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T
his month’s lead article is the first
feature that we’ve ever run about
Delphi. Back in April of last year,
editor Larry O’Brien wrote an
editorial titled “Delphi is the
Answer.” He explained the bene-
fit of using Delphi to access
WinG, abstract the Windows

API, and get more compile-link-debug
cycles in than you otherwise could with
C/C++. Back then, we thought that Del-
phi had a decent shot at becoming a staple
development tool for game developers.

The product has made few inroads in
the game development community,
though. Because the problems corporate
application developers face are significant-
ly different than those of game developers,
Delphi has languished and is considered
an almost-ran by most game developers.
On top of that, the recent releases of game
SDKs from Microsoft and Apple have
ensured that C/C++ will remain the lin-
gua franca of game development. That
begs the questions, “Whither Delphi? Has
Game Developer gone nuts covering this
product?”

In his article “Delphi Does DirectX:
Using Encapsulated COM Objects” on
page 22, Charlie Calvert makes a convinc-
ing case for the product. Using Delphi’s
encapsulation features, C and C++ devel-
opers can simplify development by wrap-
ping DirectX COM objects (in this case
ISpeedDraw) and accessing them as DLLs.
Encapsulating components in this manner
may solve one complaint that I hear fairly
frequently, that being the complexity of
Microsoft’s Component Object Model.
As Calvert explains, a properly designed
Delphi component is easy to use and
maintain. This is the most compelling use
of Delphi for game development I’ve seen
yet.

The Future’s So Bright, I
Gotta Wear Game Shades
One great perk of editing a magazine is
all the contacts you make within the

industry. A few days ago, I had a chance
to sit down with people from Stereo-
Graphics, the company that makes the
SimulEyes VR 3D glasses. I’ve never
been bullish on 3D eyewear—they always
struck me merely as novelty items with-
out a future outside a hardcore niche of
game players. This meeting gave me five
reasons to rethink my position on stereo
vision glasses:
1. The price point of these glasses will

soon fall under a hundred bucks (a
magic number for consumers). 

2. It’s simple for consumers to install and
use—you don’t have to pop the top on
your computer case. You just plug a
dongle into the video port and plug
your monitor into that, switch on the
little box, and start up your game. 

3. A number of major game developers,
such as Interplay and Nova Logic, are
building support for stereo vision in
their upcoming games. 

4. Many major 3D accelerator cards on
the market this holiday season are
going to have built-in support for
stereo vision. The difference between
viewing a fully texture-mapped game
in 3D and a rendered game in 3D is
significant—the higher visual quality
will entice people to buy into 3D
technology. 

5. The technology has received impor-
tant nods from Microsoft and Apple,
who announced they will build stereo
vision support into their respective
game SDKs. 

These factors point to a bright
future for companies like StereoGraph-
ics and might even herald a future
where the masses regularly don “game
shades.” If you’re interested in finding
out more about the technology or sign-
ing on to the StereoGraphics developer
program, check out their web site at
http://www.stereographics.com. ■

Alex Dunne
Senior Editor

Whither Delphi?
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A
curious trend: developers are
abandoning game companies
to start ventures of their own.
Sid Meier left MicroProse,
Chris Roberts left Origin, and
now, perhaps most surprising,
John Romero is leaving id,
which he helped found in

1991. Don’t worry, Bit Blasts introduces
products to help you have a booming
business with satisfied employees. Just
check out some of these products....

mTropolis
mFactory Inc. is now shipping an update
to its mTropolis software, an object-ori-
ented authoring system for building inter-
active multimedia titles and applications
for use on MacOS, Windows-based com-
puters, and the Internet. Version 1.1 of
mTropolis features run-time object
cloning, support for Apple’s QuickTime
VR, and immediate display update. It
costs $4,995 to new users but is free to all
registered customers of mTropolis 1.0.
■ mFactory

Burlingame, Calif. 
(415) 548-0600
http://www.mfactory.com

Are You a Pro?
In addition to acquiring VideoShop from
Avid, Strata announced StudioPro 2.0, a
major upgrade to its modeling, rendering,
and animation package. The new version
features extruding, lathing, sweeping,
freeform deformation, and new camera
controls such as autopan, zoom, dolly,
pitch, yaw, roll, motion blur, and lens flare.
The Power Macintosh version is available

for $1,495; the upgrade from 1.75 is $295.
A Windows version of StudioPro 2.0 will
be available the first quarter of 1997.
■ Strata

St. George, Utah 
(801) 628-5218
http://www.strata3d.com

Star★Trak
Realism is a big issue for game developers
because everyone expects characters to
move in a lifelike way; very few games
actually deliver. Maybe wireless motion
capture is the answer to your movement
woes. Polhemus announced Star Trak.
This wireless motion capture system pro-
vides six-degree-of-freedom (position and
orientation) data from up to 32 sensors on
multiple characters at up to 120Hz for
dynamic motion capture situations. Users
get freedom of movement within a 25-
foot-by-25-foot area. The system includes
a Trak Suit (lycra body suit containing
signal acquisition electronics for up to 16
receivers), a motion capture server,
receivers, transmitter, and calibration fix-
ture. January 1997 deliveries are being
booked. 
■ Polhemus

Colchester, Vt. 
(802) 655-3159
http://www.polhemus.com

Make a Scene
MultiGen announced SmartScene, a new
immersive assembler that lets a user stand
in the scene he or she is creating and
design a realtime 3D world. No need to
model objects polygon by polygon with a
mouse and keyboard; the SmartScene user

assembles and manipulates real-time 3D
scenes in a virtual reality environment.
Wearing pinch gloves and a 3D head-
mounted display, the SmartScene user
steps into a virtual workspace and
becomes the architect of realtime 3D
worlds with a two-handed interface.
SmartScene is available for $30,000.
MultiGen also announced GameGen II
for Windows NT, which provides author-
ing tools for building optimized 3D
worlds in the OpenFlight data format.
The core product, GameGen II Author,
will cost $7,500. Two options, Model-
Maker and BSPMaker, will cost $2,500
each. 
■ MultiGen

San Jose, Calif. 
(408) 261-4100
http://www.multigen.com

Raving
Apple announced version 1.5 of its cross-
platform 3D graphics toolkit—Quick-
Draw 3D. The QuickDraw API is avail-
able for MacOS, Windows 95, and Win-
dows NT. QuickDraw 3D has four com-
ponents: a fast 24-bit interactive renderer,
system-level handling of 3D components,
a new 3D file format standard called
3DMF, and user-interface guidelines.
Apple also announced availability of its
QuickDraw 3D RAVE (Rendering Ac-
celeration Virtual Engine) for the three
platforms. 3D Rave supports DirectDraw
on Windows 95 and render caching for
faster manipulation of rendered objects. 
■ Apple

Cupertino, Calif. 
(800) 462-4396
http://www.apple.com

Trick or Treat

B I T  B L A S T S
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N
o doubt about it: each year
games become graphically
more realistic. Everybody’s
doing (or at least showing
screenshots of) texture-
mapped 3D game worlds
these days, and, when the
hardware people finally get

their act together, every developer will
be able to draw zillions of perspectively
correct textured and shaded polygons per
second. Technically speaking, what will
be left to do for high-end games? Will
every developer with a copy of “Learn to
Use 3D Hardware in 21 Days” be able to
write an impressive game?

Not by a long shot. High-end
developers will continue to raise the bar
in many different technologies, like
graphical database complexity, artificial
intelligence, and networking. While
these are indeed important topics, we
can’t really discuss any of them in depth
without going into game-specific
details. However, there is one generally
applicable technology I think will
become a key differentiating factor in
the near future: physics.

Here’s an example: remember
those huge rotating gears in one of the
early shareware levels of Duke Nukem
3D? Imagine if a general physics engine

was controlling them instead of an ani-
mation loop. Suddenly the gears
become more than just eye candy as one
comes off its axle and rolls down the
hall after you, Indiana-Jones style. Or
imagine shooting a gear with a missile,
causing it to roll down the hall and
crush your friend who was about to frag
you from behind!  A real physics engine
makes situations like these possible.

The physics simulation is also
what makes a game world feel solid—it
puts the “there” there, if you know what
I mean. All the graphics wizardry in the
world won’t help players immerse
themselves in your game if they inter-
penetrate each other or the walls of the
level, or if they don’t feel like they have
any mass or momentum. The original
animators at Disney discovered that
this feeling of mass is a large part of
what set apart the believable animation
from the bad. According to the epic
book Disney Animation: The Illusion of
Life (Abbeville Press, 1981), by Frank
Thomas and Ollie Johnston, Disney
animators even hung a sign around the
studio to constantly remind themselves:
“Does your drawing have weight,
depth, and balance?”

But doesn’t almost every game
already have a physics engine? Sure, it
keeps your car from falling out of the
world through the track, it keeps your
characters from floating away when
they jump, and it knocks your ship to
the side when a missile explodes near-
by. However, most physics engines in
today’s games are pretty weak, doing
just enough to keep that car from
falling out of the world, but not enough
to take the game to the next level of
interaction—where a wrecked car’s
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debris might explode onto the track,
careening into the wall and other cars,
tires rolling into oncoming traffic.

Other often ignored physical pos-
sibilities include everything from simple
rotational effects induced by being hit
off center, to having the creatures in the
game be self-balancing and motivat-
ing—rather than based on static anima-
tions—so they can react to new physical
stimuli. I think most developers ignore
these possibilities because they don’t
understand the math behind physics
and have been too busy writing perspec-
tive texture mappers to learn it. The
onslaught of 3D hardware will take care
of the latter issue, and the new series
I’m starting with this article will try to
take care of the former. By the time
we’re done, you’ll know enough to write
a physics engine that immerses players

in your game, either through extreme
physical realism or through fanciful but
consistent surrealism.

A word of caution: physics is
math—you can’t separate the two and
still get interesting work done. Before
this scares people away, let me point out
that not only is the math behind physics
totally elegant and beautiful, it’s also
applied. That is, it’s not abstract math
for math’s sake. Each equation we use
has real physical meaning. We create the
equations from the physical model, and
in return the equations tell us how that
model behaves over time.

Mass-ive Undertaking
Physics is a vast field. We’re actually
only interested in a small subset of it
called dynamics, and even more specifi-
cally, rigid body dynamics. Dynamics

GAME DEVELOPER • OCTOBER/NOVEMBER 1996 13http://www.gdmag.com
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can be defined most easily in terms of a
closely related field, kinematics—the
study of movement over time. Kinemat-
ics doesn’t concern itself with what’s
causing movement or how things get
where they are in the first place, it just
deals with the actual movement itself.
Dynamics, on the other hand, is the
study of forces and masses that cause
the kinematic quantities to change as
time progresses. How far a baseball
travels in 10 seconds if it’s traveling 50
kilometers per hour in a straight line is
a kinematics problem; how far a base-
ball travels in the earth’s gravitational
field if I smack it with a bat is a dynam-
ics problem.

The “rigid body” part of rigid body
dynamics refers to constraints we place
upon the objects we’re simulating. A
rigid body’s shape does not change dur-
ing our simulation—it’s more like wood
or metal than jello. We can still create
articulated figures, such as a human
being, by building each section of the
figure from a rigid body and putting
joints between them, but we won’t
account for the flexing of bones under
strain or similar effects. This will let us
simplify our equations while still allow-
ing for interesting dynamic behavior.

Even with our tight focus, rigid body
dynamics will take a series of articles to
explain. We’re going to start our journey
by learning the basics of programming a
computer to move a 2D rigid body
around under the influence of forces. I
explicitly say, “program a computer,”
because in addition to the equations we’ll
develop for the kinematics and dynamics,
we’ll also learn how to solve these equa-
tions in our programs using floating-point
math, which is a vital subject all to itself. I
say, “a 2D rigid body,” because we’re
going to stick with two dimensions for
the next article or so. The principles—
and in fact most of the equations—carry
across to 3D, but certain things are sim-
pler in 2D, so we’ll get comfortable there
before moving up a dimension. In future
articles, we’ll learn about handling rota-
tional effects, collision detection and
response, and of course how to do all this
in three dimensions. Enough about what
we’re going to do, let’s get started!

Derivative Work
This may come as a surprise to you, but
you actually can’t directly move an
object by pushing on it. I know, you’re
thinking about proving me wrong by
pushing this magazine into the trash for
printing such nonsense, but it’s true:
pushing on the magazine does not
directly affect its position. In fact, push-
ing doesn’t even directly affect its veloc-
ity. What pushing does directly affect,
however, is the magazine’s acceleration,
and this fact is one of the most impor-
tant findings in the history of science.

In order to use this amazing fact to
do anything interesting, we first need to
talk about the relationship between
position, velocity, and acceleration. It
turns out these quantities are very close-
ly related (as you probably know):
velocity is the rate of change of position
over time, and acceleration is the rate of
change of velocity. The primary tool for
studying these changes in time is calcu-
lus. While you might be able to pick it
up as we go along, I’ll assume you know
some calculus. We’re going to use only
simple scalar and vector calculus (deriv-
atives and integrals), but it won’t hurt if
you’re familiar with the subject as a
whole. For reference, my favorite calcu-
lus textbook is Calculus with Analytic
Geometry by Thomas and Finney
(Addison-Wesley, 1996). 

Position, velocity, and acceleration
are the kinematic quantities we care
about in this article. The position of a
rigid body in 2D is obviously an X,Y pair
denoting the world coordinates of some
known point on the body. The derivative
of the position vector is the velocity vec-
tor for that point, and it tells us what
direction the point is moving (and the
body if we ignore rotation, which we are
for now) and how fast it’s going. Vector
calculus is just scalar calculus on each
element of the vector, so the derivative
of the X element of the position is the X
element of the velocity, and so forth. We
denote the position vector with r and the
velocity vector with v or with the “dot-
ted” position vector (in general, a dot
means differentiated with respect to
time, a double dot means twice differen-
tiated, and so on):

On the contrary, if we integrate the
velocity vector over time, it tells us how
the position vector changed over that
time.

Acceleration is handled similarly;
it’s the derivative of velocity, or the sec-
ond derivative of position:

Integrating the acceleration over
time gives the velocity, and twice inte-
grating the acceleration gives the position.

These kinematic relationships tell us
that if we can find the acceleration on an
object, we can integrate it with respect to
time to get its velocity and position. As
we’ll see, we perform this integration
numerically in our simulation code and
come out with a new position for our
rigid body each frame. Voila, animation!

Here’s a short 1D example we can
analytically integrate. Let’s say we want
to find the change in our position over
the time period from the end of last
frame to the current time so we can draw
our current position. Let’s further say we
know the acceleration on our rigid body
during this time was a constant 5
units/sec2. We’ll use the time since the
end of last frame as the integrating vari-
able, t:

The above equation shows us the
velocity as a function of the time since
the last frame. We discover the constant
of integration, C, is the initial velocity at
the beginning of this integration period
by plugging in t=0:

v a( )t dt dt t C= = = +∫ ∫ 5 5

d

dt

d

dt

d

dt

2

2

r
r

r v
v a= = = = =&&

&
&

d
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r
v r= = &
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Now we’ll integrate our velocity equation to find the posi-
tion (again solving for the constant of integration):

So, Eq. 5 says we can calculate the current position under
the given acceleration if we know the initial position and veloci-
ty (which we assume we have from the end of the last frame)
and the time elapsed. We plug in the time, and out pops the
current position. We’ll also want to plug the time into Eq. 4 to
calculate the ending velocity so we can use it as an initial condi-
tion for the next frame.

May The Force Be With You
Now that we have an idea of how to integrate kinematic equa-
tions to get animation, we need to determine the right accelera-
tions to use in the first place. This is where dynamics comes in.
Remember how I said pushing on something only directly
affects its acceleration? Well, pushing is just a euphemism for
applying a force—one of the two key quantities in dynamics—
and we can turn to Newton to see how forces affect accelera-
tions. Newton’s laws relate force, F, to the derivative of the
mass—the second key dynamical quantity—times the velocity.
The mass times the velocity is called the linear momentum,
denoted by p:

The mass is constant for the speeds we care about, so it
drops out of the derivative in Eq. 6, and we get the famous
F=ma (although I believe Newton originally stated the defini-
tion of force as the derivative of momentum).

If we were only dealing with single point masses, Eq. 6
would be all we’d need to do dynamics. For a given applied
force, we find the acceleration of the point by dividing the force
by the mass. This gives us the acceleration to use in our integra-
tion, and so we can solve for the movement as in our example
above. However, we’re dealing with rigid bodies with mass dis-
tributed over their area (and volume when we go to 3D), so we
need to do a bit more work.

First, let’s picture our rigid body as a set of point masses.
We define the total momentum, pT, of the rigid body as the

sum of all the momentums of all the points that make up the
body (I’m using superscripts to denote which quantities belong
to which points):

We can greatly simplify the dynamic analysis of rigid bod-
ies by introducing a point called the center of mass (CM). The
vector to the center of mass is the linear combination of the vec-
tors to all the points in the rigid body weighted by their masses,
divided by the total mass of the body, M:

Using this definition of the center of mass, we can simplify
Eq. 7 by multiplying both sides of Eq. 8 by M, differentiating
both sides, and then substituting the result into the Eq. 7:

The right hand side of Eq. 9 is just the total momentum by
definition in the Eq. 7. Now look at the left hand side: it is the
velocity of the center of mass times the mass of the whole body,
so bringing the right hand side across gives us:

Eq. 10 says the total linear momentum is equal to the
total mass times the velocity of the center of mass, meaning
there’s no need to do the summation in Eq. 7 to find the
momentum as long as we know the total mass and the location
and velocity of the center of mass.  For continuous rigid bodies
all the finite summations above turn into integrals over the
body, but the center of mass still exists and simplifies the total
momentum equation down to Eq. 10, so we don’t have to
care—for the purposes of finding the linear momentum we can
treat all bodies as a single point mass and velocity.

Similarly, the total force is the derivative of the total
momentum, so the concept of the center of mass can be used to
simplify the force equation in the same way:

In short, Eq. 11 tells us we can treat all the forces acting on
our rigid body as if their vector sum is acting on a point at the
center of mass with the mass of the entire body. We divide a force
(say, gravity) by M to find the acceleration of the center of mass,

F p v aT T CM CMM M= = =& &
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and then we integrate that acceleration
over time to get the velocity and position
of our body. Since we’re ignoring rota-
tional effects until the next article, we
now have all the equations we need to do
rigid body dynamics. Note that Eq. 11
doesn’t contain any information about
where the forces were applied to the
body. That information drops out when
dealing with linear momentum and the
center of mass, and we just apply all forces
to the CM to find its acceleration. When
we calculate rotation under forces in the
next article, we’ll see how the force appli-
cation position is used.

Ode to Joy
At this point, we could run through
another analytical integration example
using Eq. 11 to calculate the acceleration
of our center of mass instead of arbitrarily
picking the value 5. However, for non-toy
problems, analytical integration usually
isn’t an option because the integrand is

too complex, so we end up doing what’s
called numerical integration of ordinary dif-
ferential equations (ODEs). Wow, now
that sounds like real math! Once you’ve
learned this stuff, it’s time to ask for a
raise. Luckily, numerical integration of
ODEs isn’t quite as complicated as it
sounds. To figure out what it means, let’s
take the phrase apart from the inside out.

First, a differential equation is an
equation where derivatives of the depen-
dent variable appear in the equation in
addition to the dependent variable itself
and the independent variable. That’s a
mouthful, but here are some examples: if
we have an equation for a time varying
1D force like f = 2t, f is the dependent
variable and t is the independent vari-
able; f’s value depends on t’s value. How-
ever, what if the equation for the force
on our body depends on the velocity of
our body? Air friction is a force like
this—the faster the plane goes, the more
air friction it encounters. Again in a 1D

example, what if f = -v, meaning the fric-
tion force decelerates our body at a rate
proportional to our velocity? Now we
have a problem, because if we solve for
the acceleration by writing f = ma = -v
and then divide through by m, we get
(remember the acceleration is the deriva-
tive of the velocity):

This is a differential equation
because the equation for the velocity has
the derivative of the velocity in it. Eq. 12
is called an ordinary differential equation
because it contains only ordinary deriva-
tives of the dependent variable (as
opposed to partial derivatives, which cre-
ate PDEs, which we won’t talk about).

Now for the next part of our phrase:
integration. How do we integrate dv/dt
to find v in terms of t when the equation

a
dv

dt

v

m
= = −
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for dv/dt has v in it already? It sounds
impossible, but actually almost every
equation in physics is a differential equa-
tion, so ODEs have been studied a lot.
Differential equations pop up in physics
so much because very often the rate of
change of a quantity depends on the
value of the quantity. For example, we
already said that the deceleration (the
rate of change of velocity) induced by the
force of air friction is dependent on the
velocity. Other physical examples
include cooling (the rate of heat loss
depends on the current temperature) and
radioactive decay (the rate of decay
depends on how much radioactive mate-
rial is present).

The final word in our phrase,
numerical, is our savior. I say this
because the theory of analytically inte-
grating differential equations, even ordi-
nary ones, is huge and pretty complicat-
ed. However, by a strange twist of fate,
integrating ODEs numerically on a

computer is actually relatively easy to
understand. In the space I have left I’m
going to describe the simplest numerical
integrator, Euler’s method, and leave
improving it to a later article.

Almost all numerical integrators,
but none so blatantly as Euler’s method,
are based on the plain old calculus defin-
ition of the first derivative as a slope:
dy/dx defines the slope of y with respect
to x. For example, if we have the linear
equation y = 5x, then dy/dx = 5, meaning
the slope is a constant 5 for all values of
x, as you’d expect for a line. A slightly
more complex example is the parabola y
= x2. In this case, dy/dx = 2x, which is a
function defining a new slope at each x
coordinate. I’ve graphed y = x2 in Figure
1. In addition, I’ve also overlayed the
vector field of the slopes in Figure 1, by
drawing the solution to the slope equa-
tion, dy/dx = 2x, as a short vector at each
coordinate on the grid. Notice how the
vector field is tangent to the parabola at

all points—this is the definition of satis-
fying the equation dy/dx = 2x. You
should also notice that there are a lot of
different parabolas that would satisfy the
vector field tangency, each one translated
on the y axis a bit. Each of these parabo-
las is generated by using a different value
for the constant of integration you get
when you integrate dy/dx = 2x. The
parabola I drew corresponds to a 0 con-
stant of integration, since y = x2. If I
chose 1 for the constant, I’d get y = x2 +
1, which is an identical parabola translat-
ed up by 1 unit in y.

Now think about what would hap-
pen if you didn’t know the vector field in
Figure 1 defined a parabola, and you just
plopped yourself down somewhere on
the grid. Well, if you are going to satisfy
the slope equation, you have to follow
the vector field at each point, so along
you go, changing direction as the vector
field changes direction. Wouldn’t you
know it—after a short bit you’ve traced
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out a parabola, or at least part of one,
depending on where you started. You
may not realize it, but you just integrated
the equation for the vector field. You
found a specific parabola (which one
depends on where you started, or your
initial condition) using only the equation
for the derivative (evaluating dy/dx is
how you followed the vector field).

Doing the same thing for a real
differential equation is just as easy. For
a differential equation of the type dy/dx
= f(x,y), the definition of the derivative
dy/dx as a slope means f(x,y) defines a
slope for each coordinate in the x,y
graph. If you graph the vector field
given by dy/dx = f(x,y) you can follow
it, just like you did for the parabola, by
sampling the derivative at each point
and going in that direction. Figure 2
shows the vector field for Equation 12,
our air friction equation, with velocity
as the vertical axis and time as the hori-
zontal axis (I arbitrarily picked m=1 for
this graph). It also shows one of many
possible solution curves. You can see
that if you pick an initial position in the
graph (which corresponds to an inital
velocity in the equation), as time passes
your velocity will decay down towards
zero as friction robs you of speed. You
can also see that the rate at which your
velocity is decaying depends on the cur-
rent value of your velocity: the faster
you’re going, the faster it decays. This
makes sense, since we picked Equation
12 to give us exactly this result.

Doing these integrations numeri-
cally is quite similar to doing them on a
graph. Euler’s algorithm for numerical
integration simply follows the vector
field from an initial position by evaluat-
ing the derivative equation (-v/m for
our air friction example) to find the
slope at the current point, and then
stepping forward in time by a fixed
amount, h, on that tangent line. It then
evaluates the derivative at the new posi-
tion to get a new slope, and takes
another time step:

Or, explicitly in terms of our air
friction equation:

Obviously, Euler’s method accumu-
lates a little error each time it steps, since
the real vector field (and therefore the
solution curve) is curving away at any
point and Euler’s algorithm is just step-
ping along the tangent line. But if the
stepsize, h, is small enough, Euler does
okay. We’ll discuss this error more in the
future.

That’s really all there is to numeri-
cally integrating with Euler’s method.
However, you might be wondering how
we integrate the velocity to get the posi-
tion now that we’re numerically integrat-
ing the acceleration to get the velocity.
We just use Euler’s method again to inte-
grate dr/dt = v at the same time we inte-
grate dv/dt = a, alternating as we go. We
end up with two coupled ordinary differ-
ential equations (another good one for
that raise):

This gives us an iterative algorithm
for computing the position from some
arbitrarily wacky force on our object
(which could depend on the velocity as
we’ve seen, or time, or even on the posi-
tion of the body and other bodies, or all
at once!). Euler’s method doesn’t care
what the force looks like, as long as you
can compute it at each step. Euler treats
the value of the force over the mass as a
slope, and steps merrily along.

I’m out of space, so I don’t have
room to give references. Next time I’ll list
some great books, and we’ll get into how
to do rotations with rigid bodies.   ■

Although his body is not quite as rigid
as he’d like, Chris Hecker has a dynamic
personality. If forced, he’ll answer e-mail at
checker@bix.com.
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Delphi Does DirectX:
Using Encapsulated
COM Objects

D E L P H I  D E V E L O P M E N T

I
t’s not always easy to grasp the
complexity that Microsoft’s Com-
ponent Object Model (COM)
presents. However, since that’s
exactly what Microsoft’s DirectX
is based on, COM must be tack-
led. One way to simplify your
work is to encapsulate COM

objects as Delphi components.
This article assumes an understand-

ing of Delphi, Delphi components,
DirectX, and COM. All the code for the
Delphi objects, DLLs, and C/C++ pro-
grams is available on the Game Developer
web site.

Well-Made Components 
Are Easy to Use
First, a few points about Delphi compo-
nent design. Delphi components are not
heavy conglomerations like a VBX or
OCX. Instead, they are merely a special
form of Delphi object. As a result, they
are as small and compact as any C++
object.

It’s a good idea to turn complex
objects in a program into components.
The act of creating a Delphi component
enforces very strict adherence to the best
principles of object-oriented design. It
helps ensure a robust, reusable object

that properly hides its data, is easy to
use, and is easy to maintain.

Furthermore, you don’t want to
have to worry about programming issues
while you are exercising the creative part
of your mind. Well-made Delphi com-
ponents aid this process because they are
much easier to use than raw C++ objects. 

Sample Use of a 
DirectX Component
Let’s look at two objects, TSpeedDraw and
ISpeedDraw. The first object is a Delphi
component, while the second is a COM
interface.

Both objects do little more than
display a simple bitmap on a DirectX
surface, or allow you to easily draw
directly on the surface of your form.
They are general purpose objects with a
wide range of uses, but little specialized
ability to ease any particular task.

Here are step-by-step instructions
how to use the TSpeedDraw component to

view a .BMP file stored on disk. First, fill
in the BackgroundFile property with the
name of the .BMP file you want to view
and leave the DllName property blank.
(The TSpeedDraw component also supports
loading bitmaps from DLLs.) When fill-
ing in the BackgroundFile property, you
can use the ellipses in its property editor
to pop up a dialog that lets you browse
across your hard drive for bitmaps. 

Set the BackOrigX and BackOrigY
properties to the place on your form
where you want the upper left-hand cor-
ner of the bitmap to be displayed. TSpeed-
Draw insists that your bitmap fit into all or
some portion of a 640-by-480 window.
There will, of course, be times when you
might want to override this behavior.
You can do so by overriding the virtual
BackgroundBlits or InitObjects methods
or by toggling the ShowBackBmp property.

If you want the TSpeedDraw compo-
nent to run in exclusive mode, set the
UseExclusive property to true. When

Figure 2. The Dinosaur bitmap blitted onto the background bitmap.Figure 1. The Dinosaur
bitmap.
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debugging your application, you should
leave the UseExclusive property with its
default value of False so that you can
step through your code using Delphi’s
integrated debugger. 

Once you have set the properties
listed above, you can display the bitmap
at run time by calling the Run method of
TSpeedDraw. Do this after your form has
become visible to the user. 

If you set the UseTimer value to true,
then a method called DoFlip will be
called automatically for you at the inter-
val specified in the TimerInterval proper-
ty. DoFlip is a wrapper around the IDi-
rectDrawSuface.Flip function.

That’s all there is to getting started
using the TSpeedDraw component. Here is
a quick review of the steps described
above:
• Set the BackgroundFile property to the

name of bitmap you want to show. 
• Set BackOrigX and BackOrigY to the

location in your window where you
want the upper left-hand corner of
the bitmap to be displayed.

• Call the Run method.
Initializing and running a TSpeedDraw

component is this easy. Trying to write
the same DirectX code from scratch
would be much more difficult. As you
will see in the section on COM, a well
built object could also greatly simplify the
use of DirectX, but that object would still
not be as easy to use as a component.

Specialized Behavior 
from TSpeedDraw
To stop showing bitmaps on the screen
and start drawing directly on the screen
surface, simply set the SetShowBackBmp
property to False.

You can leave the BackgroundMap
property blank so long as you have set
ShowBackBmp to False.

Turn to the Events page for the
TSpeedDraw component and create an
OnPaintProc event:

procedure TForm1.SpeedDraw1PaintProc(Sender:
TObject);
var
DC: HDC;

begin
SpeedDraw1.BackSurface.GetDC(DC);
Rectangle(DC, 100, 100, 200, 200);

SpeedDraw1.BackSurface.ReleaseDC(DC);

end;

This procedure draws a rectangle to
the screen. There is no reason why you
could not show the bitmap and draw on
the screen at the same time.

When drawing on the back surface,
you can create animation by setting Use-
Timer to True and responding to PaintProc
events as follows:

procedure TForm1.SpeedDraw1PaintProc(Sender:
TObject);
var
DC: HDC;

begin
SpeedDraw1.BackSurface.GetDC(DC);
if SpeedDraw1.TimerOdd then
Rectangle(DC, 100, 100, 200, 200)

else
Rectangle(DC, 100, 100, 200, 150);

SpeedDraw1.BackSurface.ReleaseDC(DC);
end;

The TimerOdd property switches
between True and False every time a
page is flipped. Page flipping will occur
each time the timer fires. You can con-
trol the rate at which the timer fires
with the TimerInterval property.

You can either leave the back-
ground of the DirectDraw object empty or

Has Delphi finally

found a niche for

itself in the game

development world?

Teaming Delphi and

DirectX might be the

ticket.

Charlie Calvert
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fill it in with a color. To choose to fill it
in with a color, set FillBackground to True
and set the BackColor property to the
value you want to use. If you don’t fill in
the background, you can get garbage on
the screen unless you completely fill up
the window with your own bitmaps or
drawings.

Be careful that you don’t set the
transparent color to one of the key colors
in your bitmap.

Adding Additional 
Bitmaps to the Scene
At this point, there are no sprite classes
for use with TSpeedDraw. However, if you
want to add additional bitmaps to the
scene, you can do so by responding to
the TSpeedDraw, InitObjectsProc, and
PaintProc events.

The InitObjectsProc event is fired
only once at the very beginning of the
life cycle for a TSpeedDraw object. Listing
1 responds to the event by creating a
sprite depicting a small dinosaur. Here’s
how it works:

The CreateDDSurface method is a
wrapper around the DirectDraw.Cre-
ateSurface function. This code loads a
bitmap with a picture of a dinosaur on it.

The bitmap has a background filled in
with the designated transparent color as
a background.

After creating a new DirectDraw
surface for the sprite, the code uses the
IDirectDrawSurface.GetSurfaceDesc func-
tion to retrieve the dimensions of the
bitmap. These dimensions are stored in a
private variable of TForm1 called
FDinoRect, which is of type TRect:

TForm1 = class(TForm)
É  // Standard Delphi code omitted here.

private
FNewSurface: IDirectDrawSurface;
FDinoRect: TRect;

end;

The PaintProc event will be called
once when you call Run, and then again
every time that DoFlip is called. For
instance, if you set UseTimer to True,
then PaintProc would be called every
time an WM_TIMER message is sent, as in
Listing 2. This code simply blits the
new sprite onto the background at a
specified location.

You may notice that I raise excep-
tions if errors occur. It is good practice
to override the exception handler for
your application so that you can get out
of exclusive mode before popping up a

dialog box to report an error. This is
not necessary if you are not in exclusive
mode, but sooner or later, most Direct-
Draw applications end up running in
exclusive mode, as shown in Listing 3.

Implementations Details
Now that you understand TSpeedDraw’s
ease of use and flexibility, you might be
interested in seeing some of the code
that makes the object tick. TSpeedDraw
comes with complete source, but I will
not discuss the actual DirectX code
involved because it is identical to code
you have seen in the many articles pub-
lished on DirectX. Delphi gives you full
access to the Windows API, including
all the available COM objects on your
system. There is very little difference
between Delphi’s Object Pascal imple-
mentation of DirectX and the types of
implementations you would see in a C++
object. 

One of the most important TSpeed-
Draw methods is called InitObjects, which
is described in Listing 4. This procedure
takes care of the following steps:
• DirectDrawCreate initializes the video

card interface, which is also known as
IDirectDraw.

• SetCooperativeLevel defines the high-
level behavior of the interface.

• If SetCooperativeLevel is set to Exclu-
sive; SetDisplayMode defines the video
mode.

• CreatePrimary, an ISpeedDraw method,
creates a primary surface.

• SetUpBack, an ISpeedDraw method, cre-
ates a flipping surface.

• The local SetupWorkSurface method
sets up the WorkSurface, which holds
the background bitmap.

• The InitObjectsProc event is initiated

D E L P H I  D E V E L O P M E N T
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procedure TForm1.SpeedDraw1InitObjectsProc(Sender: TObject);
var

SurfaceDesc: TDDSurfaceDesc;
hr: HResult;

begin
if not SpeedDraw1.CreateDDSurface(FNewSurface, ‘dino.bmp’, True) then

raise EDDError.Create(‘TSpeedDraw.SetupWorkSurface: No WorkSurface’);
SurfaceDesc.dwSize := SizeOf(TDDSurfaceDesc);
hr := FNewSurface.GetSurfaceDesc(SurfaceDesc);
if hr <> DD_OK then

raise EDDError.CreateFmt(‘No Surface Desc $%x %s’, [hr, GetOleError(hr)]);
FDinoRect := Rect(0, 0, SurfaceDesc.dwWidth, SurfaceDesc.dwHeight);

end;

Listing 1. The InitObjectsProc event triggers the sprite

procedure TForm1.SpeedDraw1PaintProc(Sender: TObject);
var

hr: HResult;
begin
hr := SpeedDraw1.BackSurface.BltFast(200, 75,

FNewSurface, FDinoRect,
DDBLTFAST_WAIT or DDBLTFAST_SRCCOLORKEY);

if hr <> DD_OK then
raise EDDError.CreateFmt(‘No blit $%x %s’, [hr, GetOleError(hr)]);

end;

Listing 2. Blitting a sprite onto the background
procedure TForm1.FormCreate(Sender: TObject);
begin
Application.OnException := ExceptionHandler;

end;

procedure TForm1.ExceptionHandler(Sender: TObject; E: Exception);
begin
SpeedDraw1.ErrorEvent(E.Message);

end;

Listing 3. Overriding the exception handler



if the user has set a WorkSurface up.
• The InitObjects method sets Active to

True.
The methods CreatePrimary, Setup-

Back, and CreateWorkSurface are places to
initialize the three key IDirectDrawSur-
face objects used by the component. 

In Listing 5, you see the CreatePri-
mary method and all the standard coding
paraphernalia associated with DirectX.
For instance, notice that the code
attempts to set up a surface that sup-
ports page flipping only if the program
runs in exclusive mode. Don’t worry
about the details of this implementa-
tion, just remember that these details
are hidden from the programmer during
the crucial creative periods of develop-
ment. Conversely, if you find that you
must get at the low-level source, then
these Delphi components are easily
opened up and operated upon. As a
rule, Delphi’s compile time will often
allow you to recompile and test an
object in a matter of seconds. 

It’s helpful if components are easy
to use. Difficult components can pre-
sent a maddeningly opaque face to the
user. You find yourself asking questions
like, “What properties am I supposed to
fill in?” and “How do I get it to run?”
It’s difficult to figure out a hard-to-use

component because there are few clues
to get you started. As a result, well-
loved components have an intuitive,
easy-to-use interface, or come equipped
with an expert or wizard that will guide

you through its use. The art of compo-
nent building is to create a simple, intu-
itive interface that still lets you get at
the advanced features of a particular
technology.

Using the ISpeedDraw
Object in a C++ Program
The TSpeedDraw object is constructed in
such a way that it can easily be converted
via conditional compilation into a COM
object that can be used in C++. To con-
vert the object, you simply need to define
the symbol USECOM. You could then create
a simple Object Pascal COM DLL that
serves the object up to any interested
clients.

For instance, the beginning of the
class declaration looks like this:

{$IFDEF USECOM}
TSpeedDraw = class(IDrawBase)
{$ELSE}
TSpeedDraw = class(TComponent)
{$ENDIF}
private
FActive: Boolean;
FBackColor: TColor;
É  // Large chunk of code omitted

end;
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procedure TSpeedDraw.InitObjects;
var
hr: hResult;
Flags: DWORD;

begin
FHandle := TForm(Owner).Handle;
ASpeedDraw := Self;

DDTest(DirectDrawCreate(nil, FDirectDraw, nil), ‘InitObjects1’);

if not FUseExclusive then
Flags := DDSCL_NORMAL

else
Flags := DDSCL_EXCLUSIVE or DDSCL_FULLSCREEN;

DDTest(FDirectDraw.SetCooperativeLevel(FHandle, Flags), ‘InitObjects2’);
if FUseExclusive then begin
hr := FDirectDraw.SetDisplayMode(640, 480, 8);
if(hr <> DD_OK) then
raise EDDError.CreateFmt(‘TSpeedDraw.InitObjects: %d %s’, [hr, GetOleError(hr)]);

end;

CreatePrimary;
SetUpBack;
SetUpWorkSurface;

if FUseTimer then
SetTimer(Handle, Timer1, FTimerInterval, @Timer2Timer);

if Assigned(InitObjectsProc) then
InitObjectsProc(Self);

FActive := True;
end;

Listing 4. The InitObjects Method

function TSpeedDraw.CreatePrimary: Boolean;
var

SurfaceDesc: TDDSurfaceDesc;
hr: HResult;

begin
FillChar(SurfaceDesc, sizeOf(TDDSurfaceDesc), 0);
SurfaceDesc.dwSize := sizeof(TDDSurfaceDesc);

if not FUseExclusive then begin
SurfaceDesc.dwFlags := DDSD_CAPS;
SurfaceDesc.ddsCaps.dwCaps := DDSCAPS_PRIMARYSURFACE;

end else begin
SurfaceDesc.dwFlags := DDSD_CAPS or DDSD_BACKBUFFERCOUNT;
SurfaceDesc.ddsCaps.dwCaps := DDSCAPS_PRIMARYSURFACE or

DDSCAPS_FLIP or
DDSCAPS_COMPLEX;

SurfaceDesc.dwBackBufferCount := 1;
end;

hr := FDirectDraw.CreateSurface(SurfaceDesc, FPrimarySurface, nil);
if hr <> DD_OK then

raise EDDError.CreateFmt(‘TSpeedDraw.CreatePrimary: %d %s’, [hr, GetOleError(hr)])
else

Result := True;
end;

Listing 5. The CreatePrimary method



If USECOM is defined, this code will
declare a simple instantiation of IUn-
known called IDrawBase as the parent of
TSpeedDraw. If USECOM is not defined, then
TSpeedDraw becomes a descendant of the
standard Delphi TComponent object,
which gives the object the ability to
appear on the component palette. 

The TSpeedDraw properties are not
compiled if USECOM is defined (see the
code in Listing 6).

As you can see, some of the key
properties are replaced by COM-com-
patible methods if USECOM is defined.

Listing 7 shows the ISpeedDraw
object as it is declared for use in a C++
program. The actual ISpeedDraw object
as declared in an Object Pascal DLL is
more complex than this, but COM is
only interested in the virtual methods
for an object, so other declarations are
omitted in this case. 

To use this object, you declare a
global variable of type PISpeedDraw:

PISpeedDraw P;

This variable can then be used in
standard COM code, like the response
to a WM_LBUTTONDOWN message that appears
in Listing 8.

This code first initializes COM,
then calls CoCreateInstance to retrieve
the PISpeedObject from the Delphi DLL
in which it resides.

The InitParams method allows you
to make one call that fills in some of the
fields which the TSpeedDraw component
has you fill in at design time via the
Delphi Object Inspector. To me, the
Delphi Component-based interface is
more elegant than using the InitParams
method, but both techniques get the job
done with a minimum of fuss.

After calling PIS-
peedDraw.Run, the bit-
map you asked to see
will be displayed on the
main window of your
C/C++ application.
Before closing your

app, you should release the object and
shut down COM:

void Window1_OnDestroy(HWND hwnd)
{

P->Release();
CoUninitialize;
PostQuitMessage(0);

}

Encapsulation Is the Key
You can encapsulate complex APIs
within an understandable wrapper that
can be used even by the neophytes on
your staff. Or, more importantly for
game writers, you can wrap up the
details of an operation so that you don’t
have to consider them while you are
using your creative side. 

Most code in this article is part of
an ongoing project to develop Delphi
gaming components. Other objects,
such as those for handling tiled sur-
faces, are already complete. For addi-
tional information, point your Internet
browser to http://users.aol.com/
charliecal.   ■

Charlie Calvert is the author of Del-
phi 2 Unleashed, Teach Yourself Win-
dows 95 Programming in 21 Days, Del-
phi Unleashed, Teach Yourself Win-
dows Programming, and Turbo Pascal
Programming 101. He works at Borland
International as a manager in Developer
Relations.  You can reach him at
gdmag@mfi.com.
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{$IFDEF USECOM}
procedure MakeActive(Value: Boolean); virtual; stdcall;
procedure SetTimerOdd(Value: Boolean); virtual; stdcall;
procedure SetBackOrigin(Value: TPoint); virtual; stdcall;
{$ELSE}
property Active: Boolean read fActive write SetActive;
property BackOrigin: TPoint read FBackOrigin write FBackOrigin;
property TimerOdd: Boolean read FTimerOdd write FTimerOdd;
É  // Other properties omitted

{$ENDIF}

Listing 6. USECOM is defined; TSpeedDraw properties aren’t compiled

class ISpeedDraw: public IUnknown
{
public:

STDMETHOD(QueryInterface) (THIS_ REFIID, LPVOID*) PURE;
STDMETHOD_(ULONG,AddRef)  (THIS) PURE;
STDMETHOD_(ULONG,Release) (THIS) PURE;
STDMETHOD_(BOOL, BackgroundBlits) (THIS) PURE;
STDMETHOD_(BOOL, Pause) (THIS) PURE;
STDMETHOD_(VOID, Restore) (THIS) PURE;
STDMETHOD_(VOID, Create) (THIS) PURE;
STDMETHOD_(VOID, InitParams)(THIS_ HWND AHandle,

LPSTR BackGroundMapStr,
int TransColor,
LPSTR DllName) PURE;

STDMETHOD_(VOID, Run) (THIS) PURE;
STDMETHOD_(VOID, DestroyObjects) (THIS) PURE;
STDMETHOD_(VOID, DoFlip)(THIS) PURE;
STDMETHOD_(VOID, InitObjects) (THIS) PURE;
STDMETHOD_(VOID, Move) (THIS_ int Value) PURE;
STDMETHOD_(VOID, MakeActive) (THIS_ BOOL Value) PURE;
STDMETHOD_(VOID, SetTimerOdd) (THIS_ BOOL Value) PURE;
STDMETHOD_(VOID, SetBackOrigin) (THIS_ POINT Value) PURE;

};
typedef ISpeedDraw *PISpeedDraw;

Listing 7. The ISpeedDraw Object

void Window1_OnLButtonDown(HWND hwnd, BOOL fDoubleClick, 
int x, int y, UINT keyFlags)

{
HRESULT hr;

CoInitialize(NULL);
hr = CoCreateInstance(CLSID_ISPEEDDRAW, NULL, CLSCTX_INPROC_SERVER,

IID_IUnknown, (VOID**) &P);
if (SUCCEEDED(hr))
{
P->InitParams(hwnd, “E:\\SRC\\BLAISE\\WINFIRE\\BACKGRD1.BMP”, 254, “”);
P->Run();

}
}

Listing 8. Response to a WM_LBUTTONDOWN message

http://www.gdmag.com



Smart Moves: 
Intelligent Path-Finding 

A R T I F I C I A L  I N T E L L I G E N C E

O
f all the decisions involved in
computer-game AI, the most
common is probably path-
finding—looking for a good
route for moving an entity
from here to there. The entity
can be a single person, a vehi-
cle, or a combat unit; the genre

can be an action game, a simulator, a
role-playing game, or a strategy game.
But any game in which the computer is
responsible for moving things around has
to solve the path-finding problem. 

And this is not a trivial problem.
Questions about path-finding are regular-
ly seen in online game programming
forums, and the entities in several games
move in less than intelligent paths. How-
ever, although path-finding is not trivial,
there are some well-established, solid
algorithms that deserve to be known bet-
ter in the game community.

Several path-finding algorithms are
not very efficient, but studying them
serves us by introducing concepts incre-
mentally. We can then understand how
different shortcomings are overcome. 

To demonstrate the workings of
the algorithms visually, I have developed
a program in Delphi 2.0 called “PathDe-
mo.” It is available for readers to down-

load. The article and demo assume that
the playing space is represented with
square tiles. You can adapt the concepts
in the algorithms to other tilings, such as
hexagons; ideas for adapting them to
continuous spaces are discussed at the
end of the article.

Path-Finding on the Move
The typical problem in path-finding is
obstacle avoidance. The simplest
approach to the problem is to ignore the
obstacles until one bumps into them. The
algorithm would look something like this:

while not at the goal

pick a direction to move toward the goal

if that direction is clear for movement

move there

else

pick another direction according to

an avoidance strategy

This approach is simple because it
makes few demands: all that needs to be
known are the relative positions of the
entity and its goal, and whether the
immediate vicinity is blocked. For many
game situations, this is good enough.

Different obstacle-avoidance strate-
gies include:

• Movement in a random direction. If the
obstacles are all small and convex, the
entity (shown as a green dot) can
probably get around them by moving a
little bit away and trying again, until it
reaches the goal (shown as a red dot).
Figure 1A shows this strategy at work.
A problem arises with this method if
the obstacles are large or if they are
concave, as is seen in Figure 1B—the
entity can get completely stuck, or at
least waste a lot of time before it stum-
bles onto a way around. One way to
avoid this: if a problem is too hard to
deal with, alter the game so it never
comes up. That is, make sure there are
never any concave obstacles. 

• Tracing around the obstacle. Fortu-
nately, there are other ways to get
around. If the obstacle is large, one
can do the equivalent of placing a
hand against the wall and following
the outline of the obstacle until it is
skirted. Figure 2A shows how well
this can deal with large obstacles.
The problem with this technique
comes in deciding when to stop trac-
ing. A typical heuristic may be: “Stop
tracing when you are heading in the
direction you wanted to go when you
started tracing.” This would work in
many situations, but Figure 2B
shows how one may end up con-
stantly circling around without find-
ing the way out.

• Robust tracing. A more robust heuris-
tic comes from work on mobile
robots: “When blocked, calculate the
equation of the line from your current
position to the goal. Trace until that
line is again crossed. Abort if you end
up at the starting position again.”
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Figure 1A and 1B. Bouncing off in a random direction



This method is guaranteed to find a
way around the obstacle if there is
one, as is seen in Figure 3A. (If the
original point of blockage is between
you and the goal when you cross the
line, be sure not to stop tracing, or
more circling will result.) Figure 3B
shows the downside of this approach:
it will often take more time tracing
the obstacle than is needed, making it
look pretty simple-minded—though
not as simple as endless circling. A
happy compromise would be to com-
bine both approaches: always use the
simpler heuristic for stopping the
tracing first, but if circling is detected,
switch to the robust heuristic.

Looking Before You Leap
Although the obstacle-skirting tech-
niques discussed above can often do a

passable or even adequate job, there are
situations where the only intelligent
approach is to plan the entire route
before the first step is taken. In addition,
these methods do little to handle the
problem of weighted regions, where the
difficulty is not so much avoiding obsta-
cles as finding the cheapest path among
several choices where the terrain can vary
in its cost. 

Fortunately, the fields of Graph
Theory and conventional AI have several
algorithms that can be used to handle
both difficult obstacles and weighted
regions. In the literature, many of these
algorithms are presented in terms of
changing between states, or traversing
the nodes of a graph. They are often
used in solving a variety of problems,
including puzzles like the 15-puzzle or
Rubik’s cube, where a state is an

Many a tirade has

been launched by

game developers

about stupid 

computer-controlled

characters. Endowing

your game with some

path-finding smarts

will give players a

reason to cheer. 

W. Bryan Stout

GAME DEVELOPER • OCTOBER/NOVEMBER 1996  29http://www.gdmag.com

Figure 2A and 2B. Tracing around the obstacle

Figure 3A and 3B. Robust tracing



arrangement of the tiles or cubes, and
neighboring states (or adjacent nodes)
are visited by sliding one tile or rotating
one cube face. Applying these algo-
rithms to path-finding in geometric
space requires a simple adaptation: a
state or a graph node stands for the enti-
ty being in a particular tile, and moving
to adjacent tiles corresponds to moving
to the neighboring states, or adjacent
nodes.

Working from the simplest algo-
rithms to the more robust, we have:
• Breadth-first search. Beginning at the

start node, this algorithm first exam-
ines all immediate neighboring nodes,
then all nodes two steps away, then
three, and so on, until a goal node is
found. Typically, each node’s unexam-
ined neighboring nodes are pushed
onto an Open list, which is usually a

FIFO (first-in-first-out) queue. The
algorithm would go something like
what is shown in Listing 1. Figure 4
shows how the search proceeds. We
can see that it does find its way around
obstacles, and in fact it is guaranteed
to find a shortest path—that is, one of
several paths that tie for the shortest in
length—if all steps have the same cost.
There are a couple of obvious prob-
lems. One is that it fans out in all
directions equally, instead of directing
its search towards the goal; the other is
that all steps are not equal—at least the
diagonal steps should be longer than
the orthogonal ones. 

• Bidirectional breadth-first search. This
enhances the simple breadth-first
search by starting two simultaneous
breadth-first searches from the start
and the goal nodes and stopping
when a node from one end’s search
finds a neighboring node marked
from the other end’s search. As seen
in Figure 5, this can save substantial
work from simple breadth-first search
(typically by a factor of 2), but it is
still quite inefficient. Tricks like this
are good to remember, though, since
they may come in handy elsewhere.

• Dijkstra’s algorithm. E. Dijkstra devel-
oped a classic algorithm for traversing
graphs with edges of differing weights.
At each step, it looks at the
unprocessed node closest to the start
node, looks at that node’s neighbors,
and sets or updates their respective
distances from the start. This has two
advantages to the breadth-first search:
it takes a path’s length or cost into
account and updates the goodness of
nodes if better paths to them are
found. To implement this, the Open
list is changed from a FIFO queue to a

priority queue, where the node popped
is the one with the best score—here,
the one with the lowest cost path from
the start. (See Listing 2.) We see in
Figure 6 that Dijkstra’s algorithm
adapts well to terrain cost. However, it
still has the weakness of breadth-
width search in ignoring the direction
to the goal.

• Depth-first search. This search is the
complement to breadth-first search;
instead of visiting all a node’s siblings
before any children, it visits all of a
node’s descendants before any of its
siblings. To make sure the search ter-
minates, we must add a cutoff at
some depth. We can use the same
code for this search as for breadth-
first search, if we add a depth para-
meter to keep track of each node’s
depth and change Open from a FIFO
queue to a LIFO (last-in-first-out)
stack. In fact, we can eliminate the
Open list entirely and instead make
the search a recursive routine, which
would save the memory used for
Open. We need to make sure each
tile is marked as “visited” on the way
out, and is unmarked on the way
back, to avoid generating paths that
visit the same tile twice. In fact, Fig-
ure 7 shows that we need to do more
than that: the algorithm still can tan-
gle around itself and waste time in a
maddening way. For geometric path-
finding, we can add two enhance-
ments. One would be to label each
tile with the length of the cheapest
path found to it yet; the algorithm
would then never visit it again unless
it had a cheaper path, or one just as
cheap but searching to a greater
depth. The second would be to have
the search always look first at the
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queue Open

BreadthFirstSearch

node   n, n’, s

s.parent = null

// s is a node for the start

push s on Open

while Open is not empty

pop node n from Open

if n is a goal node 

construct path 

return success

for each successor n’ of n

if n’ has been visited 

already,

continue

n’.parent = n

push n’ on Open

return failure  // if no path found

Listing 1. Breadth-first search

Figure 4. Breadth-first search Figure 5. Bidirectional search Figure 6. Dijkstra’s search



children in the direction of the goal.
With these two enhancements
checked, one sees that the depth-first
search finds a path quickly. Even
weighted paths can be handled by
making the depth cut-off equal the
total accumulated cost rather than the
total distance.

• Iterative-deepening depth-first search.
Actually, there is still one fly in the
depth-first ointment—picking the
right depth cutoff. If it is too low, it
will not reach the goal; if too high, it
will potentially waste time exploring
blind avenues too far, or find a weight-
ed path which is too costly. These
problems are solved by doing iterative
deepening, a technique that carries out

a depth-first search
with increasing
depth: first one,
then two, and so on
until the goal is
found. In the path-
finding domain, we
can enhance this by starting with a
depth equal to the straight-line dis-
tance from the start to the goal. This
search is asymptotically optimal
among brute force searches in both
space and time.

• Best-first search. This is the first
heuristic search considered, meaning
that it takes into account domain
knowledge to guide its efforts. It is
similar to Dijkstra’s algorithm, except
that instead of the nodes in Open
being scored by their distance from the
start, they are scored by an estimate of
the distance remaining to the goal.
This cost also does not require possi-
ble updating as Dijkstra’s does. Figure
8 shows its performance. It is easily
the fastest of the forward-planning
searches we have examined so far,
heading in the most direct manner to
the goal. We also see its weaknesses.

In 8A, we see that it does not take into
account the accumulated cost of the
terrain, plowing straight through a
costly area rather than going around it.
And in 8B, we see that the path it
finds around the obstacle is not direct,
but weaves around it in a manner rem-
iniscent of the hand-tracing tech-
niques seen above.

The Star of the Search
Algorithms (A* Search)
The best-established algorithm for the
general searching of optimal paths is A*
(pronounced “A-star”). This heuristic
search ranks each node by an estimate of
the best route that goes through that
node. The typical formula is expressed as:

f(n) = g(n) + h(n)
where: 

f(n) is the score assigned to node n 
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Figure 7. Depth-first search

priority queue Open

DijkstraSearch

node   n, n’, s

s.cost = 0

s.parent = null   // s is a node for the start

push s on Open

while Open is not empty

pop node n from Open  // n has lowest cost in Open

if n is a goal node 

construct path 

return success

for each successor n’ of n

newcost = n.cost + cost(n,n’)

if n’ is in Open

and n’.cost <= newcost

continue

n’.parent = n

n’.cost = newcost

if n’ is not yet in Open

push n’ on Open

return failure  // if no path found

Listing 2. Dijkstra’s search algorithm

priorityqueue Open

list Closed

AStarSearch

s.g = 0 // s is the start node

s.h = GoalDistEstimate( s )

s.f = s.g + s.h

s.parent = null

push s on Open

while Open is not empty

pop node n from Open  // n has the lowest f

if n is a goal node 

construct path 

return success

for each successor n’ of n

newg = n.g + cost(n,n’)

if n’ is in Open or Closed,

and n’.g <= newg

skip

n’.parent = n

n’.g = newg

n’.h = GoalDistEstimate( n’ )

n’.f = n’.g + n’.h

if n’ is in Closed

remove it from Closed

if n’ is not yet in Open

push n’ on Open

push n onto Closed

return failure  // if no path found

Listing 3. A* search algorithm



g(n) is the actual cheapest cost of 
arriving at n from the start

h(n) is the heuristic estimate of the 
cost to the goal from n 

So it combines the tracking of the
previous path length of Dijkstra’s algo-
rithm, with the heuristic estimate of the
remaining path from best-first search.
The algorithm proper is seen in Listing 3.
Since some nodes may be processed more
than once—from finding better paths to
them later—we use a new list called
Closed to keep track of them.

A* has a couple interesting proper-
ties. It is guaranteed to find the shortest
path, as long as the heuristic estimate,
h(n), is admissible—that is, it is never
greater than the true remaining distance
to the goal. It makes the most efficient
use of the heuristic function: no search
that uses the same heuristic function
h(n) and finds optimal paths will expand
fewer nodes than A*, not counting tie-
breaking among nodes of equal cost. In
Figures 9A through 9C, we see how A*
deals with situations that gave problems
to other search algorithms.

How Do I Use A*? 
A* turns out to be very flexible in prac-
tice. Consider the different parts of the
algorithm.

• The state would often be the tile or
position the entity occupies. But if
needed, it can represent orientation
and velocity as well (for example, for
finding a path for a tank or most any
vehicle—their turn radius gets worse
the faster they go).

• Neighboring states would vary depend-
ing on the game and the local situa-
tion. Adjacent positions may be
excluded because they are impassable
or are between the neighbors. Some
terrain can be passable for certain
units but not for others; units that
cannot turn quickly cannot go to all
neighboring tiles.

• The cost of going from one position to
another can represent many things:
the simple distance between the posi-
tions; the cost in time or movement
points or fuel between them; penalties
for traveling through undesirable
places (such as points within range of
enemy artillery); bonuses for traveling
through desirable places (such as
exploring new terrain or imposing
control over uncontrolled locations);
and aesthetic considerations—for
example, if diagonal moves are just as
cheap as orthogonal moves, you may
still want to make them cost more, so
that the routes chosen look more
direct and natural.

• The estimate is usually the minimum
distance between the current node
and the goal multiplied by the mini-
mum cost between nodes. This guar-
antees that h(n) is admissible. (In a
map of square tiles where units may
only occupy points in the grid, the
minimum distance would not be the
Euclidean distance, but the minimum
number of orthogonal and diagonal
moves between the two points.)

• The goal does not have to be a single
location but can consist of multiple
locations. The estimate for a node
would then be the minimum of the
estimate for all possible goals.

• Search cutoffs can be included easily, to
cover limits in path cost, path dis-
tance, or both.

From my own direct experience, I
have seen the A* star search work very
well for finding a variety of types of
paths in wargames and strategy games.

The Limitations of A*
There are situations where A* may not
perform very well, for a variety of reasons.
The more or less real-time requirements
of games, plus the limitations of the avail-
able memory and processor time in some
of them, may make it hard even for A* to
work well. A large map may require thou-
sands of entries in the Open and Closed
list, and there may not be room enough
for that. Even if there is enough memory
for them, the algorithms used for manip-
ulating them may be inefficient.

The quality of A*’s search depends
on the quality of the heuristic estimate
h(n). If h is very close to the true cost of
the remaining path, its efficiency will be
high; on the other hand, if it is too low,
its efficiency gets very bad. In fact,
breadth-first search is an A* search, with

A R T I F I C I A L  I N T E L L I G E N C E

32 GAME DEVELOPER • OCTOBER/NOVEMBER 1996

Figure 9A, 9B, and 9C. How A* deals with some problematic cases
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Figure 8A and 8B. Best-first search



h being trivially zero for all nodes—this
certainly underestimates the remaining
path cost, and while it will find the opti-
mum path, it will do so slowly. In Figure
10A, we see that while searching in
expensive terrain (shaded area), the fron-
tier of nodes searched looks similar to
Dijkstra’s algorithm; in 10B, with the
heuristic increased, the search is more
focused.

Let’s look at ways to make the A*
search more efficient in problem areas.

Transforming the 
Search Space
Perhaps the most important improvement
one can make is to restructure the prob-
lem to be solved, making it an easier
problem. Macro-operators are sequences of
steps that belong together and can be
combined into a single step, making the
search take bigger steps at a time. For
example, airplanes take a series of steps in
order to change their orientation and alti-
tude. A common sequence may be used as
a single change of state operator, rather
than using the smaller steps individually.
In addition, search and general problem-
solving methods can be greatly simplified
if they are reduced to sub-problems, whose
individual solutions are fairly simple. In
the case of path-finding, a map can be
broken down into large contiguous areas
whose connectivity is known. One or two
border tiles between each pair of adjacent
areas are chosen; then the route is first
laid out in by a search among adjacent
areas, in each of which a route is found
from one border point to another. 

For example, in a strategic map of
Europe, a path-finder searching for a land
route from Madrid to Athens would
probably waste a fair amount of time
looking down the boot of Italy. Using

countries as areas, a hierarchical search
would first determine that the route
would go from Spain to France to Italy to
Yugoslavia (looking at an old map) to
Greece; and then the route through Italy
would only need to connect Italy’s border
with France, to Italy’s border with
Yugoslavia. As another example, routes
from one part of a building to another can
be broken down into a path of rooms and
hallways to take, and then the paths
between doors in each room. 

It is much easier to choose areas in
predefined maps than to have the com-
puter figure them out for randomly gen-
erated maps. Note also that the examples
discussed deal mainly with obstacle avoid-
ance; for weighted regions, it is trickier to
assign useful regions, especially for the
computer (it may not very useful, either). 

Storing It Better 
Even if the A* search is relatively effi-
cient by itself, it can be slowed down by

inefficient algorithms handling the data
structures. Regarding the search, two
major data structures are involved. 

The first is the representation of the
playing area. Many questions have to be
addressed. How will the playing field be
represented? Will the areas accessible
from each spot—and the costs of moving
there—be represented directly in the
map or in a separate structure, or calcu-
lated when needed? How will features in
the area be represented? Are they direct-
ly in the map, or separate structures?
How can the search algorithm access
necessary information quickly? There are
too many variables concerning the type
of game and the hardware and software
environment to give much detail about
these questions here.

The second major structure
involved is the node or state of the
search, and this can be dealt with more
explicitly. At the lower level is the search
state structure. Fields a developer might
wish to include in it are: 
• The location (coordinates) of the map

position being considered at this state
of the search.

• Other relevant attributes of the entity,
such as orientation and velocity.

• The cost of the best path from the
source to this location.

• The length of the path up to this
position.

• The estimate of the cost to the goal
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(or closest goal) from this location.
• The score of this state, used to pick

the next state to pop off Open.
• A limit for the length of the search

path, or its cost, or both, if applicable. 
• A reference (pointer or index) to the

parent of this node—that is, the node
that led to this one.

• Additional references to other nodes,
as needed by the data structure used
for storing the Open and Closed lists;
for example, “next” and maybe “previ-
ous” pointers for linked lists, “right,”
“left,” and “parent” pointers for binary
trees.

Another issue to consider is when
to allocate the memory for these struc-
tures; the answer depends on the
demands and constraints of the game,
hardware, and operating system.

On the higher level are the aggre-
gate data structures—the Open and
Closed lists. Although keeping them as
separate structures is typical, it is possi-
ble to keep them in the same structure,
with a flag in the node to show if it is
open or not. The sorts of operations that
need to be done in the Closed list are:
• Insert a new node.
• Remove an arbitrary node.
• Search for a node having certain

attributes (location, speed, direction).
• Clear the list at the end of the search.

The Open list does all these, and in
addition will:
• Pop the node with the best score.
• Change the score of a node.

The Open list can be thought of as a
priority queue, where the next item
popped off is the one with the highest
priority—in our case, the best score.
Given the operations listed, there are sev-
eral possible representations to consider: a
linear, unordered array; an unordered
linked list; a sorted array; a sorted linked
list; a heap (the structure used in a heap
sort); a balanced binary search tree. 

There are several types of binary
search trees: 2-3-4 trees, red-black trees,
height-balanced trees (AVL trees), and
weight-balanced trees.

Heaps and balanced search trees
have the advantage of logarithmic times
for insertion, deletion, and search; how-
ever, if the number of nodes is rarely

large, they may not be worth the over-
head they require.

Fine-Tuning Your 
Search Engine 
There are also ways of tweaking the
search algorithm to help get good results
while working with limited resources:

Beam search. One way of dealing
with restricted memory is to limit the
number of nodes on the Open list; when
it is full and a new node is to be inserted,
simply drop the node with the worst rat-
ing. The Closed list could also be elimi-
nated, if each tile stores its best path
length. There is no promise of an opti-
mal path since the node leading to it
may be dropped, but it may still allow
finding a reasonable path. 

Iterative-deepening A*. The itera-
tive-deepening technique used for
depth-first search (IDDFS) as men-
tioned above can also be used for an A*
search. This entirely eliminates the
Open and Closed lists. Do a simple
recursive search, keep track of the accu-
mulated path cost g(n), and cut off the
search when the rating f(n) = g(n) +
h(n) exceeds the limit. Begin the first
iteration with the cutoff equal to
h(start), and in each succeeding itera-
tion, make the new cutoff the smallest
f(n) value which exceeded the old cut-
off. Similar to IDDFS among brute-
force searches, IDA* is asymptotically
optimal in space and time usage among
heuristic searches.

Inadmissible heuristic h(n). As dis-
cussed above, if the heuristic estimate
h(n) of the remaining path cost is too
low, then A* can be quite inefficient. But
if the estimate is too high, then the path
found is not guaranteed to be optimal
and may be abysmal. In games where the
range of terrain cost is wide—from
swamps to freeways—you may try exper-
imenting with various intermediate cost
estimates to find the right balance
between the efficiency of the search and
the quality of the resulting path.

There are also other algorithms that
are variations of A*. Having toyed with
some of them in PathDemo, I believe
that they are not very useful for the geo-
metric path-finding domain.

What if I’m in a 
Smooth World? 
All these search methods have assumed a
playing area composed of square or
hexagonal tiles. What if the game play
area is continuous? What if the positions
of both entities and obstacles are stored
as floats, and can be as finely determined
as the resolution of the screen? Figure
11A shows a sample layout. For answers
to these search conditions, we can look
at the field of robotics and see what sort
of approaches are used for the path-
planning of mobile robots. Not surpris-
ingly, many approaches find some way to
reduce the continuous space into a few
important discrete choices for considera-
tion. After this, they typically use A* to
search among them for a desirable path.
Ways of quantizing the space include:
• Tiles. A simple approach is to slap a

tile grid on top of the space. Tiles that
contain all or part of an obstacle are
labeled as blocked; a fringe of tiles
touching the blocked tiles is also
labeled as blocked to allow a buffer of
movement without collision. This rep-
resentation is also useful for weighted
regions problems. See Figure 11B.

• Points of visibility. For obstacle avoid-
ance problems, you can focus on the
critical points, namely those near the
vertices of the obstacles (with enough
space away from them to avoid colli-
sions), with points being considered
connected if they are visible from each
other (that is, with no obstacle
between them). For any path, the
search considers only the critical
points as intermediate steps between
start and goal. See Figure 11C.

• Convex polygons. For obstacle avoid-
ance, the space not occupied by
polygonal obstacles can be broken up
into convex polygons; the intermedi-
ate spots in the search can be the
centers of the polygons, or spots on
the borders of the polygons. Schemes
for decomposing the space include:
C-Cells (each vertex is connected to
the nearest visible vertex; these lines
partition the space) and Maximum-
Area decomposition (each convex
vertex of an obstacle projects the
edges forming the vertex to the near-
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est obstacles or walls; between these
two segments and the segment join-
ing to the nearest visible vertex, the
shortest is chosen).  See Figure 11D.
For weighted regions problems, the
space is divided into polygons of
homogeneous traversal cost. The
points to aim for when crossing
boundaries are computed using
Snell ’s  Law of Refraction. This
approach avoids the irregular paths
found by other means.

• Quadtrees. Similar to the convex poly-
gons, the space is divided into
squares. Each square that isn’t close to
being homogenous is divided into
four smaller squares, recursively. The
centers of these squares are used for
searching a path. See Figure 11E.

• Generalized cylinders . The space
between adjacent obstacles is consid-
ered a cylinder whose shape changes
along its axis. The axis traversing the
space between each adjacent pair of
obstacles (including walls) is comput-
ed, and the axes are the paths used in
the search. See Figure 11F.

• Potential fields. An approach that does
not quantize the space, nor require
complete calculation beforehand, is to
consider that each obstacle has a
repulsive potential field around it,
whose strength is inversely propor-
tional to the distance from it; there is
also a uniform attractive force to the
goal. At close regular time intervals,
the sum of the attractive and repulsive
vectors is computed, and the entity
moves in that direction. A problem
with this approach is that it may fall
into a local minimum; various ways of
moving out of such spots have been
devised.

For more figures that illustrate con-
cepts presented in this article and for a
list of references on AI research, data
structures, and robotics, check out
http://www.gdmag.com.   ■

Bryan Stout has done work in “real”
AI for Martin Marietta and in computer
games for MicroProse. He is preparing a
book on computer game AI to be published
by Addison-Wesley. He can be contacted at
gdmag@mfi.com.
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I
f you’ve ever played STAR CASTLE,
DEFENDER, MORTAL KOMBAT, or
DAYTONA USA, then you’ve experi-
enced the pulse-pounding rush of
great coin-op game design. As a PC
game developer yourself, you know a
good game when you see one. But
knowing it’s good and knowing why

it’s good are two very different things.
Being able to design a coin-op game
yourself is something else entirely.

This article reveals the secrets of the
coin-op masters. It is based on a series of
interviews with some of the most success-
ful coin-op game designers in the world.
With high-end PCs emerging as the new
standard platform for coin-op game
design, your experience in PC game
development and the experts’ experience
in coin-op game design should produce a
new market for PC-based coin-op games
that can be very profitable to both—and a
heck of a lot of fun.

It’s the Law
We interviewed many stars, such as Ed
Logg, designer of CENTIPEDE, GAUNT-
LET, and STEEL TALONS, Richard Dit-
ton, founder of Incredible Technologies
whose credits include Capcom BOWL-
ING and TIME KILLERS, as well as
designers at Williams and Rare (makers
of KILLER INSTINCTS). We asked specif-
ic and open-ended questions about what
coin-op games were the best and why—
and what general rules they used when
designing coin-op games. The answers,
while varying widely, uniformly agreed
on the key concepts described below.
These, then, are the core design princi-
ples—the laws, if you will—of coin-op
game design.

As with all laws, you can break them
if you wish, and you may even get away
with it—but you’re running a nearly
100% risk of failure if you violate these
laws without first internalizing them
completely.

Brown’s First Law: 
Be Simple and Intuitive
A coin-op game’s controls, objectives,
choices, and reasons for loss must be sim-
ple and intuitive on the first play.

Nobody reads the instructions in a
coin-op game, at least not until they’ve
played the game and realized that the
controls have greater depth than they first
imagined (see Law #4, Depth, below).
Players have to be able to walk up to the
machine, drop in a coin, start playing,
and do well enough on the very first play
to feel good enough about their perfor-
mance to think that they (and therefore
the game) are pretty darn good. If a game
fails to obey this law, the players will walk
away after their first coin—a recipe for
financial disaster. 

Capcom’s phenomenally successful
STREET FIGHTER II provides an excellent
example of this law in action. Its controls
consist of a joystick and six buttons. The
joystick moves your fighter’s body, and
the buttons activate kicks and punches.
The six buttons are arranged in two rows.
The three upper buttons control punches,
while the three lower buttons control
kicks—so there’s a natural mapping
between upper body (which correlates to
the upper buttons) and lower body
(which correlates to the lower buttons).
From left to right, the buttons progress
from faster, lighter blows to slower, heav-
ier blows. Anyone can just walk up to

STREET FIGHTER II and do pretty well in
the first couple of rounds against the
computer just by pounding quickly and
randomly on the buttons. Once they’ve
played a few times and have built a desire
to improve, players might read the few
simple instructions (or simply explore the
controls’ behavior) and realize that the
controls have greater depth.

The objective of the game is obvious
to even the most casual passersby. Two
large, tough-looking characters start each
game facing each other in stances that
suggest impending confrontation. Even
from the early days of the fighter genre,
this was more than enough to teach a
player what he was supposed to do: use
his character to beat the crud out of the
other character. Distinct life energy bars
on each player’s side of the screen and a
large centralized timer communicate the
specific objectives—namely, pound your
opponent until his life energy is gone, or
at least drive it lower than your own bar
before time runs out.

The primary choice in STREET

FIGHTER II is which character to use,
and this choice is presented in a simple,
obvious manner. Afterwards, the player
chooses which attack to use at which
time—the basic attacks, character-spe-
cific attacks, and combo attacks. These
decisions can be the result of randomly
pounding the controls or of extremely
deep (but fast) tactical planning,
depending on the skill level of the play-
er. Each individual attack is easy to
learn, and the degree of improvement
resulting from the player’s learning just
one move is significant, encouraging
players to learn more. The learning
curve is smooth, allowing the players to

The Four 
Laws of Coin-Op
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improve their understanding steadily,
and at their own pace.

A cardinal rule of coin-op—almost
worthy of its own law—is that when a
player loses the game, it must be obvious
to that player why he or she lost, and it
must appear to be a simple matter to cor-
rect the mistake and win next time. The
player has to feel that he or she lost, not
that the game won. The failing is with
him or her, and the player should feel that
with just a little more practice—“just one
more quarter”—he or she can win the
game (that is, overcome the specific chal-
lenge that defeated him or her last time).

Brown’s Second Law:
Deliver Strong Feedback
Strong feedback must be fast, accurate,
detailed, and consistent—involving the
player’s senses as fully as possible.

Of the five senses, three should be
engaged in coin-op games: sight, hearing,
and touch. (The frontiers of smell and
taste are so far unexplored, which—con-
sidering the content of fighting games—
is just fine with us.) Every player action
must be reinforced by visible action—an
appropriate sound and, ideally, force-
feedback. Force-feedback is best known
from driving games, in which the steering
wheel shakes from the “strain” of a tough
turn, or jumps from bumping against
other cars, and so on. This multi-sensory
feedback links the player and avatar—the
vehicle, character, or icon. Through the
avatar, the player is linked to the game
environment. Only through fast and
accurate feedback can the player get lost
in the experience the game offers.

Sega’s DAYTONA, one of the most
successful driving games ever, is a great

example of this design law in action. It
puts out a flicker-free 60 frames per sec-
ond on a 50-inch, high-resolution moni-
tor, giving the player very fast, accurate
visual feedback. The high-quality audio
system delivers important audio feedback,
such like squealing sound when the play-
er’s car starts to slide. Force feedback
“pushes back” on the steering wheel, in
response to the stresses affecting the car
in the game—from pulling Gs in tight
turns to bumping against other cars. This
multisensory feedback gives the player
fast, accurate, detailed, consistent—and
therefore immersive—information about
his car and its interaction with other
game elements. As a result, DAYTONA is
widely regarded as one of the best coin-
op games of all time—and it’s been mak-
ing money steadily for two years.

Brown’s Third Law: 
Deliver Pace and Rhythm
A coin-operated video game must deliv-
er challenges to the player at a fast,
steadily increasing pace, delivering
rhythmic pulses of additional challenges.

People play games to be challenged.
These challenges can be mental, physical,
or both. Mental challenges usually take
time to work out. MYST is a great exam-
ple of a mentally challenging game. It’s
also a great example of a game that would
flop miserably in coin-op, which is why
coin-op games invariably prefer physical
challenges—challenges of eye-hand coor-
dination—to mental challenges, as the
core of game play.

Since such a physical challenge can
be presented and overcome in a fraction
of a second, such challenges must be pre-
sented at a rapid pace. “Tuning” a coin-

Designing coin-op

games is 

significantly different

from designing 

PC-based games.

Follow these basic

rules, and you will

increase your

chances of producing

a hit. 

Jeff Brown and 
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op game means sustaining the right bal-
ance between challenge and reward, at all
points in the game, for the largest group
of people who might play the game. Tun-
ing has to make both the first-time player
and the master player feel challenged and
successful, while still defeating them in
(generally) one-and-a-half to two-and-a-
half minutes per credit.

Atari’s AREA 51, a recent gun game,
has succeeded in large measure to its

excellent tuning of pace and rhythm. The
pace of challenges is slow at first, and
picks up gradually both in the short term
(during the course of a single play) as well
as in the long term (over multiple plays,
as the player advances farther into the
game). Both the rate at which enemies
appear on screen and the speed with
which they shoot at you after they appear
are used to increase the pace. Threats
come in distinct waves, ranging in inten-

sity from light (enemies come more or
less one at a time) to heavy (Yikes!
They’re all over the place!). Players do
well enough during light and medium
waves to feel good about their abilities
and know that even a small improvement
in skill (“just one more quarter…”) will
get them past the wave that they failed to
shoot their way through last time.

Brown’s Fourth Law: 
Offer Depth of Play
To continue to draw in coins, a coin-
operated video game must engage a play-
er’s interest even after repeated play.
“Depth” is that characteristic of a game
that keeps it interesting and challenging.
Depth can be provided through physical
challenges or mental challenges.

Mental challenges should offer a
simple choice between obvious alterna-
tives. The three kinds of mental chal-
lenges most effectively employed in coin-
op game design are set-up options, mid-
play options, and hidden elements.

Set-up options include things like
different teams, racetracks, or characters.
In a racing game, a given car may do bet-
ter on one track than another; having the
player choose both the car (c) and the
track (t) creates (c*t) combinations that
the player can explore.

Similarly, mid-play options give
players simple choices during the course
of a game. For example, in a racing game,
the track may include a long easy stretch
and a relatively difficult shortcut, tuned
such that only the skilled player would be
able to save time by taking the shortcut.

Hidden elements are things like
secret rooms, secret characters, and so on
which generally require that the player
know special information. These fre-
quently are revealed only by extensive
gameplay and word of mouth, creating
an “inside group” of which many players
will wish to be a part.

Physical challenge not only forms
the core of coin-op gameplay, but is usu-
ally the primary contributor to depth as
well. Consider the simple and obvious
controls of Capcom’s STREET FIGHTER

II. Anyone can walk up, pound away at
the buttons, and get at least a few good
blows in, by luck alone. But to truly mas-
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ter the controls—to be able to deliver a
specific three-blow combination perfectly
timed to maximize its effect on the
opposing character—takes a great deal of
physical skill. This skill can be acquired
only through extensive practice, which
trains the player’s muscles to perform the
needed actions smoothly.

But the separation of mental and
physical challenges is not pure, quite the
contrary. The pinnacle of mastery is
achieved only when the mental challenge
of selecting the ideal action, and the
physical challenge of delivering it, merge
into a mentally elevated state of being
(not to get too Zen-like here), in which
you simply are the character, and simply
do the right thing. As Miyamoto
Musashi, the legendary samurai duelist,
wrote in his Book of Five Rings (1643):

“First of all, when you take up the
sword, in any case the idea is to kill an
opponent. Even though you may catch,
hit, or block an opponent’s slashing
sword, or tie it up or obstruct it, all of
these moves are opportunities for cutting
the opponent down. This must be under-
stood. If you think of catching, think of
hitting, think of blocking, think of tying
up, or think of obstructing, you will
thereby become unable to make the kill.”

The game designer’s challenge is to
create a game that is sufficiently com-
pelling, that the player is stimulated to
play again and again, in order to reach
and enjoy this level of mastery. 

Learning By Example
This brief overview of the Laws of Coin-
Op is now complete. To understand
these laws fully, however, it would be
useful to discuss how the Laws would be
applied to existing PC games in the
main coin-op genres, to turn them into
potentially successful coin-op games.
Space does not allow such a discussion
here, but you’ll find exactly that discus-
sion—plus information on the great guys
who contributed their wisdom and
experience to the creation of this
paper—on Microsoft’s web site. Head for
http://www.microsoft. com/devonly, and
search for “coin-op.” You’ll find these
examples and a lot of other information
on the emergence of the high-end PC as

the new standard for coin-op video game
deployment. If you’re working on an
arcade or action-style game, you should
be thinking about coin-op—and the
information on our Web site will help
you get started.   ■

James Plamondon is a programmer,
author, avid gamer, and technical evange-
list. Currently the director of coin-op mar-
keting at Microsoft, he ensures Windows

meets the needs of the coin-op video game
industry. 

Jeff Brown is a freelance game designer
and consultant with eight years experience in
coin-op. Mr. Brown previously worked in
the coin-op divisions at Data East and Elec-
tronic Arts. He is now a principle of Advent
Game Design in San Jose, Calif. Both
authors can be reached via e-mail at
gdmag@mfi.com.
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Advanced Binary Space
Partition Techniques

B S P  T R E E S

L
arge, complex worlds com-
posed of thousands of poly-
gons often create problems
for game developers. It’s not
easy to display every polygon
correctly. In order to reduce
the number of polygons you
have to display, consider

using techniques based on the binary
space partition (BSP) to eliminate
polygons that aren’t visible from the
player’s perspective. 

The need for the BSP arises from
the problems associated with correctly
displaying polygons in a 3D visual envi-
ronment. One approach to displaying
polygons, known as the Painter’s algo-
rithm, simply draws each of the poly-
gons from the farthest point in space to
the closest until all polygons are drawn.
However, this solution doesn’t work if
some of the polygons are pierced by
other polygons. When one polygon
pierces another, the Painter’s algorithm

must draw the two polygons in three
steps: first, the farthest portion of the
piercing polygon is drawn, then the
pierced polygon is drawn, and finally
the portion of the piercing polygon in
front of the pierced polygon is drawn. 

Whether the scene is static (where
polygons are fixed in 3D space) or
dynamic (where polygons move from
frame to frame), the 3D game engine
has to draw the polygons in such a
manner that the display appears realis-
tic and matches the viewer’s expecta-
tions of solid objects in a 3D world for
all possible combinations of polygons. 

Polygon Collision Problem
Although the Painter’s algorithm solves
some problems associated with correctly
displaying polygons, it does not address
collision detection issues, nor does it
allow for shading, ray tracing, or other
illumination effects. This is where the
BSP algorithm becomes valuable. The

BSP algorithm stores polygons in a
given order, correctly handles overlap-
ping or penetrated polygons, and pro-
vides ways to tailor the algorithm to the
performance requirements of the most
demanding applications. The BSP algo-
rithm does have some disadvantages
however, which I’ll cover in a moment.

The BSP algorithm can be under-
stood when broken down into its basic
components: the storage component,
the space partition component, and the
polygon partition component. Each
component has its own set of optimiza-
tions and caveats.

The storage component stores and
retrieves the polygons in a specified
order. Usually, a binary tree is used as
the storage component. Other methods
(linked lists or octrees) are equally valid.
The binary tree excels at adding or
removing large numbers of polygons at
run time because its content can be
searched fast. However, when the 3D

Figure 1.  The partitioning polygon’s plane splits the scene into
two sides.
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Figure 2. None of the vertices of the test polygon are on the near
side of the partition.



game engine does not expect much in
the way of additions and deletions, a
linked list is faster. 

The space partition component
determines the position of a given poly-
gon relative to another polygon. The
objective is to use one polygon to define
a plane through the 3D space. All other
polygons are classified as either being
on the same side of the plane as the
viewer or on the far side of the plane
away from the viewer. A polygon can be
positioned on either side of the plane,
on the plane, or pierced by the plane. If
a polygon lies entirely on one side of
the plane or the other, you pass it to the
storage component. If the polygon is
pierced by the plane, it must be split
into two smaller polygons, which must
lie on either side of the plane. These
two polygons are then passed into the
storage component. 

The polygon partition component
determines how and where to split a
polygon when it is intersected by
another polygon or the partitioning
plane, which results in two or more
child polygons. 

The Initial BSP
Keeping the above components in mind,
I’ll outline the steps to build a simple
BSP algorithm. (I’ll use a brute-force
approach for simplicity’s sake, and
explore optimizations later.) To illustrate
the process, I’ll build a static BSP algo-
rithm, using a binary tree for our storage
method and triangles as our polygons. 

Starting with a world made up of
polygons, select any two of them and
designate one the partitioning polygon
and the other the test polygon. The par-

titioning polygon defines a partitioning
plane through the 3D scene. Take each
vertex of the test polygon and determine
which side of the partitioning plane the
vertex is on. I obtain the normal of the
vertex to the partitioning plane. The sign
of the normal indicates which side of the
plane the vertex is on (see Figure 1). The
partitioning polygon’s plane splits the
scene into two sides, hence the name
binary space partition (we want to know
which side of the partitioning plane the
test polygon is on).

The code for this operation is
called the partitioning function. I use it
to determine whether the test polygon
is in contact with the partitioning poly-
gon’s plane, and where on the test poly-
gon the contact occurs. Let’s take a
closer look at the partitioning function
now.

Here are three conditions to evalu-
ate when writing your partitioning
function:
1. If none of the vertices of the test poly-

gon are on the near side of the parti-
tion (from your viewpoint as in Figure
2), the test polygon goes on the left
node of the binary tree whose root
starts at the partitioning polygon.

2. If none of the vertices of the test
polygon are on the far side of the par-
tition (from the view point as in Fig-
ure 3), the test polygon goes on the
right node of the binary tree whose
root starts at the partitioning
polygon.

3. If some vertices of the test polygon are
on the near side of the partition and
some are on the far side (as in Figure
4), then split the test polygon into two
sub-polygons; attach one sub-polygon

The Binary Space 
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to the left node, and the other to the
right node. Make the split where the
partitioning plane intersects the test
polygon. You may use any standard
polygon intersection algorithm from
your favorite geometry book.

Our binary tree now contains the
two polygons (or the partitioning poly-
gon and several sub-polygons) in Z-
order. Repeat the three-step process for
all other polygons in the scene.

Illumination Effects
Once we’ve set up our initial BSP, we can
use it for ray tracing and other illumina-
tion effects. Modify the partitioning func-
tion used for the static BSP so that the
function returns data about the polygon
instead of adding a polygon to the binary
tree. This data tells whether the polygon
intersects any other polygon in the scene
and where the intersection occurs. 

Next, select the first ray you wish to
trace. For this example, I will use the tradi-
tional ray-tracing method of following rays
from the light source through the scene.
(Other methods exist; the use of the BSP is
similar for all.) Consider the ray, which is a
2D line through the 3D scene, to be a
degenerate polygon, with its two endpoints
as the three vertices of a triangle. (One of
the endpoints will be equivalent to two of
the vertices of a triangle.) Pass this ray to
the partitioning function so that it treats
the ray as if it were a polygon.

The partitioning function should
tell you if the ray contacts a polygon in

the scene. Once you know that, you can
apply any additional algorithms to the
point of contact such as reflection,
refraction, transparency, or luminosity.
You repeat the algorithm until all poly-
gons have been visited by the ray or the
ray flies off into infinity, and then repeat
again for every ray you want to trace.

The BSP algorithm can also be used
for collision detection and line-of-sight
(both direct and mirrored) calculations
by modifying the partitioning function in
the same way that we modified it for illu-
mination effects.

BSP in Dynamic 3D Games
Although BSPs have been used in static
environments, when properly optimized
they can be very useful in multi-frame
dynamic environments. The most com-
mon use is for managing collision detec-
tion, line-of-sight calculations, and poly-
gon culling in shoot-’em-up games. 

To enable these features, the BSP is
first built with the static methods out-
lined. During run time, the sorted order
of polygons in the BSP is maintained
between animation frames. (The brute-
force method would have you resort the
entire BSP every frame of your anima-
tion.) This approach would be correct
but horribly slow. Assuming a fully sort-
ed initial BSP, I have listed optimiza-
tions below that improve the speed dra-
matically (keep in mind, though, that
they are designed to produce a fast
result—not a perfect one).

1. The moving polygon optimization. Dur-
ing the user action stage in the game,
flag those polygons that have moved.
Before the BSP is accessed to draw
the polygons to the screen, resort only
those polygons that have moved.
There is no need to visit polygons that
have not moved. 

2. The nearest-neighbors optimization.
When testing a polygon against other
polygons in the tree, test the polygon
only against its immediate neighbors
in the tree. The polygons that are con-
sidered nearest neighbors are those
that are within the maximum distance
that a polygon can travel in a single
frame. 

3. The binary-plane split optimization.
Note that the reason a polygon is split
on either side of a binary plane is to
allow for illumination effects. If the
game does not require run-time illu-
mination, you don’t need to split poly-
gons with the plane of the partitioning
polygon. You only need to split those
polygons that are in actual contact
with other polygons.

4. The backface optimization. Since back-
faces aren’t visible, performance can be
improved by eliminating backface split-
ting. Avoid using backfaces as either
test or partitioning polygons. This
optimization is only valid if you don’t
use the BSP for illumination effects,
and you’ll still need to maintain the Z-
order of the backface as it may become
visible during another frame.

B S P  T R E E S
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Figure 3. None of the vertices of the test polygon are on the far
side of the partition.

Figure 4. Some of the vertices of the test polygon are on the near
side of the partition and some are on the far side.



5. The non-penetrating optimization. For
some applications, such as Doom-style
games, one polygon may never pene-
trate another. Thus, you may be able to
dispense with splitting altogether. 

6. The join optimization. Notice that the
BSP leaves several sub-polygons in
the tree whenever a polygon is split.
Given enough motion in the poly-
gons and the resulting polygon splits,
you will eventually end up with a
BSP that has many more polygons
than you started with. In the worst
case, every polygon will be split so
many times that you may end up
with a BSP filled with pixel-sized
sub-polygons! The solution lies in
going back through the tree, rejoin-
ing all the split polygons after draw-
ing each frame. If you’re flagging
moved polygons as part of a moving
polygon optimization, maintain the
flag when you join the splits.

7. Inter-frame coherency optimization.
Instead of maintaining the BSP
between each frame of your anima-
tion, do the maintenance every other
frame. If the motion of the polygons
from frame to frame is fast enough,
the image won’t suffer. In some
cases, you can postpone the mainte-
nance over several frames.

8. The linked-list optimization. Store all
your polygons in a linearly linked list
instead of a binary tree; this removes
any balancing issues, as well as prob-
lems caused by recursion depth.

9. The viewpoint-translate optimization.
You can place the viewpoint in the
tree (as a pseudo polygon), so that
when the viewpoint translates (but
does not rotate), no polygons are
processed (they have not moved rela-
tive to each other). Process only the
viewpoint pseudo polygon by sliding
it left or right in the tree, drawing
from the furthest leaf node to the
viewpoint node. This optimization
prevents having to balance the tree all
the time. (You have placed the view-
point in the tree as a virtual root, if
you will.) If there are objects in the
scene behind the viewpoint, you can
save even more time by stopping the
drawing process at the viewpoint leaf.

10. The bounding Z-box optimization.
When you have selected two polygons
for penetration testing, check the Z-
position of the polygons. If one of the
polygons is fully further in Z than the
other polygon, then the polygons are
not in contact. At this point, you can
exit the partitioning function even if
one of the polygons has reached the
partitioning plane of the other.

Viewing Frustum Culling 
in Dynamic Applications
The BSP can be used to quickly calculate
which polygons are within the viewing
frustum (that portion of your 3D world
visible on the screen). This technique
can greatly reduce the number of poly-
gons your program has to deal with. 

Consider the viewing frustum as
polygons making up the sides, base, and
top of a truncated pyramid. The sides of
the frustum should be considered poly-
gons in the 3D scene. These polygons
must have their own flags to uniquely
identify them, and their normals must
point into the viewing frustum.

Next, build the initial static BSP as
we did in previous sections. (You may
opt to add another flag to each polygon
indicating whether it’s inside or outside
the viewing frustum to simplify polygon
culling.) Use the moving polygon opti-
mization described. If the polygon
moves outside the viewing frustum, you
can discard it.

Testing Your 
BSP for Errors
Most errors in BSP implementations
are found in the partitioning function
and its handling of comparisons. The
accumulation of floating-point errors
makes these errors all the more vexing.
However, you can use a few simple tests
to identify the presence of these errors.

First, create two identical polygons
with identical vertices. Color one red
and the other blue so they are easily dis-
tinguished. For the first test, display
these two polygons with your BSP code
and observe them during several frames.
One of the polygons should occlude the
other at all times. If you notice that the
polygons switch Z-order each frame, you

have a problem calculating the sign of
the dot product of a vertex against a
plane in your partitioning function. If
your program freezes, the BSP is proba-
bly splitting both polygons into multi-
tudes of sub-polygons, trying to get all of
them on both sides of each other’s parti-
tioning planes. You probably used a “>=”
where you meant to use “>”.

For the second test, rotate the red
polygon about any axis in single-degree
increments each frame for a full 360
frames. The red polygon should fall away
behind the blue polygon, swing around,
and return to cover the blue polygon. The
coordinates of the vertices of the red poly-
gon should be the same as they were prior
to the rotation. If not, you may be accu-
mulating too many floating-point errors. 

For the third test, add a few lines of
code to your BSP so that polygons on the
left node of the binary tree are colored
blue and those on the right node are col-
ored red. Now, create two polygons; one
coplanar with the XY plane; the other
with the YZ plane. Move the two poly-
gons so that they intersect and interpene-
trate each other. The motion should take
several frames. Observe the polygons as
they intersect. The color of the sub-poly-
gons created by the split operations
should change at the line where the two
polygons intersect. When the two poly-
gons have completely passed through
each other, they should each consist of a
solid color. If they don’t, you have a prob-
lem in the join optimization. (You’re
doing join optimizations, aren’t you?)

The binary space partition is an
extremely flexible and powerful algo-
rithm. Properly optimized and applied,
it can form the core of the most
demanding 3D applications. By using
well-known components, such as binary
trees, linked lists and octrees, a robust
implementation is easily achieved. This
well-respected algorithm is a useful
addition to any tool chest.  ■

Mike Kelleghan writes 3D engines for
various game companies in Southern Cali-
fornia. He thrives on pizza, Jolt Cola, and
grandkids. You can usually find him in the
GAMEDEV forum on Compuserve. Con-
tact him via e-mail at gdmag@mfi.com.
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DirectInput:
Microsoft’s 
Peripheral Vision

D I R E C T I N P U T

T
oday’s games are much more
complex than those just a cou-
ple years old. There’s a need,
therefore, to increase the
sophistication of the peripher-
als that control the action, and
Microsoft responded with
DirectInput. By collecting up

to six axes (left/right, up/down, back-
wards/forwards, and a barrel roll
around each of these axes) and 32 but-
tons of data from a peripheral device,
DirectInput is a fundamental shift from
the previous joystick interfaces that
supported only three axes of data. It
also leverages the performance increase
digital joysticks offer. Finally, DirectIn-
put reduces the peripheral coding
required by game developers to a few
simple functions, and it returns normal-
ized data that lets you easily configure
all kinds of devices. This article discuss-

es the implementation details of using
DirectInput through version 2.0. 

The DirectInput
Architecture
As shown in Figure 1, the DirectInput
architecture in Windows 95 provides
two separate data paths for 16- and 32-
bit applications. DirectInput removes
the burden that polling joysticks and
configuring special controllers place on
the system and game developer. Vendors
that make joysticks, flight yokes, control
pads, or other input devices for Win-
dows 95 games must supply their own
DirectInput driver to communicate with
VJOYD.VXD, which is the 32-bit dri-
ver that polls the joystick. The
VJOYD.VXD then turns the devices’
axis data in to DWORDs (an unsigned long
data type) with values ranging between 0
and 65535 and point-of-view (POV)
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Figure 1.  The DirectInput Architecture
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D I R E C T I N P U T

data values ranging from 0 to 35900
(measured in angular degrees). (The
POV data lets a player acting as a pilot
look around without changing the
motion of the ship the player is traveling
in. A player can look out of a plane
cockpit to the right, left, or behind.)
New digital devices provide a significant
performance improvement over analog
joysticks because valuable time is not
wasted by polling for data. 

DirectInput 1.0 and 2.0 use the
Windows 95 registry to store data that
your game will need to access. This data
includes device and calibration data, cur-

rently installed joysticks,
and joystick capabilities.

Getting Started 
With DirectInput
You can incorporate
DirectInput into your
application by linking the
WINMM.LIB file and
including the MMSYS-
TEM.H file with your
executable. These files are
located in the compiler’s
library (\lib) and include
directories, respectively.

When your game is launched, it should
first determine the number and type of
input devices present. DirectInput can
support up to 16 different joysticks.
The MMSYSTEM.H defines two joy-
stick IDs, JOYSTICKID1 and JOYSTICKID2,
with the remaining joystick ID num-
bers to be set by the user using values 2
through 15. You might be tempted to
use the function joyGetNumDevs() to
retrieve the number of attached joy-
sticks, but under Windows 95 this
function determines how many joy-
sticks the present driver can support
(which is always 16), not how many are

attached to the system. You
can easily determine
whether a joystick is
attached by looping
through joystick IDs 0
through 16 and determin-
ing the capabilities of each
joystick, like the function
in Listing 1. This function
will return capabilities of
attached joysticks or an
error code JOYERR_PARMS.

After your application
has detected a joystick, the
capabilites structure, JOY-
CAPS,  provides detailed
information about the
device. The joystick capa-
bilities structure provides
information on the mini-
mum and maximum value
of each axis, the presence
or absence of a POV con-
trol, the number of buttons
and axes, and the registry

location of the joystick driver. Listing 2
shows the JOYCAPS structure.

By determining the capabilities of
the attached device, you can match your
game’s performance to the capabilities of
the attached peripheral. To display a list
of attached devices as they would appear
in the joystick properties control panel,
use the function in Listing 3. Just pass
the returned szRegkey value and the asso-
ciated joystick ID number. 

Capturing and Configuring
the Joystick
To capture a joystick, use the joySetCap-
ture function like this: 

MMRESULT joySetCapture(HWND hwnd, UINT

uJoyID, UINT uPeriod, BOOL fChanged); 

If joySetCapture fails to capture the
joystick, it will return one of the three
error messages shown in Table 1. This
capture function must be called for each
joystick individually.

When a joystick is captured, the
joySetCapture function configures the
VJOYD.VXD to perform either event-
driven or polling data transfers. Today’s
digital joysticks produce event-driven
data, which means that applications save
precious CPU cycles by putting the onus
on the joystick to inform the computer
of a movement or button event. Polling
and event-driven data will be explained
more thoroughly in the next section. 

The fChanged flag in the joySetCap-
ture function can either be set to TRUE or
FALSE. A setting of TRUE configures the
joystick for event messages, while setting
fChanged to FALSE will tell the computer to
poll the joystick for changes. If polling is
selected, you must set the period between
callback messages (measured in millisec-
onds). The wPeriodMin and wPeriodMax
flags from the joystick capabilities struc-
ture provide the feasible polling rate
range for your application. Setting uPeri-
od to 0 results in the minimum polling
frequency of the attached device. 

Setting fChanged for event messages
(TRUE) means that a motion event will
only be sent from the VJOYD.VXD
when the joystick movement crosses the
“defined” threshold. Initially, the default
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typedef struct { 
WORD wMid;                  \\ manufacturer identifier 
WORD wPid;                  \\ product identifier 
CHAR szPname[MAXPNAMELEN];  \\ Driver name  
UINT wXmin;                 \\ min. x-coordinate 
UINT wXmax;                 \\ max. x-coordinate 
UINT wYmin;                 \\ min. y-coordinate 
UINT wYmax;                 \\ max. y-coordinate 
UINT wZmin;                 \\ min. z-coordinate 
UINT wZmax;                 \\ max. z-coordinate 
UINT wNumButtons;           \\ no. of joystick buttons 
UINT wPeriodMin;            \\ minimum supported polling freq. 
UINT wPeriodMax;            \\ Maximum supported polling Freq

\\  The following members are not in previous versions of Windows. 
UINT wRmin;                 \\ min  r-coordinate 
UINT wRmax;                 \\ max. r-coordinate 
UINT wUmin;                 \\ min  u-coordinate 
UINT wUmax;                 \\ max. u-coordinate 
UINT wVmin;                 \\ min  v-coordinate 
UINT wVmax;                 \\ max. v-coordinate 
UINT wCaps;                 \\ Point of View Capabilities 
UINT wMaxAxes;              \\ max. Axes supported 
UINT wNumAxes;              \\ max. Axes used 
UINT wMaxButtons;           \\ Max buttons on device
CHAR szRegKey[MAXPNAMELEN]; \\ Registry key for the msjstick.drv 
CHAR szOEMVxD[MAXOEMVXD];   \\ Oem’s VXD name 

} JOYCAPS; 

Listing  2.  The JOYCAPS Structure
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MMRESULT  joy_error; // Joystick Status/Error

LPJOYCAPS joy_cap; // Joystick capabilities structure

UINT joysizestruct;  // Size of Joystick Structure

unsigned int joy_num;

joy_cap = malloc(joysizestruct=sizeof(*joy_cap));

for(joy_num=0;joy_num<16;joy_num++)

{

if(!(joy_error=joyGetDevCaps(joy_num,joy_cap,joy

sizestruct)))

{

/* Found a Joystick Extract Name and axes from

registry*/

}

}

Listing  1. Determining if joystick is attached



threshold of an attached device is 0. The
value of the threshold is an unsigned inte-
ger ranging from 0 to 65535. The thresh-
old must be set carefully. If it is set too
high, all movements from a device will be
eliminated; if it is set too low, the slight-
est touch on the input device will cause a
reaction. Altering the threshold of the
joystick is important when the joystick is
set for event-driven data collection.

An appropriate threshold prevents
spurious callback message generation.
The threshold will stabilize the images
on the screen by limiting rendering to
movements of the defined magnitudes.
You can alter the threshold value by call-
ing the following function:

MMRESULT joySetThreshold(UINT uJoyID,

UINT uThreshold); function

Subsequently, you can check the
threshold by using the following function: 

MMRESULT joyGetThreshold(UINT uJoyID,

LPUINT puThreshold); function

It’s important to understand that
the joystick callbacks in DirectInput
Version 1.0 and 2.0 are generated for
any motion or button event, up to the
first four buttons pressed or released.
(This is a throwback to the older joy-
sticks.) The state of the remaining but-
ton is returned in the dwButton value of
the joystick, but no callback messages
will be generated. 

Since Windows 95 is a multitasking
operating system, it’s important to
remember that more than one application
can collect data from the joystick at a
time. With multiple applications collect-
ing data, the data stream to an application
can be interrupted causing data loss—
meaning a player’s motion or button event
might not be registered by the game. One
way to prevent such data loss is to see if
another application has captured the joy-
stick. While an application can request
data from VJOYD.VXD without captur-
ing the joystick, only one application may
capture the joystick at a time. Also beware
that other applications can still interrupt
the data flow by calling joyGetPosEx with-
out capturing the joystick. 
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/*---------------------------------------------------------------------*/    
int GetJoystickName(UINT joy_num,BYTE szRegKey[MAX_PATH],BYTE szReturnName[MAX_PATH])
/* 

Description :  Opens the MediaResources\Joysitick\mjstick.drv<xxxx>\JoystickSettings and 
extracts Joystick%dOEMName string

Arguments :     joy_num    (r/o) - Joystick Number
szRegKey   (r/o) - Registry Key of the msjstick.drv
ReturnName (r/w) - Return String for name listed in Control Panel                           

Returns :             0 for success 1 for failure
/*-----------------------------------------------------------------------*/ 
{

BYTE KeyStr[MAX_PATH] = REGSTR_PATH_JOYCONFIG;       // found in regstr.h
BYTE KeyJoySetStr[MAX_PATH] = REGSTR_KEY_JOYSETTINGS; // found in Regstr.h
BYTE szOEMName[MAX_PATH];                             // OEM name from Current Settings
HKEY ConfigKey;
HKEY JoyConfigKey;                                    // Joystick Configuration
HKEY DriverKey;                                       // Joystick Driver Key
HKEY OEMPropKey;
HKEY PropKey;
MMRESULT test;
DWORD Length;
BYTE Crap[MAX_PATH]; // Opens msjstick.drv <xxxx>
if( ERROR_SUCCESS != RegOpenKey( HKEY_LOCAL_MACHINE,REGSTR_PATH_JOYCONFIG,&ConfigKey ) )

{
return( 1 );                // It should never get here key received from Caps
}                              

if( ERROR_SUCCESS != RegOpenKey( ConfigKey, szRegKey, &DriverKey ) )
{
return( 1 );       // It should never get here key received from Caps
}                              

// Open CurrentSettings Key

if( ERROR_SUCCESS != RegOpenKey( DriverKey, REGSTR_KEY_JOYCURR, &JoyConfigKey ) )
{
return( 1 );                  // It should never get here always a Current Settings
}

sprintf(KeyStr,REGSTR_VAL_JOYNOEMNAME,joy_num+1);   
Length=sizeof(szOEMName);                        // Get OEMNAME Configuration

if( ERROR_SUCCESS != RegQueryValueEx( JoyConfigKey,KeyStr,NULL,NULL,(unsigned char *)&szOEMName,&Length))
{
return( 1 );                                // No OEM name listed return error

}
RegCloseKey( REGSTR_PATH_JOYCONFIG);      // Closes the registry Key

// Open OEM Properties Key
if( ERROR_SUCCESS != RegOpenKey(HKEY_LOCAL_MACHINE,REGSTR_PATH_JOYOEM,&PropKey ) )
{
return( 1 );                  // It should never get here key received from Caps
}                              

if( ERROR_SUCCESS != RegOpenKey( PropKey, szOEMName, &OEMPropKey ) )
{
return( 1 );                  // It should never get here if device is selected
}

Length=MAX_PATH;                        // Get Name as listed in Control Panel

if( ERROR_SUCCESS != RegQueryValueEx( OEMPropKey,REGSTR_VAL_JOYOEMNAME,NULL,NULL,(unsigned char *)szReturn-   
Name,&Length)))
{
return( 1 );                              // No OEM name listed return error

}
RegCloseKey( REGSTR_PATH_JOYOEM);         // Closes the registry Key
return 0;

} /* End GetJoystickName */

Listing  3. Displaying a list of attached devices



Receiving Data 
From the Joystick
Once the joystick is set up, your game
can begin to retrieve data from it. The
messages sent to the application consist
of MM_JOY1MOVE, MM_JOY1BUTTONUP, and
MM_JOY1BUTTONDOWN. When any button is
pressed, for example, the MM_JOYBUTTON
event is triggered and you have to deci-
pher what button was actually pressed.
In an application using event-driven
messaging, the application must process
all messages, while polling applications
need only to process move messages
because the button’s state is stored with-
in the position information. A polling
application can optionally process button
messages too, because these messages are
still generated from the VJOYD.VXD. 

To utilize the data from all six axes
available in DirectInput, the joyGetPosEx
function must be called instead of the
joyGetPos function from Windows 3.11.
The joyGetPos function is supported
under DirectInput, but only for back-

ward compatibility. The joyGetPosEx
function extends the collection of data to
six axes, 32 buttons, and a POV. The
dwFlags parameter of the JOYINFOEX struc-
ture determines the type and amount of
data an application receives from the
VJOYD.VXD. The code fragment in
Listing 4 is an example of processing a
motion callback. I have placed the
JOY_RETURNALL flag inside the loop for this
example. The returned data structure for
joyGetPosEx is shown in Listing 5.

When data from a device is collected
using the JOY_RETURNALL flag, axis data is
standardized between 0 to 65535 (DWORD)
and the POV data is standardized
between 0 and 35900 (DWORD). To use this
data, you divide the return value by 100
for the pressed angle on the device. For
optimum performance, only request the
desired information from the joystick;
event or polling timer loops must be con-
figured for analog joysticks. The need to
request only the desired data is removed
when the device is purely digital. Because
the dwFlags controls the data returned,
you can request selected axes by passing
an “or-ed” combination of individual axes
into the dwFlags prior to calling the
joyGetPosEx function. For example, if your

application requires only X and Y data,
code it like this:

joy_data->dwFlags = JOY_RETURNX |

JOY_RETURNY

Requesting data from only the pertinent
joystick axes in this way will save valuable
CPU time. A complete list of dwFlags is
listed in your compiler’s help files for the
JOYINFOEX structure, but I’ve listed some of
the common ones in Table 2.

There are two return values for but-
ton data. The first one, the dwButton
field, stores a 32-bit mask for the state of
the button at the time of the function
call. The second, dwButtonNumber, stores
the number of the lowest button pressed
(meaning if button 1 and 2 are pressed,
dwButtonNumber will be 1 and dwButton
will be 3). 

A note about processing the data
from peripheral devices. While Direct-
Input has standardized to six axes, not
all peripherals have all six axes, nor do
they map to the same common move-
ment to axes. Many applications allow
peripheral vendors to set an axis map
for their game. The common conven-
tion is a string containing the map. An
axis map consists of six letters—
XYZRUV. The letters represent the
joysticks data axes 1 through 6. The
string can be read from the registry and
configured within your game. Since the
axes of different controllers move in
different directions, axis data can be
inverted by using lowercase letters. For
example “xUZRYV” is the axis map-
ping for Doom with my company’s
input device, the Spaceball Avenger.
The first axis is strafe (translate X), the
second is rotation (rotate Y), and the
third is move forward (translate Z).
Different controllers may configure
Doom differently. For example, the

D I R E C T I N P U T
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MMSYSERR_NODRIVER The joystick driver is not present.

JOYERR_NOCANDO Cannot capture joystick input because a required service (such as a Win-
dows timer) is unavailable.

JOYERR_UNPLUGGED The specified joystick is not connected to the system.

Table 1.  Joystick Capture Error Messages
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LPJOYINFOEX joy_data;

case  MM_JOY1MOVE :  
// I am using polling so I am only 
watching for motion events

joy_data->dwFlags = JOY_RETURNALL  
// Configures for the axis data to return

if((joy_error =joyGetPosEx(JOYSTICKID1,joy_data)))
{
return (-1); 

// No Data
}

// Process Data for your application
return(0);

Listing  4. A motion callback

typedef struct joyinfoex_tag {
DWORD dwSize;       \\ size, in bytes, of this structure
DWORD dwFlags;   \\ flags for return data
DWORD dwXpos;      \\ current x-coordinate
DWORD dwYpos;      \\ current y-coordinate
DWORD dwZpos;      \\ current z-coordinate
DWORD dwRpos;      \\ Rudder information
DWORD dwUpos;      \\ current 5th axis position
DWORD dwVpos;      \\ current 6th axis position
DWORD dwButtons;  \\ mask of the button state
DWORD dwButtonNumber; \\ lowest button number pressed
DWORD dwPOV;            \\ Point of View position 0 to 35,900  divide number by 100 for angle measurements
DWORD dwReserved1;    \\ reserved; do not use
DWORD dwReserved2;    \\ reserved; do not use

} JOYINFOEX;

Listing  5. Returned data for joyGetPosEx



Microsoft Sidewinder would create a
map “XRYZUV” where X is strafe
(Translate X), R is rotate (the twist on
the top of the controller), and Y is mov-
ing forward (Translate Y). Only the
first three axes are used in Doom; the
remaining three axes are not used.

Closing the Joystick
Upon completion of your application,
the joystick should be released. If the
application does not explicitly release the
capture, the system will release the joy-
stick automatically when the application
closes. To release the capture of the joy-
stick use the following function:

MMRESULT joyReleaseCapture(UINT uJoyID);

Complete Code Sample
The complete code is available on the
Game Developer web site. It is a simple
polling joystick application from the Wnd-
Proc function. The code will check to see

what joysticks are connected, check their
capabilities, get the manufacturer’s name
for the device, set up a polling loop, and
process joystick 1 messages.

The Next Step
While DirectInput is presently limited
to Windows 95, it has been suggested
that it will be available under Windows
NT 4.0. The burden of configuring joy-
sticks and setting up polling loops has
been removed from the game. DirectIn-
put 3.0, which is being developed as I
write this article, will likely be released

about the time this article is published.
Version 3.0 will collect data from all
types of peripheral devices including
mice, keyboards, data gloves, and force-
feedback joysticks. It will also support
virtual devices, which will allow unlimit-
ed axes and buttons.   ■

Brian Gosselin is a project leader for
Spacetec IMC, makers of the Spaceball
products, including the Spaceball Avenger
and SpaceOrb360. He can be reached via e-
mail at gdmag@mfi.com.
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JOY_RETURNALL Return all axis data and POV data = the or of all dwFlags except 

JOY_RETURNPOV Return POV data

JOY_RETURNRAWDATA Return the raw data from a device prior to normalizing to 0 to 65535

JOY_RETURNBUTTONS Return button information

JOY_RETURNX Return just X axis data

Table 2. Common flags in dwFlags
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R
emember the ads for Sea
Monkeys in the back pages of
comic books? The illustration
showed these darling little
pink people-like creatures:
there was the Sea Monkey
king with his crown, little Sea
Monkey kids, an oddly appeal-

ing she-Sea Monkey, and a fantastic Sea
Monkey castle in the background. The
breathless ad copy led one to expect these
little charmers would be more fun to
watch than Saturday morning cartoons.
Gazing at the ad, I could picture my per-
sonal Sea Monkey colony going about
their subaquatic business, skinny pink
limbs paddling the crystal clear water,
every once in a while looking up to smile
their innocent Sea Monkey smiles at me
through the squeaky clean glass.

I never actually sent away for the
Sea Monkeys because caring for a fish-
bowl of little people, smiling and happy
and yet so fragile and needy in their tiny
pinkness, seemed, the more I thought
about it, a crushing responsibility for a
child. I had flushed more than one gold-
fish by then and buried a few stiff gerbils,
and I was afraid, frankly, of finding these
adorable little humanoids belly up in
their bowl, their endearing smiles twisted
into deathly grimaces. It wasn’t until
some years later that I actually saw the
reality of Sea Monkeys: freeze-dried
brine shrimp eggs that resume their rudi-
mentary lives when dumped unceremoni-
ously into water—minuscule aqueous
bugs with less personality than a dande-
lion puff, about as much fun to watch as
the bubbles in a glass of soda.

I was put in mind of the Sea
Monkeys again when reading the simi-

larly breathless copy that preceded the
release of Character Studio, the new
figure animation plug-in for 3D Studio
Max. “MUSCLE-BULGING, TENDON-
STRETCHING, AND VEIN-POPPING

DETAIL,” it promised in bold capitals.
“JUST PLACE THE FOOTSTEPS INTO

YOUR SCENE AND WATCH IT CREATE

100% BELIEVABLE MOTION RIGHT

BEFORE YOUR EYES. Make your char-
acters walk up stairs, jump through
hoops, or dance to the beat!” Yeah,
right, I thought. Just add water!

After spending a couple of weeks
with a prerelease version of the software,
however, I had to admit this wasn’t hype.
Well, okay, yes it is hype, but in this case
the product pretty much delivers on the
hype. Of course it isn’t quite as effortless
as the ad copy makes it sound (what ever
is?), but Character Studio gives you truly
amazing figure animation tools that will
help you bring your 3D characters to life
in ways you might have dreamt of but
never thought possible.

Character Studio was developed as a
3D Studio Max plug-in for Kinetix (the
Autodesk multimedia division) by Unreal
Pictures Inc. of Palo Alto, Calif.  3D
Studio Max, therefore, is a prerequisite
for Character Studio, which does not
work as a stand-alone program. Rather, it
adds revolutionary figure animation tools
to Max’s already impressive 3D toolkit
(see the Aug./Sept. issue for more on
Max). It also ups the hardware ante
some: whereas a minimum of 32MB
RAM is required for Max, 64MB or
more is recommended for running Char-
acter Studio, though it will run on any
system capable of running Max. Most
Character Studio features are quite usable

Walk this Way

Kinetix takes a giant

step toward 

revolutionizing figure

animation with 

Character Studio, a

new plug-in for 3D

Studio Max.

David Sieks
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with only 32MB RAM, but given the
complexity of character models, animation
playback is problematic when memory is
in short supply.

Character Studio consists of two
major components, Biped and Physique,
which fit themselves seamlessly in with
the existing Max toolset and any other
installed plug-ins. Biped provides a cus-
tomizable, animatable mannequin with
built-in character dynamics. Physique
allows the user to “skin” this biped (or
other “bones” structure) and refine the way
this skin moves in tandem with the under-
lying armature. All of which sounds great
but definitely raises more questions than it
answers. So let’s take a good look at what
sort of hoops the user has to jump through
to make a character do the same.

Biped 
With a drag of the mouse, Biped lets you
create a two-legged mannequin. Click,
drag, and there it is on the screen, wait-
ing to be put through its paces. The
default is the standard human makeup,
but by typing in new creation parameters
for the biped you can dictate much of its
basic physiognomy: remove the arms,
make the neck or spine more flexible, add
a tail of variable length and flexibility,
change the number of fingers or toes, or
add an extra joint to the legs. You can
then use Max’s usual transformation tools
to scale and rotate body parts to arrive at
the desired configuration.

Two nice Character Studio fea-
tures—Symmetrical Tracks and Copy
Posture—provide different shortcuts to
body symmetry. Symmetrical Tracks
allows you to adjust matched body parts
(both thighs, for example) simultaneous-
ly, while Copy Posture and its helpmate
Paste Posture Opposite translate the
selected configuration to the other side of
the body. You’ll perform these transforms
mostly to conform the biped to the
dimensions and features of an existing
character model, but you can create,
modify, and animate a biped without
attaching it to any other geometry.

Note that these modifications have
their limitations: fingers always have three
joints, while a tail can have no more than
five segments and arms are either there or

they aren’t—no four-armed Martian war-
riors with Biped—and, of course, a biped
can only be two-legged. Also, structure
parameters are not animatable, so your
biped can’t grow a tail mid-animation.
These limitations only apply to Biped.
Max’s “bones” feature can be used to con-
struct more freeform armatures. Bones can
even be linked to a biped to create addi-
tional limbs, but they will not share in
Biped’s built-in character dynamics and
must be carefully set up with their own
inverse kinematics (IK) parameters.

Biped’s character dynamics are a
dream come true, and combined with the
revolutionary ease-of-use of “footstep-dri-
ven” animation, they form Character Stu-
dio’s most immediately impressive feature.
Basically, the user specifies with the click
of a button whether the figure is to be
walking, running, or jumping, and lays out
the general course of a movement routine
by plotting out steps, like those dance-by-
the-numbers footprints. Steps can be plot-
ted singly or with the Create Multiple
Footsteps feature, which lets you indicate
which foot goes first, the number of steps,
and length of stride. Once these footsteps
are activated, the biped walks, runs, or
jumps along its path as indicated. 

Because the biped has a built-in
understanding of motion dynamics and
gravity (user-definable, too), the resulting
movement is surprisingly tasty right out of
the can. Footsteps can be placed over
uneven ground—to which the biped
adapts by shifting its center of gravity to
account for the changing terrain—or at
different elevations, so the biped climbs a
stairway or leaps from ledge to ledge.

Even this default movement genera-
tion is more satisfactory than much of the
stiff, awkward 3D character animation
we’ve all seen. Still, it is rather character-
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Character Studio enables artists to easily swap and splice movement routines for any Biped-
controlled figure. Here, an alien modeled by Emile Degray of Viewpoint Datalabs dances a cha-
cha animated by Michael Girard of Unreal Pictures, with additional hand movements added by
Robert Lurye of Rhythm & Hues.

Animate with Biped, then add muscle and
tendon action with Physique.



less and is not intended as a final solution,
but as a way to let the animator quickly
block out the scene’s action before tweak-
ing figure movement by hand. Toward
this end, standard Max transforms can be
used to manipulate the Biped throughout
the footstep-driven routine, adding small
details—a turn of the head, fidgeting
hands, sashaying hips—or adding major
actions to the existing gait—shooting a
gun while running or swatting at a cloud
of bees while jumping from a cliff. All
these actions invoke Biped’s built-in IK,
which helps your hands-on tweaking
more readily achieve the desired effect.

In addition to manipulating the
body directly, you can manipulate foot-
steps to add character to a routine: you
can select and rotate footsteps in or out,
for example, so your character saunters
like a bow-legged cowboy or waddles like
a duck. Or you can rotate a jumping
biped’s landing marks 180 degrees, and it
will automatically perform a half twist in
mid-air so it lands accordingly. It’s not a
perfect twist, mind you—or rather, it’s
too perfect, because Biped uses a “quater-
nion interpolation scheme” for rotational
motions, not a physics-based simulation
as it does for horizontal and vertical
dynamics. The biped doesn’t know

enough to whip its arms and corkscrew its
trunk like Greg Louganis twisting off the
high board, but with a little more tweak-
ing, you can fake that pretty well, too, and
the embedded IK helps a lot in this.

In combination with Max’s Track
View, which displays and allows for the
editing of keyframes, a new Biped Play-
back feature makes for very interactive
real-time motion editing. Biped Play-
back reduces the biped to a glorified
stick figure and lets you watch the
motion smoothly regardless of RAM.
While watching the looping playback,
keys can be dragged in the Track View
to easily adjust pacing.

Once you’ve honed your movement
routine, you save it in a .BIP file. Any
.BIP file can be loaded for any Biped
figure, so you can build a repertoire of
movement routines for any and all char-
acters. Footsteps and all associated
movement keys can also be cut, copied,
and pasted to splice together different
movement routines. Additional hands-
on tweaking is usually required to segue
smoothly from one routine to the next. 

You turn this Biped animation
from a neat conversation piece into a
useful production tool by attaching the
mannequin to a 3D character model. A

Biped can be linked piece by piece to a
trusty old segmented model for anima-
tion, but is most powerful and most
promising when attached to a seamless,
unjointed model using the other half of
Character Studio, Physique.

Physique
Physique associates an object mesh, rep-
resenting the outer skin, with an under-
lying armature—a Biped or bones struc-
ture—which serves as a skeletal frame.
Further, it provides a range of tools for
controlling how the skin moves with the
bones. In these functions, it is similar to
an older 3D Studio plug-in with which
the reader might be familiar: Animatek’s
BonesPro, from Digimation. There are a
lot of differences between the use of the
two, however—a source of confusion for
some BonesPro users picking up Char-
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A simple cylinder is transformed into an
arm with Physique’s Cross Section editor,
which deforms the cylinder and controls
the bulging action of muscles. Veins pop at
the wrist and biceps flex.

Click and drag to create a biped, a figure animation armature with built-in character dynamics.



acter Studio. Whether you’re familiar
with BonesPro or not, working with
Physique is a hands-on process, but it
offers the animator a great amount of
control in defining the movement char-
acteristics of skin and muscle.

The Physique process starts with a
character model—Character Studio does
a lot, but it does not obviate the need for
a good model. Physique can use any ver-
tex-based mesh, patch, or shape. For
quick humanoid figures, something I’ve
found handy is Fractal Design’s Poser.
Poser is primarily intended as a digital
artist’s model: it lets you pose and
dimension a realistic three-dimensional
human figure for static renderings, with
models of both sexes ranging from infant
to superhero. More to the point, it also
lets you export the figure as a .DXF file,
which Max can then import. This gives
you a quick and easy, mid-res (1,500
polygons) 3D human model that you can
edit with Max’s tools, skin with

Physique, and attach to a biped for ani-
mation. It’s a nice solution when you
need an animated figure fast.

Subsequent steps are made immea-
surably easier if the model is positioned
in a reference pose; typically standing
erect, arms held out straight to the sides.
This aids greatly when lining up the
biped or bones armature with the model.
Once you’ve fitted model and skeleton
together and saved the scene, you apply
the Physique modifier to the model,
which is then attached to the Biped.
Care in dimensioning and positioning
the skeleton dictates its effectiveness
during the animation. Thanks to Max’s
Modifier Stack feature, though, changes
can later be made to the skeletal struc-
ture to correct problems.

With a biped skinned with
Physique, you next load a .BIP file move-
ment routine and see how well the char-
acter performs. You’ll see some things you
don’t like as Physique makes its best guess

where and how to assign the model’s ver-
tices to the underlying armature. The
default vertex assignment logic works
well, but can’t be expected to fully match
your expectations of how the model
should deform as it moves. Problem areas
on a biped are the pelvis and armpits.

The next step then is to edit prob-
lem areas on the vertex level by reassign-
ing links and changing the status of select
vertices from flexible to rigid so that, for
example, the character’s face does not
stretch and contract as the figure moves.
The biped is returned to its reference pose
during these operations. Once you’ve
made adjustments, you can run through
the animation again to see how well your
vertex reassignments work. 

This is where you want plenty of
RAM to allow smooth playback of a
complex shaded model. If smooth play-
back isn’t possible on your system, you
can step through the animation using the
timeline, but it is harder to spot the
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smaller, lingering problem areas this way.
Max’s Optimize modifier can be used to
simplify object geometry while you are
working, which can help speed playback,
but the lower detail of the optimized
model means that it may not deform as
accurately as the fully detailed mesh. The
real solution is to have a beefy enough
machine to push all those polygons.

Aligning the biped and correcting
vertex assignments can be painstaking
work, and your first couple of attempts
are likely to be less than entirely success-
ful. Nonetheless, if you’re familiar with
the workings of Max, it really doesn’t
take too many hours after first starting
with the plug-in to arrive at a realistically
animated, smooth-skinned model. But
don’t worry, you can spend many more
hours using the rest of Physique’s fea-
tures to bring your character to an even
greater level of realism.

Once the object geometry is linked
to the armature, Physique provides a

number of tools to control just how the
skin and bones work together. Link
Parameters affect how vertices deform
around joints: how the skin reacts to
bending, twisting, and stretching move-
ments. Tendons provide links between
bones, so that lifting the arm, for exam-
ple, causes corresponding movement in
the flesh of the side, chest, and back.
Bulges simulate muscle action by flex-
ing throughout a specified range of
movement.

Each feature is optional and can be
employed to whatever level of detail you
require. You can simply make a charac-
ter’s biceps bulge when the arm is bent, or
you can build a complete web of muscular
interactions. Myriad adjustable parame-
ters provide finegrained control over the
behavior of muscles and the interplay of
flesh and bone—for example, you can
cause a muscle bulge to flex evenly over
the course of a movement or to snap sud-
denly to full flex at a particular point.

You can get up and running with
Character Studio’s basics quite quickly,
but a lot of experimentation is required to
understand how best to make use of these
advanced Physique features. With prac-
tice, they can help you create a character
model whose body moves with uncanny
verisimilitude in virtually any situation.
Physique can even be used as a modeling
tool to add details that don’t exist in the
object geometry (see screenshots).
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Character Studio
Character Studio
Kinetix—Autodesk Inc.
111 McInnis Pkwy.
San Rafael, Calif.  95903
Tel: (800) 879-4233
Web: http://www.ktx.com/products/03chrstu/
Price: $995
System Requirements: 90 MHz Pentium PC,
Windows NT 3.51, 32MB RAM, 100MB swap
space, PCI or VLB graphics card, screen reso-
lution of 800x600x256 colors, CD-ROM drive.



What a Character
Once the initial giddiness wears off, the
one thing almost every Character Studio
user comes around to wishing for is that
these terrific figure animation tools
included facial expression. Character
Studio Product Manager Phillip Miller
hints that a facial deformation plug-in
and a quadruped animation plug-in are
in the works—though no details or pro-
jected release dates are forthcoming. In
the meantime, Max’s own patch model-
ing capabilities can be used to create nice
facial animations, and early Character
Studio adopters are experimenting with
bones and tendons to animate a face.

As usual, the documentation from
Kinetix provides a great introduction to
the software’s basics. I’d like to see the
coverage go further insofar as some of
the more advanced capabilities of
Physique, but the Character Studio
manual is more than sufficient to get
Max users up and running. Users anx-

ious to get started with Character Studio
who aren’t yet familiar with Max will
want to check out 3D Studio Max Fun-
damentals, a helpful supplement to the
Max manuals and tutorials by Michael
Todd Peterson (New Riders, 1996),
which also includes some useful infor-
mation for those migrating to Windows
NT for the first time. For that matter,
anyone using or contemplating the
switch to Max may also want to consider
another Peterson book entitled Windows
NT for Graphics Professionals (New Rid-
ers, 1996); it’s a handy guide to the OS
and the machines that run it, targeted to
our particular needs.

I have been sufficiently impressed to
recommend Max as a powerful and usable
3D animation tool, but Character Studio
redefines it as a must-have application for
the serious computer animator. You can’t
beat these character animation capabilities
on the PC platform, and perhaps not on
any platform. Kinetix still hasn’t packaged

the talent in the box for you, but they’ve
removed many of the barriers that slow
your own talent’s migration to the screen
or limit the sort of realism you feel you
can strive for.

Character Studio is a serious tool
that begs to be played with like a toy. If
you don’t have any figure animation pro-
jects you need to work on, you’ll wind up
making something up just for fun, like
the animation I’m doing of the Sea-
Monkey king. Now, how do I get him to
smile that Sea-Monkey smile?   ■

Sea-Monkey Worship Page
users.uniserve.com/~sbarclay/seamonk.htm
New Riders Publishing
www.mcp.com/newriders
Fractal Design
www.fractal.com

David Sieks is a contributing editor to
Game Developer. You can contact him via
e-mail at gdmag@mfi.com.
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