopp Stops execution

CCaallllFFuunncc Pops the next value from the stack as a C function pointer and calls

that function

AAdddd Pops the next two values from the stack, adds them, and pushes the

result onto the stack

AAssssiiggnn Pops the next two values off the stack, and assigns the value of the

second value to the variable contained in the first

TA B L E 3 . Sample COG “stack machine opcodes.

a

5 10

ADD

ASSIGN

F I G U R E 3 . Simple parse tree.

Similarly, another free tool called
yacc (for Yet Another Compiler
Compiler) can be used to transform a
formal language specification into a C
module. yacc and lex are designed to
work together, so the resulting source
code modules can simply be compiled
and linked to create a fully functional
parser. For COG, the same Internet site
yielded a full C grammar specification
for yacc, which was trimmed down to
our needs and used to create the parser
module. The URL for the ANSI-C yacc
framework is http://www.cis.ufl.edu
/~fryman/c.yacc.spec.html.

The resulting compiler has all the
tools needed to break down the source
code and recognize the language syn-
tax, but it is still your responsibility to
write the “hooks” that tell the compiler
what actions to perform when the lan-
guage is recognized. These hooks are
what enable us to build our parse tree.
By inserting this parse-tree building
code, along with some code to manage
the allocation and definition of the
language variables, we were able to cre-
ate a C-subset compiler in about a day.

Both lex and yacc are available in
many forms and permutations; some
free, some not. And while lex and yacc
are the most common compiler tools,
there are several others including full-
featured language construction environ-
ments such as VisualParse++ by
Sandstone Technologies. Whichever tool
you use, the end product is the same — a
stream of opcodes that can be executed
quickly and efficiently by your virtual
machine. Check out the free compiler
catalog mentioned earlier for links to
these and other useful language tools.

For more specific information on the
lex and yacc tools, check out Lex &
Yacc by Levine, Mason, and Brown in
the O’Reilly & Associates UNIX
Programming Series.

Putting It All Together

The finished parser, developed using
the free tools mentioned above, is

incredibly fast and flexible. In a typical
JEDI KNIGHT level, there are about 50 dif-
ferent script files that need to be parsed
and compiled into our opcode format.
On a typical machine, all these scripts
compile in well under one second. For
this reason, we decided against using an
external compiler and instead load the

source directly when loading the level.
This improves the turnaround time for
testing script changes, since the design-
er can quickly edit the script code and
reload the level to test changes.

One aspect of the scripting system
that proved critical for our project was
the integration of the scripts and the
level editor. The level editor not only
allows the designer to place scripts into a
level, but also ensures that the various
links in the script are correctly assigned
and remain correctly linked as the level
changes. When a designer places a script
resource into a level, the editor scans the
header of the script to determine what
variables can be assigned externally and
places a graphic representation of the
script resource in the level. This icon has
a spatial location in the level, although
its location isn’t important to the script.
Typically, designers place scripts near
the objects to which they link. Once the
script is placed, the designer can bring
up the property dialog for that script and
view and change its assignments. If the
script contains links to other things or
surfaces, these are assigned by clicking
on the correct type of item in the level
and clicking a link button. Links
between COG scripts and world entities
are shown graphically in the editor by
connecting them with lines. If the script
contains resources such as sounds or
bitmaps, a pull-down menu displays the
possible choices.

Another area that should be addressed
is debugging. There are two main issues
here — debugging syntax parsing prob-
lems, which normally is solved by
adding better error-reporting and recov-
ery code into the parser, and run-time
debugging, which can take many forms.
One possible method of run-time debug-
ging of scripts is to allow the user to
trace execution. In JEDI KNIGHT, the
designer can enter a console command
to turn tracing on for a specific COG
script, which will cause that script to
output debugging information each
time it executes. A more complete sys-
tem would allow for single stepping
through script opcodes. The real chal-
lenge, which has not yet been addressed
in COG, is to allow for “source-level”
debugging, where users can watch their
variables change and see the script step
through the original code. This feature
may seem like a lot of unnecessary work,
but it was the top request made by our
designers at the end of the project.

“How’d You Do That?”

Implementing and maintaining the
language was a significant task, and

it took the work of several program-
mers to keep up with the designer
demand for new COG library func-
tions. But when compared to the time
that would have been spent writing
specific systems for things such as mis-
sion objectives, inventory manage-
ment, powerup sequencing, puzzles,
doors, elevators, and so on, using a lan-
guage was a definite win.

After a period of uncertainty, most of
the designers started becoming comfort-
able with the language and began to
experiment with it. Strangely enough,
the key here was trust. Once the design-
ers were convinced that the language
was safe enough that they wouldn’t
crash the entire game by writing a bad
script, they began to try more interesting
things with the language. After some
time, they effectively took over the
majority of the gameplay programming
for JEDI, as planned. Some of the design-
ers were so enthusiastic about the use of
scripting that they later took evening
classes in C and C++ programming, and
at least one designer is moving into pro-
gramming full-time. Even those design-
ers who preferred not to work closely
with the language found it easy to place
and link existing scripts written by other
designers into their own levels.

Perhaps the most important effect
the language had on JEDI is illustrated
by an example. One day, a large group
was gathered around the desk of one of
the level designers on the project. It
seems he had created a puzzle script
where the user hits a switch on the wall
causing the water level in the room to
rise slowly, carrying the player along to
the top of the room. It seems simple,
except we had just recently decided not
to support moving water levels in the
game. No one, including those who
had worked on the engine and the lan-
guage, could figure out how he did it.

I still don’t know. I’m too lazy to
find out. ■

Robert Huebner is a senior programmer
at LucasArts Entertainment specializing in
network and simulation programming.
Prior to JEDI KNIGHT, he worked on
DESCENT and other online titles for
Interplay Productions. After JEDI KNIGHT,
he will sleep for a month. He can be
reached at virtual@lucasarts.com.

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

20

G A M E S C R I P T S

If you found yourself struggling to answer any of my ques-
tions, then I suspect that your development team has made
one or more critical errors. How you answer these three
questions is the best meter I know of to measure your effica-
cy as a project manager. How you answer could also be the
best predictor of your development team’s success.

In my experience, there are three lapses that cause game
development teams to falter during the creation of a new
game.

• The development team stops identifying, analyzing, and
affirming the project’s risks.

• The development team doesn’t work intently to address
and minimize the project’s risks.

• The development team fails to regularly evaluate its per-
formance and loses track of its progress against the pro-
jected development schedule.

What Is Your Biggest Risk?

I f you can't name your project's biggest risk, then you
do not have all of the information you need to lead

your project effectively. Here’s an example. During the
development of Web.Max, a suite of Internet utilities, my
team developed some very specialized technology to ani-
mate a sprite in the wallpaper of the Windows 95 desk-
top. The sprite, as designed, was going to be a friendly
and playful “agent” that “lived” in your desktop and was
always available to help you with your Internet tasks.
The technology required to implement the desktop sprite
was very complicated (it was intimately tied to the
undocumented internals of the Windows 95 desktop),
and we were elated when it finally worked. Once the
technology started working, development of a key fea-

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

22

M A N A G E M E N TP R O J E C T

The Game
of Risk
Management

o you manage game development for a liv-

ing? If so, ask yourself these three ques-

tions. What is your project’s biggest

risk right now? What are you doing

to minimize that risk? And, what is

your project’s next milestone? If you

can answer these questions quickly and

concisely, congratulations. You are manag-

ing effectively and purposefully.

DD

ture proceeded at the fastest possible pace and with the
greatest sense of urgency.

We soon discovered, however, that our desktop sprite
technology wouldn’t be usable on our target system configu-
ration. Ultimately, we removed the desktop sprite — a core,
pivotal feature of the product as originally envisioned —
from the shipping version of Web.Max.

What went wrong? My team (and that includes myself, as
well) knew that we might not ever get a sprite to animate in
the desktop. However, when the technology started work-
ing, we used it earnestly and extensively. We knew it would
require “tweaking” as more and more users tested the soft-
ware, but felt that the optimizations would be achievable. In
the end — almost literally — we realized that no amount of
tweaks would salvage the technology.

At some point, we thought we understood our new tech-
nology and focused our attention elsewhere. Because we did-
n’t recognize and affirm that the technology was still a big
risk, we didn’t act to minimize its effect on the project and
product. We mismanaged our risks and ultimately paid for
our mistake.

As a development manager — whether you’re a technical
director, a creative director, a director, or a producer — you
and your team must recognize and enumerate everything
that is a risk to the project at all times.

Are You Minimizing Risk?

I n my previous example, my development team dismissed
the risk associated with our desktop sprite technology.

That was our second mistake. Our first mistake was in not
qualifying our technology initially and assessing its risk to

the product. With better information earlier, we would have
had the data and time to explore options.

Consider how my team managed the development, test-
ing, and release of a new Windows 95 sound mixer, which
we used for the first time in YOU DON’T KNOW JACK MOVIES.
Until the release of YOU DON’T KNOW JACK MOVIES, my
development team had been using the Windows 95 sound
mixer that was created for the original YOU DON’T KNOW

JACK title in October 1995. While that sound mixer was
very good, it sometimes played stuttered sounds on PCs
with slow SCSI cards and required the game’s programmers
to predict periods of CD-ROM drive inactivity. That mixer
was also not extensively documented nor understood. In

an effort to fix our mixer problems, the mixer was dissect-
ed and rewritten to better leverage the capabilities of
Windows 95.

The new sound mixer was completed in early January,
1997. YOU DON’T KNOW JACK MOVIES was scheduled to be
released just three short months later on March 21, 1997.
The team had to make a decision: Should we ship the old
system or the new system? The old system was proven; the
new system held great promise and would improve the
game play experience for almost all of our customers.
What to do?

Our first task was to assess our risk. The author of the new
mixer tested it extensively before releasing it to software
quality assurance. In one test that he ran, the new sound
mixer ran an entire week before he pulled the plug on the
test. Next, the new mixer was incorporated into a special
build of a shipping version of YOU DON’T KNOW JACK, and
that build was tested internally and externally by more than
100 volunteer testers.

No problems were reported. The new mixer was a vast
improvement over the old mixer, and we saw no risk to the
MOVIES project. My team decided to adopt the new mixer,
with excellent results.

New technology is only one of a countless number of
risks. Do any of these other risks sound familiar to you?

“Joe Programmer has worked for two days on that bug and
still has no clue how to fix it. What are we going to do?”

“Jane Artist is going to be in the hospital for the next
month. Who’ll do her work?”

“We’re about three weeks behind schedule. Joe Sales says
that the ship date can’t change or we’ll lose $100K of pro-
motional expenses. What are we going to do?”

“I am having a hard time concentrating. Things are rough

at home right now…”
“We don’t know if we can get it to be that fast. Can we up

the minimum system requirements?”
“I refuse to work with Joe. He’s an idiot.”
Killer bugs, staff departures, schedule delays, a team mem-

ber’s personal problems, tuning, personality conflicts, equip-
ment failures, competition, and changing market conditions
all add risk to your project. And no matter how well-pre-
pared or well-informed you are, you’ll always face unexpect-
ed problems that add risk to your project.

In fact, risk comes in so many forms and is so inherent in
developing games that I now rank risk management as the
most important task I perform as a development manager.

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 7 G A M E D E V E L O P E R

23

HOW MUCH DO YOU KNOW ABOUT

YOUR PROJECT’S CURRENT STATUS? IF YOU

CAN’T ANSWER THREE IMPORTANT QUESTIONS,

YOU DON’T KNOW JACK. b y M a r t i n S t r e i c h e r

How you (with your team) manage and
minimize risk is as important to the
success of your project as identifying
and affirming that the risks exist.

What’s Your Next Milestone?

D o you know what your team’s
next milestone is? Do you have a

plan for achieving that milestone?
I’d be very surprised if you failed to

answer “yes” to both questions. So let
me qualify the questions and ask again.
Is your team making satisfactory
progress toward that next milestone? Is
there anything jeopardizing your
team’s ability to achieve your next
milestone? And, what are you doing to
minimize those risks?

If you could not answer all of those
questions, then it’s likely that your
schedule will slip. If you can’t realize
your short-term schedule, you don’t
have a chance of shipping on time.

I am a big proponent of “micro-mile-
stones.” Micro-milestones (a milestone
is a clearly-defined goal and a deadline)
force your team to achieve clearly
defined and tangible results in one to
three weeks.

For example, when my development
team works on a new version of YOU

DON’T KNOW JACK, the artists, writers,
musicians, and developers work in con-
cert to complete each feature one at a
time, in its entirety, one after another.
Each micro-milestone should be
achieved in two to three weeks; there is
one micro-milestone for each feature in
the game.

With this system I am able to mea-
sure team and individual performance
very accurately. I can see schedule slips
in the same week that they occur and
can react immediately to minimize
risk.

In the past two years or so, I have
abandoned traditional software sched-
uling and development management
in favor of micro-milestones. Micro-
milestones afford me much greater visi-
bility of the schedule and of project
risks. Achieving small milestones also
adds to the credibility, morale, and
confidence of the entire team.

And if you can realize your short-
term schedule over and over again, you
have an excellent chance of shipping
on time. I am proud to say that the
YOU DON’T KNOW JACK development

teams have a flawless record of ship-
ping products on time.

Carpe Diem!

I don’t think game development
teams intentionally make mistakes.

I don’t think development managers
intentionally lapse in their leadership.
I think development teams work very,
very hard to realize their products.

And there’s the catch. Individuals
and teams often work so hard that they
make mistakes that they wouldn’t oth-
erwise make.

Most of the mistakes my own devel-
opment teams made were avoidable.
The mistakes happened because I for-
got to keep answering these three all-
important questions. What is my pro-
ject’s biggest risk right now? What am I
doing to minimize that risk? What is
our next milestone?

If you are a development manager,
it’s your job to anticipate mistakes and
prevent them from happening. It’s
your job to answer my three questions
every day. Here are ten suggestions to
help you perform your job.
DON’T GET OVERWHELMED. Without excep-
tion, I’ve made more serious mistakes
when I’ve been overwhelmed. Why?
Because I allowed my guiding princi-
ples, judgment, and behaviors to be
negatively affected by circumstances.
When overwhelmed, I stop thinking. I
lose my perspective on the project-at-
large and focus too narrowly on a few
priorities. I react instead of plan.
BE THE CENTER OF YOUR PROJECT TEAM. As the
center of the project, you must serve as
the clearinghouse for information.
Progress, issues, problems, obstacles,
and ideas should flow through you.
When you receive new information
from within the team, assess it and
deliver it to someone who can use it. If
you receive information that affects
the entire project, broadcast it. Match
answers to questions.

QUESTION REALITY. Question the answers.
Spend considerable time with all of the
project leaders. Ask inquisitive and
detailed questions. Review progress reg-
ularly and identify slips early. Verify
the facts. Identify and challenge your
team’s assumptions. Audit estimates of
time and expense. Ask for second or
third opinions from the experts. Assess
and re-assess risks with the leaders on
your team.
ADHERE TO RULES EVEN IF YOU BREAK THEM. In
general, if you must break rules, have
rules to keep. It’s extremely dangerous
when a development team breaks rules
and doesn’t affirm the consequences.
It’s also dangerous to break rules and
not change your behaviors and
processes. If you do break your rules,
follow these rules:
• Consciously and publicly state what

rules you’ve broken.
• Identify the consequences of break-

ing the rules.

• Design and implement a plan to
counter any negative consequences
and minimize the impact on the
project.

• Immediately create a new set of rules
and publicly state the new rules.
Don’t break the new rules. If you do,

follow these rules.
THINK. You must set time aside to think.
Remove yourself from tactics, paper-
work, e-mail, voice mail, spreadsheets,
and meetings and just think. Think
about your risks. Is each risk assigned
to someone to resolve? When will each
risk be resolved? Is there a risk that is
languishing? Is it languishing due to
lack of attention, or is it being inten-
tionally ignored? Think about the peo-
ple with whom you work. Are individu-
als rested? Does anyone need a break?
Can you relieve some stress or anxiety?
REVIEW THE STATE OF YOUR TEAM. Estimate,
measure, estimate, and measure in an
endless cycle. Track progress closely.
Ask your team members if they believe
in their individual schedules and in the
schedule of the entire project.

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

24

P R O J E C T M A N A G E M E N T

You must set time aside to think. Remove

yourself from tactics, paperwork, e-mail,

voice mail, spreadsheets, and meetings and

just think

Explicitly state who is doing what.
Are there obstacles in anyone’s way?
Will there be any soon? Is there any-
thing you can do to facilitate
progress? Is everyone performing ade-
quately? Do you need to take any cor-
rective action?
DON’T FIRE “YIN” OR “YANG.” A healthy
development team has tensions.
Tension exists between engineering
and software quality assurance,
between art and engineering, and
even between the development team
and outsiders (supervising manage-
ment, executives, even other teams).
Tension is natural in product develop-
ment and is evidence that each part of
the team is exhibiting and practicing
its own form of ownership. Encourage
investment and ownership. Encourage
differing opinions. Allow each part of
the team to challenge others. Build
and maintain a healthy system of
checks and balances. Of course, don’t
let any one “Yin-Yang” relationship
get too tense or take the team out of
balance.

Focus on and eliminate your biggest
risk over and over again. Remove the
next obstacle to your project before
you reach it. When a new risk crops up,
announce it, and assign someone to
resolve it. Identify alternatives, trade-
offs, and possible solutions.
EVALUATE YOURSELF. Pay attention to your
own performance. Are you suffering
from manager’s “tunnel vision” —
focusing too narrowly on a few tasks
while others go unmanaged? Are you
thinking? Are you doing? If you have a
supervisor, imagine how they’d evalu-
ate your performance. Whether you
think in your car on the way to work or
in the shower when shampooing your
hair, take time to consider what is hap-
pening in your project.
LEAD BY EXAMPLE. You must be an excel-
lent manager. Communicate.
Explain. Encourage collaboration.
Respect others. Recognize achieve-
ments and reward appropriately. Be
responsible. Be honest. Keep your
word. Challenge others. Demand
excellence and professionalism.

Practice Your Mantras.

D o you recall the three questions I
initially presented? Do you feel

better prepared to answer those ques-
tions now? Try again.
• What is your biggest risk right now?
• What are you doing to minimize that

risk?
• What is your project’s next mile-

stone?
So, how did you do? ■
Martin Streicher is a producer at

Berkeley Systems in Berkeley, Calif. He
graduated from Purdue University in
1986 with a Bachelor’s and Master’s
degree in Computer Science and has
been a software development manager
since 1989. Martin’s entertainment
software credits include the DISNEY

SCREEN SAVER FOR WINDOWS, AFTER

DARK 3.0 for Windows, YOU DON’T
KNOW JACK v1.0, and four other ver-
sions of the popular CD-ROM trivia
game. He is currently writing, produc-
ing, and directing a prototype of a new
game that he created.

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

26

P R O J E C T M A N A G E M E N T

“mocap” within the various video
game and visual effects industries. For
whatever reasons though, motion cap-
ture has become a favorite among
many game professionals as they strive
for more realistic movement within the
3D worlds that they create. If you
potentially have a need for this tech-
nology or are simply interested in an
overview of the issues concerning this
process, read on.

Beginning, Middle, End

Motion capture is still pretty new
on the evolutionary tree of tech-

nology. Too many people simply
haven’t been intimate with the entire
throughput process, and this is where
potential trouble can begin. Data has
to be extensively manipulated before
to get decent results. From acquiring
the data, to transforming that data

into a certain file format, to building
specific models and finally
pointweighting and attaching the
mesh, motion capture is a process.
Thus, the decision for or against using
motion capture should be made dur-
ing the preproduction phase of a pro-
ject. We’ll say up front that we’re
strong believers in “detailed” prepro-
duction.

Certainly, when planning to use
motion capture for game develop-
ment, a number of questions come to
mind. For instance, in a level-based
fighting game, you might ask yourself:
How many moves there are in each
level? Can those moves be done with
traditional keyframe techniques?
Which process will get the job done
more efficiently? What’s my budget
going to allow? Do we have someone
in house that has worked with
pointweighted meshes before?
Everyone thinks that they’ve already

considered these issues — but have
they really?

Common sense still prevails. Be pre-
pared with a set of plans that are on
paper before you head to the studio.
Most teams come in with a spreadsheet
that serves as a breakdown of the shots
by level. Each spreadsheet is different,
yet they all have a few common
columns. Take Number, Actor, Level,
Action, and so on. Creating these
spreadsheets is a good way to get the
ball rolling; the project should be taken
further with either story boards or an
overhead view diagram of the action to
take place. (Diagramming an overhead
view, scene by scene, works well. Yet
very few people do this to help plan
their shoots.) “Floorplans” are useful
when your desired move takes place
over a larger space than the mocap vol-
ume will allow; a couple of different
takes must be “blended” together. The
issue of “long” moves comes up quite

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

28

C A P T U R EM O T I O N

When Motion Capture
Beats Keyframing

otion capture is fast becoming a “dar-

ling” technology in the game develop-

ment world. This may be attributed to

the maturation of the hardware and

software tools. It may also be the new-

found enthusiasm of project managers

and producers who are embracingMM

often in game development; this quali-
fies it as a good reason to use motion
capture. A complicated move that
physically covers a lot of terrain suits
motion capture capabilities well, but it
still helps to have the more complicat-
ed moves diagrammed to the exact step
(Figure 1).

As the game industry has adopted
some of Hollywood’s ancillary habits,
it is also picking up some good habits
as well. The trappings of a film-style
shoot can be involved however, so be
sure to include video reference,
wardrobe, stunt support, and craft ser-
vices on your check list before head-
ing to the studio. The bottom line is
to create a productive environment

from which to garner the best move-
ment possible from your actor or per-
former.

Motion capture “shoots” are done in
a similar manner to the film industry
shoots. Story boards are drawn up,
actors are positioned at their marks, a
director calls for “Action!” and the
operator of the motion capture station
rolls tape… er, hard drive. After
numerous takes are recorded, the
director and/or game production man-
agers determine which are the best
takes, and then the mocap crew begins
to clean up the data. After the data is
“massaged,” the files are converted
into a skeletel format that is ready for
“attachment” to the meshes or mod-
els. This is where the skin meets the
bone.

Costs and Comparisons: Traditional
Keyframe vs. Motion Capture

W e don’t want to start any more
controversy on an already dead

issue. Motion capture has strengths
and weakness just as anything else that
is new and on the edge of the techno-

logical world in
which we live.

The gaming
industry has seen
improvements in
hardware and soft-
ware implementa-
tion over the past
couple of years.
New games have a
more realistic look
and feel that wasn’t
possible to create
during the 16-bit
era. Along with an
increase in CPU
horsepower comes
an increase in

demand for more realistic-looking
characters, as well as more fantastic
creatures that inhabit these virtual
environments. Motion capture fits into
this scenario by providing data sets
that mirror humanistic, or bipedal
movement.

Humans are typically very difficult to
animate using traditional keyframe
animation techniques, especially when
trying to depict complicated, two-per-
son moves such as a sword fight. Some
very talented animators are capable of
humanistic, bipedal animation, but it’s

difficult to key an entire sword fight
sequence with interactive clashing of
weapons and all.

There are numerous ways to skin a
cat, so determining whether or not
motion capture will be used for a pro-
ject depends, to a large degree, on the
available in-house resources. Typically,
the amount of motion data used for a
real-time game is contingent on a
number of factors. These factors are
directly related to the different stages
of the throughput pipeline. From
scripts and story boards to skin and

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 7 G A M E D E V E L O P E R

29WHEN GOING FOR NATURAL-LOOKING

CHARACTER ANIMATION, MOTION CAPTURE

TYPICALLY BEATS OUT KEYFRAMING…

FOR A PRICE. b y D a m o n K n i g h t a n d T o m T o l l e s

BUG BRAWL, from Prototype Productions, is being devel-

oped with extensive use of motion capture data.

24 Steps E

12 Steps SE

18 Running Steps E

Wall with door

W E

N

S

F I G U R E 1 . It might be a good idea to draw a diagram of complicated moves.

bones, any one of these stages can be
performed with great success or whit-
tled at with disappointment. A game
development company should deter-
mine its own role in making the
motion capture route work. Does the
company employ staff that can do the
attachment? Can that staff also clean
up data? Does the company have the
necessary contacts to sub out the
attachment work? Or should the ani-
mations just be keyframed?

A lot of companies have strong in-
house animation staff; this is a huge
bonus. In this case, it makes sense to go
with your in-house strength. However,
as one project manager related, “It may
be that I have a great animator, but
having a great animator that can also
play the sport that he is working on for
the game is pushing the odds a bit.”
The next question then becomes, is it
cost effective? For the company that

may be smaller or has certain other in-
house strengths, motion capture is a
good way to go.

Keyframing is a valid and sound
choice for game development; it is
presently the standard for animation.
However, time changes everything.
The progression of the software and
hardware makes for a promising future
for mocap.

Performance Animation

T he nice thing about using a per-
former to capture movement is

that an actor can be given direction.
The human brain interprets a director’s

requests very effectively. Interpreting a
director’s instructions is best done by a
human, as they are much faster than a
computer at “grokking” the desire of
the director — the last time I checked
anyway. Working at the speed of
human comprehension, one can usual-
ly amass between 80 and 100 takes a
day, depending on the complexity and
duration of the movements required.

Blending the Flesh and Attaching the
Skin

T here are a number of issues that go
along with the implementation of

motion capture data to 3D characters.
Point weighting and attachment are
favorites with most 3D artists. The
polygonal characters that are to be
attached to the mocap data may have
to be created in a more specific manner

than usual (as in, more polygons at the
elbows and knees for maximum flexi-
bility). It’s also a good idea to know the
accurate measurements of the per-
former from whom the data was
acquired. The object here is to create
the mesh around the initial data’s posi-
tion or “daVinci pose” that is imported
into frame 0. This assures that the
mesh will be exactly proportional to
the bones, which is helpful throughout
the process. Having a well-built and
proportionally correct model is a key
element.

When the data is imported into the
software package, it looks like a skele-
ton. The mesh is then imported and
the vertices are set to specific links.

This method of
skin attachment
is commonly
called point
weighting or
attachment. The
skin, or mesh,
may be either a
single or jointed
skin, depending
on the software

and required use. It is wise to do
attachment right away, so as to get a
head start on any problems that the
actual motion data may impose on the
newly attached skeleton. The biggest
problems come when the moves are
really aggressive and the mesh has to
be stretched and twisted into radical
positions. Some tearing and deforma-
tion may occur. Once you get the mesh
attached to the skeleton though, it’s
possible to import different motion
data sets — this is where you start to
make time. You can then boast to your
friends that you did ten moves in a sin-
gle day. Your project manager or pro-
ducer will be very happy at this point.
(At least until they tell you that all
those moves need to link together.)

The second major issue concerns
“blending.” This is when many small
moves must be capable of seamlessly
ble nding into each other as the player
presses certain combinations of but-
tons that correspond to the moves
described in the game requirements.
This technique is done by stringing all
of the takes together to make one long
complicated move that can then be
accessed accurately and quickly by
jumping to particular frames…er,
keyframes. Blending is sometimes diffi-
cult, but can be helped along by vari-
ous plug-ins or a good animator that
digs in and creates a workaround. Dave
Matthews from Konami says, “The
plain fact of the matter is that you do
have to work at it. Motion capture data
works well but it isn’t magic. [All one
needs is] just hard work and an under-
standing of the limits of one’s
resources.”

You Still Have to Buy the Software!

T here are a limited number of soft-
ware packages that implement

motion capture data well. Softimage
and Alias are obvious winners in this

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

30

M O T I O N C A P T U R E

A series of screen shots from Activision’s APOCALYPSE. The animations were recorded at House of Moves

during a motion capture session with motion picture star Bruce Willis.

Actors can be given direction. Interpreting a

director’s instructions is best done by a

human, as they are much faster than a com-

puter at “grokking” the desire of the director.

arena; however, there are a number of
plug-ins for 3D Studio MAX that are
available to developers. Oxford
Metrics and BioVision both have new
plug-ins, and Kinetix is sure to do
something in the near future with all
the success that MAX is enjoying. The
3D MAX package is unique in that we
can implement motion capture data

into a PC-based piece of code and
actually get stunning results. Talk
about stellar results on a cost effective
platform.

Having used the Oxford Metrics
plug-in for MAX, we can honestly say
that it does a good job in conjunction
with Physique. This little piece of code
has key-reduction capabilities to reduce
unwanted data and keep files from bal-

looning. It also has features that allow
you to import specified segments of the
file, and it lets you blend moves
together with a bit of help from the
code itself. This software combination
actually loads quickly and lets you do a
number of things that only time and
experience will reveal, such as perfect
run cycles. BioVision has a MAX plug-

in also, called Motion Manager, and it
too has a rich feature set. The
BioVision file format is easy to work
with, which is a blessing when trying
to rotate bones into certain positions
for attachment.

Alias and Softimage are excellent
packages, as we all know, but not
everybody uses the UNIX platform of
choice for game development.

Going Nowhere and Everywhere

It’s important to point out that mocap
capabilities will only get better with

time and will eventually evolve into an
integral part of synthetic creations
where bipedal creatures are present. It’s
not for every project, but it seems to be
hard to beat for capturing the nuances
of the human movement. ■

Damon Knight has been working at
House of Moves motion capture facility for
the past couple of years as an all-around
data twister. He has a graduate degree in
Film and is an old-time computer user (his
first was an Osborne back in 1981). He is
currently developing games with his new
company Prototype Productions. You can
contact him via e-mail at
damonK@moves.com

Tom Tolles graduated from Stanford
with a degree in Mechanical Engineering
and received his MBA from UCLA. He is
the owner of House of Moves and has
twelve years of experience in 3D anima-
tion. You can contact him at
tomt@moves.com.

32

M O T I O N C A P T U R E

Mocap may not be right for every project, but

it seems to be hard to beat for capturing the

nuances of the human movement.

worlds: combine, or mix, the two rendering methods. By
using mixed rendering, gamers and programmers get the
flexibility of software and the speed of dedicated 3D hard-
ware. This happy medium can exist within the standard
graphics APIs for Windows: DirectDraw and Direct3D.
Several methods exist for mixing software and hardware ren-
dering — color keying, overlays, alpha BLT, Z-buffered BLT,
or animated texturing. We have implemented samples using
Direct3D on several hardware accelerators. Performance
issues arise in synchronizing hardware and software, but
these problems are solvable.

Mixed Emotions? Mixed Rendering

G ame developers want to differentiate their titles as
much as possible, in visual quality, speed, and com-

plexity. The influx of 3D accelerators in the mainstream
market raises potential 3D quality and performance, while
leveling the visual complexity playing field. You can now
freely exploit hardware acceleration. However, you lose the
fine-tuned control of the visual quality when hardware (via
an API) performs all of the rendering. The API of choice for
most Windows game developers, Microsoft’s Direct3D, pro-
vides hardware-independent 3D acceleration; but it can also
limit uniqueness of the game’s look.

For example, you may want the great features of your own
customized 3D software engine. You may also want to push
the limits of quality and visual complexity with techniques
commonly used in offline rendering engines (for example
procedural textures, curved surfaces, and ray tracing).
However, you’ll still want Direct3D and its Hardware
Abstraction Layer (HAL) to render the scene as quickly as
possible on widely installed 3D hardware.

Are you stuck with these mixed emotions towards
Direct3D? Perhaps not. The speed and capabilities of 3D
hardware and CPUs will increase significantly for the fore-

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

34

R E N D E R I N GM I X E D

Implementing
Mixed
Rendering

he growing popularity of PC 3D

hardware has sparked debate among

software developers as to whether to con-

tinue developing software rendering

engines or to abandon them completely in

favor of hardware. Both choices offer

advantages and disadvantages. Luckily,

there is a way to get the best of both

TT

F I G U R E 1 . Scene from Marble

Bagels Traveling Through the

Tunnel.

seeable future. However, you won’t see clever new tech-
niques in “fixed function” 3D hardware accelerators until
years after they have been implemented in software, if ever.

We illustrate the concept of mixed rendering using the
familiar Direct3D sample application, “Tunnel.” In our case,
we’d like to think of the tunnel as our background as we
send an object traveling through the tunnel. We’ll use a pro-
cedurally textured torus (a marble bagel?) as our object.

“Marble Bagels Traveling in the Tunnel” might not sound
like the most clever game in the world, but it does illustrate
the required infrastructure of mixed rendering and provides
an example of an advanced technique that isn’t available in

any 3D accelerator. It should also be stressed that there’s
nothing special here about using procedural textures. Pick
any special rendering technique that you like and apply it
within your scene.

The tunnel has a low number of large polygons (think of
it as our background), while the bagel is an object with a
larger number of small polygons (representative of a com-
plex foreground object). Figure 1 shows a sample screen
from the application.

A Bit of History

O ur first investigations into mixed rendering actually
made concurrent use of both the Direct3D HAL and

Hardware Emulation Layer (HEL). We combined the
Direct3D Twist and Tunnel applications into a single appli-
cation (Twist rendered in software and Tunnel rendered in
hardware). This example could be rendered entirely with
hardware, but using mixed rendering shows the methodol-
ogy and allows comparisons of performance. (Note: While
we don’t advocate mixed rendering for techniques that are
widely available in 3D accelerators, we use this example
just to illustrate the concurrency available in some 3D
hardware)

Performance depends on the 3D hardware, since different
accelerators and their drivers allow for different amounts of
concurrency. That is, better hardware accelerators permit the
CPU to continue calculating while the hardware draws,
while lower-end hardware tends to require the CPU to idle,
waiting for hardware completion. Performance also depends
on the rasterization load balancing the application achieves
for the software and hardware. This application’s perfor-
mance using the multithreaded methodology described later
appears in Table 1.

The performance in this example is not an apples-to-
apples comparison, as the 3D Blaster supports bilinear filter-
ing, while the Mystique does not. In addition, the different
platforms that they were on also complicate comparisons.
The comparison should be made separately between the
“Hardware Only” and the “Mixed Rendering” columns for
each configuration.

The results in Table 1 show that the performance of
Configuration A improved when we mixed software and
hardware rendering, while the performance of Configuration
B actually degraded a bit. This improvement can be traced to
two key factors: rendering and hardware concurrency.

When and Why It Works

O riginally, our rendering process contained a single
thread, which fed triangles to the 3D accelerator card

as fast as possible. If an accelerator card is fast, the thread
runs at the CPU’s maximum rate. Unfortunately, there are
situations and cards that process data more slowly, or times
when data needs to be blocked entirely. If the card’s com-
mand memory is full and it cannot accept any more trian-
gles, or if it needs to wait for the vertical blank interval (VBI)
to flip the drawing surfaces, the thread has to block (wait).

By adding a second thread, the rendering process has the
opportunity to do something useful in case the original
hardware rendering thread blocks. In this case, the second
thread is software-only rendering. This concurrency
between the CPU and the accelerator accounts for the per-
formance increase in the 3D Blaster — we had two render-
ing engines at work simultaneously, resulting in a perfor-
mance gain in spite of the overhead required to composite
the two images. While the Mystique didn’t support concur-
rency (nor bilinear filtering) and resulted in a small perfor-

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 7 G A M E D E V E L O P E R

35

BY DRAWING UPON HARDWARE AND SOFTWARE

FOR YOUR RENDERING, YOU CAN ADD

SPECIAL FEATURES TO YOUR GAME

THAT OTHERWISE WOULDN’T

BE POSSIBLE. b y H a i m B a r a d & M a r k A t k i n s

HARDWARE ONLY MIXED RENDERING

CONFIGURATION A 21 fps 25 fps

CONFIGURATION B 28 fps 27 fps

Config A: Pentium II, 233 MHz, with Creative Labs 3D Blaster

PCI, with bilinear filtering

Config B: Pentium with MMX Technology, 150MHz, with Matrox

Mystique, point sampled textures

TA B L E 1 . Performance Results for Two Configurations

(Gouraud shaded, texture mapped)

mance loss, future 3D hardware and
drivers should have better support for
concurrency.

The motivation for mixed rendering
isn’t performance. The ability to inte-
grate special features and advanced
techniques is the overriding benefit. To
illustrate this, let’s first look at the mul-
tithreading infrastructure.

The Multithreading Methodology

M ixed rendering should be multi-
threaded to exploit concurrency

and must manage the priorities of the
two threads during different stages of
the rendering process. Figure 2 illus-
trates a software methodology for two
cases of multithreaded mixed render-

ing without deadlock: one case using a
separate BLT composite and a single
buffer in the software thread, and
another case using a texture mapping
composite and a double buffer in the
software thread. Both scenarios assume
a complex flipping surface (that is,
backbuffer and frontbuffer) for the
hardware thread.

In Figure 2a, the hardware thread han-
dles the drawing of the parts of the scene
done with 3D hardware, as well as the
composite/flip operations. The software
rendering is done within a separate
thread to an offscreen buffer in system
memory within a loop using synchro-
nization events. Two distinct synchro-
nization events (SSWWRReeaaddyy and CCoommppoossiitteeDDoonnee)
are used to avoid deadlock in case the
rasterization load becomes unbalanced
(that is, much heavier in one thread
than the other). The SSWWRReeaaddyy event is set
when the software thread has finished
its frame, and its results are ready for
compositing (using a BLT operation)
with the frame generated in the main
thread. The software thread must then

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

36

M I X E D R E N D E R I N G

Wait: SWReady

Reset: SWReady

Switch Active &

	 Developing Caches

Event: SwitchDone

Load from Active to

	 video memory

DrawHW*

Flip

HW Thread

DrawSW into Developing

	 Cache

Event: SWReady

Wait: SwitchDone

Reset: SwitchDone

SW Thread

F I G U R E 2 A . BLT composite and single buffer in software thread.

wait for the results of this rendering to
be consumed by the main thread (via
BLT composite), and then signaled by
the event CCoommppoossiitteeDDoonnee. Once the compos-
ite has completed, the software thread
can begin working on the next frame.

Using multiple buffers (Figure 2b) on
the software thread can allow progress
to continue into the next frame(s)
without waiting for the results to be
consumed from the current buffer. We
name the two buffers in the software
thread “Active Cache” and
“Developing Cache.” The reason for
these names will become clear later,
when we discuss a way of integrating
“image caching” into the mixed ren-
dering methodology. In this case, the
software thread always draws into the
developing cache. In the hardware
thread, we must wait for the software
thread to get one frame ahead of the
hardware thread in order to provide a
ready-to-use texture for compositing
into the hardware-rendered scene. The
load from active cache to video memo-
ry is done for each frame into the hard-
ware’s video memory. Then the hard-
ware draws the entire scene (“DDrraawwHHWW**”),
which includes the texture map com-
posite, onto a single polygon in the
hardware-rendered scene. We’ll discuss
this compositing method later.

You must also make a tradeoff con-
cerning memory allocation (extra
buffers) versus increased performance
when considering these alternatives.

Compositing the Two Scenes

Many methods exist for compositing
the results of the hardware and

software threads. DirectDraw provides
several options for the BLT operation.
Z COMPOSITE WITHOUT Z-BUFFER? In spite of
the fact that BLT with Z isn’t currently

enabled in DirectDraw, we can com-
posite distinct (as opposed to interpen-
etrating) objects in the scene based on
their Z values.

The results of the software rendering
are texture mapped (transparently)
onto a rectangle in the hardware back-
buffer. We call this Single POlygon
Textures (SPOTs); you can take advan-
tage of the 3D hardware’s capability for
filtered texture mapping. This also
allows the software rendering to be
done at a smaller size and then
stretched to tune performance or
achieve special effects like distortion.
Figure 3 is an example of a mostly
hardware-accelerated background with
a high-quality, albeit small software-
rendered object. The hardware will tex-
ture map the motorcycle to the SPOT
during the drawing of the hardware
scene. This case also lets the software
object (the motorcycle) actually inter-
act with the hardware-rendered scene
(such as go behind trees or obscure
other hardware-rendered objects). All
we have to do is move the SPOT to the
proper place in the scene and transpar-
ently texture map to the SPOT.

Compositing via texture mapping
also offers a performance advantage.
Many 3D cards perform much better if
you do not intersperse 2D operations
(such as, BLT) with 3D rendering. This
often causes a large perfor-
mance hit. In the section on
concurrency, you’ll see that
the BLT operations on hard-
ware with good concurrency
will cost a lot in performance.

Some hardware will even
support differing pixel depths
for the source and destina-
tion of the BLT or texture
mapping. Also keep in mind
that the performance of tex-
turing out of system memory

will be improved with AGP; higher
bandwidths and the explicit loading of
the texture to video memory won’t be
necessary.

Scene Partitioning Strategies

A number of guidelines will speed
you down the road to mixed ren-

dering. The CPU is required when ren-
dering the objects in your scene that
exploit specialized or advanced 3D
techniques. Often these are interesting
foreground objects. These objects are
usually composed of smaller triangles,
and the performance of software ras-
terization on small triangles is more
competitive with hardware rasteriza-
tion. In other words, the CPU is more
competitive with triangle throughput
than it is with pixel fill, and creating
the commands and data for hardware
requires a lot of time compared to the
time it takes the hardware to draw
small triangles. This strategy corre-
sponds roughly to background/fore-
ground object partitioning.

Again, mixed-mode rasterization
shouldn’t be used for performance rea-
sons alone. Until the infrastructure for
exploiting concurrency is enhanced,
there may be no appreciable perfor-
mance gain (and possibly a perfor-
mance degradation). However, forming
a consensus on a standard mixed ren-
dering methodology will help the
industry avoid roadblocks for better
performance.

Procedural Textured Object Inside a
Hardware Background

The application “Marble Bagels
Traveling in the Tunnel” demon-

strates an advanced technique not sup-
ported by 3D hardware, namely proce-

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

38

M I X E D R E N D E R I N G

F I G U R E 3 . Composite via texture map to SPOT.

DrawHW

Wait: SWReady

Reset: SWReady

Composite(BLT)

Event: CompositeDone

Flip

HW Thread

DrawSW

Event: SWReady

Wait: CompositeDone

Reset: CompositeDone

SW Thread

F I G U R E 2 B . BLT composite and single buffer in software thread.

dural textures. We made use of a Perlin
Noise generator and turbulence (opti-
mized for MMX technology) to produce
the marble-like appearance. A discus-
sion of procedural textures is beyond
the scope of this article. However, we
do include the complete code and exe-
cutable for the mixed rendering exam-
ple on the Game Developer web site.

Performance Issues

R unning two separate threads is
the first step toward squeezing

extra performance out of the system.
Like most multithreaded operating sys-
tems, the Windows thread scheduler
dynamically changes thread priorities.
Higher priorities indicate that the
thread should be run more often;
threads with lower priorities run less
often. A thread that is waiting for an
I/O operation to complete will have it’s
priority decreased. Since I/O operations
typically take anywhere from tens to
hundreds or thousands of CPU cycles,
there’s no reason to waste time check-
ing on a thread that isn’t ready to con-
tinue. However, when the scheduler
determines that the thread has just
completed an I/O operation, it’s priori-
ty will be increased. This gives the

thread a chance to process the result of
its completed I/O operation.

Dedicating one thread to software
rendering and another to hardware ren-
dering leverages the behavior of the
thread scheduler. The hardware render-
ing thread performs several I/O inten-
sive operations — sending triangles to
the hardware rasterizer, compositing
the software rendered objects, and flip-
ping the drawing surfaces. The sched-
uler decreases the priority of the thread
as each I/O event occurs, and then rais-
es the priority when it completes. Even
though both the hardware and software
rendering threads begin at the same pri-
ority, decreasing the hardware thread’s
priority allows the software thread to
run more often. This extra CPU time
allows the software thread to complete
more rendering while the other thread
waits for I/O completion.
CONCURRENCY. Running separate threads
for hardware and software rasterization
is one form of concurrent operation.
There is also a second level of concur-
rency taking place in the program —
that between the hardware rasterization
thread and the 3D hardware accelerator.

Ignoring other threads in the system,
the scheduler switches between execut-
ing the software and hardware render-
ing threads. The hardware accelerator

essentially gives us another thread of
processing. Most of this thread’s activi-
ty takes place on the hardware acceler-
ator itself, giving us true parallel opera-
tion with the threads on the CPU.

Simulating this parallel execution
(Figure 4), demonstrates how the
scheduler switches between the soft-
ware and hardware rendering threads.
At time T4, the hardware rendering
thread submits triangles to the 3D
accelerator. This causes the thread to
block, pending the completion of tri-
angle processing. The software render-
ing on the CPU and the triangle rasteri-
zation on the accelerator then run in
true parallel execution.

One thing to note are the potentially
long time periods when either the CPU
or the 3D accelerator aren’t performing
any useful operations. This is due
either to idling or stalling. The 3D
accelerator sits idle, waiting for some-
thing to process from T1 until T4. The
CPU is stalled at T9 and T11 waiting for
the BLT and flip operations to com-
plete before continuing.

By slightly recoding, stalls and idles
can be reduced and the entire opera-
tion can take less time (Figure 5).

The first modification is to control
the number of triangles submitted to
the 3D accelerator. For any API or dri-

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

40

M I X E D R E N D E R I N G

Triangle

Rasterization

Triangle

Rasterization

Software

Thread

Hardware

Thread

3D

Accelerator

Geometry Rendering

Begins

Submit

Some Tri

Rendering

Continues

Do Some

Geometry

Do Some

Geometry

Blt

Scene

Rendering

Continues

Rendering

Completes

Submit

Some Tri

Flip Color

Buffers

Blt

Scene

Flip

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

F I G U R E 5 . Progress of both threads after recoding to reduce stalls and idles.

Triangle Rasterization

Software

Thread

Hardware

Thread

3D

Accelerator

Geometry

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Rendering

Begins

Submit

Triangles

Rendering

Continues

Wait for

Software

Rendering

Completes

Blt SW

Scene

Blt to

vidmem

Flip

Flip Color

Buffers

Geometry

Rendering

Continues

F I G U R E 4 . Progress of both threads.

ver, processing data has an associated
overhead. In the case of Direct3D,
approximately 100 vertices worth of
triangles is the minimum to submit to
achieve the best performance. This per-
formance is constant, regardless of
whether you’re using the EExxeeccuutteeBBuuffffeerr
or DDrraawwIInnddeexxeeddPPrriimmiittiivvee functionality. Any
less than that, and it will still take
about the same amount of time to
complete and return due to overhead.

On the other hand, thousands of
vertices shouldn’t be submitted at
once, either. Submitting vertices for
rasterization should be arranged in
such a way as not to idle or stall the
CPU or the 3D accelerator for long
periods of time. Breaking a large num-
ber of vertices into multiple submis-
sions, T4 and T8, allows better
throughput and parallel execution.

The second modification is to
remove stalls in the hardware render-
ing thread. The two biggest culprits
here are waiting for the BLT and the
flip operations to complete. By running
these asynchronously, the hardware
rasterization thread no longer needs to
block for a long period. The 3D acceler-
ator can also queue and perform the
operations in parallel with the begin-
ning of the next frame.

MR2 (Mixed Rate, Mixed Rendering)

Because we’re already rendering the
scene by compositing layers, we

can also consider a way to handle ren-
dering threads that are at different
frame rates (and even asynchronous).
Specifically, let’s assume that we want
to perform some very advanced and
intensive software rendering that will
be slower than the hardware-rendered
scene. We can make use of image-
caching techniques to achieve this.
This is a technique adopted by
Microsoft’s Talisman initiative (see
1996 Siggraph paper by Shade et al.
entitled “Hierarchical Image Caching
for Accelerated Walkthroughs of
Complex Environments”).

Let’s illustrate this with an example.
Suppose the frame rate of the hard-
ware-rendered portion of the scene
will be around 60fps on a specific plat-
form. Also assume that the software-
rendered portion of the scene is
achieving around 12fps. We have a
5:1 ratio in frame rates. Further

assume that the
objects rendered by
the software thread
don’t change too
much from scene to
scene. We then can
make use of the ren-
dered scene as an
image cache to be
used for the next four
frames that will be
warped properly. The
2D warping function
is much less costly
then rerendering the
scene (and supported
by some hardware)
and will allow the
software thread to
continue working on
the next frame.

Of course, we’ll need some infra-
structure to support this. Figure 6 illus-
trates the architecture for MR2. We see
an opportunity for an API to control
the basic process. For example, we need
a controller to estimate image cache
life. The life is the number of frames
for which it can be used in addition to
the original rendering. In our example,
the life is five.

The software renderings can be bro-
ken into several threads, depending
upon scene complexity and require-
ments for each of the software render-
ings. For example, you might have one
object that uses a rendering technique
much slower than that of another.
These two objects can operate as inde-
pendent threads. The results of all the
software threads are then composited
by texture mapping (with transparen-
cy) onto SPOTs.

Each software thread should make
use of a double-buffering method. You
now understand from where the
names “developing cache” and “active
cache” come. The developing cache is
analogous to the backbuffer, as it is
the surface to which the software
thread is currently rendering. The
active cache is analogous to the front-
buffer, as it is the surface that the
hardware thread uses for compositing
(warp and texture map).

MR2 as applied to mixed rendering is
an idea only in it’s infancy. But we
expect that formalization of a mixed
rendering methodology will help us get
a better handle on its requirements and
performance characteristics.

Making It Practical

T he idea of mixed rendering is not
new. As soon as there were 3D

accelerators, there was already the
desire to mix software and hardware
rendering techniques. Our goal is to
develop a workable methodology for
use with APIs, so that the industry can
address the needs of mixed rendering.
Some examples of issues already being
addressed are

• BLT with Z (not yet implemented
in DirectX)

• better concurrency and synchro-
nization in the API and its drivers

• and development of “intelligent
schemes” for control (for example,
MR2).

It is our hope that further develop-
ment of methodologies for mixed ren-
dering will provide a valuable alterna-
tive path for game developers to exploit
both the raw performance of 3D acceler-
ators as well as the flexibility of soft-
ware. The benefit will be enhanced qual-
ity and performance of 3D games. ■

Haim Barad is a staff engineer and
technical leader of Intel Israel Software
Lab’s 3D Team. He received his BSEE and
BSCS from Tulane University and his
MSEE and Ph.D. from the University of
Southern California. He can be reached at
barad@iil.intel.com.

Mark Atkins is an applications engineer
at Intel, specializing in 3D graphics soft-
ware and CPUs. He received BSEE and
MSEE degrees from Purdue University. He
lives to bicycle. You can contact him via e-
mail at Mark_Atkins@ccm.sc.intel.com.

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

42

M I X E D R E N D E R I N G

SW Thread(s)/Fiber(s)

active & developing

image caches

*SPOTs: Single POly Textures

(destination polygons in HW scene for SW objects)

HW Thread

HW Scene

plus SPOTs*

Image Cache

Life Evaluator

Thread/Fiber

Controller API

F I G U R E 6 . MR2 architecture.

he mind of the child lies at the vortex of software

design. The major breakthroughs in user interface,

such as icons and multiple application windows, originate in

work done for children. So does the concept of the laptop. But

alas, the educators have grabbed the market of childhood soft-

ware and perverted it into the polar opposite of everything for

which the personal computer stands. Rather than empowering

the children and liberating their inner
creative selves, they intimidate and
enslave the child to the machine.
Rather than teaching the very first les-
son every child of the modern techno-
world must learn, that Man controls
the Machine, they subliminally incul-
cate the child with the notion that
Man must obey the Machine or fail.

But there is hope: Game developers,
with their unbridled, insane imagina-
tion and nonconforming nature, are
the ones who can crawl into the child’s
world and liberate those latent inner
powers that have remained dormant.
Here are some game design strategies
for children up to seven years old.

Know Your Market

S omewhere between 32 and 36
months, a child can learn to man-

age a mouse. A four year old can easily
be a master of the machine.

However, the higher end, seven year
olds don’t yet get along with sophisti-
cated game-controllers. This is one of
the reasons none of the console makers
have had any success to date with this
age group. Another reason is that this
age still identifies with childhood and,
frankly, thinks very differently than
older children (see “A Case for
Inappropriateness”). Around seven or
eight, a major reorganization of grey
matter takes place,. By nine, you have
everything it takes to make a full-
blown Ultra-64 junkie. These kids no
longer want “kid’s stuff” — they want
the real thing. So let’s try to under-
stand what goes on when children age
one to seven hit silicon.

AN ADULT WILL PURCHASE AND SHARE THE

PRODUCT. A child typically doesn’t even
choose the software. It’s usually picked
by a parent or grandparent according
to what they think the child will enjoy.
They almost always mitigate the guilt
of spending so much for a kid’s toy by

justifying it as “educational.”
All this means that your software

must have the following qualities:
• It should be enjoyable and attrac-

tive both for a child and an adult.
• It should allow plenty of opportu-

nity for the child and the adult to
interact with each other. On the
other hand, the child should be
able to figure out how to have fun
without any adult supervision.
(This is what really takes brains.)

• It should be versatile and deep
enough to be fun to a wide age-
group of children.

• It should have qualities that grand-
parents will consider educational.
(You and I know that if it’s good
software, it’s educational. But it
might be hard convincing
Grandma and Grandpa of that.)

• It mustn’t have anything that could
make adults uneasy about recom-
mending it for small children. In
other words, avoid violence.

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

44

G A M E SK I D S ’

Power to the Kids!

TT

KNOW THE CHILD. Not just you, but the
artist, the animator, the programmer,
the sound and music people — every-
one creatively involved in the project
must have a real, first-hand, in-depth
feel for the child.

The problem is that everyone feels
that they’re already an expert on chil-
dren. After all, no one has managed to
escape the first-hand experience of
being one. Still, few of us have main-
tained a faithful recollection of what
childhood is really all about.

I recommend watching a child who’s
at a computer. There’s no more lucid
window into the child’s mind. They
talk to themselves, to others, and to
the machine more articulately than at
any other activity.

Try talking with a child as he or she
sits at the machine to get even more

feedback. Be careful not to influence
their decisions or processes. You want
the raw child — not one tainted by
your external influence.

A vital connection to the game
you’re producing is essential.
Children’s software isn’t the sort of
thing you contract to out-of-house
generic programmers. People that
make children’s software don’t “do
that also” — they are people that spe-
cialize in children’s software.
KNOW WHAT THE CHILD NEEDS. Children do a
good job of looking as if they’re wast-
ing time, but secretly they are in the
business of educating themselves about
how the world works. That’s how they
have fun. They just need you to facili-
tate their discovery by providing them
with the right tools and environment
in which to explore.

In other words, they need you to
empower them. Just as you empower
the adult, the teen, or the older child
to build cities, blow up monsters, or fly
jet aircraft, so you empower the

younger child to explore and discover a
world to which they can lend some
sense.

The tools the child needs to have to
do this have two primary qualities: ver-
satility and comfort. Versatility allows
the child the freedom and power to
explore. Comfort allows the child the
confidence to go for it. When you
think about it, these are the same two
qualities that we look for in a good car,
home, computer, or any other adult
tool. It’s just that for the child, these
two elements have somewhat different
meaning.

Need #1: Versatility

V ersatility means that I can do with
it whatever my mind imagines I

can do with it. Sand, mud, water, and
sticks are eminently versatile. They are
also the favorite toys of any child.
There are some basic ways to provide
that same versatility in your game.

PROVIDE TOOLS, SITUATIONS, AND ENVIRON-
MENTS THAT HAVE MULTIPLE USES. When you
design an object, a tool, or an environ-
ment, don’t just think about what you
intend the child to do, think about
what the child may attempt to do. And
then make that possible.

If you provide a hammer for build-
ing, make sure that hammer can
smash things as well. If you provide
water for putting out a fire, let that
water create mud when it mixes with
dirt. This ensures that objects have
integrity and that their relationships
are well integrated.

Another advantage to making your
software flexible is that it loosens the
age restrictions. Different-aged chil-
dren can use objects for different pur-
posesin different ways. Also, a child
can grow with the game. They can
come back to it a year later and find
fascinating new facets to the game that
didn’t seem to be there before.

Realize that a child is an extreme
functionalist. Everything must have a

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 7 G A M E D E V E L O P E R

45

DEVELOPING A SUCCESSFUL CHILDREN’S

GAME REQUIRES CAREFUL DESIGN AND

A THOROUGH UNDERSTANDING OF THE

PRE-ADOLESCENT MIND. b y T z v i F r e e m a n

THE PRINT SHOP (Broderbund) obstructs many children younger

than 10 from thinking creatively or working independently by

providing mind-boggling abstractions and procedures.

use. If the child doesn’t find an imme-
diate use, that child will have no
qualms about breaking the object so
that it fits into some use. Call it ego-
centric, call it narrow-minded, call it
reckless vandalism — the child’s func-
tional orientation is something that
you can take prime advantage of in
your game.
ENCOURAGE EXPLORATION AND BANISH THE FEAR

OF FAILURE. Remember, the child’s way of
learning is by trying everything out.
The greatest obstruction we can put in
the path of that learning process is to
feed children the notion that if they
try something interesting, they’re
going to fail.

Let’s say you have an aerial view of a
world with continents, islands, and
bodies of water. You show the child the
starting location and allow him or her
to move around elsewhere. What
makes sense is to move only a short
distance from the starting location.
The child may try this at first, but
eventually will try flying off to a dis-
tance. That doesn’t fit into your game,
so you just don’t allow the child to
enter that area. You’ve just discouraged
exploration.

Or let’s say you’ve provided a vacu-
um cleaner. Those are for vacuuming
the floor, right? It just so happens, I
created one in a game and let the kids
test it. I should have known: They tried
vacuuming the alphabet blocks on the
shelf with it. Nothing happened, and I
felt badly. In the next iteration, I
designed the vacuum cleaner to suck
the paint off the letters on the blocks.
Adults didn’t try doing that, but the
kids love it.

Rather than restrict the child to lin-
ear game flow, reward exploration and
novelty. If the child tries to enter an
area of the map that is not yet accessi-
ble, don’t just block entry. Provide
some feedback in terms of vital infor-
mation to the game. If you provide the
child with a pen, allow the child to
stab holes in the paper as well as write
on it. If your background is made of
clay, allow the child to smudge parts of
it. All these things are vital methods to
the child’s learning strategy. They also
make things infinitely more fun.
AVOID ARRESTING CONTROL FROM THE CHILD.
This very common failure is found in
the best of kids’ software. In the early
days of procedural code, it was excus-
able. Today it’s not.

We all know how we feel when a
process takes over our machine and
doesn’t allow us to do other work.
We’re reminded that, “Oh yes, there is
a machine here. And right now it’s get-
ting in my way.” It doesn’t feel like fun
and it doesn’t feel empowered.

When an animation or any process
begins — no matter how entertaining it

is — the child shouldn’t have to wait
until the process is over to try out
something else. Conversely, trying out
something else shouldn’ mean aborting
whatever is already happening. That’s
sending a strong message that “You’re
not really in control here” to the child.
Sure, that means a lot better manage-
ment of your code and a lot more quali-

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

46

K I D S ’ G A M E S

A major concern I have in

leaving my child alone with

educational software is a

lack of inappropriateness.

This becomes of special concern when

dealing with the very young (under seven

years of age). Inappropriateness is a very

vital element at that age. The fact is inap-

propriateness is the small child’s most

powerful learning tool. It allows a child to

pick up any object and try anything with

it. Mud can be cake. A block of wood can

be a doll. Underpants can be a hat.

Then, around the age of seven or eight,

something very dramatic — and tragic —

occurs. It occurs almost universally, in

every country and in every culture where

such things are observed. Mud becomes

mud. Blocks of wood become blocks of

wood. Underpants come to have but one

use. Anything else is inappropriate.

Show a six year old a rock and ask him

what he thinks it is. You could be in for

anything. Wait a few years to ask him

again, and it’s a rock. And only a rock.

It seems something innate to the

human species. Only a smattering of indi-

viduals manage to escape this syndrome,

preserving their sense of inappropriate-

ness into adulthood. I don’t know how

fortunate it is for those individuals — or

for the people that have to live with them

— but for humanity the dividends are

bountiful.

I doubt we would have mathematics,

for example, if it weren’t for these recalci-

trants. Mathematics is all about inappro-

priateness. You apply the same set of dig-

its and formulas to entirely diverse sets

of realities. And how about original art

and social reform and… well, just about

anything else requiring nonlinear

thought? Whether Newton or Einstein,

Beethoven or Picasso, Spinoza or the

Lubavitcher Rebbe, Karl Marx or Groucho

Marx, it was the child alive within them

that made those quantum leaps in human

thought.

What we want to do, then, is to para-

chute the child gently into adulthood,

holding on tight to that willingness to try

the improbable, the preposterous, and

the patently absurd. We must always

leave open the option to try out the

ridiculous, and even encourage it.

Software just doesn’t lend itself to this

sort of thing. Programmers don’t like

users who muck about. We like to design

controlled environments, where the user

becomes just another fairly predictable

object. When you stop to think about it,

little kids are a real pain for all of us in

this industry.

That’s why we write for “good” kids.

Kids who will press the right button and

only the right button. Kids who like to be

rewarded and don’t like to get things

wrong. Kids who are fairly predictable —

just not quite as bright as us big people.

But also not as promising as the nudnik

trouble makers.

Nobody’s going to make a killer app for

early learning this way. What we need is

not nice software for good kids. We need

great software for rotten brats. We need

products where kids can discover that by

doing completely unexpected and inap-

propriate things, they can get really nifty

things to happen. We need software

where the best solution to a problem is

the craziest one.

After all, isn’t that just what good ol’

Albert did when he decided that every-

thing is relative except for the speed of

light, that mass and energy are really the

same thing, and time is just another

dimension? Sounds pretty crazy to me.

No wonder he did so lousy in school. He’d

do even worse on Reader Rabbit.

The Case for Inappropriateness

ty control, but the playfulness it adds to
your game is well worth it.

Knowing that, here are two caveats:
Don’t make it too easy for the child to
abort a process inadvertently.
Remember that children will often
click the mouse for no apparent rea-
son. But don’t throw in some obtru-
sive interface, either. Come up with
something elegant. Also note that
there are situations in which allowing
a child to abort a process could severe-
ly complicate matters and is simply
not worth it (this occurs in adult soft-
ware, too). But it’s a situation to be
avoided.
WATCH OUT FOR “THE CLICKIES.” This is a
typical syndrome suffered by many
kids new to computers. In its most
extreme form, it involves an almost
continuous clicking of the mouse on
anything that looks clickable. More
commonly, it means that no button
survives without at least a double-click
— if not a triple or quadruple.

In many cases, this can prevent the
child from mastering your game. For
example, if the first click of a button
initiates an action and the second can-
cels it, you can imagine how much fun
we’re having. Similar problems occur
when a button leads to a new scene
where another button appears in the
same place.

Give the kid a break: Test all click-
able objects by double-clicking them.
You may simply want to clear the
event queue of mouseclicks after pro-
cessing any click.
DON’T BUILD IN “WRONG” RESPONSES. This
is where so much “edutainment”
beats its way to the grave. The last
thing any child wants to hear is a
machine telling her she’s wrong. Up
until that point, you had a chance of
convincing the child that she controls

this mega-power monster.
Let’s return to the vacuum cleaner

that I made. After the children were
empowered to suck the paint off the
alphabet blocks, they were concerned
about how to get the color back. So I
made a holding area where the letters
reappeared when vacuumed away.
When passing the mouse over these
displaced letters, they screamed, “Help!
Put me back!” If you dragged them
back to their original spot, where they
fit in perfectly, they would snap into
place. But if not, they would just fall
back to the holding area.

This feature provided a great oppor-
tunity for kids to learn the shapes of
the alphabet characters. Then came the
acid test — which turned out to be one
of my sweetest moments of success. It
was one of the most lucid and reveal-
ing windows I’ve ever had on a child’s
mind.

I sat a three year old at the machine
who didn’t know the letter “A” from
an ink spill. He vacuumed the letters.
He expressed concern. He found the
lost letters and dragged them back —
without error. Then it happened: He
was dragging the capital letter “O”
back to its place when he passed over
the letter “Q” block. Then he turned
back. He lined up the “O” over the “Q”
block without releasing the mouse but-
ton and said, “Hmmmm. What if…?”
And then he let the mouse go. The let-
ter fell back to where it came from. His
reaction? “That’s funny!” And then he
dragged the letter straight to the “O”

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 7 G A M E D E V E L O P E R

47

1. MAKE IT OBVIOUS

This is the ideal, but most difficult method of providing instruction — the sign of a

masterpiece. Create an environment where the child will determine intuitively what is

to be done in each situation. Borrowing familiar objects and dynamics from the child’s

world will help a lot.

2. CHARACTERS THAT TALK TO THEMSELVES.
Instead of telling the child, “Now do this,” have one of the characters (or objects)

talk to itself about what needs to be done.

3. TEACH BY EXAMPLE

This is a common strategy in 2D scrollers. Have some other character — even the

enemy — do what you would like the child to do. Repeat it until the child picks it up.

Children like to imitate.

4. ENCOURAGE EXPLORATION.
Make your environment free and comfortable enough that children will be willing to

try things out until hitting on what you want them to do. While they’re figuring it out,

they’ll still be having fun.

Four Subtle Ways to Provide
Instructions Without Text

KID PIX (Broderbund)—long-time king of the child software market—

allows kids to do the wacky and ridiculous. It was created by Craig

Hickman with his 3 year old on his lap. When Broderbund handed it over

to an outside contractor for version 2, they wreaked havoc.

block where he knew it was supposed
to go in the first place.

What exactly the child learned from
this exercise is a matter of conjecture.
But suppose the machine had been
inane enough to tell him, “That’s
wrong, try again!” I know exactly what
he would have learned: Experiments
are wrong.
DON’T LET THE MACHINE BOSS THE KID AROUND.
Let’s get this straight: Machines are
tools. Like hammers, screwdrivers,
automobiles, and telephones. Tools are
things people use. A good tool is one
that feels transparent in its master’s
hand. Now, imagine a hammer that
looks up at you and smirks, “Hey, look
who thinks he knows how to hold a
hammer!”

The greatest, and perhaps most
seductive error that we can make with
children’s games is to make the
machine into an entity. No cutesy “I
don’t understand that” or “Now do
this” or “That was wrong, try again.”
The greatest experience that we can
provide for a child is the sense that
nothing is as important as the imagina-

tion and this game is an opportunity to
explore it.

Occasionally, there is a need to
instruct the child how to use the game.
There are plenty of ways to do this
without commands (see “Four Subtle
Ways to Provide Instructions Without
Text”).

Need #2: Comfort

E very game designer is familiar with
the principle of balancing chal-

lenge with ability. What many design-
ers don’t realize is that there is a third
factor in the formula that allows you to
widen the distance between ability and
challenge: the player’s sense of securi-
ty. Simply put, if the player feels inse-
cure in any given situation, that player
will be less likely to take on challenges.
With greater security, confidence
increases and more challenges can be
faced. More challenges means more
time and enjoyment of your game.
Comfort and security can sometimes
be difficult to provide for little people.

Here’s an example: Say you’re a little
kid. You’ve watched your parents break
down in tears over something that you
innocently retooled, redecorated, or
otherwise abused. You haven’t yet got
it figured out, but it’s becoming appar-
ent that at a certain point things break,
and some (apparently random set) of
those breaking incidents cause big peo-
ple to get really angry, which can
imply significantly negative conse-
quences for defenseless innocents such
as yourself. Now you view your father’s
very nifty machine as one of those
anger-triggering-when-busted things.
You might not feel so secure.

As if that’s not enough, when you
get into this game, your head starts
spinning. Things keep changing. Each
screen is different from the screen
before. Tools work differently accord-
ing to when you use them. Characters
change their roles and behaviors. It
seems that at any moment, the whole
thing could just blow up.

Sure, there are kids who aren’t intim-
idated easily. But all children work bet-
ter when they feel more secure. A game
can provide security by following a few
simple guidelines.
PROVIDE A GUIDE. Humongous Entertain-
ment does a great job of providing
warm, nonthreatening guides with
whom every child can identify. Every
child who plays PUTT-PUTT JOINS THE

PARADE leaves the game believing that
he or she is Putt-Putt, which provides a
lot of security. There are a number of
ways Humongous achieves this. First of
all, Putt-Putt always seems to knows
what’s happening. Putt-Putt never
looks too frightened or overly per-
turbed by events, so neither does the
child. Putt-Putt responds to situations
just as the child would. Putt-Putt never
tells the child what to do or passes
judgement on the child’s actions. He
never behaves in a totally unexpected
manner or does anything without the
child first approving. He never gets
hurt or dangerously lost. If anything
negative did happen to Putt-Putt, the
child’s sense of security and willing-
ness to continue the game could be
adversely affected.

(Putt-Putt was Humongous’s first —
and very successful — attempt at an
adventure game for kids. Their second
title involved a teddy bear wandering
around a house at night in the dark
and encountering some exasperating

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

48

K I D S ’ G A M E

The greatest experience that we can provide
for a child is the sense that nothing is as
important as the imagination and this game
is an opportunity to explore it.

Edmark’s THINKING THINGS allows kids to explore, but oozes with goody-

goodyness and expectations. This “Tooney Loon,” for example, can get

really bossy and obnoxious when you fail to imitate it correctly.

situations. It was the first child’s game I
ever saw that could make a child break
down in tears.)

A lot of consideration, discussion,
and testing goes into creating a guide
like Putt-Putt. After all, the guide
becomes a central feature of the child’s
experience. Many developers try to
make their guides asexual, androgy-
nous, or totally ambiguous. My sense is
that as long as the character is clearly
defined early on in the design process,
it will integrate well and work. Also,
keep in mind (I need my bodyguards
present while I make this statement,
but it’s true) that many boys will have
difficulty identifying with a girl charac-
ter, whereas most girls will have no dif-
ficulty identifying with a boy. If it
comes down to using one or the other,
use a boy.

Another strategy is to provide a
choice of guides. This considerably
increases your workload, not just in
terms of code, but in ensuring that
every scene works appropriately with
either character as the guide. Beware
that it also detracts from the game’s
focus and feel.
BE CONSISTENT. Just as your guide must
be consistent, your artistic style, sound
effects, backgrounds, and object behav-
iors must be, too. Think through every-
thing and define styles and behaviors
clearly in your design document.

Children approaching seven years
old are just learning to believe that
there is consistency out there; that
there are laws of nature that you can
trust to be the same today as they were

yesterday. Half of their
play is all about discov-
ering this wonderful,
secure consistency of
nature. Don’t be the one
to undermine that.

One place consistency
tends to break down is
when the operating sys-
tem’s user interface rais-
es its hoary head. Adults
are expected to recog-
nize and deal with Open
File dialogs and such,
but not children. Make
sure to provide your
own substitutes to these
things if necessary.
MAKE IT INTUITIVE. Once

you’ve learned how to use something,
if it looks like it should be used differ-
ently you continue feeling insecure
about using it. For example, I move my
kids about in a beat-up ’86 Toyota van.
To lock all the doors in this brilliantly
designed vehicle, you pull up a switch
by the driver’s seat. That makes all the
locks go down. Brilliant, eh? After all
these years, I still get it wrong one time
in every five. If that’s so with adults,
it’s all the more so with children.

Of course, what’s intuitive to adults
may be counter-intuitive to children.
To an adult, it makes perfect sense that
if you look up, the shampoo won’t go
in your eyes, or that you place the right
arm in the sleeve on the left side of the
jacket facing you. To children, these
are things to be taken on blind faith
out of the awe that they have for these
big people who seem to know what
they are talking about.

Which means that there’s no substi-
tute for testing your interface ideas on
real, live children. Show them objects
and ask, “What do you think this
does?” Then listen carefully as they
give their own ideas of what things
should look like.
AVOID SHIFTING MODALITIES. Shifting

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 7 G A M E D E V E L O P E R

49

The Humongous line provides heroes that kids can

easily identify with and also serve as guides. The

age-appropriate problems are cleverly presented.

The user-interface is simple, intuitive and consistent.

Many developers try to make their guides
asexual, androgynous, or totally ambiguous.
My sense is that as long as the character is
clearly defined early on in the design
process, it will integrate well and work.

The Living Book Series (the oldest CD ROM series for kids, originally

from Living Books, now at cheaper quality from Big Tuna Productions)

provides small children a simple, comfortable environment. It flunks

out, however, in versatility. You can’t even abort an animation, and

some of them are very long.

modalities means making things work
under one set of rules in one instance,
but under another set of rules in anoth-
er. Engineers just love designing things
that way. End users are completely
confounded by it.

One of the hardest objects I’ve had
to design is a telephone for children.
After the typewriter, the telephone is
the most poorly designed device of
the modern era. It behaves one way
when “on the hook,” another way
when “off the hook,” and yet another
way while “on line.” No wonder
teaching young children to operate a
telephone can be so frustrating. Ever
had a child answer a long-awaited
call and hang up while he goes to
look for you? Or had a child start
dialing the phone while you’re still
on the line? Every tool that you give
the child should have only one way

of working, regardless of what hap-
pened just beforehand. Every object
should have a well-defined, internal-
ly consistent set of behaviors that
never shifts about.

Usually, when I make a tool for a
child, the initial iteration has more
than one modality. It takes some
thought to find a way to provide every-
thing you want in one simple mode,
but you end up with a far easier-to-use
tool.
NO READING. Yes, it sounds obvious, but
developers keep on doing it. I’ve even
seen software that purports to teach
basic reading, but can’t be understood
unless you know how to read (and
even then…).

Know that if a child cannot read,
that means the child can’t read. You’re
going to have to find other ways to
communicate. Even if the child can
read, he or she may not comfortable
doing it.
USE KID’S VOICES. The only excuse for
using adult voices in software is that it
is much easier than using children’s
voices. Children can be a real pain to
record. If they don’t get it right the first
time, you’ve usually lost it for the day.
Very often you’ll have to blend two or

three recordings together to get what
you want.

But if you do it right, the rewards
are phenomenal. There’s just no com-
parison to hearing the fresh, vital,
and expressive voices of young chil-
dren speaking out of your machine.
You’ll capture the heart not just of
the child who’s playing, but of the
adult who’s machine is being hijacked
as well.
DON’T INCREASE DIFFICULTY WITHOUT THE

CHILD’S APPROVAL. Edmark is notorious for
this. Some educator applied half-baked
notions of Mastery Learning mixed
with poor arcade-game design and
arranged gameplay so that as soon as a
child gets too comfortable, things
become more difficult.

Now, that’s often fine in the real
world, where there are plenty of signs
to tell kids when they’re improving

and that things are going to get more
difficult; generally, an intelligent adult
or friend is giving real feedback and
reading stress levels loud and clear.

But when progress is blindly auto-
mated, it’s bad. The child thought he
was doing well, and now he’s failing.
And he can’t tell why. The least you
can do is explicitly let the child know
that difficulty is increasing, as in a typ-
ical shooter, where you can see the
opponents are becoming bigger and
more threatening. You know you’re on
a higher level.

Personally, I’m a proponent of let-
ting the children decide when to take
on bigger and more difficult tasks. This
way, they retain their sense of control
and develop a sense of their own
capacities as well. That may be too
much to expect at a very early age, but
as they come closer to “metacognition”
(awareness of what they are thinking)
it makes more sense.
MAKE THE CLICK AREAS BIG ENOUGH. Kids are
not as detail oriented as adults; for chil-
dren, close is good enough. Make sure
your buttons are big. If the child is sup-
posed to drag things to specific places,
expand the “hot” area invisibly beyond
the graphic.

It’s also a good idea to provide
plenty of feedback when the cursor is
over a hot spot. Changing cursors,
animating the area, cueing audio, and
showing eyeballs that follow the
mouse are all effective means of help-
ing children follow the action. These
tactics also help them keep track of
the cursor’s location; losing the cur-
sor is another common phenomena
with small children.
PROVIDE IMMEDIATE RESPONSE TO ANY ACTION.
Adults begin to feel uneasy if they’ve
clicked a button and nothing’s hap-
pened within 0.2 seconds. With kids,
results are magnified. I previously
mentioned the “clickies” syndrome.
This is often brought on in otherwise
perfectly balanced kids by repeatedly
unresponsive buttons. Aggressive
behavior has also been noted. They
may just plain give up. (Just be thank-
ful you’re not programming for pri-
mates. In a project creating buttons
with icons recognizable by a gorilla,
the beast was noted to trash machines
that did not respond immediately.
Literally.)

Remember that small children have
just understood the notion thaty there
is such a thing as cause and effect in
our world. They’re still quite suspicious
of the phenomenon and ready to
attribute anything to magic. We want
them to know that machines aren’t
magical. Kids are.

Build It and They Will Learn

K ids have been getting the short
end of the technology stick for

too long. Adults — and big kids — are
handed more and more power every
day, but small folk just get pushed
around more and more. Game develop-
ers have the tools to empower and lib-
erate children.

Nevertheless, you have to know
them very well. Don’t ever assume that
you’ve got children down pat and can
predict their every turn and click. Keep
studying them closely and they’ll never
cease to amaze you. ■

Tzvi Freeman teaches Game Design and
Documentation at Digipen School of
Computer Gaming in Vancouver, British
Columbia, Canada. He has designed sev-
eral commercial games and has acted as a
consultant on many others. He can be
reached at TzviF@aol.com.

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

50

K I D S ’ G A M E

There’s just no comparison to hearing the

fresh, vital, and expressive voices of

young children speaking out of your machine.

Many folks think kids are cute. But looks can be deceiving. Here are some of the more extreme examples that indicate just how dif-

ferent those little brains are from ours.

h t t p : / / w w w . g d m a g . c o m S E P T E M B E R 1 9 9 7 G A M E D E V E L O P E R

51

Adults

Clothes are for wearing. Food

is for eating. Toys are for play-

ing with.

Example: you wear socks, eat

spaghetti and play with sand.

Follow the most efficient and

logical order of activities.

Example: Go to the toilet.

Now pull down your pants.

Things have consistent

behaviors and properties,

regardless of their context.

Example: Four ounces of

water is four ounces of water, no

matter where you put it.

Appropriate Usage

Procedures

Context versus Laws of Nature Context is everything.

Example: Four ounces of

water in a fat glass becomes

more when you pour it into a

tall, thin glass.

Change visual context when

the rules change. Be cautious

about changing it when the

rules stay the same.

Don’t expect the child to

assume things will work the

same way everywhere, until it is

demonstrated many times.

Work towards a goal that you

value.

Example: You work for hours

making something look beauti-

ful, so you value and treasure it.

Process versus Product It’s the journey that counts

(until age 5+)

Example: You paint a master-

piece and trash it. Pile up blocks

and knock them down. If you are

disturbed by someone destroy-

ing your work it’s not because of

its value, but because you made

it and they smashed it.

Make the production process

fun.

Help the child learn the value

of the end product by providing

easy ways to preserve and

retrieve what they’ve done.

Don’t just dump it into the

cyberdump.

Things can mean something

other than what they are.

Example: Adults can usually

read and interpret maps and

charts.

Abstract versus Concrete Things are what they are

which is what they are.

Example: Maps and charts

are weird pictures.

Don’t expect kids to read

maps or understand charts. Use

only very concrete metaphors.

User-test all icons, and so on.

Rarely afraid of overload.

Example: Adults who find a

game really stimulating and

stay with it.

Enjoyment Response Unpredictable response to

highly stimulating experiences.

Example: Finds a game real

stimulating, so the immediately

quit to come back later.

Book lots of time and

patience for user-testing.

Don’t overwhelm the child.

Allow them to “take the foot off

of the accelerator.”

Wants to be a child again.Objective Wants to be an adult. Make them feel big.

Children

Clothes, food and toys are for

eating, wearing and abusing.

Example: you can eat

spaghetti, eat a sandbox, and

eat your dirty socks. Or you can

wear the dirty socks, wear the

sandbox and wear the spaghet-

ti. Or you can abuse all three.

(Adults call this abuse “play-

ing.”)

Do what you can now and

then worry about later.

Example: First pull down your

pants, then walk across the

house to the toilet.

Application

Your objects and environ-

ments must be both flexible and

resilient, able to perform all

feats they appear able to per-

form and more.

Code must be ready for entire-

ly unpredictable users that

could do anything, anytime—

including the outrageous and

abusive. You must reward it, too

Avoid linear procedures. If

you have to, then use no more

than two steps.

Allow steps in any order, even

if you find it counter-intuitive.

Child Psychology 101 for Game Developers

In increasing numbers, women and
girls are taking over the home comput-
er (we already were the preponderant
users of the ones in offices). We’re buy-
ing and using software like Mattel’s
BARBIE FASHION DESIGNER, which as of
this writing has sold
over a million copies in
less than a year and is
available in 13 languages
worldwide. We’ve taken to e-
mail as enthusiastically as we
picked up the phone. A man prac-
tically has to elbow his wife and
daughters aside to get some quality
time with his flight simulator these
days.

This trend isn’t stopping in the fam-
ily room. Women are designing, pro-
ducing, and funding software, too.
We’re hiring some of the industry’s
best artists and programmers. You’ll
find us just about everywhere there’s a
high-end CPU, not to mention land-
ing a rover on Mars or playing pro
basketball.

What’s your average computing-era
caveman to do?

For starters, recognize that XY chro-
mosomes and binary code aren’t an
invariant combination. Banish the sen-
tences “Women don’t like technology”
and “Girls are afraid of computers”
from your lexicon.

Women and girls like technology
and computers just fine. But until
recently, leisure-time software hasn’t
offered us much of interest. And that
sad fact has driven our choices.

Men and women don’t tend to like

the same movies or TV shows, but no
one says women don’t like entertain-

ment. Boys and girls don’t generally
enjoy the same toys, but no one
declares that girls don’t like to
play. So why would anyone assume

that just because many females
don’t enjoy DOOM and its ilk, we’re not
interested in computers or computer
games?

It might help to re-examine the
whole notion of what a “game” is. In
our industry, the term is commonly
used to mean a fast-moving, competi-
tive affair with just one winner, be
that human or machine. But The
Merriam Webster Dictionary gives
its first definition of the noun
“game” as “amusement, diver-
sion” and doesn’t get around to “con-
test” until its fifth definition, just
ahead of “animals hunted for sport or
food.”

Don’t get me wrong here. Digital
jousting, even if it barely edges out
blowing away Bambi, is a fine thing.
But there are lots of different kinds of
amusement and diversion.

The amusements that girls and
women seem to prefer have accom-
plishment, creativity, and communi-
cation as their hallmarks. Last year’s
titles BARBIE FASHION DESIGNER, BARBIE

STORYMAKER, and BARBIE PRINT ’N PLAY

address those overlapping needs
respectively. Shameless plugs aside,
though, if you look at other products
that have been successful with women,
such as TETRIS and MYST, you’ll see
those same elements.

You’ll also see another common trait:
the exploration of context.

Developmental psychologists see this as
a key difference between women and
men, and one that informs many of our

perceptions and
rela-

G A M E D E V E L O P E R S E P T E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

54

b y N a n c i e S . M a r t i nS O A P B O X

Take the Y Out of

Computer Games

It’s getting pretty bad for some guys out there.

First, women wanted the remote. Then there was

Title IX and that equal pay thing. But now it’s get-

ting serious, because we want your mouse, and we

want it now.
People with XY chromosomes have
dominated playtime on the PC, but it’s
not just a man’s world anymore

Continued on page 53.

tionships. (A forthcoming example is
ADVENTURES OF BARBIE: OCEAN DISCOVERY,
a scrolling underwater quest that gives
the player a mission and places it in a
highly explorable environment in which
the player’s actions have observable
effects on the game’s characters.)

These elements all make perfect
sense in a nonlinear medium, and in
fact, many classic PC and console
games have made use of them. So why
have most game developers and mar-
keters ignored or only made half-heart-
ed attempts to make products for girls
and women — who are, after all, the
majority of the population?

The reason is that until recently,

most game developers and marketers
have been male. Shortsighted from
years of staring at monitors and blind-
ed by their own enthusiasms, they’ve
had trouble lifting their heads to see
that there’s a whole other world out
there filled with people who don’t look
like them and don’t think like them.

Consumer research, in many cases,
seems to have been limited to, “Hey,
dude, whaddaya think?”

Our friends in the retail business,
also mostly male, didn’t do much bet-
ter. If women weren’t showing up to
buy software or hardware, clearly they
weren’t interested. Why bother trying
to reach out to them?

To be fair, of course, companies with

recognizable brands and licenses with
female appeal didn’t always recognize
their interactive potential. And since
developers didn’t really know what to
do with those brands, there were some
odd results, such as the shoot-’em-up
cartridge games of a few years back that
couldn’t have been any more pink or
any less interesting to little girls.

But now we have it all: smart purvey-
ors, a computer-literate audience, and
retailers who’ve tasted success (for a
while, BARBIE FASHION DESIGNER outsold
COMMAND AND CONQUER) and would
like more of it. Now all we — and any-
one who wants a piece of this market
— need to do is to pay attention as girls
and women assess all their newfound
options, and keep making good stuff.

So hold on to your mice, guys. Or
maybe, if you’re good, we’ll let you
borrow ours. ■

Nancie S. Martin is Director of Girls’
Software Development at Mattel Inc. in El
Segundo, Calif., and the executive produc-
er of many Mattel titles, including BARBIE

FASHION DESIGNER.

53

Developmental psychologists see “context”
as a key difference between women and men,
and one that informs many of our perceptions
and relationships.

Continued from page 54.

	back:

