
OCTOBER 1997

G A M E D E V E L O P E R M A G A Z I N E

More Caviar?

I read Dave Sieks’ interesting report
about Caviar technology (“Dawn of

the 3D Pixel Sprite,” pp.58-61, Game
Developer, June 1997). I am a program-
mer with a restricted budget. I want to
experiment with something like this
technology. I guess it’s Animatek’s
secret, but would you guide me further?
How could I get more information about
the technique? If you know of some lit-
erature references it would stimulate my
imagination.

Ahmet Engin Karahan

CONTRIBUTING EDITOR DAVE SIEKS

RESPONDS: Yes, Animatek has patented their

Caviar technology. As mentioned in the arti-

cle, you can download freeware Caviar view-

ers from their web site (http://www.ani-

matek.com/VoxelCh.htm), which will at least

afford you a glimpse of the process in action.

Also available for licensing by game devel-

opers is another implementation of voxel

sprite technology from Attention To Detail.

You can find details and a downloadable

demo online (http://www.atd.co.uk/

voxel.html). And though it’s not voxel

sprites, you might be interested in checking

out a list of 3D voxel landscape engines

maintained by Karsten Isakovic at the

Technical University of Berlin. The list cur-

rently boasts 33 different engines, with avail-

able source code and documentation -

(http://cg.cs.tu-berlin.de/~ki/3de_land.html).

Good luck.

Algorithms for Warcraft, C&C

T hat was a great article on multiple
object pathfinding in the June

1997 Game Developer ("Real-Time
Pathfinding for Multiple Objects," pp
36-44). What type of pathfinding algo-
rithms do popular real-time strategy
games such as WARCRAFT II and
COMMAND & CONQUER: RED ALERT use
when moving large numbers of vehi-
cles? It's great to learn how to do
things the right way, but as a game
developer, I'm also interested in learn-
ing how the other guy did it.

Dylan Miller

AUTHOR SWEN VINCKE RESPONDS: I have

to warn you, this is pure speculation, and

I'm doing this from memory. WARCRAFT II

probably uses a variation of A* with a lim-

ited search horizon, possibly using some-

thing similar to the cut-locked path

method for avoiding other units. I guess

they also had some look-up tables in

there to decide which paths were impossi-

ble (the way their sea transport boarding

algorithm works suggests this). While I

think the original COMMAND & CONQUER

used a variation of the wall-tracing algo-

rithm, RED ALERT probably uses A*. Unit

avoidance there is almost definitely step-

based (the way the units deal with

blocked bridges points in that direction),

but some interunit communication might

also be present. Obviously, RED ALERT

also has code in it that allows several

units to follow a main path, which is easy

to do if you work with step-based unit

collision avoidance.

Rant

Iwould like a moment of your
time to let you know that I

like the “new” look,
but I am a little
fearful that the
content will
drop to adver-
tising like
other “used-to-
be-good” maga-
zines.

I own every
issue of Game
Developer. I enjoy it
that much. The problem is that I have
already noticed a drop in content;
Game Developer spends more and more
time with “talk-to-this person” stuff,
“political” issues (in the form of “what
I think about the industry”) and
“advertising” in the form of new game
explanations.

Yes, I like to know when the games
come out and if they’re worth looking
into, but I don’t want to see the impor-
tant things such as how-tos and exam-
ples disappear to this “talk-mag” style
(examples past and present include
Commodore and Byte magazines).

I am sorry that I felt compelled to
write a not-so-positive review, but I just
don’t want to lose the valuable infor-
mation I glean from articles in Game
Developer. Thank you for listening.

Gregory L. Miller

Design Documents

I just finished Tzvi Freeman’s article
(“Creating A Great Design

Document,” pp.58-66, Game
Developer, August 1997). Many
thanks! The article provided many
insights for me and several ways that
I can improve my next game develop-
ment cycle.

I am a producer in the game indus-
try, and my last project had me writ-
ing the design document. Many of
the foul-ups that can happen, did (it
gave me a good chuckle to read that
they happen to others too!). I espe-
cially liked your acknowledgment of
the “soul” of a game, and how it can
focus those wildly creative members

of the team. I also agree
with Freeman’s

thoughts on
how to allow a
game design
document to

guide the
development

without restrict-
ing the creativity and

allowing “sparks” of brilliance to
improve the overall product when
appropriate.

Anyway, I just wanted to say
thanks. Keep up the good work!

Chris Longpre

Secure Them Pants!

Y our editorial in the July 1997
issue of Game Developer made me

laugh out loud when I visualized
“security breeches.” Yeah, I guess that
confirms that I’m a geek.

Anyway, I know that you know
what you meant.

Dan Kollmorgen

EDITOR ALEX DUNNE RESPONDS: That is

really funny. You’re the first person to

point that out to us, and I nearly died

laughing when I reread that particular

sentence.

Therein lies the main problem with spell

checkers — there’s no way to check the

context of the sentence with them.

Anyway, perhaps security breeches are a

good idea too, in certain situations!

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 7 G A M E D E V E L O P E R

7

S A Y S Y O U

Hey Folks! Drop us a line at
gdmag@mfi.com. Or write to Game

Developer, 600 Harrison, San
Francisco, CA 94107.

Y

G R A P H I C C O N T E N T

The Peak of Rasterization

F or the next few years, we’re still
going to be using hardware accel-

erators that represent objects as tri-
angles. This model is still viable for a
few more years, but it’s getting a little
long in the tooth for a lot of applica-
tions, and with games pushing the
envelope far harder than “real” appli-
cations, I wouldn’t be surprised to see
games that represent data in radical
new ways.

So I’d like to finish up our coverage
of hardware accelerators and then talk
a bit about what the future of hardware
acceleration and 3D graphics might
look like when it comes to games.
24-BIT AND 32-BIT FRAME BUFFERS. Twenty–
four-bit (RGB) and thirty-two bit
(RGBA) frame buffers will become
increasingly important in the future as
fill rates increase and developers use
that fill rate for multipass rendering
techniques. As I’ve bemoaned before,
multipass rendering can introduce

some noticeable quantization error
with 16-bit frame buffers. Significant
errors can be introduced as early as the
third pass. With 24-bit frame buffers,
however, quantization errors due to
multipass rendering are greatly reduced.

Currently, hardware vendors are
shying away from deep frame buffers
because of their higher bandwidth
requirements (deeper frame buffers
consume more refresh time and also
require more bandwidth for fill opera-
tions) and their greater memory foot-

10

The Zenith of Hardware Accelerated

Rasterization and Beyond…

ast month, I talked about what I’d like to see as the baseline of features for 3D

accelerators in the 1998 timeframe. This month, I’m going to get into the future

of 3D acceleration, including the apex of hardware accelerated rasterization

and moving beyond the triangle model of representing and rendering data.L

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

print. But with memory speeds getting
faster and memory parts getting
cheaper, I’m hoping that deeper frame
buffers become a reality.

A 32-bit frame buffer with a destina-
tion alpha channel would be even bet-
ter — if you give game developers more
buffers, they will figure out something
cool to do with them (such as alpha
saturate antialiasing).
PER-PIXEL MIP MAPPING AND BETTER FILTERING.
As of today, the only accelerators that
I’ve seen with usable per-pixel MIP
mapping have been the PowerVR PCX2
and the 3Dfx Interactive Voodoo. I
used to think it wasn’t a vital feature,
but after seeing GLQUAKE’S horrible
aliasing artifacts on non-MIP-mapping
hardware, I’ve revised my opinion. Per-
pixel MIP mapping really is going to be
a necessity.

While I don’t consider trilinear filter-
ing completely necessary, anyone who
has played GLQUAKE on a 3Dfx
Voodoo-based graphics adapter has
probably seen the noticeable MIP-map
banding effect when running down a
hallway. Trilinear filtering is a memory
bandwidth hog since it requires twice as
much data to be fetched as bilinear fil-
tering. Still, trilinear filtering is definite-

ly useful, especially if there is no perfor-
mance penalty for enabling it.

When it comes to filtering, I guess it
boils down to this: the less aliasing and
visual artifacts, the better. If a hardware

accelerator does this by traditional tri-
linear-filtered MIP mapping, anisotrop-
ic filtering, or by contracting the
antialiasing fairy to sprinkle magic filter
dust on every chip that gets stuck on a
board, I don’t care — just make texture
aliasing go away, hopefully without
blurring everything into the Hell of
Marshmallowy Pixels at the same time.
24-BIT AND 32-BIT TEXTURE MAPS. We’ll be
reaching the limits of what can be
accomplished with 16-bit artwork pret-
ty soon (especially the 4444 ARGB for-
mat, where 4 bits simply isn’t enough
for each channel), and game developers
will want the ability to selectively fall

back to very high resolution, 8-bit per
component texture maps.
24-BIT AND 32-BIT Z-BUFFERS. The limita-
tions of 16-bit Z-buffers are becoming
obvious even with today’s games —

GLQUAKE exhibits some Z-buffer alias-
ing artifacts on 3Dfx Interactive’s
Voodoo accelerator’s 16-bit Z-buffer. A
move to a 24-bit Z-buffer format would
help with Z-aliasing problems greatly. A
32-bit Z-buffer might be overkill, how-
ever, but I imagine in a few years it will
be the norm.
UNRESTRICTED EDGE ANTIALIASING. Unre-
stricted edge antialiasing has been
talked about for a very long time —
improving image quality without
requiring larger resolutions, more mem-
ory, or inconvenient programming
techniques is one of the Holy Grails of
computer graphics. The ability to have

11

b y B r i a n H o o k

Currently, hardware vendors are shying
away from deep frame buffers because of
their higher bandwidth requirements and
greater memory footprint.

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 7 G A M E D E V E L O P E R

antialiased polygon edges without any
significant application burdens is
probably going to be one of the key
technologies to arrive in the next gen-
eration of consumer accelerators
(assuming someone doesn’t figure it
out, patent it, and screw the rest of
the industry). Today, you can do a
hacked-up form of antialiasing using
alpha saturate techniques with some
accelerators, but it requires rendering
in front-to-back order.

Complete scene sorting is no longer
acceptable for modern games, espe-
cially if all it buys you is antialiasing
with a select few accelerators.
Developers are adopting the Z-buffer for
hidden surface removal in droves, so
the likelihood of future games keeping
data in an easy to sort format is very
slim. Even ignoring the data structure
issue, rendering in depth-order intro-
duces the problem of excessive state
changes, which won’t make things any
faster.
STENCIL PLANES. Stencil buffers have a lot
of interesting uses, including applica-
tions that use mirrors, shadows, and
reflections. Once again, this comes
down to the same philosophy – build
it, and we’ll find a use for it.
MULTIPLE TEXTURE SUPPORT. Wouldn’t it be
nice if we could do multipass rendering
in a single pass? Well, this is the crux
of multiple texture support — the abili-
ty to specify multiple textures and tex-
ture coordinates for a single triangle.
Future hardware should support this
technique, as it can scale performance
nearly linearly with the number of
passes saved.
INEXPENSIVE STATE CHANGES. State
changes are expensive with today’s
hardware. Because of this, game
developers are having to bend over
backward trying to minimize state
changes as much as possible — sort-
ing polygons in material order, ren-
dering similar objects at the same
time, and so on.

Ideally, rendering order shouldn’t

be dictated by hardware designs, so it
would be nice if any state changes
were done as quickly as possible, espe-
cially things like changing the texture
environment, the light mode, and the
current texture. Changing the current
texture should not take a lot of time.
PERSPECTIVE-CORRECT LIGHTING ITERATORS.
This actually addresses two separate
issues. For starters, it would be nice if
hardware supported independent dif-
fuse and specular lighting iterators —

Direct3D exposes this already, and
some type of implementation of this
will hopefully be introduced into
OpenGL at some point in the near
future. Game developers can always
find uses for more iterators.

Also, it would be nice to start seeing
perspective-correct lighting iterators.
For the longest time, developers
assumed that perspective correction
for Gouraud shading wasn’t necessary.
In reality, this hasn’t proven to be the
case – sure, with very high polygon
count scenes where your average tri-
angle size is four pixels, perspective
correct lighting (and even texturing!)
isn’t needed. But for a lot of game
titles where you have large walls and
floors, linear lighting just looks weird.
BETTER FOG. Both Direct3D and
OpenGL are pretty bad when it comes
to specifying fog — you can specify
the general types of curves you want
(linear, exponential, or exponential
squared), but you can’t actually speci-
fy an arbitrary set of fog densities or a
general equation for fog. With some
APIs and hardware, such as Glide for
the 3Dfx Interactive Voodoo, you can
actually upload a fog table yourself.
This is really handy for achieving cool
effects other than fog. You can do a
“free” blend to a constant color à la
VGA palette tricks without having to
do a screen-sized alpha-blended poly-
gon.

Unfortunately, coming up with a
clean abstraction that isn’t fundamen-
tally broken on everyone’s hardware is

tough, so this is sort of wishful think-
ing. Nonetheless, if OpenGL and/or
Direct3D expose a more flexible hard-
ware abstraction for fog, I’d really like
to see hardware vendors support it.

But this presumes that the “fog this
pixel based on some function depen-
dent on screen Z” model is the right
direction, and I’m unconvinced that it
is. John Carmack has convinced me
that the generic fog most accelerators
implement is generally unimpressive
and boring. Since I came from a hard-
ware accelerator background, I’ve
always thought that hardware fog was
neat, but that was more of a historical
bias than an honest opinion. When
you think about it, hazing stuff based
on screen Z is just… cheesy. There’s no
real sense of realism there — there’s a
big difference between a static hazing
effect and multicolored patches of fog
swirling in and out of windows.

Next-generation games want to
implement true patchy fog, swirling
mists, streamers of smoke, all integrat-
ed effectively with each other. A cheap
distance attenuation effect doesn’t
give us these effects. In order for us to
achieve this kind of control, we need
to be able to have a fine grain control
over fog at each pixel, or at least at
each vertex if triangles are small
enough. Last month, I talked a little
about fog color iterators, and this is
definitely the direction I think things
need to be heading for triangle-based
hardware accelerators.
HOW MUCH RAM IN OUR ÜBER-ACCELERATOR?
Okay, I know I’m asking for a lot, and I
don’t necessarily see even a fraction of
my wish list being implemented
(unless RAM prices manage to drop yet
lower, which I find hard to imagine),
but let’s just see what kind of RAM
requirements we’re asking for from the
Ultimate 3D Accelerator. Let’s assume
a 32-bit ARGB double-buffered frame
buffer, a 24-bit Z-buffer, an 8-bit sten-
cil plane, and 4MB of local texture
RAM (which may not even be neces-
sary if AGP works out, but I’m not
holding my breath). Depending on the
screen resolution, we’re looking at
almost 8MB to run at 640×480, and
around 20MB to run at 1280×1024.
This presumes we’re running in a full-
screen exclusive mode and not sharing
memory with the Windows desktop —
things get worse if we’re trying to run
in a window.

G R A P H I C C O N T E N T

12

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

A nice side benefit of computing data on the
fly is that level-of-detail can be controlled
very precisely, letting future software scale
very cleanly from very fast to slow machines.

Now, a consumer-level 8MB 3D
accelerator isn’t that far-fetched, espe-
cially given that several 8MB Windows
accelerators are available even today
based on 3Dlabs and Number Nine
chipsets (8MB is necessary to support a
Windows desktop of 1600×1200×32-
bits). Today, there are high-end accelera-
tors that can come with 16 or more
megabytes of RAM, and prices for graph-
ics adapters have been plummeting the
past few years. The price of a 4MB
Windows accelerators today is between
one-half and one-fourth the price of a
comparable accelerator circa 1995.

So while it’s theoretically possible
that we’ll see 12MB and 16MB acceler-
ators coming in at the consumer level
in a couple years, I don’t expect to see
this anytime soon. The fact of the mat-
ter is that you need less than 11MB to
run an 1800×1440×32-bit Windows
desktop, and very few Windows users
need that much real estate (you’d need
a big monitor for that to do anything
but cause eyestrain). Our fully loaded
accelerator would get by with 8MB at
640×480, which is a pretty reasonable
resolution to work with, especially if
antialiasing is available.

Anything past 8MB is simply gravy
— higher resolutions and more texture
RAM, and that’s it. And if that’s all the
extra RAM gives you, it may be a pret-
ty tough sell. But hey, that’s what they
said about systems with 32MB of sys-
tem RAM, so I’m probably wrong.
Forgive me if my imagination isn’t
what it should be.

What’s Wrong with the Triangle?

S o far, I’ve described everything
that we’d like to see from triangle-

based hardware accelerators. However,
I don’t think the triangle model of ren-
dering things is long for this world. It’s
been around for over a decade now on
workstations, and its weaknesses and
failings are becoming all too clear on
the PC platform now that game devel-
opers have started thrashing on it.

So what’s wrong with this model?
Essentially, the triangle/polygon ren-
dering paradigm requires specifying a
rendering state (texture, lighting, Z-
buffer functions, and so on) and then
tossing polygonal primitives at the
accelerator. Herein lies the rub —
where do the polygonal primitives

come from? The source data must be
computed or fetched, then it has to be
transferred to the hardware accelerator
across a bus, and finally the graphics
accelerator has to digest and regurgi-
tate the data in a pleasing form.

This model is rife with potential
bottlenecks. If we’re using a lot of
precalculated data stored in main
memory, then memory bandwidth
could be a bottleneck. If a lot of com-
plex data is being generated on the
fly, then the CPU could be a bottle-
neck. If a lot of data is being sent over
the bus, then the bus could be a bot-
tleneck. And if our scene is particular-
ly pixelicious (lots of big polygons,
lots of overdraw, and many rendering
passes) hardware rasterization perfor-
mance could be the bottleneck. So we
have all kinds of things waiting to
thwart us in the performance depart-
ment; in all likelihood, any problems
will arise from a combination of these
bottlenecks.
MEMORY BANDWIDTH. Main memory per-
formance has been a problem since the
introduction of the Pentium, and it
continues to be a problem on very high
performance processors. With this in
mind, it’s probably a bad idea to store
lots of data in main memory. Thus, tra-
ditional static model representations
(lists of vertices and connectivity data)
aren’t the right thing anymore.
CPU PERFORMANCE. Since CPU horsepow-
er keeps growing at a phenomenal rate,
it would be safe to assume that we can
lean on the system processor to make
up for memory bandwidth constraints.
This means computing data dynami-
cally from procedural representations
whenever possible, rather than using
stored data — a 180-degree turnabout
from the days of the 386, when “tables,
tables, and more tables” was the way of
the day.

A nice side benefit of computing data
on the fly is that level-of-detail can be
controlled very precisely, letting future
software scale very cleanly from very
fast to slow machines. A level frame
rate is maintained, but slower systems
get coarser looking worlds and models.
A reasonable enough trade off, espe-
cially compared to today’s situation,
where slow machines get slide shows.
BUS BANDWIDTH. Assuming that we want
to generate scenes with lots of depth
and geometric complexity, and con-
veniently ignoring the issues of gen-

erating the requisite data, we still
need some way to get our data to the
accelerator. Triangles can consume a
lot of bus bandwidth. Assuming the
unlikely case that our data is perfectly
stripped, meaning that there is a ratio
of a little over one vertex per triangle,
and assuming that vertices consist of
x, y, z, s, t, w, and two packed color
values (à la Direct3D), then each ver-
tex consumes 32 bytes. Say a game
slated for release in 1999 requires one
million triangles per second, then this
game will consume 32MB/second of
bus bandwidth just for vertex data.
That’s quite a bit, especially given
that there is also going to be con-
tention on the bus for state data, tex-
ture downloads, audio samples, and
whatnot.

If the data is not stripped, then mul-
tiply that figure by three — 96 MB/sec-
ond required just to render those trian-
gles. PCI can barely do that today,
assuming that the entire bus’s band-
width is devoted to triangle data;
maybe AGP can solve some of these
issues. Either way, cranking up bus
bandwidth is only a stopgap solution.
Clearly, then, the right thing to do is to
reduce the amount of data being sent
across the bus.
FILL RATE. Software can’t do much to
make up for poor fill rate. It looks as if
the upcoming crop of 3D accelerators
isn’t going to be all that bad, and if we
can count on 3D chip manufacturers to
maintain their current pace, we should
be O.K. when it comes to fill rate for
the foreseeable future.

What’s Better Than the Triangle?

S o there are all these potential bot-
tlenecks — memory bandwidth,

CPU performance, bus bandwidth, and
fill rate. There are different approaches
to solving these problems, some of
which are the Wrong Answer and some
of which may be the Right Answer.
THE WRONG ANSWER. Some hardware ven-
dors are using the brute force method
right now to solve these problems,
which often introduces new problems
along the way. For example, chips that
accelerate transformations and lighting
have been announced. The advantage
here is that the chips offload work
from the CPU — but is this work really
worth offloading? I don’t know the

G R A P H I C C O N T E N T

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

14

answer to that, but today I just don’t
see transformations and lighting being
the key bottleneck.

To alleviate bus bandwidth prob-
lems, some hardware vendors are
investigating caching vertices across
the bus, a form of display list. For
example, an application could define
a set of vertices and faces and call it
something such as “airplane,” at

which point the hardware driver
uploads the data (across the bus) into
card memory. Now the “airplane” can
be rendered by simply sending along a
very small rendering command.

The problem with this way of doing
things is that it presumes that we’re
going to be using static geometry when
these hardware accelerators finally
reach the market. As I’ve stated earlier,
I find it highly doubtful that in the
future games will have models made up
of discrete points and faces. Future
games will likely procedurally generate
model data on the fly, so caching ver-
tices across the bus is of dubious value
for next-generation titles.

So what’s the right answer? That’s
hard to say. It’s clear that the triangle
model of rendering isn’t going to be
the answer after a few more years.
Something that doesn’t play havoc
with bus and system memory band-
width will have to be developed, and
in all likelihood, this may be some
form of retained-mode hardware
architecture (or an all new way of
CPU-based rendering that is leaps and
bounds better than what you see from
a hardware accelerator). Something
else we may see is hardware that isn’t
quite retained mode (as in, fully scene
oriented), but instead takes simple
descriptions of complex surfaces and
handles the generation of the com-
plex rendered data in hardware.

Nvidia developed something like
this with their NV1 chip, which
wasn’t very well received by develop-
ers. I can’t fault Nvidia for developing
the NV1 — fundamentally, the con-

cept was sound. It was the implemen-
tation and timing that really hurt its
acceptance. Developers weren’t ready
for patch-oriented rendering, and the
NV1 didn’t have the features or per-
formance necessary to really push a
new graphics paradigm.

NEC/VideoLogic has also attempted
to utilize a non-triangle–based archi-
tecture in the PowerVR PCX1 and

PCX2 accelerators. The PCX1 wasn’t
very fast, and it lacked bilinear filter-
ing; once again, developers weren’t
ready to adopt such a wildly new
architecture (the so-called “infinite
planes” method of scene and object
description). The PCX2 addresses a lot
of these issues, but convincing devel-
opers to support infinite planes direct-
ly isn’t going to be easy, which means
that PCX2 has to rely on good
Direct3D drivers that convert triangles
into associated sets of planes.

NV1, PowerVR, and even
Microsoft’s Talisman were and are
pointing in the general direction we
need to be heading. At some point,
we’re going to hit a wall in terms of
transformation performance, bus and
memory bandwidth, and fill rate, and
the triangle paradigm isn’t going to
have the legs to keep going. What the
new paradigm will be is unknown at
this point, but maybe in a year or so
we’ll have a better idea of where
things need to be going.

And on a related note, whatever
new paradigm is adopted may not be
particularly amenable to the existing
immediate-mode APIs that we’re using
today (OpenGL and Direct3D). We
may have yet another set of API wars
in the next five to six years.

The Royal “We”

I ’ve taken a lot of liberties with the
pronoun “we,” but a lot of the sug-

gestions and features that I’ve out-
lined in this month’s column have

come directly from game developers.
If you’re a game developer and think
I’ve missed something, please let me
know and I’ll pass it along. If you’re a
hardware developer and think I’m
smoking crack, please let me know
and I’ll tell you why you’re wrong.

Spread the Knowledge

I‘d like to point out that many of the
techniques that I discuss were not

invented by me. I'm simply your hum-
ble scribe, writing down these tech-
niques. For example, much to my cha-
grin, I realized that I neglected to note
the contributions of Gary McTaggart of
3Dfx Interactive in my August 1997 col-
umn on multipass rendering. Gary has
done a lot of work for the game devel-
opment community while at 3Dfx, by
both exploring techniques such as mul-
tipass rendering and lightmap technol-
ogy with radiosity, and, more impor-
tantly, exposing these techniques freely
to game developers around the world
(including presenting a very well-
received talk at this year's Computer
Game Developer's Conference). There
are many people like Gary who are
active in the game development com-
munity and contribute, but we can
always use more people like him.

So I urge any of you with cool ideas
to write articles, books, web pages, or
Usenet articles discussing them. Simply
put: spread the knowledge. What goes
around comes around. ■

Brian Hook is a columnist for Game
Developer who worked briefly for a hard-
ware company and thus now foolishly
thinks he’s a chip designer. When not pos-
ing as an industry pundit and futurist, he
spends his time at id software working on
QUAKE 2. You can reach him via e-mail at
bwh@wksoftware.com.

G R A P H I C C O N T E N T

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

16

3Dfx Interactive
http://www.3dfx.com/

Nvidia
http://www.nvidia.com/

Number Nine
http://www.nine.com/

NEC/VideoLogic
http://www.videologic.com/

FF OO RR FF UU RR TT HH EE RR II NN FF OO

I can’t fault Nvidia for developing the NV1—
fundamentally, the concept was sound. It
was the implementations and timing that
really hurt its acceptance.

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 7 G A M E D E V E L O P E R

25

P R O D U C I N G
INTERACTIVE AUDIO:

THOUGHTS, TOOLS, & TECHNIQUES
imes have changed in the game development industry.

All of the stupid money has fled to Internet commerce

applications, and companies in the game world are left having

to make their way as viable businesses. There is no market toler-

ance left for “junk,” or as it used to be referred to by a producer

at Sega some years ago, “library titles.” The “B” and “C” titles

that filled out your publishing profile aren’t viable any more —

in fact, they can be downright deadly. Every game made from

now on has to have a legitimate shot at becoming a hit; other-

wise, it’s just not worth making. This philosophy has inevitably

trickled down to audio departments, where the focus now is

squarely on quality.TT

A Rant on Interactivity

W hat exactly does it mean to
produce interactive audio? For

some time, interactive audio suffered
from an identity crisis. The term has
come to mean less and less. In my own
jaded way, I always imagined the
adjective “interactive” modifying a
noun such as “media” or “audio.”
When a person says that they are
“doing interactive” in reference to
audio, it usually means the individual

has stumbled into a job working on a
CD-ROM or web site and is desperately
trying to figure out how make 8-bit,
22Khz Red Book audio not sound as if
it’s being played back across two tin
cans connected by string. To this per-
son, “interactive audio” simply means
sound for nontraditional media: CD-
ROMs, console games, kiosks, and web
sites. To me, the term means some-
thing entirely different.

If you’re describing audio as “inter-
active,” you’re implying more than

just linear playback. Interactive audio
should be constructed in such a way
that that the user can affect its perfor-
mance in real time during playback.
I’m talking about reactive, responsive
audio, coming from audio drivers that
are “aware” of what’s happening and
can respond by changing the music
appropriately. Spooling a two-minute
pop song in an unchanging, endless
loop during a real-time strategy game
is not interactive audio. Perhaps the
term “audio for interactive media”
would be appropriate instead.

Imagine instead audio that is an
interwoven part of a 3D, free-roaming
world. As you explore the world, the
sound smoothly accompanies you, ris-
ing as you encounter danger, falling
away as you explore in peace. It
sounds triumphant when you succeed,
and distant and mournful when you
fail. And all of this happens with the
precision and emotional impact of a
great film score. In a user-driven world
such as a game, you have no linear
timeline by which to synchronize the
changes in the music, as you do in a
movie. The audio entirely depends
upon the unpredictable input of the
user. How can you make this work?

The answer lies in the nature of an
interactive 3D world and is made pos-
sible by new tools and technologies.
The 3D game world is open-ended, a
database of terrain, objects, anima-
tions, behaviors, and their various
relationships. Therefore, the music
must also become a database of musi-
cal ideas, sounds, instruments, and
relationships, imbued with awareness
of the other objects in the world and
programmed with responsive behav-
iors of its own.

The Rules of Interactive Sound
Design

O ver the years, I’ve worked on
about 100 titles, 60 or so in a

substantive way. I can distill much of
what I have learned from this in a
short set of rules.

1. There will always be limitations.
Hardware limitations, space limita-
tions, design limitations… you
name it, and it will be restricted at
one time or another. The only
resource that’s never limited is your

Workstations and Sequencers

I try to use off-the-shelf tools whenever

I can. When I evaluate commercial

tools, I look for unique functionality, effi-

ciency, reliability, and cost-effectiveness.

Our main control room at Crystal

Dynamics is based around a Macintosh

Power PC running Digidesign’s Pro Tools

III 4.0, Digital Audio workstation hard-

ware and software, and Opcode’s Studio

Vision Pro 3.5 MIDI plus digital audio

sequencer. Pro Tools was an easy choice

for me because of the TDM (time domain

multiplexing) real-time plug-in architec-

ture. This allows me to use Pro Tools as a

general purpose DSP platform. In addi-

tion, version 4.0 is native PowerPC soft-

ware and is much faster than the previous

version . The upgrade includes extensive

real-time automation, rivaling or surpass-

ing that of most high-end mixing con-

soles. The value of Pro Tools as a plat-

form really shines when you get into the

plug-ins from K.S. Waves. With L1 digital

limiter and

C1 digital

compres-

sor, Pro

Tools turns

into a rack

of super

high-quali-

ty dynamics

gear that

can be used to control unwieldy audio

volume levels and minimize noise. These

two plug-ins are excellent for maximizing

dynamic range and are essential for any-

one who needs to work in low bit rates or

just needs to be loud. Wave’s

Q10 is the most flexible and

best sounding equalizer that I

have used, and their Truverb

reverb is warm, clear, and very

programmable.

In addition to handling all of

our the MIDI composition

chores, the recently upgraded

StudioVision Pro 3.5 has some

essential digital audio features.

Like Pro Tools, the recent

update “went native” and is

therefore much faster. Still,

the most unique feature of

StudioVision Pro is the ability

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

26

I N T E R A C T I V E A U D I O

Tools of the Trade

The StudioVision Audio
to MIDI converter
window.

StudioVision Pro 3.5

Digidesign’s Pro Tools III 4.0.

Continued on page 27

to convert digital audio to MIDI and then

back again. The best way to describe this

is to give an example of how we use it. As

you know, there is nothing like a live gui-

tar track to “humanize” a MIDI composi-

tion. Unfortunately, it’s seldom possible

for us to record such a track and have any

way to play it back as a digital audio

stream. MIDI guitar tracks, which are

recorded with a keyboard and played

with a guitar sample, are more realistic,

but tend to lack all of the subtle pitch

gestures and tonal variations that make

the track sound “real.” Our solution is to

record a live guitar track into

StudioVision Pro. We convert that track to

MIDI, which yields a stream of notes and

pitch bend data that matches the perfor-

mance. Next, we move all of the pitch

bend data to another track and reconvert

the MIDI data back into the digital audio

track. This gives us a less interesting, but

more easily looped set of guitar samples.

Choosing the individual notes (samples)

that have the most tumbrel variation, we

build a compact, but varied guitar instru-

ment . Finally, we play this instrument

with the full MIDI plus pitch bend track

and use program changes or velocity to

switch between the different guitar sam-

ples, thus recreating (approximately) the

original performance.

Audio Batch Conversion Tools

W ave’s WaveConvert Pro is the

latest update to WaveConvert, a

batch converter that I often refer to as

“the third member of my staff.” The new

version of the product is as easy to use

and as solid as the old version, but it

adds some much desired features. For

one thing, it now allows you to use all of

Wave’s high-end plug-ins. You can also

save job lists in order to keep track of and

reload your files and settings from previ-

ous jobs. The job list is exported as a text

file, which is great because you can get in

and edit it by hand if you want to make a

small change to a big job. If all of that

this isn’t enough, they even include their

own Waves IMA ADPCM (Adaptive Pulse

Code Modulation) compressor, which

simply kicks ass.

Synthesizers & Digital Audio
Processing Software

I rely on four main units: Digidesign’s

SampleCell II, Kurzweil’s K2500, my

Oberheim Matrix 1000s, and the new

Yamaha VL-70m. SampleCell is great

because, as a NuBus board, it is integrat-

ed into the Mac’s file system. There is no

need to transfer files over SCSI or (God

forbid) MIDI. I like to make my own sam-

ples, but I recently got a some great disks

from ILIO’s Heart of Africa and Supreme

Beats series, which I’m using extensively

on ENTER THE GECKO.

ability to come up with creative solu-
tions to these problems.

2. Every drop of energy that goes into
being discouraged by the limitations
of a particular project is energy taken
away from making a great sound
design.

3. Know your role on the team. Projects
need to be driven by a singular,
cohesive vision usually espoused by
a producer, lead designer, or direc-
tor. Unless you’re working on an
“audio only” product, audio is a sup-
porting member of the cast; it
doesn’t lead the design. Audio is no
less important to the overall success
of the project; but, it follows and
supports the design ideas and con-
straints defined by the project’s sin-
gular vision. The sound designer
should become comfortable in this
role so as to avoid great heartache
and suffering. However, this doesn’t
mean that there is no opportunity
for creativity. (See Rule 4.)

4. This is the “two things” rule. Most of
the time, you’ll be taking direction
from someone who knows less about
audio than you do. By saying this, I
don’t mean to denigrate the skill of
the project director; I’m just stating a
simple fact. The sound designer is
the expert when it comes to the
details of audio. Yet the direction for
the sound design must come from
the person who is responsible the
project’s overall vision. Otherwise
the sound will not hang together
with the product. My highly unsci-
entific experience has shown that a
project director is unlikely to have
more than two identifiable design
needs for any given part of the
sound design. If you, as the audio
designer, satisfy these two things,
you’re usually free to complete the
bulk of the task with your full cre-
ative input. It’s best to know what
these two things are before any sig-
nificant amount of work is done.

5. Run-time resources will always be
shared among different disciplines.

6. As soon as the artists or program-
mers figure out how to use some-
thing effectively, it will no longer be
available for audio (for example, the

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 7 G A M E D E V E L O P E R

27

Tools of the Trade (cont.)

Yamaha VL-70m synthesizer

Digidesign’s Turbosynth.

K.S. Wave’s WaveConvert Pro.

Continued on page 28

CD-ROM drive on any game plat-
form).

7. Making audio interactive is a team
effort. The application must be
altered by designers and program-
mers to support interactive audio.
Team buy-in is essential because
interactive audio, although very
valuable to a project, is more work
for everybody.

8. The likelihood of audio becoming
interactive for any given product is
inversely proportional to the
amount of programming that’s
required of individuals who are not
specifically assigned to the audio
team.

9. It’s far better to determine how the
sound design will interact with the
world before you begin creating
assets. Retrofitting interactivity into
audio designs, especially music, is

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

28

Since it’s not

easy for me in my

limited space to

record live players,

I’ve been looking

for a physical mod-

eling synthesizer to

add some human

feel to my Red Book

tracks. I found one

that I like in Yamaha’s VL-70m. Physical modeling is a technique

for creating sounds that is very different from sampling. In a

physical model, rather than recording a single performance and

looping it, you model the physical characteristics (length and

diameter of a pipe; length and thickness of a string; size, shape

and reflectivity of a body of a real or imagined instrument) in

DSP. You can then tweak these parameters to get the nuances of

the of the real thing. Although I’ve just begun to experiment with

it, I’ve already made some outrageous saxophone patches.

On the software side, I spend a lot of time in Digidesign’s

Turbosynth and Antares Infinity. Turbosynth, though aging with-

out much support, is a great sound effects program. It works like

a modular digital synthesizer, allowing you to set up custom

patches in the old patch cord paradigm. What I like about it is

that you have flexibility in how you route things and that you can

have very precise control over filter, amplitude, and pitch

envelopes. You can even extract the amplitude envelope off of a

sample and then use it as you wish.

Digital Looping Tools

I nfinity is the definitive set of digital audio looping tools.

The term “looping a sample” refers to defining a section

of the sound data to repeat as many times as necessary to

last a specified duration, as opposed to writing all of those

repeats out longhand. When you have 512K of sound RAM to

work with, compressing your instrument and sound effects

data with looping technology may be your best and only

option. Looping is a very tricky business, however, and

there’s nothing even close to Infinity’s set of advanced

tools.

Infinity’s Rotated Sums Looper is especially well-suited to

the PlayStation. The PlayStation has built-in ADPCM compres-

sion with a 28-sample block size. While this is essential, as it

gives you, effectively, more space to store sound in, it also

puts a limitation on your ability to loop sounds. Loop points

must occur on sample numbers that are divisible by 28.

Anyone who has looped small sounds before knows that it is

hard enough just to get something that sounds decent, let

alone to do so with such a draconian restriction. Fortunately,

Infinity’s Rotated Sums Looper allows you to get a rough loop

with the loop points on the mathematically correct samples

and then process the data in between the loop points until it is

smooth and even without screwing up the math. How exactly

this is done is more than I have room for, but trust me, it works

wonders, especially for ambiance and other long, looping

sound effects.

Antares Infinity digital audio
processing software.

I N T E R A C T I V E A U D I O

Tools of the Trade (cont.)

difficult at best, and severely com-
promised, if not impossible, at worst.

10. Leverage off of existing technology
wherever possible. If you plan to
create new audio technology, use
off-the-shelf tools whenever you
can. For example, I can’t conceive
of a scenario where it would make
sense to write your own MIDI
sequencer. Programs such as
Opcode’s Vision and Logic Audio
are great tools. I can’t even begin to
speculate on how many person-
hours went into making them. It
would be crazy to invest develop-
ment dollars in a “roll your own”
sequencer. Rather, we need to cre-
ate additional tools that map out
the territory that is unique to our
endeavor. Such tools should begin
with the output of commercial
tools such as a MIDI sequencer and
add functionality as needed.

Creating an Adaptive Audio Engine

A rmed with the desire for truly
interactive audio, we at Crystal

Dynamics set out to create our own
sound driver for the Sony PlayStation
and, perhaps later, for Windows 95.
From my notions of interactivity and
set of rules for interactive audio, we
derived a number of design goals for
our driver.
EMPHASIZE MIDI OVER DIGITAL AUDIO. For
most of our products, MIDI and cus-
tom DLS-like instruments are a better
way to go than Red Book or streaming
digital audio. Rules 1 and 5 have some
implications for Red Book audio. Red
Book audio sounds great, but fortu-
nately for Crystal Dynamics, our pro-
grammers know how to get the most
out of the CD-ROM drive for game
play. Therefore, it’s not always avail-
able for audio. Furthermore, creating
interactive sound designs using
streamed, branching digital audio seg-
ments is limited in many ways, primar-
ily by disk space, seek times, bus band-
width, and buffer sizes. Red Book, or
any kind of linear, streamed digital
audio requires a lot of storage space in
any situation. But it becomes even
more problematic in an adaptive set-
ting where each variation of a given
section of music has to be remixed and
stored uncompressed. Finally, most

consoles (including the PlayStation)
save money by using inexpensive
(read, slow and not very reliable) CD-
ROM drives. Thus, the constant seek-
ing and playing of digital audio tracks
is likely to tax the CD-ROM drive to
the point of failure. Red Book audio
should therefore be reserved for nonin-
teractive sections of the game, such as
title screens.

On the other hand, MIDI is small,
compact, and easily modifiable on the
fly. The PlayStation has its own dedi-
cated sound RAM, and all of the data
needed for a level can be loaded in less
than a second. Once loaded, the data is
out of the way and the CD-ROM
returns to its other duties.
Furthermore, the PlayStation contains
a pretty good sampler. Respectable
music and sound effects were created
for the Super Nintendo as well, but
that platform suffered from limited
sound RAM. Fortunately, the
PlayStation has almost ten times as
much sound RAM, much better sound
interpolation (an on-the-fly sample
rate conversion technique used to
stretch a sample up or down the key-
board from its native pitch), and supe-
rior DSP (used for reverb and the like).
In my opinion as a confirmed curmud-
geon, anyone who says that they can’t
make high-quality MIDI music on the
PlayStation under these conditions is
just whining about the amount of work
involved in such an endeavor.
KEEP SOUND DRIVERS EFFICIENT. When we
considered replacing the existing
sound driver with our own technology,
we decided that our code would need
to be faster, smaller, easier to imple-
ment, and more capable than the code
we would be replacing. Otherwise, the
project was not worth undertaking.
Rule 1 dictates that sound drivers must
be small and fast, since both system
RAM (where the driver resides) and
CPU time are scarce commodities in a

fully rendered 3D world. Making sound
drivers easy to use is important; pro-
grammer and game designer time are
limited commodities, so making basic
implementation easier leaves more
time for these folks to work on making
the world ready for your interactive
audio.

There should also be a simple, con-
sistent means for your game to com-
municate relevant information about
itself to the sound driver. Adding inter-
active sound capabilities requires pro-
grammers and designers to spend more
time communicating information to
the sound driver about the state of the
world and the characters within it. At
Crystal Dynamics, we tried to remedy
this situation by communicating the
state of the world to the sound driver
in the form of a set of simple, numeri-
cally registered variables. Most often,
we use values from 0 to 127 so that
they could be set from standard 7-bit
MIDI controllers. Thus, the number of
enemies alive on the screen might be
represented as one 7-bit variable. Your
distance from the level’s exit might be
stored in another. We have tried to use
these same variables throughout the
game so that they only need to be
coded once.
CODE OR DIE. It’s important to put the
logic programming in the hands of the
sound designer, not the game program-
mer. Rule 8 clearly shows the logic
behind this. It’s hard enough to
explain which aspects of the world you
need to track. It’s almost impossible
(and I think unreasonable) to expect
the game programmers to write code to
mute and unmute specific MIDI chan-
nels when various condition arise. To
solve this problem, we created (with
some help from Jim Wright at IBM’s
Watson research lab) a programming
language that allows us to author logi-
cal commands within a stock MIDI
sequencing environment and store

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 7 G A M E D E V E L O P E R

29

Interested in interactive audio? Point your browser to www.iasig.org. This is the

web site of the Interactive Audio Special Interest Group. Look under “Working

Groups” and the “ICWG” (Interactive Composition Working Group). Here, you

will find the latest work of a dedicated group of industry professionals from com-

panies such as Microsoft, Apple, Electronic Arts, Headspace, and Crystal Dynamics that

are working toward unified, open standards for implementing interactive audio.

Getting More Info about the IASIG

them within a standard MIDI file. The
language contains a set of fairly simple
Boolean functions (iiff tthheenn, eellssee, eennddiiff),
navigational commands (ggoottoo, llaabbeell,
lloooopp, lloooopp eenndd), a set of data manipula-
tion commands (ggeett, sseett, sswweeeepp), and
parameter controls (cchhaannnneell vvoolluummee, ppaann,
ttrraannssppoossee, and so on). Next, we created
an auditioning tool that allowed us to
simulate the run-time game environ-
ment, kick out logic-enhanced
sequences, manipulate the game state
variables, send commands, and see
what happens.

Case Study: The GEX Project

Most of my work this year has cen-
tered around the interactive

sound design for our upcoming PC and
PlayStation title, GEX: ENTER THE

GECKO. (The PlayStation version will be
the first title to use our new sound dri-
ver.) This game is the second install-
ment of the GEX franchise and has
undergone a complete technological
overhaul by some of the best program-
mers and designers in the business. The
game will include at least eight worlds
thematically based upon TV and movie
parodies, as well as secret, bonus, and
boss levels — fertile ground for a sound
designer indeed.

I’ll talk briefly about what we’re
doing currently in the game’s audio.
For clarity’s sake, I’ve focused on the
treatment of a variable called
nnuummbbeerrooffeenneemmiieess and a small number of
related variables. These few examples
are by no means all that we plan to do
in the game, but they illustrate my
main points.

One aspect of the new GEX title is
the game’s fast and efficient engine. It
allows us to have more enemies on
screen moving at a faster rate. Since
this is one of the features that really
makes the product stand out, we on
the audio team designed the interac-
tive audio to work tightly with the new
engine functionality. We set up a 7-bit
variable called nnuummbbeerrooffeenneemmiieess that
reflects the number of enemies on the
screen and is updated by the game con-
tinually. This variable is read and used
by the sound driver to adjust the game
audio.

Here’s a breakdown of the GEX

audio, by game level:
THE PRIMAL ZONE. The control track of

the MIDI sequence
has logic built into
it. When the
nnuummbbeerrooffeenneemmiieess regis-
ter is 00 and kkiillllss is 11,
the sequence is

paused, and playback of all tracks is
branched to a short stinger of the GEX

theme song orchestrated with the
instrument palette of the Primal Zone
level. When the stinger is over, the
main sequence is resumed.

We keep a llooccaattiioonn register that
allows the sound driver to see if Gex
has entered a new area of the map that
has different music. The control track
checks every four beats to see if the
value of llooccaattiioonn has changed. If it has,
a short transition drum fill plays, and
then the MIDI sequence that is
matched with value of llooccaattiioonn is started
on the beat.
SCREAM TV. Scream TV is the “horror”

level of ENTER THE

GECKO. For this
level, I used eerie
chamber music laid
over some ambient
loops of slow ragged

breathing and strange heartbeats. The
same nnuummbbeerrooffeenneemmiieess register is used in
this level, but instead of muting and
unmuting, the value of the register
affects the harmonic center of the
piece. For this type of transformation,
we use a technique called “pitch map-
ping.” A pitch map in our system is a
mechanism to remap the pitches of
individual notes as they come from the
MIDI sequence on their way to the
physical voice. Our pitch maps are
built so that the transformation can be
kept within the prevailing harmony of
the piece. In other words, for a scary
piece such as this, the pitch table will
confine all of the note remappings to a
diminished scale. The nnuummbbeerrooffeenneemmiieess
value is used continuously to set the
number of scale degrees upwards to
transpose the harmonic instruments.
This creates a very smooth, subtle,
intensifying effect as more and more
enemies are on the screen and danger
is increasing.
CIRCUIT CENTRAL. The Circuit Central

level looks like the
inside of a CPU. The
opening music is
weird, ambient ana-
log electronica with
a slow, trip-hop

beat. After some exploring, it becomes
clear to the player that there are jumps
and expanses that cannot be passed in
Gex’s normal state. Within this time,
the player should also discover a num-
ber of chargers set out in various loca-
tions. When Gex steps into a charger,
he starts to glow in a green light with
orbiting electrons. This state lasts for
15 seconds and gives Gex the ability to
use embedded “chips” in the floor to
do super jumps and turn on “data
bridges” that span the formerly
uncrossable chasms.

The state of being charged up is
stored as a 11 in a cchhaarrggeedduupp register, and
llooccaattiioonn keeps track of the seven differ-
ent areas within the main level. When
the control track in the main sequence
sees a 11 in cchhaarrggeedduupp, it checks llooccaattiioonn
and matches the area to one of seven
different 15–second-long high-energy
pieces of audio.

While most often the game affects
the sound design, this relationship can
also work the other way. In Circuit
Central, we set a register at every beat
of the music. Since each measure has
four beats, I set the bbeeaattss variable with a
11 on the down beat followed by 22, 33,
and 44 on the remaining three beats and
then cycle back to 11. This timing infor-
mation will synchronize the lighting
effects in this world.

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

30

I N T E R A C T I V E A U D I O

Antares
http://www.antares-systems.com

Digidesign
http://www.digidesign.com

Ilio
http://www.ilio.com

K.S. Waves
http://www.waves.com

Kurzweil
http://www.youngchang.com/kurzweil

Oberheim
http://www.gibson.com/products

/oberheim

Opcode
http://www.opcode.com

Yamaha
http://www.yamaha.com

FF OO RR FF UU RR TT HH EE RR II NN FF OO

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

32

I N T E R A C T I V E A U D I O

Only the Beginning

A daptive audio is a very new field. Many challenges lie ahead,
but I firmly believe that it represents the future of sound in

interactive media. To move forward, we need a major paradigm shift
in how we think about music, great tools, new technology, and a
healthy dose of realism. I hope that my anecdotes, rants, and factoids
have shed some light on and sparked more interest in creating inter-
active audio. So long for now from audio central at Crystal D. ■

Mark Steven Miller has been producing audio for interactive media since
1989, when he started Neuromantic Productions. Neuromantic
Productions produced audio for over 60 titles for publishers such as Sega,
Acclaim, Electronic Arts, and Virgin Interactive Entertainment. Since clos-
ing Neuromantic in 1994, Mark has served as Audio Director
for Sega of America and served as the Working Group
Chairman of the Interactive Composition Work
Group of the Interactive Audio Special Interest
Group of the MMA (IA-SIG). Currently, Mark
is the audio and video director for Crystal
Dynamics and serves as the Co-Chairman
of the IA-SIG. Upon completion of his
work on GEX: ENTER THE GECKO, Mark
will be taking the position of Senior
Producer at Harmonix Music
Systems in Cambridge Mass.

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

34

CREATING AN INTERACTIVE
A U D I O
E N V I R O N M E N T

udio in today’s interactive entertainment media has progressed

far beyond the bleeps of early video games. An object or an envi-

ronment within a game exhibits a number of complex relation-

ships. A creature may be surprised to see you. A robot’s gears

get stuck when it tries to move toward you. A diabolical

enemy is afraid of the dark. When encountering these ele-

ments in a game environment, we expect them to commu-

nicate to us through audio in subtle and different ways.

Aspects of emotion such as surprise, frustration, admira-

tion, and fear could easily be conveyed through an

enhanced and well thought-out object vocabulary.

B Y D A N I E L B E R N S T E I N

AA
W O R L D SS O U N D

Our lives are full of an ever-present
collage of audio cues that we take for
granted. For example, at this “quiet
moment,” I can hear the cascading
sound of a fountain in a pond, the
intermittent quacking of ducks and
geese, a baby in the background,
someone pouring a bucket of water
outside, and a plane flying overhead.
All of these cues, though subtle and
seemingly unimportant, create the
ambience of a particular scene, imbu-

ing it with identity and significance.
Without these background sounds, or
ambiences, our lives would sonically
resemble a lunar landscape. A collec-
tion of sound cues such as this within
a game environment refers to the non-
causal relationship of a player to the
game. The sound space isn’t triggered
by the player’s direct action. Instead,
the sound is affected by and reacts to
the environmental aspects of the
scene that is being conveyed.

When we go to a movie, our emo-
tional response is directly related to
the music. The music swells, our
anticipation grows, and our adrena-
line rushes. The music ebbs, and we
feel a calming sensation. This is very
easy to convey in a linear medium,
where the ending and the progression
of events in a movie is predetermined;
but how do we compose a soundtrack
to a game if it can follow many paths
and endings? An adaptive soundtrack
that responds well to game events is
one of the best ways to envelop the
player in a game experience.

Audio Object Vocabulary

A n audio object vocabulary is a
method by which game objects

(not necessarily just speaking ones)
talk to each other and the player. The
methods of communication vary from

object to object and from context to
context. There are three types of
object interaction: direct, indirect,
and environmental.
DIRECT COMMUNICATION. An object com-
municates directly as a cause of direct
action on its part (Figure 1). When the
ball hits the paddle in the old arcade
game PONG, it makes a bleep. This is
direct object interaction. Unfor-
tunately, most games haven’t
explored far beyond this simplistic
level of object interaction. Direct com-
munication is important when you
want to convey specific audio cues,
such as a scream of pain when you
shoot a monster, or the creak of a
wooden rocker when you push back a
rocking chair. In Monolith
Production’s CLAW, I found it impor-
tant that every character had some-
thing different to say when you inter-
act with him or her (or it), even if it’s
in combat. For example, a melodra-
matic character, while dying, would
say “I’m dying... I’m dying... I’m
dying... I’m dead,” with an animation
to suit. A more primitive character
would emit a squawk, and a more sub-
stantial enemy would yell out, “I curse
you, Claw” as he falls to his death.
When you hit a lounge-lizard-turned
palace-guard-merman, he would say,
deadpan, “Ouch that hurt quite a bit.”

As always, a variety of audio cues are
paramount in ensuring that a set of

quotes doesn’t become repetitive. From
a programming standpoint, that may
require a bit more intelligence to pick
out the quotes. A buffer with an index
to the most recently used quotes helps
a lot because it shields the player from
experiencing the same “random” set of
sounds in rapid succession.
INDIRECT COMMUNICATION. This is an indi-
rect method of object interaction. That
is, by causing something to happen in
the game, something else responds
sonically. A typical example of this is a
“sighting” state for an enemy. When
an enemy sees you, and his or her AI
changes, a sonic cue that signifies that
change may be appropriate. In
Monolith’s BLOOD, for example,
cultists scream in a terrifying foreign
language (created for the game drama)
a series of epithets when they spot the
player (Figure 2). In CLAW, every
enemy has something different to say
in the “sighting” state. A female boss
taunts Claw in a mildly suggestive
manner when they come into contact.
A goofy bear sailor exclaims “I don’t
like you” when he sees a player.

Other sonic cues may convey indi-
rect object interaction. Your character
may begin breathing heavily when he
or she is tired (health is less than some
coefficient). Your metal body suit
emits a rubbing, squeaky noise that sig-
nifies rusting. In addition to sonic cues
that help convey complex visual phe-

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 7 G A M E D E V E L O P E R

35

F I G U R E 1 . Claw punches an enemy
and a hit sound is heard. An example
of direct object communication.

F I G U R E 2 . “Maranax, infirmux!!!” A
cultist spots the player in BLOOD. An
example of indirect communication.

AN INTERACTIVE AUDIO VOCABULARY FEATURING

A W I D E A S S O R T M E N T O F S O U N D C U E S A N D

B A C K G R O U N D N O I S E S I M M E R S E S P LAY E R S F A R

M O R E T H A N YO U M AY R E A L I Z E .

nomena, certain characters within the
game display behaviors that can be con-
veyed easily through sonic cues, even if
they aren’t represented visually. Indirect
cues can be based on a number of differ-
ent motivating factors, the rules of
which can be determined at the game
design stage. For example, in Blizzard’s
WARCRAFT II, clicking on an ax-throwing
troll more than once causes it to
respond with annoyance, even though
no animation is being shown. This is
highly effective character enhancement.
ENVIRONMENTAL COMMUNICATION. A character
or object in the game may generate a
system of audio cues on its own, irre-
spective of its communication to the
player. This is purely a function of a
character’s existence in its environment.
It may be busy chatting to itself or other
characters. It may generate a sound or a
series of sounds on its own. Our goofy
bear sailor from CLAW will comment on
how hungry he is or where his pet rat
might be when he’s in an idle state
(Figure 3). Depending on where he is in
the game, Caleb (the character you play
in BLOOD) may pick from a variety of
different show tunes to sing while he’s
taking a break from the carnage. A thes-
pian tiger from CLAW recites different
Shakespearean passages as he muses on
his own omnipotence.

Environmental communication
need not be comic, nor does it need to
be vocal. A swishing blade and a hum-
ming motor sound signifies an indus-
trial fan in BLOOD, while a phone may
be ringing intermittently. A character
may pass by an alien hive, with pods
emitting a terrifying whine.

Environmental communication is
paramount in reinforcing a character
or object’s existence in the game envi-
ronment. The character literally
comes alive as a personality or physi-

cal entity. But as with all different
types of object interaction, it’s impor-
tant to remember to keep a consistent
set of sounds from character to char-
acter. In CLAW, I made a decision to
use three different idle cues (environ-
mental communication), four differ-
ent sighting cues (indirect communi-
cation), and between eight and nine
sounds (direct communication) to
describe each character sonically. In
the end, most characters used more
and some less than that average.
However, planning the audio object
vocabulary ahead of time helped to
maximize the use of memory allotted
to sound in the game.

Character Development

T he nature of a game object must
be relayed in the character of its

“voice.” It’s very easy to screw up the
integrity of a character by giving dif-
ferent visual and aural personalities.
However, giving the right “voice” can
greatly enhance a character’s person-
ality. A weak character may be depict-
ed through the use of a humorous
voice. A stronger character’s dramatic
personae can be highlighted through
the use of a deeper and more resonant
voice, as well as a script that relates
without question his or her authority.
TIPS AND TECHNIQUES.
1. Always use professional voice

actors. Trained voice actors are pro-
fessionals who specialize in giving
your character the voice it deserves.
Whether it is a cartoony or a deep
resonant voice, a single talented
actor may help develop your ideas
for multiple characters and realize
them in ways that you haven’t con-
ceived. When in doubt of how to
find a good voice actor, look to tal-
ent agencies and talent search ser-
vices for help. Moreover, making a
trained voice work with the rest of
your mix is quite a bit easier than
trying to amplify or equalize a weak
voice. All sound engineers can
attest to this.

2. Spend a little more time in sound
design. As in all cases, don't just
pull sound effects off of a CD.
Create sound effects from your own
sampled sounds as much as possi-
ble. A portable DAT recorder and a
good microphone in the field will

take you much further than a com-
mercial CD sound library ever
could. Nothing kills a unique audio
environment more quickly than the
phrase, "I’ve heard that somewhere
else before...."

3. Collaborate with professional
scriptwriters. Writers would jump at
the opportunity to write a couple of
hundred lines of dialogue for some
game characters. The results will
definitely be worth the investment.

4. Don’t be afraid to inflate the vocab-
ulary. Minimize silent time. If you
have the space for audio, use it. Set
the limit with the programmers and
designers early as to your memory
budget for audio, and use it wisely.

Ambient Sound

A mbient sound refers to the sound
world that is generated from a

player’s location in the game space. It
is a system of indirect and environ-
mental cues that immerse a player in a
particular setting. As in my real-world
example, we are surrounded by ambi-
ence all of our lives — a complex web
of sound. However, ambience is the
most underdeveloped side of sound
design in interactive media. A game
with little or no ambient sound pre-
sents little or no connection to how
we perceive the outside world with
our ears. An ambient sound world
might be as simple as a single looping
track of forest sounds or a system of
sound-producing objects all linked
together by their location within a
given game environment.

The environment can communicate
to the player information important
for the game-playing experience. For
example, a raven flies by in a forest,
making a screeching sound that
informs the player that he or she has
ventured too far. A swamp makes a
menacing gurgling sound, informing
the player that he or she shouldn’t go
there. The sound of a portal opening
and closing in the distance informs
the player that he or she is close to the
level’s exit.

Environmental ambiences fully
transport a player into the world pre-
sented by the game. In CLAW, each
level has a distinct set of ambient
sounds based on the terrain that the
main character is encountering.

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

36

S O U N D W O R L D S

F I G U R E 3 . “Umm, there’s nothing
here to eat and I’m kinda hungry.” An
example of environmental communi-
cation.

Within a terrain, a single (environ-
mental) looping sound is used (such
as the sound of a forest), along with a
set of sounds (indirect cues) that are
triggered either by Claw’s location on
the map or by random chance. For
example, the sound of a character
whistling in a window matches the
animation of the character shaving
and the background ambience of vil-
lage noise. When Claw moves through
another terrain, the looping ambient
sounds would cross-fade, and another
set of ambient trigger sounds would
be selected that corresponds to the
new terrain.

In BLOOD, I used ambience to
enhance the atmosphere, as well as to
connote physical environments. In a

temple, distant chanting is heard
(though the source of the chant is
never discovered) (Figure 4). In a nar-
row hallway, whispers surround the
player from all sides. The inclusion of
atmospheric elements adds to the
spooky and scary nature of the game’s
look and feel.
TIPS AND TECHNIQUES.
1. Try to use consistent reverb settings.

All sounds within a given environ-
ment should have a similar set of
reverb settings that place the entire
sound world within a consistent
acoustic space. There are foreground
and background elements that do
stand out from within the ambience,
but not so far as to mistake these
sound elements for characters or
objects that a player must encounter.

2. Make your loops seamless. The
looping ambiences in the game
need to be smooth and unnotice-
able. Large variations in pitch or
amplitude will make the loop quite
recognizable and annoying after a
while. A rhythmic pattern works
well (like the sound of crickets), if
it’s cut perfectly. Also, a longer
sound sample will help mask the
loop point.

3. Avoid loops. Though seamless loops
are not an impossibility, it's best to

use trigger ambiences whenever
possible. Trigger ambiences help
mask the loop point, as well as pro-
vide overall variety in the ambi-
ence. In Kesmai's AIR WARRIOR, I
used trigger ambiences to convey
the sound world of a World War II
airfield. During any given time, an
airplane fly-by sound, a vehicle
drive-by sound, and an airplane
startup sound would be selected
and played from a set of 50 or so
trigger ambiences. Since these trigger
ambiences were selected randomly
and played at random times, the
sound world was always changing
and seldom repetitive. Another
method of avoiding loops is to queue
similar sounds one after another. A

set of three or four sounds that fit
seamlessly end-to-end will work well
if they are selected to play on a single
channel randomly. This helps break
up the pattern created by a single
looping sound.

4. Try to create fine gradations of ambi-
ences. Say we’re walking from a for-
est into a mountain pass. We start
out in a deep forest then walk
through a leafy forest then into a
meadow before reaching the moun-
tain pass. If we have a single sound
for the forest ambience, no matter
how the forest changes, the ambi-
ence will remain the same until we
change scenery drastically when we
reach the mountain pass. However,
if we subdivide the forest into three
gradations (deep, leafy, meadow),
we’d be better able to convey to the
listener the transition of environ-
ments from forest to mountain pass.

Adaptive Music

T he nonlinear medium of comput-
er gaming can lead a player down

an enormous number of pathways to
an enormous number of resolutions.
From the standpoint of music compo-
sition, this means that a single piece

may resolve in one of an enormous
number of ways. Event-driven music
engines (or adaptive audio engines)
allow music to change along with
game state changes. Event-driven
music isn’t composed for linear play-
back; instead, it’s written in such a
way as to allow a certain music
sequence (ranging in size from one
note to several minutes of music) to
transition into one or more other
music sequences at any point in time.
An event-driven music engine must
contain two essential components:
• Control logic — a collection of com-

mands and scripts that control the
flow of music depending on the
game state.

• Segments — audio segments that can
be arranged horizontally or vertically
according to the control logic.
In Kesmai’s MULTIPLAYER BATTLE-

TECH, control logic determined the
selection of segments within a game
state and the selection of sets of seg-
ments at game state changes. Thus, the
control logic was able to construct
melodies and bass lines out of one to
two measure segments following a
musical pattern. At game state changes,
a transition segment was played, and a
whole different set of segments was
selected. However, this transition seg-
ment was played only after the current
set of segments finished playing so as
not to interrupt the flow of the music. I
selected game states and also tracked
game state changes based on the play-
er’s relative health vs. the health of the
opponent. Overall, I composed 220
one to two measure segments that
could all be arranged algorithmically
by the control logic. What resulted was
a soundtrack that was closely coupled
with the game-playing experience.

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 7 G A M E D E V E L O P E R

37

F I G U R E 4 . A dark temple emits a
menacing chant.

The inclusion of atmospheric elements
adds to the spooky and scary nature of the
game’s look and feel.

TIPS AND TECHNIQUES.
1. Music comes first. Remember that no matter how closely

your music follows the game play and how interactive it
is, if it doesn’t gel as a musical composition, you’re better
off writing a linear score. Always explore all possibilities of
transitions from one game state to the next, and see if the
music reacts the way you meant it to react. Make sure that
you write transition sequences and that the engine is
intelligent enough not to change game states midmeasure
or midphrase.

2. Decouple segments horizontally and vertically. Compose
your music so that different segments may be combined
end-to-end (horizontally), as well as on top of each other
(vertically). This way, you can combine different melody
lines with bass lines, use different ornamentation, and so
on.

3. Don't give away too much information. Sometimes a
musical cue might say too much, when it was meant just
to highlight the game state change. For example, in a cer-
tain game, an upward chord progression always signifies
to a player that a starship is on his tail. When working on
game state changes, make sure your event-driven music
isn't used as an early warning system for the game.

4. Define a series of translation tables to track game state
changes. For example, in MULTIPLAYER BATTLETECH, a game
state change from “winning” to “advantage” implies a los-
ing trend. The music reacts to this change by selecting a
different set of segments than it would if the change
occurred from “advantage” to “winning.”
By composing in a nonlinear fashion, and by having the

music react to the player’s actions directly and indirectly, we
introduce a new level of interactivity. Emotionally, the
soundtrack carries the person seamlessly along with the
action in much the same way as the static, linear media of
film. In this fashion, music becomes the gateway to the play-
er’s emotional response to the game.

Total Immersion through Sound

A s game designers and audio producers, we should be
constantly aware of the impact that a well thought-out

audio environment can have on the product. It can make a
graphically simple and uneventful scene become awe-inspir-
ing. Effective use of an audio object vocabulary can enhance
the impact a character may have on the game player.
Ambient sounds, in all of their variety, can transform a
game scene from a virtual one to a believable one. Surreal
textures and atmospheric gestures can generate emotional
responses in a player as varied as the soundscapes them-
selves. As games become more and more complex and
graphically spectacular, we must not overlook the role of
audio in enhancing and completing that feeling of total
immersion. ■

Daniel Bernstein manages Monolith Productions' Audio/ Video
department in Kirkland, Washington. He has been the audio pro-
ducer, sound designer, and composer on a number of successful
commercial titles, most recently for BLOOD. When not listening to
feedback loops, he enjoys spending time with his wife basking in
the beautiful Seattle sunshine. He can be reached at
dbernstein@lith.com. Please, no e-mails after 10PM.

S O U N D W O R L D S

that I coded each rolling barrel coming
down the ramps separately for every
level. You can imagine the fun I had
checking to see if the player collided
with one of these barrels. This was my
first lesson in data structure design, and
it was a valuable one.

How you design your data structures
can affect your game significantly. With
careful planning, your data structures
can provide substantial performance
gains. Throughout this article, I will use
two games that I’ve been working on
this year as examples of thoughtful data
structure design. The first is LEDWARS, a
real-time strategy game (Figure 1); the
second is THE LADY, THE MAGE, AND THE

KNIGHT (LMK), a role-playing game
(Figure 2). LMK is a multiplayer game
set in a huge game world that you can
roam around freely. There are no levels,
as the entire map is connected. This
brought up some interesting data struc-
turing problems, which I’ll explain
shortly. Although both LMK and

LEDWARS are completely different types
of games, they share a good deal of
code. This reusability was possible in
part because I approached the develop-
ment of LMK (which I started first) in an
object-oriented way.

Design Goals for LEDWARS

If there’s one thing that’s important in
a strategy game such as LEDWARS, it’s

the intelligence of the computer oppo-
nent. As artificial intelligence usually
boils down to looking at loads of data,
this means that the data has to be easy
to manipulate, and in a suitable format
for the AI engine to use. The problem is
that usually the best AI algorithms are
created once the game is finished (and
indeed they were in this case). Therefore,
it’s crucial that you can easily change AI
routines at any point in development
without impacting the rest of your
game. Since LEDWARS is also a multiplay-

er game, the data structures needed to
handle this potentially painful part of
the design. I wanted to design the
objects in the game so that they could be
handled the same way, regardless of
whether they were controlled by the
player or the computer. I also wanted to
make sure that the amount of data nec-
essary for the AI to make decisions was
minimal, so that communication chan-
nels were not deluged with data. Finally,
LEDWARS needed to be able to deal with
many game objects at the same time.
When played in the “world war” mode
on a large map, the game can contain
thousands of player units and buildings.
If all of this data was handled inefficient-
ly, the game’s performance would slow
to a crawl.
MULTIPLAYER CAPABILITIES. A multiplayer
game needs some kind of messaging sys-
tem, so I had to design one. I felt that
the game’s code shouldn’t make any
distinction — beyond the user inter-
face controls — between local players

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

40

S T R U C T U R I N GD A T A

From LEDWARS to LMK:
Lessons in Structuring Data

hen I was 12 years old, I

wrote a DONKEY KONG clone

on a Sinclair ZX81 that had a

16K RAM expansion cartridge. The

game was embarrassingly slow, but

not entirely because of the Sinclair’s

speed. Part of the problem lay in the factWW

and remote players. This code should
send messages to a central data stream,
which receives messages coming from
all other network clients and AI oppo-
nents. LEDWARS used a peer-to-peer sys-
tem, which means that all of the code
should be determinant. (Determinant
means that given the same starting
conditions, the game flow should be
the same on every machine in the net-
work.) For instance, an AI opponent on
one computer cannot do something
other than what an AI on another com-
puter is doing.
ARTIFICIAL INTELLIGENCE. I won’t talk much
about the AI in LEDWARS, as it would
take up an entire other article (you can
read about the pathfinding system in my
article “Real-Time Pathfinding For
Multiple Objects,” pp. 36-44, Game
Developer, June 1997). Instead, I’ll touch
on how I managed the AI given the
design goals.

An adaptable AI engine requires that
you organize data in a straightforward
way. If a lot of filters are necessary to
generate additional information, you
might have to change the filters every
time something changes in the AI
code. Because so many units can be in
the game simultaneously, our AI need-
ed to be able to remember previously
calculated results. It couldn’t afford to

reanalyze a situation every time it
moved a unit or constructed a build-
ing. Since situational analysis (for
example, assessing where the largest
threat is) takes significant processor
time, this section of the AI code had to
be abstract enough to last multiple
frames while a new situational analysis
was under way. By “abstract enough,” I
mean that the AI really shouldn’t both-
er with things such as “This enemy
unit is here on this hill. If it moves a
little bit to the right, it’ll be able to
shoot the hell out of our unprotected
facilities.” Rather, the AI’s considera-
tion should be, “Look, this area, which
is of some importance to us, has some
threat to it.” An AI is better able to deal
with nonspecific information; the AI
doesn’t have to track changes in a situ-
ation for every frame. In the example,
it is enough that the AI knows that
there is threat in this area. Even if the
enemy unit moves a bit, the threat
remains. Given all of these considera-
tions, I split up the AI into three parts.

The master AI receives most of its
data directly from game objects (for
example, player units, buildings, and
so on) and “sensors.” The game objects
contain data such as the resources that
they require, their team morale, and so
on. The sensors, on the other hand, are

like satellites. They fly over the map
slowly, gathering strategic information
such as the importance of certain geo-
graphical areas, the threat of enemy
troop formations, and where the com-
puter should build its next strategic
facilities. The master AI processes the
information that it has acquired from
the sensors and game objects and
applies this information to its objec-
tives. It proceeds by giving commands
accordingly. This approach met all of
the goals I had set forth:

• The AI has a good overview of the
situation at both the macro and
micro levels, using its sensors and
the information the game objects
give it.

• Since game objects such as units
and buildings supply data to the
main AI, I have no need for addi-
tional structures other than those
that already exist.

• Modifying the AI simply requires
changing the rules that govern its
decisions. I don’t have to rewrite the
AI engine.

HANDLING DATA. As far as handling a large
number of game objects, this problem
was solved by distributing the workload
for handling all objects over several
frames. Only the visual aspects (such as
animations and movement) are comput-

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 7 G A M E D E V E L O P E R

41

F I G U R E 2 . THE LADY, THE MAGE, AND THE KNIGHT (LMK), a
role-playing gameF I G U R E 1 . LEDWARS, a real-time strategy game

HOW YOU DESIGN YOUR DATA STRUCTURES IMPACTS

YOUR GAME’S PERFORMANCE AND ULTIMATELY THE

REUSABILITY OF YOUR CODE. b y S w e n V i n c k e

ed for every object every frame. If some-
thing more processor-intensive needs to
be done, the object has to wait until its
turn. That way, a thousand units can be
handled over a single frame or twenty
frames, at a processing rate of about fifty
objects per frame. In this manner, it’s
practically impossible for the player to
notice any type of stall in the game dur-
ing computations. Once the data han-
dling section was completed, LEDWARS

was actually a fairly straightforward
game to develop.

Tiles as Data Structures

A s a real-time strategy game,
LEDWARS needed a map with

objects moving on it. Since the maps
that the game requires are too large to

use completely rendered backgrounds,
tiles are used instead. As all game
objects were going to be built from tiles,
I decided to store collision information
within the data structure of tiles. Listing
1 shows the structures used for this, as
well as some of the other structures dis-
cussed in the next paragraph. You’ll
note that structures don’t contain
pointers to the structures they are made
up off, rather they contain indexes to a
global array that contains all these struc-
tures. This is convenient because if you
store your structures to disk, you don’t
have to start figuring out where all those
pointers are pointing.

LEDWARS also needed animations
and tile groups. An “animation” is just
a sequence of tiles, each of which have
different appearances and contain dif-
ferent collision information. If a tile is

animated, a flag is set in the informa-
tion field of the tile that also contains
the collision information. A global
array, which is the same size as the
number of tiles, directly remaps tiles to
a global array of animations. A “tile
group” is a collection of tiles with an x
and y dimension. The next level in the
object hierarchy is the “tile group col-
lection,” which is a series of tile
groups. These different structures were
necessary to manage individual units,
which consist of a tile group collection
and some unit-specific data. Likewise,
buildings consist of a tile group collec-
tion and some building-specific data.

Since a lot of units and buildings in
the game use the same data, I split up
their information into “static” and
“dynamic” data. Static data never
changes for a particular unit type, and
dynamic data changes and therefore
must be allocated for every unit. By
categorizing data in this manner, I
could create unit parents containing
the static data for every unit and some
default dynamic data. A new unit in
the game copies the data from its par-
ent, and then fills in the dynamic data
as needed. The same goes for the
buildings. Finally, a “map” is a collec-
tion of units, buildings, and tiles (see
Figure 3).

Design Goals for LMK

W hile LEDWARS was a relatively
straightforward game to devel-

op, LMK was new territory. In LMK,
the game world is highly detailed. The
player has to be able to interact with
every object — books, cupboards,
magical potions, and so on — and
every nonplayer character (NPC).
Players have to be able to use objects,
to drop them, to use objects on one
another, and to change these objects.
It was therefore important to design
the data structure of game objects
carefully. Here’s how it was done:

• Objects are made up of a series of
bit-packed information chunks
that indicate what a player or NPC
can do with that object. For exam-
ple, if a player uses a torch, it
starts burning, but to use a piece
of meat, the player eats it.

• Objects can contain containers,
which in turn may be made up of
other containers. A cupboard, for

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

42

D A T A S T R U C T U R I N G

TTiillee definition:

ttyyppeeddeeff ssttrruucctt {{

lloonngg IImmaaggeeIInnddeexx ;;////IInnddeexx ttoo aa lliisstt ooff iimmaaggeess

lloonngg IInnffoo ;;////BBiittppaacckkeedd iinnffoorrmmaattiioonn lliikkee ffoorr iinnssttaannccee ccoolllliissiioonn iinnffoorrmmaattiioonn

////AAllssoo ccoonnttaaiinnss aa bbiitt wwhhiicchh iinnddiiccaatteess iiff tthhiiss ttiillee iiss aanniimmaatteedd..

////TThheerree eexxiissttss aa gglloobbaall aarrrraayy wwhhiicchh rreemmaappss ttiilleess ttoo aann aanniimmaattiioonn((SSeeee

nneexxtt ddeeffiinniittiioonn))

}} TTTTiillee ;;

AAnniimmaattiioonn definition:

ttyyppeeddeeff ssttrruucctt {{

lloonngg AAnniimmaattiioonnSSiizzee ;;////SSiizzee ooff tthhee aanniimmaattiioonn

lloonngg **AAnniimmaattiioonnLLiisstt ;;////CCoonnttaaiinnss iinnddiicceess ttoo aa gglloobbaall aarrrraayy ooff TTiilleess

}} TTAAnniimmaattiioonn ;;

TTiilleeGGrroouupp definition:

ttyyppeeddeeff ssttrruucctt {{

lloonngg XXSSiizzee,,YYSSiizzee ;;////DDiimmeennssiioonn ooff tthhee ggrroouupp

lloonngg **TTiilleeLLiisstt ;;//// CCoonnttaaiinnss iinnddiicceess ttoo aa gglloobbaall aarrrraayy ooff TTiilleess

}} TTTTiilleeGGrroouupp ;;

TTiilleeCCoolllleeccttiioonn definition:

ttyyppeeddeeff ssttrruucctt {{

lloonngg AAmmoouunnttOOffGGrroouuppss ;;////HHooww mmaannyy ggrroouuppss aarree tthheerree iinn tthhiiss ccoolllleeccttiioonn

lloonngg **GGrroouuppLLiisstt ;;////CCoonnttaaiinnss iinnddiicceess ttoo aa gglloobbaall aarrrraayy ooff ttiilleeggrroouuppss

}} TTTTiilleeCCoolllleeccttiioonn ;;

UUnniittPPaarreenntt definition:

ttyyppeeddeeff ssttrruucctt {{

////SSttaattiicc ddaattaa

lloonngg TTiilleeCCoolllleeccttiioonn ;;////IInnddeexx ttoo aa gglloobbaall aarrrraayy ooff TTiilleeCCoolllleeccttiioonnss

ÉÉ GGaammee ssppeecciiffiicc uunniitt ddaattaa

DDyynnaammiicc ddaattaa

ÉÉ DDeeffaauulltt vvaalluueess

}} TTUUnniittPPaarreenntt ;;

(Continued on page 44.)

L I S T I N G 1 . The structures of game objects.

instance, can contain a chest,
which in turn can contain a bag,
which can contain a pouch, which
may contain one gold coin.

• Each player’s (or NPC’s) inventory
consists of objects or containers,
which affect the character’s statis-
tics. If there’s part of a mutilated
body in the bag you are carrying,
then your charisma goes down.

• NPCs can interact with the objects
and with each other. For instance,
they can talk to each other or
exchange objects.

• Players can question NPCs, and
depending on the player’s behavior
during the conversation and also
outside it (such as when you steal
something from somebody), NPCs
will react differently, thanks to high-
ly detailed NPC scripts that can
change dynamically.

All of these facets wouldn’t have been
too difficult to deal with from a develop-
ment standpoint, but problems arose as
a result of two design decisions made
early on: to construct the game as one
continuous level and to allow multiplay-
er functionality.

Developing the game quickly became
complicated. For instance, if a player
drops an object, every player in that
game has to be immediately updated
with that information, no matter how
far from that action they are. The
nature of the game play is such that
players have to rapidly switch between
the several characters belonging to their

parties. Thus, the world
has to be synchronized.
It isn’t possible to delay
these updates until a
player switches to a char-
acter near the action,
because the updates
delay the character-
switching process, and
switching between char-
acters is a common
aspect of the game. To
make matters worse,
LMK’s game world is very
environmentally diverse
(for example, the south
pole and equator don’t
look alike), necessitating
a great deal of different
background art.
Characters and monsters
typically require 200-300
frames of animation, and

the average humanoid is 150 pixels tall.
We needed a solution that would solve
all of these problems.

Necessity, the Mother of Efficient
Programming

These challenges necessitated an
extremely creative design for my

data structures. First, I needed a smart
image manager that required minimal
disk reads and yet kept within memory
constraints — a system that would
purge data from memory if it wasn’t
immediately needed. The game also
required smart clipping features —
there’s no way the entire game world
could exist in a computer’s memory,
yet I couldn’t sacrifice speedy scrolling
around the world. Faced with this con-
straint, I designed an image manager
that determines the popularity of cer-
tain images. Popular images are the
hardest to free from memory, while
those that are seldom needed can be
discarded very easily. Since block reads
are a lot faster than separate seeks for
every block that you need, the image
manager also tries to anticipate what it

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

44

D A T A S T R U C T U R I N G

UUnniitt definition:

ttyyppeeddeeff ssttrruucctt {{

TTUUnniittPPaarreenntt **PPaarreenntt ;;

////DDyynnaammiicc ddaattaa

ÉÉ GGaammee ssppeecciiffiicc ddaattaa

}} TTUUnniittTTyyppee ;;

BBuuiillddiinnggPPaarreenntt definition:

ttyyppeeddeeff ssttrruucctt {{

////SSttaattiicc ddaattaa

lloonngg TTiilleeCCoolllleeccttiioonn ;;////IInnddeexx ttoo aa gglloobbaall aarrrraayy ooff TTiilleeCCoolllleeccttiioonnss

ÉÉ GGaammee ssppeecciiffiicc uunniitt ddaattaa

DDyynnaammiicc ddaattaa

ÉÉ DDeeffaauulltt vvaalluueess

}} TTBBuuiillddiinnggPPaarreenntt ;;

BBuuiillddiinngg definition:

ttyyppeeddeeff ssttrruucctt {{

TTBBuuiillddiinnggPPaarreenntt **PPaarreenntt ;;

////DDyynnaammiicc ddaattaa

ÉÉ GGaammee ssppeecciiffiicc ddaattaa

}} TTBBuuiillddiinnggTTyyppee ;;

MMaapp definition:

ttyyppeeddeeff ssttrruucctt {{

uunnssiiggnneedd lloonngg XXSSiizzee,,YYSSiizzee ;;////MMaapp ddiimmeennssiioonnss

uunnssiiggnneedd lloonngg AAmmoouunnttOOffUUnniittss ;;////AAmmoouunntt ooff uunniittss iinn mmaapp

TTUUnniittTTyyppee **GGaammeeUUnniittss ;;

uunnssiiggnneedd lloonngg AAmmoouunnttOOffBBuuiillddiinnggss ;;////AAmmoouunntt ooff bbuuiillddiinnggss iinn mmaapp

TTbbuuiillddiinnggTTyyppee **GGaammeeBBuuiillddiinnggss ;;

}} TTMMaappTTyyppee ;;

L I S T I N G 1 (C O N T .) . The structures of game objects.

F I G U R E 3 . Object relations for LEDWARS.

will need and when. Based on this
information, it tries to read as many
images as possible from disk to memory
in one long (but not too long) block
read. The more memory in a player’s
machine, the more images the system
caches. The same goes for the part of
the map that is in memory. Depending
on the speed and available memory, the
system takes as much of the map as it
can, leaving a lot of the map in com-
pressed form until it’s needed.

A great deal of data abstraction and
data compression techniques were
required to solve problems relating to
distances between characters and far-
away objects. LMK’s map system can
do operations on objects throughout
the game world without having to
know much about these objects. For
instance, suppose the player thinks
that it would be a good idea to block
the entrance to a house with a table.
An NPC wants to enter that house, but
can only do so by moving the table. To
enable this maneuver, the system first
needs to know that there is a table
blocking the NPC, that the NPC is
strong enough to move the table (for
which it also needs to know the table’s
weight), and where it can safely move
the table. If the current window on the
map is far away from the location of
the offending table, that’s a lot of
things the game needs to know. To
make matters worse, it’s possible that
there are items laying on the table that
will fall if the NPC moves the table.

LMK addresses this problem by using
several layers of information abstraction
and working on these rather than
directly on the world data. Once the
part of the world where the table stands
is read in, these layers are blended with
the world again. One such data abstrac-
tion layer contains the total weight of a
number of objects standing on a partic-
ular tile. Based on this compressed data,
the system decides whether a NPC
should move around an object or just
move the object itself. Another layer,
which divides the map in regions,
remembers which objects should be
moved. By doing some calculations
using this latter layer, the system can
effectively move the table with every-
thing on it once that part of the world is
loaded into memory (Figure 4).

The same goes for the characters; the
characters have huge data structures
because of all the actions that they can

take on objects within the game (and all
the nice things they can do to one
another). Rather than extrapolating the
results of certain actions in real time,
LMK calculates what a character is likely
to do when it approaches an object (for
instance, eating every single piece of
meat in a city), saving a lot of comput-
ing power. Once again, using abstraction
layers is the method. And again, just as
in LEDWARS, distributing the workload
over several frames helps a lot.

Since LMK is a multiplayer game, it
needed a messaging system like the one
in LEDWARS, with the difference that
LMK required a client/server architecture
— at least to a certain degree. LMK’s
objects are managed in a peer-to-peer
fashion, so that if you move an object,
all of the other clients update their view
of the game world with that movement
information. However, if you kill a mon-
ster, only the server is updated. In this
sense, characters and objects are treated
differently by the system. The server tells
the clients what characters they see and
what they will do. When an NPC nears
the current window of a local player, the
server sends a packet to the client telling
it that this NPC is coming up along with
information that describes its intentions.

For instance, the server can tell a
client something like, “Listen up. This
murderous NPC named Clovis is going
to open the door you’re staring at. If

the player is still looking at the same
spot in n frames, you will show Clovis
moving towards the door, opening it,
and entering to kill everybody who is
inside. So you’d better start loading in
the animation frames for Clovis and get
to it. If the situation changes, I’ll tell
you on a need-to-know basis. And for
God’s sake, don’t send me a ‘Didn’t
receive packet’ message, because I’m
too busy with a bunch of lunatic play-
ers who think slaughtering a town is
fun, and now I’ll also need to tell every-
body that a door has opened.” Using
this sort of system actually lightens the
network communication load!

Different Games, Similar Data
Structures

A t its core, LMK uses three types of
images: tiles, objects, and charac-

ters. Object and character imagery have
bounding-box collision information,
while tiles have simple 2D bit-encoded
collision information. Animations can
contain any of these three image types.
Tiles consist of image and collision
information. Objects are collections of
animations or images, plus specific
object information. Characters are col-
lections of animations and specific
character information. A map is a col-
lection of characters, objects, and tiles.

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 7 G A M E D E V E L O P E R

45

F I G U R E 4 . LMK deals with the huge world map using data abstraction layers.
When parts of the map are read in, the layers are blended with the real game map.

Figure 5 shows these relationships.
Sound familiar? It should — LMK’s

data structures are nearly identical to
those found in LEDWARS, despite the fact
that the two are different types of games.
Because of their similarities at the data
structure level, I could use virtually the
same level editors for both games, and a
significant portion of common code was
shared between the two. One aspect of
game development that most novices
underestimate is the amount of work
necessary to build the application frame-
works for a game. You need tools to con-
vert your artwork into a format suitable
for your game, you need editors to create
your game worlds, and you need a
whole range of (usually) home-brewed
utilities to facilitate the filling in of your
data structures. The quality of a game
often depends on the quality of the
underlying application framework. For
instance, if you are creating a real-time
strategy game, and you find it difficult to
change the position of a laser turret,
you’ll be discouraged to do so even if it
will improve game play.

The problem with creating application
frameworks, however, is that it’s one of
the more tedious parts of development.
(At least I think so. But I’m sure a lot of
database developers out there just love
building them.) You can minimize the
amount of time that you spend develop-
ing application frameworks by reusing
them across titles, as I did. I developed
LEDWARS while I was busy with LMK,
and if I add up the time I actually
worked on LEDWARS, it would come to as
little as five months — not bad for a solo
programmer. But I could never have
pulled this off if I hadn’t set myself up to
reuse a significant amount of LMK code
in LEDWARS.

Problems Posed by LMK

A major recurring challenge during
the development of LMK was

finding ways to compress data more
and more, and access it at increasingly
faster rates. There’s an old rule that
states that if you spend a lot of time
developing the compression scheme,
the decompression step typically
becomes faster. This rule of thumb
proved to be true in the case of LMK.

Because LMK’s game world can be
modified during a game (for example,
players can move objects), these changes

need to be written back into the com-
pressed world. However, there are tens of
thousands of objects in LMK, and each
has its own set of variable data. This
makes inserting objects into the map
almost impossible. Insert operations in a
block of information such as a map usu-
ally require that you move a large part of

that block. Since most of the map exists
on disk, and not in memory, I can’t
move large parts of that block. To solve
this problem, I created two maps: a high-
ly compressed map of the original world,
and a map that tracks the changes that
the players make.

The first map is changed when an

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

46

D A T A S T R U C T U R I N G

In my previous Game Developer arti-

cle, which talked about pathfinding

in real time, I talked about the prob-

lems that occur when there is no

path. I suggested using the bidirectional A*

path. An optimization that I didn’t mention

and that I used in LEDWARS is precalculating

impossible paths. This technique is fairly

simple and can augment your game speed

tremendously. The game speed really ben-

efits when you have a computer opponent

that also needs to calculate paths. The

opponent is more likely to try impossible

paths, and if he keeps on trying, your game

speed will deteriorate quickly.

The idea is to create an extra layer that

is the same size as the search space in

which your search algorithm operates. This

extra layer divides the map in several

areas, so that every node within that area

is accessible from another node within that

area. This implies that there is no path

between two nodes from different areas. A

map with a lot of islands in it, therefore,

contains a lot of areas, whereas a map that

isn’t complicated contains few areas. The

following algorithm shows how to create

such a layer.

More Pathfinding Tricks

Algorithm
1. Take a node that hasn’t been designated to an area yet, and create a new area for it.

2. Do a breadth-first search from that node, assigning all nodes that can be reached

from the root node to the last created area.

3. Repeat from Step 1 until there are no more nodes that haven’t been assigned to an

area

Once this extra layer has been created, all you need to do to determine whether a

path is possible or not is to check whether the start and destination lie in the same

area. Simple isn’t it?

F I G U R E 5 . Object relations for LMK.

operation doesn’t require insertion or
deletion. For instance, lighting a torch
is simply a matter of setting a bit in
the compressed map. Moving a glass is
trickier. A bit it is set in the first map
indicating that the entry occupied by
the glass is now free. Once the glass is
put down again, the system checks if
there is a free slot in the highly com-
pressed map. If not, it puts the glass in
the second map. This is an adequate
solution, since the total number of
objects moved by the players is much
lower than the number of objects that
they actually use. And as you can see,
using objects usually changes data
that is easily written back in the origi-
nal map.

The client/server architecture great-
ly simplified how data is handled.
Except for the objects, nothing needs
to be synchronized, since the server
handles most of this work. In
LEDWARS, it was the peer-to-peer unit
synchronization that caused a lot of
headaches, and it would have been
even worse in LMK if the characters
used a similar system. The only thing I
needed to bother with was designing
the message structures so that a lot
could be said in as little information
as possible. My lesson? When given a
choice, opt for a client/server architec-
ture (see Figures 6 and 7).

Object Referencing

O bjects (for example, tiles and
units) reference each other using

direct indexing. This is fastest and
most convenient for debugging and
reading/writing the structures to disk.
For instance, in LEDWARS, a tile group
contains a series of indices that refer
to a global array of tiles. A tile collec-
tion has a series of indices that refer to
a global list of tile groups. A unit par-
ent references a tile collection using
an index that directly references a
global list of tile collections. A unit
references a global list of unit parents
again using a direct index. The same
goes for buildings. The problem with
this referencing system is that some-
times you get the impression that
your data is far away. It may be a good
idea to store some redundant data
(particularly display code) within your
classes to allow quicker referencing. For
instance, if a unit is made up of several

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 7 G A M E D E V E L O P E R

47

E ven with the messaging sys-

tem in place, the world organi-

zation set up, the structure of

the AI taken care of, and a way

to cope with numerous units, I was still

late in delivering LEDWARS to my publish-

er. How could that happen? Given the

explanation of data structures, it all

sounds fairly easy. However, in the end, it

was the AI and the multiplayer sections of

the game that held up the game. My data

structure design made it simple to

change the AI. First it was too easy, then

it was too hard. Ultimately I just put in a

slider that you could change in real time

to adjust the difficulty level.

Synchronizing the multiplayer system

was also a horror. I spent several weeks

trying to establish what was wrong with

it. It’s something I’ll share with you so

that you don’t make the same mistakes.

The obvious flaws were a result of ref-

erences to something the player did on

the local machine that somehow affected

the game flow. If a player clicks on a unit,

a sample audio clip is picked randomly

from a series and played. It was coded

like this:

PPllaayySSaammppllee((UUnniittSSaammpplleessLLiisstt[[FFIIGGHHTTSSOOUUNNDDSS]]

[[uu-->>ppaarreenntt]][[rraanndd(())%%MMAAXXFFIIGGHHTTSSOOUUNNDDSS]]))

This desynchronized the random seed.

Games often use random numbers to gen-

erate random behavior. In a system

where it is important to have code that is

determinant, it’s important that the same

random numbers are generated at the

same time on all machines. Random num-

bers are generated using a formula that

depends on a seed. The seed value deter-

mines which will be the next number in

the series of random numbers. If you call

rraanndd(()) on one machine and not on the

other, then both machines cannot be

expected to generate the same random

number.

A more serious bug was related to stat-

ic variables. When we tested LEDWARS,

everything was fine because everybody

copied the game from a server. The static

variables were all initialized to the same

value. When someone played a single-

player game first, and then joined a mul-

tiplayer game, all hell broke loose. What

made this bug tricky to isolate was that

its effects were seen hours after testers

had begun playing; the static variable

was defined in a function that wasn’t

called on a regular basis.

LEDWARS’ worst bug had nothing to do

with the game play. After a while in multi-

player mode, various players’ games

were getting unsynchronized. Some unit-

specific data was different on one

machine than on the other machines. The

game was designed in such a way that all

events were completely deterministic.

There was no function in the entire game

that could affect the game state as a

result of a local dependency. I checked to

see if any functions could be generating

unpredictable values. They weren’t. The

moment the game became unsynchro-

nized, numerous debug reports were gen-

erated. The desynchronizing problems

typically appeared after playing the game

for a long time, but we couldn’t isolate

the problems. Even replaying the game

using recorded macros couldn’t repro-

duce the synchronization problem. We

were stumped.

I’m amazed I actually discovered the

cause of the problem. The game’s options

screen, where players could adjust set-

tings for difficulty, volume, game speed,

and so on, was 482 pixels high, instead of

480 as I presumed. Launching this screen

corrupted the heap slightly, which much

later generated erratic behavior on that

player’s machine.

When two machines in a multiplayer

game under the peer-to-peer system

don’t have synchronized game states,

check the following:

• Is there something that is generated

locally that affects the game states ?

The random seed problem is an exam-

ple of this.

• Are the default values different on dif-

ferent machines? Think of the problem

that I had with a static variable, but also

think of global variables that aren’t

reinitialized each time you start a game.

• Is the output of your functions

machine independent? An 8MB

machine has more memory than a

16MB machine, so the 8MB machine

might disable some functionality in

your game which is available on the

16MB machine.

If the answer to any of these questions

is yes, you probably have a situation in

which the memory is corrupted.

The Bug Hunt

tiles, every time you need to draw a tile,
you have to traverse the entire referenc-
ing chain, which costs you some speed.

Keep It Simple, Efficient

A lthough my team has been work-
ing on LMK for quite some time

now, we still have another six months
of development ahead of us. Through-
out the project, we’ve tried to develop

engines and editors that will be
reusable in future games. Using data-
base technology wherever possible
was one means to this end. Database
tools support multi-user environments
and allow more than one editor to
work on the same section of data.
Database files can also easily be com-
piled into a game format, and it’s easy
to edit them using available tools.

What it all boils down to is reusabil-
ity. Reusability reduces development

time for future projects and
provides some other advan-
tages as well. You are forced
to consider how you struc-
ture data; the more complex
your data gets, the lower
your chances of ever reusing
it. Another advantage of
reusability is that it makes
the task of programming a
multiplayer game easier,
since a componentized archi-
tecture lets you substitute
multiplayer modules where
necessary. Finally, the num-

ber of bugs is reduced, since compo-
nents can be tested individually. The
challenge to the developer becomes
one of allowing smooth interaction
between the components. Then again,
if it all were so easy, everybody would
be doing it. ■

Since Swen started coding, the stock price
of Coca Cola went up. You can reach him
at lar@larian.com. His company’s web site,
which contains more information about
LEDWARS and LMK, is at www.larian.com.

48

D A T A S T R U C T U R I N G

F I G U R E 6 . LEDWARS uses peer to peer
communication.

F I G U R E 7. LMK uses client/server
communication.

he initial design goals for

DARK SUN ONLINE (also

known as DSO) were quite simple.

We were tasked to take the DARK SUN

II single-player code base and turn it

into a large-scale multiplayer online

game for AT&T’s now-defunct Interchange

network. The game was initially planned

around a client/server architecture

(although it didn’t end up that way) to

protect against hacking, to support thou-

sands of simultaneous players, and to have

plenty of quests and global events to keep

players entertained. However, while

designing the project, we had several con-

siderations to keep in mind:

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

50

P O S T M O R T E M

DARK SUN ONLINE: CRIMSON SANDS

TT

First, our resources
were quite limited,
especially when it
came to art and
audio. We had one
part-time artist avail-
able to create the
few odd objects that
we absolutely had to
have; otherwise, we
had to make do with
art we could reuse
and steal from other
internal projects. We
had the same limita-
tions with sound
and music resources
and often had to go
to extraordinary
lengths to find quali-
ty material.

Second, we knew we had to use the existing code base
and couldn’t rewrite the game from scratch. This obviously
tied us down with a great deal of baggage, not the least of
which was that we were using a dated game engine, both
graphically and in terms of the game’s code. Because of
this we chose not to focus on the graphical aspects of the
game, which would have been futile, but dedicated all of
our resources toward creating a multiplayer game with
strong game play elements.

Finally, we had to coordinate all of our efforts with an
external programming group and contract art group. As
you’ll see, there were definite challenges with meshing the
internal game design and the external programmers. In
addition, we had to go through many iterations of art cre-
ation for some of the new characters and monsters. This
proved to be an entertaining experience in its own right.

Where It All Began

T he origins of DARK SUN ONLINE can be traced back to the
summer of 1994 when representatives of AT&T’s

Interchange network approached SSI to do a new ADVANCED

DUNGEONS AND DRAGONS online game. At that time, AT&T
was in the process of planning its own proprietary online
service, and believed that having a strong game presence
would be of great help in launching the network. Having

seen the success of
NEVERWINTER

NIGHTS on America
OnLine, the compa-
ny wished to fund
the development of
a sequel based on
the DARK SUN

engine for its exclu-
sive online use.

Our first challenges became apparent in October of that
year as the contract was signed and work began. Due to
some overly aggressive estimates as to the ease of porting
DARK SUN II to an online environment, the project was basi-
cally underbid from the very beginning. This had many ram-
ifications, beginning with a lack of art and sound resources
to draw upon, and continuing with difficulties keeping
external team members’ morale up.

Thanks to these resource constraints, we had to go to great
lengths to get the material needed to create the game. To
begin with, we raided the source code archives and reused

art from both DARK SUN I and DARK SUN II. This turned out to
be more difficult than it sounds, since there was a slight per-
spective shift from the first game to the second, and much of
the early art simply didn’t look right in the new DARK SUN II
perspective. We also borrowed a great
deal of art from an SSI title called AL-
QADIM, which had an Arabian Nights
theme. Although much of the art was
unusable for the same perspective rea-
sons, some fit perfectly.
Sand is sand, after all, no
matter what angle you
view it from!

For the entire duration
of the project, we only
had a half-time artist to
do some miscellaneous
objects, interim cut-
scenes, and cinematics.
Since there was always a
huge crunch going on
with other internal pro-
jects, we also had to deal
with losing that artist at
the oddest (and most
frustrating) times —
especially since there

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 7 G A M E D E V E L O P E R

51

PORTING A STAND-ALONE, DOS-BASED RPG TO A

32-BIT WINDOWS-BASED ONLINE NETWORK CAN

BE...CHALLENGING. HERE’S WHAT HAPPENED

TO SSI ALONG THE WAY. b y A n d r é V r i g n a u d

was enough work to keep several artists
occupied for months. One of the
biggest effects that this situation had
upon the original game’s design was
the loss of all of the game’s cinematics,
apart from the introduction.
(Ironically, even this introductory cine-
matic was only available for a short
time in the DARK SUN ONLINE 1.0 retail
version. Later versions of the game
were never re-released at the retail
level, and the introductory cinematic
scene was too large to be included in
the downloadable versions.)

Additional art work that needed to
be accomplished for this project
included the customization of hun-
dreds of player icons, some perspective
tweaks on DARK SUN I monsters, and
the creation of several new monsters.
Since we effectively had no internal
resources to create this art, we turned
to an external art house.

The character portraits went relative-
ly well, with only a few redos on den-
tal-floss bikini bottoms and overly-
endowed female characters. The Dark
Sun I monsters were also tweaked with
little problem. Unfortunately, the new
monsters turned out to be far more
challenging for the external artists.
Two monsters in particular — the
Dragon and the Nightmare Beast —
were somewhat less than fearsome. As
you can see from the sample art, the
Dragon (even after some rework)
looked like a gecko, and the Nightmare
Beast… well, the Nightmare Beast just
looked like Barney. Perhaps luckily, the
Dragon encounter ended up being cut
from the game, and since we never
could get Barney looking right, his
appearance was cut, too. (There were
those who thought keeping Barney in
could be quite a cathartic experience to
certain twisted people, but fortunately
saner minds prevailed.)

We did much better as far as sound
effects went. Digging in the archives, we

were able to draw upon the sound
effects from Dark Sun I and II, which
pretty much covered most of what we
needed. However, we were still a little
short in some areas and cast about try-
ing to find a few more additional effects.
Lo-and-behold, the sound department
coincidentally sent out a large archive
of .WAV files from the soon-to-be
released THUNDERSCAPE title for use as
Windows event sounds. Much to the
chagrin of some on the THUNDERSCAPE

team, those effects quickly found their
way into DSO.

Using Contracted Developers

B eyond all of the internal resource
issues, DARK SUN ONLINE was also

an interesting project due to its use of
external programming talent for the
online coding and porting of the game.
At the time, SSI had no internal online
programming talent available to code a
multiplayer version of DSO. So the
online coding was subcontracted out to
an external programming group. Now,
working with external groups is pretty
common in the industry, and normally
isn’t that big of a problem. Unfortunately,
due to some political and financial
issues, the contract was finally signed
(over a few objections) with the exter-
nal group getting paid on a strict mile-
stone basis, with no royalty points or
interest in the finished title. As you can

imagine, this became a bad morale
issue for the group.

This morale problem reared its ugly
head quite quickly as the external pro-
grammers and internal scriptors began
to interact. Earlier DARK SUN games
(other than the art work) were created
as a joint effort between the program-
mers and the scriptors (also known as
the designers). The programmers
would work on the game engine,
adding features such as spells, new
monster effects, and new GPL (Game
Programming Language) commands
for the scriptors’ use. Meanwhile, the
scriptors would use GPL to code the
actual adventure parts of the game —
the events, quests, and NPCs (nonplay-
er characters). The key to this arrange-
ment working harmoniously was that
most of the GPL-interpreting code (in
the engine itself) was already done,
allowing the scriptors to work relative-
ly autonomously. Unfortunately, this
wasn’t the case with DSO.

The big problem with this project
was that the external programmers
had to take a code base for a game
that was designed as a single-player
game and make it a multiplayer game.
Unfortunately, the original program-
mers (on DARK SUN I AND II) made
assumptions about the way certain
GPL commands would work, in order
to save time on coding error-checking
routines. For example, the original
programmers never had to deal with
the possibility of two different people
trying to talk to the same NPC at the
same time; it simply wasn’t possible in
a single-player game. However, this
situation is extremely common in the
online version. The result of this was
that the external programming group
had to recode the way GPL worked —
many, many times as the game’s
development progressed and we
learned more about how the engine
would really work.

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

52

P O S T M O R T E M

Much of the art from DSO was
reused from earlier games

“Barney,” the Nightmare Beast.The “gecko-like” Dragon.

Rich Donnelly, the lead scriptor for
DARK SUN ONLINE says, “Oftentimes, I
would write script for the engine, and
the engine would change halfway
through, in such a manner that the
script would no longer function. Even
worse, there were times when crucial
information was lost in the associating
chain, such as new GPL functions or
commands. This caused a lot of strife
and recoding on everyone’s part.”

To sum up, since the external pro-
gramming group had no buy-in or
incentive to make the project the best
it could be, they generally took the
easier path whenever possible. The
most grievous example of this was the
networking change from the planned
client/server architecture to a peer-to-
peer system. Due to low morale and
compensation, the external group
insisted on coding the networking
architecture as a peer-to-peer network,
using the local clients to run most of
the game logic. Although we raised
the red flag multiple times about
problems inherent with this scheme,
our team was overruled in the inter-
ests of keeping costs low. To be fair,
the peer-to-peer coding was done
competently for what it was.
Unfortunately, though, this type of
networking code wasn’t the best for
the game at large, and we had to deal
with the hacking issues that it raised
for the life of the project.

The Debugging Process

A few months passed, and eventual-
ly the programming group got

the engine to the point where the
scriptors could do some GPL coding
without having to restart every month.
At this point, the scriptors dug in and
started coding the underlying global
routines for the game, and the external
programmers started modifying the
game engine to work over an IPX net-
work, which would to allow us to test
and develop internally. Within a few
weeks, we had that IPX-capable version
of the engine to work with — which
raised new issues.

Chronologically, this was soon after
DOOM was released, and if you’ll recall,
the early versions of DOOM had prob-
lems with packet flooding, which
brought down quite a few corporate
networks. This was quickly fixed in

subsequent releases, but the internal
management at SSI was still a little
gun-shy, and asked us to set up a com-
pletely separate network for our devel-
opment work. This in turn meant we
needed a UNIX box to run the game’s
server code, which meant we needed to
set up and configure a Linux box
(Linux is a free variant of UNIX) to act
as the host. To make a long story short,
configuring a UNIX machine isn’t an
easy task, and by the time we got the
hardware, built the network, and con-
figured the host, we had lost a few
weeks of development time.

The greatest hit that our original time-
line took resulted from the initial plan to
run DARK SUN ONLINE as a DOS applica-
tion in a DOS box, but communicate
with a Windows-based TCP/IP stack.
AT&T’s Interchange online service was a
Windows 3.1 application and ran over a
proprietary TCP/IP stack that AT&T had
licensed. Since the original DARK SUN

games were DOS applications, and since
Windows 95 hadn’t yet penetrated the
market sufficiently, it was thought best
to keep DARK SUN ONLINE as a DOS appli-
cation. We would depend on a “shim”
of sorts to allow the game to communi-
cate with the Windows protocol stack.
We spent a couple of painful months
trying to get this going, and eventually
had something that worked, but not
well. The shim would occasionally lock

up for seemingly no reason, and we were
unable to get the source code for the
protocol stack to try to fix the bug.
Eventually, we scrapped that effort and
ported DSO to a true Windows applica-
tion. In retrospect, we probably should
have bit the bullet early on and moved
the game to a Win32 application from
the start.

After this initial setback, work pro-
gressed for a few months without any
particular disasters to note. Art from
the external group was slowly coming
together, and we resolved most of our
sound and music issues. The external
programming group was hitting its
milestones, and all in all, everything
was quiet. Yes, as many of you just
guessed, too quiet.

In early November of 1995, I
received a call from the head of
Interchange’s game group. It turned
out that AT&T had pulled one of their
classic turn-arounds and decided that
it didn’t actually want to be in the
online network business after all. In
short, AT&T’s Interchange network
was canceled, along with all of the
projects being funded for it — includ-
ing DARK SUN ONLINE.

At first, it didn’t look too bad.
Although we didn’t have a network to
launch the game on, we had gotten a
great deal of the project funded, and
through a nice quirk in the contract, all

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 7 G A M E D E V E L O P E R

53

Sysop tools were added that allowed the DSO world to expand beyond its origi-
nal size and let players discover new challenges.

rights to the game reverted back to SSI.
This allowed us to shop the title
around to different networks and possi-
bly negotiate a better royalty deal.
Unfortunately, this process took sever-
al months, and since SSI’s internal
management wasn’t confident that
they’d be able to find somewhere to
place the title, the project was placed
on a back burner. A couple of the scrip-
tors and I continued development,
along with the external programmers,
but little other work was done.
However, a few months later, it was
decided that TEN was the appropriate
network for the title, and work began
again in earnest in January of 1996 —
with one other little bump.

In mid-January, one of the three
internal scriptors decided to move on
to new opportunities. This normally
wouldn’t have been that big a deal —
things were moving along well, and
the two remaining scriptors would sim-
ply have had to pick up the remaining
work and take care of it in the extra
months we’d allocate for them.
However, the scriptor that left was
responsible for a great deal of the glob-
al game code upon which the game,
along with much of the other scriptors’
work, depended. Sadly enough, it
turned out that much of that work had
either not been done, or had been
done so poorly that the code couldn’t
be depended upon. It fell to Rich
Donnelly to pick up the pieces.

“It was quite horrific for me to find
that the game was missing some seri-
ous pieces of code. These were pieces
that were vital to an online environ-
ment, such as global region transfer
code that handled moving entire par-

ties instead of individuals, or monster
generation routines for general combat
encounters that could incorporate sev-
eral different players in the same com-
bat. Suddenly, I found myself with lit-
tle time to correct these problems. I
worked heavily for about a month, and
managed to finish getting everything
implemented and working.”

The Beta Test

T he extra months added to our
schedule after AT&T folder their

service were quite useful, as they gave
us some extra time to prepare for the
external beta test. Although we had a
core group of internal testers on the
project, we knew that we’d need to run
a large-scale external test to really
shake out all of the bugs. To that end,
we prepared a web page that gave
instructions on how to sign-up for the
beta test — and were quickly inundat-
ed with responses.

We originally planned to solicit beta
testers and mail out a CD-ROM to
everyone who responded.
Unfortunately, so many people
responded that we couldn’t follow
through and were only able to send out
around 500 discs; however, the rest of
the testers were able to download a
30MB PKZipped version of the game.

The beta period in particular proved
to be quite an educational experience,
and we definitely learned some lessons
from it. In fact, it’s probably worth
taking a bit of space here to list some
of them.
LESSON ONE. You can never allocate too
much time for beta testing and debug-
ging an online title. The sheer number
of bugs found by the external testers
was absolutely amazing — and the
potential for each of those bugs to
cause havoc was greatly magnified by
the interactive nature of the game.
Allocate significantly more time than
you first think for your testing period
— and double it. Seriously.
LESSON TWO. Be sure to have robust
facilities to deal with the flood of bugs.
I highly recommend setting up some
method for external testers to enter
their bugs on a web page, and a
method to import those bugs into
whatever bug database you use. We
had the bug submission page, but no
way of automatically moving those

reports into our database. In fact, due
to the kludged nature of our bug-track-
ing system, we ended up having each
and every bug sent to my office e-mail
account. I would then log in every
morning and run a mailbox filter, for-
warding all of the bugs to my lead
tester to sort, compile, and enter into
our internal bug system. I don’t think
he’s forgiven me to this day. LESSON

THREE. Have a FAQ. Period. Every morn-
ing I would spend hours reading and
answering hundreds of messages.
Some were suggestions, some were
flames, but most were simple ques-
tions — and we quickly realized that
we were seeing a great deal of them
over and over. However, once I got the
FAQ written and published, the flood
relented… a little. Beyond that,
though, the FAQ turned out to be a
great promotional and educational
tool; it even staved off our marketing
department a few times by proactively
giving them whatever information
they were looking for. Really, now —
can you ask for a better reason to do a
FAQ than that?
LESSON FOUR. Don’t hype the product
until it’s ready. We purposely kept
quiet about the title until very late in
the project and were thus mostly able
to handle peoples’ expectations. (I say
“mostly” because there are some peo-
ple you’ll never be able to satisfy.) We
wince now when we see the hype that’s
been built around ULTIMA ONLINE.
Although UO is likely to be an impres-
sive and groundbreaking product once
it’s finished, it’s also unlikely to ever
satisfy the heightened expectations
that have been built up around it.
LESSON FIVE. Make it extremely clear
that it’s a beta-test. Then do it again.
And again… and yes, yet again. Even
so, I guarantee you people will threat-
en, flame, and otherwise get extremely
mad at you when changes are made.
As Donnelly says, “Players are not con-
cerned with the fact that the game
may not be in its final state — if you
change anything, there will be com-

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

54

P O S T M O R T E M

plaints, regardless. During our beta
test, we altered the way the environ-
ment worked several times and wiped
the host quite often to insure that the
test was started afresh, with no corrup-
tion. Naturally, players screamed at us
every time this happened. In addition,
watch what you show the players dur-
ing testing periods, as people aren’t
thinking about what the project will
look like in the future; they care about
what it looks like now. I recall that
ULTIMA ONLINE got quite a negative
reputation initially when Origin
showed their alpha, as players immedi-
ately assumed that was what the game
was going to be like. Beta testing
includes more marketing than most
people realize.”
LESSON SIX. Hackers will exploit the
slightest loophole, and it’s often that
exploitation that ruins the game for all
of the other players. DSO was particu-
larly hackable due to its odd peer-to-
peer architecture — an unfortunate
legacy of the external programming
group doing things the easier way for
them. Again, if you’re doing to do a
large-scale RPG on the ‘net, don’t con-
sider building it around anything but a
client/server architecture — and make
sure the server is the arbitrator of all
key game logic.

After a long and painful beta period,
DARK SUN ONLINE was finally launched
live on TEN — and as dictated by
Murphy, the inevitable bugs popped
up. DSO version 1.1 was released a few
months later to address most of those
bugs, and DSO version 1.5 came along a
few months later as a game expansion.
Discussions are underway as to the pos-
sibility of doing a DSO 2.0 — and as the
player base continues to grow, I’m sure
we’ll see the game expand and evolve
even more in the future.

Modifications Along the Way

D ARK SUN ONLINE differed from its
original design goals in a number

of ways. First, the peer-to-peer archi-
tecture we ended up with limited us to
hundreds of simultaneous players
instead of the planned thousands.
That same peer-to-peer architecture
also made the game extremely hack-
able, as much of the game logic was
processed on the local machine
instead of the host.

Second, a great deal of new sysop
tools were added due to beta tester
feedback. Those tools, in turn, helped
keep the game viable by allowing staff
members to run hand-made events
while the scripted quests were being
fixed. In addition, extra regions were
added to give the players more room,
and even more regions were added for
version 1.5.

Third, due to the easily-hackable
architecture of the game, players were
able to cheat and escape routines to
punish character death. Version 1.5 of
DSO removed those penalties until we
could move the game logic to the serv-
er — hopefully in a future version of
the game.

Finally, all cinematics were cut
except for the introduction for version
1.0. That introduction cinematic was
also cut in post-1.0 versions, due to its
being too large to realistically down-
load. In addition, since the game was
never re-released at the retail level after
version 1.0, the Red Book music
became unavailable. However, it’s pos-
sible that the original DARK SUN I MIDI
tracks might be reintroduced in future
versions of the game.

Despite these changes, however,
DARK SUN ONLINE stayed with most of
its original design goals. The game play
was our focus, not the graphics. Some
of this was simply because of the origi-
nal art that we were forced to use, but a
great deal of it was due to beta testers’
suggestions during the testing period.

Player interaction and communica-
tion was the focus of the entertain-
ment, and not prescripted elements as
in the original DARK SUN games. We
also reused legacy art to great effect
(albeit cheating like dogs the whole
while to steal decent).

Finally, the online interface added a
great deal of functionality, while
remaining inspired by the original
DARK SUN games and thus familiar to
players’ of those titles. The chat system

in particular was quite powerful and
worked out well.

A Look Back at the Good, Bad, and…

I ’d like to highlight a few things that
went particularly well during the

development of DARK SUN ONLINE…
and a few things that didn’t go so well.
Some of them have already been
touched on above, but there are a few
others also worth mentioning.
WHAT WENT RIGHT?
1. A close feedback loop with the exter-

nal testers proved to be incredibly
helpful. Other than the obvious ben-
efit of learning about bugs and inter-
face problems, we also got a good
deal of free publicity and goodwill.
That goodwill was particularly useful
when we made the inevitable screw-
ups. In addition, it was beta-tester
feedback that spurred development
of the FAQ.

2. The chat interface turned out to be far
more intuitive and user-friendly than
we ever thought it might. Rich
Donnelly says it best. “The chat inter-
face is probably one of the most
dynamic and user-friendly chat inter-
faces to be seen in any online role-
playing game. In almost every case,
there are multiple ways to do the same
task, something that almost every user
enjoys. As a designer, I have found
that players adopt their own style of
play, regardless of how the interface or
game environment is designed.
Having the ability to perform tasks in
a variety of different ways allows the
player to find the method of play that
is most comfortable to them. Look at
Windows 95, for example. Some peo-
ple prefer to work from their Desktop,
others like it nice and clean and prefer
to use the Start menu and Explorer to
find the items that they’re seeking. It
is this versatility that people desire,
and including it in your product is
essential.”

3. The reuse of DARK SUN I and II, and
AL-QADIM art assets proved to be an
effective decision. Although many
on our team would have liked to
improve the existing art, or create a
great deal of new art done, we were
able to reuse most of the art from DS
II, some from DS I, and a little from
the external project AL-QADIM to
good effect.

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

56

P O S T M O R T E M

4. Our online role-playing paradigms
were well thought out, and some
are finding their way into other
games. We learned that you can’t
allow a real, permanent character to
die if a player was paying for it. We
discouraged and punished people to
keep them from cheating and skip-
ping out of combat. DSO also
allowed and encouraged player vs.
player combat — an element we see
being supported in more and more
online role-playing games. Finally,
we implemented the concept of
instant communication across the
online world, no matter where you
were. Purists seem to disagree and
dislike the lack of reality, but those
purists also forget that chatting is
the single most important commu-
nity support tool you have.
Nothing in your game design
should ever discourage communica-
tion among players.

5. Although the basis of the game is
player interaction, we found that
having a strong random quest gen-
erator helped fill in the gaps. To
quote Rich, “Having a system that
can essentially generate quests on
its own is something that definitely
increases the entertainment value of
the game. The quest generation sys-
tem currently in the game is rudi-
mentary at best, but it’s definitely a
solid model and a step in the right
direction for what might be termed
a ‘story-telling engine.’ As is the
case with all developers, my only
regret is that I didn’t have the time
to take this quest engine as far as we
would have liked. However, the
model as it stands is a serious piece
of machinery, and something to be
proud of.”

WHAT WENT WRONG?
1. We tried to make a DOS applica-

tion running in a DOS window
communicate to a Windows 3.1
TCP/IP stack. Instead, we should
have simply ported DSO to a
Win32 application and developed
the game with the Windows 95
TCP/IP stack — as ended up being
done months later.

2. SSI’s internal resources were severely
limited for the project, which in turn
made us far too dependent on exter-
nal resources. On top of that, the
contractors should have been better
incented to provide quality work. In

particular, the external program-
ming group was competent, but not
financially-motivated to do the job
“right.” In addition, the external art
group needed a great deal of hand-
holding, and at the end of the day
we still didn’t quite get everything
we wanted.

3. One of the scriptors left in the mid-
dle of the project and didn’t do a
great deal of the work that was nec-
essary for the game’s underlying rou-
tines. We ended up having the two
remaining scriptors doing the work
of three, with one of them having to
redo all of the key global routines.

4. Not enough test time was allocated
for debugging such a large-scale
online game. This forced us to move
extremely quickly which, in turn,
frustrated players due to the speed
and severity of the changes.
Although many of these issues were
unavoidable, having more time to
prepare and a more flexible deadline
would have allowed us to be more
accommodating to testers’ issues
and frustrations.

5. Probably the biggest issues we had
during the development of DARK

SUN ONLINE were the hacking prob-
lems. These problems came as a
result of taking a stand-alone game

and turning it into a multiplayer
game with a peer-to-peer network-
ing system. Game logic then ran
locally on the client, rather than
on the host. Rich Donnelly has a
little more insight on this, and
explains it thusly:
“The game environment itself,
having been converted from a
stand-alone product to an online
product, left the game with most
of the logic running on the user
side. The host itself merely trans-
fers the information back and forth
between all the players, keeping
everyone in a huge loop of data
sets. This causes some serious prob-
lems with hacking, as people could
use editors on their local machines
and change critical data. “Hacking
thus became quite a nightmare for
DARK SUN. Hacking a stand-alone
product is no big deal — change
the game all you like, nobody is
going to complain. In an online
environment, you are affecting not
only yourself, but also everyone
else playing the game. It’s kind of
like a movie theater; you purchase
a ticket for one seat, but you don’t
buy the whole theater. When you
begin screaming, the ushers escort
you out, as you are disturbing oth-
ers. It’s the same for an online
environment — it just takes one
bad apple for everyone else to feel
the effects.”

And On the Seventh Day . . .

Ihope this article has given you a few
things to think about, and helps you

in the development of your title. I’m
always interested in discussing gaming
and the online industry in general, so
if you have any comments or ques-
tions, please feel free to drop me a
note. ■

André Vrignaud has worked in the com-
puter gaming industry since 1990. Most
recently, he’s worked at SSI and TEN,
where he produced much of their online
content and direction. He wishes thank
everyone involved with DSO, with special
thanks to the Lead Scriptor/Designer
Richard Donnelly, TEN’s RPG Producers
Alex Beltramo and Don Hupp, and in par-
ticular, all of the thousands of external
beta-testers. He can be reached at
andre@null.net.

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

58

P O S T M O R T E M

G A M E D E V E L O P E R O C T O B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

64
But the game industry, in spite of

having its highest grossing year ever, is
in serious trouble. Virtually every com-
pany is hemorrhaging money. You
can’t make a profit in a market like
this. Losing money while chasing mar-
ket share is only for companies with
extensive cash reserves.

Let’s travel down the path of confu-
sion, incompetence, ignorance, and
greed that has brought the game
industry to this point. First, retail is
broken. Stores purchase from distribu-
tors and distributors purchase from
publishers, all of whom have no
intention of paying. The effective dis-
counts achieved by finally settling
accounts for less is a giant tax
imposed on publishers, and through
them, on developers.

Management at most computer store
chains is so inept that publishers
request letters from the chain's corpo-
rate headquarters stating what pro-
grams the publisher has paid for. The
publishers then send their channel
marketing reps to the stores, letter in
hand, to get the programs that they
paid for implemented. In a word,
chains are incapable of implementing
the sales programs that they sell to the
publishers in their stores.

The stores also have no idea how to
stock titles. I tried to buy DEADLOCK a
month after it came out, but not a sin-
gle store in Boulder, Colo., carried it,
had carried it, or knew that it existed.
It was a top-selling game at the time.
No matter how good the games are, if
they aren’t on the shelves, people
won’t buy them.

Second, many game publishers are
grossly incompetent. Viacom New

Media, GTE Interactive, and Phillips
New Media are just some of the
recent companies to be closed down
after failing to produce, in some
cases, a single successful title.
Meanwhile, Virgin Interactive
(according to Spelling’s latest 10-K) is
losing more than five million dollars
per month. (I do want to note that
there are a few well run game compa-
nies out there.)

Some publishers with which inter-
acted had employees who, in my opin-
ion, were totally incompetent. I knew a
test manager who had no idea what a
test plan was. I knew a vice president of
development who did not know how
her company tested games. I knew a
vice president of software who did not
understand disk I/O optimization
(although he thought he did).

b y D a v e T h i e l e nS O A P B O X

Goodbye For Now

W hat an interesting industry. I enjoyed creating my last game, ENEMY

NATIONS, more than any other project I’ve ever worked on. The game

market is more “alive” than, say, operating systems, where whatever

we (I used to work for Microsoft) released generally succeeded.

Continued on page 63.

Publishers don’t understand quality
titles when they are right in front of
them. Viacom New Media dropped
ENEMY NATIONS after looking at the final
game. VNM is a company that received
an average rating of 67% in PC Gamer
last year for their games. PC Gamer gave
ENEMY NATIONS an 86%. Yet even look-
ing at the final game, VNM couldn’t
determine if it was better than the
dreck they did decide to ship.

When VNM returned ENEMY

NATIONS, we took it to every publisher
we could find. Every single one turned
it down. About four months later, PC
Games reviewed it and gave it an A rat-
ing. Then we received calls from many
of those same publishers, who were
now suddenly interested. The differ-
ence was that a single person — the
magazine reviewer — had looked at the
game and liked it.

If publishers can’t even trust their
own judgment, if they turn down a
quality game in the hottest genre out
there, then what are the chances of
their picking up any game brought to
them? More importantly, if every
publisher turns down a finished game
with the ratings we received, what are
the odds that they are accepting qual-
ity titles?

The third problem, though, is the
biggest. And it’s something we all keep
quiet about while pretending it doesn’t
exist. Many, many game programmers
are not qualified for the job. I’m not
saying they’re stupid (at least not all).
I’m saying they’re not qualified.

Most game programmers are self-
taught or come straight from college.
They work in small groups, usually
with the same people year after year.
Because this industry hasn’t demanded
exceptional programming talent, most
game programmers get their experi-
ence in small, noncompetitive, inces-
tuous groups — not an environment
that pushes people to constantly strive
to do their best. It is not an environ-
ment that teaches people new
approaches and methods, either. (That
said, there are numerous exceptions. I
have been in both Chris Robert’s and
John Miles’ code, and it contains beau-
tifully crafted assembly code.)

When developers have to “discover”
that you can process ddwwoorrddss as fast as
bytes, when they don’t understand the
concepts behind basic tools like a pro-

filer, when they chew up clock cycles
reading the joystick eight times per
frame, then they are not capable of
writing good, solid code. All they can
aspire to is adequate code.

The heads of several game publishers
have told me that they have no interest
in hiring very experienced people,
because it’s cheaper to hire program-
mers fresh out of college and pay them
almost nothing. (And with rare excep-
tions, these are people who are not get-
ting offers from companies such as
Microsoft and Netscape.)

The mass market that we all desper-
ately want to create will not accept ade-
quate programming jobs. They demand
the same level of reliability, complete-
ness, functionality, and ease-of-use that
they get from their productivity appli-
cations. And when they don’t get it
with one game, they stop buying games
for good.

So what are the implications? Very
few developers will get rich in the
game industry over the next couple of
years. There just isn’t enough profit to
spread around. At the same time, with
very rare exceptions, game program-
mers who can write excellent code
learned their craft in non-game back-
grounds. When gaming does demand
(and is willing to pay for) exceptional
programmers, they will be hired from
non-game companies.

Programmers are in incredible
demand across many different indus-
tries. Microsoft has two billion dollars
allocated to R&D that they can’t spend
because they can’t find enough quali-
fied programmers. At the other end of
the size spectrum, my current employ-
er, Fusion MicroMedia, is also desperate
for qualified programmers. There are
tons of jobs out there for those who
want them.

To anyone who is contemplating
working in game development, I offer
the following advice. First, work three
or four years for a company outside of
the game industry. Although games are
content and therefore more interesting
than developing, say, Internet applica-
tions, working with a group of very
smart and qualified people more than
makes up for it. Besides, coworkers and
management in other industries are
usually extremely well qualified — they
have to be to succeed. After that experi-
ence, you will be a much better devel-
oper, you will have made more money,

and you’ll have gained a lot more expe-
rience. You’ll be capable of creating
much better programs in a much short-
er time. And most likely, by that time,
the game industry will be populated
mostly by competently run companies.

(As a side note, everyone always com-
plains about Microsoft winning new
markets by using some kind of special
advantage. It’s a lot simpler than that.
Look at the problems that I’ve listed in
this column. Microsoft doesn’t have
those problems. Microsoft will come to
dominate the game industry not
because of any dirty tricks, but because
that company is run and staffed by
competent, intelligent people. That
alone gives them a significant competi-
tive advantage over virtually every
other game company out there.)

I’m really glad I had the chance to
create ENEMY NATIONS. It was a rare
experience to be the producer, design-
er, tech lead, co-art director, and music
and sound effects director, as well as be
responsible for a good chunk of the
programming. There is absolutely
nothing like creating content. Even
after everything that happened to me
during the course of the game’s devel-
opment, I’m glad I did it. I learned a
great deal and enjoyed it for the most
part. But I’m also glad to be out and
working again in an industry that
demands excellence.

To those of you that choose to stay
in the game industry, I say “thank
you.” I most certainly want to keep
playing new games over the next cou-
ple of years.

However, I’m sure the industry is
going to face some changes in the
future. If nothing else, competitive
pressure from Microsoft will significant-
ly improve the titles coming from those
companies that survive. ■

Dave Thielen is an internationally recog-
nized expert at practically everything.
When not being flown to Washington,
D.C., to provide personal advice to the
president, he is working with Steven
Spielberg on his latest film. He has just
completed his latest book, More Accurate
Than God, Quotations from Bill Gates.

h t t p : / / w w w . g d m a g . c o m O C T O B E R 1 9 9 7 G A M E D E V E L O P E R

63

Continued from page 64.

	back:

