
T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E V O L 1 9 N O 1 0

O C T O B E R 2 0 1 2 I N S I D E : H O W T O S H U T D O W N Y O U R D E V S T U D I O

P O S T M O R T E M

http://jobs.lucasfilm.com

p o s t m o r t e m

26 Rayman ORigins
 How do you take a time-tested favorite like Rayman and make it fresh

and fun all over again? In this month’s featured postmortem, Ubisoft
designer Chris McEntee talks about how a small team building new,
artist-friendly developer tools ended up turning into the triple-A team
that put Rayman back on the map. By Chris McEntee

f e a t u r e s

7 seeing dOuble
 Adding stereoscopic 3D support to your game isn’t necessarily

a difficult thing to do, but doing it without having to render any
given scene twice—once for each eye—is a bit trickier. Insomniac
Games’s Jim Van Verth explains how the stereographic reprojection
system behind Ratchet & clank: all 4 One produced an impressive
3D effect without breaking the framerate budget. By Jim Van Verth

17 siggRaph 2012 highlights
 The 2012 Siggraph conference featured new technologies and

trends for current-generation game devs and more affordable
development tools, which could offer new opportunities for studios
large and small. Game Developer correspondents Carey Chico and
Mike de la Flor give us this year’s show floor highlights—and how
they may shape your work in the future.

 By Carey Chico & Mike de la Flor

21 game OveR
 Sometimes game studios have to shut down. Carey Chico walks us

through his own experience closing his own development studio
(Globex LA) and explains how you can make sure your own closing
process—knock on wood—is handled responsibly, respectfully,
and as gracefully as possible. By Carey Chico

d e p a r t m e n t s

2 gameplan By Brandon Sheffield [e d i t O R i a l]

Spam Me Not

4 heads up display By Staff [n e w s]

Correlating curse words with code,
and the beauty of the game art asset.

32 tOOlbOx By Carey Chico [R e v i e w]

3Dconnexion SpaceMouse Pro

34 inneR pROduct By Bruce Dawson [p R O g R a m m i n g]

Floating-Point Misses

41 gdc news By Staff [n e w s]

Game Developer’s Choice Online Awards Honor
Raph Koster, WORld Of WaRcRaft

42 pixel pusheR By Steve Theodore [a R t]

R.I.P Paul Steed

46 design Of the times By Damion Schubert [d e s i g n]

Depth vs. Breadth

48 gOOd jOb By Alexandra Hall [c a R e e R]

Q&A with Adam Orth, new studios, and who went where

49 business By Kim Pallister [b u s i n e s s]

Crowdfunding and Emotional Equity

50 auRal fixatiOn By Yann Seznec [s O u n d]

Procedural Music

52 educated play By Alexandra Hall [e d u c a t i O n]

RefRactiOn

56 aRRested develOpment By Matthew Wasteland [h u m O R]

The PR Coach

CONTENTS.1012
VOLUME 19 NUMBER 10

www.gdMag.COM 1

http://WWW.GDMAG.COM

GAME PLAN // BRANDON SHEFFIELD

game developer | october 2012 2

game plaN // braNdoN SHeFFIeld

Notifications and cross-promotions
are getting out of control. Facebook
wants my attention, to tell me
someone I’ve never met wants to
be my “friend.” Twitter wants me to
know that someone “favorited” my
tweet, and then emails me about
that once per week even though
I’ve asked it not to. That’s just life
in the digital age. But games have
gotten particularly bad about this,
especially in the free-to-play space.
On the simplest level of spamming,
you’ll have to click through an ad
for a game to get to the one you
want to play. Sometimes the ad
takes up most of the screen, but
this is easy enough to ignore.
Worse, I think, is when your iPad
or iPhone wakes up to tell you it’s
time to restock Tiny Tower’s Luxury
Cruise item in the travel shop. Four
hours later, you’ll do it again, not to
mention all the quicker items, so
maybe you need to actually keep
those notifications on if you want
to play the game properly. It quickly
begins to feel like work—the
mechanic of “waiting to click,” and
paying to avoid the wait, is pretty
much the antithesis of fun. It’s a
compulsion more than a fun loop,
and that’s why it makes money.

Some of these games don’t
ever let you go. There’s that little
number notification on your
smartphone app, telling you how
many “things to click” you have
waiting for you upon your return—
but some games don’t ever get rid
of the “1,” even if you’ve clicked
everything. There’s always at least
one thing that needs clicking, so
the game can constantly shout at
you to return, because otherwise,
why would you go back and click?
How would you remember that
clicking is a fun thing to do? The
game needs to constantly be in
your face, or else you’ll forget
how “fun” it is to touch a field of
corn to harvest it. That is still the
current face of free-to-play on
smartphones and on the web.

Even inside our games we’re
getting an incredibly high ratio
of noise to content. Why is this?

Obviously companies need to get
the attention of players, and the
pop-up ad is still in effective use
across the Internet, compelling
confused parents and homemakers
to give their bank information to
fake Nigerian princes. If, perchance,
you do forget to click on a game for
a while, the below image is the sort
of thing you might see in-game:

The free-to-play business model
was honed in Korea. I was just
in Seoul last week pitching
projects, and I noticed something
interesting. I’ve become so
conditioned to ignore advertising
that it took me a few days to see
it, but normal, everyday people in
Seoul are basically living inside of a
real-life pop-up ad.

There are some advertising-
light areas, but anywhere you
might pause, like subway stations,
coffee shops, or gas stations, is
a wall of advertisements. Even
apartment complexes are branded
by some business or other. For
this Seoul trip, I stayed with some
friends to save money. This is the
first building you see upon leaving
their subway exit.

And this is just the
suburbs—45 minutes by train

away from the Gangnam district,
the financial hub which most
Korean game companies call home!
People have to be so desensitized
to advertising and visual noise
just to live their normal lives, it’s
no wonder these game notification
tactics I consider aggressive are
par for the course in the country
where the model was perfected.

The more desensitized one gets,
the louder advertising has to get to
grab your attention.

Many have said that the
trend toward overnotification and
underhanded tactics like always
leaving a “1” hovering over the app
is dissipating. I disagree. The more
we see of these tactics, the more
we come to get used to them. And
that may very well mean the tactics
will get even more nefarious. I
believe we can do better, and
high-end PC free-to-play is getting
there. But there’s a long road ahead,
and as companies like Zynga move
into gambling, I foresee even more
clever uses of overnotification in
our future.

As a final note, I’d like to
thank everyone for reading Game
Developer over the last several
years. This is my 100th issue as
an editor of this magazine, and I
will now be officially stepping down
as editor-in-chief, letting my able
protégé Patrick Miller take up the
reins of the magazine and this
column. But I’ll still have my own
monthly column, fret not! It will
be called Insert Credit—you can
expect to read it next month!

—Brandon Sheffield
twitter: @necrosofty

Spam me Not UBM LLC.
303 Second Street, Suite 900, South Tower
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

W W W . U B m . C o m

SUBSCRIptIoN SeRVICeS

FoR INFoRmatIoN, oRDeR QUeStIoNS, aND
aDDReSS CHaNGeS
t: 800.250.2429 f: 847.763.9606
e: gamedeveloper@halldata.com
www.gdmag.com/contactus

eDItoRIaL

pUBLISHeR
Simon Carless e: scarless@gdmag.com
eDItoR-IN-CHIeF
Brandon Sheffield e: bsheffield@gdmag.com
eDItoR
Patrick Miller e: pmiller@gdmag.com
maNaGeR, pRoDUCtIoN
Dan Mallory e: dmallory@gdmag.com
aRt DIReCtoR
Joseph Mitch e: jmitch@gdmag.com
CoNtRIBUtING WRIteRS
Jim Van Verth, Carey Chico, Mike De La Flor, Chris
McEntee, Bruce Dawson, Steve Theodore, Damion
Schubert, Alexandra Hall, Yann Seznec, Kim Pallister,
Matthew Wasteland
aDVISoRY BoaRD
Mick West Independent
Brad Bulkley Microsoft
Clinton Keith Independent
Brenda Brathwaite Loot Drop
Bijan Forutanpour Sony Online Entertainment
Mark DeLoura THQ
Carey Chico Globex Studios
Mike Acton Insomniac

aDVeRtISING SaLeS

GLoBaL SaLeS DIReCtoR
Aaron Murawski e: amurawski@ubm.com
t: 415.947.6227
meDIa aCCoUNt maNaGeR
Jennifer Sulik e: jennifer.sulik@ubm.com
t: 415.947.6227
GLoBaL aCCoUNt maNaGeR, ReCRUItmeNt
Gina Gross e: gina.gross@ubm.com
t: 415.947.6241
GLoBaL aCCoUNt maNaGeR, eDUCatIoN
Rafael Vallin e: rafael.vallin@ubm.com
t: 415.947.6223

aDVeRtISING pRoDUCtIoN

pRoDUCtIoN maNaGeR
Pete C. Scibilia e: peter.scibilia@ubm.com
t: 516-562-5134

RepRINtS

WRIGHT’S MEDIA
Jason Pampell e: jpampell@wrightsmedia.com
t: 877-652-5295

aUDIeNCe DeVeLopmeNt

aUDIeNCe DeVeLopmeNt maNaGeR
Nancy Grant e: nancy.grant@ubm.com
LISt ReNtaL
Peter Candito
Specialist Marketing Services
t: 631-787-3008 x 3020
e: petercan@SMS-Inc.com
ubm.sms-inc.com

game developer
magazINe
www.gdmag.com

SHOuTInG abOvE THE nOISE In THE GaME wOrLD

http://WWW.GDMAG.COM
mailto:gamedeveloper@halldata.com
http://www.gdmag.com/contactus
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:pmiller@gdmag.com
mailto:dmallory@gdmag.com
mailto:jmitch@gdmag.com
mailto:amurawski@ubm.com
mailto:jennifer.sulik@ubm.com
mailto:gina.gross@ubm.com
mailto:rafael.vallin@ubm.com
mailto:peter.scibilia@ubm.com
mailto:jpampell@wrightsmedia.com
mailto:nancy.grant@ubm.com
mailto:petercan@SMS-Inc.com
http://ubm.sms-inc.com
http://WWW.UBM.COM

http://twofour54.com/mobile

heads-up display

game developer | october 20124

bad language
correlating curse words with code

Patrick Miller: Why’d you
go through the Git commit
messages and correlate
profanity to programming
language? Lazy Friday
afternoon?
Andrew Vos: I hadn’t written
any code in about a week, and I
really felt like writing something.
I decided to rip a huge chunk of
commit messages and maybe do
some sort of statistical analysis
on them. I was hanging around in
the IRC channel #ruby-lang and
someone may have mentioned

finding out how many swear
words I could find.

PM: Can you elaborate on your
methodology?
AV: I wrote a Ruby script to search
for “shit,” “f*ck,” “piss,” and
“motherf*cker.” For the stats to be
valid, I had to rip an equal number
of commit messages from each
language.

PM: Out of almost one million
commit messages, you only
pulled about 250 or so with curse

words in them. Did that surprise
you? (For comparison’s sake, my
emails have a much higher rate
of profanity.)
AV: Yes, that was very surprising
to me, but I think that because all
these projects are open source,
people tend to be more civilized.
Some of the larger companies I
have worked for have way more
swear words in commits!

PM: Your results put C++, Ruby,
and JavaScript on top, then Perl
and C, then C# and Java, with
Python and PHP at the bottom.
Have you tried to draw any
conclusions with the data? Does
this jibe with your understanding
of the respective languages
(and perhaps the people who
use them)?
AV: Seeing Ruby at the top was
a huge surprise for me, because
it’s by far my favorite language.
I can’t believe there’s so much
hate for it, but I also think that
Ruby developers tend to care less
about being professional and are
generally more fun. One of my
most hated languages, PHP, has
the least swear words! I definitely
expected it to be at the top. I think
this is because larger companies
tend to use PHP more.

PM: You also posted the list of
commit messages with swear
words in them. Got any favorites

you’d like to share?
AV: These were my picks:

•	 f*ck	all	the	tests,	you’re	
going	to	have	to	live	
without	them

•	 f*ck	git
•	 chunk	of	shit	i	wrote	over	

whiskey
•	 f*ck	you	and	your	

rubygems
•	 Leave	it	to	Chelimsky	to	

f*ck	up	a	simple	name	
like	Marston

PM: “Zomg”? Weren’t we done
with “zomg” in 2005?
AV: Probably got to do with me
hanging around Ruby developers
too much.

PM: If you do the study again,
is there anything you’d like to
change about it?
AV: I would have loved to have
access to all the commit
messages, because the results
do seem strange. Network speed
was an issue when downloading
all the commits. I would most
probably have to spend a few
weeks downloading commit
messages if I wanted them all.
It would be great if GitHub could
give me access to their servers
for a day!

—Patrick Miller

Every programmer has gotten caught cursing at their code (or maybe a fellow programmer). But which languages inspire the most profanity? U.K.-
based web developer Andrew Vos decided to settle the question by pulling just under one million commit messages from GitHub and correlating the
presence of certain choice words to the corresponding project’s programming language.

C# 20

C++ 56

C 28

Java 20

JavaSCript 46
perl 30
pHp 4
pytHon 10
ruby 53

SHit
 175

F*CK
 86

piSS
 5

MotHerF*CKer
 1

oMg 30

zoMg 16

WtF 76
lol 65

roFl 2

HEADS-UP DISPLAY

Anthropy.

WWW.GDMAG.COM 5

loving the bones
the beauty of the game asset

we peel
skyscrapers
like apples.
We dice light into slivers and
arrange those golden shards into
vast mosaics; we transform time
and shape into swirling color and
use it to map river fl ows. When
we make people, we chop off their
faces, fl atten and bake these
human pelts, then tattoo makeup
onto their unblinking eyes.

As game asset artists, we
perform these countless miracles
and atrocities every day. But
when it comes time to curate the
public face of game art, we hide
that which imbues our real-time
art with drama and magic. We’re
content to tape a dozen landscape
paintings and portraits onto a wall,
then point to that concept art and
say that is game art, as we see in
public exhibitions like Into the Pixel.

It’s great to celebrate the
visual arts in video games—but
concept art is not what defi nes
game art. It’s not the actual thing
that goes into the game. We tell
people it’s game art anyway,
because concept art conforms
to society’s existing notions
of paintings as art. This is the
aesthetic equivalent of easy
mode; this is lazy.

Let’s try a higher diffi culty
setting, a more playful and
complex mode of thought. Let’s
try to understand and promote
the real-time art asset as its own
medium of visual art. I will focus
on the game texture—specifi cally,
these three masterworks, coming
soon to a museum near you.

 If you’ve ever found a new
hat or weapon in TEAM FORTRESS
2, there’s a good chance Rob
Laro painted it. Note the very

effi cient pack ratio on his
texture fl at for the Black Box
tank-buster rocket launcher,
how very little texture space
is wasted, yet the overall texel
resolution is evenly distributed.
Here, Laro has skillfully painted
a fantastic gunmetal, a very
narrow range of matte mid-
gray values that still provides
a great sense of contrast in the
material. This piece is a classic
in the way most industry game
artists might appreciate a fl at
surface; it is topologically
elegant and demonstrates
masterful technique.

 We can also think of
textures as more conceptual
pieces. What if you produced
fl at paintings without actually
texturing anything, or what if
you never saw the corresponding
model? Conceptually, then, is

it still a texture? Consider this
lightmap by Thomas Varoux, with
its countless halos. You might
imagine it lighting a space station
at twilight, or a vast Himalayan
palace at dusk. You imagine
invisible models—impossible
models with non-manifold
geometries. When you can see
only the shadow of a world, its
shape is infi nite.

If you did not know what
a lightmap was, then it would
cease to represent light. This
character sprite sheet by Anna
Anthropy, viewed in a similar
way, might cease to represent a
walk cycle. Andy Warhol famously
painted a grid of Campbell’s soup
cans, reducing their individual
characteristics to the sum of an
abstract pattern; the sprite sheet,
then, could reduce each frame’s
differences and emphasize the
common iconography. Does
each frame depict the same
character in different poses and
perspectives, or is each frame a
separate character?

Or maybe Warhol just liked
soup, and we just make assets
that appear in entertainment
products and that’s all there is to
it. You can think like that, and you
wouldn’t be wrong. But you might
end up bored and stuck on easy
mode, and being bored is worse
than being wrong.

—Robert Yang

Varoux.

Laro.

http://WWW.GDMAG.COM

If you have a passion for games and strive for excellence, we encourage you to
check out these opportunities to join Blizzard Entertainment and contribute to the

most epic entertainment experiences… ever!

Dedicated to creating the most epic entertainment experiences… ever.

Continuing students from all over the country are
welcome to apply for our Summer Internship program!

Work directly with development teams and business
operations departments to gain hands-on experience!

For more information, visit

ur.blizzard.com

We’re always looking for top talent! If you’re a recent
graduate, have a passion for games, and aspire to work

for Blizzard Entertainment, we may have the right
opportunity for you!

For more information, visit

jobs.blizzard.com

© 2012 Blizzard Entertainment, Inc. All rights reserved. StarCraft, Diablo, World of Warcraft, Warcraft and Blizzard Entertainment
are trademarks or registered trademarks of Blizzard Entertainment, Inc., in the U.S. and/or other countries.

DO YOU HAVE THE PASSION TO CREATE
AND THE WILL TO FORGE GREAT GAMES?

INTERNSHIPS FULLTIME OPPORTUNITIES

http://ur.blizzard.com
http://jobs.blizzard.com

get faste
r 3

D
 w

ith stereoscopic
 r

e
p

ro
je

ctio
n

WWW.GDMAG.COM 7WWW.GDMAG.COM 7

 There are plenty of ways to add stereoscopic 3D to your game. The hard part is doing it
without having to fully render any given scene twice and killing your frame rate. In this article,
I’ll explain how we designed RATCHET & CLANK: ALL 4 ONE’S stereo reprojection system to produce
attractive 3D visuals without sacrifi cing performance. I fi rst became aware of stereo reprojection
when Crytek announced stereo support for CRYSIS 2. At the time, we at Insomniac were just
beginning to plan stereo support for RATCHET & CLANK: ALL 4 ONE, and the prospect of having a
stereo solution that added very little to frame time was quite appealing. The frustrating bit
for us was that Crytek gave only the slightest of hints as to how its implementation worked.
Clearly it used a pixel shader to gather pixels, and there was a tantalizing mention of bilinear
fi ltering, but not a lot of details. Thus began our quest to make our own version of stereo
reprojection. While I did not quite get the performance Crytek described, we delivered what we
needed to ship the game, we added some new features, and our results look quite good. >>>

http://WWW.GDMAG.COM
http://WWW.GDMAG.COM

WHY WE COULDN’T
USE STANDARD
STEREOGRAPHIC
PROJECTION

 Before looking at our stereo
reprojection solution, let’s
quickly review how the standard
stereographic method works. The
idea is that we are trying to provide
to each eye (via shutter glasses,
or polarization, anaglyph color, or
head-mounted display) a view from
that particular eye’s perspective.

There are two pieces here: First,
each eye is displaced from the
center by a certain distance, called
the interocular distance. It’s this
displacement that allows stereo
viewing in the fi rst place. Secondly,
depending on what we’re focusing
on, the eyes will toe in or out when
we look at a near or far object,
respectively (see Figure 1).

The interocular distance is about
5–8cm, measured from the center
of each pupil. When working with
virtual cameras, we often refer to the
interaxial distance instead. Because
of toe-in, there will be a plane where
points on that plane will project to
the same screen position in both
views. We call this the convergence
plane, and the distance to that
plane is known as the convergence
distance. Points between the view
points and the convergence plane
will have negative parallax (and will
appear to stick out of the screen),
and points behind the convergence
plane will have positive parallax.
Note that the units for these
distances could change, depending
on whether you are measuring in

view space or in NDC (Normalized
Device Coordinates) space.

When projecting for stereo, we
add two additional transformations
to represent the interaxial and
convergence: an xz-shear S
and an x-translation T. Some
implementations incorporate the
translation into the view matrix
and the shear into the projection
matrix, but I fi nd it more compact
to add both to the projection
matrix. The end result can be seen
in Figure 2, showing both standard
D3D and OpenGL perspective
projection matrices.

FIGURE 2: Standard stereoscopic
projection matrices.

Note that the shear and translation
have opposite signs (they end up
with the same sign in the OpenGL
projection matrix because the
shear gets multiplied by the —1

in the bottom row), and each
term has equal magnitudes but
opposite signs for each view. The
left view will have negative shear
and positive translation, while the
right view has positive shear and
negative translation.

So what do we choose for the
magnitude of S and T? They need to
be related; otherwise you will end up
with bad convergence and headaches
for your viewers. Other things that
need to be taken into consideration
are your monitor/television size and
your horizontal fi eld of view. A larger
monitor implies that you will be
sitting farther from it, which implies
that less shear is required. And the
convergence distance in turn is
dependent on the fi eld of view.

The set of equations that we
used in ALL 4 ONE can be found in
Figure 3, partially derived from
Samuel Gateau’s GDC 2009 talk on
stereoscopic 3D [see Reference
1] and the Sony documentation. As
we can see, S is dependent on the
interocular distance and monitor
width, and T is dependent on S,
convergence distance, and fi eld of
view. This is a bit counterintuitive,
but it works quite well.

FIGURE 3: Stereoscopic parameters.

The process at this point is quite
simple: Render two views, one for
each eye, and send each image to
the display. Other than setting up
the projection matrix, this doesn’t
take much work, and in fact some
stereo drivers take advantage of
this simplicity to automatically
provide stereo for games. However,
it does have one disadvantage: You
do have to render the scene twice.
We could optimize this a bit, of
course; we could do all nonrendered
processing fi rst, cull for the convex
hull of both frustums rather than
one at a time, or generate a single
pushbuffer and only modify the
projection matrices—but in the end

you still need to pass data through
the GPU twice, which takes time.
In our case, we were already up
against the 30 fps boundary, so we
had very little extra rendering time.

OUR SOLUTION:
STEREO REPROJECTION

 The alternative to rendering
everything twice is to render color
and depth information for a single
view, then use the information
for that view to generate a stereo
pair—rendering the left view and
using it to create the right view,
for example. Because the original
image will not have the correct
projection for at least one of the
views, we will have to remap the
color data to match the new view,
or perform reprojection. For the
sake of the rest of the article
we’ll assume that unless stated
otherwise, we’ll be reprojecting
from a left view to a right one.

We will need to have access
to the color and depth images to
do this. If you’re rendering into a
backbuffer (or don’t have access to
a console that lets you just dip into
memory and point a new texture
to it), you’ll need to change your
rendering approach. Fortunately,
if you’re using something like
deferred rendering or deferred
lighting, you’ll have already done
this and will have textures available
with this information. Otherwise,
you’ll have to use render targets in
Direct3D or framebuffer objects in
OpenGL for both color and depth.

While CRYSIS 2 was the fi rst
notable use of stereo reprojection in
games, it is not a new technology.
Erik Benerdal described a similar
approach on his blog in 2008 [see
Reference 2]. Other reprojection
approaches have used scatter-
based splatting or image warping
using meshes [see Reference
3]. The technique I’m presenting
here is a gather approach derived
from parallax occlusion mapping,
which takes a color image, a depth
image, and uses raycasting to
create the appearance of geometry
displacement within a shader.

A full description of parallax
mapping is outside the purview
of this article. You can fi nd more

GAME DEVELOPER | OCTOBER 20128

FIGURE 1:
Stereoscopic 3D
frustum setup.

WWW.GDMAG.COM 9

information in Brawley and
Tatarchuk’s original ShaderX article
[see Reference 4]. However, the
general idea is that when you
render the surface you wish to
apply parallax mapping to, for each
pixel you cast a line segment along
the view direction at progressive
depths into the depth map. When
the line segment has penetrated

the depth map, you use that
penetration point to determine the
color seen from that view direction.

Stereo reprojection, at its
heart, is essentially the same
process. We have a color image
and its corresponding depth
information (albeit using a
perspective projection rather
than an orthographic one), and

we have a new view of the same
scene we wish to render. We
could just use the same algorithm
by progressively casting line
segments per pixel to generate the
new view. However, because of the
nature of stereo reprojection, we
can simplify things greatly. Figure
4 shows the situation for a desired
location in the right eye view (in
green). We create sample points
along a ray from the right viewpoint
through the view plane (in this
case, the convergence plane)
location for our current pixel. Since
the view separation is only in the
x-direction, we end up only casting
the ray along x and z. The y-value of
the ray will always be 0.

For the sake of clarity, we start
our sampling in Figure 4 at the
convergence plane, though we
usually will want to start between
the eye point and the convergence
plane to get some negative
parallax. For each sample point (in
yellow), we cast a new ray from the
left eye, determine the view plane
position for that ray, and look up
the depth by mapping that view
plane position to texture space. If
this depth is less than the depth
of the sample point, we stop and
use an interpolation of the sample
point’s depth and left eye depth
to get our fi nal depth value, which
we use to reproject from the right
viewpoint to get our fi nal color.

However, because we are only
searching in the xz directions,
we can think of this in a different
way—see Figure 5. In this case, we
know the corresponding view plane
position in the left view will have the

same y value as our desired view
plane location, so we’ll just search a
range of candidate screen positions
P* along a line of constant y. In
this case we start with our pixel’s
position from the right eye viewpoint
(in green) and iterate in the -x
direction (to yellow and orange). So,
rather than casting a ray and then
computing a view plane position
to look up a depth value, we’ll just
use the depth at the current P* to
reproject into the right eye view. If
its position is close to our desired
location then we’ll stop. We’ll use
that depth as our fi nal depth to look
up the color value for our pixel.

This raises the question of
how we perform our reprojection—
namely, how do we use a view
plane position P_left in the left
view and the depth to determine
the corresponding view plane
position P_right in the right view?
We can simplify the problem down
to one of fi nding the displacement
along the convergence plane,
between the left view and the right
view (see Figure 6). This is a case
of computing a ratio of similar
triangles: The distance between
P_left and P_right is to the distance
between the two view positions as
the distance from the convergence
plane is to the distance from the
view positions. This gives us the
fi nal equations in Figure 6.

Since this is using a ratio of
distances, this will work just as
well whether we’re in NDC space
or texture space, but it assumes
that the depth we have is linear.
However, if we use standard
perspective projection, the depth

LI S T I N G 1 The core of the fragment shader (using GLSL).

UNIFORM SAMPLER2D COLOR_TEXTURE;

UNIFORM SAMPLER2D DEPTH_TEXTURE;

UNIFORM VEC4 STEREO_PARAMS;

VARYING VEC2 UV;

VOID MAIN()

{

 VEC2 OUT_TEX_COORDS = UV - VEC2(STEREO_PARAMS.X, 0.0);

 VEC2 REPROJ_TEX_COORDS = UV;

 FLOAT DIR = SIGN(STEREO_PARAMS.Y);

 FLOAT ORIG_X = UV.X;

 FLOAT SHIFT = STEREO_PARAMS.Z;

 FLOAT STEP = 0.0625*STEREO_PARAMS.W;

 INT INDEX = 0;

 WHILE (INDEX <= 16)

 {

 REPROJ_TEX_COORDS.X = ORIG_X + SHIFT;

 FLOAT L = GETLINEARDEPTH(DEPTH_TEXTURE, REPROJ_TEX_

COORDS);

 FLOAT DEPTH_ADJUST = STEREO_PARAMS.X + STEREO_PARAMS.Y

/ L;

 FLOAT TEST = SHIFT + DEPTH_ADJUST;

 IF (DIR*TEST >= 0.0)

 {

 OUT_TEX_COORDS.X = ORIG_X - DEPTH_ADJUST;

 BREAK;

 }

 SHIFT = SHIFT + STEP; INDEX = INDEX + 1;

 }

 GL_FRAGCOLOR = TEXTURE2D(COLOR_TEXTURE, OUT_TEX_COORDS);

}

FIGURE 4: Stereo
reprojection using

ray-casting.

FIGURE 5: Stereo
reprojection using

pixel match.

http://WWW.GDMAG.COM

http://WWW.GDCCHINA.COM

www.gdmag.com 11

values in the buffer are nonlinear.
Under normal circumstances, All
4 One’s engine provides a second
floating-point depth buffer which is
linear (it’s used for computing SSAO,
among other things), but because
the stereo buffers require more
VRAM, activating stereo disables
SSAO and removes this extra depth
buffer. We solved this by using a
scratch area of VRAM to compute
the floating-point buffer just before
applying the reprojection. Note that
you do need a certain amount of
resolution in your depth, otherwise
you may get strange striations
across your stereo images as you
suddenly step from one depth
range to another.

Summarizing the algorithm:
 For each P_right (i.e., the

pixel we’re considering
in the fragment shader):

 Iterate along values of
P* for the left view

 Reproject to get a
candidate location

 If it is past P_right, we
have a hit

 Use the color values for
our current and previous
P* to set our final color

This search strategy raises a few
questions. First, what is the range
of the search for P*, and what
step size should we use? As z
approaches infinity, the magnitude
of the displacement between P_left
and P_right approaches s, which
means the maximum possible
value of separation for positive
parallax will be s. So for my initial
algorithm I chose a range of texels

in the source view from P_right–s
to P_right+s, and stepped one
texel at a time. This provided a
certain amount of negative parallax
without unduly increasing the
search. However, by stepping
one texel at a time, the number of
texels we search will increase as
s increases. Since s is one of the
knobs we can turn to improve our
stereo result, we will either have
poor performance, or are limited to
fairly flat-looking images.

We derived a better approach
from parallax mapping. In my
final revision, I chose a constant
number of iterations, and split
the search space into a fixed
number of samples. In the parallax
mapping case, the samples are
along the search ray; in our case,
along the scanline. One approach
(see Reference 5) uses a single
sample at the farthest depth, but
I didn’t get very good results with
it. Instead, 16 samples presented
the best trade-off between quality
and speed. Reducing the amount of
negative parallax by only searching
between P_right–s/2 to P_right+s
also helped the quality.

As far as the final color value,
for the initial algorithm I used a
linear interpolation of the current
and previous texel colors, based on
the previous and current screen
space positions. This made for
muddy edges, particularly when an
edge switches from a near object to
a far-distance object, or vice versa.
In parallax mapping, as mentioned,
you would normally take a blend of
the ray sample point’s depth and
the depth from depth map lookup,
and then use that to reproject

from the right eye view position.
This final reprojected point is
used to look up the color value, in
this case, in the left eye image.
However, I discovered a paper by
van de Hoef and Zalmstra (see
Reference 5), two students from

the University of Utrecht, who
were also trying to create fast
reprojection. They skipped the
blend and just used the depth
map lookup alone for the final
reprojection. This is faster than
the lerp, matches reasonably well,

FiguRe 6: Computing
reprojection
displacement.

FiguRe 7: Right-eye views of Ratchet, showing a) ideal stereo, b) reprojecting with the
wrong search direction, and c) reprojecting with the correct direction.

http://WWW.GDMAG.COM

and gets rid of the smeared, blurry
effect on near-to-far edges.

The fi nal issue is to decide
which direction to search along the
scanline—the positive x direction or
the negative x direction? I’ve given
away the answer already, but in
my initial algorithm I unthinkingly
searched in the positive x direction,
which had some unexpected effects

on the result. Figure 7a shows the
standard stereo projection, while
Figure 7b shows the result of this
reprojection algorithm, and the
smeared ruin of poor Ratchet’s face.
Tragedy and despair.

This is a problem because by
iterating in the positive x direction
when doing left-to-right reprojection,
we’re moving in the wrong direction
along the view ray. Rather than
searching deeper and deeper into
the screen, we were starting with
the maximum depth value for our
ray, and searching more and more
shallowly. This leads to an early
exit from the search, and Ratchet’s
poor deformed face. Fortunately
the solution is simple: Reverse the
search direction! Figure 7c shows
this far better result.

The core of the fragment
shader (using GLSL in this case,
but the Cg or HLSL shader would be
equivalent) is in Listing 1.

In this case, we’ve replaced the
P_right end condition with a check
against zero to avoid an unnecessary
addition, but the same principle
applies. The constant stereo_
params contains -/+s, +/-sc, the

starting offset for the search, and
the search range. GetLinearDepth()
converts the nonlinear depth value
from the texture into a single
fl oating-point linear value.

This shader has the advantage
in that it works both for reprojecting
the left view to the right one, and
the right view to the left one, simply
by changing the stereo parameter
constant. However, if you only
want to reproject from left to right,
for example, you can simplify it
by removing the “dir” term and
adjusting signs accordingly.

PROBLEMS WITH
REPROJECTION

 Overall, our approach works
quite well and removes the more

egregious artifacts from the
previous method, but it still has a
few issues.

The fi rst issue is that we are
limited in the amount of negative
parallax we can represent. Recall
that negative parallax occurs when
objects are closer to the viewpoint
than the convergence plane, and
it shows up visually as objects

popping out of the screen. For
aesthetic purposes, we usually
don’t want a lot of negative parallax
because if it occurs near the edge
of the screen it can destroy the
3D illusion (because one eye can
see the object, while in the other
it appears chopped off). But it’s
diffi cult to avoid entirely, so ideally
our algorithm needs to handle it.

While we know that the
maximum displacement due to
positive parallax is s, for negative
parallax there is no practical
maximum. Let’s look at Figure 8 to
see why this is the case.

Here we see an object with
negative parallax. The distance
between the left and right view ray
intersections is clearly larger than s,
so we could broaden our search to
include that. However, as objects get
closer and closer to the eye points,
that displacement gets larger and
larger, approaching infi nity. Clearly
capturing all negative parallax is not
practical, so the only thing we can do
is set a maximum value, and try to
keep our objects within that amount
of negative parallax. If we end up
with a situation where objects might
fall beyond that range, we can bring
in the convergence plane to reduce
the parallax.

Another set of issues crops
up because the new viewpoint
can see parts of objects that the
original can’t. These are known as
reconstruction issues. The original
problems with Ratchet’s face were
an extreme example of this, with
some very bad reconstruction.
However, even with an improved

algorithm it is impossible to
perfectly reconstruct such areas,
because the information simply
isn’t there (which we can see in
Figure 7c, to the right of Ratchet’s
face). In our case we simply repeat
the foreground or background
information and hope that the
area is small enough that the
players don’t notice. Some ways of
reducing the area are to again bring
in the convergence plane (which
does reduce the stereo effect,
but helps with the errors) or to

GAME DEVELOPER | OCTOBER 201212

FIGURE 8: Reprojecting a point
with negative parallax.

In our case we simply repeat the foreground or background information
and hope that the area is small enough that the players don’t notice. Some
ways of reducing the area are to again bring in the convergence plane
(which does reduce the stereo effect, but helps with the errors) or to render
the scene from a camera with a standard frustum, and then reproject twice
to generate the left and right view from that.

WWW.GDMAG.COM 13

render the scene from a camera
with a standard frustum, and then
reproject twice to generate the
left and right view from that. The
reprojection step does take twice
as long when we do that, but the
results look signifi cantly better,
and it’s still faster than rendering
the scene twice. Figure 9 shows
the result of this, with the left
side rendered with left-to-right
reprojection, and the right side
with a standard non-stereo view
reprojected to both left and right.

A third issue is related to
reconstruction. If we look at Figure
1 again, we can see that there are
regions in space that the left eye can
see that the right one can’t, and vice
versa. So we have no information on
how to reconstruct that region from
the other view. One possibility is to
place black bars to cover that area
of the viewport, but that’s not very
appealing. Our fi nal solution was to
expand the horizontal fi eld of view so
that region is outside of the desired
viewport, then after reprojection

crop down to the new shared
viewport area.

The fi nal set of issues is due
to how we handle alpha-blended
objects. In the ALL 4 ONE engine,
we have a separate pass for such
objects, sorted by depth, and we do
not write out depth. This produces
good results for transparency but
has the slight problem that we
don’t have the depth information to
correctly reproject that object. The
end result is that alpha-blended
geometry looks like it’s painted onto

whatever is behind it, which made
all our effects look quite strange.
We tried writing depth with alpha,
but that introduced a new set of
problems. In the end, the best way to
handle both the alpha-blending and
the 3D stereo was to use reprojection
to render the opaque passes, and
then render the alpha passes using a
standard stereo projection.

In order to take that approach,
though, we have to do two things.
First, we have to reproject depth
values as well as color values, so

Figure 9: Reducing reconstruction
error with center reprojection.

http://WWW.GDMAG.COM

that the alpha-blended objects will
have the correct depth occlusion.
Secondly, we must compute
standard stereo projection matrices
that will match up with our
reprojected result.

MATCHING STANDARD
AND REPROJECTION
STEREO

 Remember that we have
two variables for our standard
stereo: S and T, which are

primarily dependent on our
convergence plane distance c
and our interocular distance i. In
reprojection we have the same
convergence plane distance, but
we have a different value s that
probably bears some relation to
the interocular distance. However,
it’s unclear what that would be
to match the standard stereo
projection. To determine that, let’s
project a point into left and right
NDC space and measure the delta
between them in the x direction.

DIY 3D

 That’s the whirlwind tour
of our implementation of 3D
stereoscopy in RATCHET & CLANK:
ALL 4 ONE. I hope this gives you
some direction in writing your
own version of 3D stereoscopic
reprojection, no matter the
platform. To give you a starting
point, I’ve created an OpenGL
demo demonstrating the basic
techniques, which you can find
at http://gdmag.com/resources/

code.php. I’m looking forward to
seeing how you improve upon it in
your future games!

JIM VAN VERTH has beenworked in the

games industry since 1996, and is

currently a senior engine programmer at

Insomniac Games. He’s also co-author of

the book Essential Mathematics for Games

and Interactive Applications. You can email

him at jim@essentialmath.com.

RATCHET AND CLANK images courtesy/

copyright SCEA 2012

GAME DEVELOPER | OCTOBER 201214

Using the D3D-style stereo projection matrix and projecting a point into the left view gives us:

After the reciprocal divide and considering only the
x values, we end up with:

Where x_center is the result of non-stereo projection.
Expanding and simplifying, we end up with:

(Recall that d is cot(fov/2)). Similarly, for x_right:

Subtracting these gives the displacement between
the left and right views in NDC space:

However, NDC space has a range from -1 to 1.
To convert this to a displacement for texture
coordinates, which range from 0 to 1, we halve the
distance, which gives us:

If we replace S with s, this is clearly the same as the
equation in Figure 6, so s is just S when reprojecting
from a left eye view to a right eye view. Note that for
center reprojection, we would split the difference
going from center to left and center to right, and so
halve the displacement.

Again, signs are important for computing this:
for reprojecting and rendering the left eye, we’d use
–s, +sc/z, –S, and +T. For the right eye, we invert the
signs and so use +s, –sc/z, +S, and -T.

The end result is quite nice. We get most of the
speed benefi ts of reprojection, with the good-looking
alpha of standard stereo, and all it took was a little bit
of math and some extra setup.

Using the D3D-style stereo projection matrix and projecting a point into the left view gives us:

After the reciprocal divide and considering only the
x values, we end up with:x values, we end up with:x

Subtracting these gives the displacement between
the left and right views in NDC space:

(Recall that d is cot(fov/2)). Similarly, for x_right: x_right: x

If we replace S with s, this is clearly the same as the
equation in Figure 6, so s is just S when reprojecting
from a left eye view to a right eye view. Note that for
center reprojection, we would split the difference
going from center to left and center to right, and so
halve the displacement.

Again, signs are important for computing this:
for reprojecting and rendering the left eye, we’d use
–s, +sc/z, –S, and +T. For the right eye, we invert the
signs and so use +s, –sc/z, +S, and -T.

The end result is quite nice. We get most of the
speed benefi ts of reprojection, with the good-looking
alpha of standard stereo, and all it took was a little bit
of math and some extra setup.

Where x_center is the result of non-stereo projection. x_center is the result of non-stereo projection. x
Expanding and simplifying, we end up with:

However, NDC space has a range from -1 to 1.
To convert this to a displacement for texture
coordinates, which range from 0 to 1, we halve the
distance, which gives us:

If we replace S with , this is clearly the same as the
 when reprojecting

Again, signs are important for computing this:
for reprojecting and rendering the left eye, we’d use

. For the right eye, we invert the

The end result is quite nice. We get most of the
speed benefi ts of reprojection, with the good-looking
alpha of standard stereo, and all it took was a little bit

r efer en c e s
[1] Gateau, Samuel. “The In and

Out: Making Games Play
Right with Stereoscopic 3D
Technologies.” GDC 2009, http://
developer.download.nvidia.com/
presentations/2009/GDC/GDC09-
3DVision-The_In_and_Out.pdf

[2] Benerdal, Erik. “Generating
stereoscopic images with parallax
occlusion mapping,” www.scalari.
net/2008/04/22/generating-
stereoscopic-images-with-
parallax-occlusion-mapping

[3] Didyk, Peter, Tobias Ritschel, Elmar
Eisemann, Karol Myszkowski,
and Hans-Peter Seidel. “Adaptive
Image-space Stereo View
Synthesis.” In Vision, Modeling,
and Visualization (2010), Reinhard
Koch, Andreas Kolb, Christof Rezk-
Salama (Eds.)

[4] Brawley, Z., and Tatarchuk, N.
2004. “Parallax Occlusion Mapping:
Self-Shadowing, Perspective-
Correct Bump Mapping Using
Reverse Height Map Tracing.” In
ShaderX3: Advanced Rendering
with DirectX and OpenGL, Engel,
W., Ed., Charles River Media, pp.
135-154.

[5] van de Hoef, Marries, and Bas
Zalmstra. “Fast Gather-based
Construction of Stereoscopic
Images Using Reprojection.”
Utrecht University, 2011.

http://developer.download.nvidia.com/presentations/2009/GDC/GDC09-3DVision-The_In_and_Out.pdf
http://www.scalari.net/2008/04/22/generating-stereoscopic-images-with-parallax-occlusion-mapping
http://gdmag.com/resources/code.php
mailto:jim@essentialmath.com
http://developer.download.nvidia.com/presentations/2009/GDC/GDC09-3DVision-The_In_and_Out.pdf
http://developer.download.nvidia.com/presentations/2009/GDC/GDC09-3DVision-The_In_and_Out.pdf
http://developer.download.nvidia.com/presentations/2009/GDC/GDC09-3DVision-The_In_and_Out.pdf
http://www.scalari.net/2008/04/22/generating-stereoscopic-images-with-parallax-occlusion-mapping
http://www.scalari.net/2008/04/22/generating-stereoscopic-images-with-parallax-occlusion-mapping
http://www.scalari.net/2008/04/22/generating-stereoscopic-images-with-parallax-occlusion-mapping
http://gdmag.com/resources/code.php

UPCOMING EPIC ATTENDED EVENTS

Please email licensing@epicgames.com for appointments

GDC Online
Austin, TX
October 9-11, 2012

MIGS
Montreal, Canada
November 13-14, 2012

Arkane Studios

Reimagines First-Person

With Dishonored

w
w
w
.u
n
re
a
le
n
g
in
e
.c
o
m

© 2012, Epic Games, Inc. Epic, Epic Games, Unreal, Unreal Developer Network, UDN, Unreal Engine, UE3, Unreal Kismet, Unreal Landscape and Unreal Matinee are trademarks or registered

trademarks of Epic Games, Inc. in the United States of America and elsewhere. All other trademarks are property of their respective owners. All rights reserved.

Arkane Studios has been utilizing Unreal Engine

3 (UE3) to let their imaginations run wild in

crafting a world that looks unlike any game ever

seen before. Dishonored, the new fi rst-person

perspective action adventure game, is set in the

industrial whaling city of Dunwall. The world has

a painterly style with a 19th century London feel

blended with steampunk, fantasy and science

fi ction infl uences. The teams in Austin, Texas and

Lyon, France have been using UE3 technology

to further push the envelope of non-linear

exploration.

“We love fi rst-person action games with aspects

of RPGs or adventure games added in,” said

Raphael Colantonio, co-creative director on

Dishonored at Arkane Studios. “There’s a

particular type of game that is a blend of genres

that we’ve always strived to create: immersive,

fi rst-person, with resource economics; a cohesive,

plausible sense of place; variable approaches

and outcomes that are presented in a consistent

way, often relying on simulation, so the player can

formulate and execute strategic plans in how they

undertake encounters.”

Dishonored gameplay blends combat, stealth, and

role-playing features. Gamers take on the role of a

supernatural assassin in a retro-future world. The

game mechanics can be applied creatively, as the

developer is encouraging gamers to play their way.

According to Harvey Smith, co-creative director

on Dishonored at Arkane Studios, there remains

confusion over the types of games Arkane has

worked on in the past such as Arx Fatalis, Dark

Messiah of Might & Magic and Deus Ex: Invisible

War.

“We’ve never worked on open-world games,

but the confusion exists because our games –

while mission-based – feel very nonlinear and

open-ended in very specifi c ways,” explained

Smith. “There are multiple pathways through the

environment. Sometimes these are just realistic

routes, like rooftops and windows, and at other

times these pathways are enabled by the player’s

choice of powers, play style and morality. We

want to allow the player many choices so they can

author their own experiences.”

Arkane had a choice in technology when it came

time to bring their vision to life. Colantonio said

that barring the additional stealth and AI code that

the team wrote, UE3 enabled their artists and level

designers to start immediately prototyping layouts

and mission concepts.

“Our game is special, blending fi rst-person

melee combat, stealth and physical mobility,”

said Colantonio. “So our tech director and lead

gameplay engineer – Hugues Tardif and Stevan

Hird, respectively – have led their teams in

the creation of a variety of features and code

extensions.”

“We’ve used Unreal Kismet, Unreal Lightmass,

the new navigation mesh system and most of

the standard tools. We’ve also added our own

features, such as audio propagation and a dialog

editor, and we’ve replaced ‘Matinee’ with ‘Soiree’

because we needed to have a way for our NPCs

to constantly switch between AI and scripted

scenes,” added Smith. “We’re proud of the amount

of things we got the engine to do at the same time

for performance.”

UE3, along with advances in technology,

have helped the team implement exceptional

lighting, develop better physics and gather more

characters on screen with higher polygon counts.

As a studio, there’s a certain level of graphical

fi delity that the team loves. Smith and Colantonio

like the abstract game mechanics, but they also

really like creating rich, interesting environments.

“We’re using a lot of the advances in technology

for a very analog AI system,” said Smith. “The AI

is not just a magic circle that knows where you’re

at when you’re inside the circle. It has a set of

view cones. It’s used in the dark and with distance,

where the vision falls off. The AI goes into an

indeterminate state when it’s not sure if it’s seen

you and will give up if it hasn’t found you. It’s a

very warm, perception-based AI.”

The end result is a non-linear adventure that

begs for replay given the open gameplay choices.

This rich virtual world, ravaged by a rat plague

and fi lled with unique characters, shows yet

another way that UE3 is being used to enhance

the creative visions of game developers around

the globe. Dishonored stands out from the

crowd, such as UE3 games BioShock and Mass

Effect before it, as an innovative new interactive

adventure.

Thanks to Arkane for speaking with freelance reporter John

Gaudiosi for this feature.

http://www.unrealengine.com
mailto:licensing@epicgames.com

SENIOR SERVER ENGINEER | SENIOR RELIABILITY ENGINEER | SENIOR TOOLS ENGINEER
SENIOR CONSOLE ENGINEER | LEAD 3D ENVIRONMENT ARTIST

SENIOR 3D ENVIRONMENT ARTIST | SENIOR 3D CHARACTER ARTIST | FX ARTIST
LEAD BATTLE.NET DESIGNER | LEAD CAMPAIGN DESIGNER | SENIOR LEVEL DESIGNER

PRODUCTION DIRECTOR | BUSINESS OPERATIONS DIRECTOR

©2012 Blizzard Entertainment, Inc. All rights reserved. World of Warcaft, Diablo, StarCraft and Blizzard Entertainment are trademarks
or registered trademarks of Blizzard Entertainment, Inc., in the US and/or other countries.

We are actively recruiting for the following key positions across our game and online technology teams:

® ® ®

Follow us on Twitter: @blizzardcareers

jobs.blizzard.com

http://BATTLE.NET
http://jobs.blizzard.com

T h e s T a r s o f T h e s i g g r a p h 2 0 1 2 s h o w f l o o r

Unreal Engine 4.

Voxels

 Voxels are three-
dimensional pixels. They’re
nothing new—Minecraft is
the most recent high-profile
game to use voxels—but
they’re making a comeback
for a very particular
use in games. Because
producing indirect lighting

effects (such as global
illumination) is often
computationally expensive,
these effects have often
been precomputed and
baked into the scene. But
what if your lighting and
world are incorporating
more and more dynamic
elements? Enter Voxel Cone
Tracing. Martin Mittring
from Epic Games spoke
about the increasingly
used sparse voxel octree
global illumination in his
“The Technology Behind the
Unreal Engine 4 Elemental
Demo” talk, specifically
focusing on how they used

a technique called voxel
cone tracing (originally
developed by Cyril Crassin:
www.icare3D.org/research/
GTC2012_Voxelization_public.
pptx) to compute global
illumination in real time.

In the Unreal 4 engine,
voxel cone tracing casts
rays off of each screen pixel,
which travel through the
scene volume and which
dynamically computes
global illumination.
Where ray tracing uses
infinitely thin lines, voxel
cone tracing uses “cone
traces” as an intersection
primitive, which generates

many texture lookups
into a multiresolution
volume texture that stores
directionally encoded voxel
data. With this approach,
they can use the cone’s
opening angle to gather
light from more directions,
and they can efficiently
approximate distant
geometry through filtered
or mip-mapped pixel data
(the far scene gives a larger
sample area with less
accuracy), which can then
be used as an LOD system
for lighting detail. The
voxels deliver an alternative
representation of the level

geometry, and are capable
of approximating complex
geometry with fewer voxels.
Because they are being
cast off of screen pixels, the
limitation is the resolution of
the image. This significantly
limits the time needed to
produce results, and hence
can be done in real time.

There are a number of
benefits to the method that
Epic employs here that help
produce the best results.
First, the voxels support
fractional occlusion and
therefore produce smooth
cone-trace results. Second,
glossy reflections can

www.gdmag.com 17

Every year, graphics gurus and engineering experts congregate in a convention center to talk
about new technologies, techniques, and trends at the annual Siggraph conference. Since
we’re nearing the end of this console cycle, this year’s show focused mostly on maximizing
performance and quality on existing platforms—and making high-end development gear more
accessible to studios with smaller budgets. From the latest on voxels and new cutting-edge
GPUs, to what’s new in the next generation of 3D art software and digital-art peripherals, these
are the trends at this year’s Siggraph.

By Carey Chico & Mike De La Flor

http://www.icare3D.org/research/GTC2012_Voxelization_public.pptx
http://WWW.GDMAG.COM
http://www.icare3D.org/research/GTC2012_Voxelization_public.pptx
http://www.icare3D.org/research/GTC2012_Voxelization_public.pptx

game developer | october 201218

be implemented with a
single cone trace, while
ray tracing often needs
hundreds of rays. Third,
since opacity and color
accumulate during the
trace, pixels hidden behind
other opaque pixels can be
cast aside for optimization.
Finally, by only updating
the parts of the scene that
have changed, Epic can
optimize the calculations
even further. Martin
showed off a lit scene from
the Unreal demo which
demonstrated indirect
lighting and ambient
occlusion. If you’d like
to know more, you can
find Mittring’s slides
and some sample video
here: http://advances.
realtimerendering.com/
s2012/index.html

“Emerald” NVIDIA
Tesla GPU-Accelerated

Supercomputer

GPU ComPUtinG

 GPU computing—the
practice of using your
powerful GPU along with
your workstation’s CPU
to speed up calculation-
heavy tasks—has gained
significant momentum in
computer graphics lately,
and NVIDIA, AMD, and ARM
all showed off their new
gear for the next year.

NVIDIA announced
the second generation of
the Maximus workstation
platform, which combines
its Quadro and Tesla cards
into one system so artists
can use the same system
to model, texture, light, and
animate heavy datasets,
then render in real-time
or even run simulations
while designing. Maximus
is a scalable system, so
artists can choose to
focus processing power

either in the visualization
(such as real-time effects)
or computing (real-time
rendering) end of the
spectrum as necessary.

AMD launched four new
FirePro graphics cards,
each of which use AMD’s
Tahiti GPU. The flagship
card is the FirePro W9000,
which has 6GB of GDDR5
memory and can hit
processing rates of up to
four teraflops, as well as
lower-end W8000, W7000,
and W5000 models. Like
NVIDIA’s Maximus, the
new FirePro cards are
designed to integrate
heavy visualization tasks
such as design, and heavy
computing tasks like
rendering, into one system.

Meanwhile, ARM had its
new quad-core Mali-T604
GPU on display. Several
applications were running
on the new GPU, each
focused on specific features.
The bottom line is that the
Mali-T604 delivers significant
GPU processing power for
real-time physics, particle
simulations, and advanced
lighting, which will give
mobile developers more
power to play with in their
games. (Samsung mobile
devices have already begun
to employ the Mali GPU.)

Botmill 3D
printed part.

CheaP 3D
PrintinG

 3D printing was at
Siggraph in a big way this
year—not because it’s
a new topic per se, but
because it’s getting cheaper
(read: within the four-figure
limit of a typical credit card).
Considering that we’re
seeing more crossover
between digital and physical

goods in both directions
(see: Team ForTress 2 hats
and skylanders figures, for
example), creative game
developers will no doubt
want to keep their eyes and
ears on the democratization
of 3D printing tech.

3D Systems (http://
cubify.com) practically
launched the 3D printing
industry in 1986, and the
company’s new Cubify
($1,300) is a consumer-
oriented 3D printer with a
small (5.5-inch) printing
platform. Combine this
with 3D3 Solutions’s
(www.3D3solutions.com)
Kinect-based 3D scanning
system ($599)—which
lets you capture a 3D object
and use its software to
produce an exportable mesh,
complete with diffuse texture
information—and you might
just have what it takes to
kickstart the consumer 3D
printing market.

Acute3D (www.
acute3D.com) takes a
different approach with its
Smart3DCapture software
suite, which builds 3D
models from simple
photographs—no scanning
hardware required.
Smart3DCapture consists of
two programs: S3C Scanner
scans individual objects,
and S3C Surveyor produces
3D surveys of physical
locations. In one demo,
Acute3D representatives
showed how Surveyor could
capture entire cities with
satellite photo and street-
based panoramic data—
handy, perhaps, for game
devs looking to quickly
prototype a large city level.

CharaCter
animation aiDs

 Character animation
is a tedious process, so
we weren’t surprised to
see plenty of tools and
services on display that
promised to streamline the
animation workflow.

CyberGlove Systems
(www.cyberglovesystems.
com) typically develops
technology for military,
scientific, and engineering
applications, but the new
CyberGlove II system was
demoed with a rigged
character in MotionBuilder.
Eighteen sensors lining the
hand and fingers of the glove
are mapped to the joints of
a rigged digital character;
slip the glove on and move
your hands and fingers, and
you will pose and animate
the figure accordingly. You
can use one glove to drive
more than one character
at a time, or you can use a
pair of gloves to animate
several characters. The
connection between your
hand movements and the
corresponding animation
doesn’t feel particularly
intuitive at first, but it doesn’t
take long to adapt to it.

SoftEther (www.
softether.co.jp/en) was on
hand to show off Quma, a
jointed, anthropomorphic,
USB-based input device
that looks like a small toy
robot. Quma is essentially a
miniature, real-time, motion-
capture system; it has 32
sensors in its joints that
capture its position and send
the data to a rigged digital
character in its proprietary

software (though Maya
and 3Ds Max plug-ins are
available, too). It’s a direct
and intuitive way to animate
a character, and you get
immediate results. Right
now, the Quma can only
animate bipeds and is only
shipping in Japan, though
support for quadrupeds
(and international sales) is
in the works.

IPi Soft showed off a
markerless motion-capture
software system called iPi
Motion Capture 2.0, which
uses your PC and one or
two Kinect sensors (or even
webcams/digital cameras)
to let you create your own
mocap studio, use the
proprietary software to clean
up and edit the animation
post-capture, and convert
it into commonly used file
formats (including GBX, BVH,
and Collada). The capture
area is around 7 by 7 feet,
but can expand to 20 by
20 if you implement more
cameras. There is a trial
version of the iPi Mocap
Studio software on iPi Soft’s
web site, and the iPi Recorder
software is free. Pricing
for the iPi Motion Capture
software line is $295 for the
Express version (supports
one Kinect, no multicamera
support); $595 for the
Basic version (supports up
to two Kinects and three or
four video cameras); and
$1,195 for the Standard
version (two Kinects, three
to six video cameras, and
can track multiple people.

asset
DeveloPment
aPPliCations

 From models and
textures to animation and
special effects, you can’t
make games without art

Qumarion human
input device.

http://advances.realtimerendering.com/s2012/index.html
http://advances.realtimerendering.com/s2012/index.html
http://www.cyberglovesystems.com
http://www.softether.co.jp/en
http://advances.realtimerendering.com/s2012/index.html
http://www.3D3solutions.com
http://www.cyberglovesystems.com
http://www.acute3D.com
http://www.acute3D.com
http://cubify.com
http://cubify.com
http://www.softether.co.jp/en

www.gdmag.com 19

assets—or the applications
artists use to build them.
Autodesk, Pixologic,
NewTek, and other
developers were on hand at
Siggraph 2012 to show their
newest wares.

Autodesk’s 2013
Entertainment Suite (3ds
Max, Maya, SoftImage,
Mudbox, Motionbuilder,
and SketchBook Designer
Pro) should be intimately
familiar to any reader of
Game Developer. Beyond
the usual application-
specific incremental
updates, the overall
theme is improved
interoperability between
Autodesk products and
external applications. For
example, Maya features
native support for Alembic,
making it easier to transfer
scene and animation data
between applications;
Media Sync in 3Ds Max
can transfer scene and
animation data to and
from Adobe After Effects;
Mudbox’s compatibility
with Adobe Photoshop
continues to improve the
process of exchanging paint
layers and data between the
two applications.

Pixologic’s ZBrush 4R4
was released a few weeks
before Siggraph, and the
hot topic at the booth
was the new QRemesher
Alpha, which automatically
retopologizes any mesh,
and the QRemesher Guide
Brush, which lets artists
direct polygon and edge
flow for cleaner, more
predictable quad meshes.
Also new to version 4R4 is
the Virtual Machine, which
lets the artist look through
thousands of undos to
review a model’s history
over time, and the new
Curve engine, which works
with various brushes
(such as the Insert Multi
Mesh brush or Tube brush)
to help you lay down
complicated organic or
mechanical details.

NewTek showed
off LightWave 11.5,
the latest version of its
workhorse 3D modeling
and animation suite.
This release introduces
Genoma, a modular rigging
system built into Modeler
that lets artists quickly
rig biped or quadruped
models, and includes
several preset rigs for
common parts like spines,
arms, legs, and even
wings. Also, LightWave’s
core modeling toolset has
been catching up to its
competitors with new tools
like Edit Edges, Thicken,
and UV Unwrap, and its
animation and special
effects features have
added a new specialized
particle system called
Flocking, which simulates
more organic-looking flock
movement, and improved
soft-body bullet dynamics.
NewTek also spotlighted
LightWave’s Virtual Studio
Tools, which provide artists
with real-time performance
capture for virtual cameras
and lights and character
puppeteering via game
controllers. For example, a
development team could
move through and interact
with a game level inside
LightWave to work out
animation and design.

Lightbrush ($1,500) is
an intriguing new shadow
and lighting manipulation
tool by Tandent Vision
Science that was recently
released for the Mac (http://
tandent.com/lightbrush.
html). In the demo, Tandent
representatives showed
how artists looking to use
photos as sources for
textures could take a photo
of a brick wall that had tree
shadows splayed all over
the surface, use Lightbrush
to indicate an area of diffuse
color and an area of shadow,
and let Lightbrush separate
the shadows out into a
separate layer. A Windows
version is in the works.

Digitizing
tablets

 Wacom’s booth was
constantly crowded with
attendees waiting to try out
Wacom’s latest line of Cintiq
drawing tablets. The main
attraction was Wacom’s
new flagship panel, the
Cintiq 24HD Touch, which
lets the artist directly
manipulate documents
and content with hand
gestures, so you can rotate,
move, and scale with one
hand while holding your
pen in the other. It does
take a little getting used
to, and right now it’s only
supported in Corel Painter
and a handful of Autodesk
productions, but we think
it’ll catch on quickly.

Also, Wacom has
discontinued its popular
Cintiq 20UX model in favor
of the new Cintiq 22HD,
which features a high-
definition, widescreen
LCD panel that is brighter
and has higher contrast
levels than the 20UX,
and a stylus built on the
Intuos 4’s design, with
2,048 pressure levels
and 60 degrees of tilt
sensitivity. Unlike the
much larger Cintiq 24HD
(see our review in the
September 2012 issue
of Game Developer) the
22HD retains the standard
popular Cintiq stand.

Carey ChiCo is a 16-year

veteran of the game industry.

Having worked on all platforms,

from PC to console to mobile,

he has carefully nurtured his

talents toexpand his skill sets

driving products and managing

studios from creative,

production, and business

mindsets. He has always

been an active member of the

industry at-large, formerly as a

GDC Advisory Board member, a

freelance writer for Gamasutra

and Game Developer magazine,

and a frequent speaker at

industry trade shows and

events.

Mike de la Flor is a freelance

medical illustrator, animator,

instructor and writer. He’s the

author of The Digital Biomedical

Illustration Handbook and other

CG books.

emerging trends and products
C l o u d r e n d e r i n g : Cloud rendering is a growing trend for smaller development houses that do
not have their own data centers or render farms, and we saw plenty of them on the show floor, including
Keyshot (www.luxion.com), Fox Renderfarm (www.foxrenderfarm.com), XL render (www.xlrender.com),
and Rendercloud (www.scalar.ca/rendercloud).

o p t i s M a t e r i a l s C a n n e r (o M s 2) : The OMS2 (www.optis-world.com/products/
hardware/OMS2.html) is a handheld device that essentially lets you scan textures into your CAD
application, which could be handy for artists looking to make their materials and textures more realistic.
The OMS2’s sensor picks up surface and light information and dumps it to your laptop so you can quickly
work with your new material. You can also pair the OMS2 with Theia-RT, Optis’s real-time raytracer, to scan
real-world objects and update Theia-RT immediately.

p a t h t r a C i n g : Jules Erbach showed two interesting tech demos that aren’t quite ready for prime
time yet: OTOY’s Path Tracing renderer, called Octane Render (http://render.otoy.com), and a real-time
path tracing tech demo called Brigade. Octane Render is a path-tracing renderer that is so fast that
users can change their material settings and receive near-instant feedback. Brigade (http://igad.nhtv.
nl/~bikker) is a research project attempting to provide a real-time path-tracing solution. Brigade’s path-
tracing implementation tracing uses both the GPU and CPU, and balances the use of both depending on
the time to render each frame. The renderer can support an unlimited number of light sources.

Z - s p a C e : Z-Space (http://zspace.com) is a 3D-viewing station that features a 24-inch passive
stereoscopic 3D display fixed with tracing sensors. With a pair of polarized 3D glasses and the included
stylus, you can use the display to view and manipulate objects in 3D. This wasn’t the only 3D-viewing
system shown on the convention floor, but it was certainly one of the most impressive systems, and we
can expect to see many more 3D systems appearing in future shows. — Carey Chico

octane render.

http://tandent.com/lightbrush.html
http://WWW.GDMAG.COM
http://zspace.com
http://render.otoy.com
http://igad.nhtv.nl/~bikker
http://igad.nhtv.nl/~bikker
http://www.luxion.com
http://www.foxrenderfarm.com
http://www.xlrender.com
http://www.scalar.ca/rendercloud
http://www.optis-world.com/products/hardware/OMS2.html
http://www.optis-world.com/products/hardware/OMS2.html
http://tandent.com/lightbrush.html
http://tandent.com/lightbrush.html

http://www.GDCONF.com

By Car ey Chico

Disclaimer: This article does
not provide legal advice and
should not be interpreted
as such. If you have any
legal questions, please
consult with an attorney
licensed in your state.

I pr essed send, and one by one , the termination notices flew off to their
unlucky recipients. That was the simple part. I was the only one in the office at that point, surrounded
by several lined-up computers, assorted cables, fancy wire garbage cans, and cubicle walls for 10
workstations. The story behind the closure of my studio, Globex LA, was simple: The latest bridge loan
targeted our publishing and marketing effort in China, which meant that I suddenly had no funds to make
payroll. Given the suddenness of the situation, the only thing I could do was soften the blow and work to
dissolve the studio in a way that took care of our staff in the best way possible. Closing down a studio is
not easy (and it never should be), but one can enter into it prepped and aware of the details that will help
make the process easier on both you and your employees. Hopefully, you’ll never have to use it.

www.gdmag.com 21

http://WWW.GDMAG.COM

game developer | october 201222

e x i t i n g g r a c e f u l l y
 Not every studio closure has to be a 38 Studios-esque gossip-strewn

affair. I was with Pandemic Studios when it closed in 2009, and its closure
was as well thought out and orderly a process as one could expect. A huge
group of HR agents and escorts were on hand to manage the process, group
meetings were delivered on each floor to make the announcement and
outline the procedures for termination, and support programs to help people
write résumés and find new jobs were discussed. Surprisingly, there was
laughter and smiles, unsurprisingly mixed with melancholy and sadness. In
the end, Pandemic’s closure was executed in a manner meant not just to care
for the employees, but to engender a little bit of hope in them as they left the
office for the last time. If you have to close, that’s how you want to do it. Given
that I was also one of those employees who received my layoff notice that
day, I can tell you that I’m not speaking from the perspective of those who
were in charge that day.

j u d g m e n t c a l l s
 The bottom line is that closing a studio is a horrible experience no

matter what you (or anyone else) do. People in charge never relish the
opportunity to do layoffs or mass firings. The best thing to do is not lose
focus of the people during the process. Focus on closing your studio in
the fairest way possible. This starts with being honest not only to your
employees, but to yourself. It’s very easy to justify keeping the team in the
dark, telling yourself that you are shielding them from harm, but most of
the time this is just nonsense. The selfish part of you is saying “If I tell them
what’s going on, they’ll leave,” but the compassionate part of you is saying,
“I need to let them know what’s going on.”

If your conscience still hasn’t triumphed, you might be more persuaded
by the law: The simple fact is that you cannot let people work for free, knowing
that you cannot pay them. (See the Fair Labor Standards Act in the Resources
section.) Two things are important here:

 1. If you have no money and you cannot guarantee salary—and you
know it—don’t let your employees work another day.

 2. If you terminate your employees and still haven’t paid their
wages, then the clock starts ticking.

In the situation where you have unpaid wages, the following rules then go
into effect:

 1. Each day that goes unpaid is charged a full day’s wages.
 2. This goes on for 30 days.

After this period, the laws regarding unpaid wages are different in every
state. In California, we could have incurred penalties from the state; in other
states, it could have been a misdemeanor or even a felony.

p r e p p i n g t h e e m p l o y e e s
 Preparing the employees for the studio shutdown can be the difference

between a chaotic closure and an orderly, responsible one. Here are some
suggestions and guidelines on how to bring the house down while limiting
collateral damage.

Close your studio earlier than you want to. In an ideal scenario, it would
be best to prep for a shutdown before you have run out of money. It’s not
easy, of course; often, many founders are extremely driven individuals who
may have misplaced optimism regarding the state of the company, and can
end up being their own worst enemy. But if the reality is that you have only
one month of funds left with no potential financial solutions on the horizon,
you might be better off laying off your staff with at least one month of
severance and outstanding vacation pay.

Tell everyone together. Ultimately, it’s best to perform a mass layoff
together, as a company, in one room. If you are a larger organization, you

IL
LU

ST
RA

TI
ON

S
BY

 j
UA

N
 R

Am
IR

ez

www.gdmag.com 23

will have to bring your leadership team on board early and employ them in
the actual termination process, since they will be needed to help deliver the
information. Most everyone should hear about it at the same time. In my
case, at my studio, I had my COO prepped for the event, but we both sat in the
same room and let everyone know the situation together.

Unpaid leave can buy you time. After notifying the team about the
funding problem, the next thing I did was put them on unpaid leave. Given the
extremely surprising nature of our shutdown, this allowed the studio to wind
down with a softer landing. The nature of unpaid leave is that it retains the
hope of resuming work within a short time period. This is useful if you know
you can’t pay people now, but you have high hopes that they can come back
to work within a short period of time. In our case, we had high hopes that this
would happen. We had 15 days remaining in March—which meant 15 days of
active benefits before I had to pay new insurance premiums for the staff. This
may be dependent on your state’s labor laws, though, so you’ll have to figure
out what your specific situation requires of you.

Work-sharing programs may soften the blow. In my case, California
had a statewide work-sharing program that can help employees on unpaid
leave; if a company implements a reduction in wages or hours greater than
10% each week, then the company can apply for work sharing on behalf of its
employees. The state then will pay partial unemployment benefits relative to
the percentage of wages that have been reduced.

While this doesn’t equal a 1:1 replacement for wages lost, it does allow
employees to receive unemployment benefits services before they are unemployed.
It also allows a company to try to retain employees rather than do immediate
layoffs to save money. The work sharing program even allows a slow ramp down of
wages/hours to permit a full 100 percent benefit while on work sharing.

It’s important to note that while the goal of this was to supplement the lost
wages, it also was a strategy to improve team morale. To make it even more
fair, we also initiated four day work-weeks. This was a blessing and a curse in
some ways. The goal was to again work to the employees’ benefit, but in the

end this may have actually slowed down the team’s momentum and limited
progress on game projects that they were working on. An important note to
clarify is that I implemented work sharing in January, two months before the
studio reached the point of impending closure. At that point, the goal was to
retain employees as long as was necessary until the company could reach
revenue generation.

t e r m i n a t i o n
 Leading up to the final date of March 31, I notified the

parent company of our impending closure, and prepared
paperwork for the team in the event that I would have to
terminate them. The key reason I could not keep them on
unpaid leave past March 31 was because I would have to
pay the premiums on all benefits for that next month, so
I had no choice but to terminate them if we could not find
the funds to move forward. As it turned out, that is exactly
what happened, so I issued termination notices to the team
via email (we didn’t need to call them back to the offices for
that). The termination process requires the employee to fill
out a few different forms, which help the employee apply
for unemployment (and help the company cover its butt).

w i n d i n g i t a l l d o w n
 At this point, I was the only employee left. I had deferred my resignation

in order to take care of all of the remaining issues of a closure. Despite
having issued the termination notices, I wasn’t done yet. I still had to take
care of the bills, rent, benefits, and assets.

http://WWW.GDMAG.COM

Craigslist is your friend. While selling assets to employees is a logical
solution, it’s not the best option. There are certain liability risks and potential
wage claims and lawsuits that make selling assets to ex-employees a
risky one. (Also, the concept of a newly unemployed person spending their
last paycheck by putting it back into the company by which they were
just terminated just doesn’t seem fair.) To sell the assets, I posted ads on
Craigslist and called other potential buyers, such as an auction house and
a used-furniture reseller. I ended up selling most of the assets via Craigslist
and managed to sell almost everything within two weeks. On the last day, I
had arranged for a secondhand office-supply company to come by and take
the remaining desks and cubicle walls out of the office for free, which wasn’t
ideal but let me close the doors on a vacant office. One might think that the
office management may have wanted the furniture for the next tenant, but
this wasn’t the case with my office building.

Be persistent with lease negotiations. Our studio still had one year left
on the lease, and the office management wanted us to pay a percentage
of the final year for ending the lease early. However, with persistence you
should be able to exit paying only for the time used. In my case, after much
discussion and pleading, the management finally agreed to terminate by
taking the deposit and remaining month of use.

Check your benefit payment timing. With most benefits providers
(including ours), you pay premiums in advance of the month that they are
used. I had managed to pay our health, vision, and dental benefits through
the end of March, so the employees would remain covered until the end of
that month. However, at the beginning of April, I would owe the next set of
premiums, which I couldn’t pay. The process of shutting down the benefits
programs was fairly simple, but a few programs such as our VOIP service,
401k plan, and workers’ compensation insurance plan caused me long-lived
problems which remain outstanding as I write this. Be sure to check the
status of your benefit programs and try to reserve enough to ensure a proper
roll-off of services to employees.

Budget for insurance audits. This was one of our sore points—when
you pay workers’ compensation insurance premiums, you prepay for the
year based on total wages for the office. At the end of the year, the insurance
agency audits your studio to determine the difference between predicted
wages and actual wages. If you are like any other studio, you’ll be hiring
or giving raises throughout that year, and you’ll find that you owe more for
workers’ comp insurance than you previously paid. Of course, if you are
terminating a studio and you have no cash, you’ll find that you owe money
for workers who are no longer working at the company.

Service contracts are a pain to terminate. Those service contracts you
signed to minimize your monthly expenses will come back to bite you. We
had a hard time dealing with our service contracts (such as our VOIP service)
because if you are on contract, you may owe a large early termination fee.
You will have a hard time convincing these companies that you don’t owe the
money—because technically you do—and cannot pay the termination fee
because your company is being shut down. There isn’t a whole lot you can do;
you’ll end up receiving collection notices for these outstanding amounts and
you’ll have to work out solutions to these issues. In our case, I’ve discovered
that these companies have no empathy at all to the issues plaguing a company
shutting down, and generally don’t believe you
when you say you have no more money to
pay them.

p e r s o n a l
l i a b i l i t y

 When you start a company, even a
legal corporation, you might think that you
are shielded from personal liability.
Surprisingly, this isn’t always the case;
if you have a business credit card,

for example, you may find out later that you are the guarantor for the card if
the company fails to pay it. This comes as a surprise to most everyone who
has a card for their business.

Generally, when you sign up for a business bank account, you get a business
credit card along with it. What isn’t so clear is that, even though you may be
incorporated—even though you may have a company tax ID number attached to
that account—your signature affirms your personal guarantee for the balance of
that card. So, after the company has shuttered and you are long gone, you may
discover an old balance from that card that is now your responsibility to pay.

t h e k i n d n e s s o f v e n d o r s
 If you’re lucky, not all the people you work with while closing

down your studio will be so diligent in seeking final payment.
I was lucky enough to have several vendors who continued
to provide services for me despite delayed payments. My
IT consultant let me use my outstanding paid hours even
after I could no longer make the monthly payments. My
CPA graciously worked on profit-and-loss reports in spite of
delayed payments for her services. My office furniture agent
helped provide me with contacts for resellers who would help
me remove the furniture from the office. My HR consultant
granted me zero-fee consulting calls as I worked out the
details of the termination process. Thankfully, with these
selfless good-willed supporters at hand, the process went
much more smoothly than I could have hoped.

m o v i n g o n
 I gave my resignation two weeks after I issued termination notices to the

employees, but this wasn’t the end of my work shutting down the studio.
Even after resigning, I kept in contact with all the employees to give them
guidance. In the end, my personal
belief is that the most important
aspect to shutting down a studio is
how you deal with the employees
who put their trust in you and in the
company. While it may seem that
you are only dealing with X number of
employees, the repercussions of the
event will affect spouses, children,
and extended family in ways that
are not initially obvious. Do what’s
right and fair. Shield them from pain,
not the truth, and always remember
that after this experience, there will be another one—and it’s a small industry
indeed. In some ways, we are remembered for not only how we ran the studio
and for what products we made, but also how we cared for our employees
when the business ended.

Carey ChiCo is a 16-year veteran of the game industry. Having worked on all platforms, from

PC to console to mobile, he has carefully nurtured his talents to expand his skill sets driving

products and managing studios from creative, production, and business mindsets. He has

always been an active member of the industry at large, formerly as a GDC Advisory Board

member, a freelance writer for Gamasutra and Game Developer magazine, and a frequent

speaker at industry trade shows and events.

S p e c i a l t h a n k s t o H e l e n P a r k e r f o r H R c o n s u l t i n g a n d R o b e r t

W y n n e r f o r l e g a l c o u n s e l t h r o u g h o u t t h i s o r d e a l .

r e s ou rc e s
Fair Labor Standards Act: www.dol.
gov/whd/regs/compliance/fairpay/
fs17g_salary.pdf
California Total and Partial
Unemployment documentation: www.
edd.ca.gov/uibdg/Total_and_Partial_
Unemployment_TPU_8005.htm
California’s Work Sharing Unemployment
Insurance Program: www.edd.ca.gov/
pdf_pub_ctr/de2329.pdf

game developer | october 201224

http://www.dol.gov/whd/regs/compliance/fairpay/fs17g_salary.pdf
http://www.edd.ca.gov/uibdg/Total_and_Partial_Unemployment_TPU_8005.htm
http://www.edd.ca.gov/uibdg/Total_and_Partial_Unemployment_TPU_8005.htm
http://www.edd.ca.gov/pdf_pub_ctr/de2329.pdf
http://www.dol.gov/whd/regs/compliance/fairpay/fs17g_salary.pdf
http://www.dol.gov/whd/regs/compliance/fairpay/fs17g_salary.pdf
http://www.edd.ca.gov/uibdg/Total_and_Partial_Unemployment_TPU_8005.htm
http://www.edd.ca.gov/pdf_pub_ctr/de2329.pdf

25W W W . G D M A G . C O M

Game Design at VFS lets you make
more enemies, better levels, and tighter
industry connections.

In one intense year, you design and develop great

games, present them to industry pros, and do it all in

Vancouver, Canada, a world hub of game development.

The LA Times named VFS a top school most favored by

game industry recruiters.

THE ONLY ONE-YEAR PROGRAM

IN PRINCETON REVIEW’S 2012

TOP GAME DESIGN PROGRAMS

Z
B
R
U
S
H ®

V
F
S
 S

T
U

D
E
N

T
 W

O
R

K
 B

Y
 N

IK
O

L
A

S
 L

A
Z

A
R

http://WWW.GDMAG.COM
http://vfs.com/enemies
http://gamasutra.com

game developer | october 201226

B y C h r i s M c E n t e e

With Rayman ORigins, Ubisoft Montpellier sought to bring Rayman back to his
2D roots with a fresh coat of HD paint and gameplay that felt both new and
nostalgic. But no team has an easy time building a brand-new engine and
using that work-in-progress tech to make a game—especially when that
game is a reboot of one of the company’s oldest and most beloved franchises.
Rayman ORigins has had an amazing critical reception since its release in
late 2011, and the game remains one of the most creative, chaotic, and
valuable game experiences most of them have had to date. The following
postmortem is a culmination of what I have heard and discussed
with numerous teammates, as well as a personal reflection on what I
experienced and witnessed while working as a designer on Rayman ORigins.

www.gdmag.com 27

http://WWW.GDMAG.COM

GAME DEVELOPER | OCTOBER 201228

 WHA T WENT RIGHT

1. START SMALL
AND EXPAND WHEN
NECESSARY

 RAYMAN ORIGINS began as a small
production of only fi ve individuals
with a vision of creating a creative
and artist-friendly engine and using
it to produce a quality game. They
worked in the intimate Ubisoft
Montpellier Villa under RAYMAN
creator Michel Ancel, and at fi rst they
didn’t even know their project would
end up as a RAYMAN game. This small

team, working under rather calm
circumstances, was able to explore
and experiment with this new
technology before the pressures of
production and release dates sunk
in, which let them establish RAYMAN
ORIGINS’S identity and creative vision
early on.

The real pre-production phase
came about after several months
of experimentation and engine
building, and an additional team
of people began to trickle in to
help cover all the creative bases to

make sure that the pre-production
process would build a solid base for
the production team to tackle when
it was their turn to come on board.

Eventually the team became
about 75 at the Ubisoft Villa,
and around 15 in Casablanca,
making a team of more or less 90
pushing through a tough and short
production cycle to get the game
out on time, and even artists from
Ubisoft Refl ections in Newcastle
were brought on to pick up some of
the slack in the last stretch.

This is one of the major things
that was done right on RAYMAN
ORIGINS; the team was small when
there was time to breathe, but
when it was time to get the game
out there, the team was able to
expand with talent just in time to
go full steam ahead and build a
RAYMAN worthy of the franchise.

2. THE UBIART
FRAMEWORK

 A few years ago, Ubisoft
Montpellier set out to build tools
that would encourage artists to
experiment freely, by themselves or
in small groups, regardless of their
experience or artistic domain. With
these new tools, each of the artists
can create a unique and interactive
prototype with ease; seeing your
artwork in action is as easy as
dragging and dropping it into the
scene. This was the concept behind
the UBIart framework, and it is one
of the main factors that contributed
to RAYMAN ORIGINS’S success. With
no in-engine asset browsers, the
artist simply has to browse in
Windows for the desired asset and
drop it into the editor window, which
makes it much easier to add assets
into the game. The engine might
not be user-friendly enough to be
released to the public in its current
state, but it is very streamlined so
that it only has what is necessary
for the development team.

While building UBIart, the team
developed an integrated animation
tool called GenAnim, which lets

WWW.GDMAG.COM 29

animators combine hand-drawn
animation with modern bone-driven
techniques. This was integral to
building RAYMAN ORIGINS’S unique
animation style, which is reminiscent
of Saturday morning cartoons with
a hint of a French touch. In fact, a
handful of animators on the RAYMAN
team came not from the video
game industry, but straight from
animated fi lm; with GenAnim, they
can be easily integrated into the
development team.

The UBIart framework is handy
for designers, too, because it’s
easy to prototype with. Its intuitive
skeletal binding system makes it
easy for designers to use the game’s
existing characters and objects
to set up complex ideas in simple
ways. With UBIart, it’s fairly easy
to create a basic level topology,
defi ne collision, and apply textures
to the level’s “friezes” (blockout
geometry), and the engine will
make sure it has proper artwork
that scales and tiles accordingly
no matter what confi guration or
number of vertices the designer
uses. The most important aspect
of the UBIart framework to a level
designer, however, is that the
game is always running in the
editor, so as the designer pulls and
stretches the geometry, or drops
in a series of platforms, RAYMAN
continues to animate and move
with the geometry, just waiting for a
controller input to take him through
the environment. Someone can even
be playing while another person is
editing, which makes the process
of refi ning and iterating on a level
much more effi cient.

3. FOCUS ON
THE THREE CS

 At Ubisoft, the three Cs of a
game (camera, character, and
controls) are the most important
thing to defi ne and maintain
because they determine the player’s
experience throughout the entire
game. Obviously, when the control
of the main character feels wrong,
when the camera just doesn’t cut it,
or when the character animations
don’t provide good feedback to
player inputs and in-game actions,
the overall experience in the game
world feels awful, even if the game
and level design is outstanding. This

is especially true for platforming
games, as they are entirely based
around the player’s ability to use
the controls to deftly maneuver
the player character through
troublesome terrain. The better this
character feels for players, the more
quickly they will feel in control of the
avatar. With RAYMAN, we combined
hand-drawn animations with fl uid
movement metrics, which results in
control that few players have ever
experienced in a game before.

The UBIart framework was not
originally developed specifi cally
to create a RAYMAN game, and it
wasn’t until the basics of the engine
were up and running that Ubisoft
decided to create a RAYMAN reboot.
From there, the artists defi ned his
animation style, and when they felt
that his movements looked fl uid and
fun, the programmers ventured to
craft the in-game movement metrics
to match the fl uidity and timing of
the animation. The player mechanics
were designed and implemented
iteratively, and the animations were
changed and tweaked and thrown
away until the three Cs felt perfect.
Only once the main character was
fi nished and comfortably fun to
control did we begin working on level
and gameplay element design.

The reason this worked out
so well is that rather than making
levels and designing the character
mechanics concurrently and
having both infl uence each other
(which would potentially water
down the three Cs to compensate
for the level-design metrics), the
team knew the character felt great
and just needed to build levels that
he could traverse with the use of
his skill set and metrics. In this
way, the team was guaranteed that
no matter what, playing through
the levels was going to feel fl uid
and fun. While the team did end up
making changes to the three Cs
later in the development process
to fi ne-tune them, the fact remains
that the RAYMAN that was functional
before game production began was
at least 90% of the RAYMAN that is
playable in the fi nished product.

4. CREATIVITY VS.
RATIONALITY

 Creativity is a hallmark of Ubisoft
Montpellier, and much of that comes

from creative director Michel Ancel.
While creativity is obviously an
important aspect of game creation,
and had a very large hand in the
critical success of RAYMAN ORIGINS,
pure uncontrolled creativity can be
dangerous to game development.
A highly creative individual or team
needs very rational designers to
balance them.

In RAYMAN ORIGINS, the game
director, Sébastien Morin (who has a
strong background as a programmer),
and the level design director, Olivier
Palmieri (who is highly skilled in the
fi eld of rational design—I’ll talk more
about this later), helped contain
the outpouring of creative ideas.
Every day they would fi lter them into
something equally charming but far
more manageable for the team to
build (and more easily understood by
the player).

This process of rationalizing
creative output for implementation
didn’t happen until pre-production
had been fi nished for a while; for the
year of pre-production, where the
small core team was creating the
UBIart framework and developing
the three Cs, we didn’t need to worry
about it. Pre-production is the perfect
time for creativity to run Irampant
and see where it takes you, because
you are still working hard to defi ne
the identity of your game.

Once production started,
however, the design directors
stepped into their roles more fi rmly
and began to tackle the sea of
interesting concepts and mechanics
and rationally construct a game
system out of it, and Michel Ancel
stayed involved in order to preserve
the game’s creative charm. It was
this fi ne balancing act between two
great forces that kept the project
on an even keel and ultimately
produced a game that was both
creative and playable.

5. RATIONAL LEVEL
DESIGN

 In March 2012, I wrote a
lengthy article on Gamasutra
about Ubisoft’s internal rational
design methodology, which was
conceived by Lionel Raynaud,
Ubisoft worldwide content director,
and Eric Couzian, Ubisoft game
design conception director, and
was taught throughout Ubisoft

by Olivier Palmieri. (You can read
the article here: http://gamasutra.
com/view/news/167322/Rayman_
Origins_designer_Chris_McEntees_
rational_approach_to_game_design.
php.) Here is a quick explanation of
rational design from that article:

"Rational design is all about
eliminating unnecessary
information, making
things inherently readable,
understandable, and
apparent, introducing
mechanics in an orderly and
easily digestible fashion,
and preserving the learning
and diffi culty curves of
a game, known as macro
fl ow. In principle, it is best
to provide a player with
signifi cantly interesting and
deep mechanics that are
well explored and exploited
through clever rationalized
level design, rather than
injecting the game full
of one-shot gameplay
mechanics to feign depth.
A good mechanic, such as
the portal gun in the Valve
game Portal, can carry an
entire game by itself with the
addition of proper gameplay
elements to help emphasize
the usefulness and depth of
the mechanic.”

When this Design Academy was
fi nished, Palmieri came to the
RAYMAN ORIGINS team as level design
director to teach the design team
how to properly rationalize the game.
Before this, the team had some idea
of what they wanted for the levels in
the game, but once they began the
rationalization process, the design
became far more consistent. The
level design team employed rational
design to understand how diffi cult
a gameplay sequence was, why it
was so diffi cult, and where in the
macro structure of the game such a
sequence would fi t. Rational design
helped defi ne what color a gameplay
element should be to greater clarify
its function in the game, and it
even denoted when some exotic
gameplay was required to break up
the repetition of the core gameplay.

Quite a large handful of reviews
of RAYMAN ORIGINS commented on

http://WWW.GDMAG.COM
http://gamasutra.com/view/news/167322/Rayman_Origins_designer_Chris_McEntees_rational_approach_to_game_design.php
http://gamasutra.com/view/news/167322/Rayman_Origins_designer_Chris_McEntees_rational_approach_to_game_design.php
http://gamasutra.com/view/news/167322/Rayman_Origins_designer_Chris_McEntees_rational_approach_to_game_design.php
http://gamasutra.com/view/news/167322/Rayman_Origins_designer_Chris_McEntees_rational_approach_to_game_design.php
http://gamasutra.com/view/news/167322/Rayman_Origins_designer_Chris_McEntees_rational_approach_to_game_design.php

GAME DEVELOPER | OCTOBER 201230

its learning and diffi culty curves,
saying that they are as close to
perfect as a game can get. While
the team understands that it isn’t
perfect and there is always room
for improvement, the fact that the
players felt the need to comment
positively on the diffi culty of the
game is testament enough to the
implementation of rational design
methodology. Through its use the
designers were able to anticipate
what a player should be learning
at any given point in the game, as
well as understand where it was
appropriate to challenge the use of
certain in-game powers.

Not only was the fi nal game
better thanks to the rationalization
process, it helped push out the
60+ levels that were required for
the release of the game. When
we were getting close to the end
of the production phase, we still
had a lot of levels left to build, and
we were able to speed up that
process by creating rational design
tables and level design briefs for
gameplay element distribution,
which gave the team a clear
direction. Production near the end
was lightning fast compared to the
beginning, and the game made it
out the door on time with the scope
that was promised.

 WHA T WENT WRONG

1. FORM DEFINED
FUNCTION

 Architect Louis Sullivan famously
said, “Form follows function.” In
games, this means that when
the player sets their eyes on the

gameplay element, they should have
a sense of instant familiarity with
it, and an inherent understanding
of what it is and what it will do. In
this way, the designer makes an
agreement with the player to provide
clear signs and forms, and in return
the player cannot feel cheated when
they fail; if all the information is
provided clearly, then it is only the
player’s lack of skill that is to blame
for their failure.

In a creative project like RAYMAN,
however, the development was
very much driven by artwork,
style, and silliness in character,
environment, and object designs.
Many of the gameplay elements
that can be seen throughout the
game were built backward, where
form defi ned function. Rather than
asking, “We need a platform for
this world, so what can we make
it look like that will clearly signify
its function as a platform?” the
team ended up with something
more along the lines of “So in this
concept for the current world we
have these silly-looking birds.
I suppose because their beaks
are fl at they could be platforms,
right?” This doesn’t sound so bad
at fi rst, but in this example, birds
were used as platforms, enemies,
and spiky traps. By using birds for

platforms, the team was giving the
player the initial impression that
they were actually enemies or traps
to be avoided. Unsurprisingly, the
player’s fi rst instinct was to attack
the platform rather than to jump
onto it, which is something that was

witnessed nearly every time during
playtesting. Ultimately the birds
remained birds, but their original
red coloring (which was foolishly
the exact same color the enemy
birds were sporting) was changed to
green to match the green color of the
platforms in the previous world.

This was not an isolated case
of form defi ning function in the
development of RAYMAN ORIGINS, and
as a result the game simply isn’t as
easy to read and understand as it
could have been.

2. OUTSOURCING
 Outsourcing has become a

standard in game production; all the
biggest and best projects outsource
to other studios to simply get the
massive volume of work done
within the publisher’s unrealistic
timeframe. While RAYMAN was not
exactly a massive production,
it was still a triple-A game that
needed enough content to justify
the price tag, and since Ubisoft
Montpellier’s Villa was a fairly
small team, the studio looked to its
partner studio Ubisoft Casablanca.

Ubisoft Casablanca is a very solid
studio. They have produced a number
of Ubisoft titles, including a few
platformers, so it made sense to work
with them on ORIGINS. The issue with
outsourcing is that the management
of the studio and the communication
between studios needs to be top-
notch for it to work, especially when
the core team is so small. When a
change is made to the level-design
guidelines, for example, virtually
every involved person knows before
the end of the afternoon at the Villa.
For the outsourced studio, we have
to make a phone call to relay this
information. If it comes too late,
the team there will have continued
working under outdated guidelines,
making some of their work obsolete
even before it is created.

This is obviously something that
can be avoided simply by having a
proper chain of communication, but
because of the fl uid way that the
RAYMAN team at the Villa worked, it
became a problem quite quickly.
At the studio, the team rarely had
a fully fl eshed-out set of rules
and guidelines for level creation
and implementation of gameplay
elements; the creatives in the team

were constantly changing their
minds because only when they
saw the elements in action could
they really know if they were what
they wanted. This meant that rules
changed almost every day, and
it was not possible to constantly
brief the Casablanca team on
what changed twice a day. This
meant that when it came time to
review the outsourced content, it
was unsurprisingly “sloppy” by
defi nition, simply because it had
been created under an outdated rule
set. Ultimately the responsibilities of
the Casablanca team were adapted
to fi t into an area of production more
easily managed by an outsourcing
coordinator, since the rules could
be set in stone and easily overseen
constantly from abroad.

In the end, the outsourcing
really helped in the creation of the
sheer volume of content required
to have a complete game, and there
is no doubt that the game would
not have been fi nished had it not
been for the collaboration with
the Casablanca studio. It is simply
important to realize the realistic
scope of what can be handled from
such a distance and how to best
make use of your outsourcing
partners to maximize the amount
of usable content they can produce.

3. LACK OF PROPER TOOLS
 The UBIart framework was, as

previously stated, a godsend for
the production of a modern two-
dimensional platformer. The core of
the framework was perfect for the
task, but the rest of the content-
development tools weren’t properly
integrated with Ubiart, which made
it hard for the dev team to create
levels or build out other aspects of
the game in the engine.

Sure, there was GenAnim, which
was a very big part of creating
RAYMAN ORIGINS, but even GenAnim
has its shortcomings. For an outside
animator coming onto the project,
GenAnim couldn’t be any less user-
friendly; there are no menus, hardly
any buttons or tooltips, and even the
animation timeline is as barebones
as can be. One wonders how the
animators get anything done at all
in such a tool, but when you talk to
one of the animators on the team it
becomes quite clear: Everything is

Caption

WWW.GDMAG.COM 31

done using keyboard shortcuts. In
order to use GenAnim, you have to
memorize the keyboard shortcuts.

While the lack of proper tools
did not necessarily make the
quality of the game any lower, what
it did do is make life more diffi cult
for the team, meaning production
was not as effi cient as it could have
been with the proper tools in place.

This point was not exactly clearly
recognized during actual production,
as the team had been working in the
basic engine since the beginning.
Only when we started developing
the follow-up game RAYMAN LEGENDS
was it increasingly clear that the
team needed better tools. There were
many small issues in the engine that
forced the level designers to fi nd
their own workarounds just to get the
functionality they needed in place,
but with the simple addition of proper
tools and engine improvements the
work was clean and fi nished fi ve
times faster than before.

4. LIMITED PRE-
PRODUCTION SCOPE

 Earlier, I mentioned that RAYMAN
ORIGINS spent a signifi cant time in
pre-production, producing a very
solid base for the game (the UBIart
framework, the three Cs, GenAnim).
Since it took so much work to build
a solid core for RAYMAN, we had to
choose what we wanted to focus
on. During pre-production we had
built the beginnings of a jungle
world, complete with gameplay
elements for the characters to
interact with, but beyond that
the team decided that the engine
and characters were the most
important areas to take care of
before production started. This
meant that we couldn’t start
investigating gameplay elements
for the other worlds until the
production phase began.

When the production phase
started, we had concept art for the
other fi ve or so worlds in RAYMAN
ORIGINS, since we needed that to
defi ne the fi nal art style of the game.
But concept art alone does not
satisfy the requirements for pre-
production on a world. We needed
to know if the powers the player
unlocks in each world are strong
enough to defi ne the gameplay
experience and fl exible enough to be

used in a wide variety of gameplay
situations. Without this research,
the design team was practically
fl ying blind until enough content had
been created to justify the decision
or, worse, prove it wrong and send
things back to square one.

Some of the gameplay elements
that were created ended up being
far less reusable than others, which
resulted in a large time investment
on the art side, the programming
side, and even the level-design side,
since we needed to experiment
with each element before drawing
conclusions on how useful it was.
This is not necessarily anything new
or surprising for game developers,
and considering the sheer amount
of different gameplay elements in
the fi nal game it would have been
impossible to experiment with all
of them back in pre-production.
However, this doesn’t change the
fact that had the team focused on a
broader range of different gameplay
elements from all the proposed
worlds in the game rather than
focusing on every element in the
fi rst world, we would have been able
to make the rest of the game more
smoothly and throw less work away.

5. BOSS FIGHTS
 It is more or less safe to say that

out of all the content that RAYMAN
ORIGINS boasts, the boss fi ghts are far
from the best part of the experience.
Apart from the odd chase sequence
or Moskito shooter boss fi ght, the
rest are quite lackluster and require
little skill to defeat; the player simply
has to meticulously memorize an
otherwise unpredictable pattern,
and then hope that there isn’t
another phase afterward.

The other issue with the boss
fi ghts is that there is a lack of clarity
not only in the patterns, but in the
creatures themselves. For example,
each boss has its own weak spot
that appears from time to time. This
weak spot is always placed on top of
the creature, whose entire body is
otherwise deadly upon contact. What
this means is that even if the boss
is in a temporarily stunned state, if
the player misses the weak spot and
touches the boss, they are hit and
possibly killed. This is very unclear for
a player, and something that should
and could have been addressed

when the bosses were being created.
A boss should also be there to

challenge a player’s understanding
of the gameplay mechanics they
have been taught during the previous
world. Let’s take the punch power
RAYMAN learns in the Jungle world
of RAYMAN ORIGINS. The fi rst boss of
the game, Poor Little Daisy, should
have been designed to challenge
players to master the punch ability
in high-tension situations. That way,
players can walk away feeling like
they have mastered the punch ability,
and no matter what is thrown at them
in future levels, it will not be their lack
of ability to use the punch that will
slow them down. Instead, Poor Little
Daisy simply required the player to
employ the wall-run ability learned in
the sixth world of the game to avoid
Daisy’s patterns until she hurt herself
and revealed a weak spot, which
could also be jumped on, rendering
the punch entirely optional.

The bosses were developed by
a more isolated space of the dev
team, where some consistency
issues were able to go by the
wayside. Unfortunately, this left
the player with subpar boss fi ghts

which, through a few simple design
choices, could have ended up far
more understandable, relevant,
and, ultimately, a lot more fun.

 FROM ORIGIN TO LEGEND

 Many things went right with
RAYMAN ORIGINS, but there was
plenty of room for improvement,
too. Luckily, the team has the
opportunity to create a follow-
up title, RAYMAN LEGENDS, on the
Nintendo Wii U. We’ve been given
the opportunity to not just improve
on the base of ORIGINS, but instead
refl ect on our shortcomings
and craft a better, cleaner, and
ultimately better RAYMAN title that
is new and creatively refreshing for
both the team and our players.

CHRIS MCENTEE was a level and boss

designer on the production of RAYMAN

ORIGINS, having previously attended

college in the Netherlands (NHTV Breda

University of Applied Sciences) where he

discovered a strong passion for game

design. He continues to work at the Ubisoft

Montpellier villa, currently as a game and

level designer on the upcoming Wii U title

RAYMAN LEGENDS.

http://WWW.GDMAG.COM

game developer | october 2012 32

Floating over the world
in bliss
» The casual user can get the
best feel for the SpaceMouse Pro
in Google Earth: One minute, I’m
smoothly gliding over the Earth
looking down like an astronaut.
The next minute, I’m controlling my
descent through the atmosphere so
smoothly that I feel like a feather.
I found the movement so Zen-like
that I spent an inordinate amount
of time exploring random geological
wonders of the world. I probably
spent a whole hour touring Disney
Paris with my son. As a promotional
controller for Google Earth,
SpaceMouse Pro shines.

I also gave the SpaceMouse
Pro a shot in Microsoft flight to
test how the controller worked as a
replacement joystick. The software

detected and used the SpaceMouse
Pro without any issues, but I was
confused initially by how it was
mapped. Once I got past the logic
of shifting the mouse left-to-right
in order to steer the plane, I was
gracefully gliding over Hawaii. With
Microsoft flight, the default settings
for the 3D controller didn’t use a
return-to-zero position. In other
words, if you pushed the controller
left to turn left, and then released
the controller, the movement of
the plane remained fixed to that
controller position. You had to push it
back to the right in order to stabilize
the plane again. Ideally, this would
be an exposed setting that I could
adjust to my liking.

Of course, you probably aren’t
planning on buying a $300 mouse
for flight sims and Google Earth.

Let’s see how it fares in actual 3D
modeling packages.

working in 3d
» The first work application I tried
out with the SpaceMouse Pro was
Autodesk Softimage. It was at this
point that I experienced some of
the chronic issues that continually
plague these types of unique control
devices. Ultimately, when you try to
employ the mouse for things other
than simple movement through
3D space, you discover it isn’t the
best method for getting actual work
done. For programs in which you
want to move through commands at
lightning speed, manipulate window
functions, and work in 3D space,
the SpaceMouse Pro becomes
something of a handicap. When my
hand is resting on the 3D movement

toolbox

3DcOnnExIOn

SpaceMouSe
pro
BY cAREY cHIcO

Let’s face it: We’re lazy. We made computers so we wouldn’t have to compute by ourselves, and we made graphical user
interfaces and mice so we wouldn’t have to type anything. I’m just waiting for the day I can wear a semicircular, mind-melding device
on my head to control my computer. This is kind of the appeal of 3Dconnexion’s SpaceMouse Pro. The idea that movement in 3D
space can be simplified to one single controller appeals to my inner couch potato. Rather than holding down some keyboard keys
while simultaneously dragging an oblong device—which I’m no doubt also holding down keys on—I simply hold and push one round
controller and I’m flying in 3D space. Easy.

PriCe

› $300

sYsteM reQUireMents

› windows 7, vista, or XP Mac os
10.4.6 (or later) Usb port

Pros

1 Beautifully smooth operation
in Google earth and other flying
programs

2 useful for zoom and pan in photoshop
when used with Wacom pen

3 Helps get the user out of the way for
asset review in 3D packages

Cons

1 Not enough options for user-
preference setting

2 can’t fully replace a mouse
3 Needs to support more general

program usage in Windows

3dConneXion
SpaceMouse pro
www.3dconnexion.com

http://www.3dconnexion.com

www.gdmag.com 33

knob, my mind is thinking
“movement.” When I’m doing
everything else in a 3D package, my
mind is thinking “everything else.”
There just aren’t enough keys on this
thing to go around.

I focused my efforts on
configuring the device (which,
thankfully, includes every key
command in Softimage), so that
I could do some modeling. As
I began to pare down my list, I
tried using the SpaceMouse Pro
in actual modeling scenarios and
quickly found that no matter what
I set up, there was always some
key combination that I couldn’t
perform without having to take
my hand off the SpaceMouse and
return it to the keyboard. There
just aren’t enough shortcut keys
on the SpaceMouse Pro to replace
a keyboard, which means you
need to choose between resting
your hand on the mouse or the
keyboard—you can’t do both.

The SpaceMouse Pro is meant for
movement. When I used the device
with its factory settings, I could
glide through my model just as with
Google Earth. It’s perfect for demos,
and it makes it easy to sit back and
move through a 3D environment
or review a model without my big
head getting in the way. But when
it comes to actually doing modeling
work, it isn’t quite so useful.

(Note: I should point out that at
this point in my review, the device
failed. The pan/zoom/tilt controls
stopped operating correctly, and in
some cases didn’t operate at all. I
have to thank the 3Dconnexion team
for working very hard to debug the
problems and then shipping a new
unit to me that worked just fine.)

2D work with a 3D mouse
» Even though Adobe Photoshop
is a 2D application, using a 3D
mouse with it is surprisingly
handy. I used the SpaceMouse
Pro to smoothly scroll and zoom
in and out of images, quickly tab
through images, and instantly
switch among my four favorite
tools. Panning and zooming in on

images worked like a charm, and
I immediately preferred using the
SpaceMouse Pro to the dozens of
keyboard shortcuts I’m used to. I
mapped the other keys to quickly
fit images to the screen and undo
mistakes, which was handy.

 I did notice that as I panned an
image, it would jitter slightly, which
was at most a visual distraction.
Also, I could not paint while panning,
though I think this is an issue with
Photoshop, not the mouse. All in all,
I could see the benefits of having
the SpaceMouse Pro by my side in
addition to my Wacom pen.

everyDay PC aPPs
neeD not aPPly
» After trying out the SpaceMouse
Pro with Photoshop, I wanted to know
whether it would change the way I
used my normal PC applications—
Internet Explorer, Microsoft Word,
and so on. While some of the
shortcut keys did work with these
applications, the coolest part of the
mouse—the 3D controller—didn’t
work. The mouse currently doesn’t
ship with any presets for these
standard PC apps, nor could you
really manually configure it to work.
I think that’s a bit of a miss at launch
for 3Dconnexion—I really wanted to
have more use for the device beyond
my art packages and Google Earth.
The additional keys are a perk to a
very sleek and cool control device,
but for $300 I want the mouse to
seamlessly handle volume controls,
playback controls, browser scrolling,
and other application-specific tasks.

a Promising start
» I really wanted more from the
SpaceMouse Pro. I liked it, to be
sure, but ultimately, the best uses
I found for it were in Photoshop (a
2D program), Google Earth, and
Microsoft flight. For me, anyway,
the idea of keeping my hand on both
a mouse and a SpaceMouse makes
it harder for me to work, and in most
cases my keyboard connects me far
more contextually to what I’m doing
than a 3D mouse does. I believe
that the SpaceMouse Pro could

even be an ergonomic replacement
for a regular mouse—if the drivers
existed, which we will have to wait
and see whether the version 10
driver set supports. During my
review process, the SpaceMouse
Pro earned a place to the left of my
keyboard and caused me to enjoy
using Google Earth on almost a
daily basis; kids especially love it.
Perhaps if the support of the device
extended beyond the programs
tested above, the SpaceMouse could

have taken over the right side of my
keyboard—a place of prestige for the
universal controller, the mouse.

Carey ChiCo is a 16-year veteran of the

game industry. He has always been an

active member of the industry at-large,

formerly as a GDC Advisory Board

member, a freelance writer for Gamasutra

and Game Developer magazine, and a

frequent speaker at industry trade shows

and events.

toolbox

The SpaceMouse Pro is meant for movement. When I used the device with its factory settings,
I could glide through my model just as with Google Earth. It’s perfect for demos, and it makes
it easy to sit back and move through a 3D environment or review a model without my big head
getting in the way. But when it comes to actually doing modeling work, it isn’t quite so useful.

http://WWW.GDMAG.COM

INNER PRODUCT // AUTHOR

gAmE DEvElOPER | OCTObER 2012 34

Floating-Point Misses
Dealing with the Dangers of floating-point math

INNER PRODUCT // bRUCE DAwsON

32 bits, reinterPreted
» If you’re reading this, you should
already have a solid understanding
of the float format, so we’ll keep
the overview brief: A standard IEEE
float consists of a sign bit, 8-bit
exponent, and 24-bit mantissa (see
Figure 1). Yes, this adds up to 33
bits, but all that magically fits into a
32-bit package, because the leading
one of the mantissa is, for numbers
above FLT_MIN, implied instead of
being explicitly stored.

A handy feature of the
floating-point format is that
if you increment the 32-bit
representation of a float, then
you move to the next float away
from zero. Adjacent floats (of the
same sign) have adjacent integer
representations. Incrementing the
integer representation normally just
increments the mantissa, but if the
mantissa is all ones, incrementing
the 32-bit integer instead overflows
the mantissa to zero and increments
the exponent field. Due to the magic
of the implied leading one, this
still gives you the next float. This
technique works all the way from
zero to infinity, and from negative
zero to negative infinity, and we’ll
discuss its application later.

The range of a float is generally
plenty large enough, but the
precision is a bit weak. A 24-bit
mantissa means (for instance)
that for numbers above about 16
million, a float actually has less
precision than a 32-bit integer. The
rule of thumb is that, over virtually
the entire range, the precision of

a float is between one part in 8
million and one part in 16 million.

don’t torMent
the Math gods
» 24 bits of precision is enough
for a lot of purposes, but if you’re
not careful you may inadvertently
throw away most of that precision.
It turns out that subtraction and
addition are the most dangerous
operations for losing precision.

Specifically, subtraction of numbers
with similar magnitude (or,
equivalently, addition of opposite
signed numbers with similar
magnitude) loses a lot of precision,
and so does adding or subtracting a
small number to a large number.

subtraction oF siMilar
» Imagine that you want to
measure someone’s height with
a very long tape measure that

is accurate to about one part
in a thousand. If you measure
someone’s height directly, then
your answer will be accurate to
within about two millimeters. Now
imagine that instead you decided
to stand the person on top of the
Empire State Building, measure
their height from the ground,
measure the height of the building,
and then subtract the two numbers.
Instead of measuring 1.80 m
directly, you are now measuring
382.8 m and then subtracting
381.0 m, with both measurements
having an error of about .38 m. Your
answer will be the person’s height,
plus or minus about .76 m. The
loss of most of the top digits when
subtracting similar numbers is
known as catastrophic cancellation.

addition oF dissiMilar
» Now imagine that you have two
numbers with dissimilar ranges—
perhaps the height of the Empire
State Building and the height
of a person—and both of these
numbers are accurate to about one
part in a thousand. If you add them
and store the result in a number
that is accurate to one part in a
thousand, then most of the digits of
the small number will be lost. If you
do this repeatedly, the cumulative
loss can grow arbitrarily big.

it’s the sig-Figs, baby
» It surprises a lot of people
that multiplication and division
aren’t the source of more math
errors—probably because those

floating-point numbers are ubiquitous in games because they are a convenient way to handle the necessary math. Floats
gracefully handle overflow and underflow, and they have enough range and precision that we can sometimes forget how limited and
dangerous they are. Developers naturally want floats to be the same as the real numbers we studied in school, and floats maintain
the illusion quite well. But sometimes the illusion comes crashing down—and brings your game with it. In this article, we’ll take a
good long look at how floating-point math can make your life miserable—and some strategies for minimizing that misery.

Figure 1: the anatomy of a standard ieee float.

www.gdmag.com 35

INNER PRodUcT // aUTHoRINNER PRodUcT // bRUcE dawsoN

operations are so much more
difficult than addition to do by
hand. But despite our intuition’s
misgivings, floating-point
multiplication and division are
deliciously safe and stable, and
cause virtually no precision loss.
Even though we have to toss
away half of the digits of the
result, the relative error after
multiplication is increased very
little, if at all (except in the case
of overflow or underflow).

It turns out that IEEE addition,
subtraction, multiplication, division,
and square-root operations are

all equally accurate. They are
all guaranteed to be correctly
rounded (by default this is round-
to-nearest, tie goes to even). So
why is subtraction of same-signed
numbers so problematic?

If the values of the floats being
subtracted are within a factor of
two of each other, then the result
is exact. It’s pretty cool to have
such a concrete guarantee about
the chaotic world of floats. And
yet you may have zero significant
digits left, because most or all of
the digits may have been canceled
out. In this case, the absolute

precision of your input numbers
is perfectly maintained, but the
relative precision can get arbitrarily
bad. In the example of measuring a
person’s height when they are on a
skyscraper, the real problem is the
initial numbers, whose absolute
error (about .38 m) is insufficient
for the ultimate goal of measuring
a person’s height. This inadequacy
becomes manifest when the values
are subtracted, as the subtraction
makes the relative error about 200
times worse.

The other problem with
addition and subtraction occurs
when you are adding numbers of
dissimilar magnitudes. Unlike with
multiplication and division, the
digits of the smaller number may in
this case be completely ignored.

Two wrongs
don’T make a righT
» The worst-case scenario is if you
add a small number to a big number
(thus losing the least-significant
digits of the small number) and
then subtract a similarly valued
big number (thus losing the
most-significant digits of the big
number). In this case you end up
with very few significant digits—
perhaps none. In other words, this
is really bad:

Result = (Big1 + Small) - - Big2

Understanding these behaviors
sometimes lets you significantly
improve your code. As an example,
the function in Listing 1 is
representative of real code from
a game I was working on. It takes
in two numbers that represent
an interval of time, and another
number that represents a time
within that time interval. The
function’s job is to return a value t
from 0.0 to 1.0 representing how
far through the interval time is.
This isn’t a great design for multiple
reasons, but I’m going to ignore
that for now and focus on the
implementation.

This code was used for dealing
with particles, so after the game
has been running for a while it
is safe to say that the end of the
interval will have a value in the
hundreds or thousands, while
the interval length will have a

range of just a few seconds. We
can therefore assume that time
and intervalend are relatively
close to each other, whereas
intervalLength is much smaller.
In Listing 1, the first subtraction
is of a small number from a large
number, so most of the digits of
intervalLength will be lost—they
won’t affect the result. Then we
subtract intervalstart from time,
and we cancel out most of their
most significant digits. The first
subtraction tosses away low-order
digits, and the second subtraction
cancels out high-order digits. That
leaves very few digits, and even
when time is clearly in range, the
rounding means that the result
sometimes ends up being outside
of the 0.0 to 1.0 range!

A better way to express
this algorithm is to start by
subtracting the two times. In
most cases these two times will
be within a factor of two of each
other so this will be perfectly
accurate—we can’t do better than
that. We then subtract the result
from intervalLength, and since
these values are likely to have
similar values, we don’t lose much
accuracy. In many cases, we’ll
only need to round in the final
division, and the result has many
more digits of precision than
the original calculation. See the
improved code in Listing 2; the
net result is that the fixed code
is perfectly stable, and the client
code no longer needs to clamp the
result into the 0.0 to 1.0 range.

Comparing fLoaTs
» Most developers know that
comparing floats for equality
is not a good idea. With some
exceptions, floating-point math
operations are not exact, error
accumulates over multiple steps,
and you probably won’t get
exactly the result you wanted.

It’s easy to say that you
shouldn’t do an equality test,
but saying what you should do
instead is much trickier. There
are many examples of floating-
point equality tests with epsilons
(comparison tolerances) so small
that they are just fancy-looking,
more-expensive equality tests,
or epsilons so large that that

l i s t i ng 1
a fragment of code used for dealing with particles—that unfortunately
magnifies floating-point math inaccuracy.

float CalcTBad(float intervalEnd, float intervalLength, float time)

{

 float intervalStart = intervalEnd - intervalLength;

 float t = (time - intervalStart) / intervalLength;

 return t;

}

l i s t i ng 2
a modified, more accurate version of Listing 1, reworked to be more accurate.

float CalcTGood(float intervalEnd, float intervalLength, float time)

{

 float timeToIntervalEnd = intervalEnd - time;

 float t = (intervalLength - timeToIntervalEnd) /

intervalLength;

 return t;

}

l i s t i ng 3
sample relative float comparison code.

bool AlmostEqualRelative(float A, float B, float maxRelDiff =

FLT_EPSILON)

{

 // Calculate the difference.

 float diff = fabs(A - B);

 A = fabs(A);

 B = fabs(B);

 // Find the largest

 float largest = (B > A) ? B : A;

 if (diff <= largest * maxRelDiff)

 return true;

 return false;

}

http://WWW.GDMAG.COM

you can drive a virtual truck
through them.

The best starting point for
comparing two floats to see if they
are “close enough” is to take the
larger of the two floats, multiply it
by some small number, and use the
result as the epsilon. The smallest
number you should multiply a float
by to get your epsilon value is
powf(2, -23), because that is the
minimum guaranteed precision for
a normalized float. Using a number
much smaller than that is, for
floats, just an expensive equality
test. Larger epsilons are fine, but if
you find that your relative epsilon
needs to be thousands of times
larger, then you might want to
investigate to find out what is going
on, since that level of instability can
be hard to work with.

It turns out that powf(2,
-23) has a standard name:
FLT_EPSILON. The constant
FLT_EPSILON is the smallest
amount that you can increment
1.0f by, and its value is also the
smallest relative epsilon you
should use with floats. Small
multiples of FLT_EPSILON give
progressively greater tolerance in
the comparison, so you can pass,
say, 10 * FLT_EPSILON to allow for
more error. See Listing 3 for some
sample comparison code:

When doing floating-point
comparisons, you might find
it handy to make use of the
integer representation of floats.
Since adjacent same-signed
floats have adjacent integer
representations, if you subtract
the integer representation of
two (same-signed) floats, your
result is their distance from each
other—the number of floats in
between plus one. If two floats
are adjacent, we say that they
differ by one Unit in the Last
Place (ULP). By making use of
a union of an int32_t and a float
we can implement this technique
in a way that stays within the
aliasing rules of all the compilers
I am familiar with (see Listing 4
for an example). The check for the
signs being different is important
because subtracting the integer
representations of opposite-
signed floats is problematic when
the signs don’t match.

Unfortunately, the ULPs-based
relative comparison technique can
sometimes be quite expensive.
Transferring data from the float
unit to the integer unit can
break pipelining and cause other
significant performance costs.
However, on processors with good
store forwarding, this technique
may perform well, and you can
implement it in vector units that do
float and vector operations in the
same registers.

I like this technique when doing
accuracy investigations because it
lets me make definitive statements
such as “The answer was only off by
one ULP” or, equivalently, “The floats
were adjacent.” These statements
have more intuitive meaning than
error ratios have. The semantics of
the two techniques are similar, but
not identical. When your numbers
are near a power of two the meaning
of an ULP suddenly changes—the
distance between floats suddenly
doubles (see Figure 2).

Figure 2 : Measuring inaccuracy in uLPs.

The Mask oF Zero
» Maybe the Babylonians should
have not invented zero. It just
causes problems for floats.
Relative error works incredibly
badly when the numbers being
compared are near zero. It isn’t even
well defined. If one of the numbers
is zero and the other isn’t, then the
relative error is either infinite or
100%, depending how you measure
it. If the two numbers straddle zero,
then the relative error is even worse.
(It’s negative, I guess—whatever
that means.)

Since relative epsilon doesn’t
work around zero, you need to use
an absolute epsilon to handle this
case instead. This is simply a small

number such that if the difference
between the two floats is less than
this number then you say that they
are equal.

Finding the right value can be
quite tricky, to say the least. There is
no natural, obvious default value. If
you do a bunch of test calculations
in your game world, then you may
find that an absolute epsilon of
0.00001 is appropriate. However if
you were to change your units from,
say, meters to millimeters, then all
your numbers would get a thousand
times larger and you would need
to change your absolute epsilon
to 0.01. It’s slightly terrifying that

this possibly essential value will
vary depending on what units you
have chosen.

I hate to say “Experiment and
see what works for your particular
domain,” but I don’t have any better
advice. You can do a complicated
mathematical analysis of your
algorithms in order to evaluate their
stability, but I don’t think that’s
particularly practical.

Pi, PLease
» One fascinating example of the
problem of comparisons around
zero is for sin(pi). Mathematics
teaches us that the result of this

INNER PRODUCT // bRUCE DawsON

gamE DEvElOPER | OCTObER 201236

l i s t i ng 4
using units in the Last Place (uLPs)to compare floats relative float
comparison code, using the integer representation of floats.

union Float_t

{

 Float_t(float num = 0.0f) : f(num) {}

 bool Negative() const { return i < 0; }

 int32_t i;

 float f;

};

bool AlmostEqualUlps(float A, float B, int maxUlpsDiff = 1)

{

 Float_t uA(A);

 Float_t uB(B);

 // Different signs means they do not match.

 if (uA.Negative() != uB.Negative())

 {

 // Check for equality to make sure +0==-0

 if (A == B)

 return true;

 return false;

 }

 // Find the difference in ULPs.

 int ulpsDiff = abs(uA.i - uB.i);

 if (ulpsDiff <= maxUlpsDiff)

 return true;

 return false;

}

float(pi) +3.141592741012573

+ sin(float(pi)) -0.000000087422776

= a better approximation of pi +3.141592653589797

http://GDCONLINE.COM

calculation should be zero, but
float math stubbornly refuses
to give this answer. Typical
results for sin(float(pi)) are
-0.000000087422776, which
is 867,941,678 ULPs away from
zero. That’s as many ULPs as
1.5e31 is from 1.0. Which is
not close.

Most people are inclined
to blame the implementation
of the sin function, but that is
inappropriate—the problem isn’t
with the sin function (which is
extremely accurate) but with
the value that is passed to it. It
is important to understand that
float(pi) is not equal to pi, and

for values of x near pi, sin(x)
gives us the distance between x
and pi. In other words, when we
calculate sin(float(pi)), we are
actually calculating pi – float(pi).
The result is an extremely
accurate measure of the error in
float(pi). A bit of calculus shows
us that the expected maximum

error in float(pi) (and hence
in sin(float(pi)) is roughly pi *
FLT_EPSILON / 2, assuming that
float(pi) has an error of no more
than half of one ULP. If we use
this as the absolute epsilon, then
the result suddenly seems totally
reasonable, and is “equal” to
zero. The table below shows how

INNER PRODUCT // bRUCE DawsON

gamE DEvElOPER | OCTObER 2012 38

l i s t i ng 5
Relative and absolute comparison routine.

bool AlmostEqualRelativeAndAbs(float A, float B,

 float maxDiff, float maxRelDiff = FLT_EPSILON)

{

 // Check if the numbers are really close -- needed

 // when comparing numbers near zero.

 float diff = fabs(A - B);

 if (diff <= maxDiff)

 return true;

 A = fabs(A);

 B = fabs(B);

 float largest = (B > A) ? B : A;

 if (diff <= largest * maxRelDiff)

 return true;

 return false;

}

l i s t i ng 6
Relative and absolute comparison routine using ULPs.

bool AlmostEqualUlpsAndAbs(float A, float B,

 float maxDiff, int maxUlpsDiff = 1)

{

 // Check if the numbers are really close -- needed

 // when comparing numbers near zero.

 float absDiff = fabs(A - B);

 if (absDiff <= maxDiff)

 return true;

 Float_t uA(A);

 Float_t uB(B);

 // Different signs means they do not match.

 if (uA.Negative() != uB.Negative())

 return false;

 // Find the difference in ULPs.

 int ulpsDiff = abs(uA.i - uB.i);

 if (ulpsDiff <= maxUlpsDiff)

 return true;

 return false;

}

l i s t i ng 7
Classes for conveniently disabling and re-enabling (or vice- versa) floating-point

exceptions.

// Declare an object of this type in a scope in order to enable a

// specified set of floating-point exceptions temporarily. The old

// exception state will be reset at the end.

// This class can be nested.

class FPExceptionEnabler

{

public:

 // Overflow, divide-by-zero, and invalid-operation are the FP

 // exceptions most frequently associated with bugs.

 FPExceptionEnabler(unsigned int enableBits = _EM_OVERFLOW |

_EM_ZERODIVIDE | _EM_INVALID)

 {

 // Retrieve the current state of the exception flags. This

 // must be done before changing them. _MCW_EM is a bit

 // mask representing all available exception masks.

 _controlfp_s(&mOldValues, _MCW_EM, _MCW_EM);

 // Make sure no non-exception flags have been specified,

 // to avoid accidental changing of rounding modes, etc.

 enableBits &= _MCW_EM;

 // Clear any pending FP exceptions. This must be done

 // prior to enabling FP exceptions since otherwise there

 // may be a “deferred crash” as soon the exceptions are

 // enabled.

 _clearfp();

 // Zero out the specified bits, leaving other bits alone.

 _controlfp_s(0, ~enableBits, enableBits);

 }

 ~FPExceptionEnabler()

 {

 // Reset the exception state.

 _controlfp_s(0, mOldValues, _MCW_EM);

 }

private:

 unsigned int mOldValues;

 // Make the copy constructor and assignment operator private

 // and unimplemented to prohibit copying.

 FPExceptionEnabler(const FPExceptionEnabler&);

 FPExceptionEnabler& operator=(const FPExceptionEnabler&);

};

www.gdmag.com 39

sin(float(pi)) is a very accurate
measure of the error in float(pi).

With all that background in
place, the two generic comparison
routines I recommend are in Listing
5 (relative and absolute) and
Listing 6 (ULPs and absolute).

In both cases, if you know
that you will not be dealing with
numbers near zero, then you can
use the simpler versions that omit
the maxDiff absolute epsilon.

FLoats For time anD
Location
» Fixing rare or difficult-to-reproduce
bugs is the most tedious part of
software development, so any
design patterns that lead to such
bugs should be avoided at all costs.
In game development, there are a
couple of patterns that lead to bugs
that only occur after many hours of
play, or in distant regions of maps,
and if you don’t take steps to avoid
these patterns you may have some
long nights before certification.

Floating-point numbers are
designed to have consistent
relative precision across a wide
range of magnitudes. Or, to put it
another way, they are designed
to have much better absolute
precision near zero. If you use
float or double when this variable
precision is not desirable—
or when it might even be
counterproductive—then you can
end up with lots of exciting bugs.

If you use a float to store
elapsed time in your game, that
means you have more precision
at the beginning of a game than at
the end. When your game has been
running for 60 seconds, a float that
holds the elapsed time will have
.0038 milliseconds of precision.
Once your game has been running
for a day (86,400 seconds) that
same float only has 7.8 milliseconds
of precision. This is a big enough
drop to make it quite likely that you
will have timing precision bugs that
will only show up after the game has
been running for a long time.

The simple fix to the timing
problem is to store time in a 64-bit
number—either a double or a
64-bit integer (representing the
elapsed count of microseconds or
nanoseconds). These techniques
both work, but they are not

intrinsically safe because it is
very likely that, even though your
GetGameTime() function returns a
double, some junior programmer
will store the result in a float and
you’re back to having bugs that
only occur after hours of gameplay.

Luckily, there is an easy
solution. The whole problem arises
because float and double have
more precision near zero. All we
have to do is not start our timer at
zero. If we use a double, and if we

start our timer at 4294967296.0
(2 to the 32nd power), then our
precision will be consistent until
the timer reaches 8,589,934,592
seconds—which won’t happen
for more than a century. In
addition to ensuring consistent
precision, this technique
guarantees that anybody trying
to store GetGameTime() in a float
will immediately hit precision
problems, and the mistake will
quickly be discovered. If you
prefer to return a 64-bit fixed-point
integer, then an extremely large
number as the start point will
catch developers who store the
game time in a float or an integer.

You’ll see similar problems
occur with player positions and
world geometry. Storing player
positions in a float means that
you have much more precision
near the origin, and it means
that when you transmit player
positions across the network
you are wasting precious bits
on transmitting the exponent.
Using floats to store position is
probably unavoidable, but when
transmitting positions you should
consider using fixed-point.

It is fine to store time
differences—the time between
events—in a float, and that may
be necessary for compactly
storing particle lifetimes and other
attributes. As long as these times
are relatively small, and as long

as these times do not grow as the
game progresses, there will be
no problems with bugs that only
occur after several days.

exceptions
» All code has bugs. That is the
depressing reality of programming.
In many cases the difference
between shipping on time and
missing Christmas is a matter of
how quickly bugs can be found and
fixed. Since games contain huge

amounts of floating-point math, you
can improve your odds of finding
quirky bugs if you enable floating-
point exceptions. Enabling floating-
point exceptions for divide-by-zero,
overflow, and illegal-operation is
like adding asserts before and after
every floating-point operation. I’ve
used this technique for 20 years and
it continues to be useful. On a recent
project that was not written to be
float-exception clean, I was able to
enable float-exceptions in a few key
systems and then find an illegal
operation that was making particles
disappear, as well as some reading
of uninitialized stack memory that
was triggering various forms of
undefined behavior. It works.

The NaNs and infinities that are
created by exceptional situations can
also cause performance problems,
particularly on the x87 FPU—yet
another reason to avoid them.

The complicating factor is that
not all code runs float-exception
clean. Some libraries trigger illegal
operations because they were
carelessly written, and others may
make legitimate use of divide-by-
zero semantics. Either way, any
practical way of enabling floating-
point exceptions needs to account
for this reality.

The simple technique is to
define two C++ classes: one that
enables a set of floating-point
exceptions for its scope, and
another that disables all floating-

point exceptions for its scope. By
dropping these into key places
you can validate the integrity of
the code that you control, while
sidestepping issues in the code
that you don’t control.

The ideal strategy is to put a
float-exception enabling object in the
start function of each thread, and
then disable exceptions as needed.
Pragmatic constraints might mean
that you just enable float-exceptions
in your particle system, or just in

your AI. Baby steps are better than
no steps at all. See Listing 7 for the
classes I use.

saving FLoats as text
» Text-based file formats can be
terribly convenient because they are
human-readable and easily editable,
but it is not obvious how to convert a
float to text in a way that retains the
exact valuesufficient precision.

Printing the exact value of a float
can require over 100 decimal digits.
Luckily, printing the exact value of
a float is rarely necessary. What
is more useful is to print enough
digits so that the original value can
be reconstructed when the text is
converted back to a float. For this
purpose it is sufficient to print nine
digits of mantissa. Ninety-four
percent of floats can round-trip to
text and back with just eight digits,
but all floats are guaranteed to
round-trip to text and back with nine
digits. One possible way to do this
is to use printf(“%1.8e”, f); which
puts eight digits after the mantissa’s
decimal point. Perfect.

If you’re not sure that you trust
your printf and scanf functions to
round-trip floats, you can instead
easily write code that will iterate
through all of the floats, printing
to text, scanning back to float, and
verifying that nothing is lost. On
a modern computer, a complete
test takes less than 15 minutes.
There’s no point in wondering

INNER PRodUcT // bRUcE dawsoN

Fixing rare or difficult-to-reproduce bugs is the most tedious
part of software development, so any design patterns that

lead to such bugs should be avoided at all costs. In game
development, there are a couple of patterns that lead to bugs

that only occur after many hours of play, or in distant regions
of maps, and if you don’t take steps to avoid these patterns you

may have some long nights before certification.

http://WWW.GDMAG.COM

whether this works when you can
test it in the time it takes to get a
cup of coffee.

While the standard requires
that floats printed with nine digits
of mantissa will round-trip, this is
not quite guaranteed if you print
floats with one implementation
and then scan them from text in
another (say, VC++ and gcc). If this
is critical for your needs, you may
need to test this.

Lies, damned Lies, and
debuggers
» The corollary of the above point
is that your debugger’s watch

window (and memory window,
tooltips, registers window, etc.)
needs to display floats with at
least nine digits of precision.
Otherwise two floats that print
to the same text value might
actually be different floats—
leading to obvious confusion.
Visual Studio’s debugger has
for many years only printed
numbers with eight digits of
precision. (Oops.) To test this in
your debugger of choice, create
a program containing these
statements and view the value of
these variables:

float f1 = 1023.99328f;

float f2 = 1023.993347;

In versions of Visual Studio prior
to VS 2012, these two numbers
will both be displayed with eight
significant digits, as 1023.9933.
And yet, these two floats are
actually distinct floats with
different values. Figure 4 shows
this issue at work in an earlier
version of Visual Studio (top),
though I am happy to note that I
reported it to Microsoft and it has
since been fixed in Visual Studio
2012 (bottom).

Precision and PerFormance
PitFaLLs
» All the modern CPUs I’m familiar
with will perform float or double-
precision math at the same speed.
And yet, double-precision math can
have significant performance costs
that are often hard to see.

If we ask the compiler to
add some floats together, it may
decide, for complicated reasons,
to do the calculation at double
precision. This is the default on
Visual Studio 2010 and earlier
when compiling 32-bit code.
When using the x87 floating-

point unit, there is no cost to this
higher intermediate precision,
but when using SSE/SSE2 these
higher-precision intermediates are
a problem. Each input float has to
be explicitly converted to double
precision, using cvtps2pd. If the
result is stored in a float then it will
have to be converted from double
using cvtpd2ps. The conversion
instructions all have similar latency
to a floating-point add or multiply.
All these conversions can add a
noticeable cost—I’ve seen more

than 40% overhead from them.
Luckily when you compile with /
fp:fast, or for 64-bit, or using VS
2012, the compiler does not insist on
using double-precision temporaries.
However you can still inadvertently
trigger this performance-harming
behavior, with benign-looking code
like this:

f1 = f2 + 0.5 * f3;

Although f1, f2, and f3 are floats, “0.5”
is not. By including a double-precision
constant in this calculation, you are
explicitly telling the compiler that you

want the calculation evaluated using
double precision, and the compiler
will dutifully add in three conversion
operations.

The fix in this case is trivial—just
add a trailing “f” to the floating-
point constant. The trick is realizing
when you have forgotten to do this.
You could scan your source code
for double-precision constants, or
look in the assembly language for
conversation instructions. Neither
technique can easily distinguish
between performance-critical code,
and code where the conversions
are harmless, but they are the
best options I have to offer. If you
find excessive conversions, check
your compiler settings and your
input values.

Let’s end this article with a haiku:

Floating point game math
Is very fast and useful
But not accurate

bruce dawson first worked

professionally on games in 1987 at

Distinctive Software Inc., where the

coding standard mandated ‘“colour’”

spelling and ‘“zed-buffer’” pronounciation.

He has left the game industry twice, but

always returns. Most recently he worked

in the Xbox group at Microsoft for six

years, then on Microsoft Windows, and is

now a developer at Valve.

His parents did finally forgive him for

dropping out of university.

INNER PRODUCT // bRUCE DawsON

gamE DEvElOPER | OCTObER 201240

The simple fix to the timing problem is to store time in a 64-
bit number—either a double or a 64-bit integer (representing the
elapsed count of microseconds or nanoseconds). These techniques
both work, but they are not intrinsically safe because it is very likely
that, even though your GetGameTime() function returns a double,
some junior programmer will store the result in a float and you’re
back to having bugs that only occur after hours of gameplay.

f u r ther r ead i ng
This article is based on a series of thirteen13 blog posts written
this year. To read more details, explanations, and code, and
to discuss this article visit http://randomascii.wordpress.
com/2012/09/09/game-developer-magazine-floating-point.

Years ago, I wrote an article on comparing floating-point
numbers that became unexpectedly popular despite its numerous
flaws. As an act of penance for its imperfect advice, I recently
wrote a series of blog posts discussing floating-point math, most
of which have been summarized in this article. You can find more
of my work on floating-point math here; www.altdevblogaday.com/
author/bruce-dawson/. Also, no floating-point article would be
complete without a reference to David Goldberg’s classic article
“What Every Computer Scientist Should Know About Floating-Point
Arithmetic” (http://docs.oracle.com/cd/E19957-01/806-3568/
ncg_goldberg.html). It was written in a time when the IEEE floating-
point math standard was not yet universal, but it still contains
important insights.

Figure 4: testing the Visual studio debugger for floating-point bugs.

http://www.altdevblogaday.com/author/bruce-dawson/
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://www.altdevblogaday.com/author/bruce-dawson/
http://randomascii.wordpress.com/2012/09/09/game-developer-magazine-floating-point
http://randomascii.wordpress.com/2012/09/09/game-developer-magazine-floating-point

www.gdmag.com 41

Ne w s aNd iNformatioN about the Game de velopers CoNfereNCe® serie s of e veNts www.GdCoNf.Com

ph
ot

o
co

ur
te

sy
 o

f g
am

e
de

ve
lo

pe
rs

 c
on

fe
re

nc
e.

LEVEL DESIGN, DESIGNER MANAGEMENT, ART DIRECTION
SESSIONS DEBUT AT GDC CHINA

» Raph Koster, a key industry
veteran behind the prodigious
MMORPGs Ultima Online and
Star WarS GalaxieS, will be
honored with the Online Game
Legend Award at the third annual
Game Developers Choice Online
Awards. In addition, Blizzard
Entertainment’s influential
MMORPG WOrld Of Warcraft will
be inducted into the Choice Online
Awards Hall of Fame during the

ceremony, which takes place
Wednesday, October 10, at GDC
Online in Austin, Texas.

These special award
categories recognize developers
and titles that have had
significant impact in the world
of online games. Honorees
were selected through open
nominations from the online game
community and the distinguished
GDC Online Advisory Board.

Koster, this year’s Online Game
Legend Award winner, has led a
prolific career. As the lead designer
on Ultima Online and the creative
director on Star WarS GalaxieS,
his contributions helped lay the
foundation for the many massively
multiplayer games that followed.
Koster’s professional credits
span nearly every facet of game
development, including writing, art,
music, programming, and design.

Koster is considered a thought
leader, and he is a frequent lecturer
and published author on topics
including game design, community
management, storytelling, and
ethics in game development. His
book, A Theory of Fun, published
in 2004, is considered seminal by
educators and members of the art-
game movement, and is one of the
most popular books ever written
about games.

This year’s Game Developers
Choice Online Awards Hall of Fame
inductee, Blizzard Entertainment’s
WOrld Of Warcraft, was released in
November 2004, 10 years after the
launch of the company’s venerable

Warcraft franchise. The game has
earned its place in the Hall of Fame
by dominating the MMO landscape,
setting the standard for countless
other MMOs that followed.

 As the title nears its eighth
anniversary, WOrld Of Warcraft
remains one of the top-rated PC
games of all time and continues
to thrive globally, with a massive
and passionate subscriber base.
WOrld Of Warcraft is one of
the most profitable and popular
entertainment franchises in
history, a bona fide pop-culture
fixture. Members of the Blizzard
Entertainment WOrld Of Warcraft
team will be on stage to accept
the Hall of Fame award.

Previous winners of the Online
Game Legend award include mUd
co-creator Richard Bartle and
Kesmai founders Kelton Flinn
and John Taylor, and Hall of Fame
inductees for the awards include
seminal titles such as Ultima
Online and everqUeSt.

The 2012 Game Developers
Choice Online Awards take place
at the Austin Convention Center,
October 9—11, 2012. More news
and information about the show
is available at its web site (www.
gdconline.com) or via Facebook,
Twitter, or RSS. GDC Online is
owned and operated by UBM
TechWeb, as is Game Developer.

GAME DEVELOPERS CHOICE ONLINE
AWARDS HONOR RAPH KOSTER,
WORLD OF WARCRAFT

» With GDC China 2012 just a few months away, show organizers
have revealed the first sessions in its quickly expanding lineup.
This first update introduces a robust level-design tutorial featuring
developers from Bethesda, Valve, and The Fullbright Company, as well
as game design talks from companies like EA Sports and Virtuos.

These debut sessions, along with the rest of GDC China, will take
place November 17—19 at the Shanghai International Convention
Center in Shanghai, China, and will bring together leading developers
to share knowledge and ideas that will benefit the game industry in
Asia and beyond.

Here are some details of GDC China’s initial sessions:
First, the show will host the in-depth “Level Design Workshop,”

an interactive tutorial session examining the best practices for
successful level design. Bethesda’s Joel Burgess, Valve’s Matthew
Scott, and The Fullbright Company founder and BiOShOck 2 designer
Steve Gaynor will discuss fundamental principles such as layout,
flow, pacing, and narrative, and will apply those concepts to a variety
of genres.

In the Design Track’s “The Business of Art Direction: 7 Critical
Precepts,” EA Sports executive art director Rick Stringfellow will discuss
some essential guidelines that can help developers better manage
their production pipelines. He’ll examine everything from debugging
difficult digital content to establishing new visual processes, and will
give attendees the knowledge they’ll need to streamline development
for all types of games, platforms, and audiences.

Finally, Florian Dhesse of outsourcing house Virtuos will host
“Improve Your Games’ Quality by Managing Your Designers,” offering
tips to help Chinese studios lead and nurture their valuable game
designers. Drawing from Virtuos’s own experience working in China,
Dhesse will outline the methods and tools studios will need to improve
their products and better manage game design staff.

More information on these sessions is available on the Main
Conference track pages on the official GDC China website (www.
gdcchina.com). Those interested in attending this November’s show
can secure their pass now, as online registration is now open. (GDC
China is owned and operated by UBM TechWeb, as is Game Developer.)

raph Koster.

http://WWW.GDCONF.COM
http://www.gdconline.com
http://www.gdcchina.com
http://WWW.GDMAG.COM
http://www.gdconline.com
http://www.gdcchina.com

pixel pusher // steve theodore

game developer | october 2012 42

R.I.P. Paul Steed
Portrait of a Pioneer

Steed’S StaRt
» Steed joined Origin Systems in
1991 as a self-taught concept artist,
fresh out of the Air Force. Wing
Commander producer Chris Roberts
recalled that he was hired as a
“design assistant”—essentially, an
intern—because the studio didn’t
have the budget for an established
artist but liked his hustle. However,
Steed found his calling as the
studio transitioned to real-time 3D
on Strike Commander. The project
was supposed to use sprite-based
aircraft with a simple 3D backdrop,
and Steed was tasked with
creating simple props and buildings
to test the infant 3D system.
Instead, with his characteristic
self-assurance, he modeled and
textured complete flyable planes,
which convinced the studio that the
game could be fully 3D.

Looking at the visuals 20 years
later, it’s difficult to appreciate
the implications of his humble
triangular planes. 3D was hardly
a novelty—this was, after all, a
decade after the debut of TRON in
1982. CG–intensive movies like
The Abyss and Terminator 2 were
everywhere in pop culture. For
game developers though, 3D was
an esoteric specialty dominated by
a handful of academics, scientists,
and engineers. The ticket to entry
was a finicky UNIX workstation with
custom software—an “entry-level
workstation” with software in 1991
cost around $50,000 in today’s
dollars; for the money, you’d get
a machine with roughly the same
performance as an iPad 2, but

without smooth skinning, inverse
kinematics, ambient occlusion, or
normal maps.

For the very few people who
could get access to the tools, there
were no traditions, no communities,
and no shared experiences to learn
from or to rebel against. There
were no web pages to visit (the
first graphical web browser didn’t
appear until 1993). If you could
find a book on computer graphics,
it was likely to be something like
Van Dam’s Introduction to Computer
Graphics, 600 pages of math and
diagrams. If you were wondering
about the right way to model an
airplane wing, or why a model
always had a dark splotch around
a particular vertex, the only option
was to figure it out for yourself. 3D
artists of this generation frequently
had a reputation as nerds first and
artists second (if at all), since their
ability to manage the software
came before their sense of style or
artistic nuance.

Paul Steed strode into the geeky
world of early ’90s 3D art with the
swagger of a hair-band front man at
a Dungeons & Dragons convention.
Jason “Loonyboi” Bergman,
webmaster of the now-defunct
LoonyGames web site, described
him thusly (www.loonygames.com/
content/1.5/feat/):

“On first glance, many thoughts
enter your mind. This guy’s a
construction worker, you think.
Chippendales dancer? Maybe
military. Enlisted though, definitely
not an officer. Or a Rambo-wannabe
movie star. He probably spends his

days in the gym, or in the tanning
salon. Totally full of himself, you
can just see the arrogance in his
demeanor. Whatever he does, it
surely doesn’t involve thinking.”

Flame waR veteRan
» Steed’s outsized persona
became legendary (or infamous),
and his willingness to be seen

and heard made him one of the
most prominent voices in games
and 3D art. His advice influenced
a whole generation of young
modelers at a time when there was
almost no way to learn the craft.
He later published two popular
books (Animating Real-Time Game
Characters, 2002 and Modeling a
Character in 3DS Max, 2001) but

We like to tell ourselves that we’re a young industry, but we’re not so young anymore. This summer we’ve been
confronted by our own mortality with the sudden death of Paul Steed, a pioneer of real-time 3D graphics who was an icon of the
brash early days of the game business. He died on August 11, at the age of 48 (details have not been made public).

Unlike most of us, Steed didn’t labor in obscurity. If you were involved in games during the ’90s—whether as a professional or
as a fan—it was hard not to pay attention to Paul Steed. He worked on some of the seminal titles of the decade, notably the Wing
Commander series and the Quake series. He produced the first demo for Xbox 360, presented a Career Seminar keynote at the
Game Developers Conference, and was a leading exponent of art outsourcing—proving that he could remain topical for nearly two
decades. Always outspoken and always controversial, he was not a typical game artist—but he was the most public exemplar of
what we do for people both inside and outside the business.

GdC, 2008.

http://www.loonygames.com/content/1.5/feat/
http://www.loonygames.com/content/1.5/feat/

pixel pusher // steve theodore

www.gdmag.com 43

was best known for his active (and
often controversial) engagement
with the online community.

Steed was almost a prototype
of the now-familiar Internet
celebrity. He joined id Software in
1996, when it was the most closely
watched company in games. In that
year, Quake had shown the game
industry that real-time 3D, action,
and visual immersion were the
future of interactive entertainment.
Building off the success of Doom,
Quake became an online sensation;
its online multiplayer spawned
a huge, fractious community of
fans, mod-makers, and would-be
game journalists.

For better or worse, Quake
fandom set the pattern for a lot
of what we now know as Internet
manners. The combination of useful
information, endless factionalism,
and sheer boorishness that we
all presume to be part of Internet
culture today was honed in
arguments comparing Quake and
Unreal, debates about the relative
merits of OpenGL and DirectX, and,
alas, in endless torrents of insults
and abuse directed at rival players,
fans of different games, or anybody
unlucky enough to show up in the
wrong forum on the wrong day.
Somewhere in most of those flame
wars you’d find Paul Steed.

The key source of tinder for
this early generation of flame
wars were the notorious “.plan
files.” Originally an innocent
UNIX workstation feature,
.plans published shared status
information—so that, for example,
a supervisor could remotely see
what a group of engineers was
working on without needing to walk
the halls with his clipboard and
pocket protector. However, .plans
quickly evolved into a primitive
form of Twitter—a medium for
quickly sharing thoughts or
opinions without considering
the implications of making those
thoughts or opinions public.

In the mid-’90s, this kind of
immediate contact with public

figures was an intriguing novelty.
Fans lapped it up, dissecting
every update with Kremlinological
zeal. Rival developers discussed
each other’s work, sometimes
with admirable frankness and
sometimes with unparalleled
insensitivity. Fans repeated
and amplified these comments,
sometimes turning mild technical
observations into grist for
brutal takedowns.

Steed was a fearsome gladiator
of the .plan battlefields, and he was
always eager to share his opinions
in the most direct way possible. He
let readers in on his opinions about
games, life as a developer, and life
in general. He was always willing
to engage with fans online or by
email. He once told an interviewer
from PlanetQuake (www.
quakewiki.net/archives/legacy/
interviews/steed.htm):

 “...egocentric, self-
centered bastard that I
am, I keep all mail sent
to me in a fan or flame
vein... Flame me. I don’t
really give a shit. I’m
confident that I can
address or redress the
nature of your problem
with something I’ve
posted and either pull
you over to my side or
simply ignore you.
The way I feel about it
is that if anyone takes
the time to write me
SOMETHING OF SUBSTANCE
I have an obligation to
answer them.”

His opinions on life at id, on
other games, and on life (which
seemed to consist largely of
alcohol and scantily clad women)
were ubiquitous Internet fodder
in the late ’90s. His online
feuds, most famously with Chet
Faliszek and Eric Wolpaw—then
of OldManMurray.com, now of
Valve—were legendary in the
gaming community. >>>

A memoriAl fund for PAul Steed’S fAmily has been established at trentsteed36@gmail.com. His online column is available
at www.loonygames.com/content/1.1/totb/. Along with his books, it provides a pretty characteristic look at his personal style as well
as some old-school modeling techniques that give the flavor of what life was like when a triple-A character had 800 triangles.

Quake III: arena.

StrIke Commander.

FIlm noIr.

http://OldManMurray.com
http://WWW.GDMAG.COM
http://www.loonygames.com/content/1.1/totb/
mailto:trentsteed36@gmail.com
http://www.quakewiki.net/archives/legacy/interviews/steed.htm
http://www.quakewiki.net/archives/legacy/interviews/steed.htm
http://www.quakewiki.net/archives/legacy/interviews/steed.htm

pixel pusher // steve theodore

game developer | october 201244

The industry of the ’90s was
unimaginably open by today’s
standards (these days, it’s hard
to imagine many studios allowing
employees to publicly criticize
rival game studios, fan sites, or
their own coworkers). In 1997 the
famous .plan file went dark with
this parting comment:

“Restraint and temerity
aren’t really in my nature
so rather than risk any
further dishonor or bad
press to this company
due to yet another
outburst from me, I want
to go ahead and call it
quits with the plannage.”

Two days later it started up again.
Those were different times.

Steed’s lack of self-censorship
made him a PR nightmare, but it
also made him a very influential
figure in the rapidly growing
community of game artists. His
modeling tutorials were popular
starting places for would-be
artists, and he provided feedback
and mentoring to many of the
beginners who frequented his
“Thinking Outside The Box”
column on LoonyGames. He was
an active participant in the early
days of what is now Polycount.
com, providing technical advice,
critiques, and a little celebrity
wattage to aspiring artists. One of
the most telling online reactions
to Steed’s passing was a poster
recalling fondly how Steed
reviewed some of his models at an
Australian trade show and called

them “decidedly mediocre”—a
characteristically frank, but useful
bit of feedback that inspired the
young artist to take a more critical
look at his craft.

Even as a mentor, Steed was
controversial. He sponsored
modeling contests on PolyCount for
aspiring 3D artists. Mostly, these
involved modeling buxom female
characters in various states of
undress (one of his online tutorials
taught modeling using a Playboy
centerfold for reference). Perhaps
his most infamous creation was
a contest featuring a scantily
clad female model known as the
“Crackwhore.” In his defense, he
created the model at the request
of an all-female Quake clan of the
same name, but the controversy
made it into the mainstream games
press, cementing his image as a
frathouse bad boy.

Steed’S Second Stage
» Steed’s polarizing personality—
public and private—became a
problem for id. In 2000 he was fired
over John Carmack’s objections
(publicized, of course, via .plan file).
He later called the firing his “exile
from Valhalla.” However, he was
a savvy careerist, always on the
lookout for a new world to conquer.
If the first decade of Steed’s career
encapsulated the growth of both
real-time 3D and of Internet culture,
the second decade seemed to be
dominated by the major themes of
the newly prosperous, and newly
corporatized game business:
the Internet, the next-generation
consoles, and outsourcing.

In his second decade in the game
industry, Steed pioneered another
aspect of the game artist’s life cycle:
When you’re too ambitious for the
production line, the next frontier is
entrepreneurship. Three milestones
stand out in the last decade:

At Microsoft, he was the
“creative director”—that is, the
primary artist—for the Advanced
Technology group that produced
the Xbox 360. His 2004 demo
“Film Noir” (featuring, naturally,
a curvaceous femme fatale)
introduced GDC audiences to what
was still, in those days, known
as “NextGen.”

Not long after that, Steed
cofounded an outsourcing art
house called Exigent. When a
lot of American artists viewed
outsourcing with a mixture of
disdain and terror, Steed embraced
the idea. He told anybody who
would listen, including the artists
he otherwise worked so hard to
mentor, that production in the
United States was “finished”
and the future belonged to India
and China. Like many other
outsourcing proponents, he found
that outsourcing did not provide a
magical solution to development.
One of his last jobs was working as
a kind of outsourced studio head
for UTV Ignition Florida—a project
that collapsed in recriminations
and bad blood in 2010.

Though he filed some of the
rough edges off his public persona as
the years went by, Steed remained a
very public figure. He was a frequent
speaker at GDC, and he became a
member of the GDC advisory board,

where he worked to give visual arts
more standing. He remained active
in education and mentoring. In 2008
he gave the keynote for the GDC
Game Careers Summit. The focus
of the talk was how to get a job in
games, but the advice was more
like autobiography:

“Becoming a game
industry ‘celebrity’ isn’t
rocket science—you
have to have talent and
a good game or three
to show it off. Then you
give talks, write books,
and generally share your
experiences with others.
The real trick is staying
known, staying relevant,
and staying excited about
what you do... Ambition,
hard work, perseverance,
luck, and shameless self-
promotion—it’s all part of
the deal.”

a complicated combination
» It would be comforting to
have some dignified, impersonal
traditions for gracefully summing
up when one of our own passes
on. Unfortunately, it’s harder than
trotting out a formula—especially
when someone as complicated as
Paul Steed is the subject.

For better or worse, Steed’s
uncensored, outspoken
personality is as much a part of
his legacy as his artwork—or even
the many young artists he helped
to inspire. His awkward mixture of
crude fanboy culture, real artistic
ambition, technical obsessions,
and careerist hustle is, in many
people’s eyes, a central component
of our industry’s personality.
Hopefully we’ll be able to prune
away the less-attractive parts of
that legacy and still hold on to the
drive, the passion, and the real
generosity that he showed to his
fellow artists.

Steve theodore has been pushing pixels for

more than a dozen years. His credits include

Mech coMMander, half-life, TeaM forTress,

counTer-sTrike, and halo 3. He’s been a

modeler, animator, and technical artist,

as well as a frequent speaker at industry

conferences. He’s currently the technical art

director at Seattle’s Undead Labs.

Quake II.

Quake III: arena.

http://Polycount.com
http://Polycount.com

http://WWW.GDCVAULT.COM

game developer | october 201246

Depth vs. BreaDth
Does your game neeD to go Deeper?

design of the times // damion schUbert

By comparison, EvErQuEst
is a simple game, not
much more than a combat
simulator designed to mimic
the basics of combat found
in tabletop board games
and old online Multiuser
Dungeons (MUDs). Combat
in EvErQuEst is very deep
and intricate compared to
that in ultima OnlinE, with
far more ways for players to
attack and manipulate their
enemies. However, combat
aside, EvErQuEst was
perceived to not be a very
feature-rich game. Most
of the world interactions
in ultima OnlinE aren’t in
EvErQuEst, and when they
are, they aren’t particularly
deep or fleshed out—to the
extent that many observers
felt that EvErQuEst would

be too simple for the
newly invented massively
multiplayer genre.

As it turned out,
EvErQuEst easily beat
ultima OnlinE’s numbers,
and a few years later, a
rematch of the two MMO
design philosophies paired
star Wars GalaxiEs against
WOrld Of Warcraft—with
a repeat of the same end
result. As it turned out,
ultima OnlinE has a lot of
features, but many of those
features don’t have a lot of
depth to them; it is broad,
rather than deep. EvErQuEst
has fewer features, but a
combat model that is very
deep (and became deeper
as new boss mechanics
were added to respond
to an increasingly savvy

audience). EvErQuEst is a
game about depth.

the pitfall of
BreaDth
» Most junior designers
come into the industry
favoring breadth. They want
to design the perfect game,
and they want to do so by
throwing every possible
feature under the sun into
the design soup. This is
especially true in massively
multiplayer game design,
where the possibilities
of what you can do in
a game is effectively
unbounded—a virtual world
can already incorporate
almost any feature of the
real world. Even worse,
most game genre devotees
imagine that the perfect

game in their genre is
one that combines all of
the best elements of other
games, because they don’t
recognize the underlying
costs of all of those systems.

Most triple-A games that
actually ship (and most
experienced designers and
producers), however, favor
depth over breadth for a
few reasons. One is simply
a matter of resources—it’s
hard enough to even do one
game system extremely
well. If you’re trying to make
a first-person shooter, for
example, you are going to
have a hard enough time
getting the basics of making
a deep and engaging FPS
that can be on the same
playing field as call Of
duty without losing all the

resources and focus on
building other systems.

This is especially
important when you
consider how your
multiple game systems
are supposed to interact
with each other. For a game
that is about breadth, the
multitude of game systems
can interact with each other
in many often-unexpected
ways. In some cases, this
can be a good thing—
something that designers
like to call emergent
behavior. Emergent behavior
can be wonderful to behold,
as the fans will undoubtedly
surprise you with their
ingenuity. However, the
more systems you have,
the more time you’ll need to
spend on QA and balance,

Ultima Online and everQUest represent two very different game philosophies. ultima OnlinE’s creators tried very hard to create a virtual
world with physics and interactions that mimicked the real world, so players could interact with each other in ways meant to model
reality: You can chop down trees, dye clothes, build houses, attack almost anyone anywhere, and steal anything that isn’t nailed down.

Ultima Online. everQUest.

www.gdmag.com 47

design of the times // damion schUBeRt

especially if you’re making
competitive online games,
where that ingenuity can
be used to win or to harass
other players. The same
game freedom that allows
players to build amazing
things like pianos by
stacking items on top of
each other in Ultima Online
also allows them to build
staircases of spoons up
to the top of other players’
castles, enabling them to
waltz in and rob them blind.

Breadth can Be good
» This is not to say that all
games that are breadth-
first are doomed to fail.
Ultima Online and Star WarS
GalaxieS both had sizable
fan bases, largely because
the two games were wild
and unpredictable places
where it felt like anything
could happen. The idea
that you can go anywhere
and do anything is an
attractive sales pitch, and it
is one that two companies
in particular have been
remarkably effective at
building toward—Rockstar
(Grand theft aUtO) and
Bethesda (creator of
ObliviOn, among others).

Grand theft aUtO is the
poster child of the breadth
game, and it illustrates the

difference clearly. It has auto
racing that fans of need fOr
Speed would sneer at, car
crashes that are snoozers
compared to bUrnOUt, a
story without the choice or
depth of a BioWare game,

shooting that pales next
to Call Of dUty, fighting
that has nowhere near
the tightness of control of
SOUlCalibUr, and yet it is
still widely considered one
of the finest games ever
made. Why? Because all
these things blend into each
other—you can crash your
car, then get into a gunfight
that ends in an epic fistfight.
Grand theft aUtO is, at its
core, broad and open-ended
wish fulfillment of the idea
of a world without rules;
you can go anywhere and
do anything you want. The
possibilities are endless, and
it captures the imagination
like few other games can.

Of course, Grand theft
aUtO also shows how
expensive that kind of broad
world interaction can be;
development costs of Grand
theft aUtO iv exceeded
$100 million, according to
Wikipedia. That said, the
same source says Take Two
earned five times that much
in income in the first week
the product was on sale. But
few companies can afford
that initial price tag.

Simplicity iS key
» In the context of breadth
vs. depth, the concept
of simplicity is vastly

misunderstood. Wizard
101 and free realmS are
two lighter MMOs designed
for a younger audience.
Sony Online’s free realmS
includes a series of
minigames; today, the

web site lists postman,
kart driver, and soccer star
among more classic combat
roles like ninja and warrior.
Each of these games
has smaller minigames
associated with them,
with their own respective
advancement tracks.

Wizard 101, by contrast,
was made by a smaller,
scrappier studio (King’s
Isle). They didn’t have the
resources to make a broad
game, and instead focused
on making an intricate
combat model reminiscent
of pOkémOn and final
fantaSy. While the world
itself is simple, the combat
model is not—the game
designers went out of their
way to design a game with
a long life, and with angles
of expansion so they could
continue to put out content
that would be in demand on
the microtransaction store.
Their tactic appears to have
been successful—Wizard
101 got its 20 millionth user
in 2011, two years and two
months after the game was
launched, while free realmS
took four months longer to
hit the same milestone.

plan to expand
» One of the interesting
angles of the depth vs.
breadth debate, especially
in terms of online games
with ongoing support and
development, is the appetite
for expansion. If you have
one central game activity,
then it is very easy to focus
your development on that
game activity—adding more
creatures to summon in
Wizard 101, for example, or
adding new raid mechanics
to WOrld Of WarCraft.

By contrast, broad
games have a broad player
base as well, and all of
them want more and more
interesting things to do
when they consume their
favorite kind of gameplay.
In Ultima Online, crafters
and tamers demanded

as much design attention
as combatants, and I’m
sure the same can be said
in free realmS for fans
of the soccer and mail
delivery games. It is harder
to improve the game on
multiple tracks, and keep
all fan bases happy while
still maintaining the game’s
core balance integrity.
Adding new features and
game systems to increase
the breadth of the game
is always an option, and
is typically popular, but it
also risks increasing the
complexity of the game—
increasing the number of
unexpected interactions
that need to be considered,
balanced for, and tested.

the Broad-game
Bullet liSt
» Making a broad game isn’t
impossible, and some of the
finest video games ever made
are broad games. But here are
some things to consider.

1// Don’t think of your
features in a vacuum.
Think about how they
interact with each
other, how they balance
against each other.
Be sure they support
each other (at best)
and don’t compete or
invalidate each other.
In ObliviOn, the desire
to learn by doing to
complete a sandbox
experience resulted in
players hopping through
fields picking flowers
in order to become
master assassins (by
increasing their jumping
and poisoning skills).

2// Think of the
audience. Any feature
adds complexity to
your game and takes
development time. Yes,
you could add washing
laundry to your Gta
clone, but would it hold
anyone’s interest for
any length of time?

Does it support the core
fantasy of the game?

3// Accept that your
features will be simpler.
Complexity in multiple
systems is hard to
support, hard to test,
hard to balance, hard
to expand, but perhaps
most of all, hard for
most players to actually
follow and understand.
In a broad game, the
game systems need
to be simple—the
complexity will come
from how those
systems interact.

4// Be willing to lose
control. Embracing
emergent behavior
means you are
accepting on some level
that players will surprise
you. Your design team
and management needs
to decide up front if this
is a good thing or not.

Broad games are hard to
do, and really hard to do
well. There is a reason that
most broad games that
get started never ship,
and that many established
developers flee them,
philosophically. But still,
I would sorely like to see
more broad games on
the market. Games like
Ultima Online and Grand
theft aUtO iv were exciting
because they challenged
their players to imagine the
possibilities. If done well,
this promise speaks right
to the core of what makes
video games amazing.

damion SchuBert is the lead

systems designer of Star WarS:

the Old republic at BioWare Austin.

He has spent nearly a decade

working on the design of games,

with experience on Meridian59 and

ShadOWbane as well as other virtual

worlds. Damion also is responsible

for Zen of Design, a blog devoted to

game design issues. email him at

dschubert@gdmag.com.

Grand ThefT auTo III.

mailto:dschubert@gdmag.com
http://WWW.GDMAG.COM

good job
hiring news and interviews

Hired someone interesting? Let us know at editors@gdmag.com!

whowentwhere

game developer | october 2012 48

new studios

In the past few years, many respecteD game Developers have mIgrateD to posItIons In the casual/socIal
space—aDam orth was one of them. In march 2011, he moveD to casual gIant popcap, but before that he
workeD at sony, ea, anD lucasarts. but he’s sInce left popcap, anD Is now workIng on an unannounceD
project for hIs new gIg at mIcrosoft. Game Developer checkeD In wIth aDam to ask about the experIence
of movIng from core Development to socIal/casual, anD back agaIn.

aDam orth joIns mIcrosoft by way of popcap

you can bring an orth to water...
/// rovio has hired former easy studios
general manager oskar burman to
head a new studio in stockholm. also
joining burman is patrick liu, previously
Battlefield 3 producer at DIce, who will be
signing on as creative director.

/// Ito masahito recently resigned as
president of shoot-’em-up luminary cave
Interactive. his is the second high-profile
departure in recent months, following
former vp and coo mikio watanabe.

/// epic games’s former director
of production, rod fergusson, has
transitioned over to Irrational games
to help the studio ship the anticipated
first-person shooter BioShock infinite.
the project has seen a number of key
departures over the past year.

/// many of the maryland-area developers
left unemployed in the wake of the 38

studios debacle
have landed on
their feet, thanks
to a little help
from epic. the
inaugural project

of newly formed Impossible studios is the
upcoming ios title infinity Blade: dungeonS,
which Impossible is codeveloping with epic
and chair entertainment.

/// online shopping giant amazon.com is
stepping into casual game development
with the founding of amazon game
studios. Its first game, living claSSicS,
is already available on facebook. the
studio joins amazon’s other game-
related initiatives, such as gamecircle, a
service for kindle fire gamers, and game
connect, which lets customers download
free-to-play games.

/// activision recently founded the blast
furnace, a new mobile development studio
in leeds. the studio will be headed by mark
washbrook and gordon hall, both longtime
veterans of rockstar’s uk studios.

/// In the wake of Zipper Interactive’s
closing in april, former employees David
kern and russ phillips have started
nobodinos (say it: “nobody knows”), a new
studio that will focus on mobile titles.

Alexandra Hall: What did you
learn at popCap that applies
to your return to core-
oriented games?
Adam Orth: I learned so
much about social and casual
games during the year I spent
at popcap. I’ve always been
interested in that space, and
take great care to try and
be as current as possible,
although I wasn’t nearly as
prepared as I thought I was.
popcap is full of experts and
academic-level developers.
I often refer to it as gaming
grad school. I think I actually
learned more about core
game design than social/
casual. It’s the basis for all the
popcap magic. the knowledge
I gained from being able to
touch things like Bejeweled,
Peggle, Zuma, and PlantS vS.
ZomBieS on various platforms
was incredible, and I refer
to those methodologies and
principles every day. I’m
very lucky and grateful for
the experience.

AH: Do you think core game
developers should put in time
on the social/casual beat?

AO: absolutely. It’s a very
different style and approach
to making games. being
fluent in that language is
only going to make you,
your team, and your game
stronger. even if you aren’t
going to make a game in
that space, it’s crucial at this
point in the evolution of the
industry to be an expert,
otherwise you are going to
be passed by.

AH: Do you see any
significant differences in
workplace culture between
core game development
and social/mobile games
development?
AO: obviously, when there is
a corporation involved, that is
going to dictate the culture.
the Dna of the corporation
permeates everything
and drives the creation of
multiple products. start-ups
and independent studios are
completely different because
of the risk—it’s very much
like being in a band, with
everyone focusing all of their
energy on the one thing. all
or nothing.

I’ve done both and I can’t
say which I prefer. It depends
on the end goal. I’ve enjoyed
the safety of a steady
paycheck and the electricity
of not knowing what’s next.
the only cultural point that
matters to me is dedicated
developers working hard
every day to make awesome
interactive magic. you can
have that anywhere, you just
have to be realistic about
where you are.

AH: You’re working on an
unannounced microsoft
project. Can you talk at all
about the experience of
working in a newly formed
internal studio?
AO: I can’t really say much
other than I love what I’m
doing. It’s very different
from anything I’ve ever
done, and I was desperate
for something like this at
this point in my career.
microsoft is very big, and
being a small entity within
a giant machine can be
terrifying, but I kind of
love it. It’s unpredictable
and exciting. It takes a lot
of work to get everyone
talking together, but the
talent level and drive of the
people I’m working with
make the results amazing.
there’s always the risk that
whatever you are working
on will never see the light of
day, but if you start thinking
like that, it’s already over.
you’ve got to believe
passionately in what you
are doing and who you are
doing it with, otherwise it’s
pointless to get out of bed in
the morning. that’s where I
am right now.

whowentwhere

mailto:editors@gdmag.com
http://amazon.com

the business // kim pallister

Crowdfunding and
Emotional Equity

www.gdmag.com 49

Putting thEir monEy whErE thEir hEart is
» As others have pointed out, there is more going on in an end-user
backing of a project than just a quid pro quo exchange of money for a
reward package. Certainly, in some cases that’s all it is. In most cases,
though, the backing of a project represents an emotional investment
by the backer. The project is something they believe in and want to see
happen, and they are ponying up money to state that this is the case.

This emotional investment is a powerful force. It’s what can make
backers not just a source of funding, but passionate evangelists, dedicated
contributors, and loyal return customers. They believe they have a personal
stake in your game and will do what they can to ensure its success.

However, like any other type of equity, this emotional equity is given
with expectations—not always clearly stated—and it’s here that things
can go awry if not given proper consideration.

When you look at examples of this disconnect, you see they often
mirror the very same things that can go wrong with a standard investor
relationship, or for that matter, any relationship. A few examples:

• “You’re late!” It’s so commonplace for Kickstarter projects to take
longer than their optimistically set schedules that I’m surprised people
don’t just take it for granted. That said, it happens often, and when it
does, backers are amazingly forgiving—provided they are given some
background as to why, and are kept up to speed.

• “You said you’d call!” Another source of backer frustration is dead air.
Backers feel they bought “insider status,” and get frustrated and nervous
when updates grow further apart. This is often compounded by the
schedule issues mentioned above.

• “You’ve changed!” The reality of developing any product is that
things change along the way from conception to delivery. One of the
risks of taking money based on the early-stage idea is that it may change
along the way, and that may change something critical to the person who
decided to back it. For example, when the wildly successful Kickstarter for
the Ouya console announced that they’d be making the OnLive cloud-
gaming solution available for playing mainstream titles, some backers
were elated. Others viewed it as an about-face on the original indie-
focused-console message that they’d laid down money to support. (For
example, UBM’s Simon Carless tweeted, “I know OnLive is ‘just an option,’
but Ouya’s Kickstarter traded heavily on indie cred.”) That OnLive’s long-
term viability is now in question only compounds the point.

• “You scoundrel!” Of course, it’s never good to pursue any unethical
or illegal business tactics, period. However, in the case of crowdfunded
projects, doing so can cause backers to feel you dragged them down with
you. The folks at Penny Arcade recently blogged about receiving a “rewards
for reviews” proposal from the developer of the Epic SkatEr Kickstarter
campaign, where the developer offered them two $125-tier rewards in
exchange for a favorable review, which Penny Arcade characterized as
“bribes for coverage.” Even if we give the developer the benefit of the doubt

and call it “naive and questionable marketing tactics,” the damage was
done. At least one backer pulled their funding (based on comments on the
Kickstarter page), and I expect more will do so. (You can find the Penny
Arcade article here: http://penny-arcade.com/report/editorial-article/
bribery-spam-and-harassment-the-dark-side-of-kickstarter-promotion).

If things go wrong, they can go really wrong. It’s no secret that the
internet can amplify the scale and speed at which things get out of control
when they go negative. For example, the Music ensemble Classic Crime
funded a Kickstarter (www.kickstarter.com/projects/mattmacdonald/the-
classic-crimes-new-album/posts/188274)for an album and tour, but what
started as a miscommunication about the cost of rewards and costs of
touring escalated into flame wars and damage control, as the band tried to
deal with critics accusing them of taking in unreasonable amounts to fund
their tour compared to what some believed it should cost.

nEw funding, samE old rulEs
» Even though the dollar amounts are smaller, and there isn’t a
publishing or investing contract attached to the dollars, the same rules
apply as if they were.

•	 Communication	is	key. Communicate early and often,
letting backers know about changes before they happen.

•	 Come	clean.	Give background on why something is late,
changing, up in the air, or whatever it might be. If there are
still unanswered questions, acknowledge them. People
prefer the unvarnished truth to polished spin.

•	 Solicit	input.	People are already vested in your product.
Giving them the chance to further contribute is often a
great way to increase that level of passion, even when it’s
wrapped around a negative circumstance.

•	 Give	people	options. If the product is changing substantially,
or the schedule is pushing out a significant amount of time,
offer to refund their backing. They’ll likely not take you up on
it, but will feel better for having been given the option.

Just because the money came through a click instead of a handshake
doesn’t mean it doesn’t deserve the same level of respect and
stewardship as any other deal. Consider your backers’ emotional equity
and respect it as such and you’ll be rewarded for it in the long run.

Kim PallistEr works at Intel doing game industry forecasting and requirements planning.

When not prepping the world for super-cool hardware, he blogs at www.kimpallister.com.

His views in this column are his and do not reflect those of his employer.

YOU LISTEn TO YOUr BACKErS, BUT dO YOU rEALLY hEAr ThEM?

In	my	column	in	the	April	issue	of Game Developer, I discussed crowdfunding. One of the things I covered last time around was
the fact that Kickstarter projects have no obligations to backers (beyond rewards promised), but that other types of crowdfunding
mechanisms that would allow for crowdfunded equity investing were on the way. Whether backing comes via crowd-sourced equity or
via Kickstarter-style donations, all crowdfunding will share a second type of investment—that of emotional equity.

http://penny-arcade.com/report/editorial-article/bribery-spam-and-harassment-the-dark-side-of-kickstarter-promotion
http://www.kimpallister.com
http://WWW.GDMAG.COM
http://penny-arcade.com/report/editorial-article/bribery-spam-and-harassment-the-dark-side-of-kickstarter-promotion
http://www.kickstarter.com/projects/mattmacdonald/the-classic-crimes-new-album/posts/188274
http://www.kickstarter.com/projects/mattmacdonald/the-classic-crimes-new-album/posts/188274

game developer | october 201250

aUral FIXatIoN // YaNN SezNec

New words, old ideas
» Procedural music, also called
generative or algorithmic music,
is all about creating a set of rules
that will dictate the music that
is created. This is, of course, not
dissimilar to game design, which
is about creating a structure and
letting players explore and make
meaningful decisions. You have
to account for loads of different
scenarios, and the game is ultimately
controlled not by the designer at
all, but by the player. In the world of
music composition, this isn’t anything
new. Composers are often challenged
or excited by the prospect of
performers taking their music and
turning it into something new.

This problem/opportunity
(probletunity?) has existed as
long as people have been writing
down music. An early approach to

procedural music was the so-called
Musical Dice Game occasionally
attributed to Mozart, but generally
popular among composers and
players in the 18th century. In this
game, the sheet music would be split
up into a number of different musical
phrases. Participants would roll the
dice a set number of times, and use
those numbers to cobble together
a brand-new piece of music. While
calling this a “game” is a stretch,
it was an interesting way to get a
nearly infinite number of variations
out of a single piece of music.

Jumping forward a few
hundred years, many forms of jazz
are arguably procedural music,
particularly the more improvisatory
genres such as bebop or Dixieland. In
these formats, often a simple melody
serves as the basis for enormously
complex variations, which are

entirely left up to the players. They
are playing within the framework of
the song’s chord changes, tempo,
and rhythm, but otherwise they are
exploring on their own.

Creators of 20th-century
classical music became quite
obsessed with the idea of procedural
music, to the point where the
elements of the composition that
were left undefined could become
the most important. John Cage
demonstrated this with a number
of different pieces, such as “As
Slow as Possible,” the length of
which can vary wildly (one ongoing
performance will last for 639 years).
His piece “Fontana Mix” took this
approach even further, with the
instrumentation defined as “any
number of tracks of magnetic tape,
or for any number of players, any
kind and number of instruments.”

desigNiNg music,
composiNg games
» We can begin to think about what
music can bring to game design
by taking traditional composition
methods and applying them to
games. Both game design and
music composition are essentially
based around a series of choices,
and both in many cases involve
some sort of start, end, and cycle.
As a counterpoint teacher once
explained to me, once you have
written a note of music you only
ever have four choices. You can
play that note again, you can play
that note again differently, you can
change the note, or you can not play
any note. Similar sets of choices
inhabit the world of game design,
and there are similar techniques for
simplifying the process as well.
One particularly good example is

Making gaMes into Music, and Making Music into gaMes
procedural music

if i were to describe a composition system that generates music by using a set of algorithmic parameters which are then
reinterpreted by performers, many people would lose interest pretty quickly—in fact, I may have lost many of you by the time I got to
“system.” However, if you replace “music” with “audio” in that sentence, I am effectively describing every single game audio system
ever made. In some ways, talking about procedural music with game developers is preaching to the choir; game developers already
work with this kind of thing regularly while working on game audio, but it’s worth looking into how we can make procedural music
composition systems that can inform your game design (and vice versa).

WWW.GDMAG.COM 51

AURAL FIXATION // YANN SEZNEC

the technique used in the writing
of a fugue, which involves taking a
single melody and overlapping it on
itself in varying ways. Most fugues
involve three or four voices, each
one playing the same core melody
and cycling through variations. I
always like thinking of the four fugal
melodies as being like four different
characters exploring the same
space, perhaps fi nding different
power-ups that change their speed,
double their power, and so on.

In terms of a more modern
composition technique, the
rise of looping and sequencing
as a musical force lends itself
quite nicely to game design.
One prototype we’ve developed
here at Lucky Frame is a drum-
machine space shooter. As the
enemies come onscreen, they
generate a drum sound, and as
they are destroyed, they play
a musical tone. If the levels are
editable, this instantly creates
a sequencer and drum machine
that is playable and remixable by
controlling a flying spaceship. It’s
really the best way to DJ (at least
until it is possible to do that with
actual spaceships, anyway).

So, now that you’re as excited
as I am by the intersection between
music and game design, I hear
you asking: “What are the three
main things to be aware of?” Good
question! My answer is: complexity,
generation, and reproducibility.

COMPLEXITY
» The most basic form of
generating music in a game is to
attach a musical event to a game
action, such as a character’s
movement. This can be very
powerful and direct, and provides
the player with crucial instant
feedback, making the direct
connection between action and
music. However, music generation
needs to have depth. This is no
different from an instrument;
without complexity, it is repetitive
noise that will soon become stale
(then boring, then irritating, then
abandoned), but if the music that
is being created changes too much,
the connection between the action
and the music will be lost.

For example, if a character
will trigger the same musical

note whenever they cross a tile,
that could get old very quickly
(particularly if you have to cross
that tile several times). However,
if the character triggers a different
note every time they cross that tile,
the player will probably not notice
the connection between the tile and
the playing of the note. In short, you
need to strike a balance that creates
a strong connection between an
action and a musical event, without
making it repetitive and robotic. That
balance is what can bring rewarding
complexity to a musical game.

GENERATION
» Many (if not most) games now
rely on some generative element,
ranging from fully generated levels
to character-name generators. This
approach should absolutely be
mirrored in the world of procedural
music. If you set up a system that
generates the musical framework
within which a game is played, the
music will almost certainly have
more depth and potential. In our iOS
game PUGS LUV BEATS, we approached
this by procedurally generating the
planet terrains, which controlled all
the sound libraries. This ensured
a potentially infi nite amount of
musical combinations.

REPRODUCIBILITY
» A simple (but extremely
important) principle of any musical
device is the idea that doing the
same thing twice will result in the
same output. Pressing the same
piano key in exactly the same way
twice will sound nearly the same.
Turning the fi lter knob on a synth
will have the same effect every
time. Without the ability to rely on
that process, the instrument would
be impossible to master. This is, of
course, very similar to game design,
and as such any musical games
need to have as much reproducibility
as possible. The challenge with this
concept is being able to retain the
elements of mystery and challenge
that any game needs.

THE GAME OF MUSIC
» I have thus far framed many of
these concepts in the context of
creating a musical game; music
has much to offer game design as a
whole. Even the most basic concepts

of rhythm and timing can be seen as
a truly integral part of a gameplay
experience—one that the best
game designers may already be
incorporating even subconsciously.

But it is equally important to
note what the game world can offer
music. This can be looked at both
from a creation and an enjoyment
level. Games are inherently social
and fun experiences, with the vast
majority of people playing games
without any pretense of becoming
the best, or even worrying about
how good they are. It’s very rare
nowadays for anyone to say that
they are “not good at games”—
virtually everyone plays and enjoys

some form of game. There is no
reason why music should not be
the same way. Playing music is
something that everyone can and
should do, it should be a fun, social
activity not reserved for experts.

In terms of the creative side
of things, game design (and to a
certain extent software design in
general) is in many ways the most
vibrant art form in the world right
now. An enormous range of styles
and approaches are being applied

to game design, and it shows no
sign of slowing down. Musically,
it can be argued that people who
would have become composers
in the past are now designing
software and games; these days, the
most exciting developments in music
are forms of interface, such as the
Monome input device, or software
like SOUND SHAPES for PS Vita.

It should be clear by now that
I see music and games as two
extremely similar things. They
both have much to offer each other,
both conceptually and practically.
Too often they are seen as two
separate things that need to be
forced to work together, but if they

are approached together they can
defi nitely become greater than the
sum of their parts.

YANN SEZNEC is an artist, musician,

performer, and founder of creative studio

Lucky Frame. Recent releases for iOS include

the IGF-nominated PUGS LUV BEATS and the

critically acclaimed BAD HOTEL, both of which

use innovative procedural music techniques.

Lucky Frame is based in Edinburgh,

Scotland, and is currently working on several

new interactive music projects.

PUGS LUV BEATS.

http://WWW.GDMAG.COM

educated play!
STUDENT gamE PROFILES

game developer | october 201252

http://games.cs.washington.edu/RefRaction/RefRaction.html

RefRaction
The hisTory of “eduTainmenT” is liTTered wiTh failed games ThaT weren’T fun enough To deliver Their educaTional payloads. The posT-grad Team behind fracTion-

Teaching puzzler refracTion is deTermined To noT be anoTher hisTorical fooTnoTe—which is why They’ve also creaTed “playTracer,” a piece of analysis sofTware

ThaT Tracks players’ acTions and TranslaTes Them inTo visualizaTions ThaT The developers can use To balance refracTion’s difficulTy, educaTional poTenTial, and fun.

Alexandra Hall: What inspired
you to make an educational
game about fractions?
Yun-En Lu: i’ve always liked
teaching. Helping out in an
elementary math class is a
lot of fun. every student has a
slightly different way of looking
at things, and trying to come up
with examples that students can
reason through to find conceptual
truths is a really interesting
challenge. Games are a natural
way for this to happen, since
they’re all about exploration
of strategies and interactions
between complex rule sets, so it
seems only natural that we could
let students experiment with math

in the same way using games. it’s
my hope that through our games
we can convince a generation of
kids that everyone can learn math
if they put their minds to it—and
even find it fun.
Eric Butler: Why fractions
specifically? the original plan for
our group was to generically make
educational games about science,
but we quickly discovered that
basic algebra and mathematics
was a huge stumbling block for a
lot of students. So we decided to
focus very narrowly on the early
education problem of fractions

and try to make as large an
impact as possible on this specific
topic before tackling other areas.
our goal is to create games and
tools to supplement existing
classroom curricula and make
teachers more effective.

AH: You’ve worked on RefRaction
for a couple years now—unusual
for a student game. Have your
goals shifted?
YL: as Ph.D. students, creating
RefRaction and its sister games
is more like a job than school—
we’re paid, we have funding, we
take very few classes, and so
on. Since we can devote a lot
more time to these games than

undergraduates taking a game
course could, it also means we
can go much deeper into the really
interesting problems, such as
running experiments to see how
players react to different tutorials
or optional rewards, trying out
algorithms to predict what people
are likely to do so we can adjust
the game experience for them,
creating new data visualization
and analysis tools, and so on.
EB: the project cannot really be
called a success until we make
a measurable impact to early
math education. So we continue

to iterate and improve the game,
and study its effectiveness. We’re
actually working on an entire set
of fraction games, two of which
are nearly ready for initial release.
each of these games can tailor
the play experience to each player
individually through procedurally
generated levels and progressions
along with sophisticated analysis
tools to measure individual
student learning.

AH: Is it tricky to find a
balance between fun and
educational value?
Erik Anderson: Difficulty
balancing for educational games
is not really that different from
other games. all games involve
learning, even those without an
explicit educational purpose.
However, one key difference of
designing educational games is
that our learning goals restrict
our choices of game mechanics.
although game designers
sometimes bend reality in
order to improve usability or
playability, we have no choice but
to implement target educational
concepts exactly as they appear
in the real world.

AH: Did Playtracer spring from a
desire for finer-grained difficulty
and experience-tuning?
EA: We developed Playtracer
because we needed a tool that
could effectively visualize player
behavior in games without a
virtual environment. Heat maps
are highly effective for games
such as first-person shooters
because a game designer can
mark the map each time a player
dies, for example, and determine
the most dangerous sections of
that map. However, for puzzle
games like RefRaction, there is
no equivalent “map,” so we need
some other way to visualize
player actions. therefore, we

created a tool that shows how
hundreds or thousands of players
move through a game’s state
space by creating graphs in which
circles represent game states and
arrows represent player actions.
PlaytRaceR uses multidimensional
scaling to ensure that similar
game states are shown close to
each other, and vice versa. this
allows game designers to rapidly
find where players are getting
stuck and what strategies they
are using.

AH: Are you planning to offer
Playtracer as a tool for use by
other developers?
EB: Yes, we plan to make our
Playtracer tool publicly available
in the future. in the meantime,
we have published the technical
details of Playtracer in a few
different research papers,
allowing developers to integrate
these ideas and methodologies
into their own tools. none of the
ideas are particularly complicated
to implement; we know a few
developers who wrote their
own version of Playtracer to
analyze their games. We are also
currently working with some
external developers to plug
their games into our in-house
infrastructure. (You can read
more about Playtracer in this
paper: bit.ly/playtrcr)

publisher/developer
center for Game Science
Release date
September 2010
development time: ~1 year
development budget: $150,000
of lines of code in the game:
~100,000
a fun fact: Players have commented
on the difficulty of getting the coin on
level 2-5 more than any other. in fact,
Michael John (senior creative director
at ea) thought it was impossible to
obtain when he first played through
the game.

http://GAMES.CS.WASHINGTON.EDU/REFRACTION/REFRACTION.HTML
http://bit.ly/playtrcr

BECOME A LEADER IN DIGITAL MEDIA
With digital media in mind from conception to completion, the new CENTRE FOR DIGITAL MEDIA
features student apartments, project rooms and classrooms all designed to inspire creativity and
collaboration. Located in Vancouver, Canada the new CENTRE FOR DIGITAL MEDIA o�ers a full and
part-time Master’s program that focus on real-time, industry-facing collaborative projects.

Learn more about our MASTERS OF DIGITAL MEDIA PROGRAM and EXECUTIVE MASTERS OF
DIGITAL MEDIA PROGRAM at www.thecdm.ca/programs

The future of work is at the new CENTRE FOR DIGITAL MEDIA.

CENTRE FOR DIGITAL MEDIA | www.thecdm.ca

>> GET EDUCATED

53W W W . G D M A G . C O M

http://www.thecdm.ca/programs
http://www.thecdm.ca
http://WWW.GDMAG.COM
http://GDMAG.COM/SUBSCRIBE

UNITED STATES POSTAL SERVICE
Statement of Ownership, Management, and Circulation

1. Publication Title: gd Game Developer. 2. Publication No.: 13782. 3. Filing Date: August 30, 2012. 4. Issue Frequency: Monthly with a combined June/July issue. 5. Number of Issues Published Annually: 11.
6. Annual Subscription Price: $49.95. 7. Complete Mailing Address of Known Office of Publication (Not Printer): United Business Media LLC, 303 2nd Street – Suite 900 South, South Tower, San Francisco,
CA 94107. Contact Person: Roy Beagley. Telephone: 203-775-9465. 8. Complete Mailing Address of Headquarters or General Business Office of Publisher (Not Printer): United Business Media LLC, 303 2nd
Street – Suite 900 South, South Tower, San Francisco, CA 94107. 9. Full Names and Complete Mailing Addresses of Publisher, Editor, and Managing Editor: Publisher: Simon Carless, United Business Media LLC,
2nd Street – Suite 900 South, South Tower, San Francisco, CA 94107; Editor: Brandon Sheffield, United Business Media LLC, 2nd Street – Suite 900 South, South Tower, San Francisco, CA 94107; Managing
Editor: None. 10. Owner: United Business Media LLC, 600 Community Drive, Manhasset, NY 11030-3875, an indirect, wholly owned subsidiary of United Business Media LLC, Ludgate House, 245 Blackfriars
Rd., London, SE1 9UY, U.K. 11. Known Bondholders, Mortgagees, and Other Security Holders Owning or Holding 1 Percent or More of Total Amount of Bonds, Mortgages, or Other Securities: None. 12. Tax Status:
Has Not Changed During Preceding 12 Months. 13. Publication Title: Game Developer. 14. Issue Date for Circulation Data Below: September 2012.

15. Extent and Nature of Circulation: Average No. Copies Each No. Copies of Single
 Issue During Preceding Issue Published Nearest
 12 Months to Filing Date
a. Total No. Copies (Net Press Run) 28,463 25,415
b. Paid and/or Requested Circulation
 (1) Outside County Paid/Requested Mail Subscriptions 18,122 16,767

Stated on Form 3541.
 (2) In-County Paid/Requested Mail Subscriptions 0 0
 Stated on PS Form 3541
 (3) Sales Through Dealers and Carriers, Street 1,457 1,265

Vendors, Counter Sales, and Other Paid or
Requested Distribution Outside USPS

 (4) Requested Copies Distributed by Other Mail 0 0
 Classes Through the USPS
c. Total Paid and/or Requested Circulation 19,579 18,032

[Sum of 15b. (1),(2), (3), and (4)]:
d. Nonrequested Distribution (By Mail and Outside the Mail)
 (1) Outside County Nonrequested Copies Stated on PS Form 3541 5,423 5,248
 (2) In-County Nonrequested Copies Stated on PS Form 3541 0 0
 (3) Nonrequested Copies Distributed Through the USPS by 0 0
 Other Classes of Mail
 (4) Nonrequested Copies Distributed Outside the Mail 3,145 1,800

(Pickup Stands, Trade Shows, Showrooms, and Other Sources)
e. Total Nonrequested Distribution 8,568 7,048
f. Total Distribution (Sum of 15c and 15e) 28,147 25,080
g. Copies Not Distributed 316 335
h. Total (Sum of 15g and 15h) 28,463 25,415
i. Percent Paid and/or Requested Circulation 69.56% 71.90%
(15c Divided by 15f Times100)

16. Publication of Statement of Ownership: This Statement of Ownership will be printed in the October 2012 issue of this publication. 17. Signature and Title of Editor, Publisher, Business Manager, or Owner
(signed): Simon Carless, Date: August 30, 2012.

>>
GE

T
ED

UC
AT

ED

54 O C T O B E R 2 0 1 2 | G A M E D E V E L O P E R

http://DESIGNLAFilm.com

ACADEMY OF INTERACTIVE ENTERTAINMENT 55

BLIZZARD ENTERTAINMENT 6 & 16

EPIC GAMES 15

HAVOK C3

LOS ANGELES FILM SCHOOL 54

LUCAS FILMS C2

MASTERS OF DIGITAL MEDIA PROGRAM 53

RAD GAME TOOLS C4

TWOFOUR 54 3

VANCOUVER FILM SCHOOL 25

COMPANY NAME PAGE COMPANY NAME PAGE

ADVERTISER INDEX

gd Game Developer (ISSN 1073-922X) is published monthly by UBM LLC, 303 Second Street, Suite 900 South, South Tower, San Francisco,
CA 94107, (415) 947-6000. Please direct advertising and editorial inquiries to this address. Canadian Registered for GST as UBM LLC, GST No.
R13288078, Customer No. 2116057, Agreement No. 40011901. SUBSCRIPTION RATES: Subscription rate for the U.S. is $49.95 for twelve issues. Coun-
tries outside the U.S. must be prepaid in U.S. funds drawn on a U.S. bank or via credit card. Canada/Mexico: $59.95; all other countries: $69.95
(issues shipped via air delivery). Periodical postage paid at San Francisco, CA and additional mailing offices. POSTMASTER: Send address changes
to Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. CUSTOMER SERVICE: For subscription orders and changes of address, call toll-free in
the U.S. (800) 250-2429 or fax (847) 647-5972. All other countries call (1) (847) 647-5928 or fax (1) (847) 647-5972. Send payments to gd Game
Developer, P.O. Box 1274, Skokie, IL 60076-8274. Call toll-free in the U.S./Canada (800) 444-4881 or fax (785) 838-7566. All other countries call (1)
(785) 841-1631 or fax (1) (785) 841-2624. Please remember to indicate gd Game Developer on any correspondence. All content, copyright gd Game
Developer magazine/UBM LLC, unless otherwise indicated. Don’t steal any of it.

>> GET EDUCATED

55W W W . G D M A G . C O M

http://WWW.GDMAG.COM
http://www.theaie.us

game developer | october 201256

 I’ve coached politicians,
lawyers, CEOs—people in highly
visible, highly scrutinized
positions. So I’m pretty sure this
will be fairly simple.

 Hey there, yeah...uh, I’m not
really sure why I’m here, to be
honest. I already know how to
conduct myself in front of an

audience. I just gave a big talk to
my screaming fans last E3.

 Yes, I watched that video. To be
fair, all you actually said out loud at
that E3 presentation was “Demons
with Guns 2 is coming this winter.”

 And they loved it. Right? The
crowd went wild.

 In that case, this should
go fast. Why don’t we begin by
pretending I’m a game journalist.

 I don’t know. I think you’re too
hot to be a game journalist...a real
one, anyway. I’d be, like, “Are you
really into games? Probably not.
You’re just doing this because of
all the free attention you get.”
That’s a thing that happens in the
game business, see—there are
these girls who aren’t really into
games, they just—

 Okay, slow down there. What
did you just say?

 Huh? That was just a little
joke. Anyway, I said you were hot.
You should feel complimented!

 You still don’t hear it? Let me
play it back again. Okay? I’m going
to rewind it and play it back again.

 [faint audio]: “Easy mode is
very forgiving. It’s so simple your
girlfriend could play it.”

 Okay, one more time. Tell me
what’s wrong with that.

 I...I don’t know.
 You don’t know? Think about it

for just a little longer...
 Uh, uh...is it because I’m

assuming everyone has a
girlfriend? I mean, I guess if
someone was gay, they might get
mad at me?

 Keep thinking.

 ...and I don’t know about
those people who are into those
anime-style games. I think
they’re biased, and it’s not fair.
Because people are, like, “Oh, it’s
awesome.” But it’s not. That anime
stuff is all just gibberish anyway.

 Okay, let’s take a step back here...
 It is, though. All I’m saying

is, that’s a double standard. If
you like anime, but you don’t like
the kinds of games I make, then
you’re being biased toward anime
games, and that’s favoritism.
That’s, like, racist.

 You don’t have to try to talk
me through your reasoning. I’m
sure it makes perfect sense to
you. But let’s focus on how you
can express your opinion in a
way that—

 How’s that incendiary? I’m
just stating a fact.

 A fact? That sounded a lot like
an opinion to me. Are you sure you
know the difference between—

 Sorry, I have to run. I need to
catch the new episode of My Little
Pony: Friendship is Magic. Hey, do
you watch that show?

 But...But...They’ve done
studies about this; I’ll totally
Google for them when I get home.
They have, I remember it really
clearly. It’s this completely
proven scientific fact that women
are more—

 Why don’t you stop right there.
I’m sorry, but arguing about this
isn’t going to get us where we
need to be. I’m going to suggest
instead that you simply avoid

talking
about
anything
unrelated to
the talking
points in
the packet.
Okay? No

opinions, no “facts,” nothing other
than Demons with Guns 2 is going
to be a great game, we’re working
hard on it, and it features a new
multiplayer mode.”

 Well, To be honest, I think
you’re the one who doesn’t
understand. I mean, I know that,
sure, politicians or whoever have
to say things in a certain way. But
this is the video game industry.
It’s part of the culture—

 Shush. Did you hear me?
No talking.

 I was just—
 Shh.
 Okay. Jeez. I—
 Shh.
 ...
 That’s a good boy. Now go out

there and talk about your game.

mATTHEW WASTElAnd writes about

games and game development on

his blog, Magical Wasteland (www.

magicalwasteland.com). email him at

mwasteland@gdmag.com.Il
lU

ST
RA

TI
On

 B
Y

JU
An

 R
Am

IR
Ez

arreSted developmeNt // mattHeW WaStelaNd

PR COACHTHE
InsIde the publIc relatIons department’s
secret traInIng sessIons
Preparing for an upcoming media event is hard work—you
never know what devious curveballs a hard-hitting game
journalist might lob your way. Thankfully, the big publishers
often have professional, highly skilled PR staff who can advise
and train game developers in the art of sticking to talking
points and saying things correctly. Let’s take a peek behind
the curtain to see how this mysterious process works!

http://www.magicalwasteland.com
mailto:mwasteland@gdmag.com
http://www.magicalwasteland.com

Havok™ Technologies Include:
+DYRN©3K\VLFV©�©+DYRN©$,©�©+DYRN©$QLPDWLRQ©�©+DYRN©%HKDYLRU©�©+DYRN©&ORWK©�©+DYRN©'HVWUXFWLRQ©�©+DYRN©6FULSW©�©+DYRN©9LVLRQ©(QJLQH

Learn More: www.havok.com

$ZDUGõZLQQLQJ©WHFKQRORJ\�

8QSDUDOOHOHG©VXSSRUW�©)OH[LEOH©OLFHQVLQJ©RSWLRQV�©

Get the innovative technology needed

to unlock the games of the future.

+DYRN©LV©KLULQJ�©9LVLW©www.havok.com/careers©IRU©PRUH©LQIRUPDWLRQ�

http://www.havok.com
http://www.havok.com/careers

http://www.radgametools.com

	Contents
	postmortem
	RAYMAN ORIGINS

	features
	SEEING DOUBLE
	SIGGRAPH 2012 HIGHLIGHTS
	GAME OVER

	departments
	EDITORIAL - GAMEPLAN
	NEWS - HEADS UP DISPLAY
	REVIEW - TOOLBOX
	PROGRAMMING - INNER PRODUCT
	NEWS - GDC NEWS
	ART - PIXEL PUSHER
	DESIGN - DESIGN OF THE TIMES
	CAREER - GOOD JOB
	BUSINESS - BUSINESS
	SOUND - AURAL FIXATION
	EDUCATION - EDUCATED PLAY
	HUMOR - ARRESTED DEVELOPMENT

