
V

OCTOBER 1998

G A M E  D E V E L O P E R  M A G A Z I N E



T his fall, as the leaves turn
shades of orange and the days
grow shorter, one of the
largest, most massively multi-

player games picks up steam and sucks
in participants. It’s a role-playing game
that draws tens of thousands (gads,
probably more) of players, and if my
predictions are right, it will be one of
the most popular attractions on the
eventual TV set-top box. I’m talking
about fantasy football leagues.

It’s taken quite a bit of time for me to
accept the fact that fantasy league sports
(there are also fantasy leagues for base-
ball, hockey, and perhaps even pro
beach volleyball for all I know) belong
in the same category as “traditional”
computer games. But the more I
thought about fantasy leagues, the more
I came to see them as kin to many other
popular video and computer games. 

As the owner of a sports team, your
role is similar to that of most RPG play-
ers: put together a balanced, effective
team based on attributes such as speed,
strength, and toughness, and pit the
team against opponents. The select
players you designate as “active” for
that week earn you points based on the
actual statistics they earned in NFL
games. (Scoring systems in fantasy
leagues are often pretty complex.) Based
on your weekly points, you either tri-
umph over your opponent and improve
your record, or not, and the teams with
the best records at the end of the season
go on to the playoffs and the eventual
Superbowl. There’s far more to it than
this, but as you can see, assuming the
role of team manager/club president/tal-
ent scout during the season holds the
same addictive lure as any RPG. When
you factor in the huge, rabid market for
these pay-for-play leagues (recent esti-
mates pegged the fantasy sports market
at eight to ten million people), you
begin to see the potential.

One company that’s quickly become
a force in the fantasy sports game genre
is New York-based Small World Sports
(http://sports.smallworld.com). SWS, a
small company that started in a dingy
apartment four years ago, looks to be
one of this year’s game development

success stories. Unlike the traditional
studio’s royalty revenue model, SWS has
two revenue streams: a two-year licens-
ing agreement to develop more than 40
online games for CNN/SI (http://base-
ball.cnnsi.com), plus revenue from ban-
ner advertising displayed on the CNN/SI
game’s web pages, which garner 50 mil-
lion page views per month. Surprisingly,
and in contrast to most commercial fan-
tasy leagues, some of the CNN/SI
leagues are free for participants and
offer cash prizes for winners. These are
the guppy leagues which, hopefully,
entice the most enthusiastic players to
join the premiere leagues for $15.

With such tremendous success
attracting players to the site and bring-
ing in advertising revenue, and armed
with the knowledge that the fantasy
sports market is growing approximately
25 percent per year, SWS and CNN/SI
have made plans to develop four games
each for the NFL, NBA, and NHL sea-
sons, including mid-season and playoff
games, and games with different styles
and scoring systems.

More traditional game developers
have begun staking their claims in this
market, too. Electronic Arts, the king of
sports games, recently announced a new
web site called “The EA Sports Edge”
(www.easports.com/99/easportsedge/).
The site offers recommendations on fan-
tasy football league drafts, trades, and so
on, for about $20 per season. I expect
others will follow. As Chris Berman
might say, computer-based fantasy
sports games could go…all…the…way…

Heeere’s Mel

This month, I’d like to welcome Mel
Guymon to Game Developer as the new
Artist’s View columnist. Mel penned
August’s character animation tools arti-
cle. He’s a 3D artist who’s recently
worked on high-profile projects for
Zombie, Eidos, Psygnosis, and others,
and he brings a wealth of technical
knowledge and creative experience to
bear in the column. Welcome, Mel. ■

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8

2

P L A NG A M E

It’s First and Goal for

Fantasy Sports

EDITOR IN CHIEF

MANAGING EDITOR

DEPARTMENTS EDITOR

ART DIRECTOR

EDITOR-AT-LARGE

CONTRIBUTING EDITORS

ADVISORY BOARD

COVER IMAGE

PUBLISHER

WESTERN REGIONAL SALES
MANAGER

EASTERN REGIONAL SALES
MANAGER

SALES ASSOCIATE

MARKETING MANAGER

AD. PRODUCTION COORDINATOR

DIRECTOR OF PRODUCTION

VICE PRESIDENT/CIRCULATION

ASST. CIRCULATION DIRECTOR

CIRCULATION MANAGER

CIRCULATION ASSISTANT

NEWSSTAND ANALYST

REPRINTS

CEO-MILLER FREEMAN GLOBAL

CHAIRMAN-MILLER FREEMAN INC.

PRESIDENT/COO

SENIOR VICE PRESIDENT/CFO

SENIOR VICE PRESIDENTS

VICE PRESIDENT/PRODUCTION

VICE PRESIDENT/CIRCULATION

VICE PRESIDENT/ 
GROUP DIRECTOR

SENIOR VICE PRESIDENT/
SYSTEMS AND SOFTWARE 

DIVISION

Alex Dunne
adunne@sirius.com

Tor D. Berg
tdberg@sirius.com

Wesley Hall
whall@mfi.com

Laura Pool
lpool@mfi.com

Chris Hecker
checker@d6.com

Jeff Lander
jeffl@darwin3d.com

Mel Guymon
mel@surreal.com

Omid Rahmat
omid@compuserve.com

Hal Barwood

Noah Falstein

Brian Hook

Susan Lee-Merrow

Mark Miller

Epic MegaGames

Cynthia A. Blair
cblair@mfi.com

Alicia Langer
(415) 905-2156
alanger@mfi.com

Kim Love
(415) 905-2175
klove@mfi.com

Ayrien Houchin
(415) 905-2788
ahouchin@mfi.com

Susan McDonald

Dave Perrotti

Andrew A. Mickus

Jerry M. Okabe

Mike Poplardo

Stephanie Blake

Kausha Jackson-Craine

Joyce Gorsuch

Stella Valdez
(916) 983-6971

Tony Tillin

Marshall W. Freeman

Donald A. Pazour

Warren “Andy” Ambrose

H. Ted Bahr 

Darrell Denny 

David Nussbaum 

Galen A. Poss 

Wini D. Ragus 

Regina Starr Ridley

Andrew A. Mickus

Jerry M. Okabe

KoAnn Vikören

Regina Starr Ridley

Miller Freeman
A United News & Media publication

www.gdmag.com



Indie Game Festival

W ith regards to Alex Dunne’s
September editorial ("Where's

Our Sundance?"), this is a major issue
for developers, and proves to me yet
again that while we want to make
incredibly cool games, publishers want
to make money with games they know
will sell well because they resemble
previous best-sellers.

One of the prob-
lems with creat-
ing an indie
festival is
that the
games would
need to be
created to get
there, and many small
developers can't create the games with-
out the funding. After all, making a top
shelf game these days takes more than
$1 million — not exactly chump
change. Of course, the spirit of indie
films is, as Dunne said, smaller budgets,
so this may not be a true obstacle.

Perhaps in the first round or so,
developers could submit games that
they created that were market "flops,"
yet still garnered outstanding critical
acclaim. God knows, there are enough
of them to keep the festival full for sev-
eral years. This could be an excellent
extension of the GDC functions, as all
the right people will be in the right
place. E3 simply has too much going on
(especially thanks to the massive bud-
gets for booths like Sega).

Anyway, this is clearly an idea whose
time has come. 

Patricia Pizer 

CogniToy

Mourning Newfire

T hank you for August’s interesting
perspective on Newfire. It’s good to

know that some people recognized the
importance of my former company. As a
former Newfire employee, I viewed my
coworkers, for the better part of a year,
as my family. It seems that whenever I
wear a Newfire shirt, someone
approaches me and asks about the com-
pany. I give much of this recognition to
Harry Vitelli, who was the VP of market-
ing for Newfire.

The demise of the company is espe-
cially frustrating because I feel that our
latest efforts were technologically supe-
rior to most titles out in the market.
With a crack engineering team making
technological improvements to the

engine on a
weekly

basis,
who

could go
wrong? Yet, apparently, there

were still questions about our direc-
tion. Some people in the industry felt

we had an identity crisis with respect to
our customers. The question was often
raised, “Is Newfire going after con-
sumers or developers?”. Some wondered
whether people would pay a few hun-
dred dollars for a superior QuakeC-type
development environment. Still others
felt we cheapened ourselves by selling
short to small developers.

And yes, a number of us at Newfire
did want to develop a game with the
technology. Many people just can’t
believe that while we won so many
awards, we had little sales, our funding
cut, and as a result, folded a few months
later. Thank you for your bittersweet
retrospective.

Former Newfire employee

(name withheld by request)

A lex Dunne makes some good
points about the nature of the

industry in his article, “Requiem for a
Game Engine Company,” but the rea-
son that Newfire went under had less to
do with the nature of the industry, and
more to do with selecting VRML as the
foundation for a 3D engine. It’s a chal-
lenging medium in which to work. Hats
off to Newfire for trying to go the stan-
dards route, but their decision to follow
the rocky path of VRML/Java led to a
hard sell to offline developers who
want C++ and cutting-edge engines.

In regards to their online run-time
(Heat/Torch) and tool ambitions, their
competition was huge: Cosmo and
Intervista — free VRML plug-ins/3D
engines with big backers. It was difficult
to compete with free products (and
huge marketing budgets). 

“Credibility issue,” “competition with
in-house solutions,” “lack of proof of
concept,” and pricing are all valid chal-

lenges to point to in the industry — but
not the best explanation for Newfire’s
unfortunate death. Newfire would have
been better off creating a custom 3D
engine first (no standards) with
tools/plug-ins to ease the art path and
coding, possibly addressing the issue of
standards down the road.

G a l e n  T i n g l e

v i a  e - m a i l

A fter reading your August
GamePlan, “Requiem For a Game

Engine Company,” I was moved and
distressed. I’m an artist who is interested
in game development and game graph-
ics. I needed a game engine that was
affordable, and one that could offer me
the ability to create a small demo to
pass around to game development com-
panies. Eventually, I decided on the
Acknex engine by Conitec. Though I am
still learning to use it, I am thus far very
satisfied with it. I’m relieved that I could
find a tool that would allow me to con-
trol a game environment without going
into years of training to learn source
code. Premade game engines should be
encouraged among independent devel-
opers not only because of the time and
money saved, but also because it allows
fresh new thinking into the industry by
encouraging talented people outside to
explore it. It’s the industry’s loss if they
can’t warm up to the idea of a packaged
game engine. I believe that in the future
those who learn to use this kind of tool
creatively will have a huge advantage
over those who spend extra (and often
unnecessary) time churning out code. A
little creativity and a pre-made game
engine could accomplish the task as
well, if not better.

L e o n  W i s o c k i

O n e  A n g r y  G o l d f i s h  P r o d u c t i o n s

Motivate’s New Pricing

T hanks for Dan Teven’s in-depth
review of our Motivate game

authoring software in your August issue.
We are happy to say that we’ve
addressed his key concern — pricing.

We have introduced a $3,500 per
seat pricing model that enables users to
purchase a perpetual license for the
Motivate Development Tools and SDK. 

D a v i d  P r i t c h a r d

C E O ,  T h e  M o t i o n  F a c t o r y  I n c .

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

4

Y O US A Y S

Your two cents. E-mail us at
gdmag@mfi.com. Or write to Game
Developer, 600 Harrison Street, San

Francisco, CA 94107.

X



Softimage Ships 3.8
SOFTIMAGE announced at SIGGRAPH
the shipment of Softimage|3D 3.8, the
latest version of its 3D animation tool. 
New features in 3.8 provide better data
management and more efficient game
production. They include an anima-
tion sequencer, interactive polygon
reduction, resolution-independent
enveloping tools, and 3D Paint (which-

will allow you to paint directly on all
geometry types). This version also
increases texture-mode performance by
up to 40 percent. 

Version 3.8 is available, free of
charge, to all Softimage|3D customers
under a maintenance contract. For new
clients, the base rate begins at $7,995.
■ Softimage, Inc.

Montreal, Canada.

(514) 845-1636

http://www.softimage.com

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

6

BIT BBBB LLLL
N E W S  F R O M  T H E  W O R L D  

B L A C K  I S L E .  Interplay launched a new
RPG division, Black Isle Studios, which will
release BALDUR’S GATE and FALLOUT 2 later
this year. Led by FALLOUT veteran Feargus
Urquhart, Black Isle Studios also employs
experienced RPG designers Guido Henkel
and Zeb Cook. In other Interplay news, the
company signed an exclusive deal with
3000AD, Inc. to distribute Derek Smart’s
BATTLECRUISER 3000 AD 2.0. The original
BATTLECRUISER 3000 AD was released by
Take Two in 1996, and quickly became
embroiled in controversy due to rampant
bugs, incomplete documentation, and a
laundry list of other problems. Interplay will
release the version 2.0 through its "value
products division" for about $20. 
S U P P L Y  V S  D E M A N D .  Chip maker
3Dlabs filed suit against one of its own cus-
tomers, charging STB Systems with breach
of contract.  3Dlabs claims that, in violation
of contracts between the two companies for
the sale and purchase of chipsets, STB
failed to pay 3Dlabs over one million dol-
lars.  As we go to press, STB has not issued
any statement regarding the suit.
I N  A  D E F T  M O V E ,  Hasbro acquired
MicroProse in a deal valued at approxi-
mately $70 million. Hasbro formerly
employed no internal developers, but this
acquisition brings aboard a deep reserve of
development experience. The deal also
strengthens  Hasbro’s overseas distribution,
thanks to MicroProse’s strong distribution
network in Europe. In a separate announce-
ments, MicroProse released its first fiscal
quarter results, and reported a loss of $7.8
million on revenues of $12.2 million. In the
past year, the company burned through
almost 90 percent of its cash, going from
$41.2 one year ago to just $4.3 million. The
acquisition came at a good time.
H O L D  O N T O  Y O U R  H A T S ,  F O L K S ,

because Mattel is releasing a game based
on John Gray’s best-selling book, the infa-

I N D U S T R Y
W A T C H
I N D U S T R Y
W A T C H

b y  A l e x  D u n n e

Physics for All
MOTIONAL REALMS AND LATERAL
LOGIC have both developed tools to
assist with game physics. Motional
Realms has just released ReelMotion for
Windows. ReelMotion is a new stand-
alone software program that uses physics
to animate vehicles and rigid-body
objects. Import rugged terrains, fly heli-
copters, roll cars, add external forces
(think missle explosions), and crash into
inanimate objects (with varying resis-
tances, of course). The tool is ideal for
animating space and aerial dogfights,
accident recreations, and cut scenes,

among other applications. As the animator, you use a mouse or joystick to drive or
fly a vehicle through a scene. ReelMotion’s real-time OpenGL display will then pre-
sent you with a 3D view of the action. Reel Motion sells for $795 and is now avail-
able for computers running MacOS, Windows 95 or 98, and Windows NT. 

Lateral Logic has also recently released a physics-based product, the Lateral
Collision Engine (LCE), a comprehensive collision detection system designed for
interactive graphical environments. Instead of creating application specific solu-
tions for collision detection, developers can now integrate collision detection capa-
bilities right into their game. Lateral Logic claims that the product may be adapted
to your application within only three to five days (as opposed to the weeks or
months this usually takes). LCE provides game developers with exact penetration
regions, contact points, and collision normal vectors for every collision. Another
object-oriented product from Lateral Logic, the Lateral Dynamics Engine (LDE), is
due out in the Fall of this year. The LDE has three main modules, a modeler, run-
time solver, and an API.

LCE Pro began shipping on September 15, 1998. The LCE Pro developer toolkit
will be $3,500 for one nodelocked run-time license. Additional licensesare $1,500.
Volume pricing is available.
■ Motional Realms, LLC ■ Lateral Logic Inc.

Reston, Va. Montreal, Canada

(703) 860-0714 (514) 287-1166

http://www.reelmotion.com http://www.llogic.com

ReelMotion’s user interface.



4D Paint 2.0
RIGHT HEMISPHERE LTD. has
announced 4D Paint 2.0, due to ship in
Q4 of 1998.

Known for its natural media paint
tools, 4D Paint caters to professional 2D
artists who wish to make the transition
to interactive 3D environments without
learning complex modeling techniques.
The 3D paint system for the NT plat-
form has made improvements which
CEO Mark Thomas describes as “a
quantum leap.” 3D Rendering quality
and speed are both juiced up, and a full
quality raytracing render option has
also been added to generate high quali-
ty stills. 4D Paint 2.0 will have all the
same integration with 3D modeling sys-
tems, plus a new UV mapping opti-
mization system named “Mercator.”
Further, the tool will now support
Adobe Photoshop plug-ins and a bi-
directional interface to Photoshop.

4D Paint supports Windows NT on
both Intel and Alpha platforms, and
Windows 95 or 98. It also supports a
Wacom or compatible pressure-sensi-
tive tablet. Pricing is expected to be
$695 for the Intel platform and $895
for the Alpha version. The plug-in
interface will be priced separately. 

■ Right Hemisphere Ltd.

Auckland, New Zealand

+64 (9) 309-3204

http://www.righthemisphere.com

Animate the Face
TECHIMAGE recently unveiled
Artiface, a new tool which allows you
to create 3D facial animations (both
realistic and fanciful) without turning
to traditional key-framing. 
Artiface captures the facial movements
of an actor in 2D video, extracts 3D
motion data via image analysis, and
transfers the movements to any 3D
model by applying an anatomical mus-
cle structure. Because of its precision,
Artiface can also perform accurate lip
synching. The tool requires no special-
ized image markers or motion capture
hardware equipment. Only one video
camera is required to record the
motion of the actor’s face. The software
includes specialized sculpturing and
enhancing tools to produce special
effects.

Artiface supports SGI workstations
running Softimage|3D and
Alias|Wavefront PowerAnimator 3D
packages. It sells for $7,995 for a single
nodelocked version, and for $9,995 for
a floating network license.
■ TechImage, Ltd.

Herzelia, Israel

972 (3) 673-4591

http://www.techimage.co.il

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

7

AAAA SSSS TTTT SSSS
O F  G A M E D E V E L O P M E N T

mous Men Are From Mars, Women Are From
Venus. The game, named after the book, is
Mattel’s "flagship adult game" and "is a
great vehicle to talk about relationships in a
casual setting," according to Gray. Since
you’re undoubtedly dying to know just how
they managed to squeeze a game out of this
gem, I reluctantly offer the following. Two
teams, men (Mars) and women (Venus) play
against each other. Players can be couples
or singles. Starting on their respective plan-
ets, players answer questions about how
they think, what they like and for what they
wish. Teams advance on the game board
path when they guess correctly how others
will answer. The first team to reach Earth
wins. Of course, like any feel-good game,
there are no right or wrong answers. Yikes,
I need to shower now.
N I N T E N D O  announced a barrage of inter-
esting marketing programs recently. The
company signed a $17 million deal to pro-
mote Pokemon monsters with Kentucky
Fried Chicken meals, snack-maker Keebler
is going to market BANJO-KAZOOIE with its
foods, and apparel manufacturer Tommy
Hilfiger will put N64 kiosks in almost 1,000
mall department stores where it sells
clothes, allowing customers to play titles
such as 1080 SNOWBOARDING and F-1 WORLD

GRAND PRIX.
3 D F X  S E T T L E D  its year-old lawsuit
against Sega, Sega of America, NEC, and
VideoLogic. An agreement was reached
behind closed doors to drop the $200+ mil-
lion claim, which was originally filed after
Sega terminated a contract with 3Dfx to
develop graphics hardware for the Dream-
cast console. In the suit, 3Dfx had claimed
breach of contract and threatened misap-
propriation of trade secrets. 
L O S S  A N D  G A I N .  3DO reported a nar-
rower-than-expected loss for its first fiscal
quarter ending June 30, buoyed by strong
sales of its MIGHT AND MAGIC IV and ARMY

MEN titles. 3DO’s net loss came to $2.6 mil-
lion, compared to a profit of $21.2 million for
the same period last year. The good news
for the company is that its software rev-
enues were far ahead of last year, reaching
$9.5 million, compared to $2.3 million a year
earlier.

Artiface translates an actor’s motions

onto a 3D model.

This sphere from 4D Paint 2.0 has its

color, bump and shininess rendered.

This is all done in real-time,and the

sphere can rotate and pan, too.



Inverse Kinematics Solutions

L ast month, I left off creating an
inverse kinematics system. I

thought I would take a look at the pro-
gramming libraries available to handle
such a task. You certainly will get the
most flexibility by creating your own IK
system, but given manpower, budget,
and deadline constraints, this isn’t
always possible. As it turns out, a couple
of companies with a great deal of experi-
ence in robotics research are ready to do
the work for you.

Motion Factory’s Motivate system has
a very sophisticated solution for game
developers who want to add intelligence
to their games. Motivate is a finite-state-
machine-driven animation system that
can be programmed to perform com-
plex tasks. The system has an internal
2D path planning and hierarchical
inverse kinematics solution that brings
life to the world. You can bring in hier-
archical characters, give their joints
degree-of-freedom restrictions, and then
keyframe animate them. The tools are
very polished. Motivate’s programmers
have clearly taken the time to simplify
their tools and make them very robust.
Most game programmers never have
time to clean up the production tools
and make them nearly this easy to use.
The Motion Factory just announced a
perpetual development license at $3,500
per seat. This will enable you to proto-
type and test out your game without
paying the full license fee. Once the
game ships, the run-time distribution
fee of $50,000 still applies. With the
development license, however, you can
try out your ideas, and then make the
decision whether you want to take the
time to develop your own technology or
simply buy the license. Check out the
more complete product review of
Motivate in the August 1998 issue of

Game Developer for more information.
Katrix also provides inverse kinemat-

ics technology. The company has
focused primarily on driving virtual
characters around the desktop for web
pages. However, the libraries they have
created for inverse kinematics would
also work well in a real-time game envi-
ronment. Katrix makes licensing
arrangements on an individual basis.

MultiResolution Modeling

A hot topic at the past two SIG-
GRAPH conferences, and at the

CGDC this year, is the issue of auto-
matic generation of levels of detail for
3D polygonal models. A couple of dif-
ferent companies provide commercial
solutions to the multiresolution model-
ing issue. If you recall from my August
1998 Game Developer column (“Looking
Forward with a Backward Glance at the
CGDC”), multiresolution models can
be used to create different levels of
detail on-the-fly. You can accomplish
this by dynamically increasing or
reducing the polygon count in the
model as needed to make the object
highly detailed and to keep the frame
rate of the game constant.

In August, I mentioned that
MetaCreations had teamed up with
Intel to create a toolset and API for cre-
ating and displaying these multiresolu-
tion models. This technology has been
licensed by Microsoft and was being
demonstrated in their ChromeEffects
web technology. The specification for
the Metastream “open” file format was
not ready at SIGGRAPH, but was expect-

ed to be released shortly. Currently,
MetaCreations has announced support
for 3D Studio MAX R2, as well as their
own products, Infini-D and Ray Dream
Studio. Use of an open format for mul-
tiresolution models would create a con-
venient production pipeline for game
producers — but it would have to  han-
dle textures, hierarchies, and animation
as well as geometry to be very useful.
We will have to see if the format is
robust enough to fit the needs of devel-
opers. I know one thing that has been
sorely lacking in 3D production is a
method of exchanging animated and
textured objects between graphics tools.
In order to gain wider acceptance, either
MetaCreations or some third party
would need to create import/export
plug-ins for the other mainstream 3D
programs used in game production.
MetaCreations’ decision to release the
reader code as well as the file format
publicly will certainly aid developers in
getting these models into their own pro-
duction tools and game engines.

MetaCreations is not the only tech-
nology company working on this issue.
Sven Technologies has a continuous
level of detail solution for game devel-
opers called MRG. They focus exclusive-
ly on high-level real-time 3D perfor-
mance. This allows them to work
one-on-one with their clients to tune
the technology to suit the individual
developer’s needs. They take a unique
approach in providing two different
libraries to support the technology.
MRGPlay is the run-time library that
manages playback of the models on a
triangle level. This way, it’s renderer
independent and will work with any

b y  J e f f  L a n d e r G R A P H I C  C O N T E N T

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

9

Taking a Break for SIGGRAPH

S IGGRAPH time has come and gone again, so I thought I would update

readers on the state of technology available for real-time 3D developers.

Walking the exposition floor, I looked into where companies are going

with real-time 3D. 

When not vacationing in the humid swamps of the southern United States, Jeff actu-
ally runs a small real-time 3D graphics company called Darwin 3D. Feel free to send
him ideas of what he should really be doing with his life at jeffl@darwin3d.com.



triangle-based 3D rendering system. The
compression routines also work strictly
on the polygon edge connectivity, leav-
ing the actual vertex locations alone.
This means that any form of vertex ani-
mation or deformation is completely
compatible with their polygon reduc-
tion algorithm, as long as it doesn’t
change vertex ordering. If your game
engine requires vertex-level animation,
the MRG system offers an advantage.

The second API in support of the
MRG technology is MRGAuthor. While
Sven provides a tool to create MRG
models from standard 3D files, direct
control of polygon reduction is limit-
ed. However, the MRGAuthor library
gives the programmer access to and
control of the algorithm that processes
the 3D model and creates the MRG
data. This API will make it quite easy to
integrate the MRG compressor into
custom production tools. I believe that
allowing developers to control the cre-
ation process is critical to creating real-
istic multiresolution models. 

Licensing for the Sven MRG libraries
is $15,000 plus a $5,000 annual service
contract for royalty-free single-title
usage.  Site licenses and royalty-based
schemes will be discussed on a case by
case basis. MetaCreations licensing is
handled on an individual basis, so no
standard pricing is available

Deformable Single-Mesh Animation

M any of you who read my column
in the May 1998 issue of Game

Developer (“Skin Them Bones: Game
Programming for the Web Generation”)
sent me e-mail asking what 3D model-
ing packages besides Softimage support
weighted mesh deformation. I took the

opportunity at SIGGRAPH to talk to the
vendors and see what was available.

Many of the major 3D modeling pro-
grams now support a form of weighted
mesh skeletal deformation. It even
looks as though this data is available to
game developers directly either via an
SDK or a public file format.

On the high end, Maya from
Alias|Wavefront supports a sophisticat-
ed system of skeletal deformation.
Through the Maya Artisan package, it’s
even possible to paint weight values
through the 3D paint interface. This is
an elegant and efficient way to set the
weight values. You can then extract the
data through the DevKit that comes
with Maya.

N-World from Nichimen also sup-
ports many levels of deformation. In
addition to weighted envelope deforma-
tion, you can manipulate vertices direct-
ly through the animation. This provides
a form of interpolated shape animation
on top of the skeletal deformation. The
data is available to developers in the
Game Exchange 2.0 file format. The
specification for this format is publicly
available from Nichimen. Just in time
for SIGGRAPH, Nichimen announced
that Alias|Wavefront would also be sup-
porting Game Exchange 2.0 in Maya.

By far, most of the e-mail I received
on skeletal deformations contained
questions about the ability to create sin-
gle-skin meshes in 3D Studio MAX. In
Character Studio R1, it was possible
only to assign vertices to a single bone.
This didn’t look nearly as good as fully
weighted skins. Luckily for us, Kinetix
has released Character Studio R2. This
new release includes a new version of
Physique that uses weighted envelopes
to handle the deformation. The tools to
create default vertex assignments and

weightings are very sophisticated and
easy to use. However, if you find you
really need to get in there and do the
weighting manually, it’s now possible.
One of the features that I really like is
the ability to control how many bones
can influence a single vertex when auto-
matically weighting. This can either be
N Links, 2 Links, 3 Links, 4 Links, or No
Blending. The No Blending case is simi-
lar to Character Studio R1, where each
vertex is assigned to exactly one bone.
By allowing the choice of restrictions, it
is possible to set up a character that is
exactly optimized for your game engine.
If for example, your game engine is
restricted to each vertex being blended
between two bones, you can set that up
easily. You can see a screenshot of the
new Physique in action in Figure 1.
Game developers interested in getting
this information out of MAX should
definitely check out the file PHYEX.P in
the CStudio/Docs directory on the
Character Studio disc. This file describes
the export interface for Physique and
shows how you would extract the vertex
weights from a MAX scene.

Affordable 3D Model Creation

T he vast majority of the e-mail I
receive comes from people seeking

advice about an affordable 3D model-
ing program. It seems that many peo-
ple working on their own 3D game
engines and projects cannot afford the
$2,000-$10,000 required to play with
the nice toys. While I can certainly
understand and relate to this, I’ve
never had a very good answer.
Unfortunately, most shareware applica-
tions are not very polished or full-fea-
tured and the consumer 3D applica-
tions lack the export and texturing
features needed for real-time asset cre-
ation. Luckily for us, Nichimen created
Nendo. At $99, Nendo is a real bargain.
It provides the same easy-to-use poly-
gon modeling tools that Nichimen
made famous in their high-end model-
ing package. It also includes a variety
of texturing tools as well as an easy-to-
use 3D paint system. Most importantly
to game developers, it exports 3D mod-
els to VRML 2.0, .3DS, and .OBJ file for-
mats as well as Nichimen’s own Game
Exchange 2.0 format. This should make
it quite easy to integrate into any 3D
game engine. All that for $99 seems

G R A P H I C  C O N T E N T

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

10

F I G U R E  2 . Nichimen’s Nendo is an

affordable 3D modeling program.

F I G U R E  1 . A screenshot of Kinetix’s

Physique, which uses weighted

envelopes to handle deformation.



like a bargain to me. Check out an
image of Nendo in action in Figure 2.

Graphics Hardware

S IGGRAPH isn’t really oriented
towards consumer graphics hard-

ware. However, there was plenty of
graphics power around for the anima-
tors and other graphics professionals
out there. One big news item is that
right before the show, 3Dlabs acquired
Dynamic Pictures. Dynamics Pictures
has never been much of a player in the
3D consumer hardware market, but
3Dlabs is clearly in the middle of it.
This move certainly boosts 3Dlabs’
position in the professional card mar-
ket, as the Dynamic Pictures Oxygen
series of graphics cards are a strong
force within Windows NT 3D anima-
tion hardware market. I can easily see
this technology trickling down to the
consumer space at 3Dlabs.

On that topic, 3Dlabs’ weakness in
the Permedia line of consumer hard-
ware has been low fill rate and lack of
blending modes. To address this issue,
3Dlabs has announced the production
of the Permedia 3. This graphics proces-
sor boasts 250 megatexels per second.
Each of these texels are two-pass tex-
tured, bilinear filtered, and perspective
correct. The chip appears to accelerate
the entire DirectX 6 feature set, includ-

ing all blend modes, and supports 32-bit
color depth and 32-bit depth buffer pre-
cision. One interesting feature
announced is the inclusion of voxel ren-
dering. While this probably refers to
support for 3D textures, no one I talked
to at the 3Dlabs booth was clear on
what exactly was happening with this
feature. More information should
become available as the chips go into
production later this year. Given the
Permedia 2’s rock solid performance, by
addressing the blend-mode issue as well
as increasing color and Z-buffer preci-
sion while increasing fill rate, the
Permedia 3 sounds like it’s ready to go

head-to-head with the next generation
of 3D cards, such as the Nvidia TNT.

While there are currently no plans for
3Dlabs’ gamma transformation accelera-
tor technology to drop down to the
consumer space, there was another pro-
fessional-level graphics card with geom-
etry acceleration entering the market.
Diamond Multimedia has combined
Evans & Sutherland’s impressive
REALImage 2100 chipset with a new
geometry engine that was developed
with Mitsubishi. The new FireGL 5000
will directly compete with the 3Dlabs
Glint GMX product line. The fast fill
rate of the REALImage 2100 should real-
ly give the 3Dlabs card a run for the
money. It’s clear to me that it’s only a
matter of time before these features end
up in the consumer graphics card mar-
ket. So, get ready to start raising those
polygon counts again.

Technology

M any readers have sent e-mail ask-
ing where I get my ideas for

where to go with my graphics technolo-
gy. In large part, the answer to that is
right here at SIGGRAPH. Until recently,
I have felt that we were a bit behind the
times in the world of game develop-
ment. Much of the research I have done
is on papers that are more than a decade
old. However, the times are changing.

This year at the conference, there was
much information that was very rele-
vant to my real-time 3D work. The
courses and papers presented help influ-
ence the direction my own research will
take me, and coincidentally, they repre-
sent the kinds of topics you will see in
upcoming Game Developer issues. So, let
me preview some of the technology I
may be exploring both for my own pro-
jects as well as the magazine.

Anyone at the show who saw Pixar’s
outstanding short Geri’s Game, (and
who didn’t? It was shown everywhere.)
had to be impressed with the work Pixar
had done. Subdivision surfaces is the

underlying technology used to create
their amazing organic shapes. This tech-
nique is amazing both for its realistic
results as well as its elegant simplicity.
Creating smooth surfaces from a low-
polygon base representation is both
quick and effective, as you can see in
Figure 3. After seeing several talks on
the subject, it struck me that subdivi-
sion surfaces may offer an ideal
approach to the issue of continuous
level-of-detail. Although it sounded as
though the issue of real-time applica-
tion had not been explored, it’s certain-
ly worth a look as an alternative to both
dynamic polygon reduction and higher-
level primitives. It just may solve the
issue of dynamic levels of detail.

In another talk, Michael Gleicher,
formerly of Autodesk’s Vision
Technology center, demonstrated a
very interesting technique for applying
motion data to a model of different
dimensions. This method, which he
termed “retargetting,” will certainly
find its place in tools for working with
motion capture data and other forms
of character animation. If you’re work-
ing on a project where you need to
apply motion capture data to a variety
of different character types, you owe it
to yourself to check out this work.

While this year I again found
Andrew Witkin and David Baraff’s
course very helpful in my quest to
understand the complete picture when
it comes to physically-based modeling,
one of the most interesting develop-
ments in real-time dynamics was found
on the expo floor. Dr. Michael Shantz
of Intel Corp. was a speaker at the
CGDC this year in a session on dynam-
ics. At SIGGRAPH, he was in the Intel

G R A P H I C  C O N T E N T

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

12

F I G U R E  3 . Subdivision surfaces cre-

ate smooth, organic shapes.

After seeing several talks on the subject, it
struck me that subdivision surfaces may offer
an ideal solution to the issue of continuous
level of detail.



booth showing off the results of his
continuing work on a real-time dynam-
ics engine. The engine displayed a
Tyrannosaurus Rex walking across a
height field terrain map. The entire
locomotion engine is driven by
dynamics. While this work still has a
ways to go to make it robust enough to
use in an interactive application, it’s
certainly very promising. I was amazed
to find out that Intel was not sure what
to do with this research. If you are
interested in adding true physics to a
game engine, but dread digging into
the complicated math involved, I sug-
gest you contact Intel and talk to them
about licensing this technology. Dr.
Shantz has clearly put a lot of work
into this and is certainly eager to see it
used.

With a show the size of SIGGRAPH,
it is impossible to catch all the interest-
ing lectures and side discussions that
go on throughout the week. If you
attended and saw something that you
think will really change the direction
of computer graphics, let me know
about it. I was probably catching a nap
in the back of the big lecture room.

If you have never made it to a SIG-
GRAPH conference, and are interested
in the direction of 3D graphics tech-
nology, you definitely should make a
point of attending the show next year.
You can look at the research in the
library after it’s all published, but there
is nothing quite like being there. I find
it both inspirational and educational.
It really is the best time to meet and
bounce ideas off of the leaders in com-
puter graphics. I have never failed to
return from the show without a large
list of things I can’t wait to try out in
my own projects.

Next Month

N ow that my little “vacation” in
Orlando is over, it’s time to get

back to work. Next month, I will
return to the inverse kinematic algo-
rithm. So, dig out those trigonometry
books and get psyched-up for it. It’s
going to be a very kinematically con-
strained ride. ■

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

13

DeRose, Kass, and Truong, “Sub-

division Surfaces in Character

Animation,” Computer Graphics, SIG-

GRAPH proceedings 1998: pp. 85-94.

Gleicher, Michael, “Retargetting

Motion to New Characters,”

Computer Graphics, SIGGRAPH pro-

ceedings 1998: pp. 33-42.

Shantz, Michael and Alexander

Reshetov, “Physically Modeling for

Games,” CGDC proceedings 1998: pp.

685-738.

Witkin and Baraff, “Physically Based

Modeling,” SIGGRAPH Course Notes

1998: (ACM SIGGRAPH), Course 13.

RR EE FF EE RR EE NN CC EE SS

Companies mentioned:
http://www.sven-tech.com

http://www.motion-factory.com

http://www.katrix.com

http://www.metastream.com

http://www.alias.com

http://www.nichimen.com

http://www.ktx.com

http://www.3dlabs.com

http://www.diamondmm.com

http://www.intel.com

FF OO RR   FF UU RR TT HH EE RR   II NN FF OO



b y  M e l  G u y m o n  A R T I S T ’ S  V I E W

the shelves a few years ago, their 100-
polygon solid-skinned characters were
seen as cutting edge. Nowadays, charac-
ters can reach polygon counts in the
thousands, and the in-game avatars of
today are looking better than their pre-
rendered counterparts of just a few years
ago. That said, you will need to adhere
to some key steps in the process if your
character is to have, well, character.

Concept Sketches

G enerating a good concept sketch is
the first and most important part

of the process. Without a good concept,
you may as well go back to the prover-
bial drawing board. Once your character
makes it into the game, it’s a little late
to realize, “Hey, that’s really not what I
wanted the character to look like!” 

I don’t want to get off on a rant here,
but it seems that I increasingly run into
industry artists who neglect this crucial
aspect of character design. They neglect
the “Artist” part of the 3D Artist title,
and instead, focus on the dazzling 3D
technology, becoming more of a techni-
cal modeler than an aesthetic one. 

Taking the time to work through and
critique the character on paper can save
you hours of headaches and weeks of
redesign. These days, it’s all too easy for
artists to depend on the technology in
front of them and forget why most of us
got into this business in the first place.
So get out your pens and pencils, and
start sketching! (Color is optional here,
but full-color concept pieces are the best
because they will ultimately help the
texture artists when it’s time to generate
the character’s texture maps.) For more
tips on generating a good concept piece,
check out Josh White’s article in the
November 1997 issue of Game Developer,
“Birthing Low Polygon Characters.”

Modeling

W ith the technical advances in
hardware acceleration and con-

soles, we have so many special effects
and tricks available to us that it’s easy
to rush through this first step of charac-
ter  creation. Our polygon budgets have
simply never been higher. It wasn’t too
long ago that we had to make do with
less than 100 polygons for a single char-
acter. These days, you can easily spend
ten times that amount on a single NPC. 

And while there are at least as many
techniques for character modeling as
there are tools with which to model (for
some tips on modeling technique,
check out Paul Steed’s article “The Zen
of Low-Polygon Modeling” in the June
1998 issue of Game Developer), you need
to pay heed to a few important points.
THE SILHOUETTE TEST. Your character must
be recognizable for what it is by its out-

line. Form defines function, and the
outline of a character can add to or
detract from the emotion you’re trying
to illicit from the player. MDK,
EARTHWORM JIM, ABE’S ODDYSEE, and
even SUPER MARIO 64 are all good exam-
ples of games with characters that
you’d recognize in any dark alley sim-
ply by the shape of their heads.
ACCOMMODATING ANIMATION. Solid-skinned
models have a tendency to collapse on
themselves when animated. The result-
ing character can end up looking like an
anorexic walking around in a baggy
clown suit. To keep this from happen-
ing, you need to pay close attention to
the joint areas; hips, knees, shoulders,
elbows, and so forth. (See Stefan Henry-
Biskup’s article “Character Sheets” on
page  44 of this issue for more on
anatomically efficient modeling.) Again,
this problem is less daunting than it was
a few years ago thanks to the higher

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

15

It’s About Character

Modeling and texturing solid-skin characters for real-time 3D games can

be one of the most fun and rewarding parts of being 3D artist. As tar-

get platforms become increasingly powerful, the limits we have to set

for ourselves become increasingly less restrictive. When id’s QUAKE hit

Tips on creating solid-skin characters for
real-time 3D games.

Experience
I started making shareware games back

when the 286×25 was considered the

top-of-the-line machine, and my business

cards have seen job titles ranging from

3D Artist to Art Director. I’ve had the for-

tune to work on projects at companies as

large and corporate as Eidos Interactive

and as small and close-knit as Surreal. 

Goals
While 3D character animation is my one

true love and area of expertise, I’ve had

the opportunity to learn various artistic

tricks and techniques from some of the

most talented people in the industry. My

goal with this column will be to dissemi-

nate some of that knowledge back into

the industry as a whole, and hopefully

help to raise the bar a bit when it comes

to in-game art.

Topics
In the upcoming months, we’ll look at as

many aspects of art production and artist

management as we can reasonably fit in

the allotted space. The goal will be to

keep this whole process timely and accu-

rate, with a good balance of how-to top-

ics, such as this month’s column. I’m also

open to your suggestions. I can be

reached by e-mail at mel@surreal.com.

Introducing Mel



number of polygons available to us.
In Figure 1, the simple addition of an

extra segment of vertices at the elbow
allows the joint to flex correctly without
collapsing the arm segment. In contrast,
the simpler construction in the first
model removes the fidelity of the ani-
mation, and the joint collapses on itself.
POLYGON COUNT. Just a few years ago, we
had to do more with much less. As poly-
gon-budgets increase, the trend is
inevitably towards less efficient model-
ing tools because, hey, we artists can get
away with it. Don’t be lulled into a
sense of gluttony here. As the hardware
gets better, it will be easier to lose the
sense of urgency associated with keep-
ing your polygon counts to a minimum.
But there’s just no sense wasting poly-
gons unnecessarily. Character polygons
are often the most technically expensive
to render, and most engines pay extra in
terms of processing time for polygons
that must be transformed and manipu-
lated through animations. Shaving a
couple hundred polygons off of a char-
acter often gives you two to three times
that number for other objects in your
scene, or lets you keep an additional
creature onscreen while still maintain-
ing your target polygon count.

Texture Mapping

A fter the concept sketch, good tex-
ture mapping is probably the most

important part of a 3D artist’s job. As
artists, we need to be intimately familiar
with the way colors and textures affect
the look of our underlying geometry. A
skilled texture artist can use textures to
create the illusion of polygonal details
not present in the model (such as using
darkened areas to round off a corner).
And while a picture may be worth a
thousand words, a couple dozen pixels
can be worth their weight in polygons.
But it’s easier to show than tell, so on to

A R T I S T ’ S  V I E W

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

16

F I G U R E  2 .  The Cultist concept sketch.

Game: EXPERIENCE

Developer: The Whole Experience (WXP)
Publisher: TBD
Character statistics

Poly Count: 1,076
Vertex Count: 583
Modeling tool: PowerAnimator 8.5
Texturing tool: PowerAnimator 8.5
Character type: Solid-skin real-time 3D

The Cultist

Single-segment joint

Double-segment joint

F I G U R E  1 .  Joint construction.

F I G U R E  3 .  Modeling in PowerAnimator using an image plane.



the dissassembly.
The boys over at The Whole

Experience (WXP) in Seattle, Wash., are
working on a real-time 3D title called
EXPERIENCE. One of the main protago-
nists is this gun-toting bad boy (Figure
2), who you have to defeat in one of the
later missions. The art direction on this
product leans heavily on the neocar-
toonist style of Lyndon Sumner, WXP’s
concept artist.

Starting from a sketch on paper,
WXP’s character artist generates a place-
holder texture map in black and white,
which the modeler can use to build the
character. The black and white texture is
handed off to the modeler, and while
the modeler fleshes out the character in
3D, the texture artist goes back and adds
color and detail to the character texture. 

The obvious advantage of using a
place-holder texture is that it helps to
prevent bottlenecking in the character
generation pipeline. The character mod-
elers can move on to animating the
character without having to wait for the
character to be fully textured, and the
texture artist isn’t as rushed in complet-
ing the textures for the character. 

The place-holder texture is brought
into PowerAnimator as an image plane
(Figure 3), over which the modeler can
model directly to get the correct silhou-
ette for the character. If you look close-
ly, you can see how accurate the poly-
gon mesh is compared to the concept
piece. Using PowerAnimator’s bi-rail
extrusion tool, the modelers at WXP

were able to follow the basic outline of
the original concept with a very high
degree of fidelity. 

The image plane technique is avail-
able in some form on most major mod-
eling packages. Taking the process one
step further by generating top- and side-
views of the character can
make the modeling process
go even faster.

As you can see from the
character wireframe in Figure
4, the character has a basic
humanoid outline with just
enough variance to make it
stand out.

Now we get to the texture
application (Figure 5).
Because WXP’s artists model
their characters using the
place-holder texture as a
guide, the mapping coordi-
nates are very easy to apply.
But any of you who’ve done
this know that mapping the
sides of a leg or a torso
inevitably produces a smear-
ing effect, unless you use a
cylindrical type of mapping
coordinate. Furthermore, no
single cylindrical mapping
coordinate could map this
character, and inevitably,
you’d be required to adjust,

by hand, the texture coordinates around
the edges of the model. 

WXP’s technique solves this problem
in a snap. The character is seamed
together like two clamshells, with an
edge running all the way around the
model. The resulting model is texture

A R T I S T ’ S  V I E W

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

18
F I G U R E  4 .  Cultist wireframe.

F I G U R E  5 .  Texture application.

F I G U R E  6 .  The Cultist, fully textured.



mapped using planar mapping coordi-
nates (except for the hands and feet,
which are mapped separately). And
because the artists built the model on
top of the texture map, the mapping
coordinates fit perfectly.

Keeping an edge at the outline of the
character largely eliminates the problem
of smeared textures over the arms, and
using a single mapping coordinate guar-
antees a pretty uniform pixel density
without creating any seams in the tex-
ture. The down side to this method is
that it wastes quite a bit of texture
space. But with texture buffers for the
target platforms running around 6- to
8MB, the folks over at WXP don’t seem
too worried.

To sum up, the techniques WXP used
to create this character produce good
results without many of the headaches
usually associated with creating work of

this quality. Working from a solid con-
cept piece, they were able to generate a
character that retained all of the impor-
tant qualities of the original design
(Figure 6). The character model was rec-
ognizable in profile, and the texture
maps were applied in a very short time

frame, while maintaining a seamless,
uniform pixel density. Overall produc-
tion time from concept to finished, tex-
tured model ran about a day and a half.

Figure 7 shows a color concept for the
War Giant, a two-story tall villain in
Psygnosis’s DRAKAN, being developed by
Surreal Software in Seattle. DRAKAN’s
development team has been augmented
by the talents of concept artist Hugh
Jameson, whose unique fantasy style
lends a credible realism to the DRAKAN

cast of characters. Having an artist on
staff that can crank out work of this
quality is invaluable. The full-color con-
cept piece eliminates the guesswork

A R T I S T ’ S  V I E W

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

20

F I G U R E  7.  The War Giant concept sketch.

F I G U R E  9 .  Texture mapping using Surreal’s proprietary modeler.

F I G U R E  8 .  Complete texture set for

War Giant.

Game: DRAKAN

Developer: Surreal Software
Publisher: Psygnosis
Character statistics

Poly count: 576
Vertex count: 270
Modeling tool: 3D Studio MAX R2
Texturing tool: Proprietary tools
Character type: Solid-skin real-time3D

The War Giant



when it comes to generating the tex-
tures, and the time commitment for cre-
ating work of this quality is clearly
worth the result.

Figure 8 shows the textures that
Surreal’s artists created using the initial
color concept piece as a guide. Note the
high degree of realism and intricate
detail on the back, neck, and head of

the creature. The War Giant character
stands nearly 20-feet tall in the game.
Consequently, the large polygons on
the creature’s legs will need to have an
incredibly high pixel density, necessitat-
ing the use of large textures. 

While this level of texture application
requires a much larger time investment,
the equitable use of texture space allows

for a much higher local pixel density
than in the previous method. Note that
care has been taken to create areas of
the texture that can be used more than
once. The texture artist has taken
advantage of the fact that the war giant
is a biped, with symmetrical body com-
position. Only one arm and one leg are
included in the texture, and only one
side of the chest, back, and neck is mod-
eled in complete detail. 

While this process demonstrates
excellent use of texture space, the tech-
nique involves some painstaking work
on the part of the person applying the
texture maps. It took a full four days just
to generate and apply the texture maps
for this character. The result, however,
bears out the cost in man hours, and the
resulting composite 512×512-pixel tex-
ture map provides for a very high pixel
density on the model.

Using a proprietary tool generated in-
house at Surreal, the texture artist is able
to interactively texture map individual
polygons with a high degree of accura-
cy. In this case, the texture maps were
created during the mapping process; the
artist generated textures as needed. This
way, the texture is used in a very effi-
cient manner. Since planar mapping
wasn’t used for this example, extreme
care had to be taken to avoid any seams
in the textures or discontinuities in
pixel densities on the 3D mesh. Here,
the additional time required to apply
the texture maps to the model was
recouped by the quality of the result.

Figure 10 shows the wireframe and
fully textured model generated in 3D
Studio MAX. Using the concept piece
and several pencil sketches as a guide,
the modeler generates a low-polygon
version of the mesh using 3D Studio
MAX. As in the previous example, the
modeler applies mapping coordinates
while generating the model. And while
the polygon count is less by almost half,
the basic shape of the character is recog-
nizable. As you compare the wireframe
and finished model, it’s immediately
apparent how the correct texture can
make all the difference.  ■

A R T I S T ’ S  V I E W

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

22
F I G U R E  1 0 .  War Giant wireframe and textured model..

Jeff Connelly, Sky Kensok, Patrick
Moynihan, Lyndon James Sumner II, Ron
Levine, Jame Thrush, Stuart Denman,
Hugh Jameson, Heron Prior, and Louise
Smith.

Special Thanks

The Cultist
Modeled using an image plane backdrop

generated from the original concept

sketch, which was then used as the

256×256 texture map for the character.

PROS. 
• Very rapid production time; approxi-

mately five days from blank paper to

fully textured model.

• Guaranteed fidelity between concept

and final result by using image plane

method.

• Place-holder textures relieve the bottle-

neck between concept and modeling

and animation tasks

• Planar texturing method assigns uni-

form pixel densities and results in

seamless texture mapping.

CONS. 
• Planar texturing technique is fast but

wastes texture space.

• Lower overall pixel density due to use

of a single texture map.

The War Giant
Modeled using classic modeling tech-

niques and textured with four 256×256

texture maps. Mapping was applied by

hand adjusting the UVs in a proprietary

paint tool similar to those available in

Softimage, 3D Studio MAX, and Power-

Animator.

PROS

• Final result is an extremely high-quality

textured model.

• Higher pixel density available due to

multiple high-resolution texture maps.

• Efficient use of texture space means

lowest possible texture buffer.

CONS

• Time commitment is significant. The

War Giant took over 10 days to go from

concept to fully textured model.

• Bottleneck between concept and model-

ing and animation is significant.

Lessons Learned
W e’ve seen examples of two different techniques for modeling and texturing a

solid-skinned character.  Let’s compare them side by side.



b y  O m i d  R a h m a t H A R D  T A R G E T S

coming years. The addition of multiple
displays will also have some effect, but
in limited areas. Potentially, stereo-
scopic displays will be the most impor-
tant developments, but I remain skepti-
cal at present on that one.

The most immediate impact on the
industry is going to come from the
growth in 17-inch displays. Judging by
the promotions for new system sales of
multimedia PCs, the 17-inch screen has
become the standard display, and as a
result, a very affordable upgrade for
new PC buyers. I was offered a pretty
decent-looking 17-inch monitor by a
local dealer for about $350. It’s still the
cost of a good-size television set, but by
computer standards, it’s almost a steal.

The increase in display area has been
a long time coming when you consider
how long Windows has been around.
Windows and the 1,024×768-pixel res-
olution display go hand in hand, and
on anything less than a 17-inch display
the resulting image is a good recipe for
squinting eyes and fatigue. Further-
more, it seems that graphics board ven-
dors are eschewing the compute-inten-
sive penalties of antialiasing in
hardware in favor of 1,024×768 perfor-
mance, which makes for as compelling
a gaming experience as you could hope
for with today’s technology. 

Nevertheless, the bulk of display sales
still remain primarily 15-inch, which is
in itself a vast improvement over the
tyranny of the 13- and 14-inch screen.
Indications are that more home users
are going to turn to 17-inch screens in
the coming years. Commercial, or busi-
ness, users may be inclined towards par-
simony when it comes to handing over
the few extra dollars.

Unfortunately, display markets are
subject to consumer intransigence for a
number of reasons. While some con-
sumers are quite happy to fork over a

couple of thousand dollars for the lat-
est in desktop horsepower every eigh-
teen months, they are loathe to update
their screens. Part of the blame for this
has to lie with the physical space that a
cathode ray tube (CRT) display takes
up. Some stretch back as far as they
stretch across and that means a single
17-inch screen can consume fifty per-
cent of your desk space. There’s no way
of avoiding giving a CRT a prominent
place on your desktop, unless you like
to crane your neck at painful angles. If
desk space was not an issue, then we’d
probably see a jump in 21-inch display
sales because the price differential justi-
fies the results of having 1,280×1,024,
or 1,600×1,200 Windows.

Of course, trends in the display mar-
ket seem to be rather irrelevant when
most games still default to 320×200 res-
olution or the good old 640×480 of
VGA. The PC industry is definitely
working on making 1,024×768 the
standard default over the coming eigh-
teen months, but legacy applications
and VGA seem irreplaceable. Even
Windows setup screens are still default-
ing to the chunky pixel look of VGA,

and the results are, to say the least,
anachronistic. After all, I don’t know of
a single recently released graphics
chipset that couldn’t support
1,024×768 resolution as a default.

Despite all of this, monitor prices
have not dropped as rapidly, or in
pace, with PCs. If they had, a 21-inch
monitor would probably cost less than
$300 today. Nevertheless, as PCs have
come down in price, and competition
in the consumer market has exploded,
the addition of a 17-inch monitor as
part of a new multimedia home com-
puter package has become a competi-
tive advantage for those PC companies
with the leverage to stand up to the
display vendors. Yup, the PC vendors’
bundling of displays is driving down
the prices of displays from Mag, Sony,
NEC, ViewSonic, Samsung, and other
vendors of CRT displays. At the present
rate, PC vendors are probably going to
dominate the distribution of 17-inch
screens, leaving other display sizes to
the monitor vendors, many of whom
sell directly to large corporate
accounts. Of course, not all displays
sold by monitor vendors are attached

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

25

Trends in the Display Industry

W hat’s a game system without a screen or display? Nothing to

look at, that’s for sure. Therefore, it seems appropriate to look at

some of the trends in display technology. The move to larger

display areas will have a direct impact on gaming in the

Omid Rahmat works for Doodah Marketing as a copywriter, consultant, tea boy, and
sole employee. He also writes regularly on the computer graphics and entertainment
markets for online and print publications. Contact him at omid@compuserve.com.

17" monitor

20" monitor

15" monitor 29,408 32,231 35,325

1997 1998 1999

14,068 16,783 20,022

2,143 2,298 2,463

F I G U R E  1 .  Unit growth of PC displays (in thousands of units).Various sources.



to a PC. There are ATMs, point-of-sale
displays, and terminals to think of 
as well.

It’s no wonder display manufacturers
are shifting their focus to emerging
technologies. The CRT dates back to
the early research in television systems
in the 1920s. It was only when portable
computers showed up in the 1980s that
the industry started to get a taste for
alternatives to the cumbersome tech-
nology of the tube — alternatives such
as liquid crystal displays (LCD). Plasma
technologies today are still emerging
technologies, but consumer electronics
companies are investing billions of dol-
lars in trying to make flat screens that
hang on a wall like a mirror or painting
— and the bigger the display, the bet-
ter. These are screens targeting the
world of television, still the biggest
market for displays, but the computer
industry is playing its part in the accep-
tance of flat-screen displays.

The alternative technologies to CRT
displays are
• Thin-film electroluminescent (TFEL)

displays
• LCDs: monochrome displays (Color

LCDs continue to dominate the com-
puter market, but are unsuitable for
large flat displays.)

• TFT-LCD: color flat panel display
(FPD)

• Field emission display (FED): electron
tubes in which cathodes emit elec-
trons. (FEDs are not a significant area
of growth in comparison to other
plasma screen technologies.)

• Plasma display panel (PDP): used in
large panel displays for financial
applications where desktop space and
display area are equally important.
The emergence of FPD screens in the

consumer market is going to take place
in the consumer electronics market
first. The costs of such devices in the
computer industry make them prohibi-
tively expensive for mass-market con-
sumption, hence they are relegated to
specialized markets — much as PDPs
are finding favor in financial trading
houses where brokers have multiple
screens on their desktops.

The most comprehensive resource
on display technologies and markets is
Stanford Resources (http://www.stan-
fordresources.com) for anyone inter-
ested in delving deeper into these mar-
kets. In addition, Bob Raikes in the UK
(http://www.meko.co.uk) provides a

pretty good newsletter, Display
Monitor, that covers display and graph-
ics hardware.

Multiple Displays

I t will be interesting to see how
Microsoft’s support of multiple dis-

plays in Windows 98 will impact the
market as well. Multiple display sup-
port provides three unique perspectives
that developers can address.
LARGE DESKTOP. The bounding area of all
displays,which may vary in terms of
both resolution and color depth, is the
virtual desktop area. Some of the prob-
lems that this may cause are related to
ways legacy applications center dialog
boxes and access negative coordinates
of the screen space. In multiple display
situations, negative screen coordinates
are also visible. Microsoft has taken
these problems into consideration,
and the programming fixes for applica-
tions are relatively simple. Obviously,
with multiple display support, the
opportunity will exist for these same
applications to utilize more desktop
space in unique new ways.
REMOTE DISPLAY. The display can be mir-
rored remotely, or as part of the same
configuration. This means that a sec-
ondary display need not be a compan-
ion of the primary display. 
INDEPENDENT DISPLAY. A high-resolution
screen appears on a secondary display
and is completely independent of the
Windows interface. This means that
images on the secondary screen in this
type of configuration can work
through Windows APIs without hav-
ing to be a part of the virtual screen.

There is some thought that multiple-
display support for gaming is only use-
ful in Arcade PC applications, but
hardcore games enthusiasts have
shown themselves willing to spend
money on hardware that enhances
their experiences and heightens the
pleasures of gaming. Multiple monitor
support for games using the indepen-
dent display model offers some
intriguing possibilities, and imple-
menting support in a game does not
have to be a taxing technical burden.
The code to support multiple displays
in a Windows 98 application is pretty
straightforward. But, this is all conjec-
ture. There’s a great idea on paper, and
then there’s reality.

Stereo and HMDs

T alking of great ideas on paper,
what may prove to be an impor-

tant trend in display technology for
gaming is the emergence of stereo dis-
plays and head mounted displays
(HMDs) which offer the kind of immer-
sive experience that you would expect
of virtual reality simulators.

After all, stereo is the way we see the
world. To simulate the views that our
eyes see in the real world, you need to
produce two images of slightly differ-
ent perspective, and then combine
them in the mind’s eye. In the real
world, objects near and far are dis-
placed relative to the left and right eye
view by different distances. The closer
the object, the greater the displace-
ment. Stereo displays use the mind’s
ability to remember the way things
work in real life to create the impres-
sion of depth in the virtual world.

There are a number of problems with
stereo displays. They look great at exhi-
bitions, but the novelty wears off when
a user walks into a store and has to
hand over cold, hard cash for a pair of
glasses. Even when the price and per-
formance of a product are right, it’s dif-
ficult to engage potential users without
a one-on-one demonstration. So, while
stereo sounds great in theory, and can
have immense appeal, it’s a difficult
sell. Then there’s the issue of having to
wear stereo and HMD stuff that looks
like a brainwasher’s torture kit, and
makes one susceptible to an appear-
ance on America’s Funniest Home
Videos. In short, stereo and HMD gear
is about as goofy looking as you could
ever expect from a computer peripher-
al, and unfortunately, you have to wear
them to use them.

There is also the perception — stem-
ming mostly from historical problems
with stereo — that stereo and HMD
devices cause eye strain, headaches,
and seizures. Technology has also
played a role in holding back the tide
of stereo, and as a result, game devel-
opers have been reluctant to put any
great effort or investment into creating
stereo titles. However, that may all
change.

The current technology for stereo
display is LCD shutter glasses. They are
lightweight, cheap enough for con-
sumer use, and with graphics horse-
power on the rise, they are becoming

H A R D  T A R G E T S

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

26



technologically appealing too. With
stereo, you can alternate between
showing the left and right view images
alternately and let the mind meld them
together seamlessly, or show both
images at high frame rates. LCD shut-
ter glasses are triggered to shut one eye
off to an image while the other one is
displayed so it makes an interleaved
display of stereo images the most suit-
able option.

The key difference to doing stereo
today, as compared to even a year ago
is that developers are making real-
time, true 3D titles. This makes it a lit-
tle more appealing for stereovision
developers to implement depth in the
user’s experience. Also, an API such as
OpenGL has support for stereo at the
driver level, and Direct3D will eventu-
ally make it standard. So, good quality
stereovision today doesn’t necessarily
mean that game developers have to
create special versions of their titles,
but it does mean that they have to do
their 3D math right in their game
engines.

There are a handful of stereo display
companies with consumer-level prod-

ucts. At present, H3D (http://www.h3d
entertainment.com) is engaged with
the Wicked3D Board Company (http://
www.wicked3d.com) in creating a
Voodoo2-based stereo driver that will
support all OpenGL, Glide, and
Direct3D games. These two companies
believe that by making stereo possible
at the driver level, and by certifying
products according to the quality of
the stereo they provide, they will create
demand for stereo gaming. 

Unfortunately, with the exception of
some high-end computer graphics
applications, stereo in the consumer
market remains on the fringes for now.
The following companies are worth
checking out for stereo display technol-
ogy that could be applied to the gam-
ing market. H3D, i-O Display Systems
(http://www.vio.com), VRex (http://
www.vrex.com), and Stereographics
(http://www.stereographics.com)
should be familiar to gamers from past
forays into the consumer market. 
• Chromatek has interesting technolo-

gy (http://www.chromatek.com).
• General Reality also has interesting

technology (http://www.

genreality.com).
• H3D (in conjunction with the

Wicked3D Board Company) is one of
the better solutions for stereo.

• Interactive Imaging Systems (former-
ly Forte Technologies) has gone the
retail route, but is looking at diverg-
ing market opportunities
(http://www.iisvr.com).

• i-O Display Systems has a 
retail presence.

• Stereographics tried the retail stereo
glasses business, but got caught in
the hell that is retail sales.

• VRex has good retail presence.
I remain skeptical about any mass-

market product that needs to be seen
to be believed, but that’s not the case
just for stereo. It’s actually true of all
displays. What is certain is that
1,024×768 on a 17-inch screen is a
mass market phenomenon that has
taken six years to arrive. What is also
certain is that displays are going to
continue to go down in price, driven
by cheaper pricing. Displays are going
to get thinner, lighter, and more attrac-
tive. It’s probably time to say goodbye
to VGA, forever. ■

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

27



b y  S t e v e  W o o d c o c k



29

ince the birth of the

videogame market, artificial

intelligence (AI) has been a

standard feature of games — 

especially with developers’

emphasis on single-player games,

which represented the vast bulk

of released titles up until fairly

recently. Although the recent

support for multiplayer capabili-

ties (especially via the Internet)

and free online gaming services

such as Battle.net and Microsoft’s

Internet Gaming Zone may have

prompted some developers to

downplay the need for good 

computer opponents, good AI 

is needed more than ever.

Ill
ust

ra
tio

n b
y V

adim
 V

ahra
m

eev

Steve's background in AI comes from a decade of SDI-
related work building massive real-time distributed
wargames for the Air Force.  When he's not saving the
world, he's busy doing AI development on a contract
basis and target shooting when he gets the chance.  Steve
lives in gorgeous Colorado Springs, Colo., with a very
understanding wife and an indeterminate number of 
ferrets.  His e-mail address is swoodcoc@concentric.net.



At the 1996 Computer Game
Developer’s Conference (CGDC), I
attended a number of excellent techni-
cal discussions on game AI. Everything
from formal university techniques to
better pathfinding was presented to
standing-room-only crowds. As a
result, developers Eric Dybsand, Neil
Kirby, and I thought the time might be
right to begin a series of CGDC round-
tables on game AI, both as a forum for
developers to exchange ideas and as a
venue for gauging the industry’s use of
AI techniques. This article discusses
what was discussed in those
roundtables, details some
industry trends, high-
lights some recent games
that use interesting and
innovative AI tech-
niques, and examines
how the impact of
offloading 3D graphics
processing onto hard-
ware may affect AI. I’ll
wrap up with the
thoughts of various game
developers on the future
of game AI. 

Late to the Resource
Dance

H istorically, game AI
has been one of the

last maidens to join the
dance during the development process.
Emphasis was placed on other aspects
of the game, from tuning 3D engines
to integrating last minute sound
effects. Design and coding the comput-
er opponents was often deferred to the
final phase of the project, when it was
dumped on whichever hapless devel-
oper happened to be least busy at the
moment. There was little planning

beyond “Get it done by the shipping
date,” and little design beyond “Don’t
lower the frame rate.”

In part, this can’t be helped. For
obvious reasons, most testing and tun-
ing of computer opponents can’t real-
ly be done until large portions of the
game are already complete. Since this
doesn’t usually happen until close to
the shipping date, it can be difficult if
not impossible for developers to cor-
rect any major deficiencies in the AI if
anything pops up at the last minute.
That’s one reason why patches are

issued a mere week or so after a game
hits the streets.

This state of affairs seems to be
changing, however. More developers
are becoming involved in the design
and implementation of the AI at an
earlier stage, and more resources are
being dedicated to AI processing. Table
1 shows the results of two questions we
asked all developers who attended the

CGDC AI roundtables in 1997 and
1998. While these figures and others
from the roundtables shouldn’t be con-
sidered statistically accurate and can-
not necessarily be applied across the
entire industry, they do show some
encouraging trends. 

The number of projects with devel-
opers dedicated to game AI increased
sharply from the roundtables of 1997
to 1998, from roughly 24 percent of all
projects represented to nearly 50 per-
cent. A handful of developers reported
that there were “two or more” pro-

grammers dedicated to
working AI, and one
developer at the 1998 ses-
sion reported a whopping
three programmers whol-
ly dedicated to game AI
and scenario develop-
ment. AI is still taken care
of by a small subset of the
programming staff, and
these developers often
have other duties as well,
but this situation seems
to be rapidly changing.

The average number of
CPU clock cycles reported-
ly dedicated in some fash-
ion to AI processing also
jumped from the 1997 to
1998 roundtables, from an
overall average of 5 per-
cent to around 10 percent.
When broken out

between real-time action games and
turn-based games, we noted that the
biggest gains were made by developers
who were responsible for the former.
This jibes with the fast evolutionary
pace of the real-time action game
genre. On the other hand, gauging AI
advances in turn-based games is neces-
sarily tenuous: many of those present
who were working on turn-based pro-
jects said that they basically received
all of the CPU power they needed
when it was the AI’s turn. 

Significantly, developers overall
reported that AI was becoming a more
important factor in game design than
it had been in the past, often being
assigned an equal priority with graph-
ics and sound in the initial game
design and allocation of resources.
Those responsible for game AI
(whether or not it is their sole task on
the project) are getting involved earlier
in the design and development cycle,

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

30

G A M E  A I

Does your team include any full-time AI programmers?

1997 CGDC 1998 CGDC

50/207 (~24%) 87/190 (~46%)

What percentage of the CPU overall does your game’s AI get for its processing?

1997 CGDC 1998 CGDC

Overall ~5% ~10%

Real-time games 1% - 2% 5% - 10%

Turn-based games 5% - 25% 5% - 50%

TA B L E  1 .  Resources dedicated to game AI development.

CREATURES



smoothing the way for better integra-
tion between the AI and game engine.
Fewer developers reported having the
AI dumped on them in the
last month of develop-
ment, although everyone
cited the crunch of the
shipping date as a major
factor in the tuning of
any game AI. 

A handful of develop-
ers in the roundtables
noted that working on a
sequel to a successful
game, or building on a
licensed 3D engine tech-
nology, often gave them
greater freedom to pursue
development of more
capable computer oppo-
nents. In such instances,
this growing emphasis on
AI seems as much feature-
driven as technology-dri-
ven, as companies look to
differentiate products in
the marketplace.

An interesting side effect of the
rapid advances in the 3D hardware
acceleration market is that the CPU
has been freed up for more AI-related
tasks. While some developers at the
roundtables felt that the trend
towards more glitz in games was steal-
ing CPU cycles away from other por-
tions of the game engine, most devel-
opers were of the opinion that
offloading 3D processing to 3D hard-
ware was gradually giving them CPU
cycles that could be used for deeper AI
processing. All the developers felt that
offloading 3D processing was a posi-
tive trend, especially with today’s
powerful CPUs (such as the Pentium II
and the AMD-K6-2 with 3DNow!) pro-
viding orders of magnitude more pro-
cessing power than were available just
a few years ago. 

Another trend is the rise of the AI
specialist — an external developer
who focuses solely on creating the
game AI. (Full disclosure requires me
at this time to note that I’m just such
an individual myself.) This can be a
low-risk approach for companies that
are interested in providing more chal-
lenging AIs in their games, but which
lack the in-house experience to devel-
op it. Several developers also noted
that their companies are in the
process of setting up their own inter-

nal teams to handle all AI develop-
ment across multiple games, which is
something that simply didn’t happen

just a couple of years ago. 
A handful of people from develop-

ment studios stated that they were also
attempting to find developers with

knowledge of both AI and general
writing/story-telling expertise. This
trend was most evident among groups

working on RPGs, especially
online products, and like-
ly reflects some of the
lessons learned from
Origin’s ULTIMA ONLINE

experiences. Developers
working on these projects
felt that by hiring AI
developers experienced in
writing and story telling,
they could build more
realistic worlds that
would interact with play-
ers more consistently
with what the games’
producers had in mind.

Technologies in Use
Today

E xploring the AI tech-
nologies used in

games has been popular in the CGDC
roundtables. As the importance of
good game AI increases, developers
have been turning to academia and

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

31

FINITE STATE MACHINES. The FSM is proba-

bly the single most common AI technology

in use, though many developers may be

unaware of it. Simply put, an FSM is a logi-

cal hierarchy of rules and conditions that

can only be in a fixed number of possible

states. The inputs and outputs of each

state are identical, and there’s no choice of

the sequence in which states are visited.

An example of an FSM might be the

logic controlling the doors on the USS

Enterprise. When one approaches them,

they open; when one clears them, they

close. In Red Alert conditions, only autho-

rized personnel can use them. A few sim-

ple conditions (authorization and proxim-

ity) control a limited set of actions

(opening and closing). Sequencing is

maintained by the fact that a door can’t

be closed if it’s not open, and vice versa.

FUZZY STATE MACHINES. The FuSM is much

like its FSM brother, with a twist: rather

than a given set of inputs mapping to a

specific output, they map instead to a

“membership” to a set of possible

responses. These potential responses

are each given a weight based on their

membership. Developers then use a vari-

ety of methods to select a given

response — the weights might be used

as a simple probability, or they may be

accumulated and matched against some

threshold value to see which one is trig-

gered. The result is a state machine that

can generate a variety of different, yet

plausible, responses to a given set of

stimuli. Keeping with our example of the

USS Enterprise, where the doors might

be controlled by FSMs, we would proba-

bly want a Klingon warship controlled by

an FuSM, so that it could react flexibly to

changing battlefield conditions. 

ARTIFICIAL LIFE. A-life is the name given to a

particular discipline that studies natural

life by attempting to recreate biological

phenomena from scratch within computers

and other artificial media. A-life emulates

biological life by building systems that

behave as living organisms. Depending on

AI Technologies

Continued on p. 30.

S.W.A.T. 2



defense research for information on
more exotic technologies and better
methods than the brute force
approaches often used in
the past. Here are some
AI technologies that
have been employed
recently.
RULES-BASED AI. Rules-
based AI, characterized
by the heavy use of the
almighty finite state
machine (FSM) and its
close cousin, the fuzzy
state machine (FuSM),
remain the technologies
of choice for AI develop-
ment. Every game on the
market uses rules-based
AI to some degree or
another, and with good
reason: these methods
work. Rules-based AI
remains the foundation
of opponent intelligence
in most games for three
simple reasons: 
1. Rules-based approaches are familiar,

taking their principles from comfort-
able programming paradigms.

2. Rules-based designs are generally
predictable and hence easy to test
(although this, in turn, leads to one
of the biggest complaints on the part
of players — predictability of game
AI).

3. Most developers lack any training in,
or knowledge of, the more exotic AI
technologies and thus don’t turn to
them when deadlines loom.
Valve Software’s HALF-LIFE

(http://www.sierrastudios.com/games/
half-life) provides some excellent
examples of what can be accom-
plished using FSMs. The AI in that
game uses what their developers call a
“schedule-driven state machine,”
which is another way of saying it’s
state-dependent and response-driven.
By layering FSMs, the developers were
able to achieve some remarkable com-
plexity in the way the AI behaves —
monsters can panic and run away
when under fire, move in formation
when attacking the player, and fetch
reinforcements if they see they’re los-
ing a battle. 

Yosemite Entertainment’s S.W.A.T.
2 (http://www.swat2.com), on the
other hand, demonstrates some of the
capabilities of FuSMs, which were

heavily used for the tactical AI in that
game. This approach was driven by
the game’s design: the developers

wanted set scenarios that could play
out in any number of plausible, yet
different ways. Similar games often
use scripting to lay out a scenario, but

this can lead to predictability and lim-
its replayability. S.W.A.T. 2 gets
around this by building FuSMs. Each

possible decision is run
through a bit of code they
call a “fuzzy decider,”
which weights the possi-
ble responses of any given
unit based on its health,
personality, and so on,
and then chooses one of
these randomly. The
result is a series of actions
that are perfectly believ-
able and realistic, but
which vary from any pre-
vious game so the player
is never quite sure what
will happen. FuSMs also
provide more of an “ana-
log” feel to the AI, allow-
ing a spectrum of realistic
behaviors that might not
be expected by the player.

One nice side effect
demonstrating the intrin-

sic power of such a straightforward
approach to AI can be seen in some-
thing called “emergent behavior.” A
developer faced with coding a com-

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

32

G A M E  A I

UNREAL

the design, one can use hard-coded rules,

genetic algorithms, or a variety of other

methods for this emulation.

GENETIC ALGORITHMS. GAs are an approach

to machine learning that derive their

behavior from the processes of natural

evolution. This is done by creating within

a machine a population of individuals

represented by chromosomes — in

essence a set of character strings that are

analogous to the chromosomes that we

have in our own DNA. The individuals in

the population then go through a process

of evolution in which they are tested

against some fitness criteria. Those that

fail are discarded, while those that score

highest are allowed to breed — essential-

ly, creating a new individual using a com-

bination of two or more individuals’ chro-

mosomes. Mutation is often allowed to

prevent things from settling into a steady

state. The result is a population of indi-

viduals that gradually adapt themselves

to the constraints of their digital environ-

ments, in effect evolving over time.

Why Do So Many
AI Technologies Seem Similar?
The astute reader might notice that a lot

of AI technologies seem as though

they’re variations on a theme. Genetic

algorithms, neural networks, and even

FSMs can all modify themselves; GAs,

neural networks, and A-life are all biolog-

ically-based, and so on. One might well

wonder, therefore, why AI experts bother

to make distinctions between them.

It’s a good question, and unfortunately

a good answer might take more space

than allowed by this article. Suffice it to

say that various AI technologies have a

lot in common with each other, and can

be viewed as variations on a theme. (For

example, a neural network that is non-

learning is basically just a big set of rules

and can be reduced to a series of cascad-

ed FSMs.) Adding to the confusion is the

fact that there are different names for

some AI technologies depending on what

field of engineering is using them. 

AI Technologies (Cont.)



plex AI can instead break it down into
smaller pieces. Rather than having to
code thousands of rules for every con-
ceivable situation that could arise in a
game, lower-level behaviors are coded
individually and then linked in a deci-
sion-making hierarchy. The interac-
tion between these low-level behav-
iors can cause higher-level, more
“intelligent” behaviors to emerge
without any explicit programming.
This is the basis behind flocking, an AI
technology that seeks to emulate the
behavior of large groups of animals,
such as flocks of birds or schools of
fish. No one member of a flock actual-
ly knows anything about
the motion of the flock,
and yet through individ-
ual actions their motions
are coordinated and
fluid. Flocking has found
its way into a number of
first-person shooters and
RPGs as the basis of sort
of artificial life, another
form of AI technology
seeing more use in
games.
GENETIC ALGORITHMS. A
number of game develop-
ers have started investi-
gating the use genetic
algorithms (GAs) in their
games. Genetic algo-
rithms, which you can
read about in Swen
Vincke’s article on page
36 of this issue, are some-
thing of a rules-based approach to AI,
but focus on using digital analogs of
biological DNA that allow an AI, in
effect, to rewrite itself in response to its
environment.

Cyberlife’s CREATURES

(http://www.creatures.mindscape.com)
makes heavy use of a combination of
chemistry-based GAs and neural net-
works to control virtual pets (called
Norns), which learn how to speak, feed
themselves, and interact with the play-
er in a variety of ways. These creatures
live in a virtual world filled with unex-
plored areas, beginning the game in
nearly total ignorance of their environ-
ment. Every aspect of an individual
Norn is encoded in a form of digital
DNA and can be passed down to
descendants over time, allowing play-
ers to selectively breed Norns with
desired characteristics. A sophisticated

mutation engine forces new character-
istics to pop up from time to time.
Norn DNA can be exchanged online
with other players, adding to the gam-
ing experience, and the game’s creators
have a web site dedicated to assisting
in these exchanges.

This ability to create new characteris-
tics has proven to be one of the most
popular and interesting parts of the
game, and has led to developments in
the Norns that have surprised even the
programmers at Cyberlife. At one of
the 1997 CGDC roundtables,
CREATURES producer Toby Simpson
reported that they had received a DNA

strand from a player whose Norn
seemed “smarter” than the others in
the player’s world. Examination of its
“brain” showed that it had indeed
mutated, spontaneously developing
additional “lobes” (processing centers)
for its AI to work with.

Oidian System’s CLOAK, DAGGER,
AND DNA is another game making use
of GAs, using them to produce smarter
opponents. A Risk-like game of world
conquest, the heart of CDDNA uses
GAs to guide the computer oppo-
nent’s decisions. The game comes
with four different AI opponents, each
of which has a strand of digital DNA
containing rules governing its strategy
in the game. As each AI plays, a record
is kept on how well it did in every bat-
tle. Between battles, the user can pit
the AIs against each other in a series
of tournaments; the winners survive

to provide stronger and more capable
computer opponents over time. The
player can edit a given AI’s DNA if so
desired, ultimately building a library
of opponents that are theoretically
adapted to each player’s unique play-
ing style.

It’s worth noting that the natural
adaptive abilities of technologies such
as GAs are giving developers a tool
that can help them tune an AI during
development. Several developers in
our CGDC roundtables either men-
tioned that they had used genetic algo-
rithms to help tune their AIs, or were
considering it.

AI tuning is always some-
what problematic; by the
time a game is near
enough to completion
that tuning can be done
meaningfully, there can
be hundreds of parame-
ters that can affect the
AI’s style of play. Testing
every combination is an
impossible task, especially
given the often short
amount of time that, by
that point, remains in the
development cycle. Using
GAs to tune an AI
involves making hun-
dreds of runs of a game
using various parameters
for the computer oppo-
nents, and then using
genetic algorithms to
tweak those parameters

from run to run to favor those AIs that
perform better. Over time, this method
can test out many more AI variations
than an individual developer ever
could, allowing him or her to focus on
particular configurations that work
poorly and to select a more capable
suite of AIs for the final product.

The drawback to using GAs and
neural networks in games is that they
require a considerable amount of time
to converge to any significant degree.
Both CREATURES and CDDNA demon-
strate this. Each requires dozens or
hundreds of AI generations of evolu-
tion before the player begins to see sig-
nificant behavioral changes. CDDNA
solves the problem by providing the
player with an offline testbed in which
AI strains can wage war against each
other in a batch-processing mode.
Players can interrupt the process at

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

33

HALF-LIFE



any point and move the current cham-
pions into a stable of computer oppo-
nents. CREATURES makes the conver-
gence and training process part of the
game itself, involving the player in the
breeding, raising, and education of the
Norns. In this way, the enormous load
that a neural network places on the
CPU can be handled without adversely
impacting graphics or game play.
(Cyberlife states that each Norn
requires roughly five percent of a
CPU’s cycles.) 
ARTIFICIAL LIFE (A-LIFE). A-life is more a
description of a desired result — a
realistic emulation of bio-
logical behavior — than
of a technology, per se.
A-life is nothing new.
The classic showcase in
this field is the well-
known LIFE computer
program, but only recent-
ly have developers begun
looking to A-life to build
better game AI. The
aforementioned flocking
behavior is an example of
A-life that was imple-
mented using a simple
rules-based approach,
while CREATURES uses
genetic algorithms to
achieve its organic
behavior.

A-life technologies offer a way to
build a better and more believable
environment for games. They’re partic-
ularly powerful when used to control
the actions of NPCs in online role-play-
ing games. For instance, very few of
ULTIMA ONLINE’s paying customers
want to play a village blacksmith when
they could choose to be powerful
knights and sorcerers, and yet village
blacksmiths are an essential part of the
gaming experience. ULTIMA ONLINE also
uses A-life to control the spawning,
migration, and activities of wandering
monsters and other wildlife.
Parameterized characteristics allow dif-
ferent species to behave differently, so
wolves have a predisposition to hunt in
packs in forest regions while dragons
tend to be solitary and dwell around
mountains. This ecological system
leads to a relatively realistic environ-
ment in which players can adventure
freely. (To some extent, this realism
was later compromised in the interests

of game play, but that’s a topic for
another article.) 

Flocking, mentioned earlier as an A-
life technology, has found its way into
some of the more recent game releases.
HALF-LIFE and GT Interactive’s UNREAL

(http://www.gtinteractive.com/unreal)
both use flocking to control the move-
ment of groups of fish, birds, and mon-
sters to create a more realistic and nat-
ural environment. Players, in return,
have noticed and commented on the
fact that these games don’t feel as
canned as previous first-person shoot-
ers. Players feel as though they’re inter-

lopers in a living, dynamic environ-
ment, rather than stalkers going from
room to room slaughtering monsters.
EXTENSIBLE AIS. While many games over
the years have allowed users to modify
various game-related parameters, only
recently have developers begun to let
players alter and extend their computer
opponents in a more direct fashion
through scripts and code plug-ins. The
most common example of this is, of
course, the QUAKE’s Bot phenomenon.
When id introduced the world to the
QUAKE scripting language, Quake C, it
radically changed the level of interac-
tivity expected in games. Players were
able not only to build their own levels
and fill them with monsters, but actu-
ally to specify how the monsters would
act in some situations. If players didn’t
like the monsters that came with the
game, they could build their own —
and they did. A whole subculture of
Bot builders sprang up on the Web,
and players have developed a surpris-

ing variety of highly capable computer
opponents.

More recently, UNREAL was released
with Unreal Script, a robust program-
ming environment that allows exten-
sive customization of the game by the
players. Developed by Tim Sweeney,
Unreal Script provides a higher-level
interface to the API controlling the
computer opponent. This obviates the
need for detailed programming state-
ments in favor of more general direc-
tives such as, “Run forward two sec-
onds, fire a weapon, find a new attack
spot, run to it and evaluate, and cre-

ate a new attack strate-
gy,” Players, in turn,
have been using this
capability to develop a
wide variety of Bots,
from deadly Terminator
NPCs to companions
who assist the player in
various ways.

Grimmware’s WISDOM

OF KINGS — THE TWILIGHT

WAR (http://www.grimm-
ware.com/Games/
WisdomofKings) take this
concept one step further.
Due to be released
towards the end of this
year, WOK (a real-time
strategy game in the AGE

OF EMPIRES vein) will
break out the AI for each unit type
into stand-alone .DLL files that players
can rewrite or replace. The developers
intend to expose the API completely to
the player, providing the source code
for the AI shipped with the game so
would-be AI developers will have the
option to start with the factory-built
opponents or build their own from
scratch. Grimmware will provide docu-
mentation and support via the compa-
ny’s web site. Activision plans a similar
approach to its upcoming title
CIVILIZATION: CALL TO POWER

(http://www4.activision.com/ games/
civilization).

Providing hooks in a game to sup-
port an extensible AI isn’t easy, how-
ever, and while the trend is growing,
developers at our roundtables agreed
it’s not likely to become widespread.
The groups were split on whether
extensible AI is even worth the effort,
and with good reason. Significant
technical challenges are involved (Do

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

34

G A M E  A I

REBEL MOON RISING



we provide hooks through raw code
or a scripting interface? How much
control do we give players? How do
we prevent hackers from writing AI
module viruses that can wipe out a
hard drive?), which require careful
design from the beginning of the
game’s development cycle. The devel-
opment costs of such an AI engine
can quickly approach the level of the
3D engine, with arguably less signifi-
cant impact on sales. Building in this
level of interactivity and extensibility
also presents developers with another
dilemma: they risk exposing propri-
etary technologies to the scrutiny of
competitors. 

The Future of Game AI

W hat technologies are on the
horizon that might be useful in

games? Will good AI continue to
increase in importance, or will multi-
player eventually render it moot for all
but the most disconnected players? Do
consumers really care about good game
AI, or are they more interested in the
latest 3D special effects? Would dedi-
cated hardware (à la 3D hardware
accelerators) be useful?

As might be expected, these topics
elicit heated debates. Developers at
the roundtables weren’t sure where
the next big advance in game AI
might come from, though they did
offer their opinions. Most people felt
that they would slowly move away
from a hard-coded, rules-based
approach toward more flexible AI
engines based on fuzzy logic and neur-
al networks. While these technologies
are presently prohibitively expensive
for most kinds of games, widespread
opinion was that learning from and
adapting to the players’ style would
become a more important feature over
the next few years. 

One technology that many develop-
ers agreed would be a significant
advancement is speech recognition.
Until recently, speech recognition was
largely the subject of academic and
military biometrics research, but lately
speech recognition APIs have begun to
trickle down to PCs and are now
attracting the attention of game devel-
opers. Already in limited use in a cou-
ple of flight simulators, speech recogni-

tion will be an option in a handful of
first- and third-person shooters and
real-time strategy games in develop-
ment for late 1998. 

One of these is Fenris Wolf’s up-com-
ing REBEL MOON REVOLUTION, a third-
person real-time action game in which
the player is the leader of a squad of
space-suited marines. A key element of
its AI technology will be the use of
speech recognition as an interface
between the players and the other
members of their fireteams.

Robotics research was also cited as an
interesting area of technology that
might have applicability to game AI.
Researchers at NASA and Carnegie-
Mellon University have been working
with autonomous robot designs for a
number of years now, finding ways to

integrate navigation, learning, and lim-
ited decision making for probes intend-
ed for planetary exploration. Because
the distances are too great to permit
real-time control by technicians on
Earth, researchers have had to develop
techniques that allow these robots to
make their own decisions. There are
some striking parallels between this
work and what could be accomplished
with unit AIs in real-time strategy
games, NPCs in massive multiplayer
RPGs, and so on.

In general, AI developers as a group
felt that game AI would continue to see
incremental and slow evolutionary
advances, rather than revolutionary
changes. We will continue to be CPU-
and design-bound for the foreseeable
future.  ■

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

35

T he following is a very short list

of resources for developers

interested in digging more

deeply into game AI technologies and

research. 

Books and Periodicals
Precious few books really discuss AI

from a gaming perspective. Most are

more academic-oriented texts that go

into theory more than practice.

Probably the best single comprehensive

reference at present is Artificial

Intelligence: A Modern Approach by

Stuart J. Russell and Peter Norvig

(Prentice Hall, 1995).

Additionally, author Bryan Stout

(“Smart Moves: Intelligent

Pathfinding,” Game Developer,

October/November 1996) is working on

a book dedicated to game AI due out in

early 2000. It’s tentatively titled Adding

Intelligence to Computer Games and

will be published by Morgan Kaufmann.

Newsgroups
Several Usenet newsgroups focus on

artificial intelligence in general and

game AI in particular. A few of the better

ones in terms of noise-to-content ratio

are comp.ai.games, comp.ai, and

rec.games.programmer.

Web Sites
There’s probably no better resource for

researching AI technology than the

Web. Some sites I recommend include:

http://www.gamaustra.com —

Gamasutra (sister site to Game

Developer) maintains an online round-

table of game AI that grew out of the

CGDC roundtables. Highly recommended.

http://www.concentric.net/~swoodcoc/

ai.html — The author’s page, dedicated

to all things related to game AI. It

includes links to other AI resources,

archives of various Usenet threads, and

a page focusing on games making use of

particularly interesting AI technologies.

http://hmt.com/cwr/boids.html —

Craig Reynolds is the Father of Flocking.

His page is the best place on the Web to

start research into the theory and tech-

nology behind flocking and similar A-

Life technologies.

http://www.aracnet.com/~wwir/

j&p.html — Nova Genetica is one of the

best online references for all things

related to genetic algorithms and

genetic programming.

http://ai.iit.nrc.ca/ai_point.html — The

Artificial Intelligence Resources page is

maintained by the NRC/CNRC Institute

for Information Technology; it’s an

excellent starting point for AI research.

http://www-cs-students.stanford.edu/

~amitp/gameprog.html — Amit’s Game

Programming Page is crammed with

information on path-finding algorithms

and pointers to other AI resources. 

RR EE SS OO UU RR CC EE SS



G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

36

A L G O R I T H M SG E N E T I C

THE
O R C

PROBLEM
Once upon a time there was a fierce orc named Kroxy

whose goal was to retrieve all the gold the humans had

taken from him. He couldn’t really remember the actual

theft, but he was sure that the gold was his. Being a mas-

ter at orc politics, Kroxy soon convinced all the other

orcs that the humans had plundered their villages, and

they readied themselves for war. They didn’t seem to be

bothered by the fact that the humans didn’t even know

the orcs existed. Orcish logic allowed for that. So Kroxy

led his army of orcs towards the land of the humans and

eventually ran into a human army. This was a bit of a shock 

B Y  S W E N  V I N C K E

OO
Swen Vincke is still working on THE LADY, THE MAGE, AND THE KNIGHT (LMK) and expects to be still working on it when he
writes another article for Game Developer magazine. You can contact him at lar@larian.com



as there were clearly more humans
than there were orcs, and Kroxy
ordered his troops to assume the
grand orcish defense position. Much
to his dismay, the humans didn’t
attack. Instead they made camp and
looked at the orcs through funny
tubes. Kroxy called for the high
shaman and demanded to know what
the humans were doing. After consult-
ing with the orcish gods, the shaman
told Kroxy that the humans were
probably counting the orcs. Upon
hearing this Kroxy burst out in rage
and yelled: “Well, in that case, we’ll
count them, too!” While the humans
were entrenching themselves, the orcs
undertook the great task of counting
the humans, and eventually, Kroxy
learned that there were many humans
and not so many orcs. This worried
Kroxy and he retreated to his tent,
where he performed the ritual of
Grand Orcish Insight. When he left
his tent again, great magic had hap-
pened. Floating above every orc and
human in sight was a little bar, indi-
cating how strong each individual
was. Now Kroxy demanded that the
shaman provide insight as to which
orc should attack which human, so
that the battle may be followed by a
great orcish feast, rather than a great
orcish burial. The shaman sighed, and
started thinking…

Brute Force Doesn’t Work

P erhaps I got carried away with this
orc story, having played

WARCRAFT II again, but the problem
challenging Kroxy is quite an interest-
ing one, especially for a game develop-
er. Let’s state Kroxy’s problem a little
more formally: if you have m friendly
units fighting n enemy units, how do
you align the friendly units in such a
way that the damage they inflict is
maximal, while trying to minimize the
damage they receive? If you can calcu-
late the answer to this question quickly

enough, then you’ve solved an impor-
tant part of computer opponent artifi-
cial intelligence. 

Unfortunately, this problem is not
easy to solve. Using a brute-force
approach, you would try all the fight-
ing combinations, qualify them
according to some function, and select
the best out of the set. Because we want
to imbue our AI with a sense of strate-
gy, it might be wise in some cases to
gang-up two units on one opposing
warrior. Therefore, for each of the m
friendly units, there are n attack possi-
bilities to choose from. This means that
there are nm possibilities — an expo-
nential function. Even a modest fight,
for instance eight against eight, would
entail evaluating 16,777,216 combina-
tions! Obviously, a better way of solv-
ing this problem is needed.

Defining the Problem Mathematically

T his paragraph could get confusing,
so bear with me — I’m going to

represent this problem mathematically.
What we’re trying to do is minimize
one function while maximizing anoth-
er function. Say D(xi) stands for the
total damage a unit i inflicts on a unit
xi, and H(xi) stands for the total
amount of damage a unit i receives
from a unit xi. The actual damage can
depend on multiple factors such dex-
terity, strength, armor, and so forth.
Let’s define the triplet (S,m,n) as the
representation of a deployment situa-
tion. (S,m,n) represents the set { xi }
where i=0,1,2,3..,m-1, and where the
total amount of enemy units is
n(0≤xi<n). Such a set { xi } contains all
the information we need to know
which friendly unit needs to attack
which enemy unit. We can then define
D(S,m,n) to be ∑I=0,1..m-1 D(xi) which is
the total damage inflicted under a par-
ticular situation S. We can do the same
for H(S,m,n) so that H(S,m,n) represents
the total amount of damage received
under a particular situation S. Be care-

ful though. It’s possible that we are not
attacking all of the enemy’s units, and
those units definitely won’t stand idly
around. So we need to account for the
possibility that, if we attack only a sub-
set of the enemy unit, the remaining
enemy units will also inflict damage
upon us. We can say that this extra
damage can be represented by some
function ED(S,m,n). Therefore, the defi-
nition of H(S,m,n) is ∑I=0,1..m-1 D(xi) +
ED(S,m,n). The actual definition of
ED(S,m,n) depends on the game. It
could be something like the sum of all
the remaining damage points the
enemy has minus the amount of
remaining units multiplied by the aver-
age armor of the friendly units. Because
there are maximally nm situations, the
set of all situations is Sall={SI}, I=0,…,
nm-1. We are now looking for a situa-
tion Soptimal∈ Sall so that Set 1 is empty. 

Clearly, many situations could be
optimal. Some situations might have
the property that they inflict huge
amounts of damage while receiving
huge amounts of return fire, where
others might inflict a low amount of
damage while receiving an equally
low amount of damage in return. The
first scenario, for instance, could hap-
pen if you put your strongest units
against the enemy’s weakest units,
and your weakest units against the
enemy’s strongest units. This intro-
duces another problem, because your
strongest units might finish off the
weakest enemy units quite quickly.
Your strongest units should then
come and help your weaker units. This
sort of redeployment might give you
an edge, but it also might be a bad
idea. So a situation that looks optimal
at first might leave you with too many
casualties, and in subsequent battles,
the tide may turn. We can express this
formally by introducing a function
such as B(Soriginal,moriginal,noriginal),
which yields a new triplet
(Snew,mnew,nnew), expressing the situa-
tion after one round of fighting. A
fight F(S0,m0,n0) can then be repre-
sented as the set {(S0,m0,n0),
(S1,m1,n1),…, (Sk-1,mk-1,nk-1)} where
(Sk+1,mk+1,nk+1)=B(Sk,mk,nk). It’s possi-
ble that some of the enemy units have
died after one round, in which case
some opposing units have become
free. To keep matters simple, we will
say that these free units will help the

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

37

α = ∃ ∈ ( ) > ( ) ∧ ( ) < ( ){ }j,S S | D S D S   H S H Sj all j optimal j optimal, , , , , , , ,m n m n m n m n

S E T  1 .  



friendly units most in need. We do
this by introducing the function
FD(S,m,n), just as we introduced
ED(S,m,n) for the H(S,m,n) function. If
we define Dfight(F) as ∑I=0,1..k-1
(D(Si,mi,ni) + FD(Si,mi,ni)) and do the
same for Hfight(F) (taking ED() into
account), then we can say that our
goal is to find a situation Soptimal so
that Set 2 is empty. In other words,
the total damage inflicted over a fight
has to be maximal, and the total
amount of damage received has to be
minimal. This definition doesn’t say
anything about winning or losing,
because in some cases it’s impossible
to win. Still, at least we try to hurt the
enemy as much as possible. Another
thing to notice about the goal defini-
tion is that it is assumed that if we
attack a unit, it will defend itself.
While this assumption is definitely
not always valid, at least the AI will
have a way of assessing the situation.
However, saying that our goal is to
make α empty is not handy, so let’s
reformulate the function. If we define
FITNESS(S,m,n) to be Hfight(F(S,m,n))-
Dfight(F(S,m,n)), then we can state that
the situation Soptimal for which FIT-
NESS(Soptimal,m,n) is minimized is the
situation that will make α empty. It’s
possible that FITNESS(S,m,n) could
become negative, but that’s not really
a problem. We actually want FIT-
NESS(S,m,n) to be negative because
that means we’re dealing out more
damage than we’re receiving.

The Orc’s Grand Algorithm

S o, how do we find Soptimal? As you
can guess, the search space is quite

complex. When dealing with large and
complex search spaces (say 120 units
attacking 140 enemy units), I often
turn to approximation algorithms. In
this article, I’ll look at how we can use a
genetic algorithm as an approximation
algorithm for solving Kroxy’s problem. 

As the name implies, genetic algo-
rithms (GAs) closely follow the biolog-

ical concepts of evolution, but luckily
not too closely. Nature takes millions
of years to solve problems — viewed
in this context, its methods would be
of little practical use to us. You should
be aware that there is no guarantee
that GAs will find the optimal solu-
tion in a finite number of steps. As I
said, these algorithms are an approxi-
mation technique — often, a good
and fast approximation is better than
a slow and accurate solution, especial-
ly when it comes to games.

Like most things in nature, the con-
cept underlying GAs is surprisingly
simple. The general idea is that you
code instances of your search space
into chromosomes. (For the purpose of
understanding GAs, you can regard
chromosomes as sets of genes.) You
then let the chromosomes evolve just
as nature does. Hopefully, evolution
will form new chromosomes that will
contain encoding of the solution to
the problem.

More specifically, you start with a
population of random chromosomes
and let them evolve by interbreeding.
Every chromosome contains a set of
genes (the genotype) describing the
attributes of the chromosome (the phe-
notype). When two chromosomes
breed with each other, they generate
new chromosomes. These new chro-
mosomes contain a mix of the genes of
their parents. Because of mutation, the
children don’t always contain exact
replicas of the parents’ genotype. By
replacing the parents with the off-
spring, evolution occurs. Some chro-
mosomes aren’t very successful at sur-
viving in the environment; their
genotype dies off, and they cease
breeding. Others are quite successful,
and the most successful parts of their
genotype is shared more and more by
all the chromosomes in the popula-
tion. At a certain point, you get a chro-
mosome that is so successful that it
can’t be improved anymore. This is the
chromosome for which evolution was
looking. It’s also the chromosome that
contains our solution.

WHAT’S IN A GENE? The first step in creat-
ing a genetic algorithm is deciding
what information the genes are going
to contain, or what the phenotype of
each gene is going to be. In nature, the
phenotype determines an individual’s
traits. In our orc problem, it’s going to
determine the optimal troop deploy-
ment. By letting every gene correspond
with a friendly unit, and letting the
actual value of that gene being the
enemy unit we’re going to attack, we
have an adequate representation that
fits into the formalism that we set up
earlier. A typical chromosome’s geno-
type could look like (1,3,1,4). Thus, its
phenotype says that friendly unit 1 is
attacking enemy unit 1, friendly unit 2
is attacking enemy unit 3, and so forth.
In terms of the previously introduced
notation, we have S={1,3,1,4}. 
INITIALIZING THE POPULATION. The next step
is generating a population. Every indi-
vidual in the population has a corre-
sponding chromosome, and each chro-
mosome has its own genotype. The
initial population must contain a suffi-
cient number of different genotypes. If
a particular genotype is over represent-
ed, it might take a longer time to get to
a solution, especially if this genotype is
of a bad quality (we’ll get to the reason
for this later on). We will generate our
initial population randomly, but in
some applications, the candidates for
the initial population are carefully
selected. The idea is to embed some
knowledge in the genotypes before
applying the genetic algorithm. While
this sounds intuitively correct, research
has shown that for most cases, it’s bet-
ter to select a random population. 
THE FITNESS FUNCTION. When evaluating
the quality of a chromosome, we need
some kind of function that tells us
how “good” a chromosome is. This
function is called the fitness function.
In problems of minimization, one
chromosome is better than another
one when its fitness is lower. For our
problem, we’ve already determined
such a fitness function. The previously
introduced function, FITNESS(S,m,n),

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

38

G E N E T I C  A L G O R I T H M S

α = ∃ ∈ ( )( ) > ( )( ) ∧ ( )( ) < ( )( ){ }j,S S | D F S D F S   H F S H F Sj all fight j fight optimal fight j fight optimal, , , , , , , ,m n m n m n m n

S E T  2 .  



has the property that its minimum
represents the best solution, so we can
use it to qualify a chromosome’s fit-
ness. It’s important to realize that the
quality and speed of a GA often
depends on the quality of the fitness
function. Sometimes, the fitness func-
tion is quite obvious, but sometimes
it’s nonintuitive and you have to per-
form some analysis.
SELECTION OR “DATING.” To start the GA,
we need to select which two parents
are going to breed with each other.
This is a crucial step, because parents
that don’t breed stand little chance of
distributing their genotype to subse-
quent generations. Our main objective
is to select two parents that will gener-
ate good children. Since we don’t know
what good children are, we have to
make educated guesses. We can’t just
say that we’ll take the best chromo-
somes we have at this point, because
it’s possible that we’re converging
toward a local minimum. (If this does-
n’t mean a lot to you, look up my arti-
cle on the A* algorithm, “Real-Time
Pathfinding for Multiple Objects,” in
the June 1997 issue of Game Developer.
In it, I discuss the problem of local
minima.) On the other hand, we could
be converging toward the global mini-
mum, so we have to carefully balance
our selection so that the GA has a high-
er chance of selecting fit chromosomes
while still retaining the option of
selecting weak chromosomes.
Numerous selection mechanisms exist,
and I’ll discuss three of the more popu-
lar mechanisms here. 

The first selection mechanism is the
so-called roulette selection (Figure 1A).
Its name denotes the fact that it basi-
cally performs a linear search through
a roulette wheel. Every slot in the
wheel contains the fitness value of a

chromosome. The GA sets a random
target value that is a random propor-
tion of the sum of the fitness values in
the population. So, if we define the
total fitness of the population as
T=∑I=0,1..n-1 FITNESS(Ci) where n is the
number of chromosomes in the popu-
lation and Ci is the ith chromosome,
then our target value could be αT,
where α is a random value between 0
and 1. The selection mechanism steps
through the population until it reaches
the target value; the last chromosome
in the summation is then selected as a
parent. With roulette selection, fit
chromosomes aren’t guaranteed to be
selected. Still, they do have a greater
chance of being selected, because fit
individuals will contribute more to the
sum than less fit individuals. However,
because ours is a minimization prob-
lem, this distinction is contrary to our
goal: in our problem, the best chromo-
somes will contribute little, while the
worst will contribute more. So we
invert the summation. We sum 1/fit-
ness, and our target value becomes
1/αT. Because you could be dealing
with very large fitness values, it’s some-
times a good idea to multiply every-
thing in the summation by some large

value, such as the sum of all the fitness
values. This doesn’t affect the search
and avoids getting values for 1/fitness
or 1/αT that are practically zero.

The second selection method is sim-
ply random selection (Figure 1B). You
select a random chromosome to be the
parent. This method is said to be
“genetically disruptive” because it
doesn’t take the parents’ fitness into
account. Still, you shouldn’t discard
this method as useless. In several cases,
I’ve had much better results with ran-
dom selection than with roulette selec-
tion, especially with crossover opera-
tors that suffer from premature
converging to a local minimum (which
I’ll talk about shortly). 

The third selection method is called
fit-fit selection (Figure 1C). It selects
the next fittest chromosome in the list
of chromosomes. Because the popula-
tion changes throughout the algo-
rithm, not every chromosome will get
a chance to breed; the fitness of the
chromosomes relative to each other
changes constantly. When you use fit-
fit selection, the GA will have a tenden-
cy to converge rapidly toward a solu-
tion. The problem with this method is
that one of the main advantages of

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

39

α = ∃ ∈ ( ) > ( ) ∧ ( ) < ( ){ }j,S S | D S D S   H S H Sj all j optimal j optimal, , , , , , , ,m n m n m n m n

F I G U R E  1 .  Selection mechanisms.

α = ∃ ∈ ( )( ) > ( )( ) ∧ ( )({ j,S S | D F S D F S   H F Sj all fight j fight optimal fight j, , , , , ,m n m n m n

F I G U R E  2 .  The crossover operation.



GAs (using the genetic diversity among
the population to explore different
areas of the search space) isn’t exploit-
ed as much as you would want.
ON THE NATURE OF BREEDING. After the GA
has selected two parents for breeding,
the parents need to get down to it. This
brings us to the subject of crossover
operators. Crossover operators are one
of the most actively studied aspects of
GAs. The crossover operator’s job is to
determine how two parents are going
to generate their offspring, usually two
children. The operator that we’ll use
here works as follows. First, you define
two arbitrary crossover points, a and b,
on the parent chromosomes. For child
1, all the genes that lie outside the
interval [a,b] are copied from the first
parent, and all the genes that lie inside
the interval [a,b] are copied from the
second parent. For the second child,
the same thing happens, but the genes
inside the interval [a,b] are copied from
the first parent. Thus, two new chil-
dren are created with a genotype that
inherits from both parents (Figure 2).

Ideally, if a crossover operator made
all the right decisions, a GA would
yield a perfect solution in one genera-
tion. However, the amount of time
that this would take would be based
on an exponential function, which
isn’t what we want. Still, the search
can be helped by embedding some
knowledge into the crossover operator.
This has to be done with care, because
as with the selection procedure, we
don’t want to guide the search into a
local minimum. Unfortunately, I
haven’t found a good general heuristic
for this specific problem yet. This has a
lot to do with the B(S,m,n) function,
which is very game-specific. Later on

in this article, I’ll present an example
of embedding knowledge into a
crossover operator for another prob-
lem that has an easier fitness function.
I can provide a general guideline
though. Inserting local knowledge into
a crossover operator usually boils
down to applying some function to
the current chromosome. This func-
tion yields a child that has a fitness
value that is at least as good, but
preferably better than, the parent
chromosome. I also advise having
some measure of randomness, even if
knowledge is added. As we’ll see later
on, techniques such as a controlled
random search usually work well. If
somebody finds a good general
crossover operator for Kroxy’s prob-
lem, let me know.

After a crossover operator has been
applied to generate the two children,
mutation can happen. Chances are rel-
atively low (one to three percent is typ-
ical) that mutation will occur, but you
will need to include mutation because
it inserts new genotypes into the popu-
lation. Especially in cases where the
genetic algorithm is converging around
a local minimum, mutation can be the
thing that saves the day. One way to
mutate chromosomes is to choose two
genes randomly, and then exchange
them with each other. This is known as
an exchange mutation. In the
crossover operator described in the pre-
vious paragraph, you apply an
exchange mutation after the children
have been generated. 
FAMILY RESPECT. Once you’ve selected
two parents to breed and you’ve
obtained their children, you must
determine how these children are
going to be integrated into the popula-

tion. This is the issue of replacement.
Replacement decides which chromo-
somes to kick out of the population, a
matter not to be taken lightly. Your
choice of replacement technique
should depend, to a certain degree, on
your choice of selection technique.
Following are three ways of imple-
menting replacement.

In what’s known as weakest parent
replacement, the child will only
replace one of its parents if it’s
stronger than the parent. When used
in conjunction with a selection
method that selects both fit and weak
parents, this form of replacement will
continue to improve the overall quali-
ty of the population. If the selection
mechanism discriminates weak par-
ents, they will never be replaced. So
the part of the population that mat-
ters decreases in size. 

Both parent replacement is a replace-
ment technique that simply replaces
both parents. Using this replacement
method means that every chromosome
will only breed once. If your selection

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

40

G E N E T I C  A L G O R I T H M S

F I G U R E  3 A .  The initial situation for

the predefined test problem with

optimal fitness 0. The lines represent

which unit should attack which unit. 

F I G U R E  3 B .  This is the optimal situ-

ation for the predefined test problem

that was reached after 15,000 itera-

tions of the GA.

F I G U R E  3 C .  This is the initial situa-

tion for a hard random 40 units vs. 40

units problem. Note that the fitness

value indicates that we’re loosing.

F I G U R E  3 D .  This is the 40 vs. 40 sit-

uation after a little more than 10,o00

generations. The definite defeat has

been turned into a definite victory.



method favors fit candidates, this
replacement technique might be
killing your best chromosomes.

Weakest chromosome replacement
simply replaces the two weakest chro-
mosomes in the population, as long as
the children are not weaker than the
weakest chromosomes. This method
will assure that there is rapid conver-
gence. By now, you should understand
that rapid convergence might quickly
get you to a local minimum; getting out
of it under this scheme is rather diffi-
cult. Weakest chromosome replace-
ment works well in large populations.
KNOWING WHEN TO STOP. As stupid as it
may sound, knowing when to stop a
GA can be very difficult. Ultimately, we
want the GA to stop when we’ve found
the best solution. But of course, we
don’t know what that best solution is.
What you can do is look for the theo-
retical lower bound, and then stop the
GA when it approaches that bound.
Alternatively, you can just stop the GA
when your game is running out of
time. This is one thing that’s very nice
about GAs: you can stop one whenever
you want, and just use the best result
that it’s come up with thus far. That’s
what I always do.
SOME RESULTS. I’ve developed a small
test program that generates random
fight situations and runs the GA over
it. You can see some of its output of it
in Figure 3. If anything, the results
from the test program are quite satis-
factory. For a predefined test situation
of 20 units vs. 20 units, all of which
have the same amount of hit points,
armor, and attack values, the GA took
about 15,000 generations to find the
optimal solution, which is fitness 0. For
a more difficult 40 vs. 40 problem with

units that have random attack and hit
point values, the GA took only 10,000
generations to transform the situation
from FITNESS=408 to FITNESS=–938,
turning a definite loss into a definite
victory. For these and all subsequent
test results, I used roulette selection in
combination with weakest parent
replacement, a mutation rate of three
percent, and an initial population size
of 120 (Figures 3A-G).
EXTENDING THE MODEL. Until now, we’ve
evaluated the orc fighting problem
with a relatively simple fitness func-
tion. I’ve made many assumptions
about the capabilities of the units,
some of which are obscenely naïve.
The most obvious fault in the model is
the fact that position wasn’t taken
into account. When units actually
need time to get somewhere, Soptimal is
likely to be very different from Soptimal
for units that can teleport themselves.
You can see this very clearly in Figures
3F-3G, in which some units are tra-
versing huge distances. Luckily, all we
have to do is adapt the fitness func-
tion a bit so that it takes position into
account. The GA will then solve the
problem while taking position into
account. In the implementation of the
battle transformation function
B(S,m,n), it’s possible to add up all the
distances between the units that
attack each other. If we define this dis-
tance as DIST(S,m,n), then we can
redefine the fitness function as
ω1DIST(S,m,n) + ω2(Hfight(F(S,m,n))-
Dfight(F(S,m,n))). ω1 and ω2 can be any-
thing and depend on how important

distance and the exchange of damage
are. The results of running the demon-
stration program under this model
can be seen in Figure 3E-G. You’ll
notice that the number of generations
necessary to come to good results is a
little higher than before, which
reflects the increased complexity of
our search space.

And Now for Something Completely
Different

C learly, using GAs to solve Kroxy’s
problem is a good idea. We can

interrupt the GA whenever we want,
and even after a modest number of
generations, the results are pretty
good. I’m using this approach in THE

LADY, THE MAGE, AND THE KNIGHT

(LMK), our upcoming role-playing
game, and can tell you that the AI has
definitely become better because of it.
I also use GAs in LMK’s character
behavior AI. At some point during the
development of LMK, we decided that
it would be a nice touch to have the
characters turn out the lights in their
houses before they went to sleep at
night. This was easily done, but for
characters who had large houses, a
simple algorithm directing them to go
to the closest light and turn it out
showed a definite lack of intelligence.
The characters ran around mindlessly,
turning out the lights in seemingly
random fashion. Unfortunately, get-
ting them to follow an intelligent
path to turn out the lights meant that
we had to solve the travelling sales-
man problem, in real time. A GA

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

41

F I G U R E  3 E .  This is an intermediate

result for the predefined test problem

using the extended model in which

position matters.

F I G U R E  3 F.  This is the optimal situa-

tion for the predefined test problem.

Note the number of generations nec-

essary to reach this result. It’s often

better to stop searching when you’re

just in the right neighborhood when

using an approximation algorithm

such as a GA, as figure 3E shows.

F I G U R E  3 G .  This is random 40 vs. 40

situation under the extended model.

As you can see, here too the definite

loss was transformed into a definite

victory, while the troop movements

make sense.



engine running in the background
turned out to be just the thing to
solve our problem. 
THE TSP. The travelling salesman prob-
lem (TSP) is a classic permutation prob-
lem. In the TSP, a salesman has to find
a route that visits each of N cities once
and only once, and that minimizes the
total distance traveled. It’s easily stated,
but it’s extremely hard to solve. To
determine its complexity using a brute
force approach, represent each city by a
number, and write the route as a
sequence of numbers. The problem
then boils down to finding the number
sequence with the shortest total dis-
tance. The total distance is the sum of
all the distances between every pair of
cities, and is the distance between the
last and the first cities in the sequence.
There are N-1 possibilities for choosing
the first city (assuming a starting city
value of 0), because the starting point is
arbitrary. When you select one of them,
you get N-2 possibilities, and so forth.
The total number of possibilities is
therefore (N-1)*(N-2)*…*2*1 or (N-1)!.
So, the brute force approach has an
algorithmic complexity of O(N!), which
is exponential. An enormous amount of
research has been dedicated to the TSP,
and the best algorithm known so far
has a complexity of O(2nn2), which is
still exponential and not very good
even for small n (for n=20, you’re
already at over 400 million steps).

To solve the TSP with genetic algo-
rithms, we only have to modify a few
aspects of the GA that we’ve developed
so far. We can represent every city by
its coordinates in space and assign an
index to it, starting with 0 for city 0
and continuing until we are at city N.
We consider the index of the city as
the value that we put into a gene, and
the coordinates of the city as the gene’s
phenotype. If we have five cities, all
chromosomes will contain five genes
(as each chromosome represents a pos-
sible path), its phenotype will docu-
ment the route of the salesman (starts
at city 0, proceed to city 2, and so on),
and a sample chromosome might have
the value (0,2,4,3,1). 

We again generate the population
randomly, but we do have to make sure
that every chromosome has the same
number of genes and that all of the
genes are different. This is trivial to do,
but it can take some extra processing
time, especially for large populations.
The fitness function can be the summa-
tion of the total Euclidean distance
between every pair of cities. As in
Kroxy’s problem, we want to minimize
the value of the fitness function.
Because the fitness function is accessed
a lot, it’s better to precompute all the
distances between every pair of cities.
You can store this in a matrix where
the indices of both rows and columns
refer to the city index. The value of

each cell is then the distance between
the cities represented by row and col-
umn. As a bonus, if the direction
doesn’t matter, you only have to com-
pute half of the total distances repre-
sented in the matrix. 

The selection and replacement meth-
ods don’t need to be changed, but we
have to use a different crossover opera-
tor. The problem with the crossover
operator that we used in Kroxy’s prob-
lem is that it didn’t care if two genes
had the same value. One crossover
operator that was specially invented for
solving the TSP is the partially mapped
crossover (PMX) operator. PMX uses
two crossover points, x and y. All the
genes in the two parents between x and
y are swapped. Because all genes have
to be unique in the TSP (that is, no city
can be represented twice in a chromo-
some), we have to apply the following
procedure:

If a gene inside the crossover interval
[x,y] lies in [0,x[ or ]y,n] (where n
equals the number of genes), copy
from its direct parent the gene lying in
the same position to the faulty gene
outside the crossover interval in the
child chromosome (the “direct parent”
is the parent from which the child
copies all the genes that are not affect-
ed by the crossover operator). Repeat
this process as long as there are equal
genes in the child chromosome. 

The Edge-Recombination Operator

W hen applied to the TSP, the
PMX provides satisfactory, but

not optimal, results. PMX can be
improved by embedding local knowl-

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

42

G E N E T I C  A L G O R I T H M S

F I G U R E  4 A .  This is the initial situa-

tion for a random 40-city problem.

The red dots are the cities, and the

lines show the path through the

cities. 

Suppose we have two genotypes p1= (2,3,5,4,1,0) and p2=(2,1,3,0,5,4).

Then their edgemaps look like

Gene value Neighbors Gene Value Neighbors
0 1,2 0 3,5

1 0,4 1 2,3

2 0,3 2 1,4

3 2,5 3 0,1

4 1,5 4 2,5

5 3,4 5 0,4

The edge map tells us what the neighbors of a particular gene are (or adjacent towns in

the case of TSP).

The combined edgemap for p1 and p2 then looks like

Gene Value Neighbors
0 1,2,3,5

1 0,2,3,4

2 0,1,3,4

3 0,1,2,5

4 1,2,5

5 0,3,4

The combined edgemap contains the combined edge relationships from both parents.

TA B L E  1 .



edge in the algorithm. If two cities lie
very close to each other, in most cases
it would be a bad idea to replace one of
these cities with one that is lying far
away. The edge-recombination opera-
tor algorithm (ERO) addresses this
issue. It’s known to have solved several
moderate to large instances of the trav-
elling salesman problem. 

The idea behind the ERO algorithm is
to build a child genotype based on the
combined edge relationships from both
parent genotypes. The advantage to this
approach is that the parents might
already know something useful. The
ERO algorithm makes extensive use of
something called an “edge map.” The
edge map tells us what the neighboring
genes are (Table 1). Note that the same
gene necessarily appears at multiple
entries in the edge map. The final edge
map combines the edge maps of the
two parent chromosome. The actual
ERO algorithm is described in Listing 1.
You’ll immediately see that the algo-

rithm only generates one child, but we
can easily obtain a second child by
exchanging the two parents.

The important part of the ERO algo-
rithm is Step 5. There, we visit those
towns with fewer adjacent edges earli-
er than those with more edges,
because a town with fewer adjacent
edges is likely to cause difficulties if
it’s chosen later on in the town selec-
tion process. When we’re near the end
of the algorithm, there’s a high proba-
bility that there are no more adjacent
tows in the edge map. This causes the
algorithm to perform mutation by
resolving to Step 4. 

The ERO algorithm does what is
called “controlled random explo-
ration.” When the chromosome is long
enough, a reasonable number of ran-
dom choices are made. These choices
represent different ways of combining
the parents without introducing new
foreign edge relationships into the

child. This combination causes the
algorithm to converge quite rapidly
towards a solution. Be aware however,
that this strong point of ERO is also a
weak point, as we might fall into a
local minimum. One way to get better
results is to switch to PMX when you’re
in a minimum. 

Some of the results of applying the
GA to the TSP are listed in Figure 4. As
you can see, it does pretty well. Indeed,
in LMK you get the impression that
some designer has told the characters
how they should turn out the lights. I
could go on and give you more exam-
ples of how to solve hard search prob-
lems using GAs, but by now I hope you
understand their potential. In many
problems, GAs are my algorithms of
choice. They are very easy to imple-
ment, they can be stopped at any time,
and often still give adequate results —
quite an important feature for a game.
Generally, if you have a difficult search
problem that you don’t know how to
solve, you can usually find a way of
tackling it with a GA.

The only problem with GAs is their
speed. Do they get results fast enough
for use in real time? The answer
depends on the game, and just for
what exactly you’re trying to search. In
LMK, we don’t use GAs for split second
decisions, but we do use them for deci-
sions whose impact will stay in place
for some time. Such decisions can usu-
ally be calculated in the background. If
you can run a GA engine in the back-
ground, I really don’t see any reason
why you couldn’t implement them in
your game, too. Of course, if you don’t
have to solve problems like TSP, don’t
mess with GAs. But if you are facing
these kinds of problems, consider GAs.
Thirty-thousand iterations vs. 240 times
402 isn’t that bad.  ■

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

43

F I G U R E  4 B .  This is the situation

after 30,000 generations using the

ERO operator.

F I G U R E  4 C .  This is the situation

after 30,000 generations using the

PMX operator. You can clearly see

that the ERO operator outperforms it.

Give two genotypes p1 and p2 of length N, and their combined edge map M. To obtain

c1, the child genotype, do the following:

1. Copy the gene g from first position in p1 to the gene in the first position in c1. Remove

this gene value g from the edge map

2. Let I be the first gene value in genotype c1

3. If all N gene values have been added to the child c1 then exit and return c1.

4. If for the ith gene there are no more entries in the edge map, then randomly choose a

gene value g to be added to c1, where g has not already been added to c1. Add g to the

next consecutive gene location in c1, remove g from the combined edge map M, set I

to g and go to Step 3.

5. Choose the jth element from the ith entry in the combined edge map where the jth

entry in the combined edge map contains the minimum number of elements. If several

elements have this property, choose one of them randomly. Once we have chosen j,

we then add j to c1 at the next consecutive gene location. We then remove j from the

combined edge map, assign j to I and go to Step 3.

L I S T I N G  1 .  Edge Recombination Operator algorithm.

For those of you who are further

interested in GAs, there’s a wealth of

information out there. Try out the

comp.ai.genetic newsgroup or The

Hitch-Hiker's Guide to Evolutionary

Computation, which can be found at

http://www.cs.purdue.edu/coast/

archive/clife/FAQ/www/. Alternatively,

just do a search on genetic algorithms.

You’ll find that there is enough to keep

you busy for quite some time.

FF OO RR   FF UU RR TT HH EE RR   II NN FF OO



As character modelers, we’re carrying
on a figurative, sculptural tradition
that is as old as art itself. And computer
graphic art represents some stunning
figurative sculpture — just look at the
beautiful, high-resolution versions of
characters from TEKKEN 3 and MORTAL

KOMBAT 4. While we digital sculptors
seem to be creating better-looking
characters, creating characters that ani-
mate well is a new challenge that can
make or break a game. 

Creating a model that can look good
in the da Vinci pose and perform all of
the exotic movements that today’s
games require is a daunting task.
Fortunately, we can take cues from
human anatomy to solve the puzzle.

A character model and skeleton is a
large and complex hierarchy. As such,
problems that exist at or near a model’s
base (root) will propagate throughout
the entire figure. Conversely, changes
to the root can propagate improve-
ments as well. 

Case Study: JACK NICHOLAS 5

W hen Accolade began working
with Eclipse Entertainment to

create JACK NICHOLAS 5, we encountered
some major problems with the golfer’s
animated appearance. The model was
attached to an animated skeleton,
which was driven by motion capture
data. However, when when the model
animated, problems cropped up. The
golfer’s posture was very stiff and unnat-

ural, the shoulders were ballooned out,
and the thighs looked too long (Figure
1). A great deal of time was spent tweak-
ing the vertex attachments, applying
bulge angles, and editing link parame-
ters in an effort to fix the model’s ani-
mated appearance. We tried to improve
the character’s posture by adjusting the
bones of the back, but that threw off the
rest of the motion, causing the golfer’s
club go into the ground during a swing
(the hierarchy effect). Most of our fixes
related to the attachment of the mesh
to the skeleton — essentially changes to
the surface portions of the model. But
the source of the problems was actually
inside, in the skeleton itself. 

The problem lay in the structure of
the skeleton and its positioning within
the mesh, not in the vertex assign-
ments. The joints of the hips and lower
back were coplanar in the z axis, form-
ing a flat horizontal line (Figure 2). As
such, the lower back rotation occurred
in the hip area, creating a stiff posture
that lacked the natural arc of the spine.
This configuration placed the skele-
ton’s root too low in the mesh, and
because the rest of the joints were chil-
dren of this root, the problem was
propagated on to them. 

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

44

M O D E L I N GC H A R A C T E R  

Anatomically Correct
Character Modeling

b y  S t e f a n  H e n r y - B i s k u p

good character model has to fulfill two requirements: it has

to look great and it has to animate well. The aesthetic

quality and technical functionality of your model are

deeply intertwined. Aesthetically, you want a model

that really captures the details of the original

design. Technically, you want to maintain a

model’s character traits as it animates. 

Stefan Henry-Biskup has been in the game business for six action-packed years. He is
currently a senior artist at Accolade working on SLAVE ZERO.

AA
F I G U R E  1 .  This golfer’s thighs are

too long and his shoulders bulge.



The low placement of the root
turned out to be the cause of our knee
and shoulder problems (Figure 3), and
in fact affected all joints to some
degree. To solve it, we reprocessed the
motion capture data for a more appro-
priate skeleton, and then modified the
model with respect to the new skeleton
(Figures 4 and 5). With a new skeleton
and model in place, we greatly reduced
the amount time needed to tweak the
vertex attachments, and the appear-
ance of the animated model improved
greatly (Figure 6). (An .AVI file of the
golfer before and after are available at
http://www.gdmag.com.)

The problem with the golfer in JACK

NICHOLAS 5 illustrates the importance
of getting skeletal positions correct in
the beginning. To achieve this goal, I
suggest turning the usual production
sequence upside down, building the
skeleton before you build the mesh.
You can then build the model’s surface
by aligning your geometry to the
appropriate bones of the skeleton as
you go. This technique is similar to the
way in which a sculptor uses an arma-
ture when creating a figure in clay. It
lets you concentrate on orienting the
surface contours of the body to the
bones as you build them, and then cre-
ate appendages along those naturally
posed bones. So the first order of busi-
ness is to get the skeleton into posi-
tion, and this is where character sheets
come in handy.

What’s a Character Sheet?

T he character sheet was born in the
2D animation industry as a refer-

ence document to help animators draw
characters. A character sheet is a guide

to human proportions, and it can save
3D modelers a lot of time in creating
characters. You’ve probably seen a
character sheet before; it usually shows
at least the front- and side-views of the
character as well as any number of
expressions and costume details that
the designer wants to note. I scan my
character sheets, and then map the
scanned images onto polygons in my
3D package and work directly over that
texture in the orthographic viewports.

This is the beauty of digital technolo-
gy: if you’re just working from a pinned
up character sheet next to your com-
puter, you’re essentially redrawing the
character as you build it. With the sheet
displayed in your viewport, you can
place the geometry quickly and reduce
the time spent tweaking your character
model’s position and scale. Mapping a
scanned image to a set of polygons is
much more effective than simply dis-
playing the image as a viewport back-
drop. If you apply an image to an object

in the world, you can zoom in on
details of the map and your geometry
will scale up along with it. Finally, after
you’ve used the sheet to position and
build the skeletal structure for the char-
acter, it will be an aid in the construc-
tion of the final surfaces. 

Figure 7 shows Anahani, a character
designed by artist Heather Capelli for
an Internet-based multiplayer game.
We scanned the drawings into the
computer and then cropped them in
Photoshop. Setting the canvas size to
a nice round number such as 300 pix-
els wide by 600 pixels high is a good
idea, too; it makes it easy to match the
aspect ratios of the source image and
the polygons. The two polygons onto
which you’ve mapped your character
sheets should be positioned at right
angles to one another, so that the rec-
tangle containing the front-view lies
on the z,x plane and the side-view
image is mapped onto a rectangle in
the z,y plane. You may have to slide
the rectangles up and down until the
head and feet of each image are
aligned. Positioning the images so

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

45

F I G U R E  2 .  Coplanar joints in the hip

area causes unnatural movement.

F I G U R E  3 .  The root of this limb is

placed too low.

F I G U R E  4 .  Correct placement of the

shoulder joint.

F I G U R E  5 .  Correct placement of the

hip joint.

F I G U R E  6 .  This golfer is modeled cor-

rectly and moves much more naturally.



that the planes don’t intersect is
important — that way, as you begin
creating your model, your skeleton
won’t intersect the image-mapped
polygons and confuse you. 

Deconstructing the Body

N ow let’s look at where the bones
should go. Move the bones to

align them to the character sheet
images using the front and side ortho-
graphic views. While most manuals
teach you to place the bones in rough-
ly the center of the geometry that you
intend to attach, this is often not
where bones are placed in the human
body. As we saw in the opening exam-
ples, you can achieve some dramatic
improvements in the realism of your
model’s animations with the applica-
tion of some basic anatomical observa-
tions. I’ll show some specific examples
of how anatomical reference was used
to guide the positioning of Anahani’s
bones in several areas.

The following tutorial is based on 3D
Studio MAX and Character Studio, but
many concepts can be applied to other
modeling and animation tools. I use
the basic Character Studio skeleton, so
my skeleton is prebuilt and prelimited
for me already. Another benefit of the
Character Studio bones is that their
axes are automatically aligned to the
bone, which is not the case with stan-
dard 3D Studio MAX bones. Because
you’ll use the axis to build geometry
onto the skeleton later, it’s important,
if you’re using a different system, to
build your skeleton with the axes
aligned to the bones. Finally, note that
our digital bones are really just straight

lines between the axes, and are not the
natural shape of human bones. Often,
as we will see, the form of a human
bone itself can be misleading, so it’s
important to closely examine the bone
and accurately locate the rotational
axis of a joint. 
CREATING THE PELVIS. In the root, the
pelvis, there are three points that form
an upright triangle tilted slightly back
at the top (Figure 8). The two hip joints
are the bottom corners and the lower
back joint is the top point. The hip
joints are up about one-third of the dis-
tance between the bottom and the top
of the pelvis. From the side, they’re
slightly forward of the skeleton’s mid-
point. When positioning the hip joint
horizontally from the front, don’t be
fooled by the upside-down L shape of
the top of the femur. The bones of the
thigh naturally tilt quite a bit inward.
But, with digital bones, your thigh
bone will be much closer to vertical. If
you get this wrong, you’ll place the hip
bones too far apart or the knees too
close together. The lower back joint is
centered horizontally within the body;
it lies at the same height as the belly
button, and as we’ll see shortly, it’s
located to the rear of the body mass. 
THE SPINE. The spine is a misleading
bone structure. It actually rotates
around a vertical axis that runs
through the little wing-like structures
at the back of each vertebrae (Figure 9).
This rotational axis lies just behind the
spinal cord, so it’s farther back than
might you think. An accurate represen-
tation of the spine is very important;
the rib cage of your model will swing
very differently if the figure’s spinal
bones are placed in the center of the
torso mass rather than at the back as
Figure 10 shows. In our model, the

spine comprises three bones, which
lends flexibility to the rib cage while
keeping the attachment between the
torso mesh and the skeleton simple.
THE SHOULDERS. The shoulder joint is very
close to the top of the shoulder mass
(Figure 11). Correct placement of this
joint is crucial. Otherwise, the shoulder
balloons when animated (as happened
with the golfer in JACK NICHOLAS 5).
From the front view, the shoulder bone
appears roughly aligned with the sides
of the rib cage. From the side, you can
see that it’s a little closer towards the
figure’s back than the front. The shoul-
der is probably the single hardest area
from which to get a full range of
motion without ugly skin crimping or
surface distortion. Some animators
build abnormally wide shoulders to
compensate for such distortion. 
THE ELBOWS. Note that the elbow sits to
the rear of the arm mass (Figure 12B).
As with the shoulder, this close proxim-
ity of the joint to the surface is essential
to keeping the elbow from looking too
soft or bulging unrealistically. The
elbow is a little tricky, and its location
in the arm is deceiving. I used to think
it was located above the bulge of the
forearm, like the relation of the knee to
the calf. But in fact, the bulge of the
forearm encompasses the joint. Note
that the joint actually represents the

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

46

C H A R A C T E R  M O D E L I N G

F I G U R E  8 .  The pelvis. F I G U R E  9 .  The spine.

F I G U R E  1 0 .  Spinal position seen

from above.

F I G U R E  7.  The Anahani character

sheet mapped to rectangular poly-

gons in MAX.



meeting of three bones, not two. At the
elbow, the ulna is the primary bone of
the forearm pair to which to pay atten-
tion. The characteristic point that you
see at the outside of your elbow when
it’s bent, caused by the meeting of the
humerus and ulna, is actually not the
respective ends of those bones. In fact,
the humerus is connected to the ulna
just below the end of the latter bone,
causing the ulna to cantilever outward
when bent and create this point (Figure
12C). In your model, this is a matter of
defining the attachments correctly.
THE KNEE. The knee took me some time
to understand (Figure 13). The key to
realistic movement from this joint lies
in keeping the mass of the knee fairly
constant as the leg bends. The bones of
the lower leg, the fibula and tibia, actu-
ally slide around the lower end of the
femur (Figure 13C). To achieve this
movement, place the knee’s axis of
rotation a little above the vertical

meeting point of the two bones (above
the end of the femur), not where the
two bone ends meet. As seen from the
side and front, the axis should be cen-
tered horizontally within the knee’s
mass. By placing the knee joint away
from the surface of the geometry, we
get a bulging effect, which (unlike the
shoulders) we want in this case. 

The rest of the skeleton is positioned
by aligning the remaining bones to the
character sheet as well. Note that bone
joints in one part of the body behave
similarly in other locations. For
instance, the joints of the finger and
toe bones work just like the knee: lower
bones orbit about a point partway up
the higher bone. The meeting of the
ankle and the foot is similar to the
elbow: there is a protrusion by the heel
that is akin to the point of the ulna.
Finally, as noted before, the bones of
the neck meet the head towards the
rear of the skull, just as the rest of the
spine relates to the rib cage. 

As Tools Evolves,
Concepts Remain Valid

M odeling tools are constantly
reinventing themselves, which

makes our lives as game developers
easier. For instance, the newest version
of Physique, the skin attachment pro-
gram in Kinetix’s Character Studio,
uses a new method of attaching ver-
tices to bones. The tool now supports
true weighted vertex assignments,
using envelopes. This method has seri-
ous ramifications for how spline con-
figurations at the joints will be built in
the future, as it allows you more easily
create a good looking vertex attach-
ment. 

However, no matter what features
future software versions support, these
core concepts that I’ve outlined will
remain true: 
• Character sheets are one of the most

powerful tools you have for nailing
the detail and proportion of your
model, and using them within your
modeling environment leverages
their strengths even more. 

• The quality of skeletal joint positions
(particularly those at the base of the
hierarchical tree) will continue domi-
nate the geometry built upon it. 

• Building the skeleton first and then
properly posing it will help your
modeling and save you significant
time and effort. 
By studying human anatomy, a

modeler can learn where to put the
bones of the skeleton so that it deforms
properly, how the human body’s joints
behave, how much freedom of rotation
joints have, and how muscles wrap
around and connect to bones. By creat-
ing structures that closely mimic a real
human body, your model will move
and deform more naturally. ■

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

47

F I G U R E  1 1 .  The shoulders.

F I G U R E  1 2 .  The elbows.

F I G U R E  1 3 .  The knees.



giving constructive and decisive feedback on each take.
Running the session involves not only calling “action” and
“cut,” but also controlling the pace of the shoot — by decid-
ing when to continue to the next move, allowing breaks,
and ending the shoot day. 

Thorough planning will make both of these jobs signifi-
cantly easier. As I discussed in my previous article
(“Planning a Motion Capture Shoot,” Game Developer,
September 1998), you should go into your motion capture
session armed with a very specific shot list, a flowchart for
each character, and a day-by-day shooting schedule. If
you’ve gone over these documents in agonizing detail with
the game’s key team members and the motion capture stu-
dio personnel, you’ll have a very clear idea of what has to be
accomplished and how. The more control you have over the
production process, the more you can focus on creating
great motion-captured animation that will work perfectly in
your game.

Procedures During the Shoot

K EEPING TRACK OF YOUR SESSION. You’ll want to be able to
review each take on video during the shoot and also

afterwards to select which ones to use in the game. The easi-
est way to do this is to set up a regular video camera as a
“slate camera” to tape the session. The slate videotapes you
record should have time code that matches that of the
motion data videotapes. Hold up a slate board for each take,
noting the file name, move name, and take number.

Watching for continuity is critical. It’s especially impor-
tant to make sure your talent starts and ends in the correct
rest frame position and hits floor and height marks. To doc-

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

C A P T U R EM O T I O N

Directing 
a Motion

Capture Shoot

he director of a motion capture

project has two key responsibili-

ties: giving direction to the talent and run-

ning the studio session. Directing the tal-

ent means clearly explaining the required

movements to the performer, and then TT
b y  M e l i a n t h e  K i n e s

Melianthe Kines is a freelance interactive director and produc-
er. She has directed motion capture and Ultimatte shoots for
Acclaim Entertainment and Electronic Arts. Her past motion
capture projects include NBA JAM EXTREME, NBA JAM ‘99, THE

CROW: CITY OF ANGELS, and FIFA: ROAD TO WORLD CUP ‘98.
Her Ultimatte production credits include WWF: IN YOUR

HOUSE and FRANK THOMAS BIG HURT BASEBALL. She can be
contacted via e-mail at mkines@escape.com.

48



ument rest frame positions, take Polaroids at several angles
and trace outlines of the performer on acetate taped to your
slate camera video monitor. Put pieces of black tape on the
studio floor to indicate where the performer’s feet should go.
Use tape or other marks on a nonreflective studio stand to
show the height of other characters and objects in the game
consistently. (Make sure you jot down the measurements
that you use so the marks can be recreated in later sessions.)

Take extensive notes on your shot list, and highlight the
takes that you like best during the shoot. Record the time
code numbers of each take, if possible. Additional technical
considerations to keep track of include timing, speed, dis-
tances, and direction. Some of these things you’ll have to
judge by eye, so watch closely and feel free to ask for video
playback of current and earlier takes.

If you’re lucky enough to have a good assistant, put this
person in charge of continuity and keeping track of take num-
bers and notes. The assistant should slate each take and jot
down your comments about each take. Having an assistant is
invaluable because it allows you to focus on the performer
and watch the action without distraction. A capable assistant
can also take care of the performer's requests and will coordi-
nate information between the studio and the team.
SET RULES FOR THE SHOOT. Have a meeting before the shoot to
discuss how you’ll communicate with other team members
in the studio. Above all, establish how your team will make
decisions. Ideally, a few key people (the lead programmer,
animator, and/or producer) will be present during the shoot,
schedule permitting. (Alternatively, you can schedule meet-
ings with the team after the shoot each day to review the
“dailies,” the video you recorded on the slate camera.) You’ll
want input from them as well as from the motion capture
studio personnel during the session. However, explain that
the director will control the session’s progress and will also
be the only one to communicate with the talent on the set.
Try to avoid arguments during the shoot about whether the
move you just captured was good enough. This will waste
time and make the talent confused and uncomfortable.

Suppose you feel that other team members understand the
game better than you do (which would mean that you didn't
spend enough time in preparation). You decide to let the
animator and programmer critique the talent's performance
and provide feedback. These team members may or may not
be able to clearly express what they want; furthermore, they
may contradict each other. All the performer will end up
hearing is “Could we do just one more?” over and over
again. Or suppose that you’ve handed control of the shoot
over to the sports or martial arts experts whom you’ve hired
for the shoot. If you don’t watch out, your expert may con-
fuse the talent by telling him or her that a move you’ve
specifically asked for isn’t “authentic.” Sometimes, for the
sake of good game play, you have to compromise between
realistic sports moves and what will work in the game. Such
distinctions should be the director’s call, not the performer’s
or the expert’s. If you’re planning to have an authority on
the set, try to involve them in the preproduction meetings
so these issues are resolved before the shoot. 

Having a few people in the studio is one thing, but don’t
allow a crowd. Don’t permit unnecessary personnel to hang
out and watch. Make it clear that you have a lot of work to

accomplish and do not want distractions in the studio.
Besides, the performer may feel self-conscious with a big
audience.If the talent is a celebrity, it’s especially inappropri-
ate to allow a bunch of visitors to the studio.

Directing the Talent

Imagine that you’ve been hired as a motion capture per-
former for the first time by some game company. You

walk out of the dressing room wearing a skintight motion
capture suit with sensors attached everywhere. Even if you’d
been warned about this, if you’re human, you’re going to
feel a bit awkward. That’s why the director’s first task is to
put the talent at ease. Joke about the wacky suit and make
small talk to break the ice. Allow the performer some time to
warm up and get used to the motion capture suit and any
props that will be used. Play some music in the studio — in
fact, ask the talent to bring some of his or her favorite CDs.
Familiar music helps keep the performer’s energy level up,
and everyone else’s too (especially if they don't despise the
performer’s taste in music).

If the performer is new to motion capture and to games,
try not to condescend when explaining what you want
done. Even if he or she has trouble grasping the more com-
plex concepts, maintain a respectful tone with the per-
former. Start with the basics — explain how he or she will
have to hold a scale position at the beginning and end of
each move. Talk about the importance of hitting rest frames
and marks. Discuss the game character and the shot list; you
can even welcome and make use of the talent’s suggestions
to some extent, if they don’t impact your motion capture
and game requirements.
PROVIDE CUES. Help the performer hit his or her marks and
maintain timing by providing cues. You can do this verbally,
by calling out when the performer has reached a certain
position. However, be careful not to yell out instructions at
the performer like a football coach. If you’re hollering, you’ll
probably make it hard for the performer to concentrate on
the action at hand. The performer might also turn his or her

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

49

The author directs Washington Wizards small forward

Juwan Howard during a capture session for Acclaim’s NBA

JAM EXTREME at the company’s Glen Cove, N.Y., motion cap-

ture studio.



head to look at you when you say
something; that would ruin the move.

You can also cue performers physi-
cally — you or or one of your team
members can stand outside of the cap-
ture space and play an opposing char-
acter. For example, during the NBA JAM

EXTREME shoot, we needed Juwan
Howard to run at full speed and then
come to a full stop right inside the cap-
ture space border. I didn’t want him to
have to look down at black tape on the
floor while he was running, so I stood
in his path, just outside the capture
space line. He was forced to stop or
knock me over. (Fortunately, he
stopped.) This kind of trick is a good
way to keep the motion realistic and
dynamic — the performer should feel
as though he or she is in a real situa-
tion, reacting to other people.
WORKING WITH TALENT. As I mentioned,
you’ll be watching for continuity and a
whole slew of technical considerations.
But try not to get bogged down to the

point where you’re
treating the per-
former like a robot.
Remember to keep
an overall sense of
the game’s charac-
ter and help the
talent bring the
role to life. Throw
in some humorous
idle moves or wild
improvisations if
you can spare the
studio time. The
performer will
probably move
quite naturally,
being relieved of
hitting his or her
marks. Often, those
last-minute ideas
work well to add
some spice to the
game characters.
Just play the tal-
ent’s favorite music
CD, roll the cam-
eras, and joke
around with the
performer. The
very worst thing
you can do is put
your performer on
the spot by saying,
“OK, ready? Now,

act natural!” 
You’ll usually get the best perfor-

mance when the talent is relaxed and
you’ve got a good pace going. You
want to build some momentum by
moving from one shot to the next as
quickly as you can. Also, make sure you
compliment the talent frequently. If
you’re not happy with a take, never tell
the performer it was “all wrong.”
Instead, try saying, “That was really
good, but I want you to do it again a
lot faster and with more power.” Or
you can even say, “Great! But you did-
n’t hit your marks, so let’s do it again.”
If you’ve got a capable performer, after
a while you’ll probably start getting
what you want on the first or second
take. Don’t get too bold, though —
always do at least one extra take of the
move as a backup. It’s okay to tell the
talent it’s a “safety take.” You never
know — the data on the other take
could be corrupted, or the studio might
have forgotten to hit record. Then
again, you and the team might realize

something after the shoot that makes
the first “perfect” take useless. You may
save the day by having a backup take
that happens to solve the problem.

Let’s face it, being a motion capture
performer is not an easy thing to do.
The sensors fall off constantly. You
build up a sweat and you’re wearing a
skin-tight lycra suit. And you’re being
watched — no, studied very closely —
by a bunch of strangers. 

As a matter of fact, you and the stu-
dio crew will have to watch closely to
make sure the sensors and the suit
don’t shift around too much during
the shoot. If the sensors move on the
performer’s body, the studio crew will
have to rescale the suit and adjust for
any displacement. You’ll have to
rescale before and after lunch as well.
Still, you can’t let the performer take
off the suit during lunch. Find out
from the studio what can be safely
done to make the talent comfortable
during breaks — at least let him or her
put on a robe or a loose sweatshirt
over the suit.
DIRECTING CELEBRITIES. The main differ-
ence between directing celebrity and
noncelebrity talent is that you usually
meet celebrities for the first time at the
shoot. You don’t really know until
then whether you’ll be dealing with a
prima donna or a complete profession-
al. You’ll never be able to force a
celebrity to give you a good perfor-
mance, so try to establish a good rap-
port and talk about the great video
game you’re creating. If the performer
complains about the difficulty of wear-
ing the suit and using sensored props,
appeal to the ego. Say something like,
“We knew this would be hard — that’s
why we needed you!” You can also call
the performer’s agent if you have to —
you know, the person who agreed to
the contract, gets a cut, and actually
has the power to threaten the talent.

Many celebrities — Juwan Howard,
for example — are extremely coopera-
tive as well as talented. But I’ve also
worked with performers who whined,
made extraordinary demands, and
seemed incredibly lazy. Usually, if I
compromised on the requests — and
kept my word — the complainer went
on to give a great performance, just to
get it over with. Professional athletes
can really amaze you in the studio with
what they can do, if they’re motivated
to get the shot right on the first take. 

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

50

M O T I O N  C A P T U R E



Getting the Moves You Want

S ure, it’s nice to make the talent
happy. But what about making the

programmers and animators happy?
What about making the person who
buys the game happy?

Well, the only reason to please the
talent is to establish an atmosphere in
which you can get the moves you
need. You have to know what you
want in order to be able to explain it
clearly. Trust your instincts — if you’ve
done your planning properly, you’ll
know a good move when you see it.
WHAT’S A “GOOD” MOVE? For most video-
games, the best kind of motion is fast
and decisive. When a move is applied
to a game character, it should be easily
recognizable, look cool, and be quick.
Sometimes, you come up with a really
impressive move in the studio, but in
the game it’s confusing and silly. If
you’re going to use a move that takes
even a few seconds in game time, it had
better be worth watching. Don’t forget
that your motion data has to be con-
verted to the target number of frames.
If the move is too long, it’s going to be
choppy when it’s cut down. And of
course, if it’s not cut down, it may
exceed the amount of memory that’s
been allocated for the motion data.

Of course, there are plenty of things
you can do to fix the moves “in post”
— that is, with software. You can speed
up moves, change the distance a char-
acter moves, or turn the character up-
side down if you want. Just remember
that each time you alter the motion
data, it will look less and less like realis-
tic human motion. If the whole point
of using motion capture is to get realis-
tic animation, you should reshoot the
moves until the performer can do them
quickly, smoothly, and naturally.
That’s one reason that the choice of a
rest frame is critical.
THE REST FRAME. The rest frame is the sin-
gle most important move you will cap-
ture, and it’s the easiest to screw up.
Why? There’s a tendency to rush
through the capture of this move. It
probably seems as though all the per-
former has to do is stand there. Also,
it’s usually the first move of the shoot,
and everyone’s anxious to finish it and
start capturing the cool stuff. Don’t
make this mistake — redoing the shot
or compensating for an undesired rest
frame is a major problem.

Often, it’s impossible to redo the rest
frame once you’ve captured the hun-
dreds of moves that branch off of it
(unless your programmers devise a
fancy algorithm to modify every exist-
ing move in the game). Still, you may
wonder, how could you possibly get a
rest frame wrong?

First, the position of the feet and the
angle of the body are very important. In
most fighting games, for example,
you’re likely to have a “fighting stance,”
where the person stands at an angle
with one foot in front of the other. If
you plan ahead, your performer will be
able to transition easily to a walk from
this position. If you don’t plan ahead, it
will be impossible for your performer to
go anywhere from this position. But you
might want the character to have a
more natural-looking stance — maybe
facing straight forward, arms at the
sides. In that case, how far apart should
the performer’s feet be placed? Will he
or she be able to transition to a walk or
a run easily? If the arms are at the sides,
how long will it take to throw a punch
or lunge for a ball,
and then return to
the stance?

Another problem
is that the position
might seem com-
fortable to the tal-
ent at the begin-
ning of the shoot,
but later on, he or
she might find it
hard to hold steady
or return to pre-
cisely. By then, it’s
too late. This is
especially true of
those famous
“crouching” posi-
tions that just
about every fight-
ing game includes.
The only solution
is to let your talent
stretch out fre-
quently, and watch
closely to make
sure the rest frame
is hit precisely
(unless that brilliant
programming team
of yours has blend-
ing tools to com-
pensate for imper-
fect transitions).

Sometimes, you don’t realize that
something is wrong with the per-
former’s stance until you see it in the
game. It might look ridiculous when
applied to the character model and
used in the game environment. This is
another good reason for a test shoot
to try out the motion data in the
game. You can experiment with sever-
al different rest frames and find one
that works best for each character. Just
be sure you can recreate the ones you
like in the real shoot, possibly with a
different performer.
CONTACT BETWEEN CHARACTERS. Whether
you’re creating a fighting game or a
sports game, you have to figure out a
way to match up any contact moves
between game characters. First, you
need to know the distance between
one character and another when any
interaction is likely to occur. For
example, a fighting character might
have a short-range and a long-range
attack that can be used on opponents.
You want to make sure that when your
hero throws a punch, his hand appears

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

51



to knock the enemy’s head back, not
go through it. In a 3D environment,
you’ve got to account for the direction
and the angle of the attack as well; is it
an upper cut from a shorter character
on the defender’s right side? You need
to account for the way the characters
stand when they are in close proximity
to one another as well, unless you
want them to be stepping on each
other’s feet. Your characters are proba-
bly of different heights, too — remem-
ber that when you’re capturing a
“knee to the stomach” move. And of
course, get precise measurements of
any objects as they will appear in the
game. Suppose the “magic staff” prop
that you use in the studio is two feet
long, and the performer playing the
wizard likes to gesture with it wildly. If
the staff object in the game is relative-
ly four feet long, whenever your all-
powerful wizard character waves it,
he’ll poke his own eye out.

Studio Props and Sets

S TUDIO PROPS. Your wizard would be
safe from embarrassment if you

had built the correct prop for your per-
former to use. When you plan your
shot list, you should include sketches
and exact dimensions of all objects
with which game characters may inter-
act. You’ll need to give the studio some
time to build props for your shoot.
Motion capture props have very specif-
ic requirements. They must be com-
pletely nonreflective and are usually
painted black. If the prop is going to
have sensors on it, the studio and the
team will need extensive preparation
to be sure the prop will work. On each

of the NBA Jam projects and on the
FIFA soccer shoot, we successfully used
a sensored ball to simulate its spinning
motion. Bear in mind that the sensors
on the ball make the performer’s job
much harder.

Also, with optical motion capture
systems, the prop shouldn’t block the
cameras’ view of the performer. If you
obscure the sensors, the computer
won’t be able to track the performer’s
motion completely. For example, if
your character if supposed to lift a large
crate, you can’t use a solid box four
feet square. Instead, you could use a
box frame of the same dimensions. In
either case, the performer is going to
have to do some acting to express the
weight of the heavy box, thanks to the
accuracy of motion capture.

You don’t need a prop for every sin-
gle object in the game, as long as you
know the dimensions of each object
and how it’s supposed to be held by
the character. Sometimes, it’s easier for
the performer to mimic picking some-
thing up because you don’t have to
worry about occluding the sensors on
the performer’s suit.

The motion capture suit should be
designed to simulate the game charac-
ter’s costume. A football player can
wear a suit with shoulder pads and a
helmet. A femme fatale can wear high
heels. On the FIFA shoot, the soccer
players wore cleated soccer shoes. The
motion will be very different depend-
ing on the kind of shoes the performer
is wearing. It also depends on the kind
of surface on which the performer is
walking or running.
STUDIO SETS. As you can imagine, you
can’t have performers wearing shoes
with cleats in the studio unless you

have a grass floor.
For the FIFA shoot,
the studio con-
structed a mini-soc-
cer field made of
boxes several feet
high, filled with
dirt, and covered
with grass. The soc-
cer players were
able to run, kick,
and dive realistical-
ly, and they were
able to control the
soccer ball in an
authentic way, too.
To allow the per-

formers to accelerate into and deceler-
ate from a fast run, the studio built
grass-covered ramps in and out of the
capture space. 

Someone running at top speed will
usually make it through the average
capture space in one stride, left foot
and right foot. For any game where a
character is supposed to run, you need
room in the studio for the talent to run
into and out of the capture space. Of
course, it’s easier if you’re working with
a normal floor. More and more these
days, though, motion capture shoots
are being done on special surfaces that
simulate the game’s terrain. Hockey
and figure skating games have been
captured at ice rinks, for example. The
more complicated your shoot, the bet-
ter your advance planning has to be.

Special Set-Ups and Stunts

O f course, you can create some
pretty complicated set-ups in a

studio with a plain floor. The studio
can build you some steps, ladders, or a
steeply angled floor to correspond with
your game’s environment. If you were
to use the basic walk cycle for going up
and down stairs or traversing hilly ter-
rain, it wouldn’t look right and it prob-
ably wouldn’t fit together properly.

Most games wouldn’t be complete
without some spectacular jumps and
falls. You could simply let your per-
former crumple gently onto a mat, but
what fun would that be? Bring in a
stunt coordinator if you’re going to
put your performer at any risk of
injury. If the shoot requires forceful
contact between the performer and an
object, another performer, or the floor,
it’s best to have a safety expert on the
set. Your legal department will be
much happier.

Stunt coordinators usually work on
film or theatre projects and can help
make “injuries” look more dramatic.
With motion capture and good soft-
ware, you can exaggerate these moves
ten times over. For example, the per-
former can stand on a medium-sized
box and fall off onto a big soft mat
next to it. Tweak this motion and put
it into the game, and your game char-
acter can appear to fall off of a twenty-
foot ladder or a basketball rim. Use the
box and no mat if you want the charac-
ter to jump off instead of fall. Make

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

52

M O T I O N  C A P T U R E



sure that the performer really exagger-
ates the bending of the knees and the
swinging of the arms, on both the take-
off and landing of the jump.

If the game calls for the character to
jump off of a tall building instead,
consider using a flying rig. Not every-
one can use this easily — it’s particu-
larly awkward in a motion capture
suit. It’s hard to control the swinging
of the cables while trying to perform a
move smoothly, all while starting and
ending in a rest frame. Still, if you
simply require the character to flail
his or her arms in the air while
hurtling towards the ground, ask your
stunt coordinator to set up a flying
rig. If you need a performer who can
control his or her movements enough
to look like a flying superhero, hire a
gymnast or stunt person with experi-
ence using this contraption.

A ratchet is another helpful stunt set-
up that propels the performer violently
backwards in a harness to simulate get-
ting blown away by powerful weapons
or explosions. You must have an expe-
rienced stunt coordinator to use it, of
course, and even then it’s a little nerve-

wracking. Plan on capturing only one
take for each ratchet move and sched-
ule it for the end of the day, because it
really knocks the wind out of the per-
former. The talent should be paid a lit-
tle bit extra as hazard pay if you’re
going to put him or her in a ratchet or
in any potentially dangerous situation.

You can also use rigs to simulate
nonhuman motion. Using a flying har-
ness is obviously one way to make
your characters look supernatural, but
there are plenty of other ways to cap-
ture strange-looking motion. Put the
performer on stilts or outfit the per-
former with extra motion capture arms
and legs. Test an actor’s ability by
making him or her crawl across the
studio on hands and knees; ask what
animal he or she had to play in acting
class. For that matter, you can look
into bringing a real animal into the
motion capture studio. I know that
some people have experimented with
this, but I can’t really give you any
advice on how to direct Fido. I guess
you should apply the same rules you
would with humans — yell, plead, and
bring lots of treats.

Wrapping the Shoot

A s the director, you get to say,
“That’s a wrap!” (Others may

plead with you to let them utter those
words, but don’t give in.) Collect your
notes and slate videotapes after the
shoot, and settle into a comfortable
chair to review what you’ve captured.
After you’ve selected your picks for
each move, provide the take number
and time code in and out points to the
motion capture processing team.
When the animators receive the data,
discuss it with them to make sure they
understand and like what’s been pro-
vided. Review the moves as they’re
put into the game, and ask the team
for feedback while time is still avail-
able for reshoots.

Celebrate the end of your last
reshoot with a wrap party for your cast
and crew. Thank everyone for their
hard work, and see if you can get them
copies of the finished game. After all,
they’ll want to see the spectacular char-
acter animation made possible by your
successful motion capture sessions.
Good shooting!  ■

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

53



G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

54
onolith was founded by some soft-

ware industry veterans in late

1994. Then, in early 1996, this

core group of developers pitched

an original idea to Microsoft.

When Microsoft agreed, work

began on SHOGO: MOBILE ARMOR DIVISION and its underlying engine,

LithTech. According to the terms of our agreement with Microsoft,

LithTech would be a new stand-alone 3D game

engine that could be leveraged across multiple

products, as well as licensed to third-party

developers. SHOGO, an anime-inspired first-per-

son shooter starring 40-foot tall transforming

b y  J o h n  J a c k

MM
MonolithÕs SHOGO:
MOBILE ARMORED
DIVISION

P O S T M O R T E M

As the first project manager hired by Monolith, John has been in the middle of it from the beginning, wit-
nessing the successes and failures generated by an incredibly talented and energetic company. When he's
not riding his sport bike, John can be found in his office answering e-mail, yelling on the phone, waving his
hands, and ordering pizza.



55

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

robots, would be the showcase product for LithTech.
LithTech and SHOGO were to be developed simultaneously,
with each project pushing the other in terms of feature
requirements, capabilities, and design.

When I joined the company as a Project Manager in April
of 1996, we had just finished negotiations on the
LithTech/SHOGO prototype, and we had begun to ramp up
for production of both the engine prototype and the game. I
was given responsibility for project managing both the game
and the engine, as well as acting as the liaison between
Monolith and Microsoft.

While the entire project involved a number of lofty design
goals, at the core we had a simple, straightforward premise
— create a cutting-edge 3D engine that would allow us to
make SHOGO a great 3D action game. We were gunning to
produce a product that would rival, if not stomp, any other
3D action game currently in development. Multiplayer capa-
bilities via a client/server architecture, complete support for
DirectX, high-speed action, and full Direct3D support were
all basic requirements for the engine. In fact, we would focus
primarily on 3D hardware acceleration first, and worry about
software rendering later, which was considered highly risky
in early 1996. The LithTech/SHOGO project was by far the
biggest project Monolith had ever undertaken, and it would
shape, for better or worse, the future viability of the compa-
ny and our technology.

A Look at the Good…

E ven though we hit more than our fair share of bumps in
the road during the development process, there were a

few things that went right (or nearly right) from the very
beginning. These successful endeavors made dealing with
the constant challenges of developing both a game and an
engine seem possible.

1.DIRECT3D. The decision to go with Direct3D as our only
supported 3D API turned out to be one of the best deci-

sions we made during the development of LithTech. When
we began pitching the idea of LithTech and SHOGO, one of
the selling points for Microsoft was that both the engine and
the game would focus on Direct3D. Monolith had quite a bit
of experience working with early versions of Direct3D (we
wrote a few of the Direct3D test applications, including the
ultimate space-bar test, ROCKEM), and it was this experience,
combined with our knowledge of DirectX in general (we also
did the first two DirectX game sampler CDs for Microsoft)
that helped us land the deal.

Although the idea to go with Direct3D was great on paper,
it didn’t work out so well in practice. When we began work-
ing on LithTech and SHOGO, Direct3D was in its earliest
stages, which proved frustrating. Many features that were
available under Glide weren’t available under Direct3D, and
because the only 3D hardware worth anything at that time
was 3Dfx-based, we questioned the logic of supporting both
Direct3D and Glide. So we decided to pursue separate
Direct3D and Glide versions simultaneously. Pursuing an
independent Direct3D version let us support any new cards
that were in development from other manufacturers, and
supporting Glide meant that we could get the most out of
the 3Dfx card. 

To support both APIs, LithTech originally had an abstrac-
tion layer of rendering code contained in the engine itself.
This abstraction layer, which sat beneath any API-specific
rendering code, covered most of the basic 3D setup issues.
We then had separate, external .DLLs (D3D.DLL and
GLIDE.DLL) to render for each API we supported. In theory,
we could plug in any new rendering .DLL if and when we
decided to support another 3D API. Each of the rendering
.DLLs contained all of the API-specific instructions that
couldn’t be included in the abstraction layer. Sharing some
of the same basic rendering code made maintaining each
.DLL much easier during development, and worked well for
a while.

However, as game scenes and models became more com-
plicated, rendering performance became more of an issue.
The abstraction layer approach was a likely culprit — it was
too slow to get the best performance out of either API. But
removing the abstraction layer in the engine would mean
duplicating a ton of code, causing thorny code maintenance
issues. Every time a feature went into the engine, it would
have to be implemented in both Direct3D and Glide. At
about this time, we got an early version of DirectX 5, and it
forced us to make a decision.

DirectX 5 looked pretty solid, and had most of the fea-

Mike Dussault (LithTech), Scott Schlegel (LithTech), Bill

Brooks (SHOGO), Wes Saulsberry (SHOGO), Scott Pultz

(LithTech, in back), Brad Pendleton (LithTech, in front),

Kevin Stephens (SHOGO), Matt Allen (SHOGO), Nathan

Hendrickson (SHOGO), and John Jack (SHOGO/LithTech).

Monolith Studios
Kirkland, Wash.
(425) 739-1500
http://www.lith.com/

Team Size: 15
Release date: October/November 1998
Time in development: 26 months
Critical hardware: Intergraph NT workstations, Motion Analysis

motion capture system
Critical Software: Microsoft Developers’ Studio, Softimage,

Dedit (internal), LithTech (internal)
Target Platforms: Windows 95/98 P200 w/4MB 3D Card

SHOGO: MOBILE ARMOR DIVISION and LithTech



tures that we needed for SHOGO. So,
Mike Dussault, the lead engineer on
the LithTech project, decided to move
all of the rendering code into the
D3D.DLL to determine what speed
benefits we’d get. This was a pretty big
undertaking — we estimated that it
would take a minimum of two weeks of
work — so it was risky. Fortunately, the
results were much better than expect-
ed, and as a result, we decided to focus
solely on Direct3D. Mike was able to
get all of the features that we needed
out of that version of Direct3D, such as
colored dynamic lighting, lightmap-
ping, and fullbrights. As an added ben-
efit, by only supporting one API, Mike
could focus his work on optimizing the
engine’s performance under Direct3D
as much as possible. The decision to
support only Direct3D proved to be
right on. With the upcoming release of
DirectX 6, LithTech is now in an excel-
lent position to support just about any
card out there without resorting to pro-
prietary APIs.

2.THE PHYSICS OF BOXES. A big issue
that the engine team had to tack-

le was how to define an object’s bound-
ing box, and how to use this box to cal-
culate hit and collision detection. The
engine team realized early on that the
fastest way to do our physics calcula-
tions in LithTech would be to have
axis-aligned bounding boxes. This
meant that an object’s dimensions
would remain aligned with the world
axes (x, y, z). So the height (y) of the
bounding box could vary, but the
width (x) and depth (z) needed to
remain equal. Unfortunately, this sys-
tem became problematic with some of
our more complex character anima-

tions, such as death animations, which
moved the character away from the
center of its bounding box, or ducking
animations where the game needed the
character’s bounding box to shrink in
the y dimension. Model geometry that
moved outside the bounding box (such
as arms or legs) would clip through
walls or other objects, which was total-
ly unacceptable.

The solution that the engine and
game teams came up with was to allow
the bounding box, and the model’s
translation within that bounding box,
to change per animation. This solution
allowed us to set the bounding box and
translation in the actual model file,
which meant that we could see, in each
looping animation, whether or not any
part of the animation clipped outside
the object’s bounding box, and alter
the bounding box size and model
translation if necessary. Although the
final solution involved rectangular,
axis-aligned bounding boxes, the addi-
tional flexibility of changing the
bounding box sizes and model transla-
tions provided realistic, usable results.
This solution was a great example of
compromise between speed for the
engine and flexibility for the SHOGO

team.

3.ANIMATION AND TEXTURING. When we
began work on LithTech and

SHOGO, we were an entirely Softimage-
based development studio. Back in
those “early days” (circa 1996), we real-
ly didn’t have a clear idea of what we
wanted from the LithTech animation
and modeling toolset, other than the
lofty goal, “Let’s make a great 3D
action game.” We did know that all of
our models, characters, and objects
would be created in Softimage 3D, so at

minimum we needed to develop a
good method for exporting or convert-
ing Softimage models to our engine’s
model format.

A big design goal for SHOGO was to
allow enemies to use (and more impor-
tantly, to display on screen) the same
weapons that the main characters used.
So we needed a system that allowed us
to place separate weapon models in the
hands of enemies and characters. The
LithTech engine’s model format was in
part influenced by this game require-
ment, so the team pursued what is
commonly referred to as a bone-based
or skeletal-based model format. In a
skeletal-based system, model geometry
is attached to and parented by a hierar-
chical node system, rather than repre-
sented by a continuous mesh of geom-
etry. The hierarchical system would
ultimately give our game development
teams access to individual nodes on a
model, which would (hopefully) add
additional flexibility to the animation
and modeling system.

As the hierarchical system in
LithTech grew, we gained the ability to
attach additional models, sprites, and
lights to separate nodes on models.
Because the system also retained rota-
tion and translation information for
any parented nodes, it allowed us to
pull off some great special effects,
which was extremely important to
SHOGO. For example, under this sys-
tem, we were able to attach headlight
sprites and lights to headlight nodes on
a truck, as well as attach muzzle flash
sprites and particles to the end of an
enemy’s rifle. An unexpected benefit of
the system was that we could also have
characters or enemies that were made
up of separate models and attached
together. The tanks in SHOGO, for
example, are actually made up of two

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

56

P O S T M O R T E M

LithTech supports several different

types of environments, including out-

door terrain areas. Check out the

ships in the cloud layer, as well as

the drop ship off in the distance.

A city level while piloting a mecha.

D3D gives us all the features we need

for special effects. Note the halos

around the missiles.

Special effects abound. Note the full-

brights in the upper right corner.



separate models: a base and a turret.
The animation system allows the tank
turret to turn independently of the
base, even though the turret remains
attached to the base as the tank moves
through the world. Because the tank
was made up of separate models, the
tank turret could be blown off the base
of the tank when destroyed, which,
when combined with an explosion,
made for a much better special effect.

In retrospect, using Softimage was
probably overkill for our modeling
needs, considering that most of our
animation data came from motion-cap-
tured sources. However, using
Softimage did allow us to use UV tex-
ture mapping for our models, giving us
more realistic texture mapping, as well
as more flexibility in terms of texture
layout and size. UV mapping allowed
us to map the same texture onto differ-
ent models in different ways, which
saved texture memory and reduced the
necessary size of most model texture
maps. The down side to UV mapping is
that at first glance, our texture maps
don’t really have clearly defined
regions (head, shoulders, legs, and so
on), which might make end-user tex-
ture map modifications a little more
difficult.

4.MOTION CAPTURE. In the early stages
of development on LithTech and

SHOGO, we did some initial experimen-
tation with motion capture to find out
whether or not it would work for our
needs. We got a few test animations
from several external studios and had
mixed but mostly positive results. The
real problem was access to the equip-
ment and lead time for that access.

Brian Waite, who evaluates all of our
new 3D hardware and technology, and
I (being the hand-waving producer-
type whose project would actually use
the equipment) ventured to Northern
California to meet with the folks from
Motion Analysis, which at that time
(again, 1996) offered a highly accurate
optical motion capture system. An
optical (vs. magnetic) system had the
advantage of no wires and no mess,
which we felt would be better for our
needs, because many of the animations
we’d need would involve relatively
complex combat. After evaluating the
Motion Analysis system and getting
some hands-on experience and train-
ing, we decided to go ahead and pur-
chase the system.

We believed that having our own
Motion Analysis system in-house could
really shave time off the animating
process for our 3D artists, as well as
give us more human-like motion and
movement for our in-game characters.
Softimage worked well with the
Motion Analysis data, so everything
seemed to be a good match. However,
purchasing a large piece of expensive
equipment proved to be a major factor
in the future of LithTech tools develop-
ment and the model creation processes
in general.

After getting the system back to
Monolith, we soon came to realize that
motion capture is a double-edged
sword. On the plus side, motion cap-
ture let us get multiple animations into
the game quickly, with very realistic
results (if you have good motion cap-
ture actors) and data that we could use
across multiple characters, all of which
saved us time. On the negative side,
the system itself takes up a lot of physi-
cal space, which meant that we needed
a big room with tall ceilings for best
results. Also, and this is the big one, we
ended up with a huge amount of data
after a motion capture session, which
meant that our 3D artists and motion
capture technicians spent lots of time
working with data that turned out to
be extraneous or unnecessary.

All in all, however, the results we got
from the system were great. We were
able to many animations in a short
period of time, we could get realistic
movement and animation into the
game in a hurry,
and because the
system was in a
building next to
the development
teams, we could
schedule motion
capture sessions
pretty much any
time we needed a
new animation.
The early motion
capture sessions
were mostly
experimentation,
but after a few
times, we had
nailed down the
process. Along the
way, we were for-
tunate enough to
hire Simon Wong,

who had worked extensively with
Motion Analysis systems in the past, to
head up our motion capture studio.
Without an expert in this position, our
motion capture experiences might not
have turned out so well.

5.THE DEVELOPMENT TOOL THAT ALMOST

WASN’T. Our motion capture sys-
tem can capture up to 120 frames per
second, although we get better accura-
cy if we take that down to 30 frames
per second (which is still more than
enough for in-game animations).
Once we’d get that data from our
motion capture guys (the
cleaning/exporting process takes
about 20 minutes per animation), our
3D artists brought it into Softimage
and applied the motion capture to our
in-game characters. Each animation

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

57

Enemies firing the same weapon

you're currently holding. Note the

translucent water off to the right. If

this were a movie instead of a screen-

shot, you could see that the water

surface is actually moving.

An on-foot level from SHOGO. Note the soft lighting on the

left, compliments of single-pass multitexture lightmapping

available under DirectX 6.



that the artists applied took some
time, but in the end we’d get a charac-
ter that had 20-60 different realistic
and useful animations in about half
the time it would take a 3D artist to
animate them by hand. By shaving
time off the animation process, our
3D artists could focus on creating
models and textures, rather than toil-
ing over creating realistic, hand-plot-
ted movement. Once the animation
data was applied, the model was
exported to the LithTech format (.ABC
file) using a custom plug-in that the
engine team wrote for Softimage. The
game team could then use this .ABC
file and call and play back specific ani-
mations through code or game events.

Our motion capture/animation
process was all fine and dandy until
we realized that many of the models
were memory pigs. The size of our
models were dictated by (geometry
data) + (animation data). The geome-
try data was relatively small (approxi-
mately 30-50K depending on the
number of polygons and vertices in
the model), but the animation data
(which is actually the number of
nodes * number of keyframes) was
huge. In some cases, our animation
data was 6-8MB per model! This real-
ization nearly gave the SHOGO team a
collective heart attack, but the engine
team quickly came up with a solution.
The huge size of the models was most-
ly due to our 30 keyframes per second
data rate for animation, which turned
out to be tremendous overkill. Because
LithTech had supported interpolation
between keyframes from almost the
very beginning of the project, there
was no need for the in-game anima-
tion to contain 30 keyframes per sec-
ond. In fact, we found that 7-10 key

frames per second was usually more
than enough when coupled with the
engine’s ability to interpolate between
keyframes. The problem that we faced
was in removing all the extra
keyframes. The data capture rate of
our motion capture system couldn’t
go below 30 FPS and still be accurate,
so reducing the capture rate wasn’t an
option. We could cut down the frames
in Softimage, but this process was
going to be difficult due to the way
that Softimage deals with animation
data from the motion capture system.
Even if we did pursue cutting down
the keyframes in Softimage, we could-
n’t actually see how the engine’s inter-
polation system would deal with the
data until the models were exported
and put into the game. So, we came
up with a different solution, and
ModelEdit was born.

ModelEdit started simply enough —
the tool let our
artists view ani-
mations for a par-
ticular .ABC file
and trim down
the number of
keyframes in each
animation based
on what looked
good. ModelEdit
supported the
same interpola-
tion that the
engine used, so
what you saw in
ModelEdit was
what you’d get in
the game.
However, once we
had this “post-
process” tool, a
flurry of features

were quickly implemented when we
suddenly realized, “Wow, how did we
ever get along without these features?”
Next came the ability to tag keyframes
to trigger game events, such as charac-
ter footstep sounds or firing informa-
tion for weapon models. Then came
the ability to copy, paste, and import
new animations into a model from
another model, which made the
process of exporting new animations
or models much easier for our 3D
artists. Mike Dussault and Brad
Pendleton, the two engineers heading
up LithTech development, spent some
serious time working on ModelEdit,
but every hour they spent saved count-
less hours for our artists, designers,
and game engineers.

In fact, very recently a feature was
added to ModelEdit that saved our

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

58

P O S T M O R T E M

Another on-foot level from SHOGO.

Check out the blood particle effects,

used extensively throughout SHOGO.

A character model shown in ModelEdit

— note the size of the bounding box.

The same character model in a duck

animation — LithTech allows character

bounding boxes to change size per ani-

mation.

Present day Dedit supports multiple shading modes. Early ver-

sions weren't capable of creating complex worlds such as the

world file seen here.



project. About three months ago, our
main Softimage network drive crashed,
and one of our artists lost about two
weeks of work. We had the .ABC files,
but not the original Softimage databas-
es for those models, so we couldn’t go
back and change animations or geom-
etry or rename nodes. The engine team
added a feature into ModelEdit that
allowed us to identify and rename
nodes in any .ABC file, which was nec-
essary for our hit detection system to
work correctly. Without this feature in
ModelEdit, the artist would have had
to recreate the models from scratch —
a time-consuming process that we
couldn’t afford so late in development.
This recent feature is a perfect example
of how two hours of an engineer’s
time wound up saving more than 80
hours of work for an artist.

…And the Bad and the Ugly

E ven though a lot of things went
right, we faced more than our fair

share of stumbling blocks during the
development of SHOGO and LithTech.
In retrospect, most of our problems
could have been avoided if we’d taken
the time to think through the project
clearly, but we certainly learned from
every mistake we made along the way.
On the bright side, both development
teams are much wiser, stronger, and
more seasoned having gone through
the entire process.

1.LEVEL EDITOR DIFFICULTIES. Our early
neglect of developing a strong,

feature-rich, and stable level editor was
one of the biggest mistakes we made
during development of LithTech and
SHOGO. Considering that Monolith had
a very good understanding of the
importance of solid level design tools
— we had previously developed our

own level editor
for BLOOD, as well
as an entire
toolset for WAP
(the engine used
to make CLAW,
GET MEDIEVAL,
and GRUNTZ) —
the lack of engi-
neering time
spent on our edi-
tor, Dedit, is an
amazing oversight
in retrospect.

There were a
few reasons why
Dedit wasn’t a big
focus for the
engine team from
the beginning.
Mike Dussault and
Brad Pendleton

were hard at work on the core design
and architecture of the engine, and
many of their decisions would affect a
level’s overall file structure. In addition,
because the engine team didn’t have
access to seasoned, full-time level
designers when the project began, some
incorrect assumptions were made about
how the level design tools would be
used. As a result, early versions of Dedit
were more than capable of creating test
“box” levels, but lacked some of the
more advanced features for creating
complex geometry and placing objects
and models. As we reached the point in
the development cycle where we needed
to start showing a progression of game
features, the lack of advanced features
became painfully evident.

Enter Craig Hubbard, the lead game
designer and level designer on SHOGO

(who had recently finished working on
a level pack for BLOOD), and two addi-
tional full-time level designers, Nathan
Hendrickson and Todd Clineschmidt.
Before Craig began working on SHOGO,
the game was essentially designed by
committee, which caused (among
other things) a severe lack of focus on
tools development. Dedit contained
the necessary core features at the point
Craig joined our team, but certain cru-
cial features weren’t very intuitive, and
many were far from usable. The addi-
tion of these designers was really the
turning point for Dedit development
and usability. Their combined input,
suggestions, and demands made Dedit
a much better tool.

So what lessons did we learn? First, if
we had put more emphasis on level
design tools, and if the engine team had
had access to experienced level design-
ers on the project from the beginning,
Dedit would have been in much better

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

59

A character model shown with a leg

node highlighted. Being able to identi-

fy and rename individual nodes saved

our asses late in the game.

The base of a tank model in SHOGO. The tank turret model, which gets

attached to the base via game code.

Present day Dedit makes adding objects easy — just right click

and select the object you want to add to the world. Early ver-

sions required multiple, painstaking steps to add objects.



shape from its inception. Early attention
to Dedit’s usability could have literally
shaved months off the level design
schedule. That said, Dedit is now a very
flexible and usable level design tool.
Who knows? If it hadn’t hit rock bot-
tom, Dedit may never have become the
excellent level design tool it is today. 

2.DSCRIPT. The biggest mistake we
nearly made was sticking with

Dscript, our custom programming lan-
guage, until the bitter end. The idea
behind Dscript wasn’t a bad one.
Written by the engine team, Dscript
was to handle specific game events and
object handling. In mid-1996, custom
scripting languages seemed to be the
future of 3D engine development —
QUAKE had QuakeC, UNREAL had
UnrealScript, and LithTech had
Dscript. The Dscript model sounded
good on paper — specific functions to
deal with game events, garbage collec-
tion, and quick compile times. 

But it posed a number of problems as
well. As an engineer, you had to learn
the language. It was similar to Java or
C++, but it wasn’t either, which meant
a learning curve. Then there was the
speed issue. An interpreted language
would never be as fast as executable
code, which didn’t seem to be a big

deal at first, but as we later found out,
the speed difference became very
apparent once many scripts were run-
ning. Also, with a client-server archi-
tecture, every script had to be duplicat-
ed on the server and the client, which
if nothing else complicated file struc-
tures. The big whammy turned out to
be debugging tools. In June of 1997,
Kevin Stephens (SHOGO’s lead engineer)
and a few other game engineers at
Monolith began to have serious doubts
about whether or not we could make
the games we wanted to if we contin-
ued to use Dscript. With an unfinished
engine running Dscript, it was very dif-
ficult to debug game-related errors.
Was it a core engine function that was
crashing, or was it the game scripts?
More than a few game engineers feared
that because of Dscript, they would be
tempted to take the easy and safe route
when it came to feature implementa-
tion — being too ambitious could lead
to hours of debugging time, which
engineers simply couldn’t afford.

Fortunately, the engine team agreed
with the game engineers, and although
we had spent the better part of four
months writing Dscript and setting up
the engine to deal with it, we decided
to scrap it and go back to using Win32

.DLLs. So not only did we waste time
writing and implementing Dscript, we
also spent more than six weeks porting
everything over to executable code,
which added even more time to the
development schedule. This additional
delay was especially painful for our
design team and our publisher, because
nearly two months went by with few
(if any) new engineering-related fea-
tures implemented.

Scrapping Dscript, regardless of the
effect it had on the schedule, was an
essential ingredient to the success and
usability of LithTech. If we had stuck
with Dscript, our development time-
line would probably have increased
anyway, and the quality of the engine
and the game would have suffered dra-
matically. Unfortunately, we could
have avoided the entire exercise if we
had closely evaluated the alternatives,
although this may not have been possi-
ble without first trying it out for our-
selves. The irony here is that when we
began working on Dscript, many of the
third-party developers who were inter-
ested in LithTech seemed to be very
excited about the prospect of using a
custom scripting language. Then, just
as we began to make the switch from
Dscript to Win32 .DLLs, the tides
turned, and very soon we started to
receive negative feedback from devel-
opers who were already working with
other engines that relied on a scripting
language. As it turns out though, the
switch proved to be a good move in
terms of internal development as well
as external licensing.

3.NOT ENOUGH TIME. During the
LithTech/SHOGO development

cycle, we constantly struggled to devel-
op an accurate schedule for both the
game and the engine. When we origi-
nally signed the deal, we signed up to
create a game engine and game in 18
months — an aggressive schedule to
say the least. Unfortunately, we grossly
underestimated just how long it would
take to produce both entities. The real-
ly frustrating thing was that even with
our extensive background in creating
games and engines, we were still way
off on our estimates.

4.MONOLITH GROWTH. One of the
biggest challenges during the

development of LithTech was dealing
with the enormous growth of our com-
pany. When we finished work on a
prototype for Microsoft in June of

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

60

P O S T M O R T E M

Using Softimage for modeling, texturing, and applying motion capture data made

our lives much easier. You can see the fcurves at the bottom from the motion capture

data.



1996, Monolith employed about 20
people. By the end of 1996, we were up
to nearly 80 people, with several differ-
ent projects under development. The
original team that began working on
the prototype moved on or up to other
projects, and the LithTech team was
essentially replaced with new faces in
short order. Huge growth made design-
ing the game and the engine very diffi-
cult, as plans for the engine and the
game changed as different people
moved into or out of the project.
Fortunately, the engine and game
teams stabilized by the beginning of
1997, and we ended up with a very tal-
ented group of developers.

5.A GAME and AN ENGINE? One of the
worst (and I mean worst) ideas

that Monolith ever had was to think
that we could develop both a game
(SHOGO) and a game engine (LithTech)
at the same time. All I can say is that it
will never happen again. When we
began work on LithTech and SHOGO in
1996, we didn’t quite realize what we’d
bitten off. We ramped up our game pro-
duction staff too quickly and expected
the game team to keep pace with con-

stantly changing tools and technology.
While any engine team needs access

to experienced level designers, game
engineers, and artists when designing
the architecture for a new engine,
expecting these game designers, engi-
neers, and artists to be productive with
anything less than finished tools was a
mistake. All in all, I don’t think that it
affected the overall development
schedule of the project (we still came
in at around two years for the whole
ball of wax), but we certainly spent a
lot of money paying frustrated people
who would have been better off work-
ing on other projects until the technol-
ogy and the tools matured. We were
very fortunate to have outstanding
engine and game teams, without which
the SHOGO/LithTech process would not
have been possible.

What we did learn was that future
versions of LithTech will be developed
by the engine team with frequent
input from game teams, but without
the pressure of having to implement
game-related features during the early
engine R&D phases. This new process
should remove the pressure from both

the engine team and the game teams,
and make everyone’s lives easier.

Closing

I n May of this year, we purchased
back all rights to LithTech and

SHOGO from Microsoft — a major deci-
sion that solidified our future for inter-
nal game and technology develop-
ment. Over two years and a bunch of
money later, LithTech is without a
doubt one of the most flexible 3D gam-
ing engines currently available.
Through the good, the bad, and the
ugly, the SHOGO/LithTech project was a
learning experience for everyone
involved, but the end result was an
engine that’s capable of producing sev-
eral different kinds of games — a testa-
ment to the engine’s elegant design
and flexible architecture. LithTech is
now being used by three internal game
development teams at Monolith —
Shogo, BLOOD2: THE CHOSEN, and
MINDBENDER — and we expect to have
licensed LithTech to several external
developers by the end of 1998.  ■

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

61



content isn’t quite there yet. However,
to help drive the content creators for-
ward, Intel has developed its new
Observation Architecture toolset and
made it freely available. 

One of the disadvantages of using
architecture such as OpenGL or
Direct3D is that once you pass off a
command to the API, it’s difficult to
tell what’s happening from that point
onward. Drivers have a nasty habit of
queuing up things, such as state
changes and rendering commands.

You may not see the difference
between three calls to render three tri-
angles and one call to render the trian-
gle strip of three triangles. As a result,
you may logically decide that convert-
ing your rendering engine to use trian-
gle strips would not provide your game
with any performance boost. But what
you may not know is that the driver is
optimized to process triangle strips of
eight triangles or more. Any fewer and
it breaks them down into individual
triangles. Wouldn’t it be nice to be able

to monitor the driver and see how it’s
spending its time processing the com-
mands you send it? Well, this is exactly
what Intel has done with the Intel740.

Like most modern CPUs, the
Intel740 chipset has built-in profiling
counters. When you use the
Observation Architecture driver, you
not only gain access to the hardware
counters in the chip, but also to those
in the driver and the Pentium II proces-
sor. Installation isn’t much different
from installing any other video card.
I’m working with the Diamond Stealth
II G460, but any of the Intel740 cards
should work. Once the card is installed,
you need to get your hands on the
Intel740 Graphics Accelerator
Performance SDK, which contains
everything you need to learn in order

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

62

R E V I E WP R O D U C T

The Intel
Observation 
Architecture Profiler

b y  R o n  F o s n e r

was very happy when Intel shipped the Intel740 graphics accel-

erator chip. Having Intel focus (even a little) on 3D means that it

is interested in bringing 3D into the mainstream. It’s fairly

apparent why Intel dove into this market. In order to sell faster

computers, there has to be a compelling reason for consumers to

buy them. And while you and I wouldn’t hesitate to buy the lat-

est 666MHz screamer, average consumers need pretty com-

pelling content to upgrade their systems. Unfortunately, the II
Ron Fosner works on fast 3D rendering code at Data Visualization, a consulting com-
pany for those in need of speed, and is the author of OpenGL Programming for
Windows 95 and Windows NT from Addison-Wesley. He teaches a course on
graphics code tuning at the (Computer) Game Developers Conference and at the Win-
Dev conferences. Contact him at ron@directx.com.



to use the Observation Architecture
(OA). You can then install the profiling
drivers, reboot, run a program to set
the Intel740 base address, reboot, and
you’re all set. The best part is that the
SDK is available free from Intel. 

Once it’s installed, you launch the
OA Profiler, which is simply a window
containing counters of the things
you’ve elected to watch. The counters
run in real time, but there is an option
to send everything out to a log file.
Once the profiler is running, you can
either select to profile locally or
remotely. This is a nice touch — you
only need one networked machine
with an Intel740 board in it in order to
give everyone the ability to test his or
her software on it remotely. After a
connection is made to an Intel740
chip, the profiler starts displaying sta-
tistics. You have options to display the
chip’s counters, the driver counters,
and/or the CPU counters.

The OA profiler is meant to be used
like any other profiler in that you iden-
tify a bottleneck globally and then drill
down to the subsystem that is taking
the most time. Figure 1 shows a typical
profiling snapshot. The first three lines
are from the Intel740 counters, the
next two are from the driver, and the
last two are from the CPU. The very
last line is labeled CPU_Clk_Cy-
cles_User and shows 82 percent or
326.20 million counts per second. This
means that on my 400MHz machine,
the User (as opposed to the Kernel) is
taking 82 percent of the CPU cycles. In
other words, any nonoperating system
programs that are running are consum-
ing 82 percent of my CPU’s cycles. In
this case, I was running multiple copies
of Direct3D-based applications. 

The next line up shows that these
programs are performing nearly 7 mil-
lion floating-point operations per sec-

ond — not much. Not much is happen-
ing in the driver itself, as evidenced by
the small bars. But looking at the chip’s
statistics, we can see from the
Command_Stream_Busy value that it’s
busy nearly 60 percent of the time (the
higher the percentage, the better) and
that it’s rendering nearly 38K triangles
per second, with very little in the way
of triangle culling going on: only 120
culled triangles per second. This gives
you an idea of the OA’s power. One of
the hardest aspects of tuning a game is
keeping the graphics card busy in par-
allel with the CPU. Using the OA, it’s
finally possible to measure how busy
your game is keeping the graphics chip
and the CPU.

Once you get an idea of how the
CPU and the graphics chip are spend-
ing their time, you can try to narrow
down where cycles are being spent by
selecting various counters. Figure 2
shows the selection that’s available on
the actual graphics chip, while Figure
3 shows a partial list of the options
that are available in the driver. (Note
that these options, especially for the
driver, can change from release to
release.) For example, you might find
out that there’s an unexpected
amount of AGP throughput, or that
the CPU is stalled inside the driver
because the driver is waiting for some
event. You’d never know about these
events because previously, there was
no way of knowing about them. The
OA Profiler is, hopefully, the first of
many interfaces directly to the graph-
ics chip that allow you to tap into the
heart of the rendering engine. As more
and more functionality gets embedded
into the hardware, the ability to access
this information is going to become
more critical.

Why bother with just the Intel740?
Frankly, right now it’s the only game
in town. Even if you don’t think that
the Intel740 will build up significant
market share (just wait till it starts
showing up on motherboards), the fact
is that getting these kinds of statistics
at all is quite difficult. The real reason
you might want to take a look (other
than simply being interested in raw
speed) is to familiarize yourself with
how graphics operations affect the ren-
dering pipeline. Even if you don’t need
to speed up your program (but who
doesn’t?), it’s instructive to see how
well your rendering architecture is

h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

63

F I G U R E  1 .  A typical profiling session

in OA. F I G U R E  2 .  A selection of the chip’s

counters that you can watch through

OA.

F I G U R E  3 .  A partial list of the dri-

ver’s counters that you can watch

through OA.



keeping the graphics chip busy. If
you’re eating up 80 percent of the CPU,
but only keeping the graphics accelera-
tor busy 10 percent of the time, you
might want to consider breaking up
your rendering operations in a more
serialized fashion and thereby keeping
more data in the graphics pipeline.
After all, graphics chips are just special-
ized CPUs, and the more work you can
offload onto them, the more cycles you
free up on the general CPU for your
game logic. This is the kind of informa-
tion you get with the OA that previous-
ly wasn’t available.

There are two caveats. First of all, as
of this writing (August 1998), there is
no “OpenGL driver” menu item —
currently, you can only profile
Direct3D drivers. Intel is scheduled to
provide an interface to the OpenGL
driver with the next release of the
SDK. Secondly, tuning games for the
Intel740 means doing just that —
your results may vary on other chips.
However, in most cases when you
tune for the Intel740, you’ll see
improvements in other chips. Intel
claims that there’s no penalty for
changing textures on the Intel740, for

example, while most other cards have
to dump the pipeline setup and recon-
figure. So if you change textures fre-
quently, you’ll be penalized more by
other graphics chips, especially those
on PCI cards, than by the Intel740.
But these are small complaints for an
otherwise excellent product. If you are
at all interested in graphics perfor-
mance, this is one tool that should be
on your desktop. ■

G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

64

P R O D U C T  R E V I E W

Rating (out of five stars): ✪✪✪✪✪

Intel Corp.
Santa Clara, Calif.
(408) 765-8080
http://developer.intel.com/design/gr
aphics/740/index.htm 

Price: Free from Intel’s web site.
Software Requirements: Microsoft

Windows 95 OSR2 or Windows 98.
Hardware Requirements: AGP-

equipped Pentium or better recom-
mended plus one of the Intel740-
based graphics cards. Figure on
spending around $100 for the card if
you don’t already own one.

Technical Support: Web-based 
Pros:
1. The OA is a snap to install and easy to

use, even on a shared network
machine.

2. The OA is an excellent source of low-
level graphics information that you
can’t get anywhere else unless you’ve
got access to a microprobe.

3. Most of the optimizations you’d per-
form for the Intel740 are applicable to
other graphics chips.

Cons:
1. Designed only for Intel740 processors.

Remember that the Intel740 actually
has a smaller penalty for changing
textures than most other cards, so if
you’re not aware of this, your program
may run fine on an Intel740 but
behave quite differently on another
chip or a PCI card.

2. The utility is running all the time, and
it would be nice to perform event-trig-
gered sampling. 

3. The tutorial is good, but could easily
be ten times larger with more exam-
ples, especially some tailored to
novice driver/chip spelunkers.

Intel’s Observation
Architecture for the
Intel740 Chip



G A M E  D E V E L O P E R O C T O B E R  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

72

t’s fair to charac-
terize tonight’s
honoree as an old-
timer. Her first

published title, WHEELER DEALERS, was released
back in 1978. This Apple II cassette was rather
unusual. It came in a cardboard box instead of a
ziplock bag. It sold for thirty-five bucks at a time
when most games sold for ten or fifteen.
Strangest of all, it wasn’t designed for a single
user. An array of push-buttons included in the
box allowed up to four people to join in a real-
time stock market simulation. WHEELER DEALERS

sold only around 50 copies. But it marked the
beginning of a preoccupation with a design issue 20 years
ahead of its time: multiplayer gaming.

COMPUTER QUARTERBACK, published in 1979, was originally
designed to support exactly two players. It was ported to Apple
BASIC from a mini-computer simulation written in Fortran. In
an amusing reversal of recent industry practice, it was the sin-
gle-player mode that was reluctantly added at the last minute
at the request of the publisher, Strategic Simulations.

Nineteen eighty-one saw the release of a second Apple title
for SSI, CARTELS AND CUTTHROATS. An economic simulation
designed for up to six simultaneous players, the box copy
promised that the game was “so much fun you may overlook
its use as a superb educational tool.” One of the early admirers
of CARTELS AND CUTTHROATS was a game theorist fresh out of
Harvard with the curious nickname Trip.

The theme of war makes its first appearance in
1982, with CYTRON MASTERS for SSI’s RapidFire
label. This two-player design offered a curious
conjunction of strategy and real-time action in 
a game that pushed the Apple II hardware to 
its limits.

Just after CYTRON MASTERS was released, the
aforementioned Harvard graduate expressed a
desire to obtain the publishing rights to CARTELS

AND CUTTHROATS for a new game company he 
was launching. When SSI refused to let it go, 

the original designer gamely offered to produce a superior
knock-off.

Nine months later, Electronic Arts bamboozled the industry
with a flattering new vision of what computer gaming was all
about. Their slick and glamorous promotional campaign
turned publishers into record labels, developers into movie
studios, and game designers into rock stars. For a few short
months, the prospect of fame, wealth, and a matching
wardrobe inspired game designers to new heights of personal
ambition and creativity; an ideal atmosphere for creating 
a masterpiece.

M.U.L.E. was multiplayer from the ground up. It used the
joystick array of the Atari 800 to connect four people in an
unprecedented example of computer-moderated parlor gam-
ing. By combining the resource management of CARTELS AND

Photos (from top): Ozark Softscape and the “We
see farther” image courtesy of EA.  Images of

Dani celebrating a victory and her portrait are
courtesy of Editor Johnny Wilson from 

Computer Gaming World.

Right: Dani’s first four published games. 

A  T R I B U T E  T O  
D A N I  B U N T E N  B E R R Y

B Y  B R I A N  M O R I A R T Y

I

As we reported in the September 1998 issue, veteran game
designer Dani Bunten Berry passed away on July 3rd of this
year following a long illness. She was 49. Dani was presented
with the Computer Game Developers Association’s Lifetime
Achievement Award at the CGDC in Long Beach, Calif., last
May. Dani’s longtime friend and fellow game designer Brian
Moriarty honored her at that ceremony with a laudatory
speech, which we have excerpted here.
We’ll miss you, Dani. — The Editors



h t t p : / / w w w . g d m a g . c o m O C T O B E R  1 9 9 8 G A M E  D E V E L O P E R

71

CUTTHROATS, the auctioneering of WHEELER

DEALERS and the futuristic setting of CYTRON

MASTERS, M.U.L.E. sustained an exquisite play 
balance of teamwork and rivalry, bitter coopera-
tion, and delicious treachery. Although the origi-
nal version sold only 30,000 copies, M.U.L.E.
developed a base of passionate fans that remains
active even today. It is required study for anyone
interested in the design of multiplayer computer
games.

M.U.L.E. was the first title attributed to Ozark
Softscape, an Arkansas design collective marketed
by Electronic Arts as a hip back-country boutique,
computer gaming’s answer to the Allman
Brothers. Expectations were high after the induc-
tion of M.U.L.E. into Computer Gaming World’s
Hall of Fame. Astonishingly, their next EA release
actually lived up to the hype.

SEVEN CITIES OF GOLD was a solid commercial
triumph. It brought together real-time action,
strategy, and exploration in a historical adventure
with a genuine smudge of educational value. In
fact, the much-despised term “edutainment” was
originally coined to describe this game. With
sales of 150,000 copies across several platforms
and numerous design awards, SEVEN CITIES cata-
pulted Ozark into the ranks of the elite develop-
ers; and nobody complained about the fact that it
was designed for only a single player.

Ozark wanted to follow up SEVEN CITIES with a
computerized edition of one of the classic Avalon
Hill board games, but Electronic Arts had other
ideas. Some executive arm-twisting and a sub-
stantial cash bribe resulted in a sequel, HEART OF

AFRICA for the Commodore 64, which continued
the formula of action and strategy, exploration
and history. It achieved less than half the sales of
its predecessor. A few years later, another designer
tried his hand at that old Avalon Hill game,
CIVILIZATION.

HEART OF AFRICA was to be the last product
Ozark ever designed for a single user. In fact, their
next design took the multiplayer option to a
provocative new extreme. Not only did ROBOT

RASCALS have no single-player mode, it actually
required the participation of no less than four
human players. Daringly billed as a “family
game,” this peculiar fusion of turn-based action
and strategy, augmented by a deck of real playing
cards, received a polite but puzzled critical recep-
tion, and was carefully ignored by everybody else.

A final title for Electronic Arts broke even more
new ground. 1988’s MODEM WARS was the first
game released by a major publisher to support
modem-to-modem multiplay. A futuristic synthe-
sis of toy soldiering and football, MODEM WARS

was a technical tour de force, offering a surpris-

ingly brisk interactive experience within the
severe constraints of 1200-baud modems. Many
of the latency and synchronization challenges
faced by today’s network game engineers were
solved first by MODEM WARS.

Microprose took up the cause of modem-
based wargaming in a big way with the 1990
release COMMAND HQ, which boasted a simple,
clean user interface that made historical strategy
more accessible than ever, and racked up
impressive sales.

Its successor, 1992’s GLOBAL CONQUEST, was
the first four-player network game released by a
major publisher. Its absorbing mix of real-time
action and resource development was the design
prototype for an entire generation of combat
simulations, including DUNE II, WARCRAFT, and
COMMAND AND CONQUER.

The constellation of classic games you see
here is just one dimension of a professional
career in which the joy of communication has
played a central role. Her long list of publishing
credits includes columns and articles for virtual-
ly all of the leading industry journals. She deliv-
ered the first keynote address at the legendary
1988 Game Developer’s Conference in Milpitas,
and hosted a series of highly-regarded lectures,
seminars, and roundtables at most of the subse-
quent conferences.

In an industry where many celebrity designers
have become remote and unapproachable, she
has never failed to remain near the center of
social activities, freely sharing her company and
expertise with the shakers and the shaken.

In the early 90s, this beer-guzzling Arkansas
code wrangler undertook a transformation
which dramatically exemplified the gamelike
nature of social reality. The broadened perspec-
tive gained by her friends and business associ-
ates as a result of this transformation has been
one of her most precious contributions to 
the industry.

It is no exaggeration to characterize tonight’s
honoree as the world’s foremost authority on
multiplayer computer games. Nobody has
worked harder to demonstrate how technology
can be used to realize one of the noblest of
human endeavors, bringing people together.
Historians of electronic gaming will find in
these eleven boxes the prototypes of the defin-
ing art form of the 21st century.

On behalf of the community of game devel-
opers and game players worldwide, it is my great
pleasure to present this Lifetime Achievement
Award to one of the pioneers of interactive
entertainment, my courageous teacher and
fascinating friend, Dani Bunten Berry.  ■

Center photos, (from top): cover shots of  M.U.L.E., SEVEN CITIES OF GOLD, HEART OF AFRICA, MODEM WARS, 
COMMAND H.Q., AND GLOBAL CONQUEST.

T R I B U T E


	back: 


