
OCTOBER 2000

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N✎

L E T T E R F R O M T H E E D I T O R

W riting has never
come easily to me.
In fact, I still react
to seeing my name
in the magazine with

some incredulity. I can still distinctly recall
the joy I felt ten years ago as I was handed
my college diploma, knowing that I would
never have to write another paper. God
throws some wicked curveballs.

Being the editor of Game Developer for
most of its existence has been a wonderful
experience, and yes, I’ve grown to love
writing. But you know what they say
about all good things, and it’s time for me
to move on. This is my last issue working
on the magazine, but in reality, I’m not
going far at all — in fact, I’m not even
moving my office. I’m moving into a full-
time producer position on Game Devel-
oper’s sister site, Gamasutra. The siren
song of the online world beckons!

I’ve had an incredible time working on
Game Developer. It doesn’t seem that
long ago that a bunch of us on the staff
of Software Development decided to
secretly siphon off money from our maga-
zine to launch Game Developer. It was
daring stuff for us — we weren’t sure
how our superiors would react to the fact
that investment intended for one maga-
zine was actually going into the unap-
proved launch of another. Thankfully the
gamble paid off: the reader response to
our initial issues was strong, and that
gave us enough courage to break the news
about our guerrilla launch to executives
at our company. Instead of firing all of
us, they kicked in official investment, and
since then we’ve tried to improve the
quality of the magazine every month.
That improvement is due in large part to
the feedback and contributions of people
in the industry like yourself.

There are so many people who have
helped shape the magazine into what it is
today, and I’d like to thank all of them by
name. But I’d easily burn the rest of my
word count on this column trying to do
so. So I’ve narrowed it down to two
developers who have been extremely sup-
portive from the beginning of my time on

the magazine.
First, I’d like to thank Hal Barwood of

LucasArts. Every month, for years now,
Hal has sent me a long e-mail containing
thorough feedback about every article,
column, and review in the latest issue. The
staggering amount of constructive criti-
cism Hal provided has improved the mag-
azine in many fundamental ways over the
years. One of my biggest challenges as edi-
tor was to get him to write for the maga-
zine, and one of my biggest regrets was
that I never succeeded. Hal, I hope you’re
saving up all that wisdom for a book.

The second person who’s been great to
me is Chris Hecker. It’s pretty amazing how
much time and energy Chris devotes to bet-
tering this industry, and he’s been a con-
stant source of information and inspiration.
Chris is a true asset to the entire industry.

Welcome Mark, Adios Alex. In my column
over the years I’ve introduced and bid
farewell to quite a few magazine contrib-
utors, and it’s my final privilege to intro-
duce the new captain of this ship. Mark
DeLoura joins us from Nintendo, where
he was the software engineering lead in
charge of third-party titles, and worked
on one of my all-time favorite games,
LEGEND OF ZELDA: OCARINA OF TIME. You
also might recall the article he wrote for
the magazine last November (“Putting
Curved Surfaces to Work on the Nintendo
64”), or maybe you’ve seen his brand-new
book, Game Programming Gems. Mark
brings a wealth of experience and expert-
ise to this magazine, and besides all of
that, he’s one of the nicest people I’ve
ever met in the industry. It’s good to
know that the magazine’s best days lie
ahead with Mark at the helm. Welcome
Mark, and to all you readers, thanks for
the memories.

Exit, Stage Left

C
Let us know what you think. Send

e-mail to editors@gdmag.com, or write

to Game Developer, 600 Harrison St.,

San Francisco, CA 94107

w w w . g d m a g . c o m

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.947.6090 w: www.gdmag.com

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editorial Director

Alex Dunne adunne@sirius.com
Editor-In-Chief

Mark DeLoura mdeloura@cmp.com
Senior Editor

Jennifer Olsen jolsen@cmp.com
Production Editor

R.D.T. Byrd tbyrd@cmp.com
Art Director

Audrey Welch awelch@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Daniel Huebner dan@gamasutra.com
Jeff Lander jeffl@darwin3d.com
Maarten Kraaijvanger maarten@nihilistic.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed Independent
Dan Teven Teven Consulting
Rob Wyatt The Groove Alliance

ADVERTISING SALES
Director of Sales & Marketing

Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218
National Sales Manager

Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217
Account Manager, Western Region, Silicon Valley & Asia

Mike Colligan e: mcolligan@cmp.com t: 415.947.6223
Account Manager, Northern California

Susan Kirby e: skirby@cmp.com t: 415.947.6226
Account Manager, Eastern Region & Europe

Afton Thatcher e: athatcher@cmp.com t: 415.947.6224
Sales Representative/Recruitment

Morgan Browning e: mbrowning@cmp.com t: 415.947.6225

ADVERTISING PRODUCTION
Senior Vice President/Production Andrew A. Mickus
Advertising Production Coordinator Kevin Chanel
Reprints Stella Valdez t: 916.983.6971

CMP GAME MEDIA GROUP MARKETING
Senior MarCom Manager Susan McDonald
Product Marketing Manager Darrielle Sadle
Field Marketing Manager Jennifer McLean
Marketing Coordinator Scott Lyon

CIRCULATION
Group Circulation Director Kathy Henry
Director of Audience Development Henry Fung
Circulation Manager Ron Escobar
Circulation Assistant Yumi Sato
Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes
t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Robert J. Abramson and Associates Inc.
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall
Corporate President/COO John Russell
CFO John Day
Group President, Business Technology Group Adam Marder
Group President, Specialized Technology Group Regina Ridley
Group President, Channel Group Pam Watkins
Group President, Electronics Group Steve Weitzner
Senior Vice President, Human Resources Leah Landro
Senior Vice President, Global Sales & Marketing Bill Howard
Senior Vice President, Business Development Vittoria Borazio
General Counsel Sandra L. Grayson
Vice President, Creative Technologies Johanna Kleppe

Game Developer
magazine is

BPA approved

W W W . C M P G A M E . C O M

NEW MAX PLUG-IN GOES FROM RAGS TO STITCHES

D igimation has a new plug-in for 3D
Studio Max

called Stitch, which
aims to deliver a real-
istic cloth simulation
complete with wind,
gravity, and colli-
sions. Stitch works as
a modifier in Max,
allowing users to
select an object and
apply the Stitch mod-
ifier to transform an
object into cloth with
all of its associated properties. Users can

also identify surrounding objects in a scene
to act as collision

objects, and can add
3D Studio Max
standard Wind and
Gravity space warps
to the simulation for
added realism. Stitch
comes with a library
of preset cloth types
and generic patterns,
and costs $695 per
license.

Stitch | Digimation | www.digimation.com

w w w . g d m a g . c o m 7

Z
F R O N T L I N E T O O L S

W H A T ’ S N E W I N T H E W O R L D O F G A M E D E V E L O P M E N T | d a n i e l h u e b n e r

NEW TEXTURING ARSENAL FOR DEEP PAINTERS

R ight Hemisphere is shipping
Texture Weapons, an add-on

for its Deep Paint 3D texturing and
painting program. Texture
Weapons is designed to extend
Deep Paint 3D with enhanced
painting and mapping functionality,
and to let users create textures with
minimal distortion. Texture
Weapons includes automatic and
manual UV editing tools as well as
Projection Paint, a feature that
allows users to paint from any posi-
tion within a 3D space with brush and
texture size unaffected by UV-coordinate variations. Texture Weapons is
available now, and is priced at $495 for Windows 98 and NT.

Texture Weapons | Right Hemisphere | www.righthemisphere.com

ELSA DEBUTS GLORIA III

E LSA is releasing the newest member of
its Gloria line of workstation graphics

cards, the ELSA Gloria III. Based on
Nvidia’s new Quadro 2 Pro, Gloria III
offers nearly twice the processing power of
the Quadro-based Gloria II. The new Gloria
pushes up to 31 million triangles through its
transform and lighting engine and fills tex-
tures at a rate of one gigapixel per second.
Its four pixel pipelines each handle seven
operations with two textures per pixel, per
pipeline, per clock. With 64MB of DDR
frame buffer memory and a 350MHz

RAMDAC, the Gloria
III will support up to
50-inch CRT moni-
tors and 21-inch
DVI flat-screen
monitors with reso-
lutions as high as
2048×1536 at
85Hz in true color.

Gloria III | ELSA | www.elsa.com

3D STUDIO gMAX

D iscreet is extending its 3D Studio
Max tools with an authoring tool

available to game players at no charge. 3D
Studio gMax, a professional and consumer
content creation platform based on the
next 3D Studio Max release, is aimed at
developers who plan to release custom
level-editing tools with game titles next
year. Licensed game development teams

will be able to use and extend gMax as a
game level-building tool for internal pro-
duction of a specific project, and then
release those customizations as a Game
Pack that users can plug into a free, down-
loadable gMax editor from Discreet. The
new product will be compile-compatible
with the next major release of 3D Studio
Max, and Discreet plans to have the no-
charge download of 3D Studio gMax
available to consumers when the first set
of supported Game Packs are released.

3D Studio gMax | Discreet | www.discreet.com

SONY UNVEILS PLAYSTATION 2–BASED
RENDERING SYSTEM

S ony Computer Entertainment has rolled its
Playstation 2 development research into a

new rendering system. The new machine, called the GS
Cube, boasts 16 parallel graphics units, each one composed
of the PS2’s Emotion Engine CPU and an enhanced
Graphics Synthesizer GPU bumped up to 32MB of VRAM
from the PS2’s 4MB. Sony envisions a truly interactive cine-
ma experience, but concedes they are unsure of exactly what
might be created with the GS Cube. Sony hasn’t set a date

for release or any pricing strategy, but could have GS Cubes ready for commercial use
by the end of the year.

GS Cube | Sony Computer Entertainment | www.sony.com

8 o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r

I N D U S T R Y W A T C HJ

Sony prepares for U.S., European PS2
launches. Sony Computer Entertainment
president Ken Kutaragi announced that 3
million Playstation 2s have shipped in
Japan as of August 1, less than five
months after its March 4 launch. By com-
parison, the original Playstation took 19
months to achieve the same feat, having
moved more than 77 million units world-
wide to date. Several leading U.S. retailers
have halted or scaled back preorders for
the new console, anticipating that supply
will not be able to match demand at the
October 26 launch. Some of the retailers
are still taking preorders through their
online stores, while others have eliminated
guarantees that preordered consoles will be
shipped on the launch date.

European players, meanwhile, will have
their patience tested by a delay. The Play-
station 2 will arrive in 17 European coun-
tries November 24. That date is nearly a
month after the U.S. launch on October 26,
and even later than the previously expected
release date of November 17. Sony Com-
puter Entertainment said the first wave of
Playstation 2s shipped to Europe will still
out-pace the 600,000 units it shipped in the
first three months of the original Play-
station’s European launch. Sony has also set
its PS2 pricing for Europe: 299 pounds
($447) in the U.K., 2,990 francs ($413) in
France, and 869 marks ($403) in Germany.

Microsoft flexes marketing muscles.
Microsoft plans to spend a cool half-billion
dollars on marketing its Xbox in the first
18 months of its debut, making it the
biggest product launch ever for Microsoft.
The plan at this point appears aimed pri-
marily at unseating the prominence of
Playstation 2, which will have been on the
market about a year before Xbox launches
in fall 2001, and staving off any threat
from Nintendo’s next-generation console,
which is expected to arrive in the U.S. at
around the same time as Xbox. A presenta-
tion Microsoft gave to a meeting of finan-
cial analysts was focused mainly on com-
parisons between Xbox and Playstation 2
specifications and development environ-
ments, leading some analysts to believe that
Sony is the only competition Microsoft is
taking seriously. However, much less is
known at this stage about Nintendo’s
upcoming console than Playstation 2,

which has already been released in Japan.
The company took another big step in

the development of the Xbox with the
shipment of the first Xbox development
kits. The company is refraining from call-
ing the kits SDKs, preferring the more
clever name “XDK.” The company is
expecting to ship more than 1,000 kits to
some 100 development houses in prepara-
tion for the console’s launch. The XDK is
being rolled out in three phases, starting
with an upgradeable PC-based system and
finishing with a customized console unit
delivered in the first part of 2001. The kits
currently shipping provide developers with
early graphics hardware, a beta version of
DirectX 8, and off-the-shelf game pads to
simulate Xbox functionality.

Interplay stays listed. Interplay will
continue to trade its stock on the NAS-
DAQ’s National Market. The company
had faced losing its National Market list-
ing because of its failure to meet all of
the market’s listing requirements, but an
appeal to the Listing Qualifications Panel
came down in Interplay’s favor. The panel
decided that Interplay has demonstrated
compliance with NASDAQ’s net tangible
assets criterion and may keep its listing as
long as the company’s assets do not fall
below $8.3 million in its third quarter.
Interplay must also provide documenta-
tion of compliance with NASDAQ’s vot-
ing requirements.

Another company facing delisting,
Acclaim, lost it appeal to continue trading
on the National Market, where it also failed
to meet the exchange’s net tangible assets
listing criterion, and will begin trading on
NASDAQ’s Small Cap Market. Acclaim has
been hit hard in recent quarters by the con-
sole transitions, and is currently in the

process of reworking its product line in an
effort to return to profitability.

Too Grizzly for B.C. Authorities in British
Columbia have given Raven’s SOLDIER OF

FORTUNE the equivalent of an X rating. The
game is the first in Canada to be classified
as an adult movie, making it illegal to sell
the title to anyone under 18. The classifica-
tion, which carries penalties of up to six
months in jail and a fine, came after a par-
ent complained about the game’s violent
content. SOLDIER OF FORTUNE publisher
Activision announced that it will appeal the
decision, and the game’s Canadian distribu-
tor, Beamscope Canada, has also filed a
similar appeal. Both companies contend
that the B.C. Film Commission doesn’t have
the jurisdiction to rate and classify games.
The action has led the province to develop
its own mandatory game ratings scheme,
similar to that used to rate movie content.

Take-Two grabs Pop Top. Take-Two
Interactive is buying Pop Top Software,
best known for developing last year’s hit
RAILROAD TYCOON 2. In addition, the sale
includes a provision to keep Pop Top presi-
dent Phil Steinmeyer with the company in
his current capacity for at least four more
years. The terms of the sale have not been
disclosed. Pop Top is currently working on
TROPICO, a 3D strategy game set for
release in 2001, and will remain in its St.
Louis headquarters. q

T H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e r

SOLDIER OF FORTUNE: too gory for some Canadians.

SOFTWARE DEVELOPMENT EAST
WASHINGTON CONVENTION CENTER

Washington, D.C.
October 29–November 2, 2000
Cost: full conference starts at $1,695
www.sdshow.com

COMDEX FALL
LAS VEGAS CONVENTION CENTER,
SANDS EXPO & CONVENTION CENTER

Las Vegas, Nev.
November 13–17, 2000
Cost: variable
www.key3media.com/comdex/fall2000

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

10 o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r

Problem

M any games strive to achieve “real-
time” behavior, meaning the game

appears to behave the same regardless of
machine speed and computational load.
The in-game speed of objects should not
be tied to the framerate; if an object is sup-
posed to be moving at five units per sec-
ond, it should move at five units per sec-
ond on all machines under all circum-
stances, so all users experience the same
gameplay.

Older games that violate this principle
often run too fast to be playable on new
machines. Similarly, the gameplay on mod-
ern games is sometimes too slow to work
as intended on even slightly older
machines. A more subtle manifestation of
this problem occurs when the gameplay
changes speed due to fluctuating in-game
processing overhead.

Solutions

F ixed Timestep. If a suitable target
machine speed and computational load

can be determined a priori, and the fram-
erate can be kept relatively constant, the
Timestep Regulator can be a simple con-
stant fixed timestep. Alternatively, a set of
fixed timesteps can be used within precom-
puted zones or situations.

Variable Timestep. If the frame time
varies unpredictably, a variable timestep
can be used as the Timestep Regulator to
keep the “game time” approximately syn-
chronized with “real time.” The variable
timestep is usually based on the previous
frame’s time, or an average of a history of
frame times, to filter spikes in the frame-
rate. More advanced implementations can
keep track of different subsystem times to
predict future frame times more accurately
and help avoid the “Evil Feedback Loop”
issue mentioned below.

Issues

F ixed Timestep issues. If the actual
machine running the game does not

match the target machine speed, the game
will not have real-time behavior. Many PC
games exhibit a bias toward high-perform-
ance machines for this reason. In extreme
cases, such as when a game developed for
a slow machine runs on a fast machine, a
framerate limiter may be employed to keep
the game from running too fast.

Miscellaneous Variable Timestep issues.
Initialization of the history is problematic,
and it’s possible to overshoot the current
real time due to spikes. There is debate
over whether games should simulate up to
the beginning of the frame, or to the exact
moment the user will see the updated
image after rendering.

Evil Feedback Loop. This is the biggest
danger for Variable Timestep algorithms.
Most advanced rendering, simulation, and
AI algorithms use coherency — similarity
between frames — to improve perform-
ance; the less coherency, the longer the
algorithm takes to execute. For example,
in a continuous level-of-detail terrain sys-
tem that caches tessellations, the farther
the eye moves, the more work the algo-
rithm must do to generate the new ground
polygons. A Variable Timestep can turn
this into a destructive positive feedback
loop: If a given frame takes a long time,
the simulation will try to make up for lost
time during the next frame and step for-
ward by a large amount. This large time-
step causes objects to move farther than
usual, destroying coherence, and causing
the coherence-sensitive algorithms to take
even longer to complete than the previous
frame. Once this loop begins, the frame
times increase until an equilibrium is
reached where the timestep and the run
time match. This steady-state frame time is
usually far too slow for interactive games.

One solution is to detect the emergence of
the Evil Feedback Loop and abandon
absolute real time, stepping as far as possi-
ble within the simulation time budget.

Timestep linearity. The relationship
between an algorithm’s run time and its
step size can be constant, linear, or nonlin-
ear. For example, some simple AI algo-
rithms do the same amount of work
regardless of the step size. However, a colli-
sion detection system that prevents objects
from tunneling through one another will
do more work the farther the objects move.
This relationship is important to under-
stand in order to implement a Variable
Timestep that predicts frame times accu-
rately and avoids the Evil Feedback Loop.

Multiplayer synchronization. Keeping net-
worked games synchronized is an issue
with both solutions. This is a huge issue
and will be the topic of future patterns. Be
sure to submit your thoughts on this topic!

Uses, Credits, and
References

J on Blow from Bolt Action Software
coined the term Evil Feedback Loop

and used it in his Siggraph 2000 talk, but
many developers have run up against the
issue in many different games. Chris Heck-
er’s articles on www.d6.com/users/
checker/dynamics.htm show some simple
Variable Timestep implementations. q

Timestep Regulator
a.k.a. Framerate Regulator,

Real-Time Timestep, Fixed Timestep

z
P A T T E R N S

G A M E P R O G R A M M I N G P A T T E R N S & I D I O M S | c h r i s h e c k e r & z a c h a r y b o o t h s i m p s o n

We Want to Hear from You!

This column depends on your contributions!
Send your patterns and idioms to us at
patterns@d6.com. To learn more about this
column and the Game Programming Pat-
terns Database, go to www.gamasutra.com/
patterns. If we publish your pattern in the
column, we’ll give you recognition in print
and $100!

w w w . g a m a s u t r a . c o m / p a t t e r n sw w w . g a m a s u t r a . c o m / p a t t e r n s

13

P R O D U C T R E V I E W

Physics Engines
Part Two: The Rest of the Story

b y j e f f l a n d e r & c h r i s h e c k e r

L ast month (“Physics Engines,
Part 1: The Stress Tests,” Sep-
tember 2000), we put three
licensable rigid body physics
engines through their paces

with a series of stress tests specifically
designed to find stability problems. Math-
Engine’s Dynamics Toolkit 2.0 and Colli-
sion Toolkit 1.0, the Havok GDK from
Havok, and Ipion’s Virtual Physics SDK all
made their way through the 12 tests with
varying levels of success.

This month, we are going to take a
broader look at each package. But first,
you are probably asking yourself...

Should I License a
Physics Engine?

G ame physics is a complex issue. We
are not going to answer the question,

“Should I use rigid body physics in my
game?” That’s a decision you will have to
make. However, if (or, we hope, when) you
decide to try physics in your game, should
you build or buy? That too, is a complicat-
ed question.

Rigid body dynamics is a relatively new
technology for the game industry. It is
mathematically intense and difficult to
implement. This would seem to make it per-
fect for licensing, because a third party has
already done the hard part, and you can
just buy the technology from them. This is
true to some extent, but it remains to be
seen how knowledgeable programmers and
designers need to be about physics to use a
physics engine. As you saw last month,
physics is not a technology you can put in
your game and have it work perfectly every
time. Current simulators are quite sensitive
to initial parameters and tolerances, and
require hand-holding and tuning.

We feel that developers using physics
simulators to make games in the near
future will need to know a fair amount
about physics and the underlying simula-

tion algorithms in order for such imple-
mentations to be successful. However, we
also feel this level of knowledge is less
than what’s required to implement a
physics simulator in the first place, so
licensing might be a good idea. You won’t
know exactly why things are breaking, but
you’ll be a year ahead of the guy down the
street trying to implement his simulator
from scratch.

Criteria & Disclaimers

E ven after reading this review, anyone
who is contemplating licensing a

physics engine should arrange for an eval-
uation period to determine how it might fit
into an individual project. With a high-risk
piece of core technology, there is no substi-
tute for firsthand experience.

We reviewed each package as if we were
going to license the package and either
integrate it into an existing game or start a
new game with the engine. These are sub-
tly different goals, and we’ll point out
areas where this distinction is important
later on. For this review, we looked at the
following factors:

Feature set. What are the elements of
each system? Can it be used to simulate a
great variety of things, including machines,

environments, and so on? Is the collision
detector full-featured? How many con-
straint types are there? How many types
of friction? We’re focusing on the rigid
body dynamics features, not things like
cloth, soft bodies, water, or domain-specif-
ic subsystems such as cars and airplanes.

Documentation. Is the information
included adequate and well presented?
Does it address nonintuitive problems that
arise? Does it discuss tuning tolerance
parameters in detail? Are there clear and
instructional sample programs included?

Ease of use. Are the libraries intuitive to
program with?

Production. Does it include export and
preview tools to simplify production and
artist use? Can you save internal object
representations on the disk so you don’t
have to let the engine preprocess them
every time you load? Does the library
include source code? Is it cross-platform?

Integration. Is it easy to integrate into a
production? Is it modular, and are the
modules well designed? Do the modules
work well together?

Input and feedback. Can the game inter-
act with the objects effectively via forces
and impulses? Is useful information avail-
able from the simulation, such as object
speed, contact state, and so on?

Cost. What is the cost, both in licensing
and support?

Technical support. How well do the com-
panies respond to problems?

What We’re Missing

T he most glaringly omitted criteria are
stability and performance. We covered

stability last month with the stress tests,
and as we said in that article, we cannot
cover all cases. You have to test situations
specific to your game design.

T H E A U T H O R S | Jeff Lander (jeffl@darwin3d.com) is the Graphic Content columnist for
Game Developer. Chris Hecker (checker@d6.com) is Game Developer’s editor-at-large.

XXT H E S K I N N Y O N N E W T O O L S

A car built by connecting rigid objects with
springs in Ipion’s Virtual Physics SDK.

XP R O D U C T R E V I E W

14 o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r

Performance is another complicated and
hard-to-review feature. All three engines
seem fast in the demos, but we implore
you to try them on your representative
data sets before making a judgment.
Related to performance are memory and
resource usage. Does one engine allocate
100MB under certain special circum-
stances? We don’t know.

We haven’t covered track records or
postmortems. To our knowledge, no hit
games have shipped with any of these
SDKs. We’ve talked to a few developers
using the engines, but a thorough set of
interviews and developer feedback would
be very interesting and useful.

Before we get into the reviews, we must
note that Ipion was recently purchased by
Havok, and the Virtual Physics SDK will
eventually be integrated into the Havok
GDK. For the time being, we will treat
them as separate products and consider
them separately here. The packages are
presented in no particular order.

Ipion’s Virtual
Physics SDK

F eatures. Ipion’s collision detection sys-
tem has all the necessary features,

including broad and narrow phase algo-
rithms, and functions and utilities for gener-
ating collision volumes from meshes. You
can apply forces to the objects through
actuators, such as motors, springs, and even
a simple buoyancy simulation. The system
supports a constraint system where you can
specify the degrees of freedom between the
constrained objects or use built-in joints,
such as hinge or ball-and-socket.

Documentation. The manual is a relative-
ly scant 76-page Microsoft Word document.
It covers the main features, but it does not
go into great depth, making thorough
examination of the samples and header files
imperative. It would have been very helpful
to have all of the classes fully explained and
an overall description of the architecture.
Tuning parameters are hardly documented.
The examples are numerous, providing a
demonstration of the complete functionality
of the system, as well as creating a starting
point for most situations one would typical-
ly encounter in the development of a game.
The example code comments are a little
sparse. All of the examples are in an exam-

ple framework, so it’s hard to tell how to
use the engine on its own.

Ease of use. The library has been engi-
neered as a class hierarchy. Objects need to
be allocated and owned by the system.
Sometimes the public sections of classes
have many “comment enforced” rules. We
could not find a clear way to control the
simulator step-size. No access is provided
to the low-level dynamics algorithms, such
as the contact solver.

Production. Ipion doesn’t include much
in the way of production tools. There are
no exporters for standard 3D modeling
packages, nor any importers for generic
3D model files. QUAKE 2 .BSP files are sup-
ported with sample code. Most of the
example programs generate models using
custom code. Users would need to create
tools in order to let artists try out their
models easily. Ipion does provide a tool for
creating a custom convex hull for compli-
cated concave models; however, this tool
doesn’t load any standard file formats,
either. There is an example of saving inter-
nal collision information to disk, but it is
not documented and doesn’t appear to be
cross-platform-safe or version-controlled.
The engine supports PC and Playstation 2.
Ipion has licensed the complete source
code to game developers in the past,
although it’s not clear if the Havok acqui-
sition will affect this stance.

Integration. As mentioned above, the
class hierarchy might make integration
with an existing architecture more difficult
than with a more procedural API. The
classes are well organized and mostly docu-
mented. The libraries
are composed of two
pieces, the physics
engine and the sur-
face builder, which
allows users to create
optimized convex
hulls from polygon
meshes at run time. If
you don’t need the
surface builder func-
tion, you can choose
not to include it.

Input and feed-
back. The engine has
a few different ways
of physically affect-
ing the simulation,

including applying impulses to objects and
attaching actuators and controllers (like
springs, magnets, and user-defined impuls-
es). Ipion includes a class of “listeners”
that allow the game to get information
about objects and collisions in the system.
With these you can determine if objects are
actively being simulated or are “asleep.”
The collision events are very important for
adding things like sound effects to a game.
These listeners look very useful, though
they are not terribly well documented.

Cost. The base price for the Ipion SDK is
$50,000 to $60,000 for a single title.
Royalty-based fees can be negotiated on an
individual basis.

Technical support. Technical support for
the Ipion system is now handled by
Havok. They have a web-based forum for
answering developer questions as well as
telephone and e-mail support. It is not yet
clear how support will be handled between
the Havok and Ipion packages.

MathEngine’s Dynamics
Toolkit 2.0 and Collision
Toolkit 1.0

F eatures. The MathEngine system is
composed of two pieces intended to

work together. The Dynamics Toolkit sim-
ulates rigid bodies, constraints, and con-
tacts. A number of constraints and contact
friction types are included, and access to
the dynamic simulator is provided at a
number of levels. The Collision Toolkit
handles collision detection between
objects, but it is very basic. It only sup-

Collision detection with random polygons in Ipion’s Virtual Physics SDK.

XP R O D U C T R E V I E W

16 o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r

ports a small set of collision primitives
(sphere, box, plane, and cylinder) and their
unions. The API is modular (more on this
below), so adding a custom collision detec-
tor is possible, but it would be a lot of
work — work you were hoping to save by
licensing a physics engine.

Documentation. MathEngine’s documen-
tation is the best of the three packages.
The manual is very thorough with both a
user’s guide and complete reference to all
the classes in the architecture. There is
even a glossy foldout that shows frequent-
ly used information. The code is well
organized and documented. There is a
small amount of inconsistency in the docu-
mentation; for example, it uses the terms
alive/awake and dead/asleep interchange-
ably. The friction parameters are nonintu-
itive and nonphysical. Some guidelines and
a bit more documentation on setting them
would have helped. The tolerance values
used by the simulator are documented, and
some effort is made to describe them.
Additionally, there is a section on optimiz-
ing and constructing good simulations.
While easy to read and understand, the
demonstration programs were too basic.

Ease of use. The system is a class hierar-
chy in structure, but the access to the
library is through fairly lightweight stan-
dard C functions and data structures. The
API is clean and relatively well designed.
The dynamics and the collision toolkits are
completely modularized and loosely cou-
pled, so a developer could easily use either
the toolkit by itself, or call the well-docu-

mented contact-
resolver function
directly. This layered
approach is the right
way to design a
physics engine API
for licensing, in our
opinion. However,
MathEngine has not
provided a complete
interface between the
systems, so you have
to do extra work to
get them to cooper-
ate. The system has
no matrix helper
functions. Simulation
memory allocation is
error-prone.

Production. Similar to the Ipion library,
the MathEngine system is designed mainly
for coders. Any tools needed for importing
models or allowing artists to preview the
system will need to be created. The Colli-
sion Toolkit can use Renderware models,
but no other formats. There appears to be
no way to write internal preprocessed data
to the disk. The engine supports the PC
and Playstation 2 platforms. MathEngine
does not generally license complete source
code, but said they would discuss it on a
case-by-case basis.

Integration. The layered approach to the
API makes integration very easy, probably
much easier than the other two engines. If
your program already handles collision
detection, you can easily use only the
dynamics system or vice versa. Math-
Engine provides most of the source code to
the abstraction layer that communicates
with the dynamics and constraint solver.

Input and feedback. There are simple
APIs for exerting torques and forces on
bodies, but the programmer must apply
joint forces and torques manually. Some of
the toolkits and subsystems have callback
functions for feedback, while others have
“get” functions; most of the rest have
enough sample code included that direct
access of the data structures is possible.

Cost. MathEngine has two pricing plans,
either a single fee of $50,000 per project,
or $5,000 plus royalty of 50 cents per unit.

Technical support. The MathEngine web
site has a developers’ forum for discussing
the toolkits. Support over both e-mail and

telephone is very good, although we did
not test this support anonymously.

Havok GDK 1.2

F eatures. Havok provides an underlying
rigid body simulator and a toolkit for

higher-level access layered on top. Havok’s
constraint system is weak compared to the
other libraries, supporting only spherical
joints and point-to-path. The collision sub-
system is full-featured, supporting simple
collision volumes as well as convex hulls
and true concave objects. A number of
contact-solver friction types are included.
In addition to basic rigid body dynamics,
the system simulates soft body objects
(such as blobs and cloth) and particles, as
well as a simple fluid model; however, we
didn’t test these features and can’t vouch
for their completeness.

Documentation. Havok provides a nice
set of documentation along with updates
on Havok’s web site. While not as thor-

There are other options beyond the rigid
body dynamics simulators we discussed
here. Several middleware providers have
created tools to aid the development of
physical simulations. Here are a couple
we haven’t looked at closely, so “caveat
programmer.”

The ReelMotion Animation Tool
(www.reelmotion.com)is a simulator for
generating animation data for a variety of
vehicles such as cars, helicopters, air-
planes, and motorcycles. It uses dynamic
simulation and sophisticated physical
models for the objects to generate the
motion data.

Hypermatter from Second Nature
(www.hypermatter.net) provides a real-
time system for animating soft body
objects. The stiffness of the object can be
controlled so the objects can vary from
rigid to very soft while still preserving the
volume of the original object. The system
contains a number of features common
to a rigid body simulator, such as con-
straints. The toolkit is currently available
for the PC, and a Playstation 2 version is
in development.

O T H E R C H O I C E S

A dynamically controlled object in a scene in MathEngine.

XP R O D U C T R E V I E W

18 o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r

ough as MathEngine’s documentation, the
documents were useful. There were a few
minor consistency problems with function
names and terms. There is a great variety
of well-documented examples of various
levels of complexity. The underlying simu-
lator API is not as well documented.

Ease of use. The Havok GDK toolkit is
very easy to use, with the code organized in
an easy to understand class hierarchy. The
system provides helper utilities for common
math functions. The underlying simulation
API seems slightly more difficult to use and
not quite as completely exposed as Math-
Engine’s, but is more complete because of
the advanced collision detector.

Production. Because the system provides
a plug-in for 3D Studio Max, artists can
easily start using it. They can create mod-
els with boundary volumes and run them
in the simulation without programmer
involvement. Another nice feature allows
you to dump the state of the objects in the
simulation at any point to a file to reload
later or examine for debugging purposes.
When trying to debug a physics-heavy
game, features like this are very useful.
The library is available for the PC, Macin-
tosh, and Playstation 2 platforms. Havok
does not license the engine source code,
though they will discuss full source-level
needs individually.

Integration. Havok breaks the package
up into several libraries. While it may be
possible to leave out unused portions, they
are very tightly integrated. This makes
programming easier at the expense of
modularity.

Input and feedback. Input to the simula-

tion is through “action”
classes that are called
back during integration,
and through a complete
set of access functions
on the bodies. Because
the constraint system
only supports one type
of constraint, there are
no constraint actuator
functions. The Havok
GDK provides a com-
plete set of event call-
backs and access func-
tions to determine what
is happening inside the
simulator.

Cost. The Havok 3D Studio Max plug-in
is $495 per seat with multi-seat discounts
available. The Havok GDK is available for
$65,000 to $75,000 per title without royal-
ties. Royalty pricing and other pricing
options are available on an individual basis.

Technical support. Like MathEngine, the
Havok web site has a developers’ forum
for discussion of the toolkits. Technical
support was very good, but again, it was
not attained anonymously.

Conclusions

A ll three of these packages performed
better than we expected. They are

clearly up to the task of handling most
rigid body simulation needs. But which
one is right for you? We arrived at some
general conclusions.

While its collision detection system is
very fast and flexible, the Ipion Virtual
Physics SDK has some problems. It lacks
adequate documentation, and the code
architecture may make integration with
your game application more difficult. It is a
product at the end of its lifetime, and
unless your needs are very near-term and it
is a perfect fit for your code structure, we
would hesitate to recommend it. We do
hope that Havok can integrate many of
Ipion’s good features into their architecture.

The Havok GDK is the most full-fea-
tured physics engine available. The system
handles collision detection of arbitrary
geometries and has models for soft bodies,
particle systems, and basic fluid dynamics.
The documentation is fairly good (though
we hope it continues to improve), and the

code examples are plentiful and very useful.
The availability of a 3D Studio Max tool
for artists is a great aid to production. If
you need a one-stop, do-everything physics
engine, this is the one for you. The only
weak points are its constraints (admittedly,
a very large weak point, especially if you’re
interested in simulating articulated figures),
library modularity, and occasional collision
resolution issues.

The MathEngine Dynamics Toolkit 2.0
and Collision Toolkit 1.0 is a very well
designed SDK. The documentation is the
best of the three, and technical support is
outstanding. The well-documented archi-
tecture makes the engine easy to integrate
with existing game projects. Programmers
with knowledge of dynamic simulators
should be able to dig right down into the
core and control the simulation. The
dynamic simulator is very good, and the
rigid-constraint support is the best of the
three systems we looked at. However, the
lack of advanced collision detection meth-
ods might be a showstopper of a problem.
(We must note here that as we went to
press, we learned that a new beta version
of the MathEngine Toolkit was released
that includes collisions with convex objects
among other new features. We didn’t have
time to check this out thoroughly, but
because all of these packages are constant-
ly evolving, we again encourage you to do
your homework when weighing your
options.) Finally, the simplicity of the
demos may also make it tough to find spe-
cific examples to build on.

As we’ve said many times, you must
review the packages for your specific needs
before making a decision. Physics is not
mature enough to buy a package based
simply on a recommendation. All three
packages are available for evaluation, and
this is really the only way to make sure
you get the package that is right for you
and your project. q

F O R M O R E I N F O R M AT I O N

Havok GDK and Ipion’s Virtual Physics SDK

www.havok.com

MathEngine’s Dynamics Toolkit 2.0

and Collision Toolkit 1.0

www.mathengine.com

Dynamically controlled objects in a scene in Havok.

w w w . g d m a g . c o m 21

M any artists and pro-
grammers struggle with
the issue of applying a
flat texture to 3D
objects. There are many

choices to make. The artist must decide
which type of mapping will provide the

most complete coverage with the least dis-
tortion. Aligning or attempting to hide the
texture seam is also a pretty complicated
task. It can often be torture. However,
mapping is not a new problem.

In the 16th century, a German cartogra-
pher named Gerhard Kremer was worried
about spherical mapping. His goal was to
unwrap the globe onto a 2D map for use
by ocean navigators. Up to that time, maps
of the world did not take into account the
curvature of the earth. In order to navigate
a ship from one port to another using such

a map, you could not simply draw a
straight line between the ports and follow
that course. Instead, you had to adjust
your heading along the way to compensate
for the earth’s curvature. Gerhard, who, in
the educated fashion of the day, Latinized
his name to Gerardus Mercator (Kremer is
an old German word meaning “mer-
chant”), studied the problem of map navi-
gation. Sailors at the time were able to
guide their boats at a constant heading
fairly easily; therefore, they needed a map
where a straight line defined a constant
heading. The concept of lines of longitude
and latitude were well understood by this
time. Mercator created a map where both
the lines of latitude and longitude were
parallel, straight lines. This map projection
is now known as the Mercator projection,

or more formally, a
cylindrical, ortho-
morphic, conformal
projection. While we
can easily create this
projection with a
computer, Mercator
created this map with
just a compass and
protractor.

This projection
made traveling easier
for sailors, but it had
a few drawbacks.

Although sailors could now travel between
two destinations on a constant course,
because of the curvature of the earth this
was not always the shortest distance
between two points. To this day, measuring
distance on a Mercator map is not entirely
accurate. You may have noticed this if you
have ever traveled to Europe over the polar
route — on the map it looks like you are
not traveling the shortest route. Also, in
order to keep the longitudinal lines from
getting closer at the poles, the scale must be
increased with distance from the equator.

This leads to quite a bit of distortion near
the poles as well. Many people assume that
Greenland is the size of South America
from looking at maps, when it is actually
quite a bit smaller.

Despite its limitations, the Mercator
projection remains an incredible achieve-
ment, and is still in common use today.
Unfortunately, like many great thinkers of
his day, as a reward for his brilliance and
his Protestant beliefs, Mercator became a
guest of the Inquisition for almost a year.

Mapping and Me

F ortunately, mapping today doesn’t usu-
ally mean actual torture, but it is still

quite a pain. In real-time 3D art, we are
usually concerned with the opposite prob-
lem that Mercator had — given a 2D map,
we would like to apply it to a 3D object.
The goals are pretty much the same,
though: make the map as accurate and free
of distortion as possible. Artists continually
struggle with the annoying artifacts that
various mapping methods create.

Last month, I discussed a 3D paint appli-
cation (“Art and Intelligence: 3D Painting,”
September 2000). To have a canvas to
paint on, I needed a texture applied to the
object with texture coordinates at each ver-
tex. At the time, I relied on objects that
already had mapping coordinates from a
3D modeling package. Nevertheless, many
times I want to start with an object that
has never had a texture applied and start
painting on it. That means I need to gener-
ate the texture-map coordinates myself.
This is where I turn back to mapping pro-
jections. This month, I’m going to explain
some basic texture projection concepts and
build up a toolkit of texturing tools that
will come in handy later.

Professional 3D modeling packages
allow you to project a texture map on
objects through a number of algorithmic

That’s a Wrap
Texture Mapping Methods

J E F F L A N D E R | When not circumnavigating the globe with a well-used 16th century map, Jeff can be found sitting in his comfy chair mak-
ing other heretical plans at Darwin 3D. Poke him with the corner of a soft pillow at jeffl@darwin3d.com.

j e f f l a n d e r G R A P H I C C O N T E N T

FIGURE 1. The earth (top) and its Mercator projection (bottom).

methods. The goal of this “projection”
function is to map a 3D coordinate (x,y,z)
onto a 2D texture map coordinate (u,v).
The function takes the form:

(u,v) = F(x,y,z)

In a 3D modeling package, you will typi-
cally see several types of mapping func-
tions. The most common are planar, cylin-
drical, and spherical. Because the Mercator
projection is a form of inverse spherical
mapping, I’ll start with that.

Spherical Texture
Mapping

G iven a 3D polygonal object, I want to
create the texture mapping function,

F. The most obvious method would be to
convert each x,y,z vertex to spherical coor-
dinates — azimuth and elevation or lati-
tude and longitude — centered at the ori-
gin. This situation is shown in Figure 2.

I’m going to start by converting the 3D
vertex, P, to the spherical coordinates
(θ,φ). I can get the value for θ with some
simple trigonometry.

The value for θ will vary from 0 to 2π, but
for the texture map I need it in the interval
of 0 to 1. Dividing the θ value by 2π will
do the job nicely.

To get the value for the φ, I can create a
vector from the point on the model to the
origin. That is easy because it is just the
point itself. I then normalize that vector so

it is of unit magnitude. The Y component
of this vector is equal to sin(φ). Taking the
arcsin and scaling it so that the value
varies from 0 to 1 gives me the V coordi-
nate. Listing 1 contains the complete code
for the spherical projection.

There are problems with the spherical
projection. Like the Mercator projection,
there are singularities at the North and
South Poles. This is the main issue with
mapping a rectangular texture onto a
sphere. However, for generally round
objects, such as a basketball or even a
character’s head, this projection works
pretty well.

There is a second problem with the pro-
jection. At the horizontal seam where the
left edge of the texture meets the right, I
have a problem, as you can see in Figure 3.

It may be hard to see, but in the little
space shown, the entire texture map is
stretched across a single polygon. This
happens because near
the seam, the vertex
calculations may gen-
erate a value for U
near 1.0, say 0.9.
The next vertex in
the polygon may
wrap to the begin-
ning again with a
value of 0.0. The
hardware has no way
of knowing that this
polygon is on the
seam and would
draw the texture
interval from 0.9 to
0.0 instead of the true
range of 0.9 to 1.0.

I don’t know how other 3D packages
handle this problem, but I just hack it by
going back through the model, checking
whether any polygon’s UV interval is
greater then 0.9. If so, I add 1.0 to the
lower UV value. This fixes the problem, as
you see in Figure 4. Obviously, if I apply
the spherical mapping to an object that
should have polygons spanning a large UV
interval, such as a box, this hack would
be bad. I make this seam hack optional,
so it shouldn’t be a problem.

Show Me Your Can

T he spherical projection is not right for
all objects. For example, if you were

going to texture-map a can of Jolt cola or
a chess piece, the spherical projection
would not look correct. Objects like this
more closely resemble a cylinder, so that is
the type of mapping I want to use.

tan

tan

θ

θ

() =

=

−

x
z
x
z

1

22

G R A P H I C C O N T E N T

o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r

θ
φ

P

FIGURE 2. Spherical mapping. FIGURE 3. A problem at the seam. FIGURE 4. The fixed seam.

FIGURE 5. The chess piece with a sphere and cylinder map.

The U coordinate for a cylindrical map is handled in exactly the
same way as the spherical map. However, the V coordinate is dif-
ferent. In fact, it’s a bit easier, because I can set the V coordinate
directly from the vertex’s Y coordinate. I will need to scale the Y
value and offset it a bit to get it centered. You can see a chess piece
with both a spherical projection and a cylindrical projection in
Figure 5. The second projection clearly has much less distortion on
objects like the chess piece.

The Plane Truth

F or many objects, neither the spherical nor the cylindrical pro-
jections will work. In many of these cases, though, a simple

planar projection will do. In a planar projection, the texture is

projected directly along one of the main world axes. This is the
easiest case of all to program. To project along an axis, the UV
coordinates map directly to the two remaining axes’ coordinates.
For example, if you want to project the texture along the Z axis,
the X coordinate of each vertex becomes the U texture coordi-
nate and the Y vertex coordinate becomes the V texture coordi-
nate. Again, some scaling and offsets can be used to center and
place the texture.

The main drawback to the planar projection is that the texture
coordinates for any faces parallel to the projection axis are ill
defined. While the projection appears accurate looking down the
projection axis, the result looks kind of stretched on the sides, as
you can see in Figure 6. The projection also goes completely
through the object like an X-ray, so the texture can be seen on the
back of the object as a mirror image.

To combat this problem, many commercial modeling packages
allow the user to specify multiple planar projections either as mul-
tiple textures or as a single texture arranged like an unfolded
cardboard box. Often this form of projection is called “box” or
“cubic” mapping, where six planar projections determine each
face of a cube surrounding the object. I am unsure how other
modeling packages implement this feature, but my implementa-
tion is very simple. I use the face normal to determine which side
of the cube will be projected on the face. This face is then used
with the standard planar mapping algorithm.

Extra Features

T he scaling and offset values used in the cylindrical and planar
projections can be calculated automatically based on the

bounding-box size of the object. This simplifies things, but I still
like having the manual scale and offset controls to adjust the
mapping.

In all of the projections I have discussed so far, the algorithms
are aligned along one of the object’s root axes. This is not a limi-
tation of any texture projection; it just makes the example a lot
simpler. I could easily change the algorithm to allow arbitrary ori-
entation of the projection.

Editing the data is another key idea to keep in mind. These algo-
rithmic techniques
generate some UV
coordinates that I can
use to draw my tex-
ture-mapped objects.
The coordinates may
not be good ones or
exactly what you had
in mind, but they are
a good starting point.
It’s certainly easier to
use a base projection
than to go through
and set each UV
coordinate manually.
Many times when I
use the planar projec-

o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r24

G R A P H I C C O N T E N T

LISTING 1. Spherical projection code.

//

// Function: SphereMapModel

// Purpose: Calculate UV coordinates for model using spherical

// projection

// Arguments: Pointer to the model

//

GLvoid COGLView::SphereMapModel(t_Visual *visual)

{

/// Local Variables //

int loop,loop2;

tVector vect;

t_faceIndex *face;

//

if (visual->vertex != NULL)

{

face = visual->index;

// Loop through faces

for (loop = 0; loop < visual->faceCnt; loop++,face++)

{

// Loop through face vertices

for (loop2 = 0; loop2 < 3; loop2++)

{

// Calculate the U coordinate

visual->texture[face->t[loop2]].u =

atan2(visual->vertex[face->v[loop2]].x,

visual->vertex[face->v[loop2]].z)/PI_TIMES_TWO;

// Calculate the V coordinate

MAKEVECTOR(vect,visual->vertex[face->v[loop2]].x,

visual->vertex[face->v[loop2]].y,

visual->vertex[face->v[loop2]].z);

NormalizeVector(&vect);

// Take the Arcsin of Y and scale to 0-1 range

visual->texture[face->t[loop2]].v = asin(vect.y)/M_PI + 0.5;

}

}

}

}

FIGURE 6. Planar projection with stretched sides.

o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r26

tion, for example, UV coordinates for adjacent polygons can over-
lap. That’s pretty bad when I’m using the texture for a 3D paint
system. When this happens and you paint on a polygon that over-
laps, the paint appears in multiple places on the object — not what
you really want. One solution is to allow the user to manipulate
manually the UV coordinates that were generated by the algo-
rithm. A user interface that allows you to drag UV coordinates
around on the texture, as well as cut, copy, and paste those coordi-
nates, is very handy. However, an automatic way to make sure the
coordinates do not overlap would be very useful.

Relax, Let Us Do the Work for You

S everal advanced modeling packages have begun to address
some of the problems of conventional texture mapping. At

Siggraph this year, I took a look at Maya 3.0 from Alias|Wave-
front. In addition to all the basic texture projection options that I
have described here, they have added a few new features to speed

things up a bit. The first is a new texture projection mode in
which the software automatically determines the optimal number
of planar projection maps from a given maximum needed to tex-
ture the objects with the minimum distortion. The projected coor-
dinates are then assembled together on a single texture map ready
for painting.

A second new feature is designed to reduce distortion in the
mapping. The UV coordinates generated by these algorithms do
not consider the surface area of the projected polygons. For large
polygons, you can often allocate a very small portion of the texture
map. Conversely, very small polygons can end up with dispropor-
tionately large texture space. This is similar to the distortion of
Greenland we saw earlier in the Mercator projection. To combat
this problem, Maya uses a system called “relaxation” that attempts
to optimize the texture-map area each polygon uses so that it is
more even. I haven’t had a chance to play with this much, but it
looked very useful. I’m sure there are features or plug-ins for the
other professional modeling packages that give you the same func-
tionality. However, I don’t know of any offhand.

Similarly, Dan Piponi and George Borshukov of Manex Enter-
tainment showed a technique at Siggraph using Maya’s dynamics
simulation system to dissect and stretch a 3D object so it is com-
pletely flattened and ready for a simple planar projection. Springs at
the polygon edges forced the system to maintain much of the shape
and surface area of the polygons. That system should be very easy
to implement using the particle dynamic methods I’ve described in
previous columns, but I will leave that up to an industrious reader.

This month you can play with the new, enhanced 3D painting
application. This program allows you to load an object and apply
a texture map with the texture projections described. You can
then paint away directly on the object and save the texture out as
a .TGA file. Get the program and source code from the Game
Developer web site at www.gdmag.com. q

G R A P H I C C O N T E N T

LISTING 2. Cylindrical projection code.

//

// Function: CylinderMapModel

// Purpose: Calculate UV coordinates for model using cylindrical

// projection

// Arguments: Pointer to the model

//

GLvoid COGLView:: CylinderMapModel(t_Visual *visual, float scale,

float offset)

{

/// Local Variables //

int loop,loop2;

tVector vect;

t_faceIndex *face;

//

if (visual->vertex != NULL)

{

face = visual->index;

// Loop through faces

for (loop = 0; loop < visual->faceCnt; loop++,face++)

{

// Loop through face vertices

for (loop2 = 0; loop2 < 3; loop2++)

{

// Calculate the U coordinate

visual->texture[face->t[loop2]].u =

atan2(visual->vertex[face->v[loop2]].x,

visual->vertex[face->v[loop2]].z)/PI_TIMES_TWO;

// Calculate the V coordinate

visual->texture[face->t[loop2]].v =

(visual->vertex[face->v[loop2]].y)*scale + 0.5f + offset;

}

}

}

}

Discuss this article in Gamasutra’s Connection!
www.gamasutra.com/discuss/gdmag

F O R M O R E I N F O R M A T I O N

PUBLICATIONS

Wilford, John. “Revolutions in Mapping,” National Geographic (Vol. 193,
No. 2): Feb. 1998. pp. 6–39.

Piponi, Dan, and George Borshukov. “Seamless Texture Mapping of
Subdivision Surfaces by Model Pelting and Texture Blending.”
Proceedings of SIGGRAPH 2000. pp. 471–477.

Ebert, David, and others. Texturing and Modeling: A Procedural
Approach, 2nd ed. San Diego: Academic Press, 1998. pp. 119–121.

WEB SITES

Earth Mercator projection from NASA’s Goddard Space Flight Center,
Scientific Visualization Studio
http://svs.gsfc.nasa.gov/imagewall/hologlobe/earth_noclouds.html

Alias|Wavefront’s Maya 3.0
www.aliaswavefront.com

E ight years ago, just after I
had graduated from college, I
happened to walk into a
store that sold computer
games. Even though I didn’t

own a computer, one of the games on the
shelf caught my attention. It was WOLFEN-
STEIN 3D: SPEAR OF DESTINY by id Soft-
ware. I had never heard of it, but the
graphics on the back of the box looked so
cool that I ended up buying the game. I
asked my brother if I could come by his
work on a weekend and play it. He
agreed, and I ended up playing the entire
game on a Saturday afternoon. When I
was done, my ears were red with excite-
ment and I was hooked.

When you stop and think about how
far game visuals have come in the past
ten years, it is absolutely amazing. (Fig-
ures 1 and 2 show a side-by-side compari-
son.) Since I started working in the indus-
try, games have evolved from 2D sprites
in a flat world with 256 colors to 3D
worlds beautifully rendered in millions of
colors. Naturally, within this time frame
all the ways in which art content is creat-
ed for games has changed as well.
Textures that used to be created by push-
ing pixels one by one are now “painted”
in Photoshop with a Wacom tablet at
high resolutions. The editing packages
used to design the world were simple 2D
editors created specifically for one game,
whereas today 3D level editors such as
QERadiant for QUAKE 3 are becoming
more like professional modeling pack-
ages. The characters inhabiting our game
worlds are also becoming more sophisti-
cated. From the early character sprites in
WOLFENSTEIN 3D and their few frames of
animation, to today’s characters with ani-
mations ranging from motion capture to
meticulously keyframed sequences, game
characters are increasing in complexity
with stunning speed.

With these advances the average length
of a game’s development has been increas-
ing steadily. What used to take a few
months now takes more than two years.
With increased production time, it’s
becoming harder to plan ahead and release
a game with cutting-edge graphics that
runs on a reasonable system specification.
To hit that visual sweet spot, an art team
needs to keep up with graphics trends,
understand the increased sophistication
with which models are built, and make the
necessary adjustments to ensure their game
will look good two or more years in the
future. To accomplish this, an art team not

only has to understand the current meth-
ods used to create models, but also be
visionary in planning for the next genera-
tion of games.

The First Characters
With a Backbone

W ith the advent of the Playstation
and Nintendo 64 consoles and 3D

graphics cards for PCs, it became clear
that 3D was the way of the future. Games
became more immersive and characters
came alive with increased expression and
personality. Games such as TOMB RAIDER

and MARIO 64 introduced characters that
could interact with their environment like
never before. Their characters had smooth
animations that oozed personality, as Lara
Croft demonstrates in Figure 3, helping to
establish them as true icons. Most impor-
tantly, the introduction of 3D game char-
acters created a new level of immersion
for players.

The first 3D character skeletons all

The Evolution of
3D Game Models

Part 1

M A A R T E N K R A A I J V A N G E R | Maarten is the lead artist at Nihilistic Software. Prior to working on VAMPIRE: THE MASQUERADE —
REDEMPTION, he was at Cyclone Studios where he worked on CAPTAIN QUAZAR, BATTLESPORT, and REQUIEM. He’s currently trying to set the
target on the visual sweet spot for Nihilistic’s next game. Contact him at maarten@nihilistic.com.

w w w . g d m a g . c o m 29

m a a r t e n k r a a i j v a n g e r A R T I S T ’ S V I E W

FIGURES 1 & 2. In just eight years, the increase
of graphical sophistication in games has been
stunning. Top, 1992’s WOLFENSTEIN 3D; Bottom,
2000’s RETURN TO CASTLE WOLFENSTEIN.

FIGURE 3. Lara Croft and her early contempo-
raries redefined how characters looked and
interacted with 3D environments.

shared some of the same attributes. The
characters were divided up into separate
parts to match the different joints in the
body; both Lara Croft and Mario were
built in this manner. In Figure 4, the
model shown is composed of various
pieces of geometry: rear end, thighs, lower
legs, and feet (A shows the model in wire-
frame, and B shows the flat-shaded
model). Now look at the same geometry
with a texture map applied (C). Because it
has flat lighting, the model comes out
looking good. Much like when you play
TOMB RAIDER in software without a 3D
accelerator, the model in C looks solid and
has no apparent flaws. However, when
dynamic lighting is added (D), the limita-
tions of the model become more apparent.
Because of the segmented method in
which the model is created, the lighting on
the different parts highlight the areas
where the different pieces of geometry
meet. Although this can be reduced with
careful model design and construction, it
is almost impossible to create realistic skin
in places where joints come together, such
as knees or elbows. The lighting will
invariably draw attention to imperfections
in the intersection of components.

Another limitation of the early 3D
models is that they required very careful
construction at the joints. Because these
parts needed to animate, the joints’ geom-
etry had to be constructed to prevent any
part from poking through. Additionally,
each piece of geometry needed a cap so

that you couldn’t see
into the parts. This
could be a time-con-
suming process,
because all the joints
had to be rotated to
their extremes to
ensure that the
geometry stayed
together.

Once the model
was carefully built
and attached to the
skeleton, it still had
one main limitation:
because the charac-
ters were made up of
many parts, when
you applied detailed
textures, the textures

broke up when the model started animat-
ing. The Lara Croft model avoided the
texture problem by using mostly solid col-
ors. It worked well for the game, because
Lara was never that big on screen, and
looked great from the player’s point of
view. The limitations of the models
became more apparent during in-game
cinematics, in which the camera is so close
to the model that the player notices both
the lack of textures and the building
blocks that make up the model. A more
advanced technique was needed to make
the models look realistic.

Characters That Bend

T he next step in the evolution of char-
acter models made it pos-

sible to do a better simulation
of skin, even when the camera
got close. For skin and cloth
simulation to work, the model
had to stay whole rather than
be broken up into many parts.
By staying whole, the skin and
cloth looked and behaved
more realistically. HALF-LIFE

did a great job with this. It
had scientists who wore lab
coats and characters that
could talk with an actual
moving mouth. HALF-LIFE

introduced a new layer of
complexity to character mod-
els that had some great bene-

fits. However, there were still limitations.
To keep a character whole and make it

work with a skeleton, the character needed
to be set up with clusters; in earlier meth-
ods of setting up 3D characters, the indi-
vidual polygon meshes were attached to
the joints. The next step in the evolution
of a model required a different type of
attachment of the polygon mesh to the
joints. A polygon mesh is made up of ver-
tices, which can be grouped into clusters
attached to the joints; a cluster is a subset
of vertices that makes up the mesh shape.
These groups of vertices then move
according to the joint rotation, but the
entire mesh shape stays whole. With the
introduction of clusters, a better simula-
tion of skin became possible.

The benefit of binding a model to a
skeleton using clusters is that it gave the
artist the freedom to build the model as it
should look. Once the model was com-
plete, the entire model mesh could be
attached to a skeleton, and you didn’t have
to worry about breaking it into separate
pieces. In HALF-LIFE, the models looked
whole since they were made up of one
main mesh and no longer had lots of inter-
secting parts. Another benefit of a continu-
ous mesh was that that the model could be
textured more realistically, and the textures
would not break up when animated. The
models for HALF-LIFE were able to look
convincing even when you walked right up
to them and looked at them up close.

An additional benefit of cluster-binding
a character model was the ability to open
and close the mouth using the head mesh.

o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r30

A R T I S T ’ S V I E W

FIGURE 5. HALF-LIFE’s models sported more realistic skin, with
cluster-bound continuous meshes on the skeletons.

FIGURE 4. Adding lighting reveals the segments where different areas of
the model’s geometry meet.

HALF-LIFE was one of the first games to
use convincing real-time lip synch for their
characters. This additional layer of realism
gave the characters in HALF-LIFE a more
believable feel and in turn helped make
the player feel more immersed in the
game. Although the mouths worked well,
the restriction of the clusters was appar-
ent. When the jawbone opened, all the

vertices attached to the jaw opened the
same amount. The corners of the mouth
did not stretch; instead, the mouth moved
a little bit robotically.

Even with the benefits of the introduc-
tion of clusters, the limitations were visi-
ble. When the joint of a HALF-LIFE skele-
ton rotated, the vertices rotated the exact
same amount as the joint’s rotation. In the

real world, skin and cloth
move differently, depending
on such properties as elastici-
ty, thickness, and consistency.
Because the artist did not
have control over the amount
of movement of the vertices
near the joints, they tended
to pinch when rotated. So
when an arm or knee bent,
the inside of the joint actual-
ly became much thinner. If
the artist set up the model’s
geometry carefully around
the joints, the pinching could
be reduced. To fix this, the
artist needed to be able to
have more control over the
vertices when they bent. The
model had to be set up with
weighted vertices.

Throwing Some
Weight Around

O nce characters’ polygon
meshes were sub-

grouped into clusters, they
looked more solid, since they
were made of one piece of
geometry. But to reduce the
pinching problems and take
the next step to realism,
models needed weighted ver-
tices. In VAMPIRE: THE

MASQUERADE — REDEMP-
TION, the game I worked on
over the past two years, we
used cutscenes extensively
with lots of close-ups of the
in-game models. In order for
the models to hold up under
such intense scrutiny, we
implemented weighted ver-
tices. In addition to making
the models look better, it
ended up saving us a lot of

time because weighting eliminated a lot of
time-consuming tweaking. Weighting the
vertices smoothed areas where pinching
occurred and let us continue with our
work. After we got comfortable with it,
using weighted vertices also helped us
achieve more realistic facial expressions.

In Figures 6 and 7, you can see the three
different attachments and how they affect
geometry, both in wireframe and with a
texture applied. Lara Croft used the
attachment method shown on the left. The
separate pieces of geometry are attached to
the joint and move separately when the
joint bends. The middle example uses sim-
ple clusters without weights, like the setup
used in HALF-LIFE. The geometry looks
whole, but when the joint rotates, the ver-
tices at the joint start to pinch and lose
their shape. The example on the right
shows a model with weighted vertices. The
weighted vertices only move 50 percent of
the total rotation of the joint. With this
type of control, the skin and cloth of an
object become more manageable.

Another great benefit of using weighted
vertices was that it added more facial
control to the models. Weighting the ver-
tices allowed us to simulate the muscles
underneath the skin. In VAMPIRE, we cre-
ated expressive faces using joint attach-
ments with the weighted vertices. In our
main character, Christof (Figure 8), you
can see the results of weighting the differ-
ent parts of the face. The vertices along
the eyebrows have different weights that
simulate the contraction of the forehead
muscles. Rather than having the eyebrows
move uniformly, the eyebrow can be
raised and twisted, yet look realistic. To
create a sneer, a joint placed on the top
lip can have a cluster group of vertices
that go halfway up the nose. When the
joint moves, the farther the vertices are
from the top lip, the less they move. So,
the vertices on the lip move 100 percent
of the joint’s translation, the nostril
moves about 50 percent of the transla-
tion, and the ridge of the nose moves just
slightly, with only 10 to 20 percent of the
total joint rotation. With these weights,
we were able to simulate the muscle con-
tracting the lip, creating an effective
expression of disgust. By attaching parts
of the face, such as the corners of the
mouth, lower lip, eyelids, and eyeballs to

o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r32

A R T I S T ’ S V I E W

FIGURE 6 (top). Three different joint attachments in wireframe.
The joint on the left is two separate pieces of geometry, in the
center is a joint built with clusters of vertices, and the joint on the
right was built with weighted vertices.
FIGURE 7 (bottom). The same joint setups with textures applied.

w w w . g d m a g . c o m 33

joints and carefully weighting them, new types of expression
became possible.

Each of the attachment systems has limitations, however. One
thing HALF-LIFE didn’t have to deal with was extensive shoulder
animations. The shoulders are one of the most extreme joints in
the body, so when one is creating a game model, the shoulder can
become an issue if it needs a wide range of motion. Because the
shoulder is a ball-and-socket joint and extremely flexible, attach-
ing a solid mesh to a skeleton can be really hard, even with
weight control over the individual vertices. (Baseball game devel-
opers out there must know what I’m talking about.) In VAMPIRE,
the characters needed to swing lots of different Dark Age
weapons, so we needed a full range of shoulder motion.
Although we had good results and the shoulder was able to keep
its shape fairly well when it moved, it was still far from perfect.
The shoulders turned out to be a big time-sink since they had to
be carefully weighted and tweaked to look good no matter what
their position. This became even more obvious when the charac-
ter starts off shirtless, and the player can see how the shoulder
moves. With one of our very muscular characters, the dense
geometry that we needed in the shoulder to give it the right shape
prevented the weights from working correctly, and we still ended
up with awkward-looking shoulders. In retrospect, we realized
the problem: the skeleton did not simulate a real shoulder. We
only created a ball-and-socket joint, rather than try to simulate
the entire shoulder blade and clavicle.

Even with their great benefits, weighted vertices still have limi-
tations, and new attachment systems have to be explored. As
with all these different methods, the artist actually working on
the model and the attachment is going to have a bigger impact
than the method itself. But pushing technological barriers and
giving artists more freedom to create better models can lead to
better results.

The Characters of the Next
Generation

W ith an understanding of the three evolutionary phases of
character setup, artists are able to make art for today’s

games. The problem is, we’re currently making games for two
years in the future. If you don’t evolve with the times and keep
pushing for even more sophisticated ways of creating models,
you’ll find yourself going the way of the dodo. The next-genera-
tion consoles are poised to come into more people’s homes than
their predecessors. Ultimately, with increased budgets and longer

development times, there will be fewer games released, and mak-
ing your game stand out from the competition is going to be even
more difficult. The time has come for us to push the envelope
and explore model-creation techniques that have until recently
only been used in film. So far, game art has been following the
road paved by the artists in the movie industry; the next genera-
tion of models could very well be competing with them. In next
month’s article, I’ll focus on some of the new features that will be
introduced in the next generation of character models. q

Discuss this article in Gamasutra’s Connection!
www.gamasutra.com/discuss/gdmag

FIGURE 8. Weighting different parts of Christof’s face allowed for a variety of more natural-looking expressions.

The

Artof Noise
Game Studio Recording and Foley

o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r34

S T U D I O R E C O R D I N G r o b e r t s t e v e n s o n

Illustration by Audrey Welch

O n the increasingly level
playing fields of 3D accel-
eration, elaborate input
devices, and broadband
capability, game compa-

nies are working harder than ever to find
ways to differentiate themselves from one
another. While design and art play a major
role in this process, sound is also an
important factor in a game’s success or
failure. In fact, it’s increasingly rare to find
top-selling titles that don’t also feature
top-notch audio design. So if you’re having
trouble making your game’s sound envi-
ronment bigger and more distinguishable
from your competition’s, this article is
designed to help.

Sound designers have myriad tools and
techniques at their disposal to create a
complete audio environment for their
game. Sound effects libraries are often the
easiest starting point for a design job and
are available in dozens of flavors, from big
production houses down to small, one-
man shops. In general, stock sounds are
available on individual CDs or in complete
sets with a common theme. Some of the
more progressive sound providers offer
download capability from their web sites,
allowing you to grab samples even while
pulling an all-nighter.

Sound generation from an electronic
source, such as a synthesizer or a soft-
ware package, is another route to take.
Sound designers working off of tradition-
al white or pink noise functions, which
provide an even noise distribution over a
frequency range or octave values, have
often found it the most flexible way to
sculpt a complex sound.

Field recording is somewhat similar to
studio recording, except that in many cases
you will not be in direct control of the
source material, but will rather be working
around it. Field recording can be especially
useful for recording large scenes and ambi-
ent waveforms. Issues to consider when
field recording are often obscure. For
example, at a military base, the recording
of some equipment may not be allowed

without permission. Even worse, some
environments may have electrical equip-
ment that will interfere with your gear’s
recording capability.

While not a replacement for other sound
design techniques, in-studio recording of
sound effects (called Foley) saves both time
and money spent searching for the right
material elsewhere. For cutscenes or
streamed audio clips, Foley can be entirely
comprehensive and extremely fast. Addi-
tionally, material can be created that is per-
fectly matched to your production, not
shoehorned in from an audio CD. Even
today, it is not uncommon to hear some of
the same tired sound effects reused in game
after game and in commercial after com-
mercial. The determined walk-step of your
gun-toting hero can be cast a certain way,
while the sneaky footsteps of the villain he
is about to fight can be cast in another.
Finally, Foley techniques provide an excel-
lent excuse to junk up the development stu-
dio with all kinds of fun, eclectic props (see
sidebar, “Foley Props”).

This article is intended for sound
designers who are looking to go beyond
the “sound via CD” techniques common-
ly overused in game production. The
focus is on studio recording within typical
game development budgets. Experienced
sound designers already working in
upscale studios may also find this article
a good refresher.

Setup

A lthough in-studio recording is a fairly
involved process, setting up correctly

before a session can be timesaving. In fact,
a lot of things ought to be done before the
first audio take occurs.

There are no hard and fast rules for
budgeting sound design, other than to
make sure you do actually budget for it.
Too often on small projects it’s listed as
something the sound programmer or the
music guy can do on the side, or in some
cases it’s forgotten altogether. It is also
good to tackle sound development early

enough in the project to make sure it nears
completion long before the headaches of
trying to master happen. Using an outside
contractor for your audio development is
recommended if you can’t do the work
appropriately in-house. Bringing them on
the project early will also yield fewer has-
sles and better results, as there will be
more time to make everything perfect.

The specific time requirements for sound
effects development will vary from design-
er to designer and project to project. Vari-
ables such as how complex the sound
requirements are, the sophistication of the
audio equipment being used, and how
much pre-existing library material is
already on hand also enter the equation.
For a typical game development situation,
a good rule of thumb is to budget about
half an hour per incidental effect (minor or
background-type material) and a full hour
for major elements (foreground and
repeated sounds). Foley work can expedite
this process, particularly for minor effects.

Budgeting equipment is another issue to
consider. Starting from scratch, you can
expect to put together a simple game-capa-
ble recording studio for both vocals and
effects for under $5,000. Adding high-end,
feature-film-quality equipment or a multi-
channel digital recording system can run
you quite a bit more. If your sound budget
is tight, consider renting sound equipment
rather than purchasing it. Items such as
microphones, mixers, and DATs typically
rent for nominal rates and will often be
cheaper on weekends.

For planning an in-house recording ses-
sion, a good starting point is to create a
comprehensive sound list or an audio story-
board for the game. From an accurate
sound list, it isn’t difficult to break sound
groups into rough production categories of
how each waveform will be built. Foleys
are generally best for “personal” sounds
attached to characters and creatures, or
specialty effects that require some individu-
ality to set them apart in the game. Cut-
scenes or animations are also prime candi-
dates for custom recording work.

Outside of the sound list, you will need
some type of recording report to track
what actually happens during the record-
ing session (see Figure 1). While session

w w w . g d m a g . c o m 35

R O B E R T S T E V E N S O N | Robert is the vice president of production at iROCK Interactive,
a music game development company in North Carolina. When he’s not making games, he’s busy
playing them. He can be reached for questions or comments at robert.stevenson@irock.com.

notes can be scribbled on a piece of scrap
paper, the time it takes to create an official
comprehensive reporting system will be
more than made up when you are ready to
edit and mix down your effects. A typical
report will have the sound or sound group

name, along with take numbers, the pres-
ence of the right and left audio channels,
and some basic equipment setup informa-
tion. The recording report should also
include some type of indexing scheme that
matches your equipment or saving process.
Also be sure to leave room for miscella-
neous notes on each take. With a well-
planned recording report and a compre-
hensive sound list available, all you need is
something to record.

Through the years, sound designers have
relied on all manner of noisemaking
objects (dubbed props) and tricks to create
the sound they are looking for. When the
actual object needed for recording isn’t
available or is too unwieldy for the studio,
creative improvisation often works best.

It’s a good idea to start a prop box filled
with all kinds of noisemakers long before a
recording session takes place, preferably at
the start of a project. Props can be almost
anything from baking soda to stalks of
wheat; the only limit is your imagination.
In situations where a prop might be
destroyed during the take, such as the
shattering of a glass, make sure to get mul-
tiples for practice or mistakes. It’s also a
good idea to have on hand various wear-
able prop items in your collection of good-
ies. The sound of a trench-coated hit man
drawing a pistol from his pocket is going
to be a lot more convincing if a trench
coat is actually worn in the take. The same
notion applies for shoes, armor, helmets,
jewelry, and specific types of fabric, such
as silk and wool.

Foley pits are another addition to your
recording area if you anticipate needing to

do footsteps. Essentially these pits are low-
ered sections of floor filled with different
walking surfaces. Sand, rock, water, and
tile are all common pit fills. A simple inex-
pensive pit can be constructed out of a
deep two-by-four frame (see Figure 2).
Materials you might work with, such as
concrete, flagstones, metal grating, and
even sod, can be purchased at almost any
major hardware store.

The space in which you record a sound
is almost as important as the sound itself.
If you don’t have access to a sound record-
ing facility or are working within a tight
budget, almost any moderately sized room,
preferably one that is isolated, can be
adapted to the task. The most pressing
concern with a recording room is control-
ling the acoustics and, if possible, using
them to your advantage. Problems general-
ly arise from sound bounces, where a
sound wave traveling from its source is
reflected off a hard surface, such as a table
or wall. In a small space, these reflections
are usually not perceptible to the human
ear; in larger spaces they can manifest
themselves as an echo or multiple dis-
persed echoes, called reverberation.

These alterations to the sound, some-
times referred to as coloration, can often
be dramatic, not only betraying the char-
acteristics of the recording space, but also
modifying the fundamental characteristics
of the sound itself. Luckily, a little knowl-
edge of sound waves and the physics
involved can help eliminate such problems
before they start.

Sound waves are normally created
through the elastic compression (the rapid

o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r36

S T U D I O R E C O R D I N G

F O L E Y P R O P S

BBs. Classic BBs or peppercorns come in

handy for everything from rainfall to shot-

gun pellets.

Baking sheets. Great for banging sounds like

the metal sides of a vehicle or for creating

metallic thunder effects. Aluminum foil and

sheet metal can also be used for variations.

Cat litter. Many of the dry, rounded types can

simulate rocks sliding or scraping. Walking

on it produces a sandlike effect.

Lettuce. Most vegetables are great for classic

crunching and flesh-ripping sounds. Try

snapping a piece of dampened celery for a

nice bone break.

Cardboard tubes. Excellent for swishing

sounds. Purchased with an end cap, they

can simulate mortar shots or cannon fire.

Compressed air. Air canisters (even balloons)

of all types can create explosions, pipes

snapping, or rocket exhaust. Releasing

compressed air in a water-filled trashcan

produces some interesting effects.

Fabric. Expanses of various kinds of fabric can

make anything from flags flapping to para-

chutes opening. Try combining stiffing ele-

ments to create dragon wings.

Glass. Scraping glass on glass yields all kinds

of interesting effects, from creepy horror

sounds to mechanical grinds.

Kitchen devices. Small electric appliances (can

openers, blenders) coupled with dampening

materials can make terrific engine, plat-

form, or sci-fi sounds. Electric razors can

also work wonders.

Military gear. A visit to the local surplus store

can turn up all kinds of interesting hand

props and game-ready devices, from

ammunition cases to wearable harnesses

with clips and pouches galore.

Paper towels. Wet paper towels are great for

stepping on or slinging mud.

Phone books. Almost any kind of dense book is

perfect for hard falls or solid punching

impacts.

Sound Recording
Report

Sound Group Index No. L Channel R Channel Notes:

Game: Date: Settings/Configuration:
Increased fill depth is better

1'

3'

3'

Line with plastic

Stacked 2x4 frames

Foam and plywood base

FIGURE 1. A recording report tracks what hap-
pens in the studio, and is an excellent reference
later on during editing and mixing.

FIGURE 2. An example of a “budget” Foley pit
setup, ideal for recording footsteps on a variety
of surfaces.

pushing together) and rarefaction (the
rapid pulling apart) of air molecules (see
Figure 3). While one phase of compression
and rarefaction is called a cycle, the physi-
cal distance each cycle covers (noting that
sound travels at roughly 1,130 feet per sec-
ond) is referred to as its wavelength. The
number of cycles that occur in a single sec-
ond are measured as a frequency in hertz
(Hz). Humans with exemplary hearing can
detect frequencies from about 20Hz to
20kHz, although you’d be hard pressed to
find any modern audio standard delivering
the entire range.

Because sounds are physical waveforms
moving through air, they are free to inter-
mix. When two sound waves encounter
one another, their interference can be
termed either “in phase,” where both
waveforms are perfectly aligned, or “out
of phase,” where the two waveforms are
shifted (phase-lagged) apart. The result is a
new waveform based on the sum of the
displacement of each contributing wave-
form (see Figure 4). In the two most
extreme cases, perfectly in phase and
exactly 180 degrees out of phase, a pair of
sound waves will double in amplitude or
completely nullify each other, resulting in
no sound. Either case is a recording mess.

Sound waves have other important
properties to consider when setting up a
recording session. Each waveform’s com-
pressions and rarefactions also have a
strength known as the intensity. The
spread of values from minimum to maxi-
mum intensity is the sound’s dynamic
range. When a sound wave radiates from
its source, it starts with a uniform intensi-
ty pushing on a volume of air. As it con-
tinues to travel away from its source, the
expansion continues, but it has to push
increasingly large volumes of air to
achieve the same result. Without amplifi-
cation, the sound’s acoustic pressure dissi-
pates, decreasing its intensity. The same
behavior can be observed in any wave-
form outside of a vacuum. For example,
as the shock waves from an earthquake
spread from its epicenter, the area affected
increases while the relative strength of the
shock waves declines.

Sound pressure varies inversely with the
square of the distance from its source. In
numeric terms, an audio wave’s intensity
drops by six decibels (a logarithmic meas-

urement of a sound’s loudness) with each
doubling of its radial distance from the
source. This exponential relationship is
known as the inverse square law, and
keeping it in mind during any recording
process can be extremely helpful. By
increasing the distance from your micro-
phone to the closest source of reflections
(at least two to three times greater), you
can dramatically diminish the intensity of
any audio coloration (see Figure 5).

Of course, providing increased distance
from the source of reflections is not the
only thing you can do to ensure a clean
(sometimes called a “dry”) recording.
Soundproofing the recording space from
outside interference is a good start. While
full sound studio setups can run into the
millions of dollars, small changes to any
space used for recording can make a big
difference. Unless they were designed for
acoustics, rooms with windows are not
advisable. Any doors in the recording
space should be replaced with the solid-
core variety and the walls should be
soundproofed with insulation. Felt-
padding or weather-stripping door frames
and air vents can also help eliminate
vibrations caused by air pressure varia-
tions in a building.

Music supply companies sell wide vari-
eties of diffusers, used for dispersing an
audio reflection evenly, and dampening
tiles, used for trapping sound. Hanging
these on the walls of your recording space
near the closest reflection areas to your
audio source or in the direction of the
microphone’s pickup (see below) can
work dramatically well. If you’re on a
very tight budget, consider purchasing
acoustic blankets. More often found at
theatrical production houses than music
stores, they can be hung or draped about
for adequate effect.

Microphones

P erhaps the most important piece of
hardware in the recording room is the

microphone. While there are literally hun-
dreds of manufacturers, types, and styles,
they can be broken down into a few basic
categories. A good Foley setup will typical-
ly have a wide range of microphones avail-
able. Sometimes it may even be useful to
presort microphones into smaller groups

w w w . g d m a g . c o m 37

Diffusers here will
 help furtherReflection (3 m

eters)Reflection (3 meters)

Direct (1 meter)

FIGURE 3 (top). How sound waves work. A little
knowledge of the mechanics involved will help
make your recording sessions successful.
FIGURE 4 (center). Different waveforms can
combine with varying results. On the left, two
different waveforms combine to produce an “in
phase” resultant, on the right, the resultant is
“out of phase.”
FIGURE 5 (bottom). The inverse square law can
help you diminish audio coloration through
proper microphone placement.

Waveform A

Waveform B

In Phase Resultant

Waveform A

Waveform B

Out of Phase Resultant

Source

1 Frequency (1 sec)

Time

Wavelength

Compression

Rarefaction
2 3 4 5

that complement one another.
The process of taking compressed

waveforms of air molecules and turning
them into electrical signals is the function
of a microphone’s pickup. Pickup mecha-
nisms are often located near the tip of the
microphone and are usually encased
behind some type of acoustically trans-
parent protection.

Dynamic pickups are older, simple elec-
tromagnetic devices that operate off the
vibration of a polyester diaphragm. As
pressure waves strike the diaphragm, an
attached conducting coil moves back and
forth axially along a stationary magnetic
field. The movement of the coil through
the field induces an electric current directly
proportional to the amount of vibration in
the diaphragm.

Dynamic microphones make great gen-
eral-purpose devices, good for recording
low-frequency or especially loud material.
Good dynamic mikes will typically have a
frequency response range from 50Hz to
17kHz. Musicians often use them to
record drums.

Condenser microphones, sometimes
called capacitor or electret mikes, are a
more recent invention and operate differ-
ently from their dynamic cousins. The
diaphragm for a condenser microphone is
some type of charged metallic surface
mounted adjacent to a fixed, oppositely
charged plate. As sound waves vibrate the
diaphragm, the gap between the plates
alters, allowing some electrons to jump
from one plate to the other, which varies
the capacitance and charge, yielding a

small electric current. This current is so
weak that it must be amplified before it
exits the microphone. Therefore, con-
densers have a small preamplifier mounted
in the mike body just behind the pickup.
Because of the diaphragm mass and sensi-
tivity differences, condensers absorb a
broader frequency spectrum than dynamic
mikes, ranging from as low as 20Hz to as
high as 24kHz.

With traditional condensers, there is a
need for a separate (sometimes called
“phantom”) power supply to actively
charge the diaphragm plates, which makes
them a little cumbersome for field work.
Electret condensers, a special subtype man-
ufactured with a chemically polarized
diaphragm, do not require additional
power and so avoid this problem. Conden-
sers of all types are not the most rugged
microphones, and care should be taken
when handling them. Nonetheless, con-
densers make excellent Foley mikes, allow-
ing the widest range of sound to be cap-
tured, giving your work an accurate and
rich feel.

In addition to the pickup, microphones
also have a sensitivity pattern that governs
where they can gather aural input from. As
their name suggests, omnidirectional
microphones have a spherical field pattern
radiating out from the diaphragm (see
Figure 6). This makes omni mikes useful
when background noise or acoustics are
intended to be in the mix.

A bidirectional microphone picks up
source material from both the front and
back equally well (see Figure 7). Sound
coming from the sides will be only mini-
mally captured, if at all. This configuration
is sometimes dubbed “figure eight”
because of the shape of its field pattern.

Unidirectional, or cardioid, microphones
are sensitive front-diaphragm devices usu-
ally favoring higher frequencies in their
directivity. They are useful in stage and
voice work, where they can be aimed at
the sound source, and pointed away from
the audience (see Figure 8). In Foley work,
cardioid microphones are very common
because they offer directionality with the
freedom to move around.

Hypercardioid microphones feature
longer mounting tubes and increased direc-
tionality over traditional cardioids. Taken
to the extreme, these microphones are

o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r38

S T U D I O R E C O R D I N G

6060

30 30

9090

120 120

150150
180

0
-5dB

-10dB

-15dB

-20dB

Higher Frequencies (2kHz)

Lower Frequencies (250Hz)

6060

30 30

9090

120 120

150150
180

0
-5dB

-10dB

-15dB

-20dB

Higher Frequencies (2kHz)

Lower Frequencies (250Hz)

6060

30 30

9090

120 120

150150
180

0
-5dB

-10dB

-15dB

-20dB

Higher Frequencies (2kHz)

Lower Frequencies (250Hz)

6060

30 30

9090

120 120

150150
180

0
-5dB

-10dB

-15dB

-20dB

Higher Frequencies (2kHz)

Lower Frequencies (250Hz)

FIGURE 6 (top left). An omnidirectional microphone has a spherical field pattern, ideal for when back-
ground noise is meant to be part of the recording. FIGURE 7 (top right). A bidirectional microphone
picks up sound equally from both the front and back of the mike. FIGURE 8 (bottom left). Cardioid, or
unidirectional, microphones are used commonly in Foley work. FIGURE 9 (bottom right). Hyper-
cardioids offer increased directionality over regular cardioids, but can be tricky to work with.

called supercardioid or shotgun mikes.
These rifle-like microphones have a pickup
pattern that matches their name — essen-
tially straight out in front (see Figure 9).
Because of their high sensitivity, they are
excellent at picking up sound within a very
narrow field while eliminating nearly
everything to the sides and rear. This can
be incredibly useful in situations where the
sound source is statically located in front
of the mike, such as using guns or hand
prop manipulations. However, in a situa-
tion with a moving source, such as an
actor or a large Foley prop, shotgun mikes
become unwieldy and difficult to track
with, even for veteran operators. It’s also
worth noting that no matter what you may
have seen on TV, typical shotgun micro-
phones don’t have any more range than
their cardioid brethren.

From booms to woolies, there are all
kinds of microphone accessories available
on the market. While most of these acces-
sories are not particularly useful for a typi-
cal Foley shoot, a good set of stands and a
shock mount are often handy to eliminate
vibrations or the occasional microphone
trauma. It is worthy to note that experi-
mentation with microphone coverings,
such as foam, socks, or even condoms, can
sometimes produce interesting dampening
effects, if desired.

Microphone pricing varies wildly, rang-
ing from low-end models around $50 to
high-end ones up into the thousands of
dollars. While you generally get what you
pay for, sometimes the best sound for a
particular session can be had with an inex-
pensive, off-the-shelf mike. It’s best to
experiment and find a set of microphones
that work well with your particular
recording environment. Every recording
task has a specific set of requirements, and
by having a wide selection of microphones
from which to choose, you can select one
that is best for the job.

Recording

C apturing a sound with microphones is
an art within itself. The difference

between a “big” sound and something
lesser is often due to the placement of the
mikes during a take. While dedicated prac-
tice will ultimately prove to be the best
teacher, understanding some basic princi-

ples and common techniques before press-
ing the record button can help you get off
to a good start.

In most cases, for game audio you will
want to record monophonically. However,
depending on the output specification, you
may want a stereo recording. While stereo
microphones do exist, it’s relatively easy
and more flexible to achieve excellent, col-
oration-free results from two monaural
microphones. Knowledge of a few basic
arrangement patterns and a little experi-
mentation is enough to get started.

The easiest way to make a stereo cap-
ture is to arrange the microphones equidis-
tant from the signal source. This can pro-
duce a decent, wide stereo effect on large
sources or be useful for capturing multiple
points of view, but can cause problems if
wave cancellation issues arise, particularly
in a dynamic shot. A particular disadvan-
tage to microphones spaced apart is that
they will not accurately capture the signal
the way human ears naturally hear it
because the interaural difference (the dif-
ference in physical spacing between chan-
nels in a stereo field) is too large. For that,
you need to place the microphones in a
pickup pattern that makes them sample
both the right and left versions of a single,
coincident point in space.

Traditional coincident patterns will vary
from setup to setup, depending on the
microphones used. Typically, two cardioid
or (if more ambience is desired) bidirec-
tional mikes will be oriented perpendicular
to each other, split at 45 degrees and fac-

ing the sound source.
The XY pickup pattern is a common

example of the coincident technique using
two identical monophonic microphones.
The idea is to mimic the behavior of a sin-
gle stereo microphone by crisscrossing the
two independent mikes slightly more than
90 degrees near the tip (see Figure 10), try-
ing to keep them close together. Keeping
the mikes arranged in this fashion also
helps minimize any phasing artifacts caused
by the sound reaching the diaphragm of
one microphone before the other.

The ORTF pickup pattern is an extend-
ed modification to the XY technique. Sim-
ply stated, this pattern is a precise 110-
degree separation angle between two
microphones spaced 7 inches apart, similar
to a human head. The MS (mid-side) pat-
tern is another common arrangement that
uses a forward-facing cardioid mike to

w w w . g d m a g . c o m 39

• Avoid electronically manipulating the sound

during recording. Adding compression or reverb

later will be just as effective, and if something

goes wrong you’ll always have the original

source to fall back on.

• Avoid recording on an empty stomach. Your

stomach will invariably growl during the best

take of a set.

• Watch out for unintended clothing noise.

Remove anything that could cause unwanted

ambience, such as watches or jewelry.

• Always monitor the signal. Unfortunately,

ears exposed to the sound source aren’t a

good indication of what actually got recorded.

Listening through a pair of high-quality head-

phones is the ideal monitoring technique.

• Don’t forget to report every take. This

should become natural. Not doing so can cause

serious headaches after the session.

• Record to a medium outside of your editing

environment if possible (sampler, DAT, mini-

disc, and so on). You’ll always have a backup

copy when you’re working.

• Be attuned to background noise in your

recording environment. Computer fans, air con-

ditioning, and even co-workers down the hall

can leak in, ruining a recording.

R E C O R D I N G N O T E S

To source

Right
hemisphere

Left
hemisphere

0o

Left
microphone

Right
microphone

FIGURE 10. An XY pickup pattern mimics the
behavior of a single stereo microphone by criss-
crossing two monophonic mikes approximately
90 degrees near the tips.

capture the source directly, and a perpen-
dicularly facing bidirectional microphone
to capture any ambiences and reflections.
Playing with the input level on the micro-
phones in the MS pattern will produce a
narrower or wider stereo field.

In addition to microphone orientation,
you will need to select an appropriate dis-
tance from the source to record. This is
sometimes called the recording perspective.
Close-in approaches generally yield a tight
focus with little ambience, while distant
techniques will pick up the surrounding
acoustics. In cases where you are trying to
capture a detailed effect, such as a door
latch or machine gun shells hitting pave-
ment, it’s generally preferable to work
close in, keeping the mike gain at a mini-
mum. Equalizing in postproduction on a
tight recording can make the sound dra-
matically bigger. Choosing a more distant
positioning may be required, depending on
the type of microphone you are using and
the size of the sound source.

Although you may have already elimi-
nated major sources of reflections within
your sound space, sound bounces off small
surfaces close to the microphone can often
change the tonal quality of the recording.
Common offenders are nearby tables or
improperly positioned stands that may be
in the work area. Luckily, testing for these
close reflections is easy, and the fixes are
even easier.

By placing a small mirror on the suspect
surface and eyeballing it from the micro-
phone’s point of view, you can quickly tell
if the sound is bouncing off the surface
from the source. If the sound source is visi-
ble in the mirror, the object is likely caus-
ing the unwanted reflections. Reorienting
the offending fixture to make sure the
prop is not visible in the mirror is the easi-
est solution.

Now that you’ve got your props and
microphones set up, you’ll be tempted to
start recording like mad. But before you
start rolling, make sure to do some prac-
tice runs to avoid obvious problems such
as clip-outs, where a sound’s dynamic
range has exceeded the capabilities of the
recording hardware and is experiencing a
distorted cutoff. If possible, also record a
calibrated half-minute lineup tone to help
you, or someone else that needs to work
with the session material later, to be able

to properly configure the equipment. If
enough planning has transpired, working
through even a long sound list should be
relatively quick.

Adding Zchwing!

O nce you’ve got days of recordings
captured and each effect done six dif-

ferent ways, you’re bound to find you’re
still missing a little something. The process
of intermixing, resculpting, and adding
highlights to sound effects is often called
“sweetening,” and doing so can often turn
a so-so effect into one that really roars.

As a rule of thumb, it’s best to start by
having your multi-part sound clips avail-
able in a multi-track editing tool, or in
the case of a two-channel editing tool, at
least in a mix-ready state before starting
any enhancement. For example, a shotgun
effect being built for a first-person shoot-
er might start with a cocking sound fol-
lowed by a trigger effect, and then multi-
ple simultaneous blast effects spanning
the entire range of the audio spectrum,

each within their own distinct tracks.
With the correct setup, all parts of the
sound will be on the same acoustical page
and in time with each other, making fur-
ther work easier.

When working with sound effects, it’s
important to understand the tonality of
other audibles they are going to appear
with, particularly during cutscenes where
there should be a great amount of control
over the audio presentation. Avoiding
range conflicts caused by having too much
acoustic information within a limited part
of the frequency spectrum is a crucial task
for good sound design. Fortunately, equal-
ization can provide more punch to your
effects to push them past the music or
vocals as appropriate.

All equalizers are variations on the same
theme, producing better-sounding audio by
increasing and decreasing the intensity of
frequency bands within the audio spec-
trum. Common types of equalizers are
graphic, which allow partial or full octave
control over bands within the frequency
spectrum, and parametric, which allow for

o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r40

S T U D I O R E C O R D I N G

“In this era of high-tech toys, a sound designer has many techniques and tools to create a sound-

track. One process for creating effects is the technique labeled as “Foley.” This dates back to the radio

era where engineers would, in real time, create effects while actors were performing radio dramas.

This system, made famous by Jack Foley himself, is basically the technique of creating a room free of

noise and air conditioning as well as hum and buzz. Then, using simulated surfaces for footsteps and

props for effects, sounds can be created and recorded in the controlled environment. Persons who do

this day in and day out are referred to as Foley artists. In traditional film and TV, a Foley artist is

required to watch, step, and create effects within two to six frames of synch, making it brilliant in the

first take. For a game sound designer, a Foley stage is a plethora of opportunities for creativity. The

basic rule to sound design is that there are no rules.”

— Scott Gershin, sound designer, creative director, SounDeluxe

“With voice recording, I always start new actors with a few minutes of grunts and “ughs” to help

break the ice. After the session is done, I get a few minutes of screams and pain sounds. If they are

willing, it makes for great freebie stuff for my sound library.

“Also, really watch the levels. Clipping sounds in a game are bad. If an effect sounds bigger cut-off,

make sure to pull it down and normalize.”

— Christopher Roby, game/sound designer, Sinister Games

“Looping a sound is a challenging task that amounts to an art form within itself. When working on

looped material such as vehicles or machinery, I like to copy the file several times and apply different

amounts of compression and signal processing to each copy before looping the samples. I then find loop

points on each file and listen for the best version to sit in a mix.”

— Mark Showers, sound designer, Soundwerx Productions

S O U N D A D V I C E F R O M T H E P R O S

controlled boosting or cutting around a
specific frequency.

Using an equalizer effectively takes a
little practice, but just as with any other
effect you should have a clear idea about
what you are trying to achieve before
starting. Equalizers are very good at
quickly boosting or cutting the bass (less
than 250Hz), mid-range (500Hz to
2kHz), or high frequencies (4kHz and
over) in a sound. Simulating phone lines
or reduced radio transmissions can also
be done by peaking between 400Hz and
3kHz. Parametric equalizers in particular
are useful for eliminating unwanted nois-
es, such as tape hiss or electric hums, at a
specific frequency.

Besides equalization, audio compression
is perhaps the most common method used
to accentuate recordings by providing
direct control over maximizing and mini-
mizing the dynamic range of a signal. Sim-
ply stated, compression alters a signal by
taking the input volume and moving it
down by a factor denoted by a ratio set-
ting. A threshold control makes the ratio
change specifically at a point within the
dynamic range, leaving everything below
it unmodified (see Figure 11). The number
of threshold changes and how dramatic
they are is referred to as a “knee” setting.
Hard knees cause abrupt changes in the
compression ratio, while soft knees are
small changes in compression staged over
a range in the signal. Additionally, how
aggressive the compressor acts on the sig-
nal as it’s processed can be set with attack
and decay parameters. Also, a compressor
can be output-gained to increase the vol-
ume across all parts of the signal.

Compression tools — particularly ones
in hardware — can be daunting, but
slowly working through the parameters
and making small adjustments while lis-
tening to the sound will make the settings
much clearer. To start with sound effects,
try using compression to simply regulate
the high end and eliminate any distorting
clip-outs. Settings with a high ratio
around 3:1, a high threshold around 12
decibels, and a tight but soft knee are a
good base. Bringing the knee up can pro-
vide a cleaner round-off, while bringing
the overall ratio down will compress the
dynamic range of the whole signal. Varia-
tions on compression include limiting

(cutting off signals above a certain level)
and expanding (increasing a signal’s
dynamic range by decreasing low-intensi-
ty portions below the threshold). Expand-
ing is also a good way to do smoothly
transitioned noise reduction.

Pitch-shifting is another common way to
improve the tonality of a sound or occa-
sionally just to warp it into something
entirely different. Subtle shifting can also
be used to fix the timing on sound, for
example, to synch it with an in-game ani-
mation. With a little practice, even a con-
vincing Doppler effect (the sensation that a
rapidly moving sound source, such as a car
in a racing game, has a higher pitch when
closing on a point in space than it does
when moving away) can be created.

Modifying a sound up or down and
possibly locking its duration is easily han-
dled with pitch-transposition tools
designed specifically for the task. Shifting
upwards increases the frequency, making
the sound higher. Conversely, pitching
down provides a more low-end, basslike
effect. Playing with alternating pitch
(vibrato), can provide interesting results.
You can also make a particular effect
seem wider in a stereo mix; shifting one
channel a small amount (generally less
than 5 percent) will often work.

Pitch-shifting is not without adverse
effects. Because sound samples are either
being duplicated or removed during pitch-
shifting, it’s a destructive process, making
it hard to backtrack by simply negating
the effect. Additionally, while shifting
technology has evolved to a level where

interpolation artifacts are generally low
or antialiasable (minimized through
weighted averages), they will creep in,
especially as the sound gets increasingly
divergent from its original state. To be
safe, pay close attention to the quality of
your output, and only pitch-shift a few
octaves in either direction.

Effects recorded in the studio often
don’t feel right when played back in the
scene for which they are intended. They
feel too close or too confined, like they are
playing back just inches from your ears.
This is where reverb comes in. The irony is
that after you’ve spent time and resources
building the perfect sound studio to elimi-
nate reflections, now you actually want to
add some. Reverb is also good for blend-
ing edits in multi-part sounds, helping
them seem to be from the same acoustical
page. Adding reverb is usually a fairly
painless task, as most software and hard-
ware units will have decent presets, usually
named after materials or architectural
spaces. Understanding what is actually
happening during the process can help you
engage the problem more accurately.

Reverb occurs because sound-reflecting
surfaces in a space encourage the sound to
bounce around, sometimes half a dozen
times before finally reaching your ears.
Because some sound waves will invariably
travel straight to your eardrum while oth-
ers take time bouncing about, you will
experience the primary sound wave fol-
lowed by additional, sometimes weaker,
echoes of the original sound delayed by
just milliseconds. The reflections in a natu-
rally reverberant environment, sometimes
dubbed a “wet” sound, will vary not only
in timing but also in tonality, based on the
shape, area, and absorption qualities of the
surface materials in the space. Softer mate-
rials provide low-end reflections, while
stiff materials bounce high frequencies.

To add reverb, start from the top by
focusing on the length and density of the
reflections. Working with the intensity
decay rate of the reflections is also impor-
tant in defining the feel of a sound’s space.
Short decays will suggest small spaces,
while slightly longer decays will suggest
much larger areas. Nonlinear falloff can
suggest an unevenly occluded environment.
The frequency range of the reflections is
also crucial. Adding more high or low end

o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r42

S T U D I O R E C O R D I N G

+

+-

-

INPUT Level

O
U

TPU
T Level

Gain

Threshold

3:1 Compression
 Ratio

FIGURE 11. Manipulating the compression
threshold at specific points within the dynamic
range produces different results.

to a sound’s reflections will cause the sur-
face materials present in a sound’s synthet-
ic environment to feel significantly differ-
ent. Be careful about overdoing it, though.
Reverb is an irreversible process because
editing it out is practically impossible.

In general, following the ordering of the
postproduction effects in this article will
have your sound ready for any last-minute
finalizing and mix-down. While some steps
can be skipped, it’s a good idea to work at
least with the compression and equaliza-
tion on each waveform. Although it may
work otherwise for some productions, it’s
usually better to apply any pitch-shifting
and equalization before compression to
give each process the greatest dynamic
range within which to work.

While most studio-recorded effects are
one-shot affairs, occasionally they will
need to loop during playback. There is
often little you can do to create a looping
track during recording other than trying
for clean, editable breaks in a sound’s
cycle. During editing, cross-fading multiple
tracks of the same sound for loop effects
that can’t simply be cut in or spliced is a
good starting point. For sounds that vary
in timbre across their duration, another
technique is to reverse a copy and then
play them back-to-back.

The last part of the sound design
process is mixing down and doing any nec-
essary format conversion. This can be a
complex task for cutscene productions,
taking days, if not weeks, in front of a
nonlinear editor. However, for most in-
game sounds, it’s just a matter of combin-
ing any multi-part sounds into one singu-
lar effect. Keep in mind the final output
during the mix-down process. If you have
been working with stereo material, verify
its mono compatibility. Also keep an eye
on the level meters and watch for distor-
tion, particularly if you are additively mix-
ing material with a lot of dynamic range.
If you need to down-sample your sound
for output, maximize your signal-to-noise
ratio with gating or compression before
doing the conversion.

Wrap-Up

T here is no single correct way to final-
ize a sound. In a game studio, it’s

often best to take a break when you think

you’ve got an effect sequence done, then
come back and listen to it later. Closing
your eyes during playback so you can
focus on the quality of the sound is also a
good technique. However, testing to make
sure it feels right in the game itself is ulti-
mately the best way to make sure it really
has been done satisfactorily.

Sound design is more of an art than a
science. Recording and editing fresh mate-
rial for your game project extends that
art even further, providing an almost lim-
itless canvas of aural creativity. But by
applying knowledge from practiced sound
designers with a bit of physics and a lot
of imagination, the entire sound environ-
ment of your game can be raised to the
next level. q

Be sure to check out the expanded version of
this article on Gamasutra.com.

w w w . g d m a g . c o m 43

Discuss this article on
Gamastura.com!
www.gamasutra.com/discuss/gdmag

FOR MORE INFORMATION

WEB SITES
Gamasutra
www.gamasutra.com/features/

index_sound_and_music.htm

Equipment Emporium
www.equipmentemporium.com/articles.htm

Acoustics & Vibrations Virtual Library
www.ecgcorp.com/velav

BOOKS
Ballou, Glen M., ed. Handbook for Sound Engi-

neers, 2nd ed. Carmel, Ind.: SAMS/
Macmillan, 1991.

Eargle, J. The Microphone Handbook. Plain-
view, N.Y.: Elar Publishing, 1981.

Mott, Robert L. Radio Sound Effects. Jeffer-
son, N.C.: McFarland & Co., 1993.

Pohlmann, Ken C. Principles of Digital Audio,
3rd ed. New York: McGraw-Hill, 1995.

Yewdall, David Lewis. The Practical Art of
Motion Picture Sound. Boston: Focal Press,
1999.

I t all started innocently enough. A
monk had gone a-questing for the
Robe of the Lost Circle, an arti-
fact found in the massively multi-
player online role-playing game

EVERQUEST.
He had spent nearly a hundred hours

collecting the necessary components to
make the robe, traveling all across the
lands of Norrath, speaking to non-player
characters (NPCs), waiting hours at a time
for a particular monster to appear so he
could slay it and collect an item he needed
from its corpse. His path had been ardu-
ous, but the moment of truth had finally

come. Breathless with anticipation, the
player placed the treasures he had so care-
fully collected into a special container,
pressed the Combine button to mold them
together, and...destroyed everything by
failing a skill check.

Surely this had to be a mistake, he
thought. Surely the effort involved in col-
lecting these items was the only risk the
designers had intended for me to take. Had
they accidentally introduced a skill check
where there should be none? Upset and
confused, the player posted his tale of woe
on Sony’s EVERQUEST boards, and rallied the
support of his fellow players behind him.

Shortly after the message board thread
started, Verant’s community relations
spokesman, Abashi, made a post in which
he stated the skill check sounded like a
poor design decision, and that he would
ask to see if it could be removed from the
quest. Cheers rang out from the message
board crowd at this display of responsible
customer service. Shortly afterward, the
player posted that he had requested and
been given a Robe of the Lost Circle by a
Game Master, one of EVERQUEST’s in-game
technical support personnel.

Cheers again erupted from the player’s
supporters, but the mood soon turned
sour. The Game Master who had given the
monk his robe learned the loss was due
not to a software bug but that it was the
intended design, and promptly took the
robe away. A firestorm ensued on the
EVERQUEST message boards, prompting a
return visit by Abashi to explain Verant’s
decision: although Verant sympathized
with the monk’s loss, it would not be cor-
rect to overturn what had happened in the
game, because the software had functioned
as designed.

To Be... Or Not to Be?

S o what should have happened? Was
it reasonable for the player to ask for

a new robe after Abashi said the skill
check was a poor design decision, and
would likely be removed? Should the
Game Master have given the player a
robe when he thought the loss was due to
a bug? Was the decision to take back the
robe correct? Should Verant have over-
turned that decision, because the robe

Taming the
Customer Service Dragon

in Persistent-State Worlds

o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r44

C U S T O M E R S E R V I C E d e r e k s a n d e r s o n

D E R E K S A N D E R S O N | Derek is a systems designer for ULTIMA WORLDS ONLINE: ORIGIN. He has held a variety of design, marketing,
and customer service positions in the persistent-state world market over the past few years, and tries to use that experience to build “zero sup-
port call” systems for his games. Contact him at gamedesigner@aol.com.

The EVERQUEST message boards: 107 pages of topics, and one overworked customer service
spokesman at the center of it all.

had already been given to the player for a
problem that was going to be fixed any-
way? It’s a tricky issue, certainly, but a
typical one for persistent-state world
(PSW) games such as EVERQUEST. The
answer is even trickier. All four of the
decisions were correct, and they perfectly
illustrate the PSW customer service para-
dox: Sometimes you have to refuse an
individual customer’s request in the inter-
est of maintaining a balanced game.

Obviously this creates a conflict of
interest for game administrators. On one
hand, we want our customers to be
happy; happy customers are loyal cus-
tomers. On the other hand, our customers
pay us to referee the game world for
them, which means we must keep that
world fair and balanced, making the risks
and rewards equal for all. Sometimes we
will design those risks and rewards poorly,
and one of our players will have an
unpleasant experience because of it, such
as our friend the monk. But if we change
the outcome for him, are we not giving
him a competitive advantage over every
other player who accepts the negative con-
sequences our game imposes?

Refusing any customer is a no-win situa-
tion. Customers ask for our help when
they feel wronged, and do not care about
lofty philosophies such as the balance of
the game. They simply want their concerns
addressed. We may not be able to help
them with every individual problem, but a

good PSW designer will watch for patterns
of complaints and strive to adjust the game
systems so they do not generate customer
service calls. This article will describe a
few rules common to creating that mythi-
cal “zero support call” game.

Some Ground Rules

L et’s begin with the cardinal rule of
online customer service, which is:

If you don’t like what is happening in your
game, you should first look for a design solu-
tion rather than have your customer service
staff implement ad hoc fixes. You’ll save time,
money, and staff morale in the long run.

A company that relies on its customer
service staff to fix problems generated by
its own game systems is one that will
quickly see its customer service calls spiral
out of control as its player base starts
depending on them to fix every minor
issue that arises. You’re only fighting your-
self if you do this, and you should there-
fore only use ad hoc adjustments to game
mechanics on a temporary basis when you
fully intend to change the system that gen-
erates the calls in the first place.

I can best illustrate this with a story
from my early design days working on
Simutronics’ venerable text MUDs, GEM

STONE III and DRAGON REALMS. Both
games — still going strong at www.play.net
— had their roots in the old Genie BBS

service run by General Electric, and their
design and customer service policies reflect-
ed their small, pay-by-the-hour community
with a high staff-to-customer ratio. That
community’s bonds were strained almost to
the breaking point when the games went
from 50 simultaneous customers on Genie
to hundreds on AOL in late 1995, then
thousands a year later when AOL dropped
its hourly charges in favor of a flat $20
monthly fee.

The biggest difficulties resulted from the
loss of accountability for one’s actions
that had been present in Genie’s small
community. Many antisocial activities,
though allowed by the game mechanics,
simply did not happen on Genie because
the players would exact swift retribution
upon anyone who violated the communi-
ty’s mores. For example, in the Genie
days, if someone died and left his equip-
ment on the ground, other players helped
him get his items back. Stealing from the
dead was almost unheard of, and the few
incidents that occurred caused such an
uproar among the players that they were
talked about for months afterward.

Imagine the surprise of the Genie play-
ers when America Online came, bringing
with it the anonymity of five screen names
per account, each of them capable of play-
ing the game with a new character, and no
way to tell which characters were related
to each other. This anonymity, just as it
does in all other areas of the Internet,

w w w . g d m a g . c o m 45

bred disruption: within weeks we were
besieged by anonymous characters who
logged in to rob dead adventurers, only to
run away, hide, and then log off, never to
be seen again.

Because our games had a high level of
item persistence — items rarely broke or
wore out — players who had been stolen
from in this manner not only felt violated,
but often lost weeks or even months of
work from a single theft. And since the
player not only didn’t know who the real
thief was, but also had no way of retriev-
ing his items from someone who had
logged off immediately afterward, an inci-
dent of such looting inevitably generated a
furious customer assistance call demanding
we do something about the problem.

At first, we tried an administrative solu-
tion. We considered the looting to be
cheating, both because it involved the use
of an alternate, anonymous character to
hide the looter’s identity, and because the
looting character inevitably logged off
immediately after the theft, abusing the
game’s logoff mechanics to avoid retribu-
tion. Because it was cheating, the looting
was an invalid action, and we confiscated
the items and issued a warning to the
offending player for the disruption.

Our intentions were good, but we were
fighting a losing battle. After all, having
multiple screen names (and therefore mul-
tiple characters) was an integral part of
AOL’s system. Our game mechanics per-
mitted dragging dead bodies to out-of-the-
way places. Those same game mechanics
forced dead bodies to decay, leaving all the
items on the ground free for the taking a
few minutes after death. Instant logoff was
also part of the game. Thus, it was
inevitable that players would use these
mechanics to their advantage, whether it
was playing fairly or not.

Trying to control the problem with poli-
cy was expensive. The more often we
intervened, the more our customers expect-
ed us to do so. We still had to upgrade our
games and provide normal customer serv-
ice, and every hour spent tracking down
an anonymous troublemaker meant one
less hour devoted to development. We
found ourselves spending more and more
time hunting down thieves and returning
items, so much so that some of our cus-
tomer service staff did little else.

We quickly learned we would not be
able to stem the tide without significant
design changes, however, and struck back
with a variety of systems that restricted
players’ ability to harass dead adventurers.
One of those systems, for example, pre-
vented a player from moving another’s
corpse without the dead player’s permis-
sion. Another allowed players to protect
their corpses from being looted for a few
minutes via a protective spell. A third was
what we called our “Graverobber” system.

The Graverobber system tracked the
owner of any item left on the ground at
death. If another player picked up the
item, the system tracked that person and
anyone else to whom he subsequently
passed the item. If someone holding a
stolen item logged off or lost connection
within a few minutes after the theft, the
system removed it from the player’s inven-
tory and sent it back to the room from
which it had initially been taken. Under
optimal circumstances, the system worked
beautifully: if an anonymous character
stole something and logged off, the item
would return to the owner’s body, and the
staff would not have to intervene.

Circumstances were not always optimal,
however, and though the system stopped
many “loot and scoot” problems, we
sometimes found our own code working
against us, since the Graverobber system
did not differentiate between friend and
foe. Players frequently picked up items for
a dead friend, then lost connection while
traveling back to a safe area, only to have
the items returned to the room in which
their friend had died and be subsequently

deleted by our garbage collection system
because no one was around to pick them
up. Those who lost items in this manner
inevitably asked us to replace them, and
we inevitably refused — after all, the sys-
tem was functioning exactly as we had
designed it, wasn’t it?

As you may have guessed, this was not
an answer our customers were pleased to
hear, any more than our friend the EVER-
QUEST monk was pleased to hear his robe
would not be replaced. This is because:

Your customers expect your world to be pre-
dictable, just as they expect the rules of any
game to be predictable. They will view unpre-
dictability as a flaw, and expect you to repair
the consequences of that flaw.

DRAGON REALMS customers who lost
items to the Graverobber code were upset
because the code was intended to stop
looting, not delete items because a friend
had inadvertently logged off before an
arbitrary timer had expired. Although the
code was functioning exactly as it was
implemented (much like the skill check for
the monk robe), it was not functioning as
it was intended. Intent is predictable. In a
complex world simulation, however, indi-
vidual game systems often combine to
cause unpredictable side effects in their
actual implementation.

“That’s Just How
Things Are”

A nother example from EVERQUEST is
apropos here. A writer from the web

site Gamefan was visiting one of EVER-
QUEST’s islands one evening last June when
he was beset by a pirate, one of the game’s
huntable creatures. Not having his
weapons ready, the writer first beat a tacti-
cal retreat until he was out of range, then
attempted to equip his sword to prepare
for battle. In his panic, however, he acci-
dentally clicked on the game window with
sword in hand, which caused it to drop
into the world rather than his readied
weapon slot.

This problem happens occasionally in
EVERQUEST because of the way its invento-
ry interface is designed, which you can see
in Figure 1. Each piece of equipment a
character wears is assigned a particular
inventory slot, with said slots being dis-

o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r46

C U S T O M E R S E R V I C E

FIGURE 1. EVERQUEST’s inventory screen, overlay-
ing the game window. If a player misses while
placing an item into the lower-left inventory slot,
it will be dropped into the world, perhaps never
to be recovered.

played directly over the world window
when a character manipulates his invento-
ry. Click a few pixels too far to the left
and the system assumes you want to drop
an item into the world, rather than your
inventory. This is normally a recoverable
mistake, as dropped items generally persist
for a few minutes before the system
deletes them. The player knew this and
turned to pick up his sword, when,
according to him, it disappeared. Frustrat-
ed, he called a Game Master, explained
what had happened, and was allegedly
refused a replacement because there was
no proof he had lost the weapon to a bug.
Outraged at this perceived injustice, the
Gamefan editor went on to publish an
angry editorial about the incident and
other examples of what he perceived to be
Verant’s poor customer service.

Now, I would argue the issue was not
one of poor service so much as another
illustration of the problems that ensue
when implementation and intent conflict.
Verant designed an interface that made it
possible to drop an item into the game
world — though there is rarely a need to
do so — and also designed a garbage col-
lection system that eventually deletes
dropped items so the world does not fill
with clutter. They obviously did not intend
these two systems to function as a way to
delete items from their players’ inventory,
so players who lose items in this manner
inevitably request a replacement.

Verant’s Game Master was unwilling to
replace the sword, however, because the
loss did not occur due to a genuine bug
but rather through player error. In fact,
from the eyes of a game provider, the
event was an entirely predictable one: if
you’re careless when placing items into
your inventory slots, you will throw the
item into the game world, where it is very
likely to be removed by the garbage col-
lection system. Players are meant to
understand that this is “just how things
are” in the game, and to be careful when
placing items into their inventory, hence
they shouldn’t expect the game adminis-
trators to make up for their mistakes.
Problem solved, right? Well, no, not really,
because players don’t automatically under-
stand the designers’ notion of “that’s just
how things are.”

“That’s just how things are” describes pre-
dictability on a game-wide, “macro” level. Such
predictability is worthless from a customer
service perspective. Only individual, “micro”
predictability will make your customers happy.

On a macro level, about 50,000 Ameri-
cans will die in car wrecks every year.
That’s just how driving is. On a macro
level, roughly one out of every 150,000
jetliner flights will crash. That’s just how
flying is. On a macro level, people will get
mugged, struck by lightning, or have their
homes destroyed by natural disasters.
Those things happen to people who are in

the places where they occur, so the victims
should just accept their fate and move on,
right? Nope. Macro predictability does not
make us happy in real life, so why should
we expect it to satisfy our customers inside
our world simulations?

This issue affects not only your game
systems, but also every other aspect of
your customers’ play experience, even their
connectivity issues. Your customers, for
example, will behave as if they do not
believe in the Internet. A customer’s
modem drops its connection? Your fault. A
farmer in Pig’s Knuckle, Arkansas, cuts a
major communications line, causing
extreme latency not only in your game, but
across the entire eastern seaboard? Your
fault. Terrorists from a rival game compa-
ny blow up a router down the street?
That’s your fault, too. And because it’s
your fault, your customers will expect you
to fix anything that adversely affects their
play experience as a result. Once again, the
issue is one of differing expectations. As
game designers, we are well aware of the
issues the Internet has as a gaming plat-
form. It does things that hamper the usual
flow of gameplay in our worlds. On a
macro level, we know that while we can’t
predict each occurrence with pinpoint
accuracy, over the course of a month’s
playing time a certain percentage of cus-
tomers will experience high latency, packet
loss, or dropped connections. That’s just
how things are on the Internet.

However, the player does not experience
your game from your perspective; he expe-
riences it as an individual. To him, these
events are exceptions to the game environ-
ment you have created, not part of the
normal “rules.” The player would not
intentionally make his character kill him-
self by leaping off a cliff, so why should he
do so just because he lost connection while
running? The player would not make his
character suddenly stop fighting in the
middle of a battle with a dragon, so why
should he stop because the server is not
receiving his “fight” packets? Players want
to be in full control of their characters
when something bad happens to them, and
if they’re not, they will demand that you
rectify any adverse consequences they suf-
fer, even if you can show them that the
real problem is not the game itself (Figure
2). Telling them, “Occasionally losing your

w w w . g d m a g . c o m 47

FIGURE 2. The Tracert program might show your customers that a latency problem is not your doing,
but they still will expect you to correct the consequences of that latency.

connection is just part of playing games on
the Internet,” is like telling someone,
“Having your little brother kick over your
Monopoly board is part of playing Mono-
poly in his room. Sorry, I won’t replace
your hotels.” Sure, misbehavior from nasty
kid brothers is something that can be pre-
dicted, but they are not part of the rules of
Monopoly. Therefore:

Good disaster recovery mechanisms are
vital to a successful PSW. Your volume of cus-
tomer service calls is inversely related to the
ease with which players can prevent, and cor-
rect, their mistakes.

Making it easy for players to fix their
own mistakes is the equivalent of placing
a save-game feature into an online envi-
ronment. This is a difficult thing to
accomplish efficiently in PSW design, as
there is a fine balance between allowing
players to correct mistakes and maintain-
ing challenge in the game. The trick is to
pinpoint those areas where your players
most frequently ask you for assistance,
and enable them to accomplish these
things themselves.

Getting back to the above example, in
which hordes of hapless players go plung-
ing off cliffs every time their packets miss
that left turn at Albuquerque, one way to
reduce calls demanding reparations would
to be make someone stop running immedi-
ately should your system detect a loss of
connectivity. Another would be to restrict
the amount of damage one can take from
falling, so it could injure but never kill. A
third would be to make characters stop at
the edge of any slope that could cause
falling damage, and require a separate
keystroke before leaping. You should even
go so far as to question the very existence
of any system that generates multiple sup-
port calls — is falling damage really neces-
sary in your game? Sure, it’s realistic, but
unless it’s needed for some vital game sys-
tem, it probably doesn’t add a lot of fun
to your gameplay.

In the aftermath of the Gamefan editori-
al, many players suggested Verant add a
confirmation dialog that had to be closed
whenever a player attempted to drop an
item into the game window. The suggestion
has a precedent in EVERQUEST; a similar dia-
log (see Figure 3) pops up whenever a play-
er attempts to destroy an item, and if play-

ers find the confirmation dialog annoying,
they can turn it off in an options menu. To
Verant’s credit, they saw the value in these
suggestions, and recently implemented just
such a change. Players may now set their
client to demand a confirmation before
dropping items into the world, thus resolv-
ing the conflict between design and intent,
and thereby probably reducing their volume
of customer service calls.

A Benevolent
Dictatorship

B efore you run off to make exciting
new changes to your game, however,

keep in mind that anything you do will
have a very real impact on the lives of
your customers. You may have designed
the game, and you may have a vision for
what it should be like now and in the
future, but if you expect a high degree of
customer loyalty you must encourage your
players to believe they are full citizens of
your world. They are not simply purchas-
ing a service from you, and are not simply
playing a game. Players live in the world
you create, and any changes you make
affect their daily lives almost as much (and
more so in some cases) as anything that
happens in the “real” world.

Let your customers know what you are
thinking, and ask for their input, before making
even the smallest of changes to your game
mechanics.

Of course, PSW administration can’t be
a democracy. Sometimes hard decisions
must be made that your entire player base
opposes, such as reducing the power of a
popular spell or item in order to eliminate

an exploit. However, if you explain to
your customers your reasoning for doing
so in advance, you will gain much greater
acceptance of your changes than if you
simply presented them with a fait accom-
pli. The feedback you receive may even
present you with better alternatives you
hadn’t considered. After all, the minds of
your customers are legion, and you are
simply a small group of designers who like
to make computer games. At Origin, one
way we like to keep in touch with cus-
tomers is with a “Question of the Week”
forum (Figure 4), in which we bounce
ideas off future players of ULTIMA WORLDS

ONLINE: ORIGIN.
You need to remember that your cus-

tomer base includes a wide variety of peo-
ple; be careful not to fall into the trap of
only talking to your “elite.” Your design
team may be full of role-players, but the
mass market most certainly is not. Your
design team may post on popular fan web
sites, but again, the mass market does not,
nor do they participate in IRC chats, nor
do they write you letters telling you how
they feel about the game. The mass market
is a great, silent majority that you must
reach out to in order to learn what they
really want. Don’t fall into the trap of
assuming everyone is like you, or that the
communications that fall in your lap are
representative of your entire customer base.

A final word of caution:

Your customers will overwhelm traditional
channels of communication, and will become
angry when you cannot keep up with the
demand.

Nothing frustrates your customers more
than being given an expectation of customer
support that isn’t met. Yes, many customers
will demand far more individual attention
than is reasonable for ten dollars a month,
but it absolutely infuriates them when a
company provides, and promotes, a channel
of communication and then does not
respond promptly to requests sent through
that channel. Falling behind only exacer-
bates the problem; if you don’t answer their
phone calls, they’ll send you angry e-mail. If
you don’t answer their e-mail promptly,
they’ll send you more e-mail demanding to
know why you haven’t answered their e-
mail. Don’t answer those e-mails, and they
will flame you on the message boards.

o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r48

C U S T O M E R S E R V I C E

FIGURE 3 (above). EVERQUEST requires that users
confirm their decision before permanently
destroying an item.

Don’t respond on the message boards, and
they will page your in-game staff to gripe
about your poor phone and e-mail service,
over which your in-game staff has no con-
trol. This makes them think your in-game
staff is ignoring their concerns, and they

will call your main offices to gripe about
your staff ad infinitum.

The solution is not to throw more bod-
ies into your customer service department,
as there is an insatiable demand for indi-
vidual attention in your customer base

that is impossible to satisfy if you expect
to make a profit. You must instead be just
as clever designing your customer service
systems as you are in designing your
game, because your customers will get just
as frustrated over your customer service
when its intent (does this sound familiar?)
does not match its implementation.

No matter how you structure your serv-
ice, be sure your representatives have the
ear of your designers. The people who
deal with the customers every day are the
ones who know best what aspects of your
game design are generating the most prob-
lems, and if you let them be a part of solv-
ing those problems, they’ll be much happi-
er and more productive in the long run.

Design Is Hard.
Customer Service Is Hard.
Writing Articles Is Easy.

I ’ve used examples mainly from my com-
petitors’ games, but I want to make it

clear that the problems I have described
are a perfectly normal part of designing
and administrating any PSW. Hindsight is
20/20, and it’s easy for me to sit in my
ivory tower and say, “You should have
done this,” and “You should have done
that.” But even the best designer can’t pre-
dict everything that could go awry in a
game before it is released, and even the
best customer service department can’t
help but feel overwhelmed at the never-
ending demand for personal attention its
customers expect.

If you remember nothing else from this
article, keep this bit of advice: Remind
yourself every day that you are creating
worlds not for yourself, not for your com-
pany, but for thousands of individuals who
make individual decisions every day about
whether to continue playing your game.
Listen carefully when they tell you some-
thing is making them unhappy, and though
you must be a dictator, be a wise and
benevolent one. Give freely to your subjects
whenever possible. Fix the little things as
well as the big, because easy changes are
appreciated just as much as the hard ones.
And above all, have fun. q

w w w . g d m a g . c o m 49

Discuss this article on
Gamastura.com!
www.gamasutra.com/discuss/gdmag

FIGURE 4 (top). The ULTIMA WORLDS ONLINE: ORIGIN staff discusses design issues with their future cus-
tomers in a “Question of the Week” forum.
BOTTOM, ULTIMA ONLINE’s Help screen is an example of a system designed to decrease the customer
service load by prescreening assistance calls and directing them to the best forum for getting prob-
lems resolved.

T he original DIABLO went gold
on the day after Christmas in
1996, after a grueling four-
month crunch period. We
hadn’t put any thought into

what game to do next, but as most develop-
ers can probably relate to, we were pretty
certain we weren’t ready to return to the
DIABLO world after such a long develop-
ment cycle. The only thing we were certain
of was that we wanted to avoid another
crunch like we had just experienced. DIABLO

II went gold on June 15, 2000, after a gru-
eling 12-month crunch period.

After DIABLO shipped, we spent about
three months recovering and kicking
around game ideas for our next project, but
nothing really stuck. The idea of returning
to DIABLO began to creep into the discus-
sions, and after a couple of months of recu-
peration, we suddenly realized we weren’t
burned out on DIABLO anymore. We dusted
off the reams of wish-list items we had
remaining from the original, compiled criti-
cisms from reviews and customers, and
began brainstorming how we could make
DIABLO II bigger and better in every way.

DIABLO II never had an official, complete
design document. Of course, we had a
rough plan, but for the most part we just
started off making up new stuff: four towns
instead of the original game’s one; five char-
acter classes, all different from the previous
three; and many new dungeons, vast wilder-
ness tile-sets, and greatly expanded lists of
items, magic, and skills. We wanted to
improve upon every aspect of the original.
Where DIABLO had three different armor
“looks” for each character, DIABLO II would
use a component system to generate hun-
dreds of variations. Where DIABLO had
“unique” boss monsters with special abili-
ties, DIABLO II would have a system for ran-

domly generating thousands of them. We
would improve the graphics with true trans-
parency, colored light sources, and a quasi-
3D perspective mode. Level loads would be
a thing of the past. The story would be fac-
tored in from the beginning and actually
have some bearing on the quests. We knew
creating this opus would be a big job.
Because we had the gameplay basics already
polished, we figured we would hire some
new employees, create some good tools, and
essentially make four times the original
game doing only two times the work. We
estimated a two-year development schedule.

The DIABLO II team comprised three
main groups: programming, character art
(everything that moves), and background
art (everything that doesn’t move), with
roughly a dozen members each. Design was
a largely open process, with members of all
teams contributing. Blizzard Irvine helped
out with network code and Battle.net sup-
port. The Blizzard film department (also in
Irvine) contributed the cinematic sequences
that bracket each of DIABLO’s acts, and col-
laborated on the story line.

Almost all of DIABLO II’s in-game and
cinematic art was constructed and rendered
in 3D Studio Max, while textures and 2D
interface elements were created primarily
with Photoshop. The programmers wrote
in C and some C++, using Visual Studio
and SourceSafe for version control.

Blizzard North started out as Condor
Games in September 1993. The first con-
tracts we landed were ports of Acclaim’s
QUARTERBACK CLUB football games for
handheld systems and, more significantly, a
Sega Genesis version of JUSTICE LEAGUE

TASK FORCE for Sunsoft. Silicon and
Synapse, a developer that would later
change its name to Blizzard Entertainment,
was developing a Super Nintendo version

Blizzard Entertainment’s

DIABLO II

o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r50

G A M E D A T A
PUBLISHER: Blizzard Entertainment

NUMBER OF FULL-TIME DEVELOPERS: 40

LENGTH OF DEVELOPMENT: more than 3 years

RELEASE DATE: June 28, 2000

PLATFORMS: PC and Macintosh

DEVELOPMENT HARDWARE USED: Typical program-
mer workstation: 500 MHz Pentium II running

Windows NT with 128MB RAM and 9GB hard
drive. Typical artist workstation: dual 500 MHz
Pentium IIs running Windows NT with 256MB

RAM and 14GB hard drive.

DEVELOPMENT SOFTWARE USED: 3D Studio Max,
Photoshop, Microsoft Developer Studio/Visual

Studio and SourceSafe

NOTABLE TECHNOLOGIES USED: Glide, Direct3D,
RAD Game Tools’ Bink, DirectSound3D, and

Creative Labs’ EAX.

P O S T M O R T E M e r i c h s c h a e f e r

E R I C H S C H A E F E R | Erich is vice president of Blizzard North and one of its founders.
Erich played a leadership role in the management, design, and art direction of DIABLO and
DIABLO II. He got into the game development business from a background of graphic design
and goofing off. With DIABLO II on the shelves, Erich and his new bride Hanna finally have
time to get the house in order.

While the player characters are only seen in
the game as 75 pixels tall, all were modeled
and rendered in high resolution for use on
the character selection screen and in promo-
tional materials. Here, the Paladin stands tall.

w w w . g d m a g . c o m 51

of JUSTICE LEAGUE TASK FORCE. Condor
ended up pitching the idea for DIABLO to
Blizzard, and halfway through the result-
ing development process Blizzard’s parent
company acquired Condor, renaming us
Blizzard North. Throughout a tangled his-
tory of corporate juggling and ownership
changes, Blizzard North has remained a
very independent group. Our staff has
grown steadily from about 12 at the start
of DIABLO to 24 at the start of DIABLO II,
and finally to our current group of more
than 40. We concentrate 100 percent of
our efforts on game development. To help
keep this focus, Blizzard’s headquarters in
Irvine manages other functions, such as
quality assurance, marketing, public rela-
tions, technical and customer support, as
well as the operation of the Battle.net
servers. Our parent company, Havas Inter-
active, deals with business functions such
as sales, manufacturing, and accounting.

What Went Right

1. DIABLO II is still DIABLO. A con-
stant theme in previews and

reviews of DIABLO II was that we didn’t
change anything; it was more of the same.
At first that struck us as odd. We kept less
than one percent of the code and art from
the first game. We rewrote the graphics
engine, changed all the character classes
and skills, shifted and expanded the set-
ting, reworked and added to the magic

items, brought back only a handful of our
favorite monsters, and designed a ton of
new gameplay elements, such as running,
hirelings, left-click skills, and random
unique monsters. Why, then, did everyone
think it was the same thing? In the end, we
decided just to take it as a compliment.
The play-testers and reviewers meant they
were having exactly the same kind of fun
that they had in the original game.

Both DIABLO and DIABLO II provide a
constant source of simple pleasures, many
of which are perhaps too basic and obvi-
ous to mention in evaluations and reviews,
but which are fundamental to their success.
We used the term “kill/reward” to describe
our basic gameplay. Players continually kill
monsters and get rewarded with treasure
and experience. But the rewards don’t stop
there. We offer a steady stream of goals
and accomplishments to entice the player
to keep playing. There’s always a quest
that is almost finished, a waypoint almost
reached, an experience level almost
achieved, and a dungeon nearly cleared
out. On a smaller scale, we tried to make
every single action fun. Moving around
inventory items produces pleasing sounds.
Monsters die in spectacular fashion, like
piñatas exploding in a shower of goodies.
We strove for overkill in this sense, in that
players are constantly on the verge of
something great — only a few mouse-clicks
away from a dozen interesting things.

DIABLO II retained DIABLO’s randomly

generated levels, monsters, and treasure.
This obviously allows for better replay
potential, but also serves to make each
player’s game his or her own. Players feel
an ownership of their own game experi-
ence in that they are actively generating a
unique story. It’s enjoyable to tell friends
about what you have just done in the
game, knowing for sure that they have not
done the same thing. Simply following an
online walk-through won’t help them
accomplish goals without effort.

Finally, DIABLO and DIABLO II are easy
to play. We used what we call the “Mom
test”: could Mom figure this out without
reading a manual? If we see new players
struggling with how to sell items, we look
at how they’re trying to do it and make
that way work too. We strove to make the
interface as transparent as possible. You
want to open a door? Left-click on it.
Want to move to a target location? Left-
click on it. Want to attack a monster, pick
up an item, or talk to a non-player charac-
ter? Well, you get the idea. It’s amazing
how many games have different controls
and key combination for all these actions
when simpler is always better.

2. Blizzard’s development
process. Blizzard’s development

process is designed to ensure that we make
a great game. While our goal is to meet
the milestones we set, our process, in
terms of design and business, is structured

o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r52

P O S T M O R T E M

Creating detailed sketches of settings, such as this hut in the Act III dock
town of Kurast, preceded the actual modeling of background art.

Much time was spent perfecting Act I since it would likely be used in a
beta test or demo. The Amazon was the first character to be completed.

to allow us to wait until the game is as
good as it can be before we ship it. We rec-
ognize that not all developers have this
same opportunity, but many of the meth-
ods we use along the way are applicable to
any development environment.

First, we make the game playable as soon
as possible in the development process. Our
initial priority was to get a guy moving
around on the screen and hacking monsters.
This is what players would be doing most
of the time, and it had to be fun. We were
constantly able to hone the controls, path-
finding, and feedback mechanisms during
the entire length of the game’s development.
Most importantly, it allowed us to deter-
mine what was fun to do, so we could pro-
vide more of it, and discover what was
awkward or boring, so we could modify or
remove it. For instance, it became obvious
very early that players would be killing
large amounts of the same monsters, and
those monsters would predominantly be
attacking the players. This gave us the
opportunity to plan for multiple death
sound effects and additional attacking ani-
mations for each monster. If we hadn’t
experienced the core gameplay as early as
we did, combat would have ended up feel-
ing much more repetitive.

Also, we constantly reevaluate gameplay
and features. Up until the very end, if we
can make the game better we will, even if it
means redoing big tasks. For instance, we
decided that we didn’t like the Bone Hel-
met graphics for the characters more than a
year after having rendered them, but we
went ahead and remade them, even though
it took a couple of weeks and the collabo-
ration of four artists. Only weeks away
from scheduled beta testing, we scrapped
our Act IV level layout schemes because
they were just a bit too empty and similar.
The last-minute fixes turned these levels
into some of the best, befitting their climac-
tic function. DIABLO II took more than 40
people and over three years, essentially
because we made two or three games and
pared them down to the best one.

Another gigantic reason for our success
is our open development process. We strive
to hire people who love games, and we
make games that we want to play. Every
member of the team has input into all
aspects of the game. Discussions around
the halls and at lunch become the big ideas

that shape the game. A programmer sug-
gested to a designer the concept of gem-
socketed, upgradeable weapons, which
turned out to be a huge crowd-pleaser. A
musician’s dislike for the old frog-demon’s
animation inspired us to redo it. As a
team, we don’t have to wonder what our
audience wants, because we are our audi-
ence. If we like the game we are making —
especially if, after two years of playing it,
we are not bored to death — the game is
clearly going to be a winner.

3. Character skill tree. Our most
revolutionary new idea was the

character skill tree. For a character to
attain more powerful skills, he or she must
master prerequisite skills. The ability for
characters to branch into different areas of
the skill tree, and to choose a level of spe-
cialization in each skill along the way, pro-
vides truly unique characters.

At the start of development, we planned
to use the model from the original DIABLO:
characters would find and read books to
learn spells and skills. Unlike DIABLO, which
had 28 spells shared by all three characters,
we wanted to create a separate group of 16
skills for each of our five new character
classes. This would definitely have been an
improvement, but every character of a given
class would still end up knowing all the
same skills as other members of their class.
Another problem was that players would
likely be finding spell
books for other char-
acter classes much
more often than for
their own. The skill
tree solved these
problems. The gener-
al idea was taken
from the tech trees
many strategy games
employ. In strategy
games, players
advance by research-
ing new technologies,
which in turn open
up further avenues of
research. We adapted
this to have our char-
acters advance by
choosing a new skill
or strengthening an
old skill every time

they gain an experience level. Characters
can generalize by choosing a wide variety of
skills, or specialize by allocating many skill
choices into a small group of skills. We also
created a strategy element of choosing skills
you might not use, just so you can get to
one further up the tree later.

The end result of the skill tree is that
one player can develop a Necromancer
who kills monsters with a powerful poison
dagger skill augmented by curses that
cause monsters to fight each other, while
his friend’s Necromancer will summon
hordes of skeletons to fight for him, and
doesn’t use any curses at all. The longevity
of DIABLO II will be enhanced by the end-
less strategies that can be debated and
experimented with.

4. Quality assurance. The task
of testing a game of DIABLO II’s

scope, with its huge degree of randomness
and its nearly infinite character skill and
equipment paths, required a Herculean
effort. We found we could not play-bal-
ance the climactic fight against Diablo
without actually playing the entire game
up to that point, because we could not
predict what kinds of equipment a charac-
ter might have, or what path through the
skill tree he or she may have followed.
This meant 20 or 30 hours of play for all
the different characters, with a good vari-
ety of skill sets and equipment for each.

w w w . g d m a g . c o m 53

The architecture in DIABLO combines aspects of many different cultures in
order to arrive at an interesting mix that doesn’t look too much like any
single one. Here, the buildings of Travical from Act III are based on Mayan
and Aztec references.

Whenever we changed the game’s treasure
spawn rate or experience curve, we had to
test it all again. Further complicating mat-
ters were multiplayer and difficulty-mode
balance. Would a party of five Paladins,
each using a different defensive aura, be
untouchable? After more than 100 hours
of play, is a fire-based Sorceress unable to
continue in “Hell mode”?

The QA team created a web-based bug-
reporting database through which we cate-
gorized and tracked all bugs, balance issues,
and gameplay suggestions. In the end, this

list delineated more than 8,300 issues and
suggestions. Well-organized teams of testers
concentrated on different aspects of the
game, divided into groups that would specif-
ically test character skills, item functionality,
monster types, and spawn rates, or explore
the countless variations found in the ran-
dom level generation system. The members
of the QA team became very good players
and astute observers of the progress of the
game. Everything worked much more
smoothly than our experiences with the
original DIABLO.

5. Simultaneous worldwide
release. In the past, Blizzard’s

strategy for shipping its game has been to
get games on North American retailers’
shelves as quickly as possible after the
English version of the game went gold.
With the original DIABLO, we created our
gold master on December 26, and some
stores had it on the shelves by the 30th.
Since DIABLO was released, the percentage
of international customers had increased
substantially, and with DIABLO II, we fully
expect more than half of our sales to come
from outside North America. With such a
large number of customers located outside
the United States, for DIABLO II we decided
that there would be significant advantages
to coordinating the U.S. release to coincide
with the rest of the world, not only to
build anticipation for the product, but for
the benefit and satisfaction of our cus-
tomers as well.

If we release a game in the United
States first, customers in the rest of the
world don’t want to wait a few months
while we translate and localize it for their
country. Due in part to the international
climate fostered by the Internet, players
around the world all know about the
game at the same time and want to get it
while it’s hot. They might buy the U.S.
version under the table or search out a
pirated copy. Worse, they might lose inter-
est by the time we release a localized ver-
sion. DIABLO II’s simultaneous worldwide
release also allowed our marketing and
PR departments to focus their efforts
toward creating a frenzy of interest for
the first week of sales. Although the
simultaneous release was a logistical
headache, it was all worth it in light of
DIABLO II’s superb success.

What Went Wrong

1. Developing the new Battle.net.
We have always been very proud

that our company launched Battle.net with
the original DIABLO. Just a couple of
months after DIABLO shipped, Battle.net
was the largest online game service in the
world. At DIABLO II’s launch, Battle.net had
more than 6 million unique active users.

Despite the original DIABLO’s success
online, we knew as we began development
that to create the type of multiplayer expe-

o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r54

P O S T M O R T E M

TOP. The player characters have modular armor of three varieties, light, medium, and heavy, which
were mixed and matched to provide more individualized character appearances. “Paper dolls” creat-
ed on paper and in Photoshop allowed mixing and matching of different pieces of armor to see how
they worked together on the Barbarian.
BOTTOM. The Barbarian, translated from the sketches into a full, high-polygon model. Each part of a
character’s armor (the head, the torso, the legs, each arm, a weapon, and a shield) was rendered
separately with in-house tools.

rience that we wanted to achieve in DIABLO

II, we would need to fundamentally change
the game network. And, as we expected,
this became one of our biggest challenges
during development. We had to reinvent
Battle.net’s structure by melding existing
technology with new programming and
feature sets. This had implications across
the board. We had to rethink everything —
programming, hardware, bandwidth,
staffing, online support, and how we could
financially support this model while keep-
ing it free.

Although the original Battle.net had been
further modified to support STARCRAFT as a
chat and matchmaking service, for DIABLO

II we needed much more: game servers
where the Realm games would actually be
played, secure character-data servers, and
game tracking systems. Trying to shoehorn
these elements in the existing Battle.net sys-
tem proved very difficult. For instance, we
planned to have character names represent
players in Battle.net, but it was designed to
handle chatting between account names. It
took a lot of design and implementation
time to arrive at our final system, where
users see character names but have to send
remote messages to account names.

We initially believed that working with
the existing Battle.net would save us time,
but in retrospect, we learned that melding
technologies is a difficult process, and in
some cases, recoding instead of integrating
is the better course of action.

2. Launching the new Battle.net.
The success of Battle.net after

DIABLO’s launch created a new challenge
for us. When DIABLO was released,
Battle.net was a new online service. Basi-
cally, we were able to ramp up as more
customers joined the service. When DIA-
BLO II shipped, Battle.net had millions of
users. The level of anticipation was higher
than for any of our other games. We were
well aware of the expectations, and we
knew that no other company had ever
attempted to create and sustain an online
service that could support the type of
usage DIABLO II would experience right
out of the chute.

We spent countless hours preparing for
Battle.net’s DIABLO II debut. We teamed
with the best ISPs in the word, and con-
ducted months of internal and external
beta testing. We ramped up bandwidth
and hardware. We beefed up the
Battle.net, quality assurance, and support
service teams.

Although we had more than 100,000
people testing the DIABLO II Realms, hav-
ing more than one million customers in
just three weeks proved to be very differ-
ent from beta testing. The beta test was
very successful in uncovering many stabili-
ty issues that were addressed before the
launch. After the game shipped, we faced
bugs that only appeared at much higher
usage rates. The issues that we faced at
launch were ones that could not have been

simulated in a beta test of 100,000 people.
It took a much larger influx of players to
trigger certain situations.

Knowing the massive scope of what we
were trying to achieve with Battle.net, we
had measures in place at launch to help us
deal with issues that arose as usage
increased. For instance, we maintained
both a team of programmers and the entire
quality assurance department to solve
problems as they appeared, and had our
support team working overtime. We also
had an action plan in place to increase
hardware and bandwidth as needed.

In some respects, we are victims of our
own success. We underestimated sales, but
we also underestimated the allure of play-
ing on the Battle.net Realms. By solving the
cheating problem in DIABLO and enhancing
Battle.net with new features — such as the
ability to see everyone’s characters in the
chat room — we seem to have attracted a
larger share of Battle.net players than with
any of our previous titles.

3. Graphics. Shortly before DIABLO

II shipped, we began noticing
some feedback from customers about the
resolution of the graphics in the game.
They were frequently labeled “outdated”
or “pixellated.” The shame is that the tech-
nology choices we made eclipsed the recog-
nition of the fantastic job the artists did.
We put a lot of effort into creating charac-
ters, monsters, and landscapes with a lot of

w w w . g d m a g . c o m 55

Characters and monsters, such as this Vampire, were created in 3D Studio Max. An in-house tool would render the files from many different angles
(eight for all monsters, 16 for player characters), and export them in the file formats used in the game.

unique character. The game displays an
incredible amount of action happening on-
screen in an easy-to-follow manner. Still,
with all the negative reaction, we probably
should have done it differently.

When we began producing art for
DIABLO II in mid-1997, we investigated a
lot of options. We mocked up a 3D engine
and checked out voxel systems. It didn’t
take us long to go back to what we used in
DIABLO: 2D graphics at 640×480 resolution
with 8-bit color depth. At that time it was
still the only way to get eight characters,
upwards of 30 monsters, and upwards of
100 missiles all interacting on the screen at
one time without sacrificing detail and
atmosphere.

The graphics criticism caught us by sur-
prise. We thought (and still think) that the
game looked great. We probably should
have built in a scaling technology to take
advantage of hardware that could display
the same graphics at higher resolutions. In
any case, DIABLO II will probably be our
last 2D game.

4. Tools. We developed the original
DIABLO with almost no propri-

etary tools at all. We cut out all the back-
ground tiles by hand and used commercial
software to process the character art. Spells
and monsters were balanced by verbal esti-
mates (“Hey, lets make the lightning about
ten percent weaker.”). DIABLO II’s vastly
increased scale required much better tools,
and we made some, but not enough.

In many cases we created tools to speed
up content creation, but then abandoned
them. Too often, we decided to keep using
inferior tools because we thought we were
almost done with the game, and didn’t

want to take the time to improve them.
Unfortunately, in most of these cases, we
were not really almost done with the
game, and in retrospect a couple of weeks’
worth of work would have helped in the
year or more of development remaining.

The greatest deficiency of our tools was
that they did not operate within our game
engine. We could not preview how mon-
sters would look in the environments they
would inhabit. We couldn’t even watch
them move around until a programmer
took the time to implement an AI. Even
after that, an artist would have to hassle
someone to get a current working build of
the game to see his creation in action. Our
sound effects engineers ended up painstak-
ingly creating .AVI movie versions of ani-
mations in order to synch sounds with
actions. Our lack of tools created long
turnaround times, where artists would end
up having to re-animate monsters or make
missing background tiles months after the
initial work was completed.

We should have made tools that let us
create content within the game engine.
Instead of just handing off a set of anima-
tions and hoping they looked all right
when dropped into the game, artists
should have had the ability to position and
orchestrate their creations themselves. The
extra tool development time would have
been more than offset by increased effi-
ciency and higher-quality work.

5. Save-game methodology. As
much as we tried to make a frus-

tration-free game, we seem to have failed
some people with our save-game scheme.
Eschewing the common save-game feature
we used in the original DIABLO’s single-

player mode, where every facet of the
game state can be saved to files and
reloaded at will, we opted to make all
modes behave more like DIABLO’s multi-
player game. In DIABLO II, we do not save
the world state. Reloading the game resets
the location of monsters and treasures
every time. The character is placed in the
town he or she last visited, not in the
wilderness or a dungeon.

Although this choice was slightly contro-
versial around the office, it had a lot of
advantages. For one, players could not get
stuck, unable to progress further. At any
time you can restart in town, refight the
same monsters for more experience and
loot, and return to a difficult area when
ready. We created a waypoint system that
allows characters in new games to return
quickly somewhere close to where they quit
the previous game. Finding new waypoints
is a rewarding mini-goal during play. We
also wanted to discourage the type of play
where players feel they must always save
the game right before a difficult section,
then constantly die and reload until they get
lucky and make it through. Finally, it was
just easier to make single-player games and
multiplayer games work the same way, and
multiplayer requires the method we used.

A lot of players don’t like our decision.
They feel it is too inconvenient to have to
fight their way back though the same
areas and monsters. Many also want the
opportunity to experiment with skill
choices and equipment purchases, then
later revert the game back to an earlier
state if they don’t like the results. There
are good points on both sides, and we
probably didn’t spend enough time devel-
oping alternatives.

o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r56

P O S T M O R T E M

Some of the many locales in Act II: The Sand-Maggot lair (left), Jerhyn’s Palace (center), and the Sewers (right). Background elements were created and
rendered in 3D Studio Max. The rendered files were cut into tiles and assembled into modular “rooms” with an in-house tile-editing tool. The game
engine reassembles the rooms to provide a randomized game environment.

w w w . g d m a g . c o m 57

The Final Word

M any more things “went right” than could fit in that section.
Our internally controversial plan to tell a separate but paral-

lel story through our cinematic sequences seems to have succeeded,
and the workmanship and quality of these sequences has set a new
standard. Our marketing and PR departments did a fantastic job
building customer awareness and creating a frenzy of interest. DIA-
BLO II’s music is outstanding, and along with an amazing array of
sound effects, contributes hugely to the atmosphere of the game.

The development of DIABLO II is a remarkable success story. We
got the opportunity to make the game we wanted to make — and
the game we wanted to play. DIABLO II turned out to be a great
game, one that many of us still play every day. Initial sales figures
are phenomenal, and reviews have tended to be better than those
of its predecessor. We have gained a lot of experience that should
help us make even better games in the future.

The only major downside to DIABLO II’s development was the
inhuman amount of work it required. A yearlong crunch period
puts a huge burden on people’s relationships and quality of life.
Our biggest challenge for the future is figuring out how to keep
making giant games like DIABLO II without burning out. As a
start, we are hoping our experience will help us do a better job
scheduling and managing the workload. We also believe that tak-
ing the time to make better tools will make things easier at the
end of projects.

Although I tried to avoid personalizing this article, I am
extraordinarily proud of the entire development team. DIABLO II
could not have happened without all the superb individual efforts,
the incredible creativity, and the whole team’s dedication to the
project, for which they have earned my gratitude, and no doubt
that of the legions of players who enjoy the game. q

Monsters have 14 possible classifications of animation, from basics such
as Walk, Attack 1, and Death, to the seldom-used Block, Run, and four
Special modes, reserved for miscellaneous animations. Diablo is the only
monster who uses every animation category available.

Discuss this article in Gamasutra’s Connection!
www.gamasutra.com/discuss/gdmag

o c t o b e r 2 0 0 0 | g a m e d e v e l o p e r64

S O A P B O X c l i f f b l e s z i n s k i

Staking Our Own Claim
In Entertainment

O dds are, the gaming indus-
try will once again make
more money this year
than Hollywood takes in
at the box office. Yet we

still continue to act like we’re Holly-
wood’s unpopular, ugly little brother,
both by borrowing franchises and brands
as well as by mooching Hollywood
celebrities to endorse our products. This
problem is prevalent at
every corner of our
industry, from trade
shows to journalism to
game music.

Consumer gaming
magazines are subject to
this infection as well.
Recently there has been a
rash of magazines that
claim to not only cover
games but also “life-
style.” Lifestyle, to these
magazines, apparently
means interviews with
no-name actors who have
nothing to do with gam-
ing whatsoever, and the
fact that some of these
magazines have folded in
recent months suggests
consumers may want
something else to define
the games they play.

At E3, it’s a very com-
mon sight to see aging,
second-rate actors
endorsing products, and
gaming web sites and
magazines eat it up with
“celebrity sightings!”
Hey, kids, sneak into E3
and you might meet
Daisy Duke! Big deal. Are

games so unexciting that we need pinup
pictures and washed-up actors to draw
attention to them?

As an industry, we’re afraid to make and
market our own brands. A team of talented
developers who create their own franchise
and want to build a new, original universe
will often fight an uphill battle with a pub-
lisher who wants to slap an existing brand
on it in an attempt to add value.

So why does our apparent inferiority
complex persist? One reason could be
that in a game, the real “stars” are the
games’ characters, not the developers.
Some see Lara Croft as the original gam-
ing starlet, which (depending on whom
you ask) might be a step in the right
direction. Developers are more akin to
cinematographers, screenwriters, and
directors, who frequently exist behind the

scenes and rarely get the
credit that a film’s stars
get. Still, by comparison,
these jobs are viewed as
more thrilling than game
development. A guy sit-
ting at a keyboard in the
dark in front of a moni-
tor who works on code is
hardly as exciting to most
people as a screenwriter
or director.

So what can be done
about our industry’s over-
all sense of insecurity and
inferiority? First, we need
to start by making our
own franchises. At the
same time, we must
understand where pub-
lishers are coming from
and have patience with
them. It is your job to
convince the publisher
that your original brand
is better than the existing
brand that they want to
stick on your title. From
their point of view they
can have either “existing,
proven brand X” or
“what’s behind door
number 2.” You’d need

ill
us

tr
at

io
n

by
 C

ra
ig

 S
os

on
ko

continued on page 63

w w w . g d m a g . c o m 63

S O A P B O X

some convincing if you were in their
shoes, too. By making our own franchises
we’ll ultimately make more money
instead of paying a steep price for an
existing brand that may or may not work.
We’ll also make better games. Great
games stand on their own and sell regard-
less of existing brands.

Second, we need to do a better job of
branding ourselves as people and teams. id
Software did a great job of building noto-
riety not only because of the phenomenon
that was DOOM, but because of the inter-
esting, dynamic personalities behind it.
The flamboyant Romero, the genius Car-
mack, and the enigmatic Cloud all con-
tributed to and helped define the id brand.
Fascinating, real people behind the games

help build the brand behind the software.
Finally, we need to continue to raise

our standards and production values. Most
consumers are better than you might think
at judging good production design versus
hacked-together scenes, and distinguish-
ing talented voice acting from what your
animator’s sister can provide. If we meet
or better yet exceed their expectations for
quality entertainment, then our industry
will grow at an even faster rate.

Like most other folks young and old, I
enjoy movies. I’ll admit that I love going
to the theater on a summer night to watch
a mindless popcorn flick. However, when I
was growing up I wanted to meet Shigeru
Miyamoto, not Robert DeNiro. I wanted
to meet Richard Garriott, not Steven Spiel-
berg. We need to continue to push our

own projects and identities rather than
licensing “brand X” or we will become
just another platform for the Hollywood
advertising machine rather than the gen-
uine art form that is developing and begin-
ning to flourish today.

We are our own future, and it’s time we
take our place at the forefront of the enter-
tainment industry. q

C L I F F B L E S Z I N S K I | Cliff is 25 years
old and already considered an industry veter-
an. He has been in the industry professionally
since the age of 17, when he designed the hit
title JAZZ JACKRABBIT for Epic Games. A JAZZ

sequel followed soon after, and he then went
on to co-design the hugely successful UNREAL

and UNREAL TOURNAMENT. Cliff is now lead
designer on Epic’s upcoming projects.

continued from page 64

	01oct cover
	02gameplan
	07frontlin
	08indwatch
	10patterns
	13prodrev
	21graphic
	29artview
	34f-steven
	44f-sander
	50postmort
	64soapbox

	return:

