
OCTOBER 1999

G A M E D E V E L O P E R M A G A Z I N E

T his heard at a Siggraph panel:
“Consumer graphics cards in
two years will be more power-
ful than any graphics card

available today at any price.” That’s
quite a bold prediction, but I agree.
Graphics hardware has entered a phe-
nomenal technological growth spurt,
thanks in part to the demands of
today’s games. The latest crop of con-
sumer 3D chips, such as Nvidia’s
GeForce 256 (formerly known as NV10),
boasts features that were found exclu-
sively on high-end workstation cards
only a year ago. Consequently, the line
dividing “consumer” and “workstation”
class cards gets fuzzier each passing day.

The scary aspect to the aforemen-
tioned prediction is that, if it pans out,
we’ve got a lot of work ahead of us if we
hope to maximize the capabilities of
that hardware. Or, to put it another
way, where are those hundreds of mil-
lions of triangles being drawn on screen
each second going to come from? It’s
apparent that game developers are
increasingly playing catch-up with
hardware. Without changing the way
things currently work, we risk widening
the gap between what hardware (both
PC and console) supports and what
games actually deliver. To narrow that
gap, several things need to happen.

First, we need more specialized tools.
Many SDKs currently categorized as
“middleware,” such as physics and 3D
animation engines, are often expensive
to license and don’t appear to integrate
easily into already-underway projects.
Perhaps this will change over time as
more commercial SDKs hit the market,
causing prices to fall and developers to
become better acquainted with using
comprehensive off-the-shelf libraries
for adding complex functionality into
games. But the types of products that I
think will make the most impact on
game development will be highly
focused — those that sacrifice broad
feature sets in favor of super-specific
functionality (for example, a tracking
camera system for TOMB RAIDER clones,
or a flexible terrain editor/generator)
and reduced price (what I call “Smacker

pricing” — $5,000 or less per product,
no royalties). These will be inexpensive
tools that even junior developers can
learn in a few weeks, and which can be
integrated into a game quickly. Where
will we get these dream tools? That
brings me to my second point.

At Siggraph, it was evident that the
graphics research community desires
closer ties to the game development
industry. The problem is, researchers
don’t know how to build those relation-
ships with us, how to identify what
aspects of their research we might find
useful, and how to craft licensing
schemes we’d find attractive. So in order
for our commercial interests to be
served, it looks like it’s up to us to build
those relationships. How many people
on your team regularly investigate tech-
nologies that are still in the labs? It
might be worth your while to pick up
the Siggraph proceedings each year, see
what’s been presented, and make licens-
ing offers to the appropriate researchers
when bits of technology look useful.
Bridging the gap between the public
and private sector could give developers
access to reasonably priced, highly spe-
cialized software tools for maximizing
the horsepower of graphics hardware.

Finally, we can’t be afraid to take risks
with technology. Gambling on the
capabilities of future graphics hardware
seems to be one of the safest decisions
you can make today. In this month’s
Postmortem of DESCENT 3, for instance,
Jason Leighton and Craig Derrick dis-
cuss the reluctance they felt when early
in the project they decided to build a
graphics engine that required 3D hard-
ware acceleration. Of course, any AAA
game aiming for the high end of the
market today takes 3D acceleration for
granted, but surely there are technolo-
gies today which look just as risky as
hardware-accelerated 3D did in back
1996. With better tools and market fore-
sight, the likelihood of a long death
march to get your game out will be
reduced substantially. ■

G A M E D E V E L O P E R O C T O B E R 1 9 9 9

4

P L A NG A M E

Graphics Fly...

Will Developers Fry?

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

www.gdmag.com

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228 w: www.gdmag.com

Publisher
Cynthia A. Blair cblair@mfi.com

EDITORIAL

Editorial Director
Alex Dunne adunne@sirius.com

Managing Editor
Kimberley Van Hooser kvanhoos@sirius.com

Departments Editor
Jennifer Olsen jolsen@sirius.com

Art Director
Laura Pool lpool@mfi.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Paul Steed psteed@idsoftware.com
Omid Rahmat omid@compuserve.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Harmonix
Dan Teven Teven Consulting
Rob Wyatt DreamWorks Interactive

ADVERTISING SALES

Western Regional Sales Manager
Jennifer Orvik e: jorvik@mfi.com t: 415.905.2156

Eastern Regional Sales Manager/Recruitment
Ayrien Houchin e: ahouchin@mfi.com t: 415.905.2788

International Sales Representative
Breakout Marketing e: breakout_mktg@compuserve.com
t: +49 431 801703 f:+49 431 801797

ADVERTISING PRODUCTION

Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Dave Perrotti

Reprints Stella Valdez t: 916.983.6971

MILLER FREEMAN GAME GROUP MARKETING

Marketing Director Gabe Zichermann

MarCom Manager Susan McDonald

Junior MarCom Project Manager Beena Jacob

CIRCULATION

Vice President/Circulation Jerry M. Okabe

Assistant Circulation Director Sara DeCarlo

Circulation Manager Stephanie Blake

Assistant Circulation Manager Craig Diamantine

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Joyce Gorsuch

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

CEO/Miller Freeman Global Tony Tillin
Chairman/Miller Freeman Inc. Marshall W. Freeman
President & CEO Donald A. Pazour
CFO Ed Pinedo
Executive Vice Presidents Darrell Denny, Galen A.
Poss, Regina Starr Ridley
Sr. Vice Presidents Annie Feldman, Howard I. Hauben,
Wini D. Ragus, John Pearson, Andrew A. Mickus
Sr. Vice President/Development Solutions Group KoAnn
Vikören
Group President/Division SF1 Regina Ridley

Playing the Political Game

R eading Herr Kreimeier’s chilling
vision of game censorship in

Germany (“Killing Games: Violence vs.
Censorship,” Soapbox, August 1999)
has forced me to briefly divert my atten-
tion from developing games to worrying
about the future of the game industry.
The thought that in a few years I might
not be able to develop or play games
where things “blow up good” is not one
that I am happy about. I have no prob-
lem with rating systems, but the sup-
pression and confiscation of games
based on their content reminds me too
much of book burning.

When I’ve taken time to consider the
issue (rarely), I’ve always thought of the
“anti-violence in videogames” politi-
cians as grand-standers using their
nutty ideas to win votes from Ma and
Pa Bible Belt. I always figured they’d
have zero chance of actually getting
anything passed. However, knowing
what has been done in Germany
and seeing the rise to dominance
of mass media publishers who
would probably just roll over
and accept any such changes, I
now believe that I should
involve myself in this issue.

Unfortunately, like most of my col-
leagues, I have only a very small
amount of time to devote to a crusade.
My game’s got to ship by Christmas,
right? I vaguely remember a game lobby
group that was formed a few years ago
to combat this type of censorship, and I
plan to get involved in such a group.

I’d like to thank Game Developer and
Bernd Kreimeier for bringing the possi-
ble outcome of goofy anti-videogame
legislation to my attention. They’ll
take away my fighting games when
they pry the game-pad from my cold
dead hands.

L e e W a g g o n e r , P r e s i d e n t / C E O

W r e c k i n g B a l l S o f t w a r e I n c .

v i a e - m a i l

Get out of the Conference Room

Idon’t agree with Doug Church’s
proposal that our industry needs a

lexicon in order for design to go for-
ward (“Formal Abstract Design Tools,”

August 1999). Languages are not creat-
ed by committee, they are formed out
of necessity. The movie term “zoom-in
dolly-back” was not created because a
bunch of directors decided that they
needed to create terms for all the dif-
ferent shots they did. More likely than
not, some director said “O.K., in this
scene I want the camera to zoom in
while we move the dolly away from
the scene,” and when they shot the
scene he probably said, “O.K., now
zoom in and move the dolly back!”
and of course the
phrase got shorter
and eventually
caught on
with other
directors —
this is how
language devel-
ops. The reason
there are so many

terms for
things in the techni-

cal side of games is
because they are

needed. It
is formed

along with
the technology

because it necessar-
ily cannot be described

in any other way.
Not only can we not create a

lexicon via committee, I also believe
that it is not necessary. Any designer
who’s worth what he’s paid will be
able to sit down, play a game, and
then tell you why he’s still playing it
20 hours later. If you can’t figure out
what makes a game fun or addicting
then you are probably doomed to
making boring games unless you just
get lucky. I don’t think this industry is
run by a bunch of lucky designers — I
think most of us know what we are
doing. Design does not evolve in the
same way as technology because it is
abstract; it is an art. Technology
evolves as fast as we can push it, but
you cannot push art. It will evolve at
its own pace and all attempts to push
it ahead of its time will most likely
end in failure.

Designing games is an art, and art
cannot be defined so easily by a few jar-
gon-like terms — that is for technology
and other less abstract concepts. You
cannot force jargon into existence — it
is formed out of necessity, and I for one

do not believe there to be a necessity
here as of yet. Art evolves in canvas, not
in conference rooms.

A d a m H e i n e

v i a e - m a i l

A U T H O R D O U G C H U R C H R E S P O N D S :

“Lexicon” is Game Developer’s word, “Jar-

gon” is your word. “Tools” was my word.

The underlying tool idea and specific

tools discussed in the article have evolved

through use. During development of

UNDERWORLD 1 and 2, we talked about our

goal to “immerse” the player. On

SYSTEM SHOCK 1, we discussed

more seriously what tools we

had to work with. As I stated

in my talk on Intention at

the 1997 CGDC, SHOCK had

no conversation mode

because we felt that UW con-

versations had little player inten-

tion, especially compared to the 3D

world. This isn’t a judgement of conversa-

tion, but rather a statement about what

tools fit our game design vision. Tools are

used to shape games. We continue to try

and understand the tools we use and how

they work.

As I see it, “usage” has been happening

for years, the GDC talks and this article are

“exposure,” and we’ll see if the tools idea

catches on. Step 2, right? I didn’t sit around

in a conference room trying to figure out a

topic for a Game Developer article. I’m a

game designer trying to share ideas several

teams have actually used in attempting to

implement a game play vision.

I strongly disagree that design is a myste-

rious, unanalyzable “art.” Of course vision

and aesthetics are involved, but they are

part of technology or books, too. Stating

design is not rationally understandable,

unlike those other “simple” things, feels

lazy to me. As a game designer, I should

learn to design games, right?

Some people have interpreted my advo-

cacy of identification, analysis, and under-

standing of design tools as an attack on

designers. That was not my point. Nor was I

saying people who don’t use big words are

losers, pedantic analysis is game design, or

that tools encapsulate all. Certainly, you can

dismiss design analysis as pointless or

attack it as wrong. However, I believe the

tools idea and the process of developing it

has helped us focus game play and better

achieve our vision in titles I worked on.

Therefore, refinement of that understanding

will continue to bring benefit. That is the

spirit in which the article was written.

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 9 G A M E D E V E L O P E R

7

S A Y S Y O U

k

We’ll lend you an ear. E-mail us at
saysyou@gdmag.com. Or write to

Game Developer, 600 Harrison Street,
San Francisco, CA 94107.

h t t p : / / w w w. g d m a g . c o m O C T O B E R 1 9 9 9 G A M E D E V E L O P E R

New Products
by Jennifer Olsen

If You Build It, Will They Come?

ALIAS|WAVEFRONT is still busy wooing
game developers, and their latest sere-
nade is in the form of Maya Builder,
designed to streamline level design for
game designers and 3D programmers,
while allowing easy integration with
other Maya features they’re already
using.

Builder includes features from
Maya’s suite of polygonal tools,
including Artisan, prelighting, UV
editing, and nonlinear deformers. Its
basic animation capabilities, which
can animate objects such as draw-
bridges or cranes, support Maya’s stan-
dard keyframe-style tools and IK
solvers (with source code, so program-
mers can deploy behaviors easily on
their end platforms). Maya’s Embed-
ded Language (MEL) lets programmers
customize Builder with level editing
tools specific to their engines, while

the Maya API offers access to Maya’s
internal data structures for creating
custom translators and plug-ins.

Maya Builder will be available for
IRIX and Windows NT, and is expected
to have a retail price of $2,995. It will
be included in the upcoming release of
Maya 2.5 later this fall.
■ Alias|Wavefront

Toronto, Ontario, Canada

(416) 362-9181

http://www.aliaswavefront.com

Riding the Next Big ‘Wave

NEWTEK unveiled Lightwave 6, the
next generation of its modeling and
animation software, at Siggraph this
past August. Newtek claims this partic-
ular release is their most significant
upgrade of the past ten years. No
longer content with red-headed-
stepchild status among character ani-
mation systems, the new Lightwave
offers several enhancements tailored
specifically to game developers.

Version 6 introduces a family of char-
acter animation tools called Intelligenti-
ties, which consist of Skelegons, Endo-

morphs, and
Multi-meshes. Skele-
gons are polygons
that appear like reg-
ular 3D bones, so
that any changes
made to the charac-
ter automatically
update the skeleton
as well. Endomorphs
are designed to help
with complex mor-
phing tasks (such as
facial animation),
allowing changes of
expression, mood, or
actions by training a
single model. Multi-
meshes, as the name
implies, embed mul-
tiple layers of geom-

etry into a single object, aiding in the
management of complex hierarchies.

Also notable are the new rendering
technologies offered (including souped-
up Hypervoxels) and a new hybrid
Inverse/Forward Kinematics engine. In
addition, Newtek has overhauled its
curve editor, offering multiple-tangent
types such as Bézier and Hermite curves,
which it hopes will improve control of
motion curves, resulting in better real-
ism in character animations.

Lightwave 6 runs on Macintosh,
Alpha, IRIX, and Windows NT systems,
and carries a suggested retail price of
$2,495. Registered 5.6 users can
upgrade for $495.
■ Newtek

San Antonio, Tex.

(210) 370-8000

http://www.newtek.com

Not Your Father’s 3D API

GLOBAL MAJIC SOFTWARE recently
launched 3DLinx, a new 3D develop-
ment environment for Windows incor-
porating a variety of languages, includ-
ing Visual Basic, Delphi, C++ Builder,
and others.

Traditional 3D APIs can have long
learning curves, depending on the skills
and experience of the programmers
using them. Global Majic has attempted
to simplify many complex tasks such as
scene graph management, view culling,
and collision detection, to offer 3D pro-
gramming to a wider audience.

The Standard Edition of 3DLinx,
priced at $895, is geared toward quick
creation of 3D applications, while the
Professional Edition, for $2,495,
includes additional loaders for import-
ing different file formats. An SDK will
also be available for third-party develop-
ment of custom features and add-ons.
■ Global Majic Software

Huntsville, Ala.

(256) 922-0222

http://www.3dlinx.com

New Products: Alias|Wavefront and
Newtek vie for the adoration of game
developers with new offerings, and
Global Majic debuts 3DLinx. p. 9

Industry Watch: Non-sightings at
Siggraph, the latest from the online
piracy battlefront, and Stolar says
sayonara to Sega. p. 10

Product Review: Jonathan Blow
takes NDL’s NetImmerse engine for a
spin and weighs in on the big build-or-
buy question. p. 12News from the World of Game Development

9

Maya Builder will be one of the new features of Maya 2.5,

offering new tools specifically for level design.

B I T B L A S T S - I N D U S T R Y W A T C H

Industry Watch
by Alex Dunne

and Dan Huebner

NOT SEEN ON THE SCENE. At Siggraph,
the usual suspects such as SGI, Dis-
creet, Alias|Wavefront, and others had
large booths on the floor, but two
companies were conspicuously absent
from the exhibition: Microsoft and
Apple. Rumor has it that Apple won’t
attend tradeshows where it can’t have
the largest booth, so perhaps its excuse
was that it couldn’t compete with
SGI’s dueling 60×60-foot booths at the
show entrance. But what was Micro-
soft’s excuse? Microsoft Research,
which employs some of the most
respected graphics experts in the
industry (Glassner, Blinn, Hoppe,
Whitted, and on and on), had a num-
ber of people speaking at the confer-
ence, but one wonders why the biggest
computer graphics event of the year
wasn’t on the company’s radar.

STOLAR AND SEGA PART WAYS. Bernie
has left the house. The question is,
why? As the president and COO of
Sega of America, Bernie Stolar was
instrumental in shaping the Dream-
cast launch, but Sega hasn’t revealed
any details about the split. As you

might imagine,
morale around
SOA wasn’t terri-
bly high when it
was announced,
but it’s hoped that
Toshiro Kesuka —
Stolar’s replace-
ment as vice-
chairman and
COO — will keep
the ship afloat
through this criti-
cal time for the
company.

VOULEZ VOUS MIDWAY GAMES? Mid-
way regained the rights to distribute
its games in international markets
after reaching a settlement with GT
Interactive. Midway, which had filed a
securities lawsuit against GT Interac-
tive, must pay GT an undisclosed
sum, and will distribute its games
internationally from now on. Midway
can now directly realize the revenues

and profits from such worldwide sales,
which wasn’t the case under its previ-
ous agreement with GT. Under the
terms of the terminated distribution
arrangement with GT Interactive,
Midway did not participate in the rev-
enue and profits generated by sales of
its home videogames in international
territories until certain nonrefundable
advances were recouped by GT
Interactive.

ESRB O.K.’S PERMISSION SLIPS. Some
game web sites now have something in
common with elementary school field
trips: parental permission slips. The
Entertainment Software Ratings Board
granted its first certification in a pro-
gram that requires children under the
age of 13 to have a “permission slip”
signed by their parents before they will
be allowed to participate in any web-
based activities. Electronic Arts is the
first company to implement the sys-
tem, called ESRB Privacy Online.
Youths aged 13 to 17 registering at an
Electronic Arts site will have a notice
of their registration mailed to a parent,
who then has the option of removing
their child’s name. Those younger than
13 will be directed to print a permis-
sion slip to be signed by a parent and
returned to EA. The program is not
designed to protect children from
objectionable content online, but
rather is geared towards regulating the
collection, use, and safeguarding of
customer information.

TAKING ON VIRTUAL SWASHBUCKLERS.
The Interactive Digital Software
Association (IDSA), along with six
member companies, filed a lawsuit in
Northern California against six online
pirates located within the United

States. The IDSA alleges that the
defendants posted pre-production
copies of PC and videogames on the
Internet. Named as defendants were
the leaders of the Class, Paradigm,
and Razor 1911 hacking groups, oper-
ating in San Francisco, Dallas, Austin,
Minneapolis, the Philadelphia area,
and the Champaign, Illinois, area.
Acclaim, Accolade/Infogrames,
Bethesda Softworks, Interplay, Lucas-
Arts, and 3DO are also plaintiffs in
the case. The lawsuit charges that the
defendants engaged in copyright and
trademark piracy, racketeering (includ-
ing mail fraud, wire fraud, and inter-
state transportation of stolen proper-
ty), counterfeiting, and unfair
competition. The IDSA gathered evi-
dence in the case by monitoring the
groups for several months, tracking
their private chat sessions and mes-
sage postings. It’s the first case ever
filed against actual named members of
any piracy group. ■

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

10

Digital Video Conference and Expo

LONG BEACH CONVENTION CENTER

Long Beach, Calif.
October 19–22, 1999
Cost: variable
http://www.dvexpo.com

Game Developers Conference
1999 RoadTrips

OGDEN ECCLES CONFERENCE

CENTER

Salt Lake City, Utah
November 1, 1999

THOMPSON CONFERENCE CENTER

AT THE UNIVERSITY OF TEXAS

Austin, Tex.
November 3, 1999

Cost: $120 ea. (discounts available)
http://roadtrips.gdconf.com

UPCOMING EVENTS

CALENDAR

Bernie Stolar

helped shape

the U.S. Dream-

cast launch.

If titles such as READY 2 RUMBLE are a

hit overseas, Midway won’t have to

share the prize money with anyone.

B I T B L A S T S - P R O D U C T R E V I E W

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

12

NDL’s
NetImmerse 2.3

by Jonathan Blow

N etImmerse is a software devel-
opment kit for 3D graphics
and animation. It is a scene

graph API, meaning that objects in
your 3D world are stored in a hierarchi-
cal tree. The graphics engine then ren-
ders your scene by traversing the tree.

You make things happen in the
world by tweaking the attributes of
objects in the tree. If you transform an
object (rotate it, move it, or scale it),
all of its children (nodes below that
object in the tree) will be transformed
as well. To make an object move
through space, you can either modify
its position manually from frame to
frame, or you can attach animation
curves to its attributes; the object will
follow the path of motion described by
the curves.

The nodes in the tree can be simple
geometry objects such as textured tri-
angle meshes; they can be more com-
plex geometry objects, like curved
objects made from Bézier patches or
height-mapped landscapes; or, they
can be completely new objects that
you define yourself.

NetImmerse’s name can be mislead-
ing; it sounds as if it’s a networking
API, but it’s not. There are a few fea-
tures of NetImmerse that can be used
in conjunction with networking (such
as the ability to asynchronously load
geometry and animations into a run-
ning scene, or fetching an image file

from a given URL), but this is nowhere
near its central point.

NetImmerse provides components
that include the following technical
features:

• A terrain rendering system with
view-dependent detail reduction,
based on Peter Lindstrom’s algo-
rithm from the 1996 Siggraph pro-
ceedings. (This algorithm has been
popular with game developers cre-
ating their own terrain systems.)

• View-independent detail reduction
for triangle meshes. This appears
very similar to Hugues Hoppe’s pro-
gressive mesh algorithm, which is
included with DirectX. I find that
NetImmerse’s version is nicer and
easier to use.

• A portal system, for culling hidden
geometry in indoor environments.

• A collision detection system that
uses trees of oriented bounding
boxes (the OBB-Tree algorithm
developed by Gottschalk) and some
other simple bounding primitives
such as spheres, extruded spheres,
and extruded ellipses.

• A system for dynamic tessellation of
curved objects built from Bézier
patches.

• A shape animation system that
includes morphing, skinning, gen-
eral path control, and particle sys-
tem support.

• A multitexturing texture system
with a cache manager.

• A 3D sound API that uses Aureal
Semiconductor’s A3D 2.0 as its
back end.

• A rendering manager that can use
Glide, Direct3D, or OpenGL as its
back end.

QUALITY OF TECHNOLOGIES. So Net-
Immerse provides all these features.
But how good are they, actually? The
answer is, pretty darn good for a gener-
alized API.

The source code for the NetImmerse
internals is clean. Each of the modules
is a competent implementation of the
targeted technology, written to be as
generally useful as possible while still
being efficient and easy to modify.

However, none of the modules is as
good as what you’d get if you told an
experienced 3D programmer to create
that functionality for one specific

game. For example, the NetImmerse
terrain module does not provide
smoothly interpolating terrain vertices
(you see “popping” effects) and is not
structured for landscapes that have
very high texture densities. It is also
not very memory efficient compared to
what you could create if you knew
exactly what terrain size and resolution
you wanted and implemented the
Lindstrom algorithm by hand. So if
you are developing a game to compete
with STARSIEGE TRIBES 2, and you want
your terrain to be superior, you’re
going to have to write your own.

Similar statements can be made
about every component of NetImmerse.
Though the collision detection systems
are quite intelligently coded with a lot
of care given to speeding up the special
cases between different types of primi-
tives, they don’t report accurate enough
collision points or times to be used for
“real” physical simulation. The portal
system doesn’t perform optimally for
some geometry types, which may be
the ones you want to use in your game.
And so on.

These observations can’t really be
taken as criticisms of NetImmerse,
however. These are the same problems
that come up any time you use a gen-
eralized system to perform a specific
task. Because the system is attempting
to solve a harder problem than what
you’re using it for, it will not be as effi-
cient as something that is tailored to
your specific needs.

NetImmerse is designed for modular-
ity. So if you need a terrain system that
is more memory-efficient and that
smoothly interpolates vertices, you can
write it yourself and stick it into the
scene graph, and it will work. But if
you’re pushing the cutting edge of per-
formance, there’s a limit to how effec-
tive this will be; at some point you
have to re-architect the game engine
around your core features, and this
would require throwing away most of
the structure that NetImmerse gives
you, or using it in an ancillary way.
ASSET CREATION. NetImmerse does not
provide a content creation tool for 3D
geometry and animation; the paradigm
is that you should use the commercial
authoring tool that works best for you,
then export the data for use with
NetImmerse. NetImmerse provides
exporters for 3D Studio Max 2.x,
Softimage 3.8, Multigen Creator, and

Jonathan Blow is the guy who receives e-mail sent to jon@bolt-action.com.

B I T B L A S T S - P R O D U C T R E V I E W

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

14

Motion Factory’s Motivate.
NetImmerse can load textures from

.TGA or .BMP files and from files con-
sisting directly of RGB 3-byte values or
RGBA 4-byte values. It can also parse
textures out of its own file format, .NIF.
The NetImmerse file format is a pack-
age format that can contain any of the
NetImmerse data types; you get one of
these when you export a scene, or
when you use API calls to save a scene
that you have created in memory.
DOCUMENTATION AND SAMPLE CODE. The
system is fully documented and the
documents are provided in two file
formats: .PDF and Word 97 .DOC. The
documentation is of high quality; in
fact, it’s the best documentation I
have ever seen for a game-related SDK,
by a wide margin. The first piece of
documentation is a 26-page program-
ming manual that provides an
overview of the entire system; after
reading it, anyone who has ever used
a scene graph API will be able to sit
down and begin coding. Anyone who
has not will want to proceed to the
next piece of documentation, the
tutorial, which is a walkthrough of
every sample program provided with
the SDK.

There are 15 different sample pro-
grams, and the documentation does a
terrific job of explaining them. Think
of a good programming book that you
would buy for $70 in a bookstore,
wherein the author creates programs
and guides you through their logic one
section at a time. That’s what you get
in the tutorial (all 116 pages of it).

If you’re in a rush and want to skip

the tutorial, that’s
O.K. too. The sample
source code is clean
and easy to read on
its own. There is not a
trace of platform-spe-
cific code in the sam-
ples, which is nice for
two reasons. First, it
shows that the under-
lying architecture is
clean and complete,
without falling back
on Windows for some
functionality or allow-
ing Windows data
structures to infiltrate
the API calls. Second,
it makes the code
pleasant and easy to
understand (because it’s not filled with
the nasty type definitions and unread-
able naming conventions common in
Microsoft APIs).

The rest of the documentation
describes NetImmerse’s major techno-
logical components (the portal sys-
tem, detail reduction system, and so
on). These files use diagrams to
describe the operation of each compo-
nent; they also give guidelines on the
optimal, proper, and improper uses of
each component.
HOW IT STACKS UP AGAINST COMPETITION.

Anyone who is considering licensing a
toolkit like NetImmerse will, naturally,
consider other options as well. Of
course one can license a tool that com-
petes with NetImmerse and provides
functionality in roughly the same
arena; since this is not a review of the

whole marketplace,
we won’t touch on
those here. However,
we will discuss two
important alterna-
tives, in terms of
their scale of func-
tionality, to put
NetImmerse into per-
spective.

First, you might opt
to license the engine
from an existing 3D
game that you like,
such as UNREAL or
QUAKE 3. On the
minus side, this
option will cost you a
lot more than a tool
like NetImmerse.

However, what you get with, say, the
QUAKE 3 engine, is an already-assembled
game that you can modify until it
becomes what you want. If the original
game is technologically similar to the
game you want to develop, then you
won’t need to spend too much engi-
neering effort to get your game into a
basic running state. Instead, you can
spend all your effort on refining your
game, which hopefully means it is of
higher quality in the end. NetImmerse
provides a lot of features, but it is not a
game or a game engine. You will still
need to do a lot of work to put the
pieces together in the right way, and to
provide the pieces of core functionality
needed to make your game run.

A second alternative might be to use
Fahrenheit, the codename for the
upcoming version of Direct3D, which
reportedly will contain its own scene
graph API. (Fahrenheit specifications are
not yet available for public perusal.) The
structure of Fahrenheit should be simi-
lar to NetImmerse in many ways, and
Fahrenheit will most likely be free for
general use, as with previous versions of
Direct3D. So why would you opt to use
NetImmerse, which will cost you? First,
Direct3D has a history of not living up
to its promises, so expect Fahrenheit to
disappoint and/or annoy programmers
for a while after its initial release. Also,
it is quite unlikely that Fahrenheit will
be ported to any non-Windows operat-
ing systems, so if your game relies on it,
you will be tied to Windows. And you
can bet that you won’t get Fahrenheit
source code, so NetImmerse will be easi-
er to adapt to fit your needs. Finally, the

F I G U R E 1 . This shows NetImmerse’s continuous LOD

demo. As you move the dinosaur into the distance, its

polygon count decreases. Popping is scarcely visible.

F I G U R E 2 . NetImmerse offers projected shadow targets,

shown, as well as regular ground-plane projection, in

which case the shadow would disappear under the wall.

Excellent Very Good Average PoorBelow Average

h t t p : / / w w w. g d m a g . c o m O C T O B E R 1 9 9 9 G A M E D E V E L O P E R

15

authors of NetImmerse seem to be more
in touch with the needs of game pro-
grammers than the designers of
Fahrenheit. Unfortunately, space is not
available for a full discussion of this.
Simply stated, all of NetImmerse’s fea-
tures can save game developers signifi-
cant amounts of engineering time,
while Fahrenheit’s features seem to have
been motivated by a checklist of buzz-
words. It is likely that game developers
will ignore many of Fahrenheit’s fea-
tures, seeing them as ill-fitting or irrele-
vant. But a price tag of “free” goes a
long way, so we can be sure that
Fahrenheit will be used.
LICENSING TERMS. NetImmerse can be
modularly licensed. The most basic
licensing of the SDK, for use on a sin-
gle game project, costs $50,000. The
portal, terrain, and mesh detail reduc-
tion systems cost extra, at $10,000
each. The MacOS version of the SDK
(which NDL plans to make available in
fall 1999) also costs $10,000. This is a
royalty-free, no-strings-attached licens-
ing agreement. For double these prices,
you can license NetImmerse for an
unlimited number of games to be
developed at one site.

The import/export tools are available
in binary form free of charge. The
source code can be licensed for $20,000
per tool. Extended maintenance and
support licenses are also available.
BUILD OR BUY? It would cost many times
NetImmerse’s price tag to develop the
in-house equivalent of NetImmerse’s
code base, and it would also take a lot
of time (measured in years). So in terms
of cost and time-to-market savings,
licensing NetImmerse makes sense, if
your goals are compatible with the
usage of a general-purpose API.

We’re all familiar with the schedule
bloat and general increase of project
failure that has developed since games
went 3D. From that standpoint, licens-
ing NetImmerse provides a certain
amount of security. You know that you
have in your hand algorithms that
solve a certain set of problems, so a
fair degree of the technological risk
factor is eliminated from the develop-
ment process.

Unfortunately, when faced with the
choice of “build or buy?” game devel-
opment teams have chosen “build”
more often than they should, resulting
in schedule overruns and canceled
games. I have seen many popular

games on store shelves that could have
been developed more quickly, for less
money, and been less buggy in the end,
if tools like NetImmerse had been used.

The truth is that the vast majority of
modern 3D games do not push the
limits of the computer’s graphics capa-
bilities, even when the game develop-
ers begin the project with the intent of
doing just that. The developers find
that the project was much more diffi-
cult than they expected, and despite
the schedule overruns they still don’t

have time to optimize their hand-
coded system to be as fast as it could.
In the end, the game player needs a
very fast computer to play the game,
not because the game has a very
sophisticated graphics engine, but
because that engine is not sophisticat-
ed enough. Thus one of the major rea-
sons behind the “build” decision — to
have a hand-tuned system that is supe-
rior to what everyone else has —
becomes self-defeating, and “buy”
would have been a better choice. ■

Numerical Design Ltd.
Chapel Hill, N.C.
(919) 929-2917
http://www.ndl.com

System Requirements:
For development envi-
ronment: 200MHz PC,
32MB RAM, 150MB disk
space, Windows 95/98/
2000/NT, DirectX 6.1 or
OpenGL 1.1.

Supported Platforms:
Windows currently;
MacOS and Playstation 2
versions are pending.

Pros:

1. Provides components
that are relevant to mod-
ern games.

2. Source code is clean and
accessible.

3. Runs at a reasonable
speed.

Cons:

1. Suffers the usual prob-
lems of a generalized
API — it’s generalized.

2. Pricing is out of range
for hobbyists.

3. In some cases, an engine
from a completed game
may be a more effective
starting point.

NetImmerse 2.3:

b y J e f f L a n d e r G R A P H I C C O N T E N T

pened yet, no matter how many times I
see life-like organic aliens and robotic
bipeds trotting all over the screen.

The trouble is, humans are tough to
simulate, regardless of how long we
take to create the image. It may be
obvious, but the difficulty lies in the
fact that we are all very familiar with
how humans look. We see them all the
time. In the morning, I see something
resembling a human in the mirror
while I shave. Living as I do along the
coast, I often see more of the human
form than is probably healthy both for
my ego and my digestion. In everyday
life, we see all varieties of people per-
forming every imaginable action. Each
of us is an expert in determining the
believability of a CG human form. If
the skin looks wrong or the motion
looks stiff or the lip-synch is off, each
of us screams, “Fake!”

But these technical and artistic
problems are solvable. The brilliant
artists and technicians charged with
making us believe will make sure that
it happens. I have thought a bit about
the problems this will present, howev-
er. I think about John Wayne. What if,
while he was alive, he was asked to do
a commercial for beer? Perhaps his
answer would have been, “Over my
dead body!” That used to mean some-
thing, that there was no way you
would ever get me to do something. A
bit of stock video footage and some
clever video processing tricks and
voilà — John Wayne’s dead body sell-
ing beer.

Now don’t get me wrong. I see
nothing wrong with a family member
licensing the likeness of a relative for
commercial or charitable purposes. I

think most people would be glad to
continue to provide a living for their
family even after they have gone from
this life. I just think technology has
forced us to reexamine that particular
ultimatum. Perhaps it is time for
something like, “Over my dead body
and virtually extinct telepresence.”
Kind of loses that Wild West charm,
doesn’t it?

Bringing Them Back in Real Time

C oncerns over these kinds of legal
dilemmas are not going to stop

me from doing my job, however. As a
creator of real-time 3D graphics, I not
only face the hurdles which confront
my visual effects comrades, but I also
need to make these realistic characters
move fast. Fortunately, in this task,
technology is on my side.

Realistic characters require lots of
polygons to make them look realistic.
Lots of polygons mean lots of vertices
being transformed by an overwhelmed
CPU. At Siggraph 1998, I began to see
the emergence of transformation
acceleration in the consumer graphics
hardware space (see “Taking a Break
for Siggraph,” Graphic Content,
October 1998). At that time, I thought
it wouldn’t be long before we would
be able to take advantage of hardware
acceleration for transformation and
lighting (HW T&L) in our games.
Well, Siggraph has come and gone

again and we are starting to see this
become a reality.

One consumer graphics chip com-
pany, Nvidia, has publicly committed
to delivery of hardware transforma-
tion and lighting with their next gen-
eration of graphics chips. There are
rumblings that others are likely to
deliver on this promise as well. In fact,
Microsoft is so certain that hardware
T&L will be a reality in the consumer
hardware market, they have included
support for it in the next version of
the DirectX game programming API,
DirectX 7. Game developers who are
scheduling projects for release in the
next production cycle need to consid-
er how their projects will handle hard-
ware T&L.

How Do We Deal with HW T&L?

F ortunately, the driver writers will
do most of the work for us. Games

using the transformation and lighting
pipeline in OpenGL will take immedi-
ate advantage of the hardware if it’s
available. Now, with the introduction
of DirectX 7, games supporting this API
will also transparently benefit from the
new hardware. By using the built-in
transformation pipeline in either API,
games will get faster.

This will naturally enable games to
increase polygon counts without sacri-
ficing performance. It also means that
the load on the CPU will decrease,

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 9 G A M E D E V E L O P E R

17

Over My Dead,

Polygonal Body

A mazing things have been created with computer graphics over the past

several years. Visual effects companies are poised to tackle one of the

most difficult challenges in computer-generated (CG) imaging: creating

a realistic CG human character. However, in my opinion, it hasn’t hap-

When not being frightened by the idea of virtual versions of himself, Jeff creates 3D
graphics for Darwin 3D. Let him know he is just being paranoid by e-mailing him at
jeffl@darwin3d.com.

allowing more processor time for game play features, such as
artificial intelligence and game physics. And, as to be expect-
ed, creating content that performs well on a variety of user
system configurations will be more important than ever.

Since we the graphics programmers can gain this benefit
without doing any real work, hardware T&L doesn’t seem to
affect us much. The programmer will need to conform to a
standard pipeline. For the transformation, this doesn’t seem

to be a big deal. Most 3D programmers are com-
fortable with matrix manipulation of vertices.
The problem is pretty well solved and the only
issue of trust revolves around the quality of the
driver implementation. Once the hardware is
doing the work, the driver issue largely goes
away. Most will gladly accept this pathway to
hardware nirvana.

Lighting, however, is a much more con-
tentious issue. No one I have talked to is satis-
fied with the lighting model provided by the
OpenGL and DirectX libraries. This issue doesn’t
bug me that much. I don’t know anyone who is
ready to give up lighting tricks such as shadow
maps and texture-mapped lighting for simplistic
Gouraud lighting. While we do need a hardware
solution for realistic lighting, this is not it. I
advise continued reliance on those lighting
tricks. However, as a supplement to pre-comput-
ed lighting for dynamic changes or shadow
computation, a few hardware point and spot
lights couldn’t hurt, particularly if they’re fast. I
can think of a lot of things that a few lights
could be used for.

No, simple transformation and lighting is not
the problem with hardware T&L. We run into
the real trouble when we consider what it means
for modeling organic objects.

T&L for Non-Rigid Bodies

Hardware transformation is ideally suited to
the display of rigid objects. You first set up

the transformation matrix and then submit an
object to be drawn. With hardware, it will be
costly to obtain the results of the transformation

G R A P H I C C O N T E N T

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

18

F I G U R E 1 A . Modeling organic objects is a challenge for 3D

programmers dealing with hardware T&L.

F I G U R E 1 B . Skeletal deformation systems offer both flexi-

bility and good looks.

GLvoid COGLView::GetBaseSkeletonMat(t_Bone *rootBone)

{

/// Local Variables ///

int loop;

t_Bone *curBone;

tMatrix tempMatrix;

///

curBone = rootBone->children;

for (loop = 0; loop < rootBone->childCnt; loop++)

{

glPushMatrix();

glTranslatef(curBone->b_trans.x, curBone->b_trans.y, curBone->b_trans.z);

// Set observer’s orientation and position

glRotatef(curBone->b_rot.z, 0.0f, 0.0f, 1.0f);

glRotatef(curBone->b_rot.y, 0.0f, 1.0f, 0.0f);

glRotatef(curBone->b_rot.x, 1.0f, 0.0f, 0.0f);

// Grab the Matrix that is built up to this point

glGetFloatv(GL_MODELVIEW_MATRIX,tempMatrix.m);

// Invert this matrix to get the Base->World matrix

InvertMatrix(tempMatrix.m,curBone->baseToWorldMat.m);

// Recursive call if the bone has children

if (curBone->childCnt > 0)

GetBaseSkeletonMat(curBone);

glPopMatrix();

curBone++;

}

}

L I S T I N G 1 . Code for the World->RestBone matrix.

before the object is drawn. This means everything needs to
be set up beforehand.

That’s fine for most objects and environments. However,
characters do not look their best when composed of rigid
objects. As I have explored in a previous article (“Skin
Them Bones,” Graphic Content, May 1998), creating a
character from a single mesh and then deforming it via a
skeletal system provides a better solution. By using skeletal
deformation, you maintain the good looks of a seamless
mesh and the animation flexibility of a hierarchical char-
acter system.

Unfortunately, this system requires manipulation of ver-
tex coordinates. Let me review how a skeletal deformation
technique works. I have a character in a rest pose in Figure
1a and have created a skeleton for the character in Figure 1b.

In order to deform the mesh with the skeleton, I need to
assign each vertex to a bone or set of bones. For example, all
of the vertices in the head region should be assigned to the
head bone. For now, let me assume that the vertices in the
character’s head are completely, or 100 percent, assigned to
the head bone.

I can determine the position and orientation of the head
bone at the rest frame by creating a matrix that represents
the transformation needed to move that bone from the ori-
gin to its location in the hierarchy. The matrix of each bone
is dependent on the matrices of all of its parents, so it is nec-
essary to traverse the entire hierarchy to determine this
World->RestBone matrix.

Now this matrix will take a vertex and transform it to the
location of the bone. However, when I am taking the rest
position of the character, I will need to know how to take a
vertex in the mesh and transform it back to the origin.
Fortunately, since we are using a matrix operation, this is a
simple matter of inverting the World->RestBone matrix with a
standard 4×4 matrix inversion routine. I now have a
RestBone->World matrix. This only needs to be done once, so I
can store this matrix for later use. You can see the code for
computing the RestBone->World matrix in Listing 1.

I now have the matrix I need to move any vertex from the
rest position back to the origin. Now I want to move the ver-
tex to its final pose as shown in Figures 2a and 2b. I can do

this virtually the same way. I go through the hierarchy and
create a matrix for each bone that will take a vertex from the
origin and move it to the bone position in that animation
frame. For this World->Bone matrix, I don’t need to invert it.

I now have everything I need to take a rest vertex and
move it to the final position. The procedure is as follows:
worldVertex = baseModelVertex * restBoneToWorldMat

deformedVertex = worldVertex * worldToBoneMat

There is an easy optimization step, though. Because two
matrices can be multiplied together to create a matrix that is
a sum of both transformations, I can create one matrix that
will do everything:
combinedMatrix = worldToBoneMat * restBoneToWorldMat

Then for each vertex, I simply multiply it by that one
matrix:
deformedVertex = worldVertex * combinedMatrix

This is the key to skeletal deformation. If you want to have
multiple bones influencing a vertex, this final formula can be
scaled by the amount of influence, or weight, of each bone.
The sum of all the weights for each vertex should equal 1.

What’s the Problem?

T his process requires each vertex to be transformed by a
matrix for every bone that influences it. Clearly, this

process should benefit greatly by the use of hardware trans-
formations. However, this really breaks the transformation
pipeline. It’s obviously possible for a single polygon to have
vertices that are influenced by multiple bones. Therefore,
you cannot simply set the transformation matrix and draw
a polygon as you would normally. An entire character is
even more complicated.

In order for this to work, I would need to do the matrix
operations first, combine the resulting vertices into a single
polygon, and submit that to be drawn. However, the pipeline
doesn’t allow this. Getting the results of a transformation is
not a fast process, as it requires values to be returned from
the driver through a mechanism such as feedback.

This is precisely why it’s crucial that this type of operation
be handled by the driver via the graphics API. It’s impossible

G R A P H I C C O N T E N T

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

20

F I G U R E 2 A . Our matrix enables us to move the skeleton’s

vertices to our character’s final pose.

F I G U R E 2 B . Our finished model, the beneficiary of our

transformation matrix.

to perform this kind of deformation without breaking the
transformation pipeline. Now many people are against the
idea of adding API features for specific effects such as this,
but I see no other way to achieve the goal. If the transforma-
tion could be handled as a specific DSP operation that was
not tied directly to the display, it would be possible to have
simple accelerated matrix operations. However, this is not
the direction the hardware development is heading.

What’s Being Done About It?

M icrosoft, while creating DirectX 7, realized that this
would be an issue. To solve the problem, they created

the notion of “vertex blending.” In vertex blending, the
final position of a vertex can be determined by the weighted
transformation of up to four matrices.

You set up the matrices by creating a transformstate with
the function:
SetTransform(D3DTRANSFORMSTATE_WORLD, matrix1);

SetTransform(D3DTRANSFORMSTATE_WORLD1, matrix2);

SetTransform(D3DTRANSFORMSTATE_WORLD2, matrix3);

SetTransform(D3DTRANSFORMSTATE_WORLD3, matrix4);

By using the flexible vertex format, you submit weights in
each vertex structure. The number of weights is one less
then the number of matrices being used. This is so that the
API can enforce the constraint that the sum of the weights
must equal 1.

For example, if I wanted each vertex to be weighted by
two different bones, I would use code that looks something
like Listing 2. There are some problems with this approach,
however. First, the API supports blending of between one
and four matrices. This leads to a content creation issue. If

a particular card supports blending of only
two matrices and your content was
designed for blending four, you will need
to clamp and scale the weights to work.
This is yet another restriction for content
creators.

Second, you set the matrices for each
primitive instead of each vertex. Each prim-
itive submitted to the rasterizer must be
composed of vertices that are blended
among the same bones. This can be a prob-
lem in certain regions, such as the shoulder
or waist where it would be quite easy to
have each vertex influenced by a different
bone.

Finally, to submit primitives efficiently
for rendering, the model will need to be
sorted by matrix usage. This may mean
rearranging your dataset with a sophisticat-
ed export utility or custom optimization
tool.

While it will be possible to create content
to match these restrictions, it won’t be
easy. Naturally, artists won’t enjoy being
limited in their methods of weighting, and
tools will need to be developed to handle
the requirements.

But I Don’t Like Direct3D!

Unfortunately, at this time, there’s no way to achieve a
similar functionality in OpenGL using transformation

hardware. The OpenGL community needs to step up and
design an extension that will provide access to this hardware
capability.

I would prefer an extension that provides more function-
ality with fewer restrictions. I imagine a vertex accumulation
buffer similar to the compiled vertex arrays we have now. In
this version, you set a transformation matrix and submit a
series of vertices with associated weight values. These are
multiplied, scaled, and accumulated. Once all the vertices
have been processed, the entire mesh is drawn with this
accumulated vertex array.

This system would have no restrictions on the number of
matrices in the blend. It would also have the side benefit of
enabling many other interesting 3D effects such as morph-
ing. I am not sure if this kind of extension could work with
hardware as it exists now but I hope to find out. I’ll keep you
posted.

What Are the Goodies?

I have provided a couple of demonstrations on the Game
Developer web site (http://www.gdmag.com). Both of

them allow you to manipulate a hierarchical skeleton to
deform a 3D mesh. One was created using DirectX 7 and the
vertex blending function, the other was created using
OpenGL and implements the method I described above. Let
me know how you think the algorithm can be improved. ■

G R A P H I C C O N T E N T

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

22

typedef struct tVertex

{

float x, y, z;

float weight;

D3DCOLOR color;

D3DCOLOR specular;

float u;

float v;

} tVertex;

#define FVF_VERTEX (D3DFVF_XYZ | D3DFVF_XYZB1 | D3DFVF_DIFFUSE | \

D3DFVF_SPECULAR | D3DFVF_TEX1)

for (int loop = 0; loop < curBone->visuals[0].faceCnt; loop++)

{

tFace *face;

face = &curBone->visuals[0].face[loop];

// There are two Matrices stored for each vertex

d3ddev.SetTransform(D3DTRANSFORMSTATE_WORLD, face->matrix1);

d3ddev.SetTransform(D3DTRANSFORMSTATE_WORLD1, face->matrix2);

vertex = (tVertex *)curBone->visuals[0].vertex;

HRESULT hr = d3ddev.DrawPrimitive(D3DPT_TRIANGLELIST, FVF_VERTEX, vertex, 3, 0);

}

L I S T I N G 2 . Vertex blending, where each vertex is weighted by two bones.

b y J e f f L a n d e r G R A P H I C C O N T E N T

pened yet, no matter how many times I
see life-like organic aliens and robotic
bipeds trotting all over the screen.

The trouble is, humans are tough to
simulate, regardless of how long we
take to create the image. It may be
obvious, but the difficulty lies in the
fact that we are all very familiar with
how humans look. We see them all the
time. In the morning, I see something
resembling a human in the mirror
while I shave. Living as I do along the
coast, I often see more of the human
form than is probably healthy both for
my ego and my digestion. In everyday
life, we see all varieties of people per-
forming every imaginable action. Each
of us is an expert in determining the
believability of a CG human form. If
the skin looks wrong or the motion
looks stiff or the lip-synch is off, each
of us screams, “Fake!”

But these technical and artistic
problems are solvable. The brilliant
artists and technicians charged with
making us believe will make sure that
it happens. I have thought a bit about
the problems this will present, howev-
er. I think about John Wayne. What if,
while he was alive, he was asked to do
a commercial for beer? Perhaps his
answer would have been, “Over my
dead body!” That used to mean some-
thing, that there was no way you
would ever get me to do something. A
bit of stock video footage and some
clever video processing tricks and
voilà — John Wayne’s dead body sell-
ing beer.

Now don’t get me wrong. I see
nothing wrong with a family member
licensing the likeness of a relative for
commercial or charitable purposes. I

think most people would be glad to
continue to provide a living for their
family even after they have gone from
this life. I just think technology has
forced us to reexamine that particular
ultimatum. Perhaps it is time for
something like, “Over my dead body
and virtually extinct telepresence.”
Kind of loses that Wild West charm,
doesn’t it?

Bringing Them Back in Real Time

C oncerns over these kinds of legal
dilemmas are not going to stop

me from doing my job, however. As a
creator of real-time 3D graphics, I not
only face the hurdles which confront
my visual effects comrades, but I also
need to make these realistic characters
move fast. Fortunately, in this task,
technology is on my side.

Realistic characters require lots of
polygons to make them look realistic.
Lots of polygons mean lots of vertices
being transformed by an overwhelmed
CPU. At Siggraph 1998, I began to see
the emergence of transformation
acceleration in the consumer graphics
hardware space (see “Taking a Break
for Siggraph,” Graphic Content,
October 1998). At that time, I thought
it wouldn’t be long before we would
be able to take advantage of hardware
acceleration for transformation and
lighting (HW T&L) in our games.
Well, Siggraph has come and gone

again and we are starting to see this
become a reality.

One consumer graphics chip com-
pany, Nvidia, has publicly committed
to delivery of hardware transforma-
tion and lighting with their next gen-
eration of graphics chips. There are
rumblings that others are likely to
deliver on this promise as well. In fact,
Microsoft is so certain that hardware
T&L will be a reality in the consumer
hardware market, they have included
support for it in the next version of
the DirectX game programming API,
DirectX 7. Game developers who are
scheduling projects for release in the
next production cycle need to consid-
er how their projects will handle hard-
ware T&L.

How Do We Deal with HW T&L?

F ortunately, the driver writers will
do most of the work for us. Games

using the transformation and lighting
pipeline in OpenGL will take immedi-
ate advantage of the hardware if it’s
available. Now, with the introduction
of DirectX 7, games supporting this API
will also transparently benefit from the
new hardware. By using the built-in
transformation pipeline in either API,
games will get faster.

This will naturally enable games to
increase polygon counts without sacri-
ficing performance. It also means that
the load on the CPU will decrease,

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 9 G A M E D E V E L O P E R

17

Over My Dead,

Polygonal Body

A mazing things have been created with computer graphics over the past

several years. Visual effects companies are poised to tackle one of the

most difficult challenges in computer-generated (CG) imaging: creating

a realistic CG human character. However, in my opinion, it hasn’t hap-

When not being frightened by the idea of virtual versions of himself, Jeff creates 3D
graphics for Darwin 3D. Let him know he is just being paranoid by e-mailing him at
jeffl@darwin3d.com.

allowing more processor time for game play features, such as
artificial intelligence and game physics. And, as to be expect-
ed, creating content that performs well on a variety of user
system configurations will be more important than ever.

Since we the graphics programmers can gain this benefit
without doing any real work, hardware T&L doesn’t seem to
affect us much. The programmer will need to conform to a
standard pipeline. For the transformation, this doesn’t seem

to be a big deal. Most 3D programmers are com-
fortable with matrix manipulation of vertices.
The problem is pretty well solved and the only
issue of trust revolves around the quality of the
driver implementation. Once the hardware is
doing the work, the driver issue largely goes
away. Most will gladly accept this pathway to
hardware nirvana.

Lighting, however, is a much more con-
tentious issue. No one I have talked to is satis-
fied with the lighting model provided by the
OpenGL and DirectX libraries. This issue doesn’t
bug me that much. I don’t know anyone who is
ready to give up lighting tricks such as shadow
maps and texture-mapped lighting for simplistic
Gouraud lighting. While we do need a hardware
solution for realistic lighting, this is not it. I
advise continued reliance on those lighting
tricks. However, as a supplement to pre-comput-
ed lighting for dynamic changes or shadow
computation, a few hardware point and spot
lights couldn’t hurt, particularly if they’re fast. I
can think of a lot of things that a few lights
could be used for.

No, simple transformation and lighting is not
the problem with hardware T&L. We run into
the real trouble when we consider what it means
for modeling organic objects.

T&L for Non-Rigid Bodies

Hardware transformation is ideally suited to
the display of rigid objects. You first set up

the transformation matrix and then submit an
object to be drawn. With hardware, it will be
costly to obtain the results of the transformation

G R A P H I C C O N T E N T

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

18

F I G U R E 1 A . Modeling organic objects is a challenge for 3D

programmers dealing with hardware T&L.

F I G U R E 1 B . Skeletal deformation systems offer both flexi-

bility and good looks.

GLvoid COGLView::GetBaseSkeletonMat(t_Bone *rootBone)

{

/// Local Variables ///

int loop;

t_Bone *curBone;

tMatrix tempMatrix;

///

curBone = rootBone->children;

for (loop = 0; loop < rootBone->childCnt; loop++)

{

glPushMatrix();

glTranslatef(curBone->b_trans.x, curBone->b_trans.y, curBone->b_trans.z);

// Set observer’s orientation and position

glRotatef(curBone->b_rot.z, 0.0f, 0.0f, 1.0f);

glRotatef(curBone->b_rot.y, 0.0f, 1.0f, 0.0f);

glRotatef(curBone->b_rot.x, 1.0f, 0.0f, 0.0f);

// Grab the Matrix that is built up to this point

glGetFloatv(GL_MODELVIEW_MATRIX,tempMatrix.m);

// Invert this matrix to get the Base->World matrix

InvertMatrix(tempMatrix.m,curBone->baseToWorldMat.m);

// Recursive call if the bone has children

if (curBone->childCnt > 0)

GetBaseSkeletonMat(curBone);

glPopMatrix();

curBone++;

}

}

L I S T I N G 1 . Code for the World->RestBone matrix.

before the object is drawn. This means everything needs to
be set up beforehand.

That’s fine for most objects and environments. However,
characters do not look their best when composed of rigid
objects. As I have explored in a previous article (“Skin
Them Bones,” Graphic Content, May 1998), creating a
character from a single mesh and then deforming it via a
skeletal system provides a better solution. By using skeletal
deformation, you maintain the good looks of a seamless
mesh and the animation flexibility of a hierarchical char-
acter system.

Unfortunately, this system requires manipulation of ver-
tex coordinates. Let me review how a skeletal deformation
technique works. I have a character in a rest pose in Figure
1a and have created a skeleton for the character in Figure 1b.

In order to deform the mesh with the skeleton, I need to
assign each vertex to a bone or set of bones. For example, all
of the vertices in the head region should be assigned to the
head bone. For now, let me assume that the vertices in the
character’s head are completely, or 100 percent, assigned to
the head bone.

I can determine the position and orientation of the head
bone at the rest frame by creating a matrix that represents
the transformation needed to move that bone from the ori-
gin to its location in the hierarchy. The matrix of each bone
is dependent on the matrices of all of its parents, so it is nec-
essary to traverse the entire hierarchy to determine this
World->RestBone matrix.

Now this matrix will take a vertex and transform it to the
location of the bone. However, when I am taking the rest
position of the character, I will need to know how to take a
vertex in the mesh and transform it back to the origin.
Fortunately, since we are using a matrix operation, this is a
simple matter of inverting the World->RestBone matrix with a
standard 4×4 matrix inversion routine. I now have a
RestBone->World matrix. This only needs to be done once, so I
can store this matrix for later use. You can see the code for
computing the RestBone->World matrix in Listing 1.

I now have the matrix I need to move any vertex from the
rest position back to the origin. Now I want to move the ver-
tex to its final pose as shown in Figures 2a and 2b. I can do

this virtually the same way. I go through the hierarchy and
create a matrix for each bone that will take a vertex from the
origin and move it to the bone position in that animation
frame. For this World->Bone matrix, I don’t need to invert it.

I now have everything I need to take a rest vertex and
move it to the final position. The procedure is as follows:
worldVertex = baseModelVertex * restBoneToWorldMat

deformedVertex = worldVertex * worldToBoneMat

There is an easy optimization step, though. Because two
matrices can be multiplied together to create a matrix that is
a sum of both transformations, I can create one matrix that
will do everything:
combinedMatrix = worldToBoneMat * restBoneToWorldMat

Then for each vertex, I simply multiply it by that one
matrix:
deformedVertex = worldVertex * combinedMatrix

This is the key to skeletal deformation. If you want to have
multiple bones influencing a vertex, this final formula can be
scaled by the amount of influence, or weight, of each bone.
The sum of all the weights for each vertex should equal 1.

What’s the Problem?

T his process requires each vertex to be transformed by a
matrix for every bone that influences it. Clearly, this

process should benefit greatly by the use of hardware trans-
formations. However, this really breaks the transformation
pipeline. It’s obviously possible for a single polygon to have
vertices that are influenced by multiple bones. Therefore,
you cannot simply set the transformation matrix and draw
a polygon as you would normally. An entire character is
even more complicated.

In order for this to work, I would need to do the matrix
operations first, combine the resulting vertices into a single
polygon, and submit that to be drawn. However, the pipeline
doesn’t allow this. Getting the results of a transformation is
not a fast process, as it requires values to be returned from
the driver through a mechanism such as feedback.

This is precisely why it’s crucial that this type of operation
be handled by the driver via the graphics API. It’s impossible

G R A P H I C C O N T E N T

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

20

F I G U R E 2 A . Our matrix enables us to move the skeleton’s

vertices to our character’s final pose.

F I G U R E 2 B . Our finished model, the beneficiary of our

transformation matrix.

to perform this kind of deformation without breaking the
transformation pipeline. Now many people are against the
idea of adding API features for specific effects such as this,
but I see no other way to achieve the goal. If the transforma-
tion could be handled as a specific DSP operation that was
not tied directly to the display, it would be possible to have
simple accelerated matrix operations. However, this is not
the direction the hardware development is heading.

What’s Being Done About It?

M icrosoft, while creating DirectX 7, realized that this
would be an issue. To solve the problem, they created

the notion of “vertex blending.” In vertex blending, the
final position of a vertex can be determined by the weighted
transformation of up to four matrices.

You set up the matrices by creating a transformstate with
the function:
SetTransform(D3DTRANSFORMSTATE_WORLD, matrix1);

SetTransform(D3DTRANSFORMSTATE_WORLD1, matrix2);

SetTransform(D3DTRANSFORMSTATE_WORLD2, matrix3);

SetTransform(D3DTRANSFORMSTATE_WORLD3, matrix4);

By using the flexible vertex format, you submit weights in
each vertex structure. The number of weights is one less
then the number of matrices being used. This is so that the
API can enforce the constraint that the sum of the weights
must equal 1.

For example, if I wanted each vertex to be weighted by
two different bones, I would use code that looks something
like Listing 2. There are some problems with this approach,
however. First, the API supports blending of between one
and four matrices. This leads to a content creation issue. If

a particular card supports blending of only
two matrices and your content was
designed for blending four, you will need
to clamp and scale the weights to work.
This is yet another restriction for content
creators.

Second, you set the matrices for each
primitive instead of each vertex. Each prim-
itive submitted to the rasterizer must be
composed of vertices that are blended
among the same bones. This can be a prob-
lem in certain regions, such as the shoulder
or waist where it would be quite easy to
have each vertex influenced by a different
bone.

Finally, to submit primitives efficiently
for rendering, the model will need to be
sorted by matrix usage. This may mean
rearranging your dataset with a sophisticat-
ed export utility or custom optimization
tool.

While it will be possible to create content
to match these restrictions, it won’t be
easy. Naturally, artists won’t enjoy being
limited in their methods of weighting, and
tools will need to be developed to handle
the requirements.

But I Don’t Like Direct3D!

Unfortunately, at this time, there’s no way to achieve a
similar functionality in OpenGL using transformation

hardware. The OpenGL community needs to step up and
design an extension that will provide access to this hardware
capability.

I would prefer an extension that provides more function-
ality with fewer restrictions. I imagine a vertex accumulation
buffer similar to the compiled vertex arrays we have now. In
this version, you set a transformation matrix and submit a
series of vertices with associated weight values. These are
multiplied, scaled, and accumulated. Once all the vertices
have been processed, the entire mesh is drawn with this
accumulated vertex array.

This system would have no restrictions on the number of
matrices in the blend. It would also have the side benefit of
enabling many other interesting 3D effects such as morph-
ing. I am not sure if this kind of extension could work with
hardware as it exists now but I hope to find out. I’ll keep you
posted.

What Are the Goodies?

I have provided a couple of demonstrations on the Game
Developer web site (http://www.gdmag.com). Both of

them allow you to manipulate a hierarchical skeleton to
deform a 3D mesh. One was created using DirectX 7 and the
vertex blending function, the other was created using
OpenGL and implements the method I described above. Let
me know how you think the algorithm can be improved. ■

G R A P H I C C O N T E N T

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

22

typedef struct tVertex

{

float x, y, z;

float weight;

D3DCOLOR color;

D3DCOLOR specular;

float u;

float v;

} tVertex;

#define FVF_VERTEX (D3DFVF_XYZ | D3DFVF_XYZB1 | D3DFVF_DIFFUSE | \

D3DFVF_SPECULAR | D3DFVF_TEX1)

for (int loop = 0; loop < curBone->visuals[0].faceCnt; loop++)

{

tFace *face;

face = &curBone->visuals[0].face[loop];

// There are two Matrices stored for each vertex

d3ddev.SetTransform(D3DTRANSFORMSTATE_WORLD, face->matrix1);

d3ddev.SetTransform(D3DTRANSFORMSTATE_WORLD1, face->matrix2);

vertex = (tVertex *)curBone->visuals[0].vertex;

HRESULT hr = d3ddev.DrawPrimitive(D3DPT_TRIANGLELIST, FVF_VERTEX, vertex, 3, 0);

}

L I S T I N G 2 . Vertex blending, where each vertex is weighted by two bones.

b y P a u l S t e e d A R T I S T ’ S V I E W

time because of the millions of faces
you have to ray-trace. Then again, if
you have a pimped-out machine even
the mental gymnastics of making sure
your model complexity matches your
in-view requirements becomes moot.
Even so, if your scene contains a dis-
tant character that is only 50 pixels
high in your 720×486 render, chances
are he doesn’t have to have 50,000-face
boots. High-resolution modeling and
animating is a luxury.

When animating characters for real-
time polygonal games such as QUAKE 3:
ARENA or DRAKAN, “luxury” becomes a
four-letter word, and optimization
your mantra. More so than in rendered
character animation, real-time, low-
polygon character animation requires a
lot more brain power and planning.

Low-Polygon Defined

I ’ll begin with defining low-polygon
as a character weighing in at under

1,000 faces. Most of the characters I
typically work with have between 700
and 900 faces — but without splitting
too many hairs, any model with four
digits in its face-count just isn’t low-
polygon anymore. Then again, there
are plenty of characters in games today
that are over 1,000 faces, but they’re
usually “boss” or unique characters
that are going to dominate a scene and
allow for more polygon gluttony on
that character’s part.

The character in Figure 1, for exam-
ple, is actually composed of two charac-
ters. The big ugly guy is the mount of
the actual boss character (sitting on his
back) and together they weigh in at
around 3,500 faces. Of course, no other
enemies can be present at the same time
this final boss is on-screen. Otherwise
the game would turn into a slide show.

Other factors that determine what
“low-polygon” actually means can be
the core technology (or game engine)
used and level of detail. Level of detail
is straightforward enough and consists
of adjusting mesh complexity based on
its proximity to the viewer. Right now
there are several programs, both stand-
alone and plug-in, that will optimize
your models for you, increase the speed
of the game and basically give you
more polygons with which to build
your characters. As far as what kind of
animation technology can drive your
characters, there are currently two

main types: skeletal animation and ver-
tex deformation.

Skeletal vs. Vertex Deformation

In simplest terms, skeletal animation
consists of a mesh being deformed by

an underlying skeleton. The mesh itself
and its subatomic components of ver-
tex, edge, and face don’t contain any
animation data. They are attached to
the skeleton and are tweaked to certain
tolerances as they are influenced by one
or more bone. The bones are then ani-
mated instead of the mesh itself and the
game uses that data to translate motion
into the character. Valve incorporated a
skeletal animation system into id Soft-
ware’s QUAKE engine to allow them
more fluid motion, less media storage
per character, and occasional higher-
polygon creatures in last year’s critically
acclaimed HALF-LIFE.

The advantages of a skeletal anima-
tion system are numerous to say the
least: smoother animation sequences,
more realistic and diverse animations,
80-frame walk cycles, and so on. But in
the end, the skeletal animation relies
on keyframed (or motion-captured)
data provided by the artist just like ver-
tex deformation animations. Ironically,
most vertex deformation keyframe
meshes are derived from animations
created using a skeletal system of some
sort (just not in the game engine). It’s
true vertex deformation animation lim-

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 9 G A M E D E V E L O P E R

25

Staying in Shape: Low-Polygon

Mesh Accommodation

B uilding and animating high-resolution characters for use in rendered art

such as print ads, game cinematics, or movie special effects is fun — the

sky’s the limit. Your only possible concern in terms of total polygon

count is the unwieldy nature of large scenes and the length of render

Paul Steed is a form of computer game artist concentrate. Just add expensive imported beer, hard-to-find microbrewery swill or bot-
tled water to yield a virtually endless supply of ideas, models, animations, and the occasional texture or three. Paul Steed can be
found in the upcoming title, QUAKE 3: ARENA. For product information, contact psteed@idsoftware.com.

F I G U R E 1 . These two characters

won’t have any on-screen company.

its itself by providing a locked pose
mesh that essentially becomes a key-
frame. It’s just as true that skeletal ani-
mation limits itself by taking a certain
amount of control away from the artist
and forces him or her into the con-
straints of a narrow technological box.

Vertex interpolation, variable frame
rate control, and a logically segmented
body system via tag representation can
make vertex deformation work nearly
as well as a full skeletal system and
leave a huge amount of control and
extensibility in the hands of the artist.
Figure 2 shows id’s upcoming QUAKE 3:
ARENA, in which this technique for ani-
mating characters has yielded signifi-
cant animation enrichment. The biggest
benefit of a system like this is that when
you move your mouse from side to side,
your character’s head, then torso, then
lower body shift around accordingly.
This generates small, ancillary motions
created by the player that never had to
be keyframed, and in essence become
true real-time animation.

Regardless of what animation system

the game engine employs utilizing low-
polygon models for characters, face-
counts are still important for overall
game speed. Even with a dynamic
level-of-detail system and a higher
polygon budget, not paying careful
attention to the construction of your
mesh is just asking for trouble when
you go to animate it.

Look at Those Lines

A s you can see in Figure 3, this
character has a certain amount of

curvature in its design that needs to be
conveyed and retained while going
through a varied range of motions.
Once the model is attached to a skele-
ton (in this case a biped using 3D
Studio Max 2.5 and Character Studio),
we can seek out any problems with her
mesh integrity as she animates.

Looking at the wireframe of the
model, you can see I’ve tried to keep it
as clean and symmetrical as possible.
By this I mean making every vertex,
edge, and face a useful part of the
model. Keeping the model symmetri-
cal in terms of gross polygon usage is
key. If it isn’t needed to delineate an
intentional shape, get rid of it. In
essence, the character gets its mass
through the shaping of its constituent
parts. Of course, the trick is to impart
mass in fewer than 800 faces.

So, after the model is attached to her
underlying skeleton, I begin animating
her. Figure 4 shows how the character
looks during her walk cycle.

Not bad. The mesh seems to be

deforming well enough and the shape
is holding up nicely. This particular
character carries a weapon of some sort
all the time so, I’ve assigned a wire-
frame material to it preventing it from
obscuring any mesh weirdness.

Now let’s look at another animation
sequence: her crouched walk cycle,
shown in Figure 5. Immediately I see
some weirdness at her backside. Given
the limited number of polygons, it’s
hard to get a decent FPB (face per butt)
ratio going, so some angularity is to be
expected. However, the settings in the
animation tool that describe how much
influence a particular bone or joint has
over the geometry can be tweaked to
overcome this. Sometimes, however, the
settings are right and the mesh itself
needs to be tweaked.

A R T I S T ’ S V I E W

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

26

F I G U R E 3 . Modeling this character’s

curves efficiently will be a challenge.

F I G U R E 4 . The character’s walk cycle — so far, so good.

F I G U R E 6 . Her inner thighs flatten as she crouches down. F I G U R E 5 . Her crouched walk cycle presents problems.

F I G U R E 2 . Players create true real-

time animation in QUAKE 3: ARENA.

Look a little closer at the mesh in
Figure 6. Notice we’ve hid everything
but the legs and have gone to a flat-
shaded, non-textured mode to get a bet-
ter sense for the deformations of the
model. For me, smooth shading hinders
my ability to get a feel for how the
model is shaping up and I always work
in flat-shaded mode when not in wire-
frame. In the case of this particular
model, not only is it losing its rounded
shape when crouched, the inner thighs’
edges are collapsing. Easy enough to fix
— turning some edges will help the flat-
tening of the inner thigh, so let’s do just
that, as I have done in Figure 7.

Figure 8 shows how it looks better
with the edges turned, but what about
those pointy cheeks? Houston, from
this view, we definitely have a prob-

lem. This character is supposed to be a
sexy biker/monster-killer/femme fatale
who can frag with best of them.

To begin correcting the problem, we
need to look more closely at the legs
(Figure 9). We take for granted the ver-
tex weighting and bone influences are
correct, so the task at hand is to add
faces to the hip and leg areas to give
her fewer angles and more curves. But
first, I’ll explain the reasoning behind
the current distribution of polygons.

Obviously, frugality is the key here.
I’ve tried to keep the cross-section of
the leg at any given point down to no
more than a pentagon. The thighs were
meant to be strong and healthy, and
the knees need extra segments for flex-
ion. To the rear, a few extra faces were
put in relative to the rest of the legs

purely for shaping reasons and deemed
an important enough feature to have a
relatively good FPB (not great, but not
too skimpy, either). The boots are great
since the texture is so detailed and cov-
ers up the low number of triangles
there. Obviously the problem lies in
the area from the mid-posterior to just
above the knee.

Figure 10 provides another look at the
leg done in cross-section to show what I
mean. Notice how the inner thigh lines
created by the configuration of faces
and edges cause some bad pinching and
edge overlap. The two vertices at the top
of the thigh can’t really move around
too much since they anchor the hips,
and help keep the mass there. So again,
the conclusion stands that we need to
put some more faces in the thighs.

Thus, after much tweak-
ing — adding more faces,
experimentally turning
edges to see what works
best, playing around
with the vertex weight-
ing, and tweaking some
more on top of that — I
came up with the solu-
tion shown in Figure 11.

Compare the front
view of the old and new
version of the legs. As I
went through the tweak-
ing process, the most
interesting change I had
to make was the relative-
ly minor adjustments to
the height of the vertices
that form the hips (1).

A R T I S T ’ S V I E W

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

28

F I G U R E 7. Turning some of the edges alleviates the flat-

tening of the inner thigh.

F I G U R E 1 0 . Now we’ve isoated the problem: some

edges are overlapping and pinching at the inner thigh.

F I G U R E 9 . Polygons have been care-

fully allocated throughout the legs.

F I G U R E 8 . Pointiness in back is an unwanted side effect of

fixing the inner thigh problem.

This wasn’t just a purely form-keeping
move to better use the extra polygons I
put in her backside, either. This height
adjustment was key to making sure that
in the crouched position the segments
making up the curve of her cheek
flexed and distributed themselves even-
ly enough to look rounded. Again, this
may be something particular to the way
Physique works in Character Studio,
but I remember having the same issues
in Alias|Wavefront’s Power Animator.

Moving on, also note that when I first
built the leg, I simply over-optimized
the thigh and compromised its mass by
not having a full segment midway up
(2). I also had to increase the cross-sec-
tion circumference to retain mass when
the character crouches (3). Next, I had
to insert a partial segment just above

the knee to support
the muscular inner
thigh I was trying to
impart (4).

Figure 12 shows a
full comparison
between the old leg
(blue) and new leg
(yellow). Overall, I
had to add more
geometry, but more
importantly I had to
make sure the edges
were arranged to
avoid inappropriate
collapsing. Again,
this takes time and
experimentation
more than anything else, but the fact
that there is a limitation on the polygon
count makes it more challenging than if
I could have added unlimited faces.
Referring to our cross-section in Figure
13, we can see the leg is more rounded
and full. Now she can crouch walk in
style and not get laughed at because her
behind is so pointy (Figure 14).

Rising to the Challenge

C reating convincing, good-looking,
low-polygon meshes is a challenge.

Making sure these models animate well
with their polygon budgets requires
quite a bit of thought. If I had to come
up with an overriding rule of thumb
when it comes to ensuring your mesh
will accommodate your animations, I’d
say it’s a matter of convexity. When I
tweaked the character’s leg to make it
retain its mass, my goal was to find
edges that were being torqued in such a
way that the illusion of mass was being
taken away.

I turned the edges to go from a con-
cave to a convex look, but in the case
of the upper thigh, I had to insert addi-
tional geometry to support its shape.
Viewing your model in flat-shaded

mode makes finding concave edges rel-
atively easy, but very crucial. When
reviewing and testing your models for
proper deformation, definitely seek out
those edges and turn them. Unwanted
dents and divots in your mesh break
the illusion of mass very quickly and
just plain make your model look bad.

I know attaching a mesh to a skeleton
and spending hours getting your vertex
association just right is a difficult thing
to throw away. I cringe every time I real-
ize I have to detach the mesh and tweak
it. Not only is reattaching it a pain, but
reassigning UVs and getting the texture
(if it’s already been done) to line up
makes for hair loss and lack of sleep.
However, if you have to perform mas-
sive reconstructive surgery on a part of a
model that isn’t quite working out to
make it better than it currently
is...tough. Unless you’re going gold the
next day, never settle for what the com-
puter will give you — only settle for
exactly what you want. It’s what sepa-
rates the men from the boys and the
women from the girls. ■

A R T I S T ’ S V I E W

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

30 F I G U R E 1 1 . A few small changes will

make a big difference.

F I G U R E 1 2 . In the end, a little more geometry was

added, with careful attention paid to arranging the edges.

F I G U R E 1 3 . After the changes, the

thigh is rounder and fuller. F I G U R E 1 4 . At last, our character can crouch with confidence.

Now that DRAKAN has shipped, Mel

Guymon is taking a few months off to

recover. He will return in January 2000.

Where’s Mel?

b y O m i d R a h m a t H A R D T A R G E T S

Obviously, bundling software with
hardware is a symbiotic process that
should benefit both the software and
hardware partner, but it’s also a special-
ist sales channel that needs to be
approached with care.

Everyone a Microsoft

T he greatest bundling machine in
the computer business is Micro-

soft. Not only does the company have
its operating system bundled with
every PC sold, but you can almost
guarantee that there are other Micro-
soft goodies on your hard drive, and
even the odd interactive media prod-
uct. In very simple terms, Microsoft
makes the software that sells the hard-
ware, and in return, the hardware
vendors have had little desire to go
anywhere else for software. Fortunate-
ly, Microsoft has also driven PC tech-
nologies by supporting features in its
operating systems that have made it
possible for hardware innovations to
flourish.

Game developers may not be able to
offer the same breadth of opportuni-
ties as Microsoft does with Windows,
but they do hold a key, which can
unlock higher-end technologies such
as 3D graphics and surround sound
audio, and they also help Intel and
AMD sell ever-greater performing
CPUs. Leading the charge in entertain-
ment software OEM deals is Interplay
OEM. In fact, Interplay is the only one

of the major publishers that has set its
OEM business as a separate subsidiary.
Interplay OEM should stand alone;
the company counts among its cus-
tomers LucasArts, Take Two Interac-
tive, Fox Interactive, Westwood
Studios, Virgin Interactive Entertain-
ment, and Gathering of Developers.
It’s the model of how OEM sales
should be built into a game publish-
ing business.

Additionally, Interplay OEM also
handles licensing and merchandising
activities on behalf of Interplay and
Shiny Entertainment, including nov-
elizations, strategy guides, and other
merchandise tied to Interplay’s game
properties. There are also arrange-
ments for royalty-based revenues from
licensing arrangements and the sale of
products by third-party distributors in
international markets.

Bundling for Profit

J ill S. Goldworn has served as presi-
dent of Interplay since December

1996, and has handled OEM contracts
for the last ten years. Unlike some
game developers and publishers that
view OEM sales as part promotional
tool and part incremental revenue
stream, Goldworn has a strong belief

that the OEM sales channel is a major
revenue contributor.

Goldworn says, “OEM sales are for
pure revenue purposes and, also
important, getting access to cutting
edge technology early. It’s the same as
in the console market — if a developer
gets a hold of the next-generation
technology early enough, it is posi-
tioned to take advantage of the con-
sole at launch. We’ll actually put in
support for some technologies before
the traditional retail channel estab-
lishes a need for it — for example,
DVD. We’ve been developing DVD
titles for a number of months. So,
we’ve actually developed DVD titles
for OEM, which retail will take to the
market later.”

The benefit of marrying the revenue
potential of OEM sales to the techno-
logical advantage it can give a develop-
er isn’t lost on companies such as
France’s Ubi Soft, and Rage Software,
based in the U.K. Ubi Soft’s TONIC

TROUBLE, and previously, POD, have
achieved unit shipments in excess of
one million by piggybacking behind
the Pentium II and Pentium III launch-
es. POD was probably the standard-
bearer for MMX-enhanced games, and
while it may have done well in OEM
channels, there never was any retail
MMX market to speak of. In 3D, Rage’s

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 9 G A M E D E V E L O P E R

33

Interplay OEM:

Little Bundles of Joy

R ecently, Mattel Media announced that it was teaming up with Patriot

Computers to launch Barbie- and Hot Wheels-branded PCs for children.

These lunchbox PCs (my term, not the manufacturers’) would cost

around $599, and include a library of education and entertainment soft-

ware from Mattel Media and its recent acquisition, The Learning Company. No prizes for

guessing which computer would have the girl software, and which the boy software.

Omid Rahmat is the proprietor of Doodah Marketing, a digital media consulting firm.
He also publishes research and market analysis notes on his web site at
http://www.smokezine.com. He can be reached via e-mail at omid@compuserve.com.

INCOMING has been among the best
selling OEM titles in recent years,
probably constituting a third of Rage’s
total revenues. Now, the company’s
follow up, EXPENDABLE, is following in
its footsteps, and looks as if it too will
come out equally strong in Pentium III
lineups in 1999.

Goldworn herself has evangelized
the OEM channel to the game indus-
try drawing other publishers into the
Interplay OEM fold. “Our whole
model is to educate publishers about
technologies that will eventually
become a revenue stream for them,”
she says.

LucasArts used to think of OEM sales
as a small contributor to its revenues,
and not worth focusing on. However,
after five years of working with Inter-
play’s OEM team, the company is now
putting an OEM SKU on its release
schedule. Whereas in the past
LucasArts would take months to build
an OEM version of a title, it now has
an OEM support and development
structure in place almost simultaneous-
ly releasing retail and OEM SKUs. For
companies such as LucasArts, it makes
good business sense to be in OEM, but
it is also valuable strategically. The
developer gets early access to technolo-
gies, and the title gets automatic expo-
sure in the hardware vendors’ market-
ing and sales promotions.

Of course, the hardware technolo-
gists need game developers more than
they’d care to mention. Intel, AMD,

3dfx, Nvidia, Diamond, Creative, ATI,
and Matrox have all courted develop-
ers with technology, free hardware,
and sometimes, cold, hard cash, in
order to get a game or games ready for
a new product launch. It also helps
when a company such as Intel recom-
mends the cutting edge titles it favors
to its PC OEMs. It’s a win-win situa-
tion for all parties, but developers
have to be aware of the problems of
jumping on the cutting edge of tech-
nology, too.

Working with new technologies
often means that a game title has to
be modified for it, in addition to
being maintained for the existing
installed base. Everything from code
to art work has to be refreshed in
some cases, and the results could be
slippage in shipment times, or even
lost development time if things don’t
go according to plan. In other words,
the risks of working with any new
technology don’t go away when an
OEM is involved, regardless of the
financial carrot being dangled.

Delays in shipment of a title, or the
expectation that an OEM release will
translate into a big retail launch, are
often the two biggest problems devel-
opers face. If a developer is tied into an
OEM release in order to get a launch
for a new title, any delay can have seri-
ous repercussions. Even a successful
OEM product doesn’t guarantee a simi-
lar impact in the retail channel. Ubi
Soft’s POD proves this. Therefore,

developers should plan for OEM in
much the same way as they plan for
any title.

An OEM Strategy

W ith the development hiccups of
OEM opportunities having

been overcome, there are still numer-
ous ways in which a company can get a
title bundled with hardware:
STRAIGHT: The straight bundling deal
requires the developer or publisher to
deliver a CD for inclusion by the hard-
ware vendor with its products. The
deal is often subject to a certain mini-
mum quantity, or staggered so that
different discounts apply as the ven-
dor ships increasing numbers of the
bundled software. The straight bundle
deal is probably the easiest to track
because finished goods are being
shipped, and revenue generated
directly thereafter. However, while
straight bundling deals are great if you
are in the position of an Interplay
OEM, and have a strong catalog of
titles to offer, a smaller developer will
often find them more difficult to
come by. Still, there is always room in
the OEM market for a title that defines
a new technology and gets consumer
recognition of it.
TARGETED: A developer or publisher may
choose to target a particular 3D graph-
ics chipset, or CPU product. Ubi Soft is
doing it with Matrox, and Interplay

H A R D T A R G E T S

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

34

1
9

9
7

$ 120,053

OEM*

Int'l

Int'l

N. America

N. America

OEM*

58% 28% 14%

53% 35% 12%

10 20 30 40 50 60 70 80 90 100 120 1300
% of Change
1997 - 1998

N
.

A
m

e
ri

ca

In
t’

l

O
E

M
*

N
e

t

R
e

ve
n

u
e

Net Revenue

25%

20%

15%

10%

5%

0%

-5%

-10%

-15%

-20%

Total revenue in thousands of dollars

* OEM, royalty, & licensing

Net Revenue $ 126,862

$64,106 $41,922 $14,025

$73,865 $35,793 $17,204

100%

100%

6
%

2
3

%

-1
5

%

15
%

1
9

9
8

C H A R T 1 . Interplay OEM’s performance relative to overall revenue achievements, in thousands of dollars and percentage

points. Interplay OEM also provides licensing and merchandising deals, but it can be safely assumed that the bulk of its

sales are from straightforward bundling deals (source: Interplay).

OEM has done it with 3dfx in the
past. In effect, the modified OEM title
will only work on the hardware ven-
dor’s particular product. For example,
the title might work with 3dfx’s
Voodoo 3, but not Voodoo 2. It’s
almost an ideal bundle arrangement
because the hardware vendor gets to
launch big on a product and use a spe-
cific title for its platform, while a
developer gets the benefit of the expo-
sure the hardware brings, but can still
look forward to exploiting opportuni-
ties in other areas of the market and
on other hardware platforms. Intel,
AMD, and any number of 3D graphics
and audio guys have a vested interest
in getting a unique experience for
their products.
ENCRYPTED: Some vendors have attempt-
ed — with little success thus far — to
ship encrypted, time-locked versions
of their titles with a hardware prod-
uct, hoping to get the benefit of the
full sell when a user buys the product-
unlock key. This is more of a market-
ing strategy, and less of a bundling
arrangement, but it is something that
has been tried in the OEM market

before. The results for game compa-
nies have been poor, with response
rates being equivalent to a direct mail
campaign, in the region of one or two
percent. So it works for AOL disks, but
not for games. Still, many hardware
vendors are looking at ways of creat-
ing bundling arrangements that will
allow them to get a slice of the retail
sale of a title. The most obvious possi-
bilities are going to be on the Internet.
As more hardware companies develop
their direct sales on the web, they are
looking for ways to leverage their
products off of software and content.
In many cases, selling a package of
goods, such as a graphics board and a
handful of titles, is better than trying
to sell the individual components of
the deal separately.
LIMITED: With some popular titles, limit-
ed versions, or versions containing spe-
cific levels but not the full retail com-
plement, are used in OEM bundles.
LICENSED: Many vendors are moving to
a model whereby they license content,
therefore not requiring any finished
goods from the developer. As is the
case with most PC OEMs, bundled

software is preloaded on the hard
drive, and the cost of reproducing a
number of bundled software CDs is
saved.

As for the revenues, bundled titles
can fetch anywhere from as little as
35¢ to as much as $14 per title. The
minimum quantities required to qual-
ify for a bundle deal varies. I have
seen deals done for 12,000 unit com-
mitments on some high-end peripher-
als, to multi-million-unit commit-
ments on some CPU products. For
most of the major publishers, once a
product’s revenues fall under $1 per
unit, the OEM sales lose almost all
their appeal. Publishers will change
pricing depending on the age of the
product, or the hardware vendor they
are dealing with. Whatever the price
or the unit commitment, new tech-
nologies such as faster CPUs and faster
3D graphics need games to turn con-
sumers on to them. It’s also worth
knowing that these new hardware
technologies are more profitable for
the vendors, thus leaving room for an
aggressive OEM sales company like
Interplay OEM. ■

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 9 G A M E D E V E L O P E R

35

ound effects are an integral part of games, equal in importance to

artwork, music, and game play. And I’m not just saying that because I

create them either — I’m also a game player, so I understand their

impact from that perspective, too. Sounds are designed to absorb

the player into the game world, to make it believable, entertaining, and satisfying.

The process of determining the appropriate sounds for a given game situation, creating

them, and implementing them in the game isn’t always a painless experience. Both

sound designers and game producers need to understand each other’s professional needs

and responsibilities so that the sound design process becomes less grueling to both par-

ties. This article describes the process of determining what you will need from a third-

party sound designer, what that person will need from you, and will briefly describe the

process audio contractors go through to create high-quality sound effects.

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

36
B Y A A R O N M A R K S

Aaron Marks (aBmajor@aol.com) is a sound designer, music composer, and owner of On Your Mark Music Productions. Look for
more of his life story at: http://members.aol.com/aBmajor.

How to work with a
third-party sound

designer

il
lu

st
ra

ti
o

n
 b

y
St

u
ar

t
B

ra
d

fo
rd

Where Does It All Start?

J oey Kuras, sound designer for
Tommy Tallarico Studios, has per-

sonal credits on more than 60 games,
and he recently worked on the James
Bond game, TOMORROW NEVER DIES.
Early in the production cycle, he was
given a list of effects needed for the
title. He designed and delivered more
than 200 sounds per the developer’s
request, only to have approximately 90
percent of them discarded as the pro-
duction matured. He ended up recreat-
ing them later in the project. On
another project, he received an unspe-
cific and vague list of sounds. The
request for a “splash” sound had little
meaning to him. Was it a rock making
the splash? A person? A 400-pound
object or a four-pound object? Was the
body of water a bathtub, a pond, or an
ocean? No one he talked to was sure
and they ended up waiting far into the
project to solve the mystery.

This is a lesson for all of us. Early
concepts of art and game play have a
tendency to change and continuously
evolve, so sound design at the outset of
a project is usually a grand waste of
time. Producers have the difficult task
of trying to determine the audio needs
of the game early in the development
cycle, and if a contracted sound design-
er is used, the producer must find one
whose skills and credits match those of
the game being developed and negoti-
ate the contract with that individual.
When you are spending up to $30,000
for sound effects, you want to get your
money’s worth.

The producer may have to take a
long-range look at what sorts of
sounds the game may need (general
Foley sounds, imaginative or “far out”
sounds, and so on). If the game is to
have a wide range of settings and
characters, it can be difficult to imag-
ine what this large bank of effects will
consist of. Therefore, it’s important to
bring the development team together
to begin thinking conceptually about
the game audio as early as possible. If
you’ve decided on a sound profession-
al, bring him or her in on the discus-
sion and listen to what the sound
designer’s experience has to say. A lot
of time can be saved this way and the
process will have more grease for a
smooth ride. Don’t be tempted to
jump into the audio implementation

details, however — starting the cre-
ation of game sound effects too early
in the process often leads to major
headaches down the line, as I’ll
explain later.

Usually, when a game is far enough
along (at the point when characters,
movements, and a defined game play
model are present), the sound designer
should enter the picture. By permitting
sound designers to meet with the devel-
opment team, view some rough game
levels, and perhaps see some animation
ideas, their idea machine can begin to
churn out possible routes to take.
Also, asking a few

specific ques-
tions will bring a direction and neces-

sary information together to get off to a
smart start.

Contracting Out the Work

T he actual task of finding a third-
party contractor can be as arduous

as creating the game itself. Unless
you’ve worked with a particular sound
designer in the past and you’re com-
fortable using him or her again, you’ll
need to take care of some advance
work. Even before the project is put
out for bid, a media buyer (often the
producer’s role) can do homework.
Investigate various sound design
companies beforehand to stay ahead
of the game. Web search engines can
help, developer resource web sites are
prevalent, and the numerous unsolicit-
ed e-mails, inquiries, and résumés can
(finally) be taken advantage of.
Request a sound designer’s current
demo reel, references, and examples
of past work, and keep this data on
file.

When the time does come to start
looking at bids, the producer alone, or
with several of the team members, sits
down to evaluate submissions. Gener-
ally, they are looking for outstanding
work, creativity, a shared vision, relia-
bility, experience, and someone with
whom they feel they can work for the
length of the project. After the field
has been narrowed to a couple of
choices, pick up the phone or invite
them over. It’s a good idea to talk to
the candidates either by phone or in
person before any final decisions are
made. Check their production sched-
ules to ensure they will be available
(some busier sound people are booked
two to three months in advance), see
which one you feel is best at commu-
nicating and receiving ideas, and get a
sense of whom you can get along
with.

Moving on from the courtship stage
toward project commitment necessi-
tates that both parties bring their
interests (and sometimes lawyers) to
the table and work out an agreement
both sides feel comfortable with.
Typically, though, negotiations for
sound design work are fairly simple.
More complicated negotiations come
up when music creation is also part of
the deal, because that can also involve
hashing out ancillary rights, payment
for different SKUs, bonuses, property
rights for soundtrack releases, and so
on. Spend a little time working out an
equitable agreement and get the
business out of the way so you can
focus on the creative aspects of great
development.

Prices for sound design services vary
per contractor, as each contractor has
different overhead costs to meet. Those
with more experience can, of course,
demand more, and their experience is
usually worth the price. Rush jobs, spe-
cial requests, and other tasks assigned
to the sound designer (such as audi-
tioning, hiring, and producing voice
talent and their sessions, abnormal
amounts of revisions or change orders,
and so on) can increase the price, too,
so try to plan ahead. The bottom line is
that costs are definitely negotiable, but
don’t expect the contractor to work for
free or below their expenses. For more
information about payments and con-
tracts for sound design, see the sidebar
on p. 44, “The Audio Development
Agreement.”

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

38

G A M E A U D I O

Questions Sound Designers Ask

A round the time a producer is trying
to wrap up contract negotiations

with a sound designer is when the
sound designer is going to want to
know the nitty-gritty details about the
project. This is the point at which “clear
and concise” can mean the difference
between complete audio bliss and a
sound disaster. A good sound designer
will want specific information about the
game. As the producer or team leader,
be prepared to answer the following
questions clearly and concisely:
FOR WHAT PLATFORM IS THE GAME INTENDED?
This will suggest what type of playback
system the consumer will use and the
confines the final sound effects will rest
within. As a sound guy, I mix to several
playback systems — from “el cheapo”
multimedia speakers you buy at the
grocery store to high-end studio moni-
tors. My interest is to make my sounds
work well with them all, but my main
focus is on the system the majority of
people will be using.
FOR WHAT GENRE IS THE GAME INTENDED? You
want the music and sound effects to
follow the spirit of the game, so make
sure you communicate this to your
sound designer, including the feel of
the game, what genre it falls into, and
what similar games are currently on
the market.
WHAT SAMPLE RATE, BIT SIZE, AND FILE FORMAT

ARE PREFERRED? Should the audio be in
stereo or mono? The development team
should have done all of its homework to
determine how much space the graphics
and sound will be allotted. This infor-
mation will help decide the sound qual-
ity level and within what parameters
the sounds should be created.
WILL SOUND EFFECTS BE ALTERED BY ANY SOFT-
WARE OR HARDWARE PROCESSORS? Addition-
al processing by a game engine will
determine to what extent certain
sounds are processed beforehand by
the sound designer (if a sound designer
applies reverb to a sound that the
developer had planned to apply reverb
to in the game, that could be a prob-
lem). For example, driving games often
apply a reverb effect to sounds. This is
the kind of information the sound
designer needs to know at the outset.
Decide as soon as possible if there are
plans for this type of processing and
communicate them, so that the sound
designer doesn’t overprocess any files.

ARE ANY AMBIENT SOUNDS NEEDED? You
probably don’t want to distract the
player with silence. If the game will use
background music, tell the sound
designer — designers won’t know this
fact unless they are also the composer.
This question may jog a producer’s
memory and alert the team to the fact
that more than just event-driven noises
are needed.
WILL CERTAIN EFFECTS HAVE PRIORITY DURING

PLAYBACK? There can be instances during
a game (a player unlocks a hidden door,
stumbles into a trap, or is attacked by a
villain) when a single sound punctuates
the moment. All other sounds become
irrelevant and this one sound takes pri-

ority. These are the ones you want to
have the biggest bang for

the buck. Since
other

sounds
won’t be drown-
ing them out or playing
over them, you won’t have to
consider whether other effects can be
heard at the same time. It’s critical to
get this type of sound perfectly, and by
alerting sound designers to these
effects, they’ll know which ones to pull
out the stops for.
WILL THERE BE ANY VOICE-OVERS OR SPEECH

COMMANDS THAT NEED TO BE HEARD? Similar
to the way vocals must stand out in a
song mix, any vocals in a game must be
heard easily by players. A sound design-
er can be involved with processing
speech via an equalizer or the volume
controls to ensure they can be heard
and understood over the other effects.
ARE ANY NARRATIVES NEEDED? Will there be
background sounds to accompany nar-
ration? Narratives fit into the sound
recording category, and generally any-
one capable of sound design can also
record narration. If you already have
narratives recorded, the sound designer
can usually transfer these recordings

into digital files, maximize the sound,
cut them to length, and add any addi-
tional background or Foley sounds. If
narratives are to be recorded, sound
designers need to know if they have to
provide the voice talent so they can
budget accordingly. A good question to
ask prospective sound designers is
whether they have any experience
directing narrative sessions, and if not,
make it clear that the producer will fill
that role.
ARE THERE ANY SPECIAL SOUND CONSIDERA-
TIONS? Is the game intended to be an
audio trend setter, and use technologies
such as Dolby Surround Sound or DTS?
Are you planning to advertise the game
as having “cinema quality” sound?
Knowing this ahead of time could be an
important safety tip for the sound
designer’s longevity in the business.
WHAT TYPE OF MUSIC, IF ANY, WILL PLAY AS THE

SOUNDS ARE TRIGGERED? This would give
the sound designer an indication of
what other sonic activity will be hap-
pening during the game. If the music
will be a soft orchestral score, you
might want the sound effects geared to
that mood, and not sound too obtru-
sive. If a rock soundtrack will be played,
then harsher sounds and careful manip-
ulation of an effect’s higher and lower
frequencies will ensure these stand out.
The sounds should all work together to
enhance game play, not aggressively
compete with one another.
ARE ANY SOUND RESOURCES AVAILABLE TO THE

SOUND DESIGNER FOR LICENSED MATERIALS?
ALIEN VS. PREDATOR, STAR TREK, and
SOUTH PARK, for example, are games
based on film or television properties
that were produced under licensing
agreements. If the publisher or devel-
oper has secured use of the actual
sounds from these works, sound
designers need to know if they have it
at their disposal to manipulate for the
game, or if they are expected to recre-
ate it themselves. While your sound
designers may not have an actual hand
in creating them originally, they are
equipped to convert them to the prop-
er formats and sample rates and need
to know, for planning purposes, if this
service is desired, too.
ARE ANY SPECIAL FILE NAMING CONVENTIONS

REQUIRED FOR FINAL DELIVERY OF SOUNDS? If
the development team is overly orga-
nized, or if they waited until late in
production to bring a sound designer
on board, they may already have file

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

40

G A M E A U D I O

names pro-
grammed into the code.

While renaming files is not a big deal,
it may help cut down on any confusion
when delivery is made if they are
already appropriately named. The
developer should make this need clear
or define an acceptable method.

Getting to Work

Once the sound design contractor
has been hired, the previous ques-

tions have been answered, and the
appropriate nondisclosure agreements
have been signed, one or two people
on the development team should be
assigned as liaisons to the sound
designer, who are responsible for com-
municating the project specs and sign-
ing off on work. This ensures clear and
effective communication, which is the
key to obtaining sounds that match the
team’s vision.

If you’re using a local contractor,
have them stop by, meet the rest of the
creation team, and discuss the game. If
the sound designer is unavailable, send
copies of artwork, storyboards, and
any story text already written. If there
are any rough animations, movie pro-
mos, or even an early version of the

game available, send those, too.
There are several ways to convey

sound effect needs to the sound design-
er. You could create a sound list that
describes each sound, what it will be
used for in the game, and the requested
sound duration. This is really just a wish
list, because often the entire list isn’t
completed for the game — changes in
the game see to that.

A producer can also indicate where
sounds are needed by giving an alpha
version of the game to the contractor
that uses place-holder sound effects
(general effects-library sounds or
effects taken from other games). Place-
holders can, of course, simply be spo-
ken words created by someone on the
team — for a game I’m currently
working on, the producer inserted
audio files of himself saying words
such as “click,” “bonk,” “explode,” or
“shot” that are triggered by the appro-
priate game event. As I play the game,
every time I hear his voice, I create a
sound to match the action.

With the preliminary action accom-
plished, the sound designer has a solid
idea of what the game is looking for
and sets out to get things organized on
his or her end. Jamey Scott, sound
designer and composer for Presto
Studios (developers of THE JOURNEYMAN

PROJECT series, GUNDAM 0078, and oth-
ers) believes putting together the initial
palette — finding sounds that will mix
well together — is the most important
step. He uses the E-Mu Emulator 4 sam-
pler in his sound design process, and
for each game he develops an entirely
new sound palette to keep them origi-
nal. Scott feels that using a sampler has
advantages over straight computer files
and sound editors. “Layering sounds
internally in the E4 works very well for
me,” he says, “more so than doing it
on a computer. That way, I can save
my banks as a palette rather than hav-
ing sources in various folders all over
the computer. They are all looped,
equalized, and noise filtered all to my
specifications. Plus, returning to them
to make any changes is a simpler task.”

Soapbox Time

P roducers and developers who
know absolutely nothing about

sound design tend to place undue
demands on the sound designer, or sim-

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

42

G A M E A U D I O

Here’s an example of how one

simple sound effect is creat-

ed. The project I’m currently

working on is a space strate-

gy game, in which units are maneuvered

in formation to battle against other play-

ers. It is a PC game with final sounds to

be delivered as 22KHz, 16-bit .WAV files.

I’m creating a sound which is triggered

when a shielded unit is fired upon.

The shield sound should have an

“electric” quality to it — a controlled

surge of energy that might sound as if it

were deflecting a shot from a laser

weapon. I wanted it to sound unique, so I

stayed away from stock library effects

and used one of my synthesizers for ini-

tial inspiration.

I ultimately settled on a patch, similar

to the keyboard sound in the Van Halen

song “Jump,” and recorded four seconds

of a three-note chord. I saved it into my

audio editing program, Sonic Foundry’s

Sound Forge, as a 44.1KHz, 16-bit stereo

file. Experimenting with a few different

effects processors, I found a nice Doppler

effect in another program, GoldWave. I

edited an existing patch to give it a quick

one-second Doppler increase with three

seconds of Doppler decrease. Back in

Sound Forge, I pulled up a radio static

sound file (which gives it that “electric

charge” feel), ran it through a 1Hz stereo

flange effect, and equalized it to increase

the high frequency range. I then cut that

file to four seconds to match the manipu-

lated keyboard sound and mixed the two

sounds, keeping the static barely percep-

tible. I gave the new mixed file a one-sec-

ond fade-in, and faded out the last two

seconds with a linear fade. Now it was

beginning to sound like something. I nor-

malized the file to maximize the sound,

adjusted for any abnormal level peaks

and finally saved the new file as

SHIELD.WAV.

Later, the producer wanted a dull,

metallic clank mixed in to give the player

some distinction between a shield hit and

a hit to the unit’s space suit. I pulled up a

nice clank sound, used the equalizer to

get rid of most of the high frequencies,

and mixed to the shield file. All was well;

the producer was happy.

Converting down to 22KHz is simple.

Utilizing the resample feature in my

audio editor does the trick nicely.

Because some of the higher frequencies

get lost in the conversion, I usually

adjust the equalization to compensate.

After another check on the levels, the

effect is ready for the game. Total time

spent creating this one sound effect: two

hours, 15 minutes.

A Sound Is Born

ply ask for the impossible. It is tremen-
dously frustrating to negotiate and work
with those who don’t have at least a
basic concept of what goes into our
process. One original sound can take
more than two hours to create — we’re
not just taking clips from an effects
library disc and converting it to the
needed format. (To get an idea of the
sound creation process, see the sidebar
“A Sound is Born.”) An entire game can
be done in two weeks — with much
pressure on the sound designer — but it
can take a month or two just as easily.

Ensuring the Best Audio Results

W hen a sound designer devotes
his or her time exclusively to

your game for the duration of the pro-
ject, it helps ensure consistent game
audio. Ask prospective sound designers
up front whether they will commit
solely to your project. The second con-
cern to address with your sound design-
er is that of quality assurance. All of the
sound designers and many of the pro-
ducers I’ve talked to insist that the
sound designer listen to the sounds in
the actual game. Typically, this hap-
pens around the time the game goes
into beta. It’s not uncommon for effects
to sound great in the studio but not so
hot (too loud, soft, long, or short) once
they’re synchronized with the action in
the game. While analyzing the audio in
the beta version of a game he was work-
ing on, Joey Kuras discovered a pro-
grammer on the project had taken one
of the effects — the sound of footsteps
— and bumped up the volume. What
were intended to be subtle, barely dis-
cernable Foley effects turned into a
loud series of crunches. Thankfully,
Joey’s screening session caught the
problem and corrected it in time.

Specify to your sound designer that
you want your sound effects created in
the highest quality possible (which
today is usually 44.1KHz, 16-bit stereo).
Because new technology is now becom-
ing more mainstream, some develop-
ment teams may soon opt to go even
higher to 96KHz, 24-bit audio. Why?
Because you want to develop the
sounds in the highest fidelity then con-
vert down to what is needed for the
game. If a game needs 22KHz, 16-bit
stereo sounds and it is later discovered
it can fit in 44.1KHz, 16-bit stereo

sounds, it may already be too late for
the sound designer. Attempting to con-
vert up almost always adds unaccept-
able noise to a recording — you just
can’t do it. You usually have to start
the whole recording process again from
scratch.

Not too long ago, one game compa-
ny decided to create a television com-
mercial for its game and intended to
use the original effects from the game.
They contacted the sound designer
who worked on the project and
requested their sounds in a CD-quality
format. Unfortunately, he didn’t have
them at that sample rate and proceed-
ed to spend a few sleepless nights recre-
ating them. It would have been just a
few minutes of work had they already
been available.

Presenting the Final Work

D elivering the final sound effects to
a client is not usually just a mat-

ter of sending a CD or e-mailing the
sounds and saying, “Here they are!”
When presenting finished effects to
producers, some sound designers
(myself included) send more sounds
than were actually requested by the
client. I work up several effects, let the
producer in on the process, and give
clients the chance to choose the effect
that matches their vision. Some have
subtle differences, changes in length,
layering, or effects processor settings.
Other sounds are completely different
but still evoke a similar emotion or
idea. This procedure actually serves
dual purposes: it gives the producer
radical ideas that just might work, or it
makes other effects stand out and
sound that much better.

Occasionally included, if it isn’t
already obvious by the file names,

is some sort of documenta-
tion that describes

what each

sound effect is for. This key will save
some headaches for everyone involved
and score some points for the orga-
nized sound designer.

Avoiding Production Nightmares

T here are plenty of ways that things
can get screwed up when working

with a third-party sound designer. For
example, the producer may not choose
the proper adjectives to describe the
game and, in turn, the description may
not mean the same thing to the sound
designer. Or, the production could go
through dozens of design changes,
causing the sound designer to lose
interest and quit. The list of potential
problems is endless. We’ve all had our
own experiences which we’d rather for-
get, but it’s important to learn from
them, if for no other reason than to
prevent history from repeating itself.
Here are some true horror stories from
the trenches.

Mark Temple, owner and executive
producer of Enemy Technology, has
many games to his individual credit
and he’s currently at work on his com-
pany’s first game. One of his biggest
pet peeves is trying to work with sound
designers who are not computer liter-
ate. Yes, believe it or not, there are still
people out there who don’t know
much beyond their immediate sound
applications. He has made several treks
during hectic schedules to visit a sound
designer just to get a copy of a game
running. He’s also had to instruct them
how to zip and unzip files, attach
sound files to e-mail, or use a modem
to connect to the company BBS. So
now when hiring people, he makes it a
point to ensure first that they know
their way around a computer.

Another time, Mark’s sound designer
left a project in the middle of the con-
tract, with half of the milestones com-
pleted and half of the sound effects
budget. A new sound artist was quickly
brought in, but the effects had a differ-
ent quality and it became difficult to
match his sounds to the previous work.
Reluctantly, they opted to start from
scratch, which forced them to spend
more than they had budgeted and also
broke their schedule. People leave in
the middle of projects all the time for
various reasons, and there are as many
different ways to prevent this as there

43

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 9 G A M E D E V E L O P E R

44

are reasons to leave. But honest com-
munication and understanding of the
creative processes helps. Contract
points, which give the proper incentive
(such as increasing milestone pay-
ments over the course of a project,
with the largest payment for the com-
pletion of all work) are another option,
but overly aggressive contracts that
withhold too much money until the
end can spoil things, too. Try to find
the right balance.

A potential contract sound designer,
whose work is outstanding, wanted to
work on a particular game, but didn’t
have the right equipment for the partic-
ular project, nor the money to buy it.
And because the development team
didn’t have the resources to help him
with this purchase, he didn’t get the
job. If you find yourself in this position,
talk about the situation with the
prospective sound designer and see if
you can come up with a creative solu-
tion before you pass up the deal. Devel-
opers have been known to loan or buy
equipment for the contractor, depend-
ing heavily on how badly the contrac-
tor is needed and the cash flow of the
developer.

The idea of “one-stop shopping” for
a sound designer who can also com-
pose and produce music is appealing.
It’s an opportunity to hire one fewer
person, saving time and money. How-
ever, when Mark began his search for
just such a person, he found few avail-
able. What may have helped this situa-
tion would have been to have the pro-
ducer looking in the right places (no
offense, Mark). If they had done any
previous research, they could have had
a list of names and demos already at
their disposal. But since that didn’t
appear to be the case, there are plenty
of online sites that cater to this very
thing, some of which are listed at the
end of this article.

Here’s my horror story. A while back,
I replaced a sound designer late in the
production cycle of a fantasy game,
after the producer became dissatisfied
with the previous contractor. It seems
the former sound designer was missing
his milestones by ever-increasing
amounts, and the overall creative qual-
ity of the work had declined rapidly. As
an example, for some of the spoken
magical spells used by the various wiz-
ards in the game, he recorded profani-
ties and simply played them back-

wards. While his “shortcut” wasn’t
recognizable to the average listener,
someone with audio editing software
could reverse it and a lawsuit could
develop, something this small develop-
er couldn’t afford to have happen. I
was able to step in late in the game and
secure a few points, landing the con-
tract for their next two games.

Managing Outside Talent Shouldn’t
Be a Mystery

A t some companies, there tends to
be a stigma attached to third-

party contractors. To some, it seems a
highly unnatural act to search beyond
the company walls after you’ve spent a
tremendous amount of time and effort
collecting and nurturing your own tal-
ent. As you might have guessed, I take
a different attitude. I’ve found that
artists are more creative in working
environments that they have designed
for their own purposes. Not keeping to
a nine-to-five schedule actually lets
them budget their own time and work
when they are at their best. Their hap-
piness and security can be heard in
their much-inspired work, and any
game could benefit from this passion.

When it comes down to it, working
with a contracted sound designer is
not so different from interacting with
any of the full-time developers on
your staff. Graphic artists, program-
mers, composers, actors, and voice tal-

ent are all looking to you for the prop-
er motivation and, though the sound
designers are not immediately within
the corporate view, they respond to
the same proper, positive stimulus.

The key points mentioned here,
when focused on, can help you achieve
fantastic work from a sound design
contractor. Even though there are no
hard and fast rules, secret formulas, or
prescribed methods for creating the
consummate assemblage of game
sound effects, it can happen. It takes
fluid communication and a firm vision
from the development team coupled
with a sound designer who shows no
bounds to their creativity and patience.
Together we can take on the gaming
world and keep them lining up at the
stores. ■

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

G A M E A U D I O

T ommy Tallarico is making life

easier for both producers and

sound designers by trying to

standardize sound contracts

and the often unpredictable contract

negotiation process. With more than

125 games to his credit, he has plenty

of experience in this phase of deal-

making and after paying lawyers large

sums of money to draw up the paperwork,

he’s still willing to share. At the 1999

Game Developers Conference, he

gladly handed out copies of the agree-

ment to anyone interested. Hundreds

of people took advantage of his

generosity.

This contract, available for download

from the Game Developer web site

(http://www.gdmag.com), is a revised

copy that pertains to the sound designer

and the created effects. Many points can

be added or taken out as needed during

negotiations, since both parties are

attempting to have their best interests

represented. Whether you’re a producer

or a sound designer, I recommend you

download this file and read it over closely

so that you get a sense for what the top

talent in the field is asking for. Tallarico

has granted everyone permission to use it

as is, or merely as a guideline for sound

design deals.

The Audio Development Agreement

Places to Find Third-Party Sound Designers:
Gamasutra.com
http://www.gamasutra.com

Happy Puppy
http://www.happypuppy.com/biz/

index.html

Dungeon Crawl
http://developer.dungeon-crawl.com

Black Sheep Journal
http://members.aol.com/blaksheepj

GameDev.Net
http://www.gamedev.net/info/about

FF OO RR FF UU RR TT HH EE RR II NN FF OO

worlds without blowing milestones and spending large sums
of money? Simply put, we must have some of our game data
generated automatically for us.

For example, suppose you’re developing an online mas-
sively-multiplayer game with an enormous amount of
polygonal terrain (hundreds of thousands of screens’ worth
of in-game scenes) for thousands of players to exist in and
interact upon. In addition to that (just to make your life
more difficult), this terrain model must conform to a loose,
preexisting map specification (in other words, the general
map layout and major landmark locations are known rela-
tive to each other, but there is no concrete data set describ-
ing the terrain, such as satellite imagery). This constraint
eliminates the possibility of using any truly automatic ter-
rain generation algorithm (such as fractal terrain genera-

tion). Meticulous construction of the terrain model by
artists’ hands is completely out of the question. No group of
artists assigned this arduous task would be able to produce
the desired result within the budget constraints; it will either
cost a prohibitive amount of money, or take more time than
is allotted for the development of the product. So you’re left
searching for some kind of middle ground between these
two extremes.

Using manageably-sized, artist-generated bitmaps, com-
bined with some clever image processing techniques, you
can create a desirable terrain model. The techniques I
describe in this article don’t eliminate artist or world-builder
involvement from the creation process — these techniques
only create a model that is very close to completion in a rel-
atively short amount of time. Once generated, the terrain

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

48

G E N E R A T I O NT E R R A I N

Using Bitmaps for
Automatic Generation of
Large-Scale Terrain Models

bb yy KK aa ii MM aa rr tt ii nn

layers today demand a rich game experience with

larger worlds to explore, more interesting

things to do, and higher degrees of realism

with each new title that ships. The prob-

lem is that game development schedules and

budgets cannot keep pace with consumer demand for

new feature sets. So, how do we make larger, more interesting

Kai Martin is a programmer for Sierra Online, where he is currently working on, among other things, nearly all aspects of automati-
cally generating an enormous landscape for MIDDLE-EARTH, a massively-multiplayer online role-playing game based on the works of
J. R. R. Tolkien. Questions, comments, and miscellaneous musings can be directed to him at kai.martin@sierra.com.

PP

must be fine tuned by an artist or level
designer to add the aesthetically pleasing
final touches.

There are several other advantages to
using bitmaps for your terrain modeling.
First and foremost, the tools for manipu-
lating images (such as Photoshop) are
extremely well developed and well
known by a majority of artists. Second,
the techniques I’m about to discuss will
lower the ratio of time spent generating
the terrain images to the amount of in-
game data you can generate from them.
Finally, this technique lets you view the
layout of the entire world within a fairly
small area — the bitmaps we will use are
fairly manageable and allow you to view
the entire image at once on a typical
monitor.

It’s assumed that the terrain model desired is a textured
3D polygonal mesh, with the vertices lying upon a regularly-
spaced rectangular grid. The terrain’s z-values (the “up” vec-
tor) are taken from a two-dimensional array of values called
a height field. The terrain textures are also set according to a
two-dimensional array of values, where different values
denote specific types of terrain. This helps specify a texture
to use for a particular cell in the terrain grid. Thus, two
bitmaps are required to generate all the data needed to cre-
ate terrain. In the examples provided in Figures 1a–c and
2a–b, the height and terrain data bitmaps are 8-bit grayscale
and palletized color images, respectively.

Note that there are several methods by which you can use
this terrain data to create a system of connecting tiles. For
example, you could view each terrain value as an individual
tile, or view each value as a tile vertex, and so on. However,
this article is strictly concerned with generating the needed
data. Showing you what to do with the data once it has been
generated is beyond the scope of this article.

Bitmap Representation of Terrain and Elevation Data

T ranslating bitmap values into usable data is straightfor-
ward, assuming you can read the file format of the

bitmap. For a given entry (x, y) in a height data bitmap, a
corresponding value in the height field can be calculated by
taking the value in the bitmap and multiplying it by some
scalar: heightField (x, y) = bitmap (x, y) · scaleZ. Using the
terrain bitmap is even easier. Since the bitmap is 8-bit, sim-
ply set the value (palette index) at any given point (x, y) in
the image to a predetermined terrain type. If more than 256
terrain types are needed, you can use the RGB values of a 24-
bit image for terrain type indexing instead.

While the goal is to use a large data set to generate a ter-
rain model, it is unlikely that a 1:1 mapping of bitmap val-
ues to height and terrain values will yield a large enough
data set for very large game worlds. Thus, you probably will
have to “scale up” the bitmaps some way in order to gener-
ate sufficient amounts of data.

There are two easy ways to scale the data gathered from
the height bitmap. The methods rely on a two-dimensional

scale vector
(scaleX, scaleY) to
do the work. The
scale vector is cre-
ated based on the
ratio of the size of
the bitmap to the
size of the terrain
model one wishes
to create from the
bitmap.

The first method
takes each pixel (x,
y) in the height
bitmap and dupli-
cates the pixel
value bitmap (x, y)
inside a rectangular
area of pixels
scaleX · scaleY in
size, in which the upper left corner of the rectangle equals
(x · scaleX, y · scaleY). Empirically, the data becomes “pixel-
lated,” as though the bitmap is viewed at a higher zoom
level. The terrain data is scaled in this way, as well.

The second method of scaling the height data treats the
bitmap values as points on an arbitrarily large surface, or as
control points used to generate such a surface parametrical-
ly, in which each value in the height bitmap is a discrete
sample from this surface. For a given entry (x, y) in one’s
height-data bitmap, a corresponding value in the height
field can be calculated using the following mapping
function:

[x, y, bitmap (x, y)] = [scaleX · x, scaleY · y,
scaleZ · bitmap (x, y)]

All we’re doing is taking a point in the height data bitmap
and multiplying it by a scale vector of (scaleX, scaleY,
scaleZ).

Now that the amount of raw data needed to create the
full size terrain model has been generated, one might
notice (see Figures 1a–c, 2a–b, and 3a) that scaling the

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 9 G A M E D E V E L O P E R

49

F I G U R E S 2 A A N D 2 B . A. Original

elevation bitmap. B. Scaled elevation

bitmap.

F I G U R E S 1 A - C . A. Original terrain bitmap. B. Scaled terrain bitmap. C. Scaled

and smoothed terrain bitmap.

A

B

A

B C

bitmaps has created some rather harsh and unwanted
artifacts in the final images. To correct these artifacts, let’s
use some basic filtering techniques from the field of image
processing.

Basic Image Processing and Elevation Smoothing

M any image processing operations can be modeled as a
linear system:

where f(x, y) and h(x, y) are the input and output images,
respectively, and g(x, y) is the system’s impulse response. To
put it another way, g(x, y) is the operation upon f(x, y) that
creates h(x, y). For such a system, the output h(x, y) is the
convolution of f(x, y) with the impulse response g(x, y),
defined in discrete terms, for an N×M image, as:

If f and h are images, convolution becomes the computation
of weighted sums of the image pixels. This computation is
performed using an arbitrarily-sized square table of values
called a convolution mask. This computation is what per-
forms the actual filtering.

One of the simplest filters is implemented by a local
averaging operation where the value of each pixel is
replaced by the average of all the values in its local neigh-
borhood, as determined by the size of our convolution
mask. For example, taking a 3×3 neighborhood about the
pixel (i, j) yields:

If g[i, j] = 1/9 for every [i, j] in the convolution mask, the
convolution operation reduces to a local averaging of the
3×3 grid of pixels centered on pixel [i, j]. Notice that for the
9 pixels involved in the operation, the sum of the weights is
equal to 1 (9×1/9 = 1). When an N×N convolution mask is
used as an averaging filter, the size of N controls the amount
of filtering. As N becomes larger, the image noise is reduced,
but you also lose more image detail. So there’s a trade-off in
choosing a particular size N, and choosing the size of your
convolution mask will depend on the amount of filtering
you need and level of detail your final image requires. An
example of an average filter applied to a height field is
shown in Figure 3b.

A Gaussian filter is similar to the averaging filter. In the
Gaussian filter, the values in the mask are chosen according
to the shape of a Gaussian function. For reference, a zero-
mean Gaussian function in one dimension is:

where the Gaussian spread parameter determines the width
of the Gaussian. For image processing, a two-dimensional
zero-mean discrete Gaussian function,

G i j e
i j

,
/[] =

− +()2 2 22σ

G x e x() = − 2 22/ σ

h i j f k l
k i

i

k j

j

, ,[] = []
= −

+

= −

+

∑ ∑1
9 1

1

1

1

h i j f i j g i j

f k l g i k j l
k

N

l

M

, , ,

, ,

[] = [] ⋅ []
= [] ⋅ − −[]

= =
∑ ∑

1 1

Input, linear system, Output,f x y g x y h x y, , ,() → ()[] → ()

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

T E R R A I N G E N E R A T I O N

F I G U R E 3 B . Scaled height data, filtered using the averag-

ing filter.

F I G U R E 3 A . Scaled, unfiltered height data.

F I G U R E 3 C . Scaled height data, filtered using a Gaussian

filter.

50

is used as a smoothing fil-
ter. The Gaussian filter has
a few properties that make
it particularly useful for
smoothing purposes.

First, the Gaussian func-
tion is rotationally sym-
metric. In other words, the
function does not favor
any particular direction
when it smooths, which is
particularly useful when
the areas needing smooth-
ing are oriented in an arbi-
trary direction (not known
in advance), and there is
no reason to smooth in
any specific direction.

Second, the Gaussian
function has a single lobe,
which means that the
Gaussian filter replaces each
pixel with a weighted average of the neighboring pixels
around it (like the averaging filter), such that a pixel’s weight
decreases monotonically with distance from the central pixel.

The filter centers on one pixel (i, j). This pixel is modified
by: 1) Multiplying each surrounding pixel, including the
center pixel by its respective filter weight, and adding the
resulting products together. 2) Dividing the sum from step
one by the sum of the filter weights. This is the new value
for pixel (i,j). This allows local features in the height bitmap
to remain in the filtered image. Finally, the width (and thus
the degree of smoothing) is linked directly to s, so that as s
increases, so does the degree of smoothing. One can control
this parameter to achieve a balance between the amount of
smoothing and blurring in the final image.

There are a couple of techniques that one can employ to
determine what kind of Gaussian filter to use. If the filter is
being calculated directly from the discrete Gaussian
distribution

where c is a normalizing constant, the equation can be
rewritten as

Once a value for s2 is chosen, the function can be evaluated
over the N×N area desired for the mask. For example, choos-
ing s = 2 and N = 7, the above equation yields the grid of
values in Table 1. However, if integer values are desired
inside the mask, you can divide every value inside the mask
by the value at one of the corners in the array (the smallest
value in the mask). With this completed, and assuming the
values are rounded appropriately, a table is created like that
shown in Table 2.

Notice that the sum of all the weights contained in the
above Gaussian masks do not equal one. Thus, the result
given from convolving a given section of the image by the
mask should be divided by the sum of the weights contained
in the mask. This ensures that the mask does not affect

regions of uniform inten-
sity. An example of the
Gaussian filter shown
above applied to a height
field is seen in Figure 3c.

Another useful aspect
of the Gaussian func-
tion is the fact that it is
a separable function. In
other words, a two-
dimensional Gaussian
convolution can be
obtained by convolving
the bitmap with a one-
dimensional Gaussian
and then convolving
the result with the same
one-dimensional
Gaussian–oriented
orthogonal to the
Gaussian used in the
first step. Therefore,

another way to create a Gaussian filter is to approximate it
by using the coefficients of the binomial expansion (you
might remember the binomial series from calculus, where it
was used to estimate integrals and roots of numbers):

In other words, use row n from Pascal’s triangle (Figure 4) as
the values for your Gaussian filter. For example, a five-point
approximation of a Gaussian filter is:

1 4 6 4 1

This corresponds to the fifth row in Pascal’s triangle, as
shown in Figure 4. This method works for filter sizes up to
around n = 10. For larger filters, the binomial coefficients
become too large for most images. Of course, if floating-
point values can be used, you could always normalize the
row by the largest value.

Depending on how much you scaled the original height
bitmap, the above smoothing methods should produce sat-
isfactory results. However, for higher amounts of scaling,
the amount of smoothing needed (provided by either of the
methods above) might be too high to produce a smooth
height bitmap (depending on what kind of terrain model
will be satisfactory). In doing so, there is a trade-off between
losing local detail from the original height bitmap (since
smoothing reduces noise by spreading it over a larger area,
making it more difuse) and generating more terrain data
from a bitmap of given size.

Smoothing Using Curved Surfaces

W ith images that have a large amount of height varia-
tion, such as a terrain that goes from a valley at sea

level to a mountain peak, the amount of smoothing needed
to produce a satisfactory terrain model would be so large

1
0 1 2

2+() =

+

+

+ +

x
n n

x
n

x
n

n
x

n nL

G i j

c
e

i j, /[] =
− +()2 2 22σ

G i j ce
i j

,
/[] =

− +()2 2 22σ

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 9 G A M E D E V E L O P E R

51

TA B L E 2 . Resulting table of values.

 [i, j]	 -3	 -2	 -1 	 0	 1	 2	 3
 -3	 1	 2	 3	 3	 3	 2	 1
 -2	 2	 4	 5	 6	 5	 4	 2
 -1	 3	 5	 6	 7	 6	 5	 3
 0	 3	 6	 7	 10	 7	 6	 3
 1	 3	 5	 6	 7	 6	 5	 3
 2	 2	 4	 5	 6	 5	 4	 2
 3	 1	 2	 3	 3	 3	 2	 1

TA B L E 1 . Grid of values.

 [i, j]	 -3	 -2	 -1 	 0	 1	 2	 3
 -3	 .105	 .197	 .287	 .325	 .287	 .197	 .105
 -2	 .197	 .368	 .535	 .607	 .535	 .368	 .197
 -1	 .287	 .535 	 .607	 .779	 .607	 .535 	 .287
 0	 .325 	 .607	 .779	 1.000	 .779	 .607	 .325
 1	 .287	 .535	 .607	 .779	 .607	 .535	 .287
 2	 .197	 .368	 .535	 .607	 .535	 .368	 .197
 3	 .105	 .197	 .287	 .325	 .287	 .197	 .105

that a great amount of detail would be lost in the process —
your mountains might suddenly turn into rolling hills. So a
different approach for these images must be used. A more
obvious yet slightly more complicated method is to find
some form of surface representation from the initial set of
data points. This can be a surface either shaped by or inter-
polating through these points. There are many ways to do
this, but this discussion will be limited to creating a uniform
cubic B-spline surface to achieve our goal.

Introduction to B-Splines

Iwill assume that you have some basic knowledge of para-
metric curved surfaces, such as Bézier curves and surfaces.

If not, Brian Sharp’s articles on Bézier curves and surfaces
(“Implementing Curved Surface Geometry,” June 1999, and
“Optimizing Curved Surface Geometry,” July 1999) are a
very good introduction.

You may recall that four control points define a cubic
Bézier curve and that 16 control points define a cubic Bézier
surface. In general, a degree n Bézier curve is defined by n + 1
control points, and a degree n Bézier surface is defined by
(n + 1)2. However, the desired final set of elevation points
will be much larger than a 4×4 grid. Therefore, one will need
to use either a much larger degree Bézier surface, or employ
another approach that will remain a third degree surface
that allows any number of points to define it.

This is where the cubic B-spline comes in. In simple
terms, a B-spline of degree n can be thought of as a com-
posite curve made up of several curve segments, each also
of degree n, with each curve segment defined by n + 1 con-
trol points. In this case, each curve segment is a third
degree curve defined by four control points. An important
feature of the B-spline is what’s known as “C2 continuity.”
This means that at any point on the curve, the second
derivative will exist (means that no sharp points will exist
anywhere on the curve — a nice property to have). To
define the B-spline as a whole, if we have m + 1 control
points, then we have m – 2 curve segments. Let a given curve
segment Qi be defined over the interval 0 ≤ u ≤ 1 by basis
functions Bk(u)(k = 0,…,3) and control points pi , pi+1, pi+2, pi+3

as follows:

This should look familiar, since it’s very reminiscent of how
a Bézier curve is defined. For the sake of brevity, here are the
basis functions for a cubic B-spline (if you’d like more infor-
mation how the functions are actually derived, please see
the References section at the end of this article):

Since these segments are connected together to create one
large curve, it makes sense to have a parameterization of the
entire curve in terms of one parameter U, instead of having
just a parameter u for every curve segment. Globally, U is
defined over [0, m – 2], and u defined (as one would expect)
over [0, 1]. The parameter u for any given curve segment i is
given by U – i.

Except for the end points of the B-spline curve, each con-
trol point (in the case of a cubic B-spline) influences four
curve segments, that is, control point pi influences curve seg-
ments Qi –3, Qi –2, Qi –1, and Qi. The influence of each control
point pi over the curve at some global parameter value U is
“collected” into one global function (called a blending func-
tion), Ni(U).

Think of the blending function as the sum of the basis
functions (which is similar to the basis functions used when
evaluating Bézier curves) for any given point on the curve.
In formal terms, the B-spline curve Q(U) is defined by:

B u
u

B u
u u

B u
u u u

B u
u

o () =
+()

() =
− +()

() =
− + + +()

() =

1

6

3 6 4

6

3 3 3 4

6

6

3

1

3 2

2

3 2

3

3

Q u p B ui i k k
k

() = ()+
=

∑
0

3

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

52

T E R R A I N G E N E R A T I O N

F I G U R E 4 . Pascal’s triangle. At the tip is the number 1,

which makes up the zeroth row. The first row (1 & 1)

contains two 1s, both formed by adding the two numbers

above them to the left and the right, in this case 1 and 0

(all numbers outside the triangle are zeros). Do the same

to create the second row: 0 + 1 = 1; 1 + 1 = 2; 1 + 0 = 1. And

the third: 0 + 1 = 1; 1 + 2 = 3; 2 + 1 = 3; 1 + 0 = 1. In this

way, the rows of the triangle go on infinitely. A number in

the triangle can also be found by n Choose r (nCr) where

n is the number of the row and r is the element in that row.

For example, in Row 3, 1 is the zeroth element, 3 is element

number 1, the next 3 is the second element, and the last

1 is the third element. The formula for nCr is shown below.

n!

r ! (n — r) !

The ! symbol means factorial, or the preceding number

multiplied by all the positive integers that are smaller than

the number. 5! = 5 x 4 x 3 x 2 x 1 = 120.

where

The global function Ni(U) takes the global parameter U and
converts it to the appropriate local parameter uj for each
curve segment involved.

As mentioned earlier, this type of B-spline is a uniform B-
spline, which means that the curve consists of curve seg-
ments between endpoints that are spaced equally apart
(there are other types of B-splines that do not have the ends
equally spaced, but we won’t worry about those here, since
we’re dealing with a regular grid of control points). In our
case, these ends are located at [0, 1, …, m] of U for m number
of control points. These ends will be referred to as knots (to
be consistent with any other reference one may find on B-
splines). Thus, the spline curve becomes a collection of the
knot intervals t0 < t1 < ··· < tm. Also, the order k (the degree +
1) of a B-spline can vary, but for simplicity’s sake, we will
keep the order of our spline constant at k = 3. Now we can
recursively define a blending function Ni,k(u) of degree k over
the knot range [ti, ti + k] as follows (otherwise known as the
Cox de Boor algorithm):

Now that we have the definition of a B-spline curve, how
do we define a B-spline surface? Informally put, any point
(u, v) on the surface is calculated by multiplying two sepa-
rate curves together. Formally, let a point (u, v) on a cubic
B-spline surface S defined by a grid of control points
pi,j(i = 0, … , n; j = 0, … , m), and blending functions Ni,k(u)
and Mj,k(v)

Now that we have basic knowledge of B-splines, applying
what we have learned to create our desired amount of eleva-
tion data should be relatively easy. The initial set of eleva-
tion points should be used as control points for the final sur-
face. Next, determine the dimensions the final elevation
data should satisfy. Let our final elevation data set be s val-
ues wide by t values tall. When evaluating points on the sur-
face, one needs to know the change in u(du) and change in
v(dv) from one point to the next, which is defined by:

The code to do all of this is available on the Game
Developer web site, http://www.gdmag.com.

Terrain Smoothing

In smoothing the terrain bitmap, neither the straightfor-
ward smoothing algorithms described above nor any

other image processing technique used for scaling or
smoothing images can be applied. All of these methods have
potential to introduce new color values into the final image,
and only the terrain values contained in the original terrain
bitmap can be present in the final bitmap. In this smoothing
method, another n×n array of values centered on a pixel g[i,
j] in an image g will be used to calculate the value of the
pixel h[i, j] in the final image h. However, instead of using an
equation or other means independent of the values con-
tained in the source bitmap, the values in the n×n convolu-
tion mask will be taken directly from source bitmap (specifi-
cally, the n×n neighborhood surrounding pixel g[i, j]). Next,
a histogram (an “inventory” of all the different values con-
tained in the specific n×n area of the source bitmap) of the
n×n array is calculated. From this histogram, the value that is
most frequently occurring in the n×n region surrounding the
pixel g[i, j] shall be the value of the pixel h[i, j].

Conclusion

The convenience of using bitmaps for generating game
data can extend beyond just polygonal terrain genera-

tion. Other examples could be world object placement (for
trees and other vegetation), non-player character (NPC)
placement (perhaps for a real-time strategy game where hun-
dreds of units need to be placed for a given scenario), setting
paths for NPCs to follow, or providing any addition infor-
mation about the terrain (for example, setting “off-limits”
areas for certain player characters or NPCs). The number of
things that an image can represent is virtually limitless. So,
before considering creating your own custom tools for gen-
erating game data, make sure that you’re not simply rein-
venting the wheel by wanting to provide something that a
bitmap could provide just as well. ■

du
n
s

dv
m
t

= =,

S u v p N u M vi j i k j k
j

m

i

n

, , , ,() = () ()
==
∑∑

00

N u
t u t

N u
u t N u

t t

t u N u

t t

i o

i i

i k
i i k

i k i

i k i k

i k i

,

,
, ,

() =
≤ ≤

() =
−() ()

−
+

−() ()
−

+

−

+ −

+ + −

+ +

1

0

1

1

1

1 1

1

 if

 otherwise

N U

B u i U i

B u i U i

B u i U i

B u i U i

u U i j j

i

j

() =

() − ≤ < −

() − ≤ < −

() − ≤ <

() ≤ < +

= − + − =

3 0

2 1

1 2

0 3

3 2

2 1

1

1

3 0 3

 (, ,)K

Q U p N Ui
i

n

i() = ()
=
∑

0

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 9 G A M E D E V E L O P E R

53

Image Filtering
• Gonzalez, Rafael C., Richard E. Woods, and Ralph Gonzalez.

Digital Image Processing. New York: Addison-Wesley, 1992.

• Jain, Ramesh, and others. Machine Vision. New York:

McGraw-Hill College Division, 1995.

Curved Surfaces and Surface Interpolation
• Rogers, David F. Mathematical Elements for Computer

Graphics. New York: McGraw-Hill College Division, 1989.

• Watt, Alan and Mark Watt. Advanced Animation and

Rendering Techniques: Theory and Practice. New York:

Addison-Wesley, 1992.

RR EE FF EE RR EE NN CC EE SS

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

54

ESCENT 3’s creation was a long and arduous task that

was both a joy and a pain. Exciting technology

coupled with inconsistent design and almost

nonexistent management had all members of

the team exhausted by the end of our 31-month

development cycle. When the game finally did ship

however, we knew we had a winner.

Developed by Parallax Software and published by Interplay Produc-

tions, DESCENT was released in 1995 and took the world by storm with

the first first-person shooter offering 360 degrees of movement. No

longer were players constrained just to walking around a 2D world —

now they had complete freedom of movement in a true 3D space.

b y J a s o n L e i g h t o n a n d

C r a i g D e r r i c k

OutrageÕs DESCENT 3

P O S T M O R T E M

Jason Leighton likes to kill time by complaining about the horrid Michigan weather cycles. When it is
actually nice outside, he complains anyway. To hear his weather woes, or if you just want to talk about
game programming, write to jason@outrage.com. Your e-mail is important to him, but may be monitored
for quality assurance purposes.

When Craig Derrick isn’t off buying DVDs, he’s often writing to Jason Leighton about his weather woes
and trying to convince him that all he really needs to do is to stop programming and go outside. If you need
a motivational speaker or if you have a problem and no one else can help, write to craig@outrage.com.

DD

55

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 9 G A M E D E V E L O P E R

Players were able to fly their Pyro ship in any disorienting
direction — up, down, and everywhere — and top became
bottom, bottom became up, as players plummeted down
never-ending tunnels blasting mechanical robots and saving
imprisoned miners.

This innovation in action gaming was immediately suc-
cessful and garnered The Academy of Interactive Arts and
Sciences Best Title of 1995 and Best Computer Game of
1995. And PC Gamer voted it Best Action Game in the
World. One year later, the sequel DESCENT II was released,
which added another 30 levels to the mix and improved the
game’s AI, thanks to the addition of the Guide-Bot and
Thief-Bot. The game ended with a cliffhanger cinematic that
almost certainly guaranteed another sequel. That’s where
the DESCENT 3 project began.

Who the Hell Is Outrage?

D ESCENT was developed by a small group of programmers
and artists at Parallax Software in Champaign, Ill.,

headed by Mike Kulas and Matt Toschlog. After the success-
ful completion of DESCENT, Toschlog moved to Ann Arbor,
Mich., and established a second office for Parallax Software.
He took three designers with him and hired two additional
programmers. Both offices then began to work simultane-
ously on DESCENT II. While DESCENT II was deemed a suc-
cessful project, the process of trying to get teams located in
two distant offices to work effectively together took a heavy
toll on both teams. It was at that time that Matt and Mike
decided that each office should work on separate titles and
eventually become separate companies. Thus, Outrage
Entertainment and Volition Inc. were born.

It was another eight months before the production of
DESCENT 3 began. After the release of DESCENT II, Outrage
immediately began work on THE INFINITE ABYSS (a Windows
95 version of DESCENT II, along with a new level add-on pack
entitled THE VERTIGO SERIES). Meanwhile, Volition concen-
trated on development of FREESPACE. It wasn’t until after the
release of THE INFINITE ABYSS and DESCENT MAXIMUM (the
Playstation version of DESCENT II) that the developers here at
Outrage began focusing all our energy on the design and
development of DESCENT 3.

Another Sequel And Why DESCENT 3?

D ESCENT I AND II had the makings of a franchise for
Interplay, and with any franchise, successful or other-

wise, sequels are sure to follow. Technology had taken a big
leap in the year and a half that DESCENT had come out:
notably Windows 95 and hardware-accelerated 3D. It was
easy to see how DESCENT 3 could be dramatically improved
over its predecessors.

By the fall of 1996, we began to compile a list of features
that we would like to see in DESCENT 3. By November we had
created a design document detailing the new features that
would be implemented for DESCENT 3 and submitted it to
Interplay for approval.

The initial design and programming work on DESCENT 3
began in December 1996. Some of the team had just com-

pleted work on DESCENT II – THE INFINITE ABYSS and DESCENT

MAXIMUM for Playstation, while others were involved with
research and development for DESCENT 3, where they learned
about new tools and technologies. We were excited about
taking the DESCENT franchise to the next level and eager to
begin, but little did we know that our over-eagerness would
impair the game’s development.

About six months after starting development, we stepped
back and took a long hard look at what we had and where
we were going. Originally, it was deemed that DESCENT 3
would have both a software and hardware renderer. After
checking out the competition, it was apparent that, if we
wanted to be visually stunning (and maintain interactive
frame rates), we would either have to scale back our technol-
ogy design or go with a hardware renderer only. We chose
the latter. In retrospect this was a good decision, but it was
unfortunate that we had to make it six months into the
development, since many of the tools and software render-
ing technology were already developed.

At this point, not only did we decide to go with a hard-
ware-only renderer, we decided to scrap the engine that we
had been developing. The engine we had going was an

Outrage Entertainment
Ann Arbor, Mich.
(734) 663-9120
http://www.outrage.com

Release date: June 1999
Intended platform: Windows 95/NT/98
Project budget: $2 million
Project length: 31 months
Team size: 19
Critical development hardware: Intel Pentiums and AMD K-6 II

processors. Each machine was equipped with a hardware
accelerator and at least 64MB of RAM.

Critical development software: Photoshop, 3D Studio Max,
Lightwave, Microsoft Visual C++ 4/5/6; rendering APIs used
include Sourcesafe, OpenGL, Direct 3D, and Glide; Direct Sound,
Aureal, and EAX were used for the game audio.

DESCENT 3

Initial conceptual drawing of the Phoenix Interceptor.

enhanced segment engine — a portal
engine that used six-sided deformed
cubes to represent geometry. Essen-
tially, it was the same technology used
in DESCENT II, with some additional
features thrown in for improved geom-
etry modeling. If we had stuck with
this engine until the game shipped, we
would have been way behind the tech-
nology curve with respect to our com-
petition. Instead, we went with a
“room”-based engine, which allows
designers to create just about any geo-
metrical area within a 3D modeling
program, such as 3D Studio Max or
Lightwave.

Shortly thereafter, the terrain engine
was developed. We were seriously con-
sidering the idea of creating outdoor
areas for DESCENT 3, but we worried
about the high polygon count associat-
ed with such a large rendering dis-
tance. Fortunately, we used a good
level-of-detail (LOD) algorithm to com-
bat the frame-rate problems. Unfortun-
ately, the decision to include terrain
would adversely affect the overall
design in ways that we couldn’t possi-
bly have foreseen, such as the scale of
the terrain dictating how fast the ship
appeared to move while outside.

For the next 18 months, work con-
tinued on DESCENT 3 at a frantic pace.
We were learning how to use our cus-
tom in-house tool, D3Edit, so in the
process we ended up creating and then
throwing out an incredible amount of
our content — what looked cool one
month looked dated the next. This was
largely due to the fact that we were
developing a cutting-edge engine
at the same time we were trying to
design the game itself — a pitfall
many developers have fallen vic-
tim to. Unfortunately, throwing
out so much work also cost our
team a lot in terms of our morale.
What we should have done is
freeze the design of the engine
about a year before the product
shipped and then worked on the
game. Unfortunately, in our lust
for sexy technology, we just
couldn’t do that.

When we finally did ship, we
were exhausted in a variety of
ways. Working on the same game
for two and a half years is emo-
tionally depleting, to say the least.
Although we knew the game was
cool, we didn’t know how the pub-

lic (or reviewers) would receive it.
Thankfully, it turned out that our fears
were unfounded — DESCENT 3 has
received incredibly good scores from a
variety of sources, including print mag-
azines and gaming web sites.

What Went Right

1.WORKING ON A SEQUEL. Working on
any sequel, whether a game or

movie, has its ups and downs, and
DESCENT 3 was no exception. Much of
the joy of working on a sequel comes
from the fact that you can improve on
an already established title, and in
many cases, add features that were pre-
viously impossible to do.

Knowing your target market is essen-
tial to making a successful sequel. You
must not deliver a product that com-
pletely turns away your core audience,
and yet enough of it must be new in
order to persuade them to purchase it.
The four long years between DESCENT II
and DESCENT 3 convinced us that new
technology alone warranted a new
product, but we didn’t want just to
copy the previous version. DESCENT 3
had to retain all of the elements that
made its predecessors big hits and yet,
creatively, be different. And therein lies
the paradox of making a sequel.

Starting with our old games’ design
document and features list, we cata-
loged elements that the team liked and
disliked about the previous games.
Every item was scrutinized and broken
down into specific lists, such as art,

weapons, sounds, user interface, and so
on, to determine what part of the fea-
ture needed to be changed and what
needed to be left alone. Developers
sometimes do this with their competi-
tion’s products when beginning devel-
opment of a similar game, but nothing
beats being able to do it with your own
game because you have an intimacy
with the product that outsiders are not
privy to.

2.USING A HARDWARE-ACCELERATED 3D
ENGINE. When development of

DESCENT 3 began in November 1996,
hardware accelerators (specifically
3dfx’s Voodoo 1) had just come out.
Our initial design document called for
DESCENT 3 to ship with a hardware and
software renderer, but as our aspira-
tions for the graphics engine grew, so
did the need for hardware acceleration.
Complex geometric rooms, robot ene-
mies having nearly twice the amount
of polygons and animation states com-
pared to our previous games, complex
outdoor terrain, and the whiz-bang
effects expected in today’s games all
necessitated hardware acceleration.
With all these features in the game and
running at abysmal frame rates with
our software renderer, it was decided,
reluctantly, that we would release as a
hardware-only game.

As development wore on, technolo-
gy advanced and accelerators became
faster, cheaper, and more popular with
each passing year. It seemed that
games were coming out every week
that sported a hardware accelerator
mode or patch, but up to this point,

nothing had come out that was
hardware-only. We knew just
by looking at our progress on
the game under acceleration
that we had a beautiful looking
game with all the latest tech-
nologies — but would anyone
actually be able to play it?

Our Christmas deadline
came and went, but in retro-
spect I feel it was for the better.
If you didn’t have a hardware
accelerator before Christmas
1998, chances are you did have
it later. With the implementa-
tion of Direct3D, OpenGL, and
Glide, DESCENT 3 was capable of
running on just about every
video card available when it
was released. Because we took a
chance on technology, believed

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

56

P O S T M O R T E M

Conceptual drawing of the hulking Juggernaught

robot.

in our product, and slipped a bit,
DESCENT 3 looks, feels, and plays like a
next-generation DESCENT. And that’s all
we really wanted.

3.OUT WITH THE OLD ENGINE, IN WITH

THE NEW. As mentioned earlier,
the initial plans for DESCENT 3’s graph-
ics engine were to include both a soft-
ware and hardware renderer. The
engine itself was to be a heavily modi-
fied version of the segment (cube-
based) engine used for DESCENT I and II,
meaning that all geometry had to be
sculpted by connecting one deformable
cube to another. While this engine
supported some interesting geometry,
it just couldn’t handle the complexity
we had in mind for DESCENT 3’s levels.

So, six months into development we
started over on the engine, and this
time we aimed higher. We set our
sights on creating what is now the
Fusion Engine. This engine would actu-
ally be two separate engines — one for
internal settings and one for outdoor
terrains — that would work together
seamlessly. The internal “room” engine
allows designers to model almost any
type of complex geometry in a pro-
gram such as 3D Studio Max and
import it directly into our game editor.
Once imported, designers can modify
the geometry, texture it, place objects,
and light it. Designers could then take
the individual rooms and join them
together, creating a portalized world
for the player to fly through.

The terrain engine actually began as a
prototype for another game that Jason
was interested in developing.
Unfortunately, Bungie’s MYTH beat us to

the idea, but the terrain technology was
solid enough to be incorporated into
DESCENT 3. It was based on a great paper
by Peter Lindstrom and colleagues enti-
tled Real-Time, Continuous Level of Detail
Rendering of Height Fields (from Siggraph
1996 Computer Graphics Proceedings,
Addison Wesley, 1996). Of course, it was
bastardized heavily to fit the needs of
DESCENT 3, but the overall concept was
the same — create more polygonal
detail as you get closer to the ground
and take away polygons when you are
farther away. After implementing the
real-time LOD technology, our frame
rates quadrupled.

The outdoor engine gave designers
the ability to create an internal struc-
ture and its outside shell (an external
room with the normals flipped), and
place it anywhere on the terrain. This
let us create seamless transitions
between a structure within the level to
an outdoor section, with absolutely no
load times whatsoever. For the first
time in DESCENT, players could actually
leave the mine. When players cross the
portal that leads from inside to outside,
the game code would switch collision
detection, rendering, and so on, to use
the terrain engine.

4.INCREDIBLE TECHNOLOGY. One of
our biggest goals in developing

DESCENT 3 was to bring the game
engine up to date. This included graph-
ics, AI, sound, and multiplayer. I think
we hit the mark. DESCENT 3 includes
just about every whiz-bang graphical
feature there is, the AI is very smart for
an action game, and the multiplayer
plays pretty well even over lagged

connections. Even though we’re not in
the first-person-shooter genre — a
genre that is judged by its graphics and
networking technology (some say at
the cost of game play) — we compete
favorably with the offerings in that
arena.

5.GREAT MULTIPLAYER. We knew that
DESCENT 3 had to have the best

multiplayer right out of the box, or
people would be disappointed and
scream for our heads. Sadly, in this age
of release-once, patch-many, there are
a lot of games that come out that
haven’t fully tested their multiplayer
aspects, and these systems are full of
bugs. Fortunately, DESCENT 3 did not
suffer from this. We spent a lot of time
testing DESCENT 3 networked games
over a variety of conditions, both
lagged and unlagged. It was a tiresome
process, but in the end, I’m happy we
did it.

Another thing we did that show-
cased our attention to multiplayer was
to give a whole slew of options to the
player. We had support for IPX, TCP,
DirectPlay Modem, and DirectPlay
Serial. These options allowed players
to connect to games using the protocol
best suited for their situation, instead
of just offering TCP as a lot of other
games do. There were also three
network architecture types: D3
client/server, peer-to-peer, and permis-
sible client/server. We did this because
we knew we had to support the
DESCENT II fans (peer-to-peer), the
QUAKE and UNREAL fans (permissible
client/server), and try to forge our own
path with a new network technology

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 9 G A M E D E V E L O P E R

57

The new and improved Thief-Bot. Sparky, one of the more than 30 new robots in DESCENT 3.

(D3 client/server). We guessed that per-
missible client/server would be the
most popular model, simply because
that was what players were used to. To
our surprise, it turned out that D3
client/server was the most frequently
used architecture. This architecture
changed the way lag was perceived. In
games such as QUAKE and UNREAL,
there is a noticeable delay between fir-
ing the weapon and when the weapon
appears on your screen. The reason is
that the client asks the server to fire
and the server gives the client permis-
sion to fire (hence permissible client/
server). The D3 client/server is different
in that it allows you to fire right away
— when you press the trigger, the laser
appears immediately. The downside is
that you have to lead your opponent
by your ping to the server, and some-
times when the laser would hit your
opponent on your screen, it wouldn’t
really hit them on the server. We
found this to be less frustrating that
the permissible client/server way
(which personally drove me crazy), and
thankfully our fans agreed.

While providing players with so
many options might have cost us
development time, I’m confident that
we made up for it in the satisfaction
that our customers had by being able
to customize the game to their liking.

Overall, the development team at
Outrage was very energetic to work on
DESCENT 3 and their dedication paid off
more than once during development.
Working on a game as long as we did is
always tough going. Because we, too,
are game players, it was some-
times tough to be working on
something for so long, never
quite knowing whether or not
the work you were doing would
be accepted by your peers with-
in the industry, or more impor-
tantly, by consumers and fans
of the product. This all changed
for us during 1998’s E3 conven-
tion.

We didn’t get confirmation
from Interplay that we would
be showing the game at E3
until about a month before the
show. When the word finally
did come, we shifted gears from
our production and went full
steam towards making the best
E3 demo that we could. This
would be the time that the

industry would get its first glance at
our game and we wanted to come out a
winner. Fortunately, everything turned
out all right. The fans who got a
glimpse at DESCENT 3 were very impres-
sed and the comments from the press
were overwhelmingly positive.

A lot of what kept the team’s energy
high was the amount of pride that each
person had in their own particular
domain. The level designers wanted to
make the absolute greatest levels ever,
the programmers wanted their particu-
lar systems to stand out, and the artists
wanted the art style of the game to be
unique. So this pushed people to do
their very best — the atmosphere was
almost competitive. There were a cou-
ple of times when things got out of
hand and egos had to be held in check,
but for the most part, the individual
team members were allowed to shine
without stepping on the toes of a fel-
low colleague.

What Went Wrong

1.LACK OF DIRECTION OR VISION. The
biggest problem on DESCENT 3

was the weak management structure.
DESCENT and DESCENT II were devel-
oped by small groups that worked
closely together (often in the same
room), and as we grew to a team of
almost twenty people, we didn’t intro-
duce enough management to control
the process. Even though people had
designated titles, there was no real
authority attached to those titles. No

code reviews, no art reviews, no way of
saying, “This is bad and we should be
going in a different direction.” What
we needed was more of a hierarchy
and a systematic way to get things
done. People would have disagree-
ments that were never settled, and
that led to bad feelings among team
members. It would have been much
better if some sort of hierarchy had
been in place to mediate disputes, but
unfortunately this didn’t materialize
during the entire development cycle of
the game. For example, if a couple of
people had a problem with the way a
particular level played, there was no
recourse to get that level changed.
Bringing up the faults in an individ-
ual’s level, system, or art would start
arguments, and that got us nowhere.
Next time we’ll know better. An anar-
chistic development environment is
great in theory (total freedom), but
you really do need a hierarchy of some
sort, a chain of command where peo-
ple know whom to go to with prob-
lems. It was a painful lesson that could
have been avoided if we had set up our
team to be more like a company and
less like a garage band.

2.NO STANDARDIZED LEVEL DESIGN

TOOLS. Another major problem
on DESCENT 3 was the tools the level
designers used to make their levels.
Some people used 3D Studio Max, some
used Lightwave, and one designer even
wrote his own custom modeler from
scratch. Due to our somewhat anarchis-
tic development environment, this was
seen as O.K., and not too many people

complained. However, the differ-
ent tools led to inconsistent qual-
ity across our game levels. One
designer would make great geom-
etry that had bad texturing, while
another designer would create
the opposite, especially if his tool
of choice made texturing or geo-
metric modeling difficult. What
we should have done is standard-
ized using one tool (probably 3D
Studio Max) and made the
designers learn how to use it
whether or not they were com-
fortable with it. This would have
allowed us to make use of certain
features that 3D Studio Max has
(such as parametric surfaces)
without worrying about whether
Lightwave or the custom modeler
supported that feature.

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

58

P O S T M O R T E M

Watch out for the dual Fusion attack of the Thresher.

After assembling their geometry, the
designers took their rooms and mod-
els, imported them into our custom
editor (D3Edit), and tried to glue
everything together. Unfortunately,
our editor was written by programmers
who didn’t give enough thought to
the user interface — they often
designed interfaces that were intuitive
to a programmer, but not to a design-
er. Conversely, a designer would ask
for a feature that might take a pro-
grammer a long time to code, but then
the designer wouldn’t use the feature
very much. This led to feelings that
the designers didn’t know what they
wanted, and the programmers didn’t
care enough to make things easier for
the designers. It was a vicious circle
that didn’t get cleared up until the lat-
ter third of the project. Even in the
shipped game you can tell which levels
were made early on and which were
made near the end of the production
cycle. The later levels are much better
looking, have better frame rates, and
generally have better scripts.

3.PROGRAMMERS WORKING ON DEDICAT-
ED SYSTEMS. Many systems, such

as the graphics, AI, and scripting, were
written exclusively by one person. This
fostered a feeling of pride in a particu-
lar system, but it also caught us with
our guard down when we found that
one system was falling behind sched-
ule. Our AI, for example, was very
much behind schedule for the duration
of the project because the programmer
just had too much to do. This caused a
ripple effect that was felt throughout
the design of the game. After all, you
can’t tell how a level is going to play if
the robots that you’re fighting aren’t

behaving at all as they should. We
couldn’t simply add another program-
mer to that particular system to help
out, because by the time the new pro-
grammer became familiar with the new
system, then his system would fall
behind. It might sound as if this was an
understaffing problem, but it wasn’t. It
was more of a case of “design as you
go,” where someone would suggest a
great feature and then the program-
mers would implement it.
Unfortunately, all these excellent fea-
tures started adding up and taking a
tremendous amount of time to imple-
ment. It would have been better if
there were more programmers on a par-
ticular system, or at least ones who
were familiar with it, so that if there
were concerns with slippage, other
people could have been brought
aboard to help.

4.WORKING ON A SEQUEL. With
sequels come high expectations

that can almost never be achieved com-
pletely. (Just look at Star Wars: The
Phantom Menace to see what I’m talking
about.) While we aimed high for the
entire game, many times trying to meet
the varying expectations of our team
(more in-level scripting and rendered
cinematics), publisher (using more AI
and levels), and fans (more of every-
thing) resulted in half-implemented
features, such as our in-game cinemat-
ics or items that went in untested at the
last minute (such as some Guide-Bot
functionality).

With a game so big and widely antici-
pated, I’m not sure if we would have
ever been able to manage everyone’s
expectations. And, one of our biggest
problems was that those expectations
were controlling the design of the
game. As developers, we should have
been more confident in our abilities to
produce this type of game and should
have approached new ideas with a bit
of skepticism. While I don’t dismiss the
valuable role that the fans and our pub-
lisher played in the development of
DESCENT 3, we were too apt to deviate
from our design document when others
wanted us to add features to the game.

It’s very important to stay true to
your design document and know
which systems are valuable. Every new
feature should be evaluated not only
on its value to the game, but also from
a production standpoint. When we
decided to create in-game cinematics, it

was simply to introduce the boss
robots. The effect was so impressive
that we decided to use the system to
establish the player’s location in the
beginning and ending of each level.
This worked out so well (do you see
where this is going?) that we used the
system to help establish when puzzle
elements were completed. This one-
time only system was utilized in ways
that hadn’t been thought of before its
implementation, which caused numer-
ous problems.

5.FAST COMPANY GROWTH AND GREEN

EMPLOYEES. When we started
work on DESCENT 3, Outrage had just
eight employees on staff. Since some of
the DESCENT II team left Ann Arbor to
work at Volition during the project, we
literally had to build the team and
company at the same time we started
production on the game. This resulted
in a mixed bag of results ranging from
pushing back larger projects or features
until later in the project to adding mul-
tiple tasks to someone’s already full
schedule.

One of the results of being under-
staffed was the decision to contract out
most of our 3D animated door model-
ing to an outside company, Vector
Graphics, for completion. Our schedule
showed that one animated door took
anywhere between three to five person-
days to complete. With a design docu-
ment that dictated more than 30 doors
in the game, we would have run out of
time. We made the decision to round
up all our sketches for doors and hand
them over to the very capable hands of
Vector Graphics. This allowed our
designers to concentrate on their
scheduled tasks and then add the doors
later as we received them.

What we didn’t account for were the
problems that came up because our
teams worked in different locations.
(Somehow we forgot that our company
was split for this very reason.) Assem-
bling our development environment
and building an editor for Vector
Graphics was troublesome, and once
we gave the editor to them, they really
didn’t know how to use it. Our lead
designer worked with them almost
daily to bring them up to speed and fix
any file incompatibilities caused by our
constantly evolving editor. This caused
our lead designer to fall behind in his
schedule, and we had to shuffle around
due dates for his specs and level deliv-

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 9 G A M E D E V E L O P E R

59

The DESCENT orb, now realized in full

3D.

erables. As we hired more people, he
caught up.

In the end, we hired an additional
nine employees, only two of whom
actually had any professional game
development experience. And while
everyone on the team gave the game
their full attention, we definitely had
issues come up that were the result of
inexperience.

A loss of professionalism, maturity,
and a standard of conduct was appar-
ent during the development of DESCENT

3. Some of this was due to young
employees who came to us directly
from school with no professional work
experience, while others had trouble
dealing with the long hours that come
with the job. This, coupled with the
lack of a strong management hierar-
chy, resulted in clashes over direction,
seniority, and leadership on the pro-
ject. More times than not, a person
would not follow the direction of the
lead simply because of their personal
issues with that person. This resulted in
the lack of respect for that person and
the very responsibilities that came
from being the lead.

But our biggest problem was definite-
ly with art direction. Without a dedi-
cated art director on staff, we often sec-
ond-guessed everyone else’s work. Each
artist and designer had specialized
tasks, and without an art director to
make a final decision, art was simply
added to the game without any formal
approval. In the beginning, we had
show-and-tell meetings to show off the
latest work from people, but this
almost always turned into a forum for
criticisms and led to animosity
between team members. An art director
leading us would have kept our artwork
consistent and would have been the
final authority on all artwork-related
matters.
END GAME DESCENT 3 was an incredibly
challenging project, to say the least.
The design-as-you-go and design-by-
committee aspects were a large part of
the problem, and any future Outrage
projects will be more diligent in their
initial design. We’ll make sure that the
designers have absolutely the best tools
at their disposal and we’ll have better
management to mediate design dis-
putes. Without these problems during
the development of DESCENT 3, I’m fair-
ly confident the whole project would
have been a little less painful. ■

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

P O S T M O R T E M

about how much money is coming into
this business. Cowles/Simba projects
that industry revenues will reach $11.6
billion in 2001. These are real dollars,
and I know a lot of the folks who are
getting rich in this business. Heck, I
develop the games they’re getting rich
on. I’m not saying I need a new Ferrari
every year, but I’m pretty sure I’m not
getting my share when it takes
me 15 years to save up for a
new pickup.

So where’s the clog in the
trickle-down theory? Part
of the problem begins
during contract negotia-
tions. I have this ongoing
problem of thinking the
other guy wants a fair deal.
The sad truth is that the last
time I was involved in a nego-
tiation where both parties were
interested in a fair outcome was
when I traded my kid brother a
water pistol for his Slinky. Ever
since, I’ve been cheated, lied to,
ripped off, folded, spindled, and
mutilated. It seems like almost
everybody I meet in this business is rip-
ping off everybody else.

One common rip-off is the “bogus
bonus” technique, and here’s how it
works. During an interview at some big
game company, they tell you how
important the project is, how impor-
tant you are to the successful comple-
tion of the game, and how it’s going to

change the course of history when it’s
finished. But instead of paying you
what you were making at your last job,
they tell you they’re going to be paying
big, fat bonuses to all the team players
when the game ships on time. After all,
they say, this makes it fair to both
them and you. So you agree.

Halfway through the project they
wail about being short on cash, they
lay off half the company, move the
delivery date up while adding features,
and are, of course, forced to cancel
bonuses. You manage to get a half-
baked game out the door by working
80-hour weeks, but the big, fat bonus is

long gone. The publisher got half of
your work for free because you only got
paid for 40 hours of those 80-hour
weeks. One big company owner in L.A.
has run this scam four years in a row,
taking home a million-dollar bonus for
himself every single year, according to
the company’s SEC filings.

So how does an honest developer
avoid this fate? Simply decide what’s
the minimum cash you want after work-
ing 40 hours a week, then multiply that
by two. This is the minimum salary you
can settle for (because you’ll be working
80 hours a week, remember?). If they
offer you a bonus, ask them a few ques-
tions, such as how many people got
paid bonuses last year. You don’t really

care what the answer is, you just want
to see their reaction. If asking

questions makes them
uncomfortable, sound
the red alert klaxon —

incoming bogus bonus.
Another rip-off is the

“complicated conundrum”
scam. This one is run by a
programmer against the
producer. The programmer
is running late on an
important part of the pro-

ject. The producer politely
asks the programmer if hiring a
couple more programmers

would help get that part of the
project back on track. The pro-

grammer then explains that bringing
on new hands would mean he’d have to
explain the extremely complicated code
to the new people, and by the time he
explained the whole thing he could
have just finished it all up by himself.
The producer thinks this makes sense.

As the project continues, more parts

G A M E D E V E L O P E R O C T O B E R 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

64

b y M i k e K e l l e g h a nS O A P B O X
Who’s Eating Your

Slice of the Pie?

My boss got a new Ferrari the other day,

the same day he laid off about a third

of the company. Somehow that smells

fishy to me. We’ve all heard the figures

Mike Kelleghan has a few uses for dishonest developers. Pernicious publishers he uses as filler in the cracks left by the last L.A.
earthquake, malingering musicians are chopped up for kitty litter, crooked coders are ground into fertilizer for the nature preserve in
the backyard, and amoral artists are hung up as window coverings to keep out the light. Honest developers (yeah, both of you) are
invited to partake in ruminations about the good old days at mkelleghan@compuserve.com.

illustration by Jackie Urbanovic

continued on page 63.

are late, until it seems like every part is
late and the whole project is way off
schedule. By the time the producer fig-
ures out what’s going on, the project is
years late, the developer got an extra
year or two out of his or her contract,
and the game ends up canned.

What’s an honest producer to do?
First, keep a log of every task you assign,
and the estimate to completion you get
back from the developer. Calculate how
far off the actual completion date is
from the developer’s projected date as a
percentage. This is the developer’s
“error rate.” Second, have the star devel-
oper do about 75 percent of a given
task, and then hand it off to a junior

developer to clean up, debug, test, and
finally submit. The objective is that no
single person is responsible for the
entirety of any single task. This allows
the junior developer to learn from
watching the senior, frees the senior to
focus on what he or she does best, and
generally allows honest developers to
grow and expand in their specialty.

When a dastardly developer springs
the “complicated conundrum,” you can
pull out the log of the developer’s error
rate. A good developer will have a very
stable error rate. A poor developer, or a
crooked one, will be late by different
percentages every time. With this infor-
mation you can say, “Gee, every time

you tell me how long it’s going to take,
you’re wrong by x percent, so based on
these figures I can hire two new guys,
have them look over your code without
bothering you, and still have time left
over.” If your developer is a crook, this
might be a good time to duck.

The dastardly developer can’t threat-
en to quit and leave your project high
and dry, because you have a couple of
junior programmers that have been fol-
lowing in his or her footsteps and have
a good handle on what’s going on. Fire
the turkey, hire a new guru, and when
the project finishes on time, remind
the publishers about that “on-time”
bonus they promised you. ■

S O A P B O X

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 9 G A M E D E V E L O P E R

63

continued from page 64.

ATI Technologies 16

Auran Developments Pty. Ltd. 61

Aureal Semiconductor 11

Big Fat, Inc. 60

Black Ops Entertainment, Inc. 61

Busybox.com Inc. 46,47

Cinram 62

Conitec Datensysteme GmbH 63

Hewlett-Packard 19

Digimation 2

Duck Corp. 23

Evans & Sutherland 21

Immersion Corp. C3

Intel 5

Kinetix C2,1

MathEngine 6

Metrowerks, Inc. 27

Multigen 13

Newtek Inc. 29

Numerical Design 8

Rad Game Tools, Inc C4

Resounding Technology 60

Savannah College of Art & Design 61,62

Sound Werx 15

Vancouver Film School 62

N A M E P A G E N A M E P A G E

A D V E R T I S E R I N D E X

	back:

