
OCTOBER 2003

G A M E D E V E L O P E R M A G A Z I N E

L E T T E R F R O M T H E E D I T O R

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Everard Strong estrong@cmp.com
Departments Editor

Jamil Moledina jmoledina@cmp.com
Product Review Editor

Peter Sheerin psheerin@cmp.com
Art Director

Audrey Welch awelch@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Jonathan Blow jon@number-none.com
Hayden Duvall haydend@3drealms.com
Noah Falstein noah@theinspiracy.com

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Monolith
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed Microsoft

ADVERTISING SALES
Director of Sales/Associate Publisher

Michele Sweeney e: msweeney@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 828.350.9392

Account Manager, Northern California & Midwest
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Western Region & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Account Manager, Recruitment
Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225

Account Representative, Target Pavilion & Education
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Advertising Production Coordinator Kevin Chanel

Reprints Terry Wilmot t: 516.562.7081

GAMA NETWORK MARKETING
Senior MarCom Manager Jennifer McLean

Marketing Coordinator Scott Lyon

CIRCULATION

Director Kevin Regan

Manager Peter Birmingham

Assistant Manager Lisa Oddo

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

e: msalinas@cmp.com t: 650.513.4234 f: 650.513.4482

EDITORIAL FEEDBACK
editors@gdmag.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Executive Vice President & CFO John Day

Executive Vice President & COO Steve Weitzner

Executive Vice President, Corporate Sales & Marketing Jeff Patterson

Chief Information Officer Mike Mikos

President, Technology Solutions Robert Faletra

President, Healthcare Media Vicki Masseria

Senior Vice President, Operations Bill Amstutz

Senior Vice President, Human Resources Leah Landro

Vice President & General Counsel Sandra Grayson

Vice President, Group Publisher Applied Technologies Philip Chapnick

Vice President, InformationWeek Media Network Michael Friedenberg

Vice President, Group Publisher Electronics Paul Miller

Vice President, Group Publisher Software Development Peter Westerm

Corporate Director, Audience Development Shannon Aronson

Corporate Director, Audience Development Michael Zane

Corporate Director, Publishing Services Marie Myers

W W W . G A M A N E T W O R K . C O M

✎

R egular readers of this col-

umn may have noticed an

alarming trend: that I am

not an alarmist. Upon

ascertaining those fre-

quent reports of the game industry’s immi-

nent demise, I, as Mark Twain did upon

hearing reports of his own death, find

them greatly exaggerated.

The preponderance — by which of

course I mean broad consumer success —

of license-based games and sequels is an

area of grave concern to many developers

who would prefer to develop their own

IP and for those who rightly see content

diversity as key to the game industry’s

long-term future. But this trend toward

flashy licenses and astronomical produc-

tion values need not sound the death

knell for creativity in game development,

unless you mean to equate the idea of

“the creative process” exclusively with

“total chaos.” And, based on our indus-

try’s history, chaos may be something

from which game development would do

well to distance itself.

Fortunately, there are more produc-

tive and replicable ways to leverage cre-

ativity that game developers are begin-

ning to explore with encouraging

results, which you can read about this

month. Yes, publishers and their risk-

averse henchmen are our creative neme-

ses, but developers themselves must

assume some of the guilt for overre-

liance on designs and implementations

strictly by virtue of their having worked

in the past. Ideas born of creative incest

lead to sickly, hemophilic dead-ends and

stagnant evolutionary backwaters.

With larger teams across art, program-

ming, design, production, and audio, the

need for structure prevails over even the

most intangible creative pursuits. When

so many people get involved in a collabo-

rative endeavor, the tenacious specter of

chaos is never far removed. Structuring

creative processes to leverage the output

potential of randomness and free-form

thinking without the operational chaos it

induces is the subject of Rob Bridgett

and Wolfgang Hamann’s feature on man-

aging audio departments, which begins

on page 28. Beyond the fact that in-

house and out-of-house audio depart-

ments’ roles on development projects is

evolving to a greater level of integration

with the rest of the development team

than ever before, the lessons Bridgett and

Hamann offer can just as well apply to

other creative realms in game develop-

ment and beyond.

Also this month, Masaya Matsuura,

musician and creator of Parappa the
Rapper, Um Jammer Lammy, and

Mojibribbon, echoes the benefit of jam

session–style brainstorming in game devel-

opment in his Sound Principles column on

page 24. The world’s greatest musicians

have long sought new inspiration from

their bandmates, colleagues, even adver-

saries through experimental performance

within commonly understood foundation-

al structures of music. Game developers

feeling constricted creatively by technolo-

gy or existing IP should consider what

musicians can accomplish in a jam session

with 12 notes and a handful of recogniza-

ble time signatures.

Historically game developers have not

looked to the industry’s audio profes-

sionals for technological guidance or

substantial design input, but there is

much to learn from the process behind

great sound and music that has clear

implications specifically for visual and

design development in addition to audio.

Much of musical experimentation is

based on structured iteration of theme

and variation. If you’re stuck creatively

with a theme not of your choosing, it’s

time to refocus on the experimental

processes that lead to the variations.

Happy Trails, Hayden. As revealed last

month, this issue marks Hayden

Duvall’s last Artist’s View column for

Game Developer. We wish Hayden the

best and look forward to introducing

his successor next month.

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

4

Game Developer
is BPA approved

G A M E P L A N

Jennifer Olsen

Editor-In-Chief

www.gdmag.com

Creativity: A Friend in Need

Norrath, 90210

W e wanted to respond to Damon

Watson’s article “MMORPGs:

Perfect Game or Dangerous Addiction?”

(Soapbox, July 2003) and say that we

strongly believe MMORPGs are danger-

ous addictions. Our 22-year-old son plays

Everquest from the time he rises (late

afternoon) until he goes to bed (middle of

the night). He was enrolled in college

classes for several semesters, but he failed

to finish because he was not attending. All

he cares about is Everquest.

We feel he is escaping his real-world

problems and his responsibilities of fin-

ishing school and finding employment.

From personal experience and in our

opinion, MMORPGs are unhealthy and

definitely addictive.

Steve and Rose Ussery

Hollister, CA

Hackneyed. Overused.

I just read Jennifer Olsen’s list of words

that make game titles forgettable

(“Sequels 2K3: Beyond the Return of the

Sequels,” Game Plan, July 2003), and I

would like to add the following:

Phoenix. War. Xeno. Lost. Quest. Of (as

in Call OF Duty, Medal OF Honor, Men

OF Valor). Oh yeah, might as well add

Valor, Duty, and Honor while we’re at it.

Ralph A. Barbagallo III

Flarb (via e-mail)

Everybody Loves
Hayden

I really enjoy reading the Artist’s View

articles written by Hayden Duvall.

He emphasizes the importance of using

proper aesthetics in game art for the

sake of quality and enjoyment. He also

focuses on the psychological effects a

game can have on players, and how a

game artist can, and should, use them to

his or her advantage in order to make

the game more enjoyable.

If a game is going to have good

replayability, then psychology should be

emphasized, more so than math.

Challenging our minds and having an

emotional experience in the process is

what ultimately makes the game fun to

play and keeps players coming back.

I praise Mr. Duvall for his sincere and

intelligent approach to game art.

Roberto Moreno

via e-mail

Departments Editor Jamil Moledina replies:
Sadly, the issue you’re holding contains
Hayden’s last entry in the Artist’s View
column. However, our November issue
marks the debut of a writer we believe is
poised to develop a following of his own.

Simplify Your Tables

I n Jay Lee’s “Data-Driven Subsystems

for MMP Designers” (August 2003), he

never discusses the relational/object divide.

I have seen many projects fail because

they’ve mapped too closely from objects to

relational tables, and have concluded that

defining a solid data-access abstraction

layer and allowing your DBA/DBE to tune

your database is the most effective way to

gain from your database.

For instance, when discussing relation-

ships, he speaks of the “1-to-1” relation-

ship — this is an ideal candidate for nor-

malization into a single table, even

though it may not correlate directly to

any “entity.” Accessing the new normal-

ized table requires one less join than the

previous data model, and performance is

enhanced. These tuning steps can add up

to a big performance win, especially with

well-constructed indices.

Michael Lanzetta

via e-mail

Rule 401

I n reference to Noah Falstein’s Better

by Design column, I have a rule of my

own to propose to ensure game quality:

Imagine yourself climbing a mountain.

The person holding the rope has just

spent the entire past week playing your

game. Do you feel safe telling him you

designed that game?

edA-qa mort-ora-y

via e-mail

Noah Falstein replies: Neatly put. Although
personally, I don’t know that I’d trust
my life to a climbing partner who’d spent
the week training for the climb by sitting
in front of a screen. Even if he was play-
ing a vintage emulation of Crazy
Climber. Maybe especially not then.

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r6

S A Y S Y O U
A F O R U M F O R Y O U R P O I N T O F V I E W . G I V E U S Y O U R F E E D B A C K . . .C

From personal experience and in our opinion,

MMORPGs are unhealthy and definitely addictive.

C
E-mail your feedback to

editors@gdmag.com, or write us at

Game Developer, 600 Harrison St.,

San Francisco, CA 94107

Sony spills PSP specifics. Sony disclosed

that its upcoming handheld device, the

PSP (Playstation Portable), will be built

around a MIPS R4000 32-bit core,

enabling 3D graphics. The device will

feature embedded wireless LAN func-

tionality, optical disc media, 7.1 channel

audio, and a 16:9 widescreen LCD

screen. Sony expects to position the PSP

directly against Nintendo’s Game Boy

Advance, although the device will also

play music and movies. Sony plans a

global simultaneous release of the PSP

in late 2004.

Microsoft immerses Immersion in cash.
Microsoft agreed to pay Immersion $35

million to resolve Immersion’s patent

infringement claim. Under the terms of the

settlement, Microsoft gains licensing rights

to Immersion’s haptic technology, and also

an unspecified equity stake in Immersion.

THQ brings Rare games back to Nintendo.
THQ signed a deal with Microsoft to

publish games developed by Microsoft’s

Rare game studio on Nintendo’s Game

Boy Advance. THQ plans a fall release for

the first title based on this partnership,

Banjo-Kazooie: Grunty’s Revenge.

Game Boy juggernaut overtakes Gamecube.
Nintendo posted a Q1 profit of ¥11.5

billion (US$95 million), a 5 percent

increase over the previous year. The

company reported that it sold 3.24 mil-

lion Game Boy Advance and Game Boy

Advance SP units worldwide, but only

80,000 Gamecube units for the quarter.

Nvidia invades mobile chip market. Nvidia

began a purchase of MediaQ, a graphics

and I/O chip maker for mobile and hand-

held devices. Both companies’ boards

have approved the deal, valued at $70

million. Nvidia expects the transaction to

be completed in Q3 of its fiscal year.

ATI boxes out Nvidia? ATI signed a deal

with Microsoft to provide the graphics

system for the next Xbox. Although

Nvidia provides graphics chips for the

current Xbox, the company entered arbi-

tration with Microsoft last year to resolve

the price of those chips.

Midway loses shell game. Midway Games

failed a covenant of its $15 million cred-

it line, resulting in the line being termi-

nated. In an SEC filing, Midway admit-

ted that its failure to comply with

requirements related to minimum stock-

holders’ equity and net worth was due

to a $23.05 million write-down of capi-

talized product development costs.

Midway also said it received a $4 mil-

lion payment from its former parent

company, WMS Industries, related to tax

sharing and separation agreements. q

Send all industry and product release
news to news@gdmag.com.

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r8

Splutterfish releases Brazil 1.2, Shave and a
Haircut. Splutterfish’s latest rendering

tool, Brazil Rendering System Version

1.2, includes distributed rendering,

advanced shadow plug-ins, and an

advanced skin shader. In conjunction

with Joe Alter, Splutterfish also

released Shave and a Haircut, a CG

hair grooming, dynamics, and render-

ing system. Both tools interoperate

with Discreet’s 3DS Max animation

software. Brazil Rendering System

Version 1.2 starts at $750, while

Shave and a Haircut has a retail price

of $485. www.splutterfish.com

Bodypaint 3D 2 now available. Maxon

Computer released Bodypaint 3D 2, a

3D texture painting application that

works with 3DS Max, Maya, and

Lightwave. New features include

projection painting, raybrush,

improved data exchange with DCC

programs, and better OpenGL render-

ing. Bodypaint 3D 2 sells for $645.

www.maxon.net

Digital Anarchy releases texture plug-ins.
Digital Anarchy released a set of three

plug-ins for Adobe Photoshop called

Texture Anarchy. The set can be used to

create fractal-based procedural textures

for use as seamless texture maps, bor-

ders, and backgrounds. Texture Anarchy

includes customizable light sources, gra-

dient tools, and 38 types of noise. It is

available for $129.

www.digitalanarchy.com

I N D U S T R Y W A T C H; K E E P I N G A N E Y E O N T H E G A M E B I Z | j a m i l m o l e d i n a

B U P C O M I N G E V E N T S

CCAALLEENNDDAARR

THQ bridges Rare and Nintendo, publishing
Rare titles such as BANJO-KAZOOIE: GRUNTY’S
REVENGE for Game Boy Advance.

I N D I E G A M E S C O N 2 0 0 3
WILD DUCK BANQUET HALL

Eugene, Ore.
October 10–12, 2003
Cost: $150–$195
www.indiegamescon.com

M O B I L E G A M E S 2 0 0 3
MELIA AVENIDA AMERICA

Madrid, Spain
October 22–24, 2003
Cost: £699–£1,699 (+VAT)
www.ef-international.co.uk/
index.cfm?conference=2220

P TTHHEE TTOOOOLLBBOOXX
D E V E L O P M E N T S O F T W A R E , H A R D W A R E ,
A N D O T H E R S T U F F

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r10

A sset management is a

huge challenge facing

content creation teams

today. Every development

team seems to have their

own custom content creation tools and

techniques. The fact that Alienbrain

Studio’s functionality can be programmat-

ically accessed through the included soft-

ware development kit (SDK) allows teams

to fit Alienbrain Studio to their custom

tools and techniques, rather than the

other way around.

Alienbrain Studio is based on a

client/server architecture. Graphical user

clients (manager, designer, or developer)

connect to the server over one of the sup-

ported transport types: DCOM (the

default), HTTPS, or TCP/IP.

It’s possible to extend the various graph-

ical clients with new views using JavaScript

and XML. In addition DHTML can be

used to create custom preview panels (in

the graphical clients supporting them),

usually in conjunction with a custom-

authored ActiveX control. It’s also possible

to extend the server-side thumbnail genera-

tor to understand new formats through the

use of a purpose-developed DLL. None of

these customizations typically involves the

Integration SDK, but I mention them here

for completeness.

Custom applications (or “Integra-

tions”), such as a level editor or propri-

etary build system, must link with the

Integrator SDK to access the Alienbrain

Studio “Namespace.” The Namespace

provides all core client functionality such

as database and local file access. Every-

thing from items and properties under

version control to local files and folders

live in the Namespace.

The SDK includes HTML format docu-

mentation, sample code and C++ header

files, and libraries which implement a set

of classes for manipulating the Name-

space. Both debug and release versions of

the libraries are available, which greatly

facilitates tracking down bugs.

There are several well-illustrated tutori-

als that provide a walkthrough of the

basics required for writing simple Integra-

tions, but more advanced examples are

missing. The classes are logical and fairly

well thought out, but not as abstract as

they could be, and in some cases they are a

little clunky. Classes such as CNXN Smart

Integrator aggregate the functionality of

other, more specialized classes, allowing

authors to pick and choose to what degree

of granularity they want to use the SDK.

Along with API calls for the basics,

including get latest, check-in, checkout,

and the iteration of version history, the

SDK supports the ability to receive

“push” style notifications when interest-

ing events happen in the Namespace. An

Integration can learn about most events

both right before and right after they

occur. Handling events in an Integration

is pretty easy; user classes are derived

XX
P R O D U C T R E V I E W S

T H E S K I N N Y O N N E W T O O L S

J E R E M Y G O R D O N | Jeremy Gordon is the president and CEO of Secret Level, a bou-
tique game developer located in San Francisco.

NXN’s Alienbrain Studio 6
Integrator SDK

by jeremy gordon

How a client/server architecture works inside Alienbrain Studio.

Integrations

Integration
SDK

Applications

SDKs

Kernel

Plug-Ins

IO

Namespace
Object Model

Namespace

Database
Access

DCOM
HTTPS
TCP/IP

OS

Local File
Access

Manager Client
Designer Client
Developer Client

JScript Library

from the CNXN Event Target class and

use Microsoft Foundation Classes

(MFC)-style message map macros to wire

Alienbrain Studio event names to custom

member functions.

A word on NXN’s developer support:

it’s top-notch. Our e-mail queries have

received automated responses immediately

with an average resolution time of typical-

ly only a few hours. NXN also maintains a

password-protected support web site with

downloads and additional information.

One major downside to the SDK is

that it is currently only available on the

Windows platform, so Linux users will

have to make do with the command line

tool for now. In addition to a Linux ver-

sion of the SDK, a robust server-side

SDK definitely makes my wish list.

With version 7 of the software coming

soon, users will be relieved to know that

custom Integrations will not require source

code–level changes to remain compatible.

Another downside of the SDK is that

an Alienbrain Studio client must be

installed and licensed in order to run an

Integration; just having the server isn’t

enough. The SDK comes free with

Alienbrain Studio — but, as discussed in

previous reviews in this magazine,

depending on the configuration, the client

(and server) can set you back a little more

than competing version control packages.

That said, if you can eschew the fancy fea-

tures of the manager and designer clients,

the developer client pricing is actually

quite competitive with other version con-

trol packages, and the Alienbrain Engineer

server (which allows connections from

developer clients only) is free of charge.

Overall, the SDK is a solid performer,

allowing deep access to the Alienbrain

Studio client functionality. One of the

biggest reasons to implement an Alien-

brain Studio installation is to provide

dependable, artist- and designer-friendly

digital asset management. The Alien-

brain Integrator SDK enables developers

to extend this ideal to their own custom

content creation tools.

Tricks of the 3D Game
Programming Gurus
by André LaMothe

reviewed by jeremy jessup

I n his latest book, Tricks of the 3D
Game Programming Gurus, André

LaMothe tackles the development of a

3D software engine in a systematic and

instructional manner. The book is a little

over 1,600 pages, comes with a compan-

ion CD, and retails for $59.99. The book

captures the complexity of graphics pro-

gramming to a tee. LaMothe doesn’t shy

away from difficult material and pro-

vides excellent reference materials to help

supplement the text.

Writing a graphics engine in software

may not seem all that sophisticated, but it

is an excellent way to approach computer

graphics. By writing specific functions

that are typically abstracted by a plat-

form-specific API (such as DirectX),

LaMothe focuses on the underlying theo-

ry and provides the reader a conceptual

framework that is easily adapted to vari-

ous targets as the need arises.

While this book is the second volume

in the Tricks series, it is not essential to

have read the first book. To handle the

2D graphics, audio, and input, LaMothe

builds the 3D engine on top of the 2D

engine in the first book with DirectX 7.

The first section introduces DirectX, the

basic game structure, and the previous

library’s functional interface. To optimally

build the 3D engine, LaMothe abstracts

the DirectX and Win32 code by encapsu-

lating the computer interface to a set of

three libraries which handle window con-

struction, input, and audio. The book ade-

quately describes the basic foundations

necessary to use DirectX and Win32 with-

out dwelling on many of the specifics,

since the focus is on the 3D engine.

The second section begins with linear

algebra and trigonometry. The math sec-

tion spans over 100 pages and forms the

basis of the math library described in the

subsequent chapter. Having most of the

fundamental groundwork in place,

LaMothe begins to develop the pipeline

for the 3D engine. From local to world

transform to projection, the substeps nec-

essary for rasterization are described in

detail. In order to read external model

data, several functions are developed to

parse the output of the modeling tools

which are included on the companion

CD. By the end of the section, the engine

is able to render in wireframe.

LaMothe starts the third section of the

book adding critical enhancements: light-

ing, texture mapping, clipping, and a

depth buffer. Starting with the mathemat-

ical background, each topic is thoroughly

explored, then the functional changes to

the engine API are presented. The book

reads as though LaMothe is speaking

directly to you while transcribing his

thoughts to the page.

In the final section of the book,

LaMothe tackles several advanced graph-

ics topics: perspective texture mapping,

spatial partitioning, shadows, and anima-

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

w w w . g d m a g . c o m 11

XP R O D U C T R E V I E W S

ALIENBRAIN STUDIO 6
INTEGRATOR SDK XXXX

STATS
NXN
Venice, Calif.
(310) 393-8535
www.alienbrain.com

PRICE
$3,999 and up

RECOMMENDED CONFIGURATION
One server per team, one client per
team member plus sufficient client
access licenses to accommodate all
users. Server and client choices
depend on the size of your team.

PROS
1. Provides deep access to NXN

Alienbrain Studio functionality.
2. Top-notch developer support.
3. API is stable across Alienbrain Studio

versions.

CONS
1. Only available on the Windows plat-

form.
2. PCs running applications built with the

SDK require a client license.
3. Lacks sample code demonstrating

advanced API features.

tion. The visibility chapter is

particularly strong with an

in-depth look at Binary

Space Partitions (BSP trees)

among other various portal

techniques. The engine code

and examples are well commented mak-

ing it easy to jump back and forth from

the book to the source code.

The companion CD is as robust as the

book. It contains a bevy of additional

resources, including all the source code

covered in the text (precompiled executa-

bles, appendices, 25 articles from various

authors on everything from artificial intel-

ligence to Pentium optimization, QUAKE

source code, trial versions of some helpful

game development tools, and the DirectX

9 SDK. The modeling tools are a very nice

touch and add to the completeness of the

overall text.

Simply put, this is a thoroughly satisfy-

ing book. While LaMothe’s approach in

developing the engine is sound, understand

that he makes design choices throughout

the book to make a fast software engine

(no shaders, no complex light models,

lookup tables). The theory behind his

choice in approach is the valuable part of

the book and the engine is a practical

demonstration. Readers looking to develop

their own engine or understand the

behind-the-scenes details when using an

API like DirectX will truly appreciate the

effort LaMothe has undertaken.

XXXX | Tricks of the 3D Game
Programming Gurus | Sams Publishing

www.samspublishing.com

Jeremy Jessup works for Rockstar San
Diego and has been in the game industry
for over five years.

IDV’s Speedtree RT 1.5

S peedtree RT 1.5 is a hybrid 3D mod-

eler and run-time engine that helps

developers integrate great-looking trees in

real-time applications quickly. The focus

is not so much on best-possible quality,

but in keeping a balance between quality

and real-time suitability. Tree handling is

divided into two different subtasks. First,

you generate realistic tree

models using an editing tool,

then you apply proprietary

algorithms to render them

efficiently. This approach is

interesting and attacks the

core issue in creating realistic trees quick-

ly: mapping modeling to rendering.

The first component in the Speedtree RT

suite is the tree modeler, which can be used

either as a stand-alone application or inte-

grated within 3DS Max. Speedtree creates

hierarchical models of each tree, so leaves

are linked to their branches, branches to

the trunk, and so on. This means trees can

be animated quite realistically, with leaves

swinging and branches arching depending

on the wind strength. Modeling is a hybrid

of geometry for the trunk and fronds, and

image-based, screen-aligned billboards for

the leaf clusters. Because trees are modeled

parametrically, you can adjust features

such as branching, the amount of leaves,

and so on, to help you create any new,

unique species.

The second component is an API that

handles all the tree loading, LOD han-

dling, and rendering for you. Speedtree’s

run-time component interpolates using

blending between several discrete LODs

that are automatically computed by the

modeling tool, and renders the whole thing

as a billboard when the tree is very distant.

The beauty of Speedtree’s approach is that

all the LOD handling, dynamic tree light-

ing, shadow computation, and animation

are hidden away, so all you need to do is

use a simple programming interface to

access the tree technology.

To test Speedtree, we integrated it

with an existing DirectX project already

involving large outdoor scenarios. Speed-

tree comes with sample implementations

for DirectX, OpenGL, and Netimmerse,

so all we needed to do is copy and paste

from the DirectX examples. Overall, it

took one day of work of one developer

to have our first trees working, and

about three days to have a complete ver-

sion, with trees integrated with the scene

graph, animation, and collision detec-

tion. All in all, the API is simple and

well laid out, so integration is quite

straightforward.

The resulting trees are a perfect bal-

ance between speed and quality. Seen up-

close, the trees are remarkably believable:

you can look at a treetop while standing

directly below, and the illusion of volume

and parallax between the leaves is prop-

erly maintained. The use of pure bill-

boards for distant LODs allows you to

easily create large vistas with forests.

Some individual trees do look a bit algo-

rithmic and fractal at times, but when

placed in a grove or forest, results are

strikingly realistic: animated trees with

real-time shadows that you can see far

away and up close.

Compared with previous versions,

Speedtree RT 1.5 adds frond support and

better performance. The new trees have

richer, denser branches, and their internal

structure just looks more realistic than

before. The new version can create com-

pelling shrubs and bushes as well.

Providing more code samples would be

a great way to expose all the potential to

the user. Advanced topics such as shadows

on uneven terrain, scene graph integration,

fog, and seasonal changes are ideas that

will definitely pop into your mind when

using this package, and having an example

at hand when you feel like coding

advanced ideas would be fantastic. That

said, the code examples cover most day-to-

day uses sufficiently, from tree loading,

rendering, and the setting of the different

parameters such as wind, light, and so on.

Speedtree RT 1.5 can be purchased on

a per-project basis, as most game devel-

opment toolkits out there. The cost is

$5,995 per title, which will make sense

(or not) depending on your cost struc-

ture. Before balking at the price, consider

how long it would take to develop a

comparable technology internally at your

company. Speedtree combines reasonable

cost, short time-to-market, and strikingly

good results. q

XXXX | Speedtree RT 1.5 |
IDV Inc.

www.idvinc.com

Daniel Sanchez-Crespo is the founder of
Novarama, an independent game studio
in Barcelona, Spain, that creates games
for the PC and Xbox platforms.

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r12

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

XP R O D U C T R E V I E W S

L orne Lanning spent two and a

half years fine-tuning what

would become Oddworld

before being given the oppor-

tunity in 1997 to actually

develop the series’s first adventure,

ODDWORLD: ABE’S ODDYSEE. Since then

Lanning has kept giving players bigger and

bigger glimpses of his own private world.

One of the characteristics that have set

Lanning’s games apart is his almost obses-

sive focus on the importance of storytelling;

narration and character development are

central to his games, with action skills

receiving secondary attention.

With a renewed interest in the art of storytelling in game

development, Game Developer visited with one of its apostles.

Game Developer. What are some of the bigger challenges in
implementing good storytelling within a game?

Lorne Lanning: I think the primary obstacle is that games are

built upon a limited chemistry of repeatable mechanics. Suc-

cessful gameplay is the reasonable ramping of frequency and

balance from these repeatable mechanics to create an additively

progressing challenge. Great stories are built upon a very differ-

ent structure. Stories do not repeat their subject matter; they

continue to pull us forward via the pacing as dictated by a direc-

tor and/or writer per the changing circumstances of an engaging

character. By nature, the two mediums are in conflict. One is

based upon repeated functions and the other is based upon con-

tinued change.

GD: So how does Oddworld try to implement these two sides of a
game development coin into a cohesive playing experience?

LL: We try to create compelling heroes that are able to man-

age an interesting plight via the process of ongoing repeatable

mechanics. For us, as the hero performs his repeatable actions,

the actions need to be related to the narrative motivation and

the character’s development. The process of our mechanic cre-

ation is typically one that is directly distilled from who the

character is and what his plight is. This means the mechanics

need to be innovative. This aspect is critical if you want to cre-

ate characters that people feel for, yet they feel for them while

in the gaming experience.

GD: What key factors can be used to check a story line’s effec-
tiveness in a game?

LL: As far as universe development is concerned, a great

interactive story must be built upon four critical components:

unique characters, unique settings and environments, unique

actions, and unique dilemmas. However,

these components only form the soil from

which you might grow an interesting charac-

ter plight; you need compelling circum-

stances. Would this character’s plight be

interesting if it were not within a game’s con-

text? If not, then it’s probably not going to

be that interesting in a game either. The plot

needs to stand on its own regardless of the

medium. Intrigue and character development

are medium-independent; we are emotional

and intellectual beings. We want to be taken

for a ride that engages our mind and stimu-

lates our senses. If this can be achieved while

also providing us with a challenging experi-

ence that stimulates our competitive or cooperative natures. . .

then we might have a winner.

GD: When is style more important than substance?
LL: I don’t think it ever is, though I suspect that at times

some of our work has had more style than substance. When

this has happened, it was the result of overly ambitious design

that was beyond our realistic capabilities. You then fall into

what I call “reactionary design.” You’re trying to find Band-

aids for work efforts that didn’t quite fully manifest, so you’re

left with a bunch of partial assets that need still need to deliver

at a certain time and for a certain budget.

GD: What are some of the biggest changes in game development
industry you’ve seen since ODDWORLD: ABE’S ODDYSEE first launched?

LL: Innovation in game design has become more difficult due

to a publishing climate that is growing more afraid of creative

risk-taking. You can’t really blame them, as the stakes are get-

ting higher as production costs increase while the number of

retail winners continually decreases.

GD: How do you keep Oddworld fresh for ongoing fans while tan-
talizing for newcomers?

LL: I think it’s important that you keep a certain consistency

for the brand while hopefully surprising the audience; as soon

as the audience thinks they’ve got your number, you’re dead.

Innovation is the key, yet innovation compounded atop a

unique universe that you’ve already put out there and that’s

already been received well. You need to convince the audience

that they aren’t going to know exactly what to expect, except

that it will be different and it will be the product of a team that

really cared to deliver something special.

It’s very difficult to achieve sustained interest if you don’t

deliver products frequently enough. This is something that

we’ve always been trying to rise above. q

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r14

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | e v e r a r d s t r o n g

Lorne’s Oddysee
Oddworld’s Lorne Lanning on the Art of Storytelling in Games

Oddworld’s Lorne Lanning believes the
message is the key.

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r16

j o n a t h a n b l o wI N N E R P R O D U C T

I n a networked game system, we want to compress our

network messages to reduce bandwidth usage. Last

month (“Using an Arithmetic Coder: Part 2,”

September 2003) we compressed our output using an

arithmetic coder with a static data model. The data

model consisted of some statistics we generated by analyzing

training data; the arithmetic coder then used those statistics to

compress transmitted data.

This approach offers limited effectiveness. Often, our network

messages will have characteristics significantly different from the

training data; in these cases, compression will be poor. File-based

arithmetic coders deal with this problem using adaptive compres-

sion: as data is processed, they modify the statistics to conform.

Successful adaptive compression depends on the decoder’s ability

to duplicate exactly the changes enacted by the encoder.

Unfortunately, in high-performance networked games, we

want to send most of our data in an unreliable manner (for

example, using UDP datagrams). Because of this, the straight-

forward implementation of adaptive compression won’t work.

The server would base its statistics on messages transmitted,

and the client would base its statistics on messages received. As

soon as a single message is lost on the network, the client falls

out of step with the server. The client is now permanently miss-

ing data needed to reproduce the statistics, so everything it

attempts to decode in the future will be garbage.

One Possible Solution

W e might solve this problem by making the server authori-

tative over the current data model. That is, both client

and server start with the same statistics. As the server sends

data to the client, the server measures the statistics but doesn’t

yet incorporate them into the data model it’s using for transmis-

sion. Every once in a while, the server gathers together all the

statistics from recent messages and builds a new data model,

which it transmits to the client. As soon as the client acknowl-

edges receipt of the new model, both client and server switch to

this model for future transmissions.

This solution will work, but the fact that we need to transmit

the statistics is a major drawback. One of the most attractive

aspects of adaptive compression, in the domain of files, is that

the statistics are implicit and thus take up no space in the com-

pressed output. It’s a shame to give up that advantage; if we do,

suddenly adaptive compression becomes a questionable pursuit.

For adaptive compression to be useful, we need to save a lot

more bandwidth (through adaptation) than we spend (by trans-

mitting the statistics). But generally, the more effective statistics

will be, the more space they require. So really, we’d prefer a

solution that allows the statistics to remain implicit.

An Efficient Solution

Despite packet loss, there is enough shared knowledge

between the client and the server to enable adaptive com-

pression with implicit statistics. I’ll start with a straightforward

yet cumbersome method of accomplishing this; then I’ll refine

the method.

Adaptive Compression
Across Unreliable Networks

FIGURE 1. Cumbersome protocol for adaptive compression. Data pack-
et 3 is lost on the network; since the server never receives an ACK for
it, the server builds the new model only from packets 1, 2, and 4.

J O N A T H A N B L O W | Jonathan is a
game technology consultant living in
Austin, Tex., although he may run for star
of Terminator 4. Advise him at jon@num-
ber-none.com.

client
data 1

data 2

data 3

data 4

new model
from 1,2,4

data 5

ACK 1

ACK 2

ACK 4

ACK new
model

server

w w w . g d m a g . c o m 17

Though the server can’t predict which packets will actually

reach the client, the client can tell the server this information

after the fact. Suppose the client acknowledges each message it

receives; the server then uses these acknowledgements to build a

new data model. This new data model uses only statistics from

messages the client received. The server must then tell the client

when to start using the new model and which messages were

used to build that model, because the client doesn’t know

which ACKs the server received (ACKs can be lost too!). In a

naive implementation, the server and client need to stop and

synchronize when switching the data model, because the server

needs to make sure the client knows the correct statistics before

continuing with new packets. Figure 1 illustrates this protocol.

So far there’s a lot of round-tripping and some annoying syn-

chronization. Fortunately, all that can be eliminated. First we

perform a conceptual refactoring and make the client (or more

generally, the message receiver) authoritative over the data

model. Because the receiver knows which messages were not

lost, it’s in the best position to choose the model. Instead of

ACKing packets individually, the client just tells the server,

“Build a new data model, based on the old one, but including

also the statistics of messages 0, 1, ... and 9.” So far this

“Build a new data model” message is nothing fancy, essentially

just a big batched set of acknowledgements. In a moment,

though, we’ll make it a little more powerful.

This request for a new table might be lost or delayed, and we

don’t want to synchronize on such an event. So we enable the

server and client to keep track of some small number of old data

models. In the sample code (more on that later), I arbitrarily

chose 7. Each packet is labeled with the index of the data model

that was used to encode it. So suppose the client and server are

both using model 3, and the client sends the request “Build

model 4, starting with model 3 and mixing in this list of mes-

sages.” If the request succeeds, the server starts sending packets

labeled as model 4, and the client knows how to decode that

(because the client built model 4 for itself at the same time it

told the server to build model 4). If the request is lost on the

network, the server’s packets will continue to be labeled as

model 3. Because the client still remembers model 3, it can

decode these successfully. All this is illustrated in Figure 2.

This data model index is prefixed to each packet, so it

requires a little bit of extra bandwidth, perhaps 3 bits. So that

packets can be ACKed, we need to give them unique identifiers,

which takes some more bandwidth. These amounts are small,

though, compared to the savings we ought to get from compres-

sion. Bandwidth overhead is not a problem with this algorithm.

It’s with memory that we may see a problem.

Reducing Memory Usage

B ecause the server doesn’t know in advance which messages

will be used to generate a new table, it needs to remember

statistics for each individual message it sends. The memory

usage is not so bad if you are just thinking about transmitting

to one client. But if you are making an MMO game with 1,000

clients logged into the same server, suddenly we’re talking

about some serious overhead. Exactly how much overhead

depends on the data model, but keep in mind that data models

can be quite large. The simple order-1 model from last month

will often be tens of kilobytes, and you want to use something

more sophisticated than that. Fortunately, though, incremental

data model storage techniques may help you keep these sizes

under control.

On the other hand, instead of storing a large high-order

probability table for each message, the server could just store

the messages themselves. When a request comes in to build a

new model, the server can generate the statistics for each mes-

sage by decoding them just as the client would. That adds to

our CPU cost, though, since the server is eventually decoding

just about every message it encodes. Decoding tends to be more

expensive than encoding, so we will have more than doubled

our CPU cost. The extra cost isn’t expensive enough to worry

about for a single stream, but in a system with 1,000 clients,

the cost may be prohibitive.

But even storing messages like this, our memory usage may

still be uncomfortably large. If we’re transmitting 1 kilobyte per

second to each client, and we update a client’s data model every

60 seconds, we need at least 60 kilobytes per client; multiplied

by 1,000 clients, that’s 60 megabytes, which isn’t funny. That

minimum figure assumes no packet loss among any clients,

which is unrealistic; and we still must pay the hefty CPU cost to

decode all that. Clearly, we’d like a more attractive solution.

My approach is to group messages into batches, say, 10 mes-

sages per batch. The server remembers one data model per batch,

and the client requests new models by specifying the batch num-

bers. (The batch number for each message is just its sequence

FIGURE 2. Streamlined protocol where the client controls the data
model and synchronization is unnecessary.

server client

data 1 (model 0)

data 2 (model 0)

data 3 (model 0)

data 4 (model 0)

new model #1
from model #0
and data 1,2,4

data 5 (model 1)

number divided by 10, rounded down to yield an integer.)

This batching degrades the performance of the compressor

slightly in the event of packet loss. If the client fails to receive

some message from a batch, then none of the other messages in

that batch can be used in any new data model (because the serv-

er has mixed the statistics from those messages all together and

can’t separate them again). Because of this the effect of packet

loss is magnified. For a batch size of 10, 1 percent packet loss

means 10 percent of batches are lost; 5 percent packet loss

means 40 percent of batches are lost; 10 percent packet loss

means 65 percent of batches are lost. These numbers sound

high, but they’re really not so bad. If the packet loss gets higher

than 5 percent, the game is likely to feel unplayable anyway

(due to general poor connection quality), so we’re really only

worried about losses below that rate. But as it happens, the

adaptive modeler performs surprisingly well even with 10%

packet loss. Apparently, we can still do a reasonable job of

tracking message statistics even without seeing the majority of

the messages. Table 1 shows the resulting compression rates for

the sample code at varying rates of packet loss.

Forgetting Message Statistics

O nce the server uses a batch of statistics to build a new

data model, it can forget those statistics and free up

memory. But to cope with packet loss, and to prevent denial-

of-service attacks, the server will also need to discard unused

statistics when they become old enough. This raises the possi-

bility that the client will request a new model using batches the

server has thrown away. That’s not a big deal; the protocol

handles it just fine. When the server finds that it no longer

knows the statistics for one of the batches, it just ignores the

request. The server continues onward, using the old data

model for transmission. The result is the same as if the client’s

request were lost on the network.

The Sample Code

T he results in Table 1 were measured from this month’s sam-

ple code, which you can download from the Game
Developer web site at www.gdmag.com. The code performs a

simple simulation of a client/server system. To keep the code

focused, data is not actually transmitted over a network.

Instead, the program’s main loop passes messages between

objects representing the client and the server, with a random

chance for each message to be destroyed instead of relayed.

Like last month, the code uses training data to build an initial

data model. But this time, that model is used only as a starting

point. Afterward, the data model is updated at the client’s

request. Because both client and server compute the same data

models for each message batch, the data models stay in sync.

The server transmits a 300k stream to the client; this stream

consists of the first two books of Paradise Lost, followed by the

comp.graphics.algorithms FAQ, followed by some interesting

C++ code. As you can see from Table 1, we achieve roughly 50

percent compression, which is pretty good.

Adjustable settings are provided for you to control packet

loss, maximum message size, batch size, and the weight new

message statistics are given when mixed with old ones; you can

play with these values and see how the results change.

As I already mentioned, this compression algorithm requires

unique identifiers (such as sequence numbers) on all unreliable

packets. In addition to allowing compression, these sequence

numbers can be put to other uses. For instance, we can use

them on the client to estimate the current server-to-client packet

loss; that estimate can be very useful in dynamically adjusting

the behavior of the network protocol to maximize performance.

The sample code measures the approximate packet loss and

prints it out for you after the test is done.

The Future Code

T he sample only allocates a fixed range for sequence num-

bers; if you try to send too long of a message, the

sequence numbers will overflow, and the protocol will mal-

function. For a real game you will want to change this. It’s

not hard to handle; you just need the client and server to

understand that sequence numbers will, at some point, wrap

back around to 0. However, I wanted the sample code to be

minimal and clear, so I left this out.

Currently, the client and server only use one data model at a

time. Though they remember a history of several models to

avoid synchronization, only the most recent is used by the serv-

er to encode outgoing data. We might improve compression

efficiency, at a large CPU cost, by having the server attempt to

encode each outgoing packet using all of the consensual data

models, transmitting the version that came out the smallest. I

leave this as an exercise to the interested reader, since the CPU

cost on current hardware would make this approach unattrac-

tive to many people. q

I N N E R P R O D U C T

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r18

Uncompressed size is 296,906 bytes, 10 messages per batch, 500
bytes per message. The line for 100% packet loss tells you how
effective the static data model would be on its own.

Packet Loss Compressed Size (bytes) Compression

0% 148,209 50.1%

1% 149,863 49.5%

5% 154,407 48.0%

10% 159,352 46.3%

100% 185,890 37.4%

TABLE 1: COMPRESSED DATA

A R T I S T ’ S V I E W h a y d e n d u v a l l

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r20

L ast month I pre-

sented seven

points on my list

of 15 things all

artists should

know, based on what I learned

over my years in the game

industry. To close out the

series and my role as Artist’s

View columnist, here are the

remaining eight.

8. Go digital. I imagine

that I am preaching to

the converted here, but if at all

possible get the best digital

camera you can afford (even

secondhand ones that are a few

years old now are perfectly

good) and weld it on a chain

around your neck.

I cannot count the number of

times over the past few years

that I was driving somewhere

with my family and passed the

most perfect set of ruined farm

buildings or concrete storage

units and had to curse the fact

that my camera was at home or

not charged.

Unlike days gone by when the expensive and time-consuming

process of getting a photo onto your computer made it less

practical, digital cameras mean you can take pretty much as

many pictures as you like and have them prepped as textures in

no time flat, and at no extra cost.

In addition to the digital camera, it may also be advisable to

assemble a Game Artist Photo Sourcing Apparatus Container

(GAPSAC™), which would typically include:

• Bolt cutters, to get into those secret government com-

pounds where all the best military vehicle textures are found.

• A lead-lined bodysuit and some thick rubber gloves for

protection in the condemned uranium processing plant, as you

search for those vital shots of corroded metal and rusting

machinery.

• The phone number of a

good law firm.

You don’t qualify as a real

game artist until you have been

arrested for trespassing and

spent the night tied to a chair

in a disused warehouse being

interrogated by an unofficial

branch of the CIA.

7. To meet or not to meet?
One of the great

things about working as an

artist in the game industry is

that we get paid to spend our

days creating four-headed zom-

bie chinchillas or designing the

interior of Commander Grurg’s

alien mothership. Talk to just

about anyone working in an

area like retail or manufactur-

ing and ask them when was the

last time that they had to

spend a day deciding what a

Tantric Horn Demon looks like

and watch them shake their

heads in feigned disgust while

they secretly wish that they

could swap places with you.

Our job is pretty cool (if you

like this kind of stuff, of course) and much of what we do as

artists is about as far away from a regular job as could be

imagined. However, if we are to stand a chance of finishing a

project on time and within budget, we need to plan our work

in much the same way as any project-based industry would,

and this pretty much always means meetings.

It’s not that meetings are bad, on the contrary, they’re cer-

All Artists Should
Know: Part 2

1155
ThingsThings

HAYDEN DUVALL I Hayden lives with his
wife, Leah, and their four children, in
Garland, Tex., where he works as an artist
at 3D Realms. Contact Hayden at
haydend@3drealms.com.

Ph
ot

o
by

 S
ta

ce
y

G
ad

w
ill

/Is
to

ck
 P

ho
to

tainly important, but sitting around a table planning work

schedules or discussing design points can easily change into a

debate about whether or not Batman could take Daredevil in a

straight-up fist fight.

This is an unavoidable side-effect of the industry we are in

and more importantly the type of people it attracts. It is very

easy to get carried away when sitting and talking about the

game you are making. The trick is to find that ideal balance

between the meeting vacuum, where no one knows much about

what’s going on, and meeting overdrive, where the working

week ends up being four days of meetings and one day writing

up the outcome of those meetings.

6. Living on the edge. Working in a technology-driven

industry, much importance is put on the value of

being on the cutting edge. Over the years I can remember many

games that were pushed on the strength of their “26 levels of

parallax scrolling” or “full three-dimensional vector graphics”

and the game press and publishers’ marketing machines gener-

ally latch on to such advancements with vigor.

For the artist, more often than not advances are a good thing.

The more tricks we have to dazzle the player with the better, but

there is danger inherent in living so close to the edge.

Just because something is new, it doesn’t actually mean that

it is better. A game’s visuals need to be evaluated in terms of

the setting, atmosphere, and context of the game and how they

can best represent the world and characters that are being cre-

ated. Just because you are suddenly able to do dynamic volu-

metric explosions doesn’t mean that you should cram them

into every corner of your game, especially if it is set in a

medieval castle. Cutting-edge reflection technology can easily

push a game toward hordes of reflective surfaces, but this is

probably going to look a little odd in a game that takes place

in a giant forest.

Integrity of artistic vision is a luxury not generally afforded

to artists in games, as so many external factors have to be

taken into account, not the least of which is the need to incor-

porate new technology when possible, but it is all a question of

balance. At the end of the day, a visual experience that allows

the player to get the most out of your game is what it’s all

about. Being able to get the most out of your technology while

keeping things coherent is a valuable skill to have.

5. Imagination is not universal. The next time you find

yourself telling someone about an amazing dream you

had the night before, watch carefully how they react. I guaran-

tee you that any interest they are displaying is nothing more

than a thin veneer, masking the profound boredom underneath.

O.K., maybe that’s a bit harsh, but it’s very hard for someone

else to truly re-create an imaginary experience from nothing

more than your description.

This phenomenon carries over into the visual design process

for a game, whether it is early on when an idea is being

pitched to potential publishers or investors, or later in the

game’s development where designs are submitted for approval

by the Powers That Be.

A valuable lesson that I have learned over the years is that if

you assume that those to whom you are submitting your ideas

have absolutely no imagination whatsoever, chances are you

will have more success. A written description is bad, a sketch

with a paragraph of accompanying text is barely acceptable, a

full painting with additional drawings for support is beginning

to knock on the door of reasonable. A selection of renders of a

static 3D model is moderately satisfactory, an animation of this

model if it is a character, or a fly-through if it is an environ-

ment is good, and a real-time, in-engine working demonstration

is perfect. Other people’s powers of imagination are unpre-

dictable, so using as comprehensive a presentation as possible

will be infinitely more reliable.

4. Everyone’s an artist. Well, that’s not strictly true, but

everyone has an opinion on art. How many times have

you heard a non-programmer look over a programmer’s shoulder

at a screen full of C++ and say, “Hmmm, I’m not sure I like

those parentheses or that algorithm . . . maybe if they were in a

different font”? As an artist, you’ve got to expect that everyone is

going to express an opinion on your work and that chances are

not everyone will like it. The thing to learn is that just because

someone has an opinion, it doesn’t mean that it matters.

Sure, that might sound a bit arrogant, but if I were to eat at

any of the world’s most exclusive restaurants, chances are that I

wouldn’t like the quail egg frittata with aromatic duck spleen

pate. I could go and tell the chef, but I don’t think he would

give a tinker’s damn what I thought, as my opinion was just a

subjective expression of taste from one of many who would be

eating his food. Now if I were the owner of the restaurant or a

well-respected food critic, he may sit up and take notice, but

otherwise, my opinion wouldn’t make any impact at all.

You too have to develop confidence in your own judgment as

an artist and learn to filter out many of the opinions that you

will hear as you work. Listening to people is often helpful, but

you will never be able to please everyone that wanders over to

your monitor, so trusting your own ability is vital.

3. A world of filth. Figuring out what will work best visu-

ally is as much a part of an artist’s job as is producing

the assets themselves. I am probably not alone when I say that I

have often had what I thought was a great idea, that in practice

proved to be a horrible disaster. If our industry was stationary

and we didn’t have to constantly absorb the effects of new tech-

nology, this task would be easier, but as it stands, we need to

reassess our visual boundaries continuously. There are, howev-

er, some reasonably robust ideas about what in general terms is

easier to create successfully within a game world, as follows:

Dirty is easier than clean. Clean surfaces can often be boring

on the screen, and while they are in fact simpler visually, it is

this simplicity that makes them harder to re-create in an accu-

rate, interesting way.

w w w . g d m a g . c o m 21

Old is easier than new. By extension of the idea preceding,

creating an object or area that is supposed to be new is also

more difficult than making things or places that are worn and

weathered. Surfaces in a game world need to be more interest-

ing than their real-world counterparts if they are to avoid the

appearance of an empty or plain-looking environment.

The future and the past are often easier to re-create than a

contemporary setting. We (and that includes the player) are

less easily fooled by the things with which we are best

acquainted. A walk cycle, facial expression, desk lamp, or

shopping mall are things that we come into contact with all

the time, so our subconscious ability to compare what we see

on the screen with what we know from experience can easily

highlight shortcomings.

One answer to this problem is to always work on games

that are set completely in a fantasy world. But on a more

practical level, it is best to use as much quality source materi-

al as possible. If you need to build a church, do some research

and create something that’s accurate. If your world needs ele-

phants, spend some time traveling in Africa (you’ve got to at

least try to get them to fund it), or failing that, look for a

local zoo.

2. Mr. Cleese and his rotating knives. An obscure reference

perhaps, but I feel confident that a good proportion

of this column’s readership is familiar with Monty Python. One

famous Python sketch has John Cleese portraying an architect

who is trying to win the contract to design an apartment block

by making a presentation of his ideas in front of a selection

committee. The only problem with this is that Cleese’s charac-

ter has previously only designed slaughterhouses. The presenta-

tion goes well until Cleese mentions the addition of rotating

knives to the apartment block’s foyer, and despite his attempts

to defend his ideas showing how innovative and creative his

designs are, he is ultimately rejected.

What has this got to do with making art for games? Well, in

a rather odd way, it illustrates that as an artist/designer, your

work has to be focused on the game you are working on, tak-

ing full account of both its style and context. Art that intrudes

on gameplay, whether it is crushing framerate or making navi-

gation difficult and confusing, or that simply conflicts with the

overall aesthetic of the game, will be unsuccessful regardless of

how good it is in isolation.

1. Ride the roller coaster. Making a game can rarely be

characterized as a linear experience. Starting at point A

with a comprehensive design, full team, and solid technology,

progressing smoothly to completion at point B isn’t a story

you’ll often hear echoing around the halls of GDC. Naturally,

making the art for a game follows an equally convoluted path.

As an artist, you are called upon to produce your best work

throughout the entire life cycle of the game you are working

on. Being aware of the ups and downs that are likely to occur

can help you fight the urge to beat yourself to death with a

graphics tablet that is bound to arise from time to time.

A R T I S T ’ S V I E W

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r22

Designing a game in many ways is like riding a roller coaster, complete
with ups, downs, and spins.

At the start of a project, chances are

that the art team will be mainly con-

cerned with concept work. Almost by

its definition, this kind of unfettered

art is likely to look very nice indeed.

Whether it’s pure concept illustration

or level and character tests, the concept

phase is about finding the “look” and

generating excitement. Feeling good

about the project from an artistic standpoint at this stage is

easy, and the opportunities ahead will appear plentiful.

However, once a project gets underway, it’s entirely possible

that early iterations of the technology you are using will severe-

ly limit the quality of art that can be created. Temporary art

assets may be necessary and place-holder textures and anima-

tions will bring the visual quality crashing down. As production

begins to ramp up, progress with the engine and refinements in

the production pipeline may once again raise the standard of

the art. Yet as the project reaches its final stages, visuals may

have to be scaled back as content is now at a maximum, and

frame rate is bound to take a hammering. Final optimizations

may allow the art more room to breathe, and the last few

tweaks not withstanding, the game

ships and you move on.

This pattern is by no means univer-

sal, but it represents one example of

the art roller coaster. Simply under-

standing that a similar journey is

always likely to take place can help

artists maintain their enthusiasm

throughout the life of the project.

Final Word

B eing a better artist is all about learning. Beginning to

think that you know everything that you need to is the

perfect indicator that in fact you don’t. Things change rapidly

in our industry, and we need to make sure that we continue to

change too.

And finally, as I mentioned last month, I am handing over the

reins of the Artist’s View column. I would like to thank all those

at Game Developer who over the last two years have contributed

tirelessly to help me with this column. It has been a fantastic

experience. q

w w w . g d m a g . c o m 23

Being a better
artist is all

about learning.

S ince I started work on

Parappa the Rapper in

1993, we have seen a

decade of various otogei, or

music-oriented games. The

success of otogei in general is based on

a couple of innate parallels between

music and gaming. First, when playing

musical instruments, one achieves a

desired effect through motion. Further-

more, musicians who train and develop

their sense of such motion improve their

performance. The fundamental motions

that create music are simple to perform:

sing, beat, pluck, and press. Yet combi-

nations of these simple motions can

build considerable depth into the result-

ing work. These reflections of the gam-

ing interface make it natural for us to

integrate music into gameplay.

Stagnation in music games. There hasn’t

been a big otogei hit in Japan lately

besides Taiko no Tatsujin by Namco.

Although the genre is experiencing a lull

here, it will not be destroyed easily. Until

now, Japan was a Mecca for lovers of

music games, but recently we have seen

the emergence of great titles developed in

other countries such as Amplitude, devel-

oped by Alex Rigopulos and the team at

Harmonix. Innovative titles from U.S. and

European developers help demonstrate

that the music game genre is here to stay

and not just a passing fad in game design.

MOJIBRIBON. The potential of music

games is not limited to just rhythm

action games. For example, our new title

Mojibribon gives players a more involv-

ing interface than just timing button

presses correctly. The game uses voice

synthesis technology to automatically

convert text into rap sound. With this

rap sound, players perform calligraphy

on-screen. Some letters may appear

patchy or blurred depending on the play-

er’s skill with the analog stick, and this

affects one’s score. The game rewards

timing the brush strokes to the rhythm of

the music with a volume of ink that can

either be used or sent to another player

through integrated e-mail software.

This style of gameplay may seem

experimental, but one thing I discovered

while developing Mojibribon was that it

is meaningless to develop a title if it is not

innovative. This project faced a lot of dif-

ficulties in blending language and music,

but the people at NanaOn-Sha and Sony

Computer Entertainment gave me consid-

erable support, for which I am thankful.

Some also suggest that cultural issues may

play a role, asking, “Won’t it be difficult

to release this title in the U.S. or

Europe?” Yet it seems that the universali-

ty of music brings a degree of openness to

music games. In fact, I receive a lot more

positive messages, such as “I’m looking

forward to the release of the title,” from

overseas than from Japan.

Jam session organization. One of the

more interesting breakthroughs that

came with developing music games was

our organizational structure. Before the

introduction of music games, a sound

department was in a rather weak posi-

tion relative to other departments such as

programming or CG. Part of this was

due to an institutionalized idea that those

who create really great music make their

livings by releasing CDs and playing on

stage, not by composing music for

videogames. As the music-game genre

established legitimacy through its success,

this misconception began to fade. As a

musician, I prefer to do away with hier-

archy anyway, and create a jam session–

like atmosphere. It’s an environment in

which people can freely express their

opinions, regardless of their position or

responsibility. They can devote their

energies and ideas freely to any aspect of

the product they’re working on, regard-

less of their specialty or title in the com-

pany. Granted, a flat organizational

structure is relatively unique among

Japanese companies, but giving everyone

an equal voice made it possible for us to

realize tremendous creative benefits.

Groovin’ forward. One of the big

changes we need to see in the music

game arena is the introduction and pro-

liferation of new input systems, to

replace the ancient button-based input

method. The old structure of having four

buttons on the right is no longer the ideal

interface for full utilization of high-per-

formance hardware, and imagination is

now far less restricted. Recently, in the

area of arcade games, some developers

found an easy way to diversify music

games by focusing on building unique

controllers such as turntables, guitars,

drums, keyboards, and other musical

instruments. Creative game developers

should see this as an opportunity to

experiment with innovative input systems

too. I’m hoping that console manufactur-

ers will focus their system development

efforts in areas that can capitalize on

such experiences, and push music game

innovation forward. q

M A S A Y A M A T S U U R A | Masaya is the founder of NanaOn-
Sha (www.nanon-sha.com) and the creator of music games such as
PARAPPA THE RAPPER, UM JAMMER LAMMY, and MOJIBRIBON. He
is delighted to be part of the videogame industry, although some-
times he wonders if he has any choice in the matter.

When the Music
Is the Game

m a s a y a m a t s u u r aS O U N D P R I N C I P L E S

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r24

Blending rhythm and calligraphy in NanaOn-
Sha’s latest title MOJIBRIBON.

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r26

T his month I’m stepping back

from the usual meatier

aspects of game design rules

to consider of the foundation

upon which those rules are

built. I am not aiming to solve the prover-

bial chicken-and-egg question, but rather

to examine some of the underlying ques-

tions of linguistics and human biology

and how they may influence game rules,

in the spirit of a growing movement to

deconstruct game development.

Hatching a scheme. This column and

The 400 Project in general represent an

attempt to turn an analytical eye (but a

practical one) on game design. Bernd

Kreimeier has conducted roundtables at

recent Game Developers Conferences —

and has written several articles as well —

attempting to survey and characterize

some different approaches, including

those of Doug Church, Chris Hecker,

Chris Crawford, and others. Inspiration

springs variously from architect

Christopher Alexander’s work on pattern

languages, from rule- or lesson-based

structures, and from software-engineer-

ing approaches.

Scrambling to avoid egg on one’s face.
It’s tempting to ask which of these

approaches is the “right” one, or even just

which should be followed. But I think the

field is too young for that. We still need to

let all the embryonic theories come to

maturity before we do any culling.

But we can still use inferences about

the fundamental underpinnings of game

design theories to help formulate them.

I’ve personally found considerable inspi-

ration from an unexpected source, in the

works of the evolutionary biologist

Steven Pinker. In particular, his book

How the Mind Works (Penguin Books,

1998) is full of insights that I’ve found

applicable to game design. Understanding

the how and why of our brain’s structure

allows us to create more compelling and

fun games. And some of Pinker’s other

books, notably The Language Instinct
and Words and Rules, suggest some tan-

talizing ideas about what form more

mature game design theories may take.

Bacon and EGGS. Pinker writes about

how humans are born with instincts about

language and grammar that are hard-

wired into our brains, and how research

also suggests that those brain structures

may be evolutionary descendants of struc-

tures evolved to handle tool use.

Our associative brain structure that

allows us to play such games as “Six

Degrees of Kevin Bacon” or (as in my

case) exhibit a perverse fondness for

obscure puns, may in fact be thinking

with mental “modules” specialized by

evolution to handle tool use and language

structure.Pinker theorizes that humans

are born with our instincts about lan-

guage and grammar hard-wired into our

brains, and these brain structures may be

evolutionary descendants of structures

evolved to handle tool use. The associa-

tive brain structure that allows me to

exhibit a perverse fondness for obscure

puns may in fact be thinking with mental

“modules” specialized by evolution to

handle tool use and language structure.

There certainly are many applicable

analogies between the basic common con-

cepts of nouns and verbs, the external

and concrete examples of things in the

world and actions that can be taken with

them, and raw materials and the methods

to shape or organize them to serve our

needs. Alexander’s very use of the term “a

pattern language” implies as much.

I’ve found that using language struc-

ture as an analogy for game design is a

powerful tool itself. One of my concerns

about the use of Alexander’s architectural

approach to patterns is that they often

feel too much like observations about

existing things — nouns — without

enough information about how to apply

them, or how they can be acted upon —

verbs — that I need to function as a game

designer. Conversely, some essential

insights about game structure, form, and

desirable content are noun-like and not

well-expressed as rules. Increasingly I am

encouraged that these different approach-

es may converge into a unified whole, an

Essential Game Grammar. This EGG

from which all games grow may provide

a lexicon of nouns and verbs, adjectives

and adverbs, common phrases and syn-

tax, and all the other elements that our

brains are equipped to put into use. The

400 Project rules are purposefully

expressed as active phrases, verbs to use

on the nouns of game design elements.

Early text adventures used literal sen-

tences like “use sword on thief” as user

input while graphic adventures like THE

SECRET OF MONKEY ISLAND combined

written verbs with nouns in the form of

images, letting the player click on “take”

and then click on an image of a rubber

chicken. Modern FPSes continue this evo-

lution, where verbs are built into the

actions the player can take: “shoot,”

“move,” “strafe,” and “duck.” Next

steps in this evolution are less obvious,

but where there is an egg, there has to be

a chicken, right? q

Essential Game Grammer

n o a h f a l s t e i nB E T T E R B Y D E S I G N

N O A H F A L S T E I N | Noah is a 23-year veteran of the game
industry. His web site, www.theinspiracy.com, has a description of
The 400 Project, the basis for these columns. Also at that site is a
list of the game design rules collected so far, and tips on how to
use them. You can e-mail Noah at noah@theinspiracy.com.

In CHICKEN RUN, the chicken comes first.

a

rob bridgett & wolfgang hamannS T R U C T U R I N G C R E A T I V I T Y

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r28

SSttrruuccttuurriinngg
CCrreeaattiivviittyy

Structuring
Creativity

Audio Department Structure
and the Creative Process
Audio Department Structure
and the Creative Process

Ill
us

tr
at

io
n

by
 C

la
ud

ia
 N

ew
el

l

w w w . g d m a g . c o m 29

S tructuring how audio departments function within

a development company is a unique problem. The

lack of an industrywide standard within audio

departments leaves greater scope for varied

approaches and creativity, however it also allows

for a great deal of time and money to be misspent. While audio

departments are beginning to take on internal work structures

similar to music, film, and television post-production environ-

ments, there is still room for a free experimental approach within

our industry. With proper audio department workflow and per-

sonnel structure, it is possible to maximize creativity and support

that creativity with a solid audio resource infrastructure.

Two Current Models

I n the game industry there are two main ways in which inter-

nal sound departments can be structured. One way is to have

dedicated sound personnel attached to a specific team just like

programmers and artists. Here the aim is to have sound person-

nel sitting in the same team area as the artists and programmers

with the notion that proximity increases communication, work-

flow, and creativity. Since sound personnel require soundproofed

environments, edit suites are built in each game team area. How-

ever, for sound personnel to do their work at Fletcher-Munsen

curve levels, doors must be closed the majority of the time, reduc-

ing or negating many of the communication, workflow, or cre-

ative advantages that proximity may have brought.

Since most of the work sound teams do occurs after there is

enough art and code implemented on the target platform to char-

acterize the game environment, real sound design gets pushed

toward the end of the development cycle. During this period

there is little time for creativity, since the game is developing rap-

idly and everyone wants to hear what the soundtrack will sound

like. The push is on to get content into the game quickly.

Another model is based around the global sound team

approach, where all game teams have support from a central

group. Typically a sound lead or sound director is assigned to a

specific game team for the period of time where sound is

required. This may be for a three-week period during prepro-

duction to create various iterations of sound design documents,

and then again during the last third of the development cycle to

create and implement the required content. In this model, the

sound director is shared across two or more game teams, leav-

ing little if any downtime for R&D.

The first model with dedicated sound personnel seems to pro-

vide the best avenue for developing creativity, since there defi-

nitely will be time while the sound team is waiting for the game

design to settle down. But from the perspective of business effi-

ciency, unless this downtime is kept to an appropriate amount,

there is considerable waste. Who wants to sit around waiting for

the game team to figure out an appropriate direction?

The second model of a global sound team appears to be

much more business-efficient, but if everyone is constantly

developing and implementing content, constantly moving from

team to team, sound personnel may be too busy to be creative.

The Solution for the Global Model

T he answer for the global model lies in specialization. Sound

leads or directors must act more like record producers,

directing a small team of sound specialists with their own contri-

butions limited to appropriate areas of specialization. These

leads can then supervise a small central team of specialists such

as sound effects designers, composers, FMV post specialists,

recording and mix engineers, dialogue editors, music and dia-

logue mastering engineers, and so on. A manager of the sound

team would be there to guide and direct the team, as well as

interact with the game team producers and senior management.

This model not only allows everyone to lead to their

strengths, but also builds adequate time into the schedule to

allow for creativity or R&D for each specialist as needed.

Sound improves on an ongoing basis as everyone is constantly

developing their own craft in a team environment with the

appropriate amount of creative R&D time.

R O B B R I D G E T T | Rob is currently a sound director at Radical Entertainment, having previously worked at Climax Studios in the
United Kingdom, where he was responsible for sound on a number of games including SUDEKI, SERIOUS SAM, and most recently
WARHAMMER ONLINE. Rob attained his bachelor’s degree in film and television at the University of Derby and later was one of the first to
complete the M.A. in sound design for the moving image at the University of Bournemouth.
W O L F G A N G H A M A N N | Wolfgang is currently a game team project manager and manager of the sound department at Radical
Entertainment. He also teaches a course called BMG: Business Management for Games at AI Center for Digital Imaging and Sound in
Vancouver.

The global model’s flexibility also helps reduce unrealistic

crunch periods when the art is late and the code is not quite

ready or is too unstable to allow the sound artists to do their

work properly. Resources can be immediately shifted to those

game teams that need it most.

A global sound team also provides the opportunity for a

group of highly skilled sound artists to all learn and grow

together. In talking to those developers who had dedicated

sound personnel on their game teams, the one common theme

was that separating sound artists around different parts of the

building greatly reduced idea sharing and creative growth.

Separation also increased the amount of duplication in such

areas as sound effects databases, third-party database software,

and other tools. In addition, I found an unhealthy competition

can arise around hardware and software resources, where

everyone tried to keep up with the Joneses, even though much

of this equipment wasn’t really needed.

In the global model everyone shares a central sound effects

database. Equipment is lent as needed, and since everyone is in

the same area of the building, any workflow, software, and

hardware issues can quickly be discussed and resolved. New

processes and ideas are quickly and easily shared, providing an

excellent training environment for new sound personnel. The

sound director reports creatively to the game team producer

and to the manager or director of the sound team for personal

and professional development. In short, a true team environ-

ment develops, in which creativity can be built into any sched-

ule for the benefit of the company as a whole.

Structuring Creativity

W hile structuring staff and department schedules to

reduce unproductive amounts of downtime, it can’t and

shouldn’t be eliminated entirely. It’s important to and reconcep-

tualize that time around maximizing its R&D benefit. Here

we’ll use an example of how downtime can contribute toward

sound effects design.

Production downtime really should be seen as periods of

experimentation and exploratory creativity. Distance from

active production is an optimum time in which to experiment

and to create new sound banks and effects relevant to the proj-

ect or to future projects.

By its very nature, creating new effects will feed the require-

ments for specific sound effects further down the production line.

You may see an animation of some strange creature or GUI fea-

ture and you instinctively know from your previous experimenta-

tions exactly what would work with the imagery you are seeing.

This type of work can also provide a refreshing break from

the intensity of working on one project in one style. It’s good to

get away and work on sounds or music from a completely dif-

ferent and fresh style at least once a month. This flexibility

increases morale and refreshes designers’ creativity when they

eventually get back fully to their core project. Working on one

project only is intense and tiring, especially when a style is

already aesthetically defined, such as the horror genre. Under

this system, designers will tend to work intensely on one project

and also, without realizing it, produce huge libraries of sound

effects in other genres just to provide some temporary relief

from the horror genre.

Usually building up large banks of similar sounds occurs in

several defined categories, for example you might create a huge

batch of sci-fi bleeps through a single design technique, and then

a batch of squelchy horror effects using another. It’s essential to

categorize at this stage and keep these effects somewhere where

you or other sound designers can gain rapid access to them.

“Genre relief” as a preproduction strategy is an extremely

effective way of managing what would previously be called

“downtime” in a schedule. Leveraged over several staff mem-

bers, this new preproduction time will soon begin to create a

large library of highly usable sounds.

This new sound effects resource can also help to alleviate the

buildup of work that occurs at the end of the project. By hav-

ing a new and pre-edited resource of unique sound effects, last-

minute sound requirements can often be filled by sounds creat-

ed earlier that are reworked or mixed with other elements into

exactly what is required.

The concept also easily migrates to other areas such as music

production, offering a great opportunity to experiment with new

musical styles and create new and useful loops or ambient beds.

This creative use of downtime is essential within any audio

S T R U C T U R I N G C R E A T I V I T Y

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r30

FIGURE 1. Organizational structure at a large company with centralized,
non-project-specific resources.

Sound FX
Designer

Sound FX
Designer

Sound FX
Designer

Sound FX
Designer

Sound FX
Designer

Sound FX
Designer

Sound FX
Designer

Sound FX
Designer

Sound FX
Designer

Various Projects from
Various Studios

Audio Lead

Sound FX
Designer

Sound FX
Designer

Sound FX
Designer

ComposerComposer Composer

Audio
Programmer

Audio
Programmer

Audio
Programmer

production facility that has peaks and troughs of work pat-

terns. Not only does it keep the audio staff fresh and fulfilled,

but it also allows for all-important areas of experimentation.

These experimental periods provide great ways in which to

forge ahead into new areas of sound and music design.

The game industry is one of the rare institutions where a

fixed musical style or structure to development simply does not

exist. For almost every game released there is a unique

approach to both implementation and style. By continuing to

allow freedom within this area, we provide an excellent way of

ensuring that game audio will constantly be moving forward

both technically and aesthetically.

Getting Creative with Creativity

W hile providing more time for creative exploration is cer-

tainly beneficial, time alone can’t raise the bar on inno-

vation and skills development. We’ve seen some ways that

sound artists can use downtime to great advantage on their

own, but what about developing a higher standard of creativity

and innovation through group activities?

Reviews. One way is to have monthly sound team creative or

quality reviews, where each person’s current work is presented

to the team for constructive feedback. This may be the presen-

tation of a current level, portion thereof, or FMV soundtrack.

Be it sound effects, music, ambient effects, or anything, empha-

sis here is on the constructive. We all know there is a minimum

of two options for any creative piece of work, and they are usu-

ally both right. However, when the team provides different

options, the responsible sound artist may be provided with new,

alternative perspectives. All ideas should be welcomed with no

regard to their being right, wrong, better, or worse. Even the

silliest of ideas can instill brilliance when bounced off of a wel-

coming creative partner. For this process to be effective, the

phrase “That won’t work” should never be uttered.

For example, hold a quality review occurring on the last

Friday afternoon of each month, preferably after a milestone.

Depending on the size of your team, a good four hours should

be devoted to this exercise. The quality review is also a good

team-building opportunity, as everyone can head to the local

pub afterward to further discuss what was seen and heard.

To generate effective constructive criticism, there are a num-

ber of options available besides the usual brainstorming tech-

niques most people tend toward. Everyone must throw in ideas,

disregarding any sense of value, right or wrong. The initial goal

is quantity of ideas, which have a better chance of hitting on

something really brilliant. Everyone is encouraged to combine

ideas to develop newer and more innovative concepts based on

someone else’s contribution. Criticism is banished entirely.

While brainstorming has some usefulness, it is not the only

way to generate innovation and creativity.

Analogies. Another technique is to use analogies. In order to

solve a given problem, such as a weak FMV soundtrack, a

word is chosen from a preexisting list of randomly chosen

words. Then, someone on the team chooses a random number.

This number is counted down a list of random words according

to the random number to arrive at a word. The word is then

written on a whiteboard as a starting point, and everyone is

encouraged to come up with additional words that are related

to the original word chosen.

For example, our random keyword might be “refrigerator.”

What aspects of this word can we apply to our sonic problem

with our FMV? Some words that “refrigerator” evokes might

be: cold, white, food, icebox, vegetables, green, Freon, beer,

mold, ice cubes, lunch, and so on. Now the group tries to apply

each word to the problem scenario. The word “cold” might

reveal that many of the sound effects have too much of the

same upper-mid-frequency content and no bottom end.

“White” might evoke thoughts of too much space in the

arrangement, “food” might further elicit “balanced diet” and

thereby reveal a lack of balance in the soundtrack mix.

Such an exercise may feel foreign and perhaps even silly, but

it does actually work. Just remember to persevere. Eventually

you will develop positive momentum. Analogies also seem to

work best in smaller groups of three or four, so break up large

groups if need be. Again, there is no such thing as just one right

answer. The whole concept is to encourage and harness new

and different ideas that come to mind.

Reversal. Another method that the group could use is rever-

sal. Taking our FMV soundtrack for example, instead of say-

ing it’s too weak (even though we know it is), ask instead how

it could be made even weaker. We could thin the mix by chop-

ping top and bottom frequencies out, we could overcompress

it, downsample it, replace various individual sound effects with

w w w . g d m a g . c o m 31

FIGURE 2. Organizational structure at a large company with centralized,
non-project-specific resources.

Project 1 Etc...

Sound Effects

Music

Voice-over

Audio Resources

Sound Effects

Active Projects

Sound Effects

Music

Voice-over

Project 1

even smaller-sounding ones, replace the real string quartet with

a cheesy synth patch, let the company CFO loose on the

soundtrack, and so on. As the process continues, the latter

ideas become more and more creative until we stop laughing

and realize that we’ve just come up with something quite novel

and creative.

Aleatoric sound design. Another technique for inspiring cre-

ativity is to use chance. This can form another very entertaining

yet seriously creative part of a group brainstorming session. It’s

something we call aleatoric sound design.

Chance plays a crucial part in any creative process — an idea

can occur at the strangest and most inconvenient times. A good

example is when we awake from a dream and have an incredi-

ble, fully realized musical score in our heads, yet as the daylight

pours into the room the melodies and timbres slip away, never

to be heard again. Perhaps later we will hear or see something,

completely by chance, which reminds us of that music or the

feel of the dream, and we are able to get some of it back into

our consciousness.

Being able to exploit this creative technique, which can help

to enhance a section of sound or music design that lacks punch

or direction, is another way of approaching the design brief

from a tangent.

In adopting the aleatoric process, we might layer in sound

effects to an FMV, for example, at random. This often produces

very strange and unexpected results. Animal sounds or screams

under car or spaceship fly-bys is a great example of how to

make your sound design stand out from everyday library sound

effects which have already been used on hundreds of other pro-

ductions. In addition, it often adds a layer of subconscious

meaning to the soundtrack by giving the car sound effect a par-

ticular personality, which can become a narrative element

throughout the game.

The same is true of music. If you try out several completely

random soundtracks under our problem FMV, especially tracks

that would normally be considered stylistically “wrong” for the

project, there is a point where the music and image come

together completely by chance. It’s then a matter of identifying

these new elements that do work and incorporating them into

the final design.

These are a few possible alternatives to brainstorming that

small groups can use to solve a wide array of problems. Many

others can be used individually and in combination. An online

search using the keywords “innovation techniques” yielded

more than 20 books on the subject. The goal is simply to gener-

ate innovative solutions to sonic problems in the context of a

highly creative and positive group dynamic.

Audio Resource Structure: The
Foundations of Creativity

S tructuring and creating new sounds for use on many differ-

ent projects also raises issues of structuring the audio

resources themselves. It’s essential to have an ordered and highly

logical resource infrastructure in place which everyone can access

quickly to use in their own unique ways. The following section

will take a look at how music and sound effects raw materials

can be structured not only on a local level within the same com-

pany network, but also within satellite or smaller project studios.

Most larger development companies have the advantage of

centralized sound and music teams in one place. These audio

departments take care of production for all the projects current-

ly ongoing within that company and are structured with

resources readily available to all via local networks. Each proj-

ect has at least one sound effects designer and one composer,

overseen by an audio lead (or perhaps a team of specialist

audio directors), or director who determines the overall aesthet-

ic, implementation techniques, and scheduling for the sound

and music production for all current projects. As a model this

works very well for companies who have a centralized base of

operations, illustrated very simply in Figure 1.

However, due to the satellite structure that some independent

game developers maintain, these resources and even communica-

tion between audio personnel are all left to evolve separately as

though they were different companies. So much could be learned

from each other’s previous experiments and experience that time

and money can be saved and better products produced if the

resources were effectively shared. Communication between

audio personnel concerning audio design techniques and other

areas of mutual interest could also greatly be enhanced.

Satellite Studios: Sharing Audio
Resources

I t’s not uncommon for startup studios to use sounds on proj-

ects that are taken from the Internet or copied CDs (contrac-

tors may also be doing this, but there is no real way of check-

ing). Illegitimate sound files pose a risk of copyright infringe-

ment issues should these files appear in a publicly released title

— Particularly damaging, since the money involved in a lawsuit

could potentially nullify any earnings for the development stu-

dio on a commercially successful title. Sharing the licensed

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r32

Audio Resources

Sound Effects

Horror Metallic FoleySci-Fi Etc...Sci-Fi Horror Metallic Foley Etc...

FIGURE 3. Categorizing in-house, non-project-specific sound effects.

S T R U C T U R I N G C R E A T I V I T Y

audio resources freely between any number of satellite studios

is a way of circumventing this problem while increasing the

amount of material available to each studio.

All sound effects and music should be thought of as a group

resource. This can be achieved via a very good, remote private

network connection or via an audio resource FTP site. For

example each project will produce a variety of reusable spot

effects (also good for reference on potential sequel projects)

that can be structured as shown in Figure 2.

And when creating sound effects entries from effects that are

created in-house, again a simple easy to navigate structure is

essential. One such structure is shown in Figure 3.

Maintenance and upkeep of a shared resource can be either

done by one person or democratically added to by each studio

themselves, comprising sound effects, music, voice demos, and

documentation. A mechanism (usually an audio manager)

should be in place to ensure that everything used is a legitimate

licensed sample, and that things don’t get out of hand and con-

fusing in terms of directory structure.

Under this system, the unique satellite structure of some stu-

dios can be maintained, yet the managed resources will feed

each group. Figure 4 shows how each group is fed by, and in

turn feeds, a centralized resource (a local copy of which is kept

on the hard disk at each studio location, meaning they only

need to download and upload updates to the resource). This is

also imperative as a backup resource.

Satellite Studios: Increased
Communication

O ne of the main concerns over resource sharing among

satellites is that using up to four or more offices, all

potentially working separately on different titles, the audio

staff somehow feel fractured and too much like separate com-

panies each coming up with their own resource and creative

solutions. Along with the sharing of group audio resources,

such as sound effects, the feeling of community and collabora-

tion among the separate sound staff at each office should be

positively encouraged.

Each audio designer has his or her own specialties and

styles. Information about each audio designer, in addition to

MP3 demos of their work, can be made available to producers

and designers in a database or via an internal web site. This

information is useful for future project pitches as well as

deciding to whom particular audio design tasks would best be

allocated. Also, when there is a situation of too much work,

other audio designers may be able to help with tasks such as

voice file editing in order to meet milestones, for example.

A message board or similar resource on which staff can con-

verse is of great benefit for sharing techniques and software tips.

For example, global newsgroups could be set up on topics such

as audio design, audio code, audio styles, audio reference, and

so on. All staff can also share ideas and post questions and

example sounds on the message boards, which will help the

design of audio for all products on all levels.

Also of great use is a group meeting between audio staff as

often as possible (once or twice a year if studios are very dis-

parate), hosted by a different studio each time. Not only are

such audio summits helpful and sociable, they also enable staff

to suggest items for discussion, contribute presentations of

work in progress, and in general strengthen the sense of com-

munity between the satellite audio staff. This method in effect

establishes the global model over the large geographical

boundaries enforced by the satellite structure of some develop-

ment companies.

Finding Balance

L eaning on the internal human-resource structures of the

post-production industries is a good foundation for

thinking about managing and structuring creativity, but the

game industry has its own unique workflow which determines

the very nature of how the game audio department functions.

Exploring the ways in which the game audio industry func-

tions differently from its sister industries can open up new

avenues of creativity. However, the processes of encouraging

creativity must be built on the solid foundations of structured

resources, personnel structure, and communication. Finding an

ideal combination of business efficiency and creativity is the key

to determining the ideal approach for each individual studio,

and adapting the balance of these resources to the changing

demands of the work is an exciting and rewarding challenge for

anyone lucky enough to be working in games. q

w w w . g d m a g . c o m 33

FIGURE 4. Organizational and resource structure among satellites. Note
that for the purposes of the illustration, Studios 3 and 4 have no internal
audio staff but will be potentially brought online in the future.

Sound FX
Designer

Group Audio
Resources

Studio 1 Studio 2 Studio 3 Studio 4

In-house Sound
FX Designer/

Composer
Sound FX
Designer

In-house Sound
FX Designer/

Composer

C + + T E M P L A T E S i a i n c a n t l a y

P roblem: D3D low-level support. For manipulating

vertex buffers, core Direct3D (D3D) only pro-

vides low-level memory management. Vertex

buffer data is accessed using void* pointers.

This level of support is quite correct in core

D3D. D3DX provides higher-level support but only as a

whole-mesh class. There is nothing between these high and

low extremes.

In order to use a low-level vertex buffer (VB), you need to

first create a vertex data structure, then create a VB of match-

ing size, fill it with data (casting the void* pointer), and finally

create a matching vertex declaration.

The application code must be self-consistent, with no help

from D3D, and several low-level errors are possible. At best,

errors will be caught by the debug version of the D3D at run

time. At worst, they will produce application crashes. Often

they are difficult to debug.

Problem: shaders bring flexibility. Prior to DirectX 8 (DX8), the

fixed function pipeline (FFP) rigidly constrained the possible

types of vertices. They were limited to a few combinations of

standard elements: position, normal, color, and so on. Typical

FFP games used only a handful of vertex types.

DX8 introduced programmable pipelines, specifically to

address the rigidity of the FFP model. Programmable pipelines

impose almost no structure on a vertex. A vertex only has to

match the inputs to the corresponding shader. The standard

FFP elements can be ignored, implied, or compressed, as

described in the book Shader X (see References). Programmers

can include nonstandard custom elements such as physics

parameters, morph deltas, indices and weights, or partially

complete lighting calculations. Useful vertex types are limited

only by the ingenuity of the shader writer.

Core D3D provides only low-level, potentially error-prone

support for vertex data. Yet, DX8 and DirectX 9 (DX9) posi-

tively encourage developers to experiment and create new ver-

tex types. Low-level errors are even more likely when vertex

data is malleable and vertex types multiply freely.

This article shows how to create a small template library for

manipulating vertex data. C++ templates are a language feature

that I feel are underused in the area of Direct3D programming.

Here they structure the data, add type safety, and robustly

automate some of the repetitive nuts-and-bolts tasks. Ideas

from template metaprogramming provide flexibility to match

the flexibility of shaders.

Assembling a Class from
Components

C ++ template metaprogramming (see Alexandrescu’s

Modern C++ Design in References) shows how a class can

I A I N C A N T L A Y | Iain has been working professionally with 3D graphics since 1991, first with airline flight simulators (his employers
included Evans & Sutherland) and later, beginning in 1996, with videogames. His credits include MACHINES and ART OF MAGIC. Currently
Iain is the senior 3D engine programmer on WARHAMMER ONLINE.

34 o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r

Taming
Vertex Data
Using C++ Templates

35w w w . g d m a g . c o m

be composed from a list of elements at compile-time.

Recursive multiple inheritance can be used to create a

Composite vertex class from a list of Components.

struct EndList {};
struct Position { float x, y, z; };
struct TexCoord { float u, v; };
struct Color { DWORD c; };

template <class T1, class T2 = EndList>
class Composer : public T1, public T2
{
};

typedef Composer< Position,
Composer< TexCoord,
Composer< Color > > >

TestVertex;

The typedef effectively creates a class, TestVertex, that inherits

the attributes of Position, TexCoord, and Color. Figure 1 shows the

inheritance hierarchy. Inheritance is not used in the usual

object-oriented way. There is no polymorphism. The base class-

es are not used as interfaces. The inheritance is simply used to

aggregate a list of component elements. Note how the empty

EndList class serves as an end marker to stop the recursion.

The definition of TestVertex looks superficially like one of

Alexandrescu’s compile-time typelists. However, it is not.

There is no need for compile-time manipulation of the list.

In games, the types of vertices are typically well known in

advance. Moreover, in DX8 and DX9, they have to match

the inputs to the vertex shader. So, the types are predeter-

mined by constraints outside the C++ compiler, and true

metaprogramming is not called for. (The Composer class is

inspired by Alexandrescu, but it is not nearly so clever.)

Other template syntaxes are possible. There are still com-

pilers in use that do not support the default template param-

eters. In that case, two composer classes are necessary. The

first takes two template parameters; the second takes a single

parameter and acts, like EndList, to stop the recursion.

The two-class syntax would also be necessary if EndList

added anything to the size of the composite class. On my

compiler, it contributes zero size, but that is not guaranteed

by the C++ standard (see section 1.8.5 of the ISO C++

Standard, Programming Language C++, in References).

The template syntax is unwieldy, even ugly. Alexandrescu

uses macros to linearize his typelists. Applied to the example

above, a macro would yield something like:

typedef COMPOSITE_VERTEX(Position, TexCoord, Color) TestVertex;

The macro syntax is certainly less cluttered. However, I use

the template syntax. The recursive multiple inheritance is an odd

new idiom. I prefer to make it obvious rather than disguise it.

The choice is purely a matter of preferred style.

Recursive multiple inheritance is an obfuscated way to add

a few member variables to a class, which is not useful as it

stands. However, it becomes useful if you add more to the

vertex components.

C + + T E M P L A T E S

Building a Vertex Description

G ive each vertex component an object that describes it:

class ComponentDescription
{
public:

const std::string& name() const;
size_t size() const;
BYTE semantic() const;

};

struct Position
{

float x_,y_,z_;
static const ComponentDescription& description();

};

ComponentDescription objects are meta data — objects that

describe other classes. The Composer classes can assemble

ComponentDescription objects into a description for the whole

composite vertex. Each Composer class is given a method,

pushComponentDescription. Listing 1 shows how it recursively

appends its corresponding description object to a list. (For

now, assume that VertexDescription is a simple container with

std::vector::push_back semantics.) Each method refers to its

base classes assuming that one is an atomic component and

that the other is another Composer class. Again, the EndList class

is used to stop the recursion. Syntactically, it is interchangeable

with a Composer, but its recursive methods do nothing.

The key technique of the whole system is that templates and

recursive inheritance generate a cascade of recursive functions.

The recursive functions build a description of their class and it

is automatically guaranteed to match the structure of the class.

Once you understand the use of recursion, the code is decep-

tively simple.

A cascade of recursive functions might appear inefficient for

a real-time game application. However, the if statement in the

vertexDescription method ensures that the recursion is only ever

called once per vertex. Besides, the method is called infrequent-

ly relative to other time-critical tasks such as creating vertex

buffers or setting state.

There are also extra unused vertexDescription methods. One

is defined for every level of the recursive inheritance. The

most-derived one hides all the others according to the rules of

inheritance. They could lead to code bloat, but a good compil-

er should not instantiate them.

The recursive template calls are written once, in the frame-

work library. They are not typically visible to users of vertices.

By merely defining a vertex using the template syntax, the ver-

tex description is automatically made available and now ready

for useful work.

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r36

FIGURE 1. The inheritance hierarchy of a three-component vertex.

class ListEnd

{

protected:

static void pushComponentDescription(VertexDescription*)

{

}

};

template <class C, class V = ListEnd>

class Composer : public C, public V

{

public:

static const VertexDescription& vertexDescription()

{

static VertexDescription d;

if (d.nComponents() == 0)

Composer<C,V>::pushComponentDescription(&d);

return d;

}

protected:

static

void pushComponentDescription(VertexDescription* pV)

{

// Push the type of the component that we add.

pV->pushComponent(&C::description());

// Recursively descend through the base class fns.

// ListEnd implements nothing to end recursion.

V::pushComponentDescription(pV);

}

};

LISTING 1. The templates and recursive multiple
inheritance create a chain of recursive functions that
generate a vertex description.

Color
r : unsigned char
g : usigned char
b : unsigned char
a : unsigned char

TexCoord
u : float
v : float

EndList

Position
x: float
y : float
z : float

Composer<Color, EndList>

CComposer< TexCoord, Composer<Color, EndList> >

Composer< Position, Composer< TexCoord, Composer<Color, EndList> > >

w w w . g d m a g . c o m 37

Uses: Creating a D3D Vertex
Declaration

T he VertexDescription is homomorphic with a D3D vertex

declaration (see D3D documentation cited in References).

Traversing the description can create a vertex declaration.

Listing 2 shows that it is quite trivial to copy data from the

ComponentDescriptions to the corresponding D3D structure and

then create an IDirect3DVertexDeclaration9.

This method is written once in the framework and automati-

cally provided for users of the framework. There is no scope

for error because the D3D vertex declaration is automatically

guaranteed to match the vertex data structure.

If FFP compatibility is an issue, the VertexDescription could

similarly generate an FVF (Flexible Vertex Format) code.

The VertexDescription is almost identical to the D3D equivalent

D3DVERTEXELEMENT9. So why create a different class? The D3D stuc-

ture contains information that is more dynamic, for two reasons.

First, the Offset member depends upon a component’s location

within the vertex. The same component often appears at differ-

ent locations in several different composite vertices. So it does

not belong with a description of an isolated component.

Second, the Stream member indicates which stream a vertex

buffer is bound to at runtime. The stream number changes as

VBs are dynamically combined using the multiple stream fea-

tures of D3D. A full treatment of multiple streams is beyond

the scope of this article, but it is possible — the WARHAMMER

ONLINE engine supports multiple streams. Streams are dynami-

cally added and removed to support different levels of detail,

and matching vertex declarations are automatically generated.

More detail is shown in the sample source code (details provid-

ed at the end of the article).

Uses: Integration with a Vertex
Buffer Wrapper

I t is common practice to wrap D3D vertex buffers in a class.

The VB wrapper shown in Listing 3 takes a VertexDescription

as a constructor parameter. The constructor can take the vertex

size from the description and use it to create a VB of the cor-

rect size. The VertexDescription is also saved for later reference.

It is used later to verify that the correct vertex type is used

when accessing the vertex buffer.

The VB wrapper class could be a template. It would be natu-

ral to parameterize it over the vertex type. The vertex size

could then be acquired directly using sizeof. However, a non-

template class is preferred for several reasons. First, most VB

functions can be written without requiring the type of the ver-

tex. Only the size of the vertex is required. Using the

VertexDescription class provides sufficient robustness. Another

reason is that if all the methods were templates, they would

create unnecessary code bloat. Third, type-safe operation is

only necessary when accessing the vertex data. Reading and

writing vertex data is handled by a separate nested Access

class. The Access class is a template, giving the type-safety

where it is needed. For more detail, see the sample source code.

The final reason is that a D3D vertex buffer can contain

more than one vertex type. Making the vertex buffer class a

template would rule this out.

A useful VB wrapper class contains many more features. A

full implementation is shown in the sample source code.

Uses: Checking Self-Consistency

T he framework code has built-in self verification. Listing 4

shows the implementation in the method packingCheck.

There are two types of verification: compile time and run time.

Run-time asserts verify that the component sizes (measured

with sizeof) match the meta data. These checks detect user

errors when adding new vertex components. For example, a

class that inadvertently contains a virtual function will cause an

assertion because the compiler adds a hidden virtual table pointer.

LISTING 2. It is trivial to traverse a VertexDescription and
build the equivalent D3D data structure.

void ComponentDescription::setVertexElement(

D3DVERTEXELEMENT9& dst, BYTE off) const

{

dst.Stream = 0;

dst.Offset = off;

dst.Type = type();

dst.Method = D3DDECLMETHOD_DEFAULT;

dst.Usage = semantic();

dst.UsageIndex = 0;

}

IDirect3DVertexDeclaration9*

VertexDescription::createDecl(IDirect3DDevice9* pDev) const

{

std::vector<D3DVERTEXELEMENT9> els;

BYTE off = 0;

for (size_t i=0; i!=nComponents(); ++i)

{

els.push_back(D3DVERTEXELEMENT9());

components_[i]->setVertexElement(els.back(), off);

off += (BYTE)(components_[i]->size());

}

static D3DVERTEXELEMENT9 theEnd = D3DDECL_END();

els[nComponents()] = theEnd;

IDirect3DVertexDeclaration9* pDec = NULL;

pDev->CreateVertexDeclaration(&(els[0]), &pDec);

return pDec;

}

There are four static_asserts (see Boost

Library Documentation in References). The

first verifies that each component is a multi-

ple of four bytes in size. The second and

third verify that each level of recursive

inheritance does not add any extra

padding. They check that the

size of each component

class matches the sum of

the sizes of its parts.

The static_asserts are

sanity checks, testing

any assumptions

about the behavior

of the compiler.

The compiler can

add hidden mem-

bers in many occa-

sions. See More
Effective C++ (in References) for some exam-

ples.

The EndList class requires special han-

dling. It is essential that it add nothing to

the final composite vertex, whereas

sizeof(EndList) must be nonzero (per section

1.8.5 in the ISO C++ Standard). Therefore,

for cases involving EndList, the size of the

Composer does not equal the sum of the parts.

Fortunately, Boost’s type_traits are perfect

for detecting such a special case at com-

pile time, as shown in the fourth stat-

ic_assert.

The packingCheck method is called

when the vertex description is created.

The VB wrapper requires a descrip-

tion before a VB can be created.

Hence, the packing check is called

automatically as a side effect

of creating a vertex buffer.

The result is a robust sys-

tem that does catch

errors in practice.

The self-veri-

fication indi-

cates that there

is redundancy

in the data.

Does it imply

that the system

could be simpli-

fied? The problem is

that the D3DDECLTYPE spec-

ifies more information

than the compiler can stat-

ically deduce from a com-

ponent class. The size of a

component class can be taken

with sizeof. But different types of

components can have the same

size. For example,

D3DDECLTYPE_FLOAT1,

D3DDECLTYPE_D3DCOLOR, and D3DDE-

CLTYPE_SHORT2N all have a size of

four bytes. It is possible to imag-

ine Byzantine syntaxes that

could deduce the D3DDECLTYPE from the

component, but the extra complexity would probably compli-

cate the framework rather than simplify it.

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r38

template <class C, class V>

void Composer<C,V>::packingCheck()

{

assert(sizeof(C) ==

sizeofVertexFieldType(C::description().type()));

assert(sizeof(C) == C::description().size());

BOOST_STATIC_ASSERT(sizeof(C) % 4 == 0);

BOOST_STATIC_ASSERT((boost::is_same<V,EndList>::value ||

(sizeof(Composer<C,V>) ==

sizeof(V) + sizeof(C))));

BOOST_STATIC_ASSERT((boost::is_same<V,EndList>::value ==

(sizeof(Composer<C,V>) == sizeof(C))));

BOOST_STATIC_ASSERT(boost::is_empty<EndList>::value);

}

LISTING 4. Asserts verify self-consistency, helping to make the
framework robust.

C + + T E M P L A T E S

LISTING 3. The constructor for a vertex-buffer wrapper class.

class VertexBuffer

{

public:

VertexBuffer(IDirect3DDevice9*,

const VertexDescription&, size_t);

private:

IDirect3DVertexBuffer9* pVB_;

};

VertexBuffer::VertexBuffer(IDirect3DDevice9* pDev,

const VertexDescription& desc, size_t nVtx):

pVB_(NULL)

{

const size_t nBytes = nVtx * desc.sizeofVertex();

pDev->CreateVertexBuffer(nBytes, 0, 0,

D3DPOOL_MANAGED, &pVB_);

}

Uses: Overloading Tricks

E ach component in a composite vertex is a class. Implicit

upcasts and overloading can be used to match vertex com-

ponents against processing functions. An example is probably

the best explanation.

In WARHAMMER ONLINE, vertex buffers are filled with data by a

model importer. The imported models contain “fat” vertices. They

include all the data that might be used by all possible vertices.

Overloaded functions copy subsets of a fat vertex to the vertices

used by the engine. Listing 5 shows that each component class

matches a copying function. Where a destination vertex does not

contain an optional component, it matches an empty function that

takes a variable number of arguments. (The ellipsis is always a

worse match per section 13.3.3.2 of the International Standard

14882 for C++.) Hence, a single template function can be used to

create and fill all the supported vertex buffers.

Extending the Framework

T he framework should provide a rich set of vertex compo-

nents. Client programmers should not lack standard com-

ponents. It is meaningful for the framework to provide compo-

nents corresponding to all the standard fixed-function FVF

components. These help make the whole system more robust

and easy to use, because they are written and debugged once.

However, the framework must also be extensible. It cannot

provide all possible vertex components, nor should it. Users can

follow a simple recipe to implement their own, which can then

be freely mixed and matched with the standard ones.

Examples

T he WARHAMMER ONLINE engine uses many nonstandard

vertex components. Many proprietary technologies and

shaders add unique value to the product. Most are supported

by their own vertex types. Figure 2 shows a screenshot of the

game running and its various vertex types.

Of the objects shown, many require custom vertex compo-

nents. The terrain uses one vertex type. A proprietary LODing

and morphing algorithm requires custom components. The

polygonal grass blades likewise use custom components for a

proprietary LODing algorithm.

The trees use five vertex types. Custom components control

the animation due to wind, billboarding, and the LOD algo-

rithm. The trees are rendered using the Speedtree library (see

w w w . g d m a g . c o m 39

FIGURE 2. A screenshot from WARHAMMER ONLINE showing the different vertex types used in the engine.

References), but the vertex data is still stored using this framework.

The skinned characters and unskinned buildings are both

DOT3 bumpmapped. Their vertices are built entirely from stan-

dard components; likewise for the sky. Allowing for colored

and uncolored types, these account for six types of vertex.

The fonts, user-interface widgets, and company logo use cus-

tom vertex components for 2D, unlit rendering.

In all, there are 22 different vertex types and the number is

still growing. (A few are not visible in the example image,

including a particle system, test harness data, and debug

options.) The framework has been in use for about 18 months,

and experience shows that it is trivially easy to add many ver-

tex types to the engine.

Comparison with Alternative
Approaches

T he Microsoft Direct3D samples set the baseline for vertex

buffer usage. A comparison is instructive. Two of Micro-

soft’s samples have been rewritten to use the template code pre-

sented here and compared in Table 1. These are Fur and

BumpSelfShadow.

Converting to use templates simplifies the client code. The

reduction in the numbers of lines demonstrates that some tasks

are automated and repetition is minimized.

The conversion process clearly demonstrated that the

robust error checking features work in practice. I made a cou-

ple of typos while converting the samples. All were caught by

the asserts.

The approach described here only works if the vertex types

are known at compile time. If artists write shaders and can con-

trol vertex data formats then a more dynamic system may be

necessary. (In our engine, all the details of vertex data are hid-

den from the artists by exporter software.) It would be possible

to create a vertex buffer without requiring a compile-time class

to represent the vertex. We prefer to leverage the C++ compiler.

Compile-time methods have so far worked for every example in

WARHAMMER ONLINE.

Performance

T here is an execution cost for building a VertexDescription.

The templates generate a recursive set of function calls.

(They don’t get inlined by my compiler.) The time taken to exe-

cute these could be measured, however, the cost of creating a

D3D vertex buffer is high. Relative to the D3D task, any time

taken by the vertex framework code is presumed insignificant.

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r40

FIGURE 3. The multiple inheritance obfuscates the display of vertices in
the debugger.

void copyPosition(...) {}

void copyPosition(Position& dst,

const FatImportedVertex& src)

{

dst.position_ = src.position_;

}

void copyColor(...) {}

void copyColor(Color& dst, const FatImportedVertex& src)

{

dst.color_ = src.color_;

}

// And likewise for TexCoords, Normal, and

// DOT3 basis vectors.

template <class V>

void copyVertex(V& dst, const FatImportedVertex& src)

{

copyPosition(dstVtx, src);

copyTexCoords(dstVtx, src);

copyNormal(dstVtx, src);

copyColor(dstVtx, src);

copySBasis(dstVtx, src);

copyTBasis(dstVtx, src);

}

LISTING 5. Function overloading provides type-safe vertex
initialization.

C + + T E M P L A T E S

TABLE 1. The effects of applying the template classes to Microsoft
samples.

Sample

BumpSelf-
Shadow

Fur

EXE Size (Kbytes)
Before

608

896

620

908

1864

954

1856

924

After Before After
Lines of Code

Code size is a more interesting factor. Templates are notori-

ous for creating code bloat. However, the Composer template

has only two methods, and each of those is small. Table 1

shows how the size of the executables changed when the

Microsoft samples were converted to use template vertices.

Each executable increases in size by a few Kbytes, but the cost

is commensurate with the benefits.

In both cases, the frame rate was unchanged (quite predictably).

Wrap Up

T his article has shown that Direct3D vertex buffers can be

simplified using various C++ template techniques. However,

there are drawbacks. The templates introduce a complex syntax

where developers might normally expect a few C-style structs.

Not all programmers have such familiarity with templates, so

there may be a learning curve.

The same complex structures are also a problem in the debug-

ger. Figure 3 shows a screenshot of a three-component vertex in

Microsoft Visual Studio. Each level of inheritance is displayed as

a nested class. In order to examine the members of a vertex, it is

necessary to drill down through many displayed levels. However,

there are other ways to debug the vertex data. It is always avail-

able in a more convenient format at the point at which the ver-

tex buffer is initialized. It can be examined as the VB is filled.

Alternatively, the data can be viewed in a shader debugger. A

shader debugger is arguably preferable because debugging the

shader and its input data go hand-in-hand. In practice, we find

that debugging the vertex data is never a problem.

Some compilers may also have problems digesting the template

syntax. Widespread support for default template parameters is

relatively new. For older compilers, there are workarounds. We

have successfully used the technique with three versions of

Microsoft’s Visual C++ (versions 6.0, 7.0, and 7.1).

I hope that this article shows that the benefits outweigh

these disadvantages. The main benefit — automated robustness

— is fourfold.

First, the vertex declaration is generated automatically merely

by defining a vertex class. The D3D declaration is guaranteed

to match the vertex class. Second, wherever possible, static type

checking is used to increase robustness. The template VB wrap-

per hides void* data pointers completely. Third, vertex buffer

creation is integrated with the vertex description class. A vertex

buffer is guaranteed to be created with the correct element size.

Finally, the fourth benefit is that compile-time and run-time

asserts are used to verify that the compiler and client program-

mer both behave as expected.

Programmer learning curve notwithstanding, the framework

makes it trivial to create a wide variety of new vertices. Only a

few lines of code are required per vertex.

In a small way, it is close to the reuse ideal. Client program-

mers can reuse predefined components but also freely mix them

with their own extensions. It raises the level of abstraction and

enables programmers to concentrate on more interesting issues:

writing ingenious shaders and gorgeous special effects. Eighteen

months of use developing a cutting-edge game engine demon-

strate that it works in practice. q

w w w . g d m a g . c o m 41

Thanks to JJ and Justin for valuable suggestions, and to JJ for
actually implementing a couple of the key features when I just left
“TBD” comments in the code. Thanks to Ed for feedback from a
non-D3D perspective. The high-resolution creature images were
provided by Toby and Neil.

A C K N O W L E D G E M E N T S

The code listings have been expanded to the point where they form
a working library. The library provides enough functionality to con-
vert the Microsoft Direct3D samples referred to in Table 1. It is avail-
able for download from www.gdmag.com.

S A M P L E C O D E

C++ TEMPLATE METAPROGRAMMING
Andrei Alexandrescu. Modern C++ Design: Generic Programming
and Design Patterns Applied. Addison Wesley, 2001.
www.moderncppdesign.com

BOOST L IBRARY DOCUMENTATION
www.boost.org

D3D DOCUMENTATION
www.microsoft.com/windows/directx/default.aspx and
http://msdn.microsoft.com/library/default.asp?url=/nhp/
default.asp?contentid=28000410

Wolfgang Engel, ed. Direct3D ShaderX: Vertex and Pixel Shader Tips
and Tricks, Wordware, 2002.
www.shaderx.com

Meyers, Scott. More Effective C++. Addison Wesley, 1995. Item 24.

INTERNATIONAL STANDARD 14882 -
PROGRAMMING LANGUAGE C++
www.ncits.org/cplusplus.htm

THE SPEEDTREE SDK
www.idvinc.com
also see this issue’s Speedtree review, page 12

W A R H A M M E R O N L I N E

www.warhammeronline.co.uk

R E F E R E N C E S

P O S T M O R T E M f r a n k r o o k e

F rom the start, it did-

n’t take long for

many of us at

Monolith to recog-

nize that a TRON
project was a once-in-a-life-

time opportunity, not

simply because we

believed the film would

lend itself to great game-

play, but also because of

the movie’s status as a

cultural icon. As a

high school student

at the time of the

original theatrical

release, I remember it piquing my

interest in computers and videogames.

Whether at the time I fully realized

the film’s impact or not, it certainly

planted seeds that flourished later

in my life. Since the start of the

project, I’ve spoken to many

people about TRON, and I

repeatedly get the same kind

of story: “It’s why I’m into

computers,” “It’s why I’m

into 3D graphics,” “It’s

why I’m into gaming.”

When Buena Vista

Interactive, the core

games publishing

label of Buena Vista

Games, approached

Monolith with the

TRON project,

they were quite

up-front about

the challenges

facing the franchise. While everyone

readily agreed it would make a great

computer game, generating interest

for a title based on a 20-year-old cult

classic film that was released ahead of

its time might be difficult. Regardless,

the project moved forward with great

enthusiasm from both Monolith and

Buena Vista Interactive. The fact that

the game could possibly pave the way

for a new TRON film and reignite the

franchise was very exciting, injecting

a unique motivation into the project

that Monolith didn’t take lightly.

Overall, TRON 2.0 is a first-person

action game that takes place in the

digital universe established by the

1982 film TRON. It’s important to

note that the game does not follow

the events seen in the film. Instead, it

is a spiritual sibling, or something of

a sequel. The core premise of a society

mirroring our own that exists in the

computer remains intact, as does the

phenomenon of a human transporting

(or digitizing, as we say in the game)

into the computer. Beyond that, the

TRON 2.0 universe breaks new

ground. Analogies, metaphors, and

social consequences reflect how we

understand and position computers in

our lives today as well as where they

may be in the near future. The game

tells only one story of a hundred pos-

sible stories, making the TRON uni-

verse much like the Star Wars and

Star Trek universes in that respect. It’s

this singular quality that makes the

TRON franchise timeless.

42 o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r

43w w w . g d m a g . c o m

G A M E D A T A

PUBLISHER: Monolith
NUMBER OF FULL-TIME EMPLOYEES:

21 full time developers, 4-5 temporary
developers pulled in as needed, plus the

use of Monolith's internal sound, music and
motion capture facilities and personnel.

NUMBER OF CONTRACTORS: Cinematic
music scoring, motion capture actors,

voice actors.
LENGTH OF DEVELOPMENT: 2 years

RELEASE DATE: August 26, 2003
TARGET PLATFORM: PC

DEVELOPMENT HARDWARE: Pentium
1.0-2.0GHz machines with 256-512 MB

RAM Geforce 1-4 video cards

DEVELOPMENT SOFTWARE: Lithtech
DEdit/ModelEdit, Microsoft Visual Studio

(C++), Photoshop, Maya, Editplus 2
NOTABLE TECHNOLOGIES:Lithtech

Jupiter Development System
PROJECT SIZE: 2,400 files, 853,300 lines

of code

What Went Right

1. Publisher compatibility. It
was and continues to be a real

pleasure working with Buena Vista

Games. We were initially concerned

that the constraints of the license

would be overwhelming, with

minute-level detail examination lead-

ing to a potentially watered-down

game. However, it was just the oppo-

site. While BVG had great input of

their own, they encouraged us to run

with our ideas. This freedom afford-

ed us the confidence to pursue a

game design without the fear of it

changing or being altered in some

obtuse fashion down the road.

Another peripheral benefit was the

publisher’s strong international stand-

ing. There are BVG regional offices

across the world. Particularly note-

worthy are those in Europe. From the

onset of the project we had direct

contact with the very people involved

with press, retailers, and consumers

across multiple European regions.

From a design point of view, this

exposure to non-U.S. markets was

enlightening and useful. It’s impossi-

ble to be all things to all people, but

it is good design practice to consider

the entire breadth of your target

audience. TRON 2.0 is more accessi-

ble and dynamic because of it.

Lastly, BVG granted us access to

the talent involved in the original

film. On the art side, we

were fortunate enough

to meet with Syd

Mead near the

beginning of

the project.

He shared

with us

many of his

original

TRON sketches

and paintings. It

was a unique oppor-

tunity to learn first-

hand the design

philosophy

behind the highly

recognizable elements of the TRON
world. In a sense, it allowed the

TRON 2.0 artists to pick up were the

film left off. Although the game

achieves an overall look that is more

detailed and colorful than the film,

the consistency in the overall aesthet-

ics between the two projects remains

credible. Mead also contributed the

new super light cycle, an exclusive

design just for the game. Both

Monolith and BVG agreed that it

seemed appropriate, not to mention

cool, to have the creator of the origi-

nal light cycle design the next incar-

nation of the iconic bike.

Besides Syd Mead, the team had

access to special effects director

Richard Taylor and TRON creator

F R A N K R O O K E | Frank has been with Monolith four years and was the lead
game designer on TRON 2.0. Prior to that he was a level designer for NO ONE LIVES

FOREVER and lead level designer for the PS2 port. Before he went to work in games
Frank was an interior and architectural designer in San Francisco.

P O S T M O R T E M

Steven Lisberger to review progress of the game. Taylor, on one

occasion, popped into the Monolith office and provided some very

helpful feedback regarding lighting and camera movement. On the

acting side, Bruce Boxleitner and Cindy Morgan lent their voices to

the game. Most notably, Boxleitner reprised his role as Alan Bradley.

2. Identifying iconic elements from the film. We

asked ourselves, what were the core elements that pro-

vided TRON with its unique identity? Not surprisingly, we

immediately isolated the disc and light cycle as iconic elements

from the movie and marked them as mandatory features for

the game. However, once we started looking past the obvious,

we were a taken aback by the sheer quantity of other essential

TRON components. To compound the issue, it became evident

that different people — meaning various people on the team, at

BVG, in the press, and at TRON fan sites — all isolated differ-

ent elements or events from the movie as true TRON moments.

What began as a simple checklist became a forum of discussion

that never really concluded until the completion of the game.

To get a handle on the situation, we started prioritizing sig-

nature TRON components by how they supported gameplay

and to what extent they propagated the TRON identity. We

then discussed how to mature these concepts to meet the

demands of a contemporary game. What we ended up with is a

working mix of old and new — recognizable yet fresh. The

combat component of the game still revolves around the disc,

but it can now be upgraded. Environments retain the glowing,

outlined look but with increased vibrancy and complexity. The

story is new but resembles the original through the use of playful

analogies, techie metaphors, and light-hearted humor — all hall-

marks of the original script. And finally, memorable entities such

as Bit, Tanks, and Recognizers make appearances but with

altered functionality to represent the passage of time.

We avoided simply translating the film directly into a game. It

took significant effort to advance the TRON universe beyond the

safety of the film. Setting out to improve iconic elements is always

risky, but as a team we agreed not to take the easy road and short-

change the property’s potential by doing the bare minimum. Solely

relying on the TRON name to sell units was not our strategy.

3.No movie license curse. It’s a common belief that movie

license–based games are substandard. How many times do

we see game reviews with the comment “Game X is just another

mediocre game based on a movie.” We did not want TRON 2.0 to

be another movie tie-in casualty. Not only would it be bad for

Monolith’s reputation, but we genuinely didn’t want to waste the

opportunity. TRON 2.0 needed to be able to stand on its own as a

fun, engaging, and intelligent game, regardless of its lineage.

To help realize this goal, we began work TRON 2.0 as we do

all our projects by reviewing successes and failures in our previ-

ous titles or similar titles so we could learn from past errors.

TRON 2.0 is fully contextual to the TRON universe yet iterative

relative to past Monolith efforts. With solid game design funda-

mentals learned from past projects, we were left free to explore

unique game mechanics, storytelling devices, and technical

enhancements that pushed TRON 2.0 into new territory.

4. Sharing code. The TRON 2.0 team found itself in a

unique position. THE NO ONE LIVES FOREVER 2 (NOLF

2) team was roughly eight months ahead of the TRON 2.0 sched-

ule. They carried most of the burden of developing Jupiter, the

next-generation game systems and tools needed to make NOLF 2

a cutting-edge game. TRON 2.0 was slated to closely follow

NOLF 2 and directly use the Jupiter engine.

Although there were trade-offs, sharing code development

with NOLF 2 primarily allowed us the freedom to focus a

greater amount of our resources toward content, new features,

and gameplay. TRON 2.0 certainly had its share of engineering

hurdles, such as the glow effect, light cycle technology, and of

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r44

Concept art and
in-game shot of
Jet Bradley in the
real world.

Concept art for the character Thorne.

P O S T M O R T E M

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r46

course the engineering to support all of TRON

2.0’s varied game objects. However, we did-

n’t have to worry about creating a new ren-

derer or AI systems. Also, uncertainties that are

usually attached to new technologies were for the

most part already resolved. We simply learned the parame-

ters of the engine and adjusted the scope of our game to fit.

5. Evolved art direction. TRON 2.0 has received

praise for its colorful architecture, glowing

streams of energy, and creative level design. Without a

doubt, the artists and level designers on the TRON 2.0

team successfully captured the essence of TRON. Not

only do the characters and environments look like

those found in the movie but in some cases surpass

them. The art direction of TRON 2.0 really stands out

as one of the primary attributes of the game, especial-

ly with the recent trend toward hyperrealistic military

games. TRON 2.0 is a fresh alternative.

The method the art team used to achieve the look

of TRON 2.0 was grassroots in nature. During pre-

production, the artists re-created many of the actual

sets from the film to get the feel for TRON. From there, they

evolved the look to represent how computers changed over the

last 20 years. It’s interesting to note that keyboards, monitors,

and circuit boards have changed little over the years. But

TRON is not about the literal interpretation of computers; it’s

about the abstract world inside, the world of programs, data,

and energy. It is here where more significant advancements have

been made, and translating that into three-dimensional architec-

ture was the greater challenge. Unlike building recognizable

architecture, such as a warehouse or a subway, the artists and

level designers had to develop the means to communicate

through an abstract language to express what a firewall or PDA

looked like to a program.

The film also had a distinctive glow about it. Initially, we

attempted to build the glow directly into the art by using layers

of additive textures. However, that proved to be time consum-

ing and somewhat inconsistent. Plus, it was not a practical solu-

tion for characters. Collaboration between Monolith and Nvidia

engineers produced a technique that generated a glow effect that

was processed in real time by essentially applying a second ren-

der pass with a blurred effect. Once we saw this for the first

time, it was clear TRON 2.0 was going to have a very special

look. The glow effect immediately became an item of note when

discussing the game with the press.

What Went Wrong

1. Short on initial resources. TRON 2.0 got off to a

pretty good start. A lot of enthusiasm, ideas, and excite-

ment flowed through the office. However, the majority of the team

was still busy wrapping up other projects, and only a core team

of about four or five actually began preproduction work on TRON

2.0. This is a pretty common scenario for most developers. The

pacing of production usually has a

small team jump-starting the next

project by writing documenta-

tion, doing concept art, proto-

typing, and so on.

Unfortunately, we failed to

recognize a few issues that

caused ripples later on in the

production. These are

lessons that we definitely plan to

implement into future projects.

The most obvious was the

lack of ramp-up time — not just

in skills needed to use the new

tools, but also in the mentality

and spirit of the project. Past

Monolith projects have been

founded in more easily

understood worlds. TRON

2.0 was different. It actual-

ly took some time and

effort just to wrap our

brains around what was TRON 2.0’s reality. When production

officially started and the entire team was in place, there were

quite a few months where output was minimal.

Also, the team’s understanding of the game design was affected.

Scads of design documents were written up in an effort to explain

the concept of the game to the team. This worked to some degree,

but was not ideal. Simply telling the team what to do not only

failed to tap into the wealth of talent they had to offer, but also

created a division in their perception of investment. Being

involved during the inception of an idea, or actually being the one

who spearheads the idea itself, fully invests a person into that

idea. It’s key to have the entire team feel personally attached to

the project and not just see it as a series of tasks to be completed.

We did have team meetings throughout the preproduction peri-

od, and it’s not as if the design was written in a vacuum, but

communication could have been better. The ownership of the

design should have been more team oriented from the beginning

rather than something they had to grow to accept over time.

2. Levels unplayable until later in project. It wasn’t

until very late in the schedule that the team was able to

experience a full, playable level. Fortunately, the gameplay

came together nicely and in some cases exceeded our expecta-

tions, but it would have been a disastrous situation had it not.

Why it took so long for the game to hit its stride may again be

attributed to our underutilized preproduction period.

As I mentioned in the previous section, it took the team a

considerable amount of time to “find” TRON — to collectively

drive toward a unified vision. We had the necessary talent, and

there was no shortage of ideas or inspiration, but the caliber of

game we wanted to make was elusive at the beginning. In addi-

tion, TRON 2.0 pre-production did not include a fleshed-out

prototype. Light cycle racing, disc combat, and the functionali-

Initical concept art for the character Jet, aban-
doned for the more-hevaily armored blue look.

ty of the subroutine system all loomed as unknowns for too

long. To benefit fully from a good idea is to learn how to

exploit it. Having key components of our game remain

unknown generated trepidation when it came to linking

time and resources. When the game finally did come

together and we could see firsthand what worked well,

we had very little time to build and expand confidently on

those successful game mechanics.

3. Linking projects. Under “What Went Right,” I men-

tioned that TRON 2.0 benefited greatly from the fact that

we used the Jupiter system, which was developed and tested dur-

ing the production of NOLF 2. This was true, but there were a

few hurdles that also had negative impact on production.

Although the Jupiter systems were extremely flexible, and

even more so now, at the time they were tailored for a more

realistic game like NOLF 2. To alter or add functionality for

the TRON 2.0 project meant lots of tweaking. In addition, the

team preferred to limit changes to game code, rather than

rewriting core engine components unless absolutely necessary.

4. Loose review process. During our internal postproject

evaluation, one topic that consistently cropped up was

the inadequacy of our internal review process. Multiple elements

drive the production of any project: an individual’s task schedule,

the milestone schedule with the publisher, the E3 demo and press

schedule, and finally the team’s internal progress evaluation. In a

lot of ways the team’s own evaluations can be the most critical,

and it is here that TRON 2.0 suffered some bumpy times.

In the beginning, we had in place a rather loose review sys-

tem. It served the purpose of keeping the team on schedule to

meet the necessary publisher milestones. What it failed to do

was verify the project’s overall quality and playability in a time-

ly fashion. It was a strange sensation knowing that we were

progressing according to the schedule but worrying deep down

that we may not be hitting the mark. We eventually started to

evaluate closely the work done by each team member at regular

intervals, creating priority lists of subtasks that we felt were

necessary to complete before the scheduled task could be

crossed off. Toward the final third of the project, we had in

place a very comprehensive review process that included weekly

and sometimes daily reviews, a cross feedback system from all

disciplines on the team, and an aggressive commitment not to

falter, regardless of everyone’s tight schedules.

Establishing a strong internal review system was so beneficial

during the final stretch of TRON 2.0 that it is now one of our

primary management goals for our next project.

5. Commercial 3D software woes. Level design reached

a crossroads during the production of TRON 2.0 when

we began using a commercial 3D package to construct our levels.

The increased power and flexibility allowed us to model and tex-

ture the unique environments found in the game. However, aban-

doning our game editor during this phase of construction present-

ed gameplay-related issues later in the project.

In the past, constructing the world in our proprietary game

editor allowed us to bounce back and forth easily between build-

ing and testing. When working strictly in a commercial package,

the testing of work required the designer to jump through a few

hoops to test work. While not overly complicated, it did require

time, and therefore testing was done less frequently.

Consequently, levels had problems regarding scale, flow, polygon

counts, and delayed functionality — all things that could have

been easily checked and verified in the game editor.

A great deal of time was lost reworking levels to make them

playable. Fortunately, now that our designers are more in tune

with the workflow between commercial tools and our game edi-

tor, this issue is mostly a thing of the past.

End of Line

O ne of the more remarkable things about TRON 2.0 is how

an eclectic group of individuals came together and

weathered many storms to prevail, not with just a finished

product, but one of which we can be proud. The dedication

and talent the team displayed excites uslooking ahead to our

next project.

As far as the game itself in concerned, TRON 2.0 was truly

the opportunity of a lifetime. I was personally unprepared for

the amount of enthusiasm TRON 2.0 garnered from fans and

from the press, both in North America and in Europe. We knew

all along it was going to be a huge responsibility bringing the

TRON franchise into the 21st century. Now that all the hard

work is behind us, it’s a thrill to know that what we’ve accom-

plished can potentially be the seeds from which future projects

can grow. And as a huge fan of TRON, I can’t wait to see the

next tale told inside the world of computers. q

w w w . g d m a g . c o m 47

Concept and final art for the character Mercury.

S O A P B O X j a s o n d e l l a r o c c a

o c t o b e r 2 0 0 3 | g a m e d e v e l o p e r56

T hirty

years

into

their

popu-

lar existence and

videogames contin-

ue to get beat up by

the media, by politi-

cians, and by activists

purportedly out to

save our culture. Thirty

years is too long for

videogames to continue to

be constantly forced on the

defensive. The old fights

haven’t gone away, and now

more than ever it is time that cre-

ators collectively take a stand for our

art form, our industry, and the careers we’ve

built over a lifetime.

Simply put, there’s crazy stuff going on out there. Thailand

has recently implemented a 10 p.m. curfew on playing games

in cafes. Germany’s notorious “index” of blacklisted titles con-

tinues to grow. Greece tried to ban all digital game playing in

one fell swoop. Afghanistan has shut down every last cybercafe

as a means to preserve its cultural morals. And the state of

Washington is set on protecting the health and safety of its law

enforcement officials by regulating game sales to minors. Sadly,

I could go on.

The perception that games are “bad” for us stubbornly per-

sists, and we have yet to find effective ways to change people’s

minds on this issue. Game makers may be biased toward

games’ “good” qualities, but you’d be surprised how many

developers simply don’t care about the issue of public percep-

tion, don’t have an informed opinion, or believe it is all a big

waste of time — even to the extent of questioning the need to

fight government regulations.

Sure, the headlines make us look bad: “Government work-

ing to protect; industry fighting for right to corrupt.” Many

of us are not comfortable confronting that image. The follow-

ing are several common mispercep-

tions developers hold about regula-

tion and what our role, as cre-

ators, should be in fighting it.

Government regulation is no big
deal, they’re just reinforcing industry
ratings. Wrong. None of the pro-

posed bills are based on the ESRB

ratings system. In fact, it’s unconsti-

tutional for the U.S. government to

regulate or enforce a private ratings

system. As such, each bill aims to set

its own moral barometer and establish

often vague metrics for what is acceptable

for everyone to purchase and play. Dancing

around a patchwork of content restrictions

and peculiarities would be prohibitive not only

for developers, but also for time-deprived parents

and retailers (who are already working with an existing

rating system).

Law X or Y doesn’t seem so harmful, but fighting all of them

makes us look bad. Each law and court case sets a precedent

for the next. The St. Louis case where Judge Stephen Limbaugh

ruled that games do not express ideas inspired both the

Washington State bill and the reissue of Rep. Joe Baca’s (D-

Calif.) Protect Children from Video Game Sex and Violence Act

in Congress. While Limbaugh’s ruling was later overturned on

appeal, reaffirming that games do express ideas and should be

protected by the First Amendment, at least another dozen simi-

lar bills are in the works. For example, the state of South

Carolina is looking to go one step further than Washington and

regulate the sale of games depicting violence against law

enforcement officials to all consumers, not just minors. That

means you.

This doesn’t affect me, it’s the publisher’s problem. Wrong

again. While most publishers usually handle rating submis-

sions and take the brunt of any backlash, the system has

direct impact on developers. If retailers are unwilling to stock

games with certain types of content (such as violence against

law enforcement officials) for fear of running afoul of the law,

continued on page 55

G
et

ty
 Im

ag
es

Regulation Is
Everyone’s Business

publishers will not have an outlet to

sell such games and will therefore

not fund game developers to make

them. This is commonly referred to

as the “chilling effect” of regula-

tion. So, tough luck for any devel-

oper hoping to create the next

crime-caper masterpiece.

I don’t like or make violent games,
so regulation is O.K. for me. Standing up for creative freedom

isn’t about fighting for the rights of any one specific game or

developer. We need to stand up for the medium as a whole.

Who are we (or anyone else for that matter) to judge what is

good or bad? While I may not personally agree with some

design choices, I strongly believe in developers’ freedom of

expression. Where will it end? The government’s current fasci-

nation with violence may soon expand and put your nonvio-

lent game square in their viewfinder.

Politicians are acting in their constituents’ best interest, and
there’s nothing I can do. Historically, censorship and regulation

have never truly been about the best interest of the people. If

there’s any doubt that some of these constituencies seem self-

contradictory on the issue of violence, consider that Rep. Baca

also voted to give gunmakers immunity from liability for crimes

committed with their products — and that’s just one example

of many.

In light of these facts, it’s clear that rolling over is the worst

possible course of action for developers seeking to protect their

craft and livelihoods.

Fortunately, there are several small and immediate steps we

can all take. For starters, stay informed on the topic and read

the news. You can head out to a local IGDA chapter meeting to

discuss these issues with your peers. Try to attend at least one

GDC session on these issues. The ESA

also has a grassroots database

(www.capitolconnect.com/esa) where

you can sign up to follow what’s

going on in your town or state.

Finally, write a friendly letter to your

local and federal representatives

explaining how you see your profes-

sion.

In the bigger picture, resolve to push boundaries and inno-

vate. Higher courts are reinforcing our view that games are an

expressive medium worthy of the same free speech protections

as other forms of art and entertainment. Let us not lose that

respect nor give them excuses to question it. We need not put

a stop to games with violence, but we need other avenues

beyond violence as a design crutch.

Finally, have self-respect. As we all know, developing a

game is a massively complex and creative endeavor. Take a

stand when friends and family come down hard on games

(yes, that means another attempt at explaining to your parents

what exactly it is you do for a living). Better yet, don’t back

down when the media has got you cornered. Because the best

defense is a good offense, the IGDA has prepared a simple set

of talking points (www.igda.org/violence) every developer can

use to talk him- or herself out of a corner.

Videogames belong at center stage. q

J A S O N D E L L A R O C C A | Jason is the program director of the
International Game Developers Association, working to build a
unified development community and common industry voice on
topics such as student outreach, concerns over game violence,
diminishing the impact of exploitative patents, and increasing diver-
sity. Contact him at jason@igda.org.

S O A P B O X

w w w . g d m a g . c o m 55

continued from page 56

It is unconstitutional for
the U.S. government to
regulate or enforce a

private ratings system.

	04gameplan
	06saysyou
	08indwatch
	10prodrev
	14profile
	16innerp
	20artview
	24soundp
	26betterby
	28f-bridgett
	34f-cantlay
	42postmort
	56soapbox

	return:

