
THE BINDING
OF ISAACN O V E M B E R 2 0 1 2

T H E L E A D I N G G A M E I N D U S T R Y

M A G A Z I N E V O L 1 9 N O 1 1

N O V E M B E R 2 0 1 2 I N S I D E :

G A M E D E V E L O P E R P O W E R 5 0

Capcom has enlisted Los Angeles developer
Spark Unlimited to continue the adventures
in the world of E.D.N. III. Lost Planet 3 is a
prequel to the original game, offering fans of
the franchise a very different experience in
the harsh, icy conditions of the unforgiving
planet. The game combines on-foot third-per-
son perspective action with fi rst-person mech
combat against an array of monstrous Akrids.

For the fi rst time in the best-sell-
ing franchise, the game is being devel-
oped with Unreal Engine 3 (UE3), which
suits Spark well thanks to a long his-
tory of working with UE3 technology.

“The previous two current-gen titles
developed here used UE3, so the deci-
sion to use it for Lost Planet 3 was natu-
ral,” said Matt Sophos, Lost Planet 3 game
director, Spark Unlimited. “It allows us to
leverage our past experience and opti-
mized workfl ow, thus increasing our ef-
fi ciency and quality. UE3’s robust toolset
also makes it the best choice for level de-
sign because it enables us to hit the ground
running from day one – laying out game-
play spaces and prototyping encounters.”

“The tools are extremely powerful for
artists and designers who are creating con-
tent for a game,” said Sophos. “UE3 has a
fast iteration pipeline and the ease of use
allows artists and designers to be directors
so they can work on shaping the scene and
the experience rather than simply creating
assets that go into a game. Another ma-
jor benefi t to using Unreal is the amount of
documentation and training videos made
available by Epic. This can dramatically cut
down our training time for new employees.”

Although there are many tools to work
with, Spark used Unreal Kismet and Un-

real Matinee extensively for Lost Planet 3.
Sophos said these tools empower level de-
signers, artist, animators and sound design-
ers to quickly prototype, iterate and polish
gameplay scenarios and cinematics. With
multiple departments being comfortable with
Kismet and Matinee, engineers and design-
ers are no longer the bottleneck when it
comes to implementing assets, which fa-
cilitates rapid development and leads to a
higher level of polish across the entire game.

Sophos said the communication between
Spark and Epic has been great in its ongoing
relationship, plus his studio has been able to
utilize the Unreal Developer Network (UDN)
for any issues throughout development.

“UDN offers a great community knowl-
edge base that we can tap into any time
a question arises for how to tackle tough
problems,” said Sophos. “This has helped
answer many questions that would nor-
mally have taken weeks of research, al-
lowing us to iterate more quickly than if we
had to recreate the process from scratch.”

Spark has added proprietary technol-
ogy on top of UE3, including dynamic storm
states that punctuate the volatile nature of the
hostile planet of E.D.N. III. The storm states
allow for environmental storytelling, as well
as giving the player new visuals that show
the damage and effects of extreme weather
conditions on the planet and its inhabitants.

“Most of our additions on top of UE3
are gameplay systems to support Lost
Planet 3, such as a more robust third-
person camera system, animation cho-
reography, a collision system for larger
creatures, a multi-threaded AI formation
system, a quest system, and so on,” he said.

One of the many things that stands out in
this new adventure is the cinematic look and
feel of the game. The world of E.D.N. III comes
to life in a new way, thanks to the game’s set-
ting that takes place early on in the human
habitation of the distant planet. Sophos said
the art direction of Lost Planet 3 has drawn

many inspirations from visionary directors
such as Ridley Scott and John Carpenter.
Using UE3’s volumetric lighting capabilities
of the engine, Spark was able to more effec-
tively create the moody atmosphere and light-
ing schemes to help create a sci-fi world that
shows as nicely as the reference it draws upon.

“Even though it takes place in the future,
we defi nitely took a lot of inspiration from the
Old West frontier,” said Sophos. “We also
wanted a lived-in, retro-vibe, so high-tech
hardware took a backseat to improvised
weapons and real-world fi rearms. The Utility
Rig feels more like a trucker’s big rig than a
mech. Surprisingly, there was only so much in-
spiration we could take from the arctic. Snow
environments can easily devolve into looking
like Antarctica, so we were careful to accentu-
ate the alien nature of the landscape to con-
stantly remind players E.D.N. III is not Earth.”

In addition to a very deep single-player
experience, aims to deliver a campaign
that’s massive in scope yet fueled by an in-
timate story, down-to-earth characters, and
the small personal touches that drives a
player’s desire to see what happens next,
Spark is pushing the multiplayer experience.
Sophos said the team has chosen to imple-
ment a robust suite of gameplay modes that
is separate from the single-player narrative
campaign in order to best serve the needs
of both experiences. Gamers will be able
to explore the extreme conditions of Lost
Planet 3 for Xbox 360, PS3 and PC in 2013.

Thanks to Spark Unlimited for speaking with freelance reporter

John Gaudiosi for this feature.

UPCOMING EPIC ATTENDED EVENTS

Please email licensing@epicgames.com for appointments

D.I.C.E Summit
Las Vegas, NV
February 2013

Cloud Gaming Europe
London, UK
February 21-22, 2013

Spark Unlimited Explores

Lost Planet 3 with

Unreal Engine 3

w
w
w
.u
n
re
a
le
n
g
in
e
.c
o
m

© 2012, Epic Games, Inc. Epic, Epic Games, Unreal, Unreal Developer Network, UDN, Unreal Engine, UE3, Unreal Kismet and Unreal Matinee are trademarks or registered trademarks of Epic Games, Inc. in the

United States of America and elsewhere. All other trademarks are property of their respective owners. All rights reserved.

http://www.unrealengine.com
mailto:licensing@epicgames.com

d e p a r t m e n t s

2 GAMEPLAN By Patrick Miller [E D I T O R I A L]

Help Us Help You

4 HEADS UP DISPLAY By Lauren Manary [N E W S]

TECMO SUPER BOWL 2013 and including players with disabilities

34 TOOLBOX By Tobias Heussner [R E V I E W]

Articy:Draft Review

37 INNER PRODUCT By Niklas Frykholm [P R O G R A M M I N G]

10 Tips for Cleaning Bad Code

42 PIXEL PUSHER By Steve Theodore [A R T]

Seen Through Goggles

44 DESIGN OF THE TIMES By Soren Johnson [D E S I G N]

How to Become a Game Designer

47 AURAL FIX By Damian Kastbauer [S O U N D]

Dynamic Animation Sound Now

49 THE BUSINESS By Sana Choudary [B U S I N E S S]

Tell Story, Sell Game

50 INSERT CREDIT By Brandon Sheffi eld [E D I T O R I A L]

Video Games in Retrograde

52 GDC News By Staff [N E W S]

GDC Next, App Developers Conference, and GDC China 2012 talks

53 GOOD JOB By Alexandra Hall [C A R E E R]

Q&A with Derek Manning, new studios, and who went where

54 EDUCATED PLAY By Alexandra Hall [E D U C A T I O N]

OF LIGHT & SHADOW

56 ARRESTED DEVELOPMENT By M. Wasteland & M. Underland [H U M O R]

The Real Hollywood Mojo

CONTENTS.1112
VOLUME 19 NUMBER 11

p o s t m o r t e m

26 THE BINDING OF ISAAC
One year ago, SUPER MEAT BOY dev Edmund McMillen rocked the indie-
game world with THE BINDING OF ISAAC, a highly controversial—and at
times even disturbing—dungeon-crawling roguelike that captivated
audiences with its grotesque, evocative imagery and design. In this
month’s postmortem, McMillen tells us how THE BINDING OF ISAAC started
life as a game jam project conceived from a deeply personal place—
and how it went from an underdog to an international indie hit.

By Edmund McMillen

f e a t u r e s

6 POWER 50
People power the game industry. In this year’s installment of the Power
50, Game Developer and Gamasutra editors team up to acknowledge
the individuals in and around the game industry whose efforts in art,
audio, design, business, evangelism, and programming have inspired
us to step up our collective games.

By Patrick Miller, Christian Nutt, and Thomas Curtis

14 SHOOT MANY ROBOTS: ARENA KINGS MIDMORTEM
How does a game developer “pivot”? Demiurge Studios’s cofounder
takes us through a special “midmortem” that explains how work on
XBLA 2D shooter SHOOT MANY ROBOTS set up the studio to make a free-
to-play multiplayer spinoff called SHOOT MANY ROBOTS: ARENA KINGS. Find
out what has gone right and wrong (so far) with the process of taking
work on one game and turning into a completely new game altogether.

By Albert Reed

23 HOW LOUD SHOULD IT BE?
 Loudness metering standards can open up new avenues for game

audio designers to be creative (and effi cient)—but only if they use the
right standards. Audio specialist Shaun Farley explains why the game
audio community needs to look outside loudness metering standards
designed for broadcast media or risk losing their oomph.

By Shaun Farley

WWW.GDMAG.COM 1

http://WWW.GDMAG.COM

GAME PLAN // BRANDON SHEFFIELD

game developer | november 20122

game plan // patrick miller

GDMaG: The GaMe
» Brandon usually used this
editorial page for hard-hitting
and insightful opinions and
commentary on issues and
trends in the game industry—
which is a tradition I hope to
continue—but for this issue I’m
going to do something different.
I’m going to describe a bit of the
process of making a magazine
in game development terms, and
I’m hoping you’ll be able to help
us out with it so that we can help
you make better games by giving
you a better magazine.

At first glance, the process
of making a magazine doesn’t
really look much like the
process of making a game—but
you’d be surprised how much
they can have in common.
Games have artists, producers,
designers, and testers; we have
a small staff that covers the
bases (you can see who does
what on the masthead to the
right of this column). Games
often have miserable crunch
times for weeks or months
before a major development
milestone; magazines often
have a miserable week every
month while we scramble to get
everything edited, laid out, and
approved in time for our monthly
ship date. We may have more in
common than you might think!

MaGazines as a plaTforM
» As a publishing platform for
Game Developer, magazines are
reliable and consistent enough,
although we miss out on a few
major features compared to web
and mobile-focused publishing
platforms. With magazines, we
don’t have to worry about maxing
out your bandwidth or killing your
battery life, and we’ve got our
production process down pat. (If
you are reading this on our digital

edition: Thanks! We’re still trying
to make it better, and we should
have some new announcements
on that front soon.)

On the other hand, magazines
also give us a few major
problems that game devs can
sympathize with. First off, we have
discoverability issues within the
magazine—it’s hard to surface
each issue’s excellent lineup.
Outside of the GDMag loyalists
who read every issue from cover
to cover, we know you guys read
the front page, the back page, and
the postmortem, but it gets fuzzy
after that. Now, we know that most
GDMag readers have to wear a lot
of developer hats—even if you’re
primarily a coder, you may need
to know a bit about other dev
disciplines too—but it’s hard to
surface all that stuff with only a
table of contents and a few small
cover lines. You can’t really share
articles with your friends online,
either, so we can’t really count on
our magazine stuff going viral.

Related to the discoverability
problem is an analytics
problem—it’s not easy to tell
what you guys are reading! Print
magazines don’t really support
JavaScript, so we can’t track
page views or social networking
shares or anything like that. And
considering our options for reader
engagement are rather limited—
paper doesn’t have any ways to
embed apps or plug in with other
APIs—the readership statistics
we do get aren’t easily correlated
to what we did in any given issue
of the magazine in the first place.

Finally, we have something of
a content pipeline problem—we
have to outsource most of our
content development. After all,
pretty much everyone who is good
enough at making games to merit
publishing in Game Developer is,
well, making games, not working

as a full-time magazine freelancer.
We rely on a wonderful network
of expert developers to help us fill
our pages every month, but once
you’ve written one or two articles
about a game you’ve been working
on for the last two years, we can’t
really ask you to write a third, so
we have to wait for you to make a
new game and write about that.
As a result, we’re constantly on
the hunt for more people to tell us
about the problems they’ve solved
and the things they’ve built.

how you can help
» It would be pretty cool if we
had some kind of electronic,
Internet-connected paper
replacement that we could use to
solve all our platform problems
(—sent from my iPad). Fact is,
however, we’re still doing a print
magazine because we love it,
and from what we can tell, you
love it too. So instead of trying
to fix our platform problems
with newfangled tech, we really
just want you to help us make a
magazine. We’re not asking for
much; there’s one simple way you
can help.

Talk to us. You can contact
the edit staff through our Editorial
Feedback Contact Form on our
website (http://gdmag.com/
contactus), you can “Like” the
magazine’s page on Facebook
(search for Game Developer
Magazine), and you can message
us on Twitter (@GameDevMag). Tell
us what you like and what you don’t
like. If something doesn’t look right,
tell us. If you have a question for
us or one of our authors, ask us. If
you are working on something you
want your peers to know about, tell
us about it.

Let’s make a better magazine
so we can make better games.

 —Patrick Miller
 @pattheflip

help us help you UBM LLC.
303 Second Street, Suite 900, South Tower
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

w w w . u B M . c o M

suBscripTion serVices

for inforMaTion, orDer QuesTions, anD
aDDress chanGes
t: 800.250.2429 f: 847.763.9606
e: gamedeveloper@halldata.com
www.gdmag.com/contactus

eDiTorial

puBlisher
Simon Carless e: scarless@gdmag.com
eDiTor
Patrick Miller e: pmiller@gdmag.com
ManaGer, proDucTion
Dan Mallory e: dmallory@gdmag.com
arT DirecTor
Joseph Mitch e: jmitch@gdmag.com
conTriBuTinG wriTers
Lauren Manary, Alexandra Hall, Albert Reed, Shaun
Farley, Edmund McMillen, Tobias Heussner, Steve
Theodore, Soren Johnson, Damian Kastbauer, Sana
N. Choudhury, Brandon Sheffield, Magnus Underland
aDVisory BoarD
Mick West Independent
Brad Bulkley Microsoft
Clinton Keith Independent
Brenda Brathwaite Loot Drop
Bijan Forutanpour Sony Online Entertainment
Mark DeLoura THQ
Carey Chico Globex Studios
Mike Acton Insomniac

aDVerTisinG sales

Vice presiDenT, sales
Aaron Murawski e: amurawski@ubm.com
t: 415.947.6227
MeDia accounT ManaGer
Jennifer Sulik e: jennifer.sulik@ubm.com
t: 415.947.6227
GloBal accounT ManaGer, recruiTMenT
Gina Gross e: gina.gross@ubm.com
t: 415.947.6241
GloBal accounT ManaGer, eDucaTion
Rafael Vallin e: rafael.vallin@ubm.com
t: 415.947.6223

aDVerTisinG proDucTion

proDucTion ManaGer
Pete C. Scibilia e: peter.scibilia@ubm.com
t: 516-562-5134

reprinTs

WRIGHT’S MEDIA
Jason Pampell e: jpampell@wrightsmedia.com
t: 877-652-5295

auDience DeVelopMenT

auDience DeVelopMenT ManaGer
Nancy Grant e: nancy.grant@ubm.com
lisT renTal
Peter Candito
Specialist Marketing Services
t: 631-787-3008 x 3020
e: petercan@SMS-Inc.com
ubm.sms-inc.com

game developer
magazine
www.gdmag.com

are you a BaD enouGh DeV To help Gam… D…v…lop…r?
Hello, world! Starting with this issue, I’ll officially be taking over the Game Plan editorial (and
the rest of the magazine) while editor emeritus Brandon Sheffield jumps headfirst into the
deep end of game development. (You can still find him in the mag in his new column called
Insert Credit, where he’ll continue to opine on all things dev-related.)

http://WWW.GDMAG.COM
http://gdmag.com/contactus
mailto:gamedeveloper@halldata.com
http://www.gdmag.com/contactus
mailto:scarless@gdmag.com
mailto:pmiller@gdmag.com
mailto:dmallory@gdmag.com
mailto:jmitch@gdmag.com
mailto:wski@ubm.com
mailto:jennifer.sulik@ubm.com
mailto:gina.gross@ubm.com
mailto:rafael.vallin@ubm.com
mailto:peter.scibilia@ubm.com
mailto:jpampell@wrightsmedia.com
mailto:nancy.grant@ubm.com
mailto:petercan@SMS-Inc.com
http://ubm.sms-inc.com
http://WWW.UBM.COM
http://gdmag.com/contactus

http://twofour54.com/film

heads-up display

game developer | november 20124

level playing field
 Is your game accessIble to players wIth dIsabIlItIes?

Lauren Manary: What kinds of
accessibility issues do you look
for in games?
Steve Spohn: Take, for example,
a player with color[-perception]
deficiency who wants to play
a new puzzle game. With no
means of differentiating colors,
he becomes frustrated and
returns the game. If the game had
included an accessibility option
for the colorblind that allowed
different shapes for the puzzle
pieces, markers on the colors,
or some way other than color to
differentiate puzzle pieces, the
player would have been able to
enjoy his purchase.

LM: What’s the business case
for making games accessible to
people with disabilities?
SS: Two business reasons. First,
there are over 33 million gamers
with disabilities in America alone.
With these kinds of numbers,
developers are potentially leaving
a large amount of money on the
table by not including some easily
implemented features we outline

in the “Includification” document.
Second, as the average age of
the game enthusiast market
continues to increase, players
with disabilities will continue to
be an ever-increasing percentage
of the market. Studies from
studios like PopCap have shown
an overwhelming part of casual
gamers consider themselves to
have some sort of disability.

LM: Do you see “Includification”
making waves in the game dev
world?
SS: Waves? No. Actually, at PAX-E
2012, we gave Star WarS: the Old
republic our game of the year award
for most accessible mainstream
game in 2011. The lead developer on
the panel accepted the award, but
refuted the idea that the game was
made with accessibility in mind;
he said that they simply created a
game with as many features they
thought the audience would want
to see as possible. After the panel
in an off-the-cuff conversation, we
spoke about his comments, and I
told him good game design includes

accessibility. He agreed good game
design is all about keeping your
options open, and adding features
people want to see.

LM: How have your guidelines
been received by the
development community so far?
SS: “Includification” was actually
launched due to demand from
developers. We have been
advocating for more than
eight years on the importance
of accessibility, but around
two years ago, the questions
from developers changed
from “Why should we include
accessibility?” to “How do we
include accessibility?” At that
point, we knew we needed to
create a document that laid out as
many problems the disabled game
community faces as possible, as
many solutions as possible, and
the cost-effective/bottom-line
argument for doing so.

Alex Rigopulos of Harmonix was
the first studio head to inform us of
the need of such a document. He
wanted something he could give to

his lead developers and say, “This
is important; we should implement
what we can from these.” And so
we did. Since then, we have had
contributions and encouragements
from EA, BioWare, Rockstar,
PopCap, and a huge welcome
from independent studios such as
Minicore and Uber Entertainment.

LM: Given that alternative input
devices (touchscreens and motion
controls, for example) aren’t
going away, what can developers
do to make games that use such
controls more accessible?
SS: Motion-controlled games are
not going away, but they’ll always
be a niche market up until the point
where you are talking holograms
and the Holodeck. They are popular
in their own right, but a Wii or
Kinect just doesn’t compare to the
gaming experience of a console
or PC. However, the accessibility
of those devices depends on the
game themselves.

Fruit NiNja is a game that can
be controlled from a wheelchair.
The iPad has hundreds of games
for the autistic community. So, not
all motion-control and touchscreen
games are bad. They’re just
inaccessible to a certain segment
of the disabled gaming community.

LM: Are some genres more
inaccessible than others?
SS: Generally speaking, FPS
and driving games are the most
inaccessible due to the large
amount of buttons that need to be
pressed often and simultaneously,
and the twitch reflexes these
genres demand. MMOs and RTSes
tend to be the most accessible
because they’re a little bit slower
paced, and often include difficulty
modifiers that allow players to go at
their own speed. —Lauren Manary

Nonprofit organization Ablegamers recently published the most comprehensive text on game development for people with
disabilities: “Includification,” a 48-page guide that can assist developers with making their games available to the widest
audience possible. Game Developer spoke with Steve Spohn, editor-in-chief of Ablegamers.com, about why game devs should
be working to make their games more accessible.

Fruit NiNja (Kinect)
is a game that can
be controlled from a
wheelchair.

http://Ablegamers.com

heads-up display

www.gdmag.com 5

move over, madden
How a dedicated modding team brougHt tecmo Super bowl into tHe modern era

Lauren Manary: Why Tecmo
Bowl?
Matt Knobbe: Actually, when
people say Tecmo Bowl, they
usually mean Tecmo Super Bowl;
while Tecmo managed to burn
the name of their company into
the collective consciousness
of gamers from the ’90s,
they made it really hard to
distinguish between their various
incarnations of the game. Tecmo
Bowl was a four-person arcade
football game, and its success
paved the way for the fairly
popular NES game Tecmo Bowl
featuring licensed NFL players.
Later, toward the end of the
NES era, Tecmo combined all its
programming knowledge from the
two previous games—along with
being the first company to secure
the NFL team and NFLPA rights—
to create the masterpiece known
as Tecmo Super Bowl.

I first started playing Tecmo
Super Bowl with my college
roommate, and it soon progressed
into a floorwide thing. Throughout
the years, Tecmo Super Bowl
has been a social exercise of
sorts, and eventually grew into a
hobby, as I’ve always been into

computers and programming.
I started up a forum about
modifying the game after finding
some like-minded people on the
Internet, and we’ve been doing
this ever since.

LM: Was modding Tecmo Super
Bowl different from working with
other NES games?
MK: It mostly came down to
deadlines. We’re essentially
shooting for a release on a certain
day and with the fluidity of a
pro football roster which would
rarely be a constraint of any other
non-sport NES game. Otherwise,
the majority of skills that might
be leveraged on Tecmo Super
Bowl apply across the board to
a majority of NES games. Since
we’re a sports-centric community,
we have hacks based on rBI
BaSeBall, BaSeBall STarS, and the
catalog of games Tecmo put out
like Tecmo NBa.

LM: How’d you keep the file size
down?
MK: When we’re modding Tecmo
Super Bowl, we’re essentially
talking about deconstructing
NES code written in the 6502

programming language, then
emulating it. Thus while you’re
no longer really constrained by
the physical limitations of the
memory of the cart, you’re still
limited by the original design of
the NES itself. The original TSB
was 384KB, and many of the
early advanced hacks out there
were the exact same size. Over
the years, as we’ve increased
in knowledge and added the
occasional superstar hacker to
our team, we’ve been able to
remap certain areas of the game
with some versions topping out
at a whopping 1MB! The 2013
version we released is at 512KB,
which includes extra teams and
some new menu options.

LM: How’d you build your team?
MK: Sometimes you get lucky
and find someone who excels at
low-level hacking and modern
programming languages, but
usually it’s about connecting
the people who do one with the
people who do the other. One of
the first programs ever written
for this was by the guys at
emuware.com—they essentially
started the Tecmo modification
movement. They originally made
it possible for nearly anyone to

modify the original names and
attributes of TSB without having
to manually change pointers
or learn hex. This caused the
interest in modding TSB to surge,
and soon people were asking,
“Well, what else can we change?”
Once you start programmatically
eliminating modifications that
are essentially trivial or well
defined, you free up those who
are capable of digging further
into the game.

LM: Were you concerned about
legality issues?
MK: Originally, we were quite
afraid of Nintendo or Tecmo
sending a cease-and-desist letter.
Over the years, Tecmo sort of
let us know it wasn’t an issue,
and Nintendo stopped caring
about games for the original NES
system. I suppose that the NFL
could decide to send out a C&D,
but I doubt it’s worth their time.
Now I’m not completely terrified
to be candid about the issue—it
would seem that being essentially
nonprofit and perhaps a bit off-
the-radar is a pretty good way to
not get sued.

LM: What kind of bugs did you
find in the original release?
MK: Over the years, we found
that certain attributes weren’t
actually implemented by
Tecmo—maybe they ran out of
time, or forgot about them. The
player attributes for passing
accuracy on offense and
quickness on defense were
remapped as the values for
other functions in the game.
Probably the biggest bug in the
game we found was when Player
2’s attributes were displayed
incorrectly when conditions
change. —Lauren Manary

Why line up for a midnight maddeN release when you can stick to NES classic Tecmo Super Bowl? The intrepid TecmoBowl.org
team has been regularly updating Tecmo Super Bowl with new features and updated teams and player rosters since 2007, so we
thought we’d ask lead developer Matt Knobbe about the process of (and problems with) modding 8-bit games.

Tecmo Super Bowl.

http://TecmoBowl.org
http://emuware.com
http://WWW.GDMAG.COM

GAME DEVELOPER | NOVEMBER 20126

{ HERE’S TO THE PEOPLE THAT POWER OUR INDUSTRY }

B Y P A T R I C K M I L L E R , C H R I S T I A N N U T T , A N D T H O M A S C U R T I S

Making games may be largely a team effort these days, but that doesn’t mean we shouldn’t acknowledge the individuals
who make outstanding contributions to the industry as well. That’s why Game Developer and Gamasutra are proud to
bring you another yearly installment of our Power 50: a list of 50 individuals (give or take) in the game industry who have
stood out for doing work in the last year that is new, different, or better in the categories of Art, Audio, Business, Design,
Evangelism, and Programming. Here’s to the people that inspire us to do better. Here’s to the Power 50. >>>>>>>>>>>>>>>

www.gdmag.com 7

{ Here’s to tHe people tHat power our industry }

http://WWW.GDMAG.COM

{ ART }

VINCENT

Perea
Disney Mobile

✜ Design aside, the Disney-
published WHERE’S MY WATER? really
stands out because of its visual style.
Illustrator/designer Vincent Perea
uses a simple, personality-packed
cartoon aesthetic with a fairly
minimalist approach. Perea’s fl uid
animations and adorable character
designs manage to inject the
experience with a ton of charm—
which is particularly impressive
considering the screen is fi lled with
little more than dirt and concrete
most of the time.

SHELDON

Carter
Digital Extremes

Hand-painted, cel-shaded visuals—
check. Ruthless heavy-metal
soundtrack—check. Sheldon Carter’s
creative direction in THE DARKNESS
II is, well, dark, and that’s exactly
what a game about mob bosses
with supernatural powers should
be. Kudos to Carter and his team for
building THE DARKNESS II’S unifi ed and
seamless aesthetic vision.

n/a

ROB

Nelson
Rockstar Games

✜ If you look at any recent
Rockstar title, it’s clear the studio
has a real affi nity for fi lm. Its game
cinematics often borrow editing
and compositional techniques from
movies and other visual media,
and under creative director Robert
Nelson’s direction in MAX PAYNE 3,
the studio experimented with some
new visual techniques from outside
the traditional GTA wheelhouse.

MAX PAYNE 3 tells the story of
a haggard ex-cop with a crippling
addiction to both booze and
painkillers, and Rockstar’s cinematics
go a long way toward reinforcing
the character’s tormented mental
state. The camera often fl ickers out

of focus, key lines of dialogue linger
onscreen to emphasize Max’s guilt,
and clever split-screen action scenes
make poignant moments seem
more frantic and distressed. These
visual techniques are subtle on their
own, but when combined they really
elevate the game’s depressing and
action-fueled narrative.

MARIEL

Cartwright
Reverge Labs

✜ The fi ghting game genre may
be alive and well these days, but
the impeccably fl uid, detailed 2D
animation we loved about the genre
in the 1990s is practically nowhere
to be seen—except in Reverge Labs’s
SKULLGIRLS, anyway. Thanks to lead
animator Mariel Cartwright, SKULLGIRLS
looks every bit the 2D fi ghter of
our dreams, with hand-drawn
characters and backgrounds that
ooze personality and craftsmanship
out of every frame. Step aside, STREET
FIGHTER III: THIRD STRIKE; SKULLGIRLS
has set a new standard.

DANIEL

Dociu
ArenaNet

GUILD WARS 2 looks like art director
Daniel Dociu took a bunch of
beautifully detailed concept art
and somehow plugged it directly
into a game. That Dociu could
lead ArenaNet’s art team to do
that much is impressive; that he
managed to do that in an MMO,
where visuals must often be
sacrifi ced for performance’s sake,
is nothing short of spectacular.

BRIAN

Provinciano
VBlank Entertainment

✜ “Retro” is probably the most-
overused term in video games
these days. Everything with visible
pixels, TEMPEST-style vectors, or low-
resolution textures can be called
“retro,” and we’re kind of tired of
it. However, there is something to
be said for getting retro right, and
RETRO CITY RAMPAGE creator Brian

Provinciano knows this. It takes
more than a crash course in pixel
art to make a proper retro game;
Provinciano’s deep understanding
of the NES hardware’s capabilities
and limitations were instrumental
in making RETRO CITY RAMPAGE ring
true to the old-school.

DAN

Miller
The Blast Furnace

✜ Now that we’re done ranting
about the overuse (and abuse)
of “retro” aesthetics, we thought
we’d call out a rather exceptional
case. New Activision mobile dev
studio The Blast Furnace made an
intriguing PITFALL! iOS game that
we would describe as “new retro,”
if that makes sense. Under Dan
Miller’s artistic direction, PITFALL!
for iOS brings us into a world of
cartoony-looking untextured
polygons that look kind of like the
original PITFALL! and SUPER MARIO 64
had a video game baby. It’s kind of
how we imagine the original PITFALL!
would look if we were trapped
inside of it.

THOMAS

Shahan
Northway Games

Next time you have a hard time
fi nding an artist for your game, try
looking around on Wikipedia. That’s
how INCREDIPEDE dev Colin Northway
found photographer/woodblock-print
artist Thomas Shahan, anyway;
Northway was reading the entry
for “jumping spiders,” saw one of
Shahan’s illustrations, and tracked
him down from there. While we may
not be tremendous fans of spiders
(jumping or otherwise), we have to
admit that we can’t think of a better
match than insect-specialist Shahan
for a game that is “about life and feet.”

SIMON

Flesser
Simogo

✜ In early 2012, Simogo’s BEAT
SNEAK BANDIT rocked our worlds
(and snagged Best Mobile Game
in the Independent Games Festival

2012 awards) with its cartoony,
syncopated charm. The credit for
said charm belongs to Simogo
cofounder Simon Flesser, who was
the art-and-sound whiz behind
BSB’S whimsy. In an interview with
Gamasutra, Flesser described BSB
as “Cool, but in a silly cartoon show
kind of way.” We want more of that.

RANDY

Smith
Tiger Style Games

✜ With WAKING MARS, Tiger Style
Games founder Randy Smith led
his dev team to make something
atmospheric, curious, and
gorgeous—and as we’re looking
at all the different ways mobile
game devs try to make their work
visually stand apart from the pack,
we think that Smith and his team
are on the right track.

In an interview with Gamasutra,
Smith described WAKING MARS’S
aesthetic as “a combination of fi ne
details and abstract implication...not
realistic, exactly, but believable.” We
weren’t sure what to expect when
you described your game as “action
gardening,” Smith, but you and your
team ended up nailing it.

{ AUDIO }

SHAW-HAN

Liem

 JONATHAN

Mak
Queasy Games

✜ PlayStation 3 indie hit SOUND
SHAPES marries music and platform-
hopping together in a manner so
elegant and intuitive you might not
at fi rst realize how many iterations
it took to get right. Jonathan Mak
and Shaw-Han Liem (also known
as I Am Robot And Proud), from
Toronto-based Queasy Games, are
the two responsible for making
SOUND SHAPES work.

Games built around music
largely live or die by how well their
designers can integrate music into

GAME DEVELOPER | NOVEMBER 20128

www.gdmag.com 9

the core design. In Sound ShapeS,
songs are the levels, and with the
level editor, we too can make and
play our music. With Sound ShapeS,
Mak and Liem remind us that music
games can be more than a series
of notes that we plug into a bulky,
plastic, guitar-shaped controller.

DaviD

Kanaga
N/a

✜ If Sound ShapeS gently
massaged our brains into a state
of musical play, composer David
Kanaga’s work on dyad simply
melted said brains outright. Thanks
to dyad, we can check “David
Kanaga and (dyad creator) Shawn
McGrath” off our list of fantasy indie
game dream collaborations.

Rich

vreeland
Polytron corp.

✜ After years of anticipation,
Fez finally wowed indie game
scenesters with its throwback look
and feel. We would be remiss if we
didn’t include Rich “disasterpeace”
Vreeland’s Fez soundtrack work
in this year’s Power 50 audio
nominations. Thanks to Vreeland,
Fez feels atmospheric, pensive,
maybe even a little bit melancholy.

{ BusiNess }

DaviD

hayes
Lionsgate

✜ Both the Gamasutra and Game
Developer staff were in complete
agreement about one of this
year’s Power 50 candidates for
the business category, but we
didn’t know his name. We all just
wanted to make sure we recognized
“Whomever it was that got Adam
Saltsman (Canabalt), Paul Veer
(Super Crate box), and Danny
Baranowsky (Super Meat boy,
Canabalt) to make a licensed game
for iOS based on The Hunger Games.”

Turns out that person is film
studio Lionsgate’s VP of digital
marketing, David Hayes. In the
world of film marketing, Hayes has
made a name for himself by building
innovative marketing campaigns; by
getting an indie dream team to make
the hunger gaMeS: girl on Fire, by
getting that indie dream team to
make more than just a Canabalt
reskin, Hayes has left his mark on
the game industry as well.

GReG

Rice
Double Fine Productions

✜ By now, everyone knows the
story of the $3.3 million double
Fine adventure Kickstarter, so we’ll
keep this one short. These days,
game-related Kickstarter campaigns
are flooding our in-boxes and news
feeds, and we blame all of that on
double Fine adventure (tentative
title) producer Greg Rice, who was
that Kickstarter’s mastermind. Next
time you disrupt the traditional
developer-publisher business model,
give us a minute or two to prepare
our spam filters first, okay?

MaRciN

szymanski
Robot entertainment

From the outside, designing
free-to-play games looks kind of
like juggling flaming swords. Your
game needs to be profitable, but
not exploitative; engaging, but
not demanding. We don’t know if
hero aCadeMy lead designer Marcin
Szymanski can actually juggle
flaming swords, but considering
how well hero aCadeMy attracted
casual and core audiences and
got them to open up their wallets
without sending off pay-to-win
vibes, we think he could probably
do it if he really, really wanted to.

n/a

BoBBy

King
Farsight studios

While game-related Kickstarters
were a dime a dozen in 2012,
FarSight Studios caught our eye with

the pinball arCade, a cross-platform
pinball game that featured licensed
digital remakes of real-world classic
pinball tables. FarSight Studios’s VP
of development Bobby King, along
with President Jay Obernolte, were
the ones responsible for getting
the licenses to more than 20 tables
from manufacturers Bally, Williams,
Stern, and Gottlieb—which included
running successful Kickstarter
campaigns to get the necessary
funding for licensing fees and
production for the Star Trek: The Next
Generation and Twilight Zone tables.
We wouldn’t wish that kind of red-
tape wrangling on our worst enemy.

aRaM

Jabbari
Manager, PR/sales, atlus

✜ Sure, PR and marketing are
hard at any publisher. But when
you’re a niche company like Atlus,
which focuses almost exclusively
on the decidedly untrendy genre of
Japanese RPGs, you live or die by
the thinnest margins. That’s what
makes Aram Jabbari’s job so hard.
Jabbari interfaces with the company’s
finicky community on games like the
perSona series, making sure their
voices are heard, and along with vice
president Tim Pivnicy, makes sure
the games are presented to their
exacting standards.

Though the trend for Japanese
niche games is ‘supposedly
downward’ Atlus’s most successful
years have been its most recent—
and its “Atlus Faithful” fans, carefully
cultivated by Jabbari’s always-on-
message but sincere marketing
efforts, are driving that success.

DaviD

Perry
Gaikai/sony

✜ Two cloud-based streaming
game companies entered 2012 with
vastly different business plans;
OnLive aimed its cloud game service
directly at consumers, while Gaikai
developed its tech and courted
bigger hardware companies like
Samsung and Sony. Gaikai, led
by cofounder and veteran game
developer David Perry, sold to Sony

for $380 million, while OnLive laid
off its entire staff and got bought
and restructured by a venture
capital group. Perry’s work speaks
for itself; it takes more than good
tech to make it in this business.

iBai

ameztoy
active Gaming Media

Active Gaming Media has its
fingers in a lot of pies; CEO Ibai
Ameztoy founded the company as
a Japan-based game localization
agency, but since then AGM has
done work in public relations, QA,
and other aspects of the industry.
This year, Ameztoy and AGM get
the Power 50 nod for Playism, a
digital distribution platform that
they’re using to bring Japanese
indies to overseas markets (the
English-language Playism portal
launched with a localized version
of indie Japanese hit la Mulana)
and vice versa (localizing and
publishing dear eSther and
SpaCeCheM in Japan). Way to
spread the indie love (and make a
buck doing it), Ameztoy.

ToRsTeN

Reil
NaturalMotion Games

✜ If you first heard of NaturalMotion
Games during Apple’s iPhone
5 event, when CEO Torsten Reil
demoed CluMSy ninja, then you
haven’t been paying attention.
NaturalMotion Games seems to get
exactly how to build a free-to-play
mobile game that looks good, plays
well in short bursts, and—if CSr
raCing’S $12 million take during its
first month on the iOS App Store is
any indication—get players to pay
with well-designed monetization
strategies. Watch out, world: Reil is
one to watch for 2013.

La MuLana.

http://WWW.GDMAG.COM

RICCARDO

Zacconi
King.com

✜ It wasn’t that long ago that
conventional wisdom dictated
breaking into the top fi ve Facebook
developers was impossible, thanks
to the unassailable value of cross-
marketing to an existing audience.
Tell that to King.com CEO Riccardo
Zacconi, who, on the back of the
success of BUBBLE WITCH SAGA—a
title with 3.7 million daily active
users in October 2012—now runs
the number-two game developer on
the social networking site.

Yes, King.com’s premier game is,
at its core, a rehash of Taito’s 1990s
arcade hit BUST-A-MOVE, but according
to Playdom’s Steve Meretzky, it’s
the expert application of social
mechanics that made it a success,
and that’s King.com’s secret (and
explains why Taito didn’t get there
fi rst). The company releases over
a dozen games a year to its casual
portal, and only the top performers
are selected for Facebook. A carefully
designed “social envelope,” in King.
com parlance, is wrapped around a
game, and then it’s ready for social
network deployment.

The company has also moved
into mobile versions of its titles, with
clever integration between Facebook
and iOS—meaning that players’
progress carries over between
versions. This led to a very successful
launch of BUBBLE WITCH SAGA on
that platform without a meaningful
marketing effort. This is leading, in
turn, to an expansion of King.com as
a company—a big business win for
an organization that saw an opening
for traditional casual games on
Facebook, realized it could provide
them, carefully executed its plan, and
took the platform by storm.

{ DESIGN }

NELS

Anderson
Klei Entertainment

✜ Klei’s MARK OF THE NINJA feels
like a distinct breath of fresh air

for the stealth game genre. Lead
designer Nels Anderson opted
not to follow in the footsteps of
METAL GEAR or SPLINTER CELL and
instead bring stealth to a 2D game
by introducing a number of clever
systems that eliminate the genre’s
rough edges.

In many stealth games, for
instance, it can be hard to tell when
enemies can detect you, but in MARK
OF THE NINJA, all of these systems
are clearly telegraphed via a number
of visual cues. Enemy sight lines
are represented as beams of light,
loud noises project shockwaves into
the environment, and characters
lose saturation as they step into the
shadows, so players know when
they’re at risk and how their actions
will affect their enemies.

By making all of the mechanics
so easy to read, the game becomes
less about trial and error and more
about using your wits to work
make the most of the tools at your
disposal. It makes the stealth genre
far more enjoyable, and other games
should make sure to take note.

JENOVA

Chen
thatgamecompany

✜ Thatgamecompany is well
known for designing games to evoke
specifi c emotions. With JOURNEY,
thatgamecompany cofounder
and creative director Jenova Chen
managed to avoid the frustration,
disappointment, and general
misanthropy we normally feel while
playing games online with strangers,
and replace them with camaraderie,
joy, and gratitude. Props.

SEAN

Vanaman

JAKE

Rodkin
Telltale Games

Many games try—and fail—to
elicit an emotional response from
their players, but THE WALKING DEAD
is one of the few series that gets
things right. Co-lead designers
Sean Vanaman and Jake Rodkin

have guided THE WALKING DEAD
to emphasize smart writing over
complex mechanics, and in doing
so, they’ve created one of the most
affecting interactive stories we’ve
seen in quite some time.

Like the comic book it’s based
on, THE WALKING DEAD series doesn’t
spend all its time focusing on the
horrors of the zombie apocalypse,
and instead takes plenty of time to
develop its characters and create
a world that players can invest
themselves in. While there’s plenty
of zombie fi ghting to go around,
it’s the game’s quieter, more
thoughtful moments that make
its more horrifying scenes all the
more poignant.

Perhaps most interestingly,
the game forces players to make
some extremely tough decisions
that’ll affect the characters they’ve
grown to care about. Every decision
comes with major consequences,
and the game doesn’t hesitate
to twist the knife when things
seem to be at their worst. Very
few games manage to present
choices that have an emotional
impact on the player, and the fact
that THE WALKING DEAD manages
to do so over and over again is a
tremendous accomplishment.

n/a

TETSUYA

Takahashi

n/a

KOH

Kojima
Monolith Soft

✜ While FINAL FANTASY and other
classic JRPG franchises have
struggled to fi nd their voice during
this console generation, Monolith
Soft lead designers Tetsuya
Takahashi and Koh Kojima’s work
on XENOBLADE proves the genre has
plenty of life left—not by revisiting
the genre’s glory days, but by
making a number of important
changes that help bring the genre
into the modern era. XENOBLADE
gives players a sandbox-style world
to explore at their leisure, and even
uses a number of classic MMO
systems to help expedite combat,
streamline quest systems, and offer
more freedom to the player. In other

words, XENOBLADE celebrates (and
updates) the best of the JRPG genre.

SAMI

Saarinen
RedLynx

✜ Why build a game when you
can get your players to do it for
you? RedLynx lead technical artist
Sami Saarinen is responsible for
building the TRIALS series’ original
3D editor in 2008, advocating for its
inclusion in TRIALS HD in 2009, and
guiding it into its TRIALS EVOLUTION
incarnation. But this isn’t just a
level editor, mind you; Saarinen’s
TRIALS EVOLUTION editor actually
gives players access to the game’s
visual programming language, so
they can make and share fi endishly
diffi cult tracks—or even entirely
new games altogether.

HARVEY

Smith

RAF

Colantonio
Arkane Studios

✜ DISHONORED wowed the industry
at E3 and Gamescom this year with
its compelling steampunk setting
and remarkable focus on player
agency. In an industry with lots of
games focused on violence and
killing, co-lead designers Harvey
Smith and Raf Colantonio’s direction
in DISHONORED’S design adds some
genuine emotional weight behind
the decision to kill, which is
something we’d like to see more of.

CORY

Davis
Yager Development

(former)

Spark Unlimited (present)

✜ Yager Development/2K Games’s
SPEC OPS: THE LINE made waves
this year for adding a liberal dose
of Apocalypse Now-inspired
narrative twist to an otherwise
fairly standard cover-based shooter.
Creative director Cory Davis’s
initial vision documents from 2008

GAME DEVELOPER | NOVEMBER 201210

http://King.com
http://King.com
http://King.com
http://King.com
http://King.com
http://King.com
http://King.com

www.gdmag.com 11

describe Spec OpS: The Line as
an “intense third-person military
shooter with a dark and mature
narrative...[that] confronts you
with the horrors of war, as you face
choices between bad and worse in
challenging moral dilemmas.”

Well, with Spec OpS: The Line,
Davis did just that. We were
impressed by Davis’s creative vision
in 2008, and we’re impressed by how
faithful the end product was to that
vision four years later. Love it or hate
it, you can’t deny that Spec OpS: The
Line’S union of narrative and game
design—and Davis’s willingness to
use said design to mess with players’
expectations—was a bold statement
in a genre that needed one.

Ian

Marsh

DavID

Marsh
nimbleBit

✜ “Casual airline sim” doesn’t
exactly sound like the most
enthralling premise for a mobile
game—until you hear it’s from
Tiny TOwer dev NimbleBit, anyway.
Kudos to NimbleBit cofounders Ian
and David Marsh, whose design
work on iOS free-to-play hit pOckeT
pLaneS had us constantly picking up
our phones for a quick hit of airline
tycoondom. Making a profitable free-
to-play game that doesn’t feel like a
naked cash grab is rare enough; that
pOckeT pLaneS is genuinely a blast is
noteworthy indeed.

n/a

Dean

Dodrill
Humble Hearts

✜ Everything animator Dean
Dodrill knows about programming,
he learned while working on
DuST: an eLySian TaLe for three
and a half years—which was
about 39 months longer than he
had anticipated it would take to
finish the game more or less by
himself. Along the way, he won the
Dream, Build, Play competition,
made it into the Summer of Arcade
promotion based on his title’s

strength, and even finished the
game ahead of schedule to meet
that deadline.

Aside from voice acting, music,
and a little bit of writing, almost
all of DuST: an eLySian TaiL came
from Dodrill and Dodrill alone, and
we can’t help but recognize the
developers who devote themselves
to such projects of passion.

BenjaMIn

Rivers
n/a

✜ If we had a category for Neat
Stuff, we’d probably put Benjamin
Rivers on top of the list for hOme, a
critically acclaimed PC adventure
game that plays something like a
choose-your-own-adventure horror
short story. hOme is unapologetic
about how it wants to be played;
turn the lights off, put your
headphones on, and set aside an
hour or two, because you can’t save
your game. We like that.

{ evangelIsM }

DR. elIzaBetH

Broun
smithsonian american

art Museum

✜ This year, the Smithsonian
American Art Museum featured
an exhibition called The Art of
Video Games from March 16 to
September 30, with still images
and video footage from 80 games
across 20 systems, developer
interviews, historic consoles, and
five playable games to represent
their respective artistic eras: pac-
man, Super mariO BrOTherS, The
SecreT Of mOnkey iSLanD, myST,
and fLOwer.

While the exhibit was curated
by Chris Melissinos (with input
from an advisory board and public
polls), we wanted to acknowledge
the Smithsonian American Art
Museum’s director, Dr. Elizabeth
Broun, for giving the exhibit the
go-ahead. We know video games
are an artistic medium, and we
know you know this too, but it does

us no small amount of good to see
that fact recognized by a major
American art institution.

joRDan

Mechner
n/a

✜ prince Of perSia creator Jordan
Mechner has made industry news
headlines a few times in 2012
(he’s got a Karateka remake in
the works, and the iOS remake for
The LaST expreSS just came out)
but we wanted to acknowledge
him for something a bit more
mundane—going through his
old stuff in his attic and posting
the contents on his blog. Before
you rush off for some premature
spring cleaning, let us explain:

Mechner and his crack team of
digital preservationists managed
to find a box with floppy disks
containing the original 1988 Apple
II source code for prince Of perSia,
salvage it, and post it on Github for
everyone to see.

The medium of video games is still
young, and the tech-obsessed
part of our industry makes it easy
to forget the old in our ceaseless
pursuit of the new. But take a
second to imagine how many of

valve software
✜ This year, we’re including a special Power 50 candidate: Valve
Software. We could have easily padded out this list with Valve nominees
across the categories, but we didn’t think that would be fair (and due
to Valve’s notoriously decentralized internal organization, we weren’t
sure we’d be able to find individual devs willing to take credit for specific
achievements!). Instead, we decided to give Valve Software itself a nod
for evangelism. Every industry needs to have a company that reminds us
we can (and should) do better; we can treat our customers better, we can
treat our employees and colleagues better, we can make better products,
and we can even make a bit of money doing all of those.

For us, that company is Valve. To consumers, Valve is nothing
but player-friendly, known for excellent support—and seasonal
Steam sales that somehow make us excited to empty our wallets.
To developers, Valve seems like the place to go if you want to focus
on building cool things with talented people. And to everyone else in
the industry, Valve is taking measured steps to push the envelope,
whether it’s by turning a five-year-old core title (Team fOrTreSS 2)
into a runaway free-to-play success, starting an internal hardware
development lab to prototype some virtual-reality goggles, or hiring
an economist just because it sounded kind of useful to have one
on staff. In an industry that seems more mercenary now than ever
before, it’s nice to know Valve is still there doing the Valve thing.

Team ForTress 2.

Prince oF Persia.

http://WWW.GDMAG.COM

you reading this article have fond
memories of PRINCE OF PERSIA, and
you’ll understand why we wanted
to give Mechner a Power 50 spot for
evangelism. Developers: We want
you to preserve your stuff, no matter
how old and busted you think it is,
because we don’t want anyone to
forget about your hard work.

SHAY

Pierce
Deep Plaid Games

✜ When Zynga bought DRAW
SOMETHING developer OMGPOP
and offered all of its employees
jobs, designer/programmer Shay
Pierce made news headlines
simply for saying, “No, thank you.”
Pierce’s reason was simple: He
had developed his own game in
his spare time called CONNECTRODE,
and he couldn’t get Zynga’s legal
counsel to agree to an addendum
in their employment contract
that would ensure CONNECTRODE
remained Pierce’s property. Given
the choice between potentially
giving up his baby or giving up
a job, he chose to quietly walk
away from the deal and instead
revive Deep Plaid Games, his own
one-man development studio.
CONNECTRODE may not be a big seller,
Pierce, but darn it, we’re glad you
fought to keep it.

RANDY

Pitchford
Gearbox Software

✜ While the Game Developer and
Gamasutra staff were hashing out
the Power 50, one of us scribbled
the following note next to Gearbox
Software cofounder and CEO Randy
Pitchford’s name: “Evangelism—
talking all the time.” Really, that
kind of sums it up.

Pitchford and Gearbox are
positioned at the center of the
American game industry; they’ve
worked across over a dozen
platforms, with several publishers, on
everything from HALF-LIFE and HALO
to TONY HAWK’S PRO SKATER and SAMBA
DE AMIGO. They’ve even shown that
they can grow and nurture their own
IPs (see BORDERLANDS) in addition to

working with others. We think that
Pitchford’s experience, combined with
his willingness to speak frankly about
our industry, is an invaluable asset
for the industry as a whole. Randy,
thanks for talking all the time.

ANNA

Anthropy
N/A

✜ What makes Anna Anthropy
special is that not just that she’s
living a brave creative life by
sharing her unique perspective with
the world through games; she’s
encouraging everyone else to take
the necessary steps to do it, too.

Recognizing the homogeneity
of the game development
scene, Anthropy champions the
emergence of new perspectives.
It’s her talks on inclusiveness,
her own games—such as DYS4IA,
which quickly and cleverly takes
the player on a journey through
the diffi culties Anthropy has
encountered obtaining gender
transition treatment and being
recognized as a woman—or her
2012 book, Rise of the Videogame
Zinesters, which encourages both
“freaks” and “normals” to make
the games that the mainstream
isn’t making, that make her an
invaluable voice in the expanding
community of game developers.

EPONA

Schweer
Indie Bits

✜ In 2009, burnt out on crunch,
Epona Schweer turned down
a producer’s job at L.A. NOIRE
developer Team Bondi to teach
aspiring game developers in
Sydney. By the time the course
ended in 2010, she realized there
was nowhere for her charges
to work, thanks to the near-
total collapse of the Australian
development scene. Her solution?
Beef up the local indie game
scene by throwing meet-ups and
holding talks, collecting the power
of individuals who had worked in
isolation, and helping to form a
thriving local scene. The lesson
here is that building community

requires work and ingenuity, but
people fundamentally want to
connect—if you can enable them.

“PETER

Molydeux”
@PeterMolydeux

✜ Yes, you read that right:
“Peter Molydeux,” the novelty
Twitter account that describes
itself as “just a twisted parody
based on the legendary British
Game Designer,” is one of Game
Developer’s Power 50.

@PeterMolydeux has been
around for a while now, tweeting
whimsical, emotionally evocative

ideas for games in under 140
characters. Examples range from
“If I made a zombie game it would
feature just one dangerous zombie,
your child. You must sneak out
avoiding society, trying to fi nd
help,” to “Platformer where if you
fall in a pit you’re trapped forever
unless you can emotionally
manipulate nearby enemies
to pull you back up.” Of course,
these tweets are inspired by the
real Peter Molyneux’s bombastic
descriptions of the work he does
(or wants to do).

At fi rst, we simply laughed at
our industry in-joke. But then a
strange, wonderful thing happened:
People across the world, devs

GAME DEVELOPER | NOVEMBER 2012 12

PH
OT

O:
 V

IN
CE

N
T

DI
AM

AN
TE

Brandon Sheffield
Game Developer / Necrosoft Games

✜ It might seem a little self-serving to include our own editor-in-chief
in our yearly Power 50—but since Brandon Sheffi eld has left GDMag to
focus on starting up his own game development studio (except for the
occasional column and Gamasutra editorial, anyway), we fi gured he
deserved an evangelism nod as well.

Over the last eight years (100 issues, actually!), Sheffi eld has
worked hard to make sure Game Developer could offer devs a way
to share their successes and failures with their colleagues so that
others can learn. Internally, he has served as a sort of underdog’s
advocate for both the GD Mag and Gamasutra staff. When all our
attention was on the U.S. and Japanese game industries, Sheffi eld
was paying attention to the nascent Korean game industry; when
we’re following triple-A, Sheffi eld was following the indies; when
we’re following the major indies, Sheffi eld was spending his evenings
sorting through obscure Xbox Live Indie Games.

Sheffi eld’s advocacy extends to the people in the industry as well; he
is unafraid to use the editorial pages on GDMag and Gamasutra to point
out the industry’s defi ciencies, blind spots, and controversial issues
when he feels that something needs to be done. Thanks, Brandon—let us
know when your games come out!

www.gdmag.com 13

and players alike, realized that,
well, some of these ideas sound
pretty good, and we’d rather spend
a weekend trying to make and
play those games instead of the
ones we spent Monday through
Friday making and playing.
Yes, the parody Twitter account
accidentally inspired a worldwide
grassroots game jam called “What
would Molydeux?”—and Molyneux
himself even showed up to the
London chapter!

Wherever you are, @
PeterMolydeux: Thanks for the
laughs—and the inspiration.

Yoshinori

ono
Capcom

✜ Last year, Street Fighter
steward Yoshinori Ono made the
Power 50 for his design work
bringing the franchise back. This
year, he’s making the list again—
but for evangelism, not design.

In a remarkably candid interview
with Eurogamer, Ono explained
that he had endured a medical
emergency brought on by
work-induced stress—a medical
emergency involving an ambulance
and a blood acidity level “on
par with someone who had just
finished a marathon.” During
that interview, he called Capcom
out for overworking himself and
other employees, scheduling an
unreasonably intense promotional
tour, and forbidding its employees
from organizing a union.

Game developers know they’re
in a tough business, with many
grueling schedules and unforgiving
crunch periods. But while it’s one
thing to acknowledge the business
as a whole is tough, it’s another thing
entirely to speak on the record about
how bad your employer is for your
health. Shoutouts to Ono for saying
what needed to be said.

{ Programming }

BoYd

multerer
microsoft

✜ Microsoft’s XNA framework (and
associated dev tool XNA Game
Studio) has been something of an
unsung hero for indie devs over
the last console generation, and
since its future is in question (XNA
applications won’t be included
in Windows 8’s Metro UI or app
store), we thought it only fair to
give XNA—and Xbox director of
development Boyd Multerer—
proper acknowledgement.

XNA has made it easier for
small-time indies and hobby game
devs to make games and put them
on Xbox 360s, Windows phones,
and PCs around the world. We’re
fans of tech that democratizes
game development, and XNA
was unprecedented in terms of
how available and accessible it
made the Xbox 360 and Windows
Phone 7 platforms. We’re hoping
that XNA sticks around in some
form—there are a few projects out
there working to adapt XNA to other
platforms, which could eventually
enable XNA devs to build games
for Metro, Android, iOS, Mac OS, and
PlayStation Mobile—but even if the
worst happens and XNA falls by the
wayside, we want to salute Multerer
for his excellent work.

niklas

smedberg
Epic games

✜ By now, it’s no secret that the
Unreal Engine can make mobile
games look amazing—and some
of that credit goes to Epic Games’s
senior engine programmer Niklas
Smedberg. Between Smedberg’s
under-the-hood look at mobile
GPUs at GDC 2012, his work on the
post-process graphics effects on the
inFinity Blade series, and his current
work on Unreal Engine 4, it’s pretty
clear that if you want your mobile
game to look like it came straight
from a console, he’s the go-to guy.

n/a

Jarod

Pranno
Phosphor games

✜ Unreal Engine is a great piece
of tech, but we can’t forget to show
some love to the devs out there who
make it sing—and Jarod Pranno,
studio art director on Phosphor
Games’s horn (iOS) did just that.
With Horn, Pranno demonstrated
that Epic Games/inFinity Blade dev
Chair Entertainment aren’t the only
ones who can make a great-looking
mobile game, and we’re eagerly
paying attention to see what Pranno
and Phosphor will be doing next.

dErEk

Yu
mossmouth

✜ Some games so tightly bind their
programming and design together
that it’s hard to truly determine
who deserves the credit. One such
is Mossmouth’s brilliant Spelunky,
which released this year for Xbox
Live Arcade. Its randomly generated
levels are the cornerstone of
the game’s addictiveness—and
a marvel of designer Derek Yu’s
algorithmic design. They’re always
navigable, always fun, and ever
changing. You’ll never complain that
they weren’t created—or at least
not directly—by human hands.

PatriCk

Wyatt
n/a

✜ Patrick Wyatt is practically
the definition of “industry
veteran”; between his stint at
Blizzard leading the original
Battle.net, cofounding guild
WarS dev ArenaNet, and more
recently working as En Masse
Entertainment’s COO (TERA), it’s
hard to find an MMO that doesn’t
have his fingerprints on its
network code.

When looking at a new MMO,
it’s easy to overlook the underlying
nuts and bolts that keep customers
happy. Wyatt’s work on the
platform underlying tera’S account
management, billing, and other

functions he described to Game
Developer as “all the other unsexy
parts of games” has shored up
many player-experience design
flaws others simply consider a
fact of MMO life—such as beefing
up account security, filtering
spam from chat, building in
better analytics to improve player
retention rate, and so on. More
recently, Wyatt has been making
efforts to share his knowledge
on game server code by writing
articles on his blog at codeofhonor.
com and giving in-depth talks at the
Game Developers Conference.

simEon

nasilowski
two lives left

✜ There is something to be said for
programmers who work on making
programming more accessible to
a wider range of people. Two Lives
Left’s Simeon Nasilowski did just
that with Codea, a newbie-friendly
iPad app that lets you quickly build
game prototypes with Lua (see
the June/July 2012 issue of Game
Developer for the review). With
Codea, anyone with an iPad and $10
can start dipping their toes in the
game-dev pool, and we think that’s
pretty cool.

JoaChim

ante
Unity technologies

✜ As we’re wrapping up 2012,
we’ve seen one very clear game-
dev trend: Everybody loves Unity.
Whether you’re an experienced
dev in a major studio tasked with
throwing together a quick-and-dirty
prototype, a small-time indie studio
looking for an off-the-shelf 3D
engine to build a game for multiple
platforms, or just a hobbyist dev
throwing together a fun project
for a game jam, you’ll probably be
using Unity. Unity Technologies
CTO, cofounder, core development
team lead Joachim Ante has
been central to that success;
under Ante’s leadership, Unity
has blossomed into a tool that is
powerful, polished, and relatively
easy to use.

Street Fighter iV.

http://Battle.net
http://WWW.GDMAG.COM
http://codeofhonor.com
http://codeofhonor.com

game developer | november 2012 14

B y A l B e r t r e e d , C e O , d e m i u r g e S t u d i O S

W e ’ v e b e e n m a k i n g g a m e s h e r e at D e m i u r g e s t u D i o s f o r 1 0 y e a r s ,
during which we’ve gotten used to a certain way of making them. We select our production practices,
technologies, and even people with the idea that we need to package a perfect product that will ship to
customers and never be touched by us again. Despite that background, we decided to take a stab at building
a free-to-play game-as-a-service. Normally, Game Developer’s development postmortems are written after a
game is finished and on store shelves, but since ArenA Kings, like many free-to-play games, is still being built,
we felt it’d be fair to call this a “midmortem,” and recap what has gone right (and wrong) with the process so far.

 ArenA Kings is a player-versus-player spinoff of shoot MAny robots (SMR1), our recently launched XBLA/
PSN/PC run-and-gun. Shortly after SMR1 shipped, we spun up a small team to slap together a prototype of
a 2D deathmatch game mode targeted at the $10 downloadable market. The results were very encouraging.
People at the office couldn’t put down the controllers, and there was gleeful shouting throughout each playtest.
The prototype exhibited a nice mix of competitive skill needed for PvP, and bombastic randomness that is
characteristic of the shoot MAny robots franchise. So, we packaged the demo, built a more comprehensive plan
and a PowerPoint deck, and took it to various publishers to try to raise capital to build the game. >>>>>>>

m i d m o r t e m

www.gdmag.com 15

http://WWW.GDMAG.COM

game developer | november 2012 16

what · went · right
1

standing on the
shoulders of shoot
Many robots
We should begin by acknowledging
that we got a head start thanks
to SMR1. Once we turned on
friendly fire in SMR1, we were
pretty far along from a production
standpoint to creating player-
versus-player combat in the Shoot
Many RobotS universe. I’d wager
that many established developers
also have technology and IP from
a previously shipped game that
could find new life as a digital title.

One of the surprising successes
of SMR1 was the attach rate of our
in-game currency and weapon
sales. We didn’t have any analytics
other than the leaderboards in that
title, but we put together some
info from snapshots provided by
Ubisoft, our publisher. Because of
that gap, the data is a little opaque,

but here’s what we were able to
deduce in the first few days
after release:

 Our in-game currency
“nuts” generated $0.70 arPu
(average revenue Per user).

durables in the fOrm Of
guns and gear generated
$1.00 arPu.

With in-app purchases, we were
able to effectively lift the retail price
of SMR1 by 17 percent. We applied
a very light touch to the in-game
purchasing functionality and,
frankly, grafted it onto the game
as an experiment pretty close to
its ship date. If you ask anyone in
the free-to-play space to evaluate
the design and functionality for
our in-app purchases, they’ll
tell you there’s a lot of room
for improvement. Nonetheless,
something about our mechanics
was working great, so we felt
strongly that we could reproduce
and build on that success in our
next title. The final edge we picked
up from the launch of SMR1 was
the ability to leverage the social-
networking integration included

in the PC version. As we’ll describe
later, our social platform (called
“duckduck”) gave us a highly
valuable connection to our previous
customers and got us on the path
to building game services.

2

“launch” Mentality
Perhaps the most exciting thing
about developing for the PC rather
than console was the opportunity
to make a game based on what our
customers were telling us, rather
than trying to speculate about what
features or content they would
find appealing. Good developers all
strive for quality, but most of us
are left to decide what that means
based on our own subjective views,
previous experience, and the
limited user-testing we can do prior
to shipping. We had to change this
mentality to “We are not the sole
arbiters of quality” instead.

Developers can debate all
day about how minimal a viable
product can be, so we cut short that
question by saying that it’s not up to
us alone to decide. Only by listening
to our customers can we confirm
that our decisions and priorities
are the right ones. That realization
pushed us to actually put the game

in the hands of customers before
we felt it was viable (for example,
it didn’t yet have the e-commerce
solution). We were terrified at the
thought of putting a game with our
studio and IP brands attached to it
in the hands of total strangers when
we knew it wasn’t yet good enough.
This led us to another mentality
shift: “No fear.” (As an aside: We
seriously considered naming all of
our new development practices
after mid-1990s T-shirt slogans, but
“co-ed naked game development”
appealed to absolutely no one.)

We launched the game in a
tightly closed beta. People played
it, complained (a lot), and the
dev team saw that the studio
walls didn’t come crashing down
around them. Our transformation
was in many ways complete.
Liberated of a fear that any game
that left our office needed to be
Metacritic-ready, we became eager
to test new ideas and engage our
audience in a conversation about
what they valued—what they
viewed as “quality.”

To keep our first release’s
scope under control, we applied
this litmus test: “Is including this
feature worth delaying our chance
to learn from customer feedback?”

arena kings
m i d m o r t e m

the team.

There were some things we just
couldn’t skip, such as making
a new logo and splash screen.
Other items, like swapping out
the programmer art in our new
scoreboard, were skipped in the
push to start testing the game.

Without changing the way we
as a studio thought about making
games, we wouldn’t have been
able to put a solid game in our PC
customers’ hands with only four
weeks, an Xbox 360 prototype, and
a team of six developers.

3
THE PILE
Getting the game launched and then
providing regular updates required
that we be more nimble than the
milestone-driven wings of our
business. Teams at Demiurge follow
pretty strict Scrum methodology,
but we opted to try something
different for ARENA KINGS because we
wanted to be able to realign near-
term objectives more often than
every sprint. With a small team, we
also felt comfortable giving the team
members fl exibility to decide what
was most important.

To get to launch, we had our
team focused on getting the
product in the hands of customers.
Because we already had a working

prototype, folks were able to
see our fi rst milestone without
needing a long-term schedule. Out
of this situation we put in place a
light task-management scheme
affectionately referred to as “The
Pile.” For our fi rst few releases, we
picked specifi c scope goals that
were printed out and hung on the
wall. These either took the form
of a user story or a hypothesis
we wanted to test. Anyone could
throw a task they felt necessary on
The Pile and tag it for a particular
release. Likewise, anyone could
grab a task to do off The Pile. Tasks
also were given a priority and
everyone was instructed to take
things off the top of The Pile. We
held daily stand-ups, which gave
the project lead the ability to catch
folks veering off-course before they
had sunk more than a day’s worth
of work into something. Everything
was tracked in Jira, but it could
have easily been cards, sticky
notes, or a bug database. We could
devote a whole article about the
merits and drawbacks of The Pile
compared to Scrum, but we’ll save
that for another time.

Our fi rst few releases were
scope-locked. When the user
stories were implemented and the
hypotheses were ready to be tested,

we released an update to current
players. We eyeballed the amount of
work in a given set of goals and tried
to keep it to around a week’s worth
of development. That functioned
reasonably well, but we wanted to be
providing updates to players every
week—and (unsurprisingly) when
we fi xed the scope, the schedule
tended to slide around. We felt that
providing weekly updates would
be key for driving our retention
rates (we’ll get to that later), so we
switched around to saying that we
were going to try to release Monday
morning’s build regardless of
whether we met our goals. The idea
of releasing a lightly tested game
on schedule rather than when it was
done took another “no fear” leap.

Shortly before we began work
on ARENA KINGS, we hired a web
developer from outside the game
industry. He brought with him a very
different way of looking at releases
than our company did. His work on
our social platform was pushed live
nearly every day after being locally
unit-tested and smoke-tested by QA.
These small-batch releases tended
to not be prone to major failures, and
the few times something broke, we
detected the problem quickly and
pushed up a fi x. Seeing this focus on
Mean Time to Recovery (MTTR) gave

us the courage to try to do the same
with our game. Unit-testing alone
wasn’t going to suffi ciently test the
software, so we had our QA team
spend a couple of hours with the
game each day.

On Monday morning, we
branched the build for release.
We looked at The Pile and moved
everything off to the next release if
it wasn’t ship-stopping, or assigned
it to be taken care of right away at
the morning stand-up. Most of the
released versions of the game had
less than one hour of testing on
them with a four-person test team.
Ten updates in, we’ve never had to
release an emergency patch.

One might think that this fast
pace would lead to late nights and
lots of crunch. The opposite proved
to be true—the entirety of ARENA
KINGS development to date has
been crunch-free.

4

THIRD-PARTY LIBRARIES
We got huge velocity improvements
from our team by using as much
off-the-shelf or pre-existing
technology as we could. Relative
to most indies, our costs are
high, so we tend to select
tools that save us the
greatest number of man

WWW.GDMAG.COM 17

http://WWW.GDMAG.COM

game developer | November 2012 18

hours—and usually, those are the
most expensive ones.

ArenA Kings is being distributed
to our testers via Steam, and we’re
making full use of the Steamworks
platform for achievements,
leaderboards, friends, and so on.
The engineers like working with
the Steam APIs, and Steam’s online
services have extraordinary uptime.
We used their local emulation of
the distribution services to deploy
builds to QA so that QA had the exact
same experience as our customers.
Being able to smoothly distribute
and update ArenA Kings was critical
to our success; historically the
process of pushing a build to Steam
involved a lot of manual effort, but
Valve kindly allowed us to test-drive
a new system that allows developers
to push live builds themselves.
This update made our MTTR tiny,
and allowed us to exactly time the
release of updates with our email
campaigns. Having the patches
delivered automatically, with
minimal size and in the background,
removes one of the biggest pieces of
friction that exists in the game-as-
a-service world on the PC. We highly
recommend it. Long-term, we want
to offer the game via other means to
maximize our cut of our customers’
expenditure, but to get off the
ground Steam was the clear choice.

One of the odd quirks of
developing free-to-play games is
that our players need to have some

sort of account to associate with
their save file. They need to be able
to retrieve this account if they forget
their password, and we want to be
able to reach out to them directly
with information about happenings in
the game. User identification is also
critical to making analytics effective.
Most web-based games need a
solution to this exact problem, but
these systems tend to rely on private
keys being stored server-side to
communicate with the authentication
and microtransaction systems.
We had the somewhat unusual
requirement that our game client ran
locally on individual computers. We
also felt strongly that we wanted to
have direct access to our customers
via email, so using Steam’s systems
wasn’t going to work.

Bizarrely, we couldn’t find a
single off-the-shelf system that
met our requirements. In the end,
we updated duckduck, our back-end
social services platform, to have
this functionality. Users can create
accounts or automatically wire
their accounts to ArenA Kings using
Facebook via duckduck. The same
tool also allowed us to pull in the
names and profile pictures of our
players so that we could display
them to their Facebook friends and do
matchmaking via real-life friends. (Yes,
we’re thinking of offering the service
as middleware to developers.)

To make microtransactions
work, you need both a payment

back-end and an online service to
track what goodies the player has
bought. Thanks to the success
of Facebook and mobile gaming,
there are tons (seriously...tons) of
providers that will handle one or both
of these services. We had two unique
requirements. First, we wanted to
take advantage of the fact that our
initial users would all be Steam-
based and offer Steam Wallet as a
payment option. Second, we had the
issue of being a C++, PC-based game,
so we needed a solution that allowed
untrusted clients to run the game
logic, and preferably one that offered
a C++ library. In the end, we opted to
go with the Player.IO tool suite. The
team at Player.IO offered absolutely
outstanding customer service, and
their engineers quickly answered
all our questions so our team could
focus on making the game.

5

Tableau
Since the team needed to test their
hypotheses, we added analytics
to the game. Most of the issues
stemmed from figuring out how
often users are returning and how
many games they are playing. We
were able to use duckduck to gather
data about each of the matches
being played.

What we didn’t have was a way
to meaningfully break down the
huge amount of data. Tableau to
the rescue! Tableau is an analytics

tool that makes it easy to filter
and manipulate data and then
build charts and graphs. Tableau
solves our data visualization
problem elegantly, but it took
some time to learn how it works.
We’ve previously used other
analytics packages, and usually
they provide both the data-gather
and data-visualization, which can
get frustrating when we can’t get
that package to display the data the
way we want to see it, or perform a
particular analysis.

By making it easy to answer
random questions (“When are
our North American customers
playing?” and “How many games
on average are those who joined
between Updates 2 and 3 still
playing?”) without involving an
engineer to do a database query
or adding some new specialized
instrumentation, we are able to
learn way more about our players’
behavior and optimize engineering
resources. It’s super-pricey, so for
now we have it set up on a
shared computer.

what · went · wrong
1

ReTenTion
Early on in ArenA Kings’s development
cycle, when the user base was just
a few hundred people, we needed a
way to gather qualitative feedback
about the game. Someone came up
with the idea of building a Google

arena kings
m i d m o r t e m

Users can create accounts or
automatically wire their accounts
to ArenA Kings using Facebook
via duckduck. The same tool also
allowed us to pull in the names
and profile pictures of our players
so that we could display them
to their Facebook friends and do
matchmaking via real-life friends.

Docs-based survey and having that
automatically pop up in a browser
when players quit. We shoved the
ID of players into this spreadsheet
automatically, along with a
timestamp so we could later tie
feedback into user behavior. In the
end, these are the fields that have
proven most useful:

How mucH fun did you Have
tHis session? (scale of 1-10)
most favorite parts

least favorite parts

Bugs—did you notice any?

are you excited to play
again? wHy or wHy not?

anytHing else you’d like
to tell us?

Without any fancy technology, this
simple survey form told us some of
our biggest problems over the first
few updates:

users not Being aBle to find
anyone to play witH

laggy games wHen tHey did
find someone to play witH

palpaBle Hatred for all
tHings faceBook (wHicH
we required up until very
recently—more on tHis
later)

Solving the lack of opponents was
a gnarly problem and highlighted a
previously overlooked project risk:

Getting PvP games off the ground
is challenging because you need
a critical mass of players of varied
skill active at any given moment.
In hindsight, tackling a game with
no single-player option as our first
free-to-play game was a mistake.

In the end we overcame our
player-count problems by sending
out beta keys to all to the duckduck
users from SMR1. Our battle with lag
is an ongoing technical challenge.

Once we had the game live,
the team got together and laid
out goals for weekly active users
(WAU), percent paying users
(PPU), and the average number of
dollars spent per week by each of
those paying weekly users (we’ll
abbreviate that with ARPPU). We
opted to measure things by week
since that was the cadence of our
development. Each week we got
together and asked ourselves how
we were tracking relative to our
goals, and pushed to implement
features we thought would have
positive impact on those numbers.

Our first update that included
the ability to buy in-game currency
gave us:

ppu: 1.5%
arppu (per week): $1.25
(Tableau was critical here—we
needed to filter out all Demiurge
employees!)

This was pretty bad by industry
standards, but given that we were
still “beta” and our players knew we
weren’t finished yet, we were pretty
pleased that the basics seemed to
be working. We monkeyed a bit with
the price and added a bunch more

goodies to buy and a couple of updates
later the numbers moved a bit:

ppu: 1.2%
arppu (per week): $2.12

These numbers aren’t great
either, but up to this point we had
made very little effort to tune our
economy, offer a good variety
of items for purchase, or reduce
friction. We were confident those
changes would improve PPU and
ARPPU, but we had significant
problems maintaining our user base,
so we turned our attention to WAU.

Because we’re in a tightly closed
beta, our WAU measurements weren’t
very meaningful—we could juice
those numbers by simply sending
out more beta keys. The meaningful
statistic behind WAU is our retention.
To make our retention numbers even
more useful, we broke our players
into cohorts by the update in which
they first played the game. Using
Tableau, we spit out this table (see
figure 1) without any new work from
the engineering department.

Along the vertical axis is the
update during which the player first
joined. Along the horizontal axis is
the number of updates for which

the users stuck around. (Note that
in this chart, the 0 percent entries
are there because we don’t yet
have data for the seventh update
integrated.) We can also view this
same data by week (see figure 2).

This cohort analysis allows our
development team to drill down to the
exact impact of the new features and
react accordingly. With this analysis,
we were able to start working to
address the issue of retention
around update six. Our approach was
to implement features that directly
went to the game’s stickiness
by making progress feel more
satisfying, adding achievements, and
increasing the amount of content in
our RPG systems. As you can see,
those efforts haven’t yielded much
improvement. Our next effort will be
to make more fundamental changes
to the game. Retention is a great
measure for how sticky your game is,
but we think it’s also a fair measure
for how much people actually enjoy
playing. We’ve got work to do!

2

Email sErvicEs
Email communication proved to
be an immensely useful way of
engaging our existing customers and

www.gdmag.com 19

figure 2: weekly active user retention rates for arena kings. note that the far right column for each row has incomplete data.

Week of first place 0 1 2 3 4 5 6 7 8

May 13, 2012 100% 66.7% 33.3%

May 20, 2012 100% 28.6% 28.6% 21.4% 7.1% 7.1% 7.1%

May 27, 2012 100% 20.8% 12.5% 4.2% 4.2% 4.2% 8.3% 4.2% 8.3%

June 3, 2012 100% 12.2% 7.8% 4.4% 1.1% 3.3% 3.3% 1.1%

June 10, 2012 100% 12.3% 7.5% 6.8% 6.2% 3.4% 1.4% 3.1% 0.3%

June 17, 2012 100% 8% 7% 6% 2.7% 2.9% 1.2%

June 24, 2012 100% 9.9% 6.4% 5.5% 2.5% 1.9% 0.5%

July 1, 2012 100% 4.7% 2.4% 2.8% 1.7% 0.4%

July 8, 2012 100% 7.1% 3.6% 4% 0.4%

Age of users by releases
User join 0 1 2 3

2 100% 38.9% 16.7% 16.7%

3 100% 26.7% 12.2% 6.7%

4 100% 18.5% 14.4% 0%

5 100% 14.4% 0% 0%

6 100% 0% 0% 0%

figure 1: this table shows what percentage of users that started playing during a given
patch stuck around ArenA Kings for subsequent patches.

http://WWW.GDMAG.COM

reaching out to new ones. There are
many options out there for sending
bulk emails. In our case, we needed
to bake beta keys into the emails and
wanted to be able to easily import
our spreadsheet-based contact
database into the mailer. We ended
up going with Constant Contact,
based largely on recommendations
from peers with prior experience.
During one of our key updates, we
were pushing out beta keys to about
10,000 customers.

Timing was crucial for this period,
because our goal with this push
was to get our active user count
high enough so there was always
a game to join. Without warning,
Constant Contact opted to put us on
a probation of sorts whereby they
sent emails in small batches to make
sure that they weren’t getting too
many spam reports. They waited until
we hit “send” rather than prompting
us with a warning when we built
the list. This probation jeopardized
the effectiveness of our campaign.
To their credit, they provided
outstanding customer service by
phone—tutoring us on the ins and
outs of email marketing and walking
us through what was going to happen,
often at night and over the weekend.
Despite that, I wouldn’t recommend
them as an option going forward.

3

Fearing the premature
“announcement”
Up until recently, all of our beta
players came to us without any
meaningful PR. Because we need
concurrent testers to keep the game
alive and because our retention was
low, we called our email database of
potential testers “Rocket Fuel”—a
precious commodity to be spent
only when it would do us good. We
spent countless hours trying to
figure out how to gather beta testers
for the game without spoiling the
opportunity to announce the title
and get the resulting PR bump.

Ultimately, we didn’t need to
worry. We did just about everything
we could think of (short of directing
outreach to mediaoutlets, posting
to forums of similar games, and
even using our Facebook/Twitter
feeds), and still our PR team was
able to get pretty good coverage by
“announcing” the game long after it
was quite public.

Gathering testers was critical
to our ability to evaluate progress,
and holding back on gathering
those testers impeded the game’s
evolution, but there were some
successes in our user-gather efforts.
We wanted an easy way for people
to sign up to be in the beta, and
didn’t want to take the time to muck
around with our existing websites.
LaunchRock did exactly what we
needed. A web form to gather emails
isn’t a complicated feature, but their
system took us just a few hours to
set up and never went down. We did
get a lot of bogus emails, but overall
their tools were great.

We pulled users to the LaunchRock
site by posting to online forums for
similar games and by posting to the
Shoot Many RobotS and Demiurge
Studios Facebook/Twitter feeds.
Check out Figure 3 to see what our
sign-up graph looks like currently.

We expected to get the biggest
spikes in new sign-ups and active
players when we announced a new
update. However, the large spike on
the left actually correlates to the
sending of the first wave of beta
keys. As soon as word spread that
we were live, we got a huge influx
of new potential players. This trend
continued—at the moments we
sent beta keys, we got more beta
sign-ups. We capitalized on the
word of mouth we were getting by
beginning to send out four keys to
each player. In addition to further
generating buzz for the beta, it
helped players find games by
coordinating with their friends.

To date, we have about 10,000
sign-ups through LaunchRock. Our
bounce rate to those emails is usually
between 1 percent-3 percent, and
our open rate (measured by people
displaying images in the email) is in
the range of 30 percent-40 percent.
As we saw the sign-ups come in, it
was clear there was a lot of abuse
taking place—many sign-ups were

coming from the same IP address.
We gradually just ignored that issue
since it wasn’t causing any harm.
Because Steam doesn’t allow us to
track the use of each key, there’s
little way for us to determine what
happens to users until they fire up
the game for the first time.

4

requiring Facebook
We received a ton of negative
feedback to our Facebook-based
account management. Early in
the development, we flipped off
all posting to activity feeds to test
whether that was the source of the
ire, but it had little impact on the
complaints. Our analytics were also
showing that users were dropping out
at the registration step. Uptake on the
totally optional registration with SMR1
was quite high—around 30 percent
during the first couple of weeks, so
the backlash was unexpected. We
think the key difference was that by
presenting users with a choice, they
found the idea of Facebook integration
less intrusive. While we worked on a
Facebook-less registration process, we
improved our funnel by telling users
what the Facebook application was
used for and by including a “coming
soon” preview of our account-creation
system. We think that this nicely
explained the purpose of Facebook.

5

matchmaking and lag
The biggest complaint received
from customers on the feedback
form centers around lag in the
games. Clearly for a PvP experience,
having a fair, responsive
multiplayer environment is critical
to our success. Our engine does
not currently have support for
dedicated servers nor did we
want to incur the complexity and
overhead of setting up a bank of
those sorts of servers while we
were still trying to learn about the
game’s design. Instead, we focused
on improving the peer-to-peer
matchmaking and communication
to the player about what is
happening during that process.

We also tried to come up with a
metric for determining connection
quality. On our console titles, we had
great luck using simple ping times
but on the PC and using Steam’s peer-

to-peer libraries, we had no means of
testing the quality of the connection
between peers without opening up
a real connection to each potential
host and then testing the connection
quality. That has the potential to
be very slow for users if there are
many servers running and we never
managed to get it working reliably.

In the end, we used some
of the geographic information
provided by Steam as a very rough
proxy for how good the connection
between two players was likely to
be. It didn’t work very well, though.
We also tried to work the issue
by providing players with better
messaging. We added a little dialog
explaining to the users during the
search process that we hadn’t been
able to find any high quality games
and offering them the option to
connect to poor-quality games or
just wait longer for a match. At least
that left players understanding why
their experience was sub-par during
the match rather than simply
thinking the game was broken.

 not doing this
stuFF sooner

One of the most exciting developments
at Demiurge has been our application
of these lessons to our traditional
game development business. One
of our internal projects is now doing
“weekly releases,” where developers
push a stable, testable build to a
set of dev kits sitting in our lounge.
Other developers at the studio stop
and play the game and then submit
feedback on their experience through
a web-based form. At our weekly
staff meeting, we even use a show of
hands to see what their WAU numbers
look like. Those changes have helped
focus the team and significantly
improved the software’s stability.
Soon, we’ll expand that system to
include one-time on-site testers.
It’s also wonderful to get to see big,
meaningful changes happening to
our in-development games every
single week.

Albert reed is the CEO and one of three co-

founders of Demiurge Studios. He graduated

from Carnegie Mellon University, where he

and fellow founders Chris Linder and Tom

Lin shared a common love for pizza and

recreational modding. He can be reached at

al@demiurgestudios.com.

arena kings
m i d m o r t e m

Figure 3: Sign-up graph for Arena Kings.

game developer | November 201220

!

mailto:al@demiurgestudios.com

21W W W . G D M A G . C O M

Game Design at VFS lets you make
more enemies, better levels, and tighter
industry connections.

In one intense year, you design and develop great

games, present them to industry pros, and do it all in

Vancouver, Canada, a world hub of game development.

The LA Times named VFS a top school most favored by

game industry recruiters.

THE ONLY ONE-YEAR PROGRAM

IN PRINCETON REVIEW’S 2012

TOP GAME DESIGN PROGRAMS

Z
B
R
U
S
H ®

V
F
S
 S

T
U

D
E
N

T
 W

O
R

K
 B

Y
 N

IK
O

L
A

S
 L

A
Z

A
R

http://WWW.GDMAG.COM
http://vfs.com/enemies
http://GDMAG.COM/SUBSCRIBE

http://perforce.com/try20

Headline
subhead

loudness metering can open up your
game’s sound design... if you can stay

away from broadcast standards.
for the past two years i’ve observed the game-audio community discussing
the idea of standards. in particular, the concept of “loudness metering”

seems to have gained a lot of traction, and is just starting to gain
momentum. i was approached to write this article for game developer

because i work outside the game industry, and i believe many of you are
thinking about this issue the wrong way. >>>>>>>>>>>>>

how
loud
should
it be?

www.gdmag.com 23

b y s h a u n f a r l e y

http://WWW.GDMAG.COM

game developer | November 201224

Understanding
broadcast
metering specs

 Let me qualify this before you
stop reading: I don’t think loudness
metering is inappropriate for games.
What I think is inappropriate is the
specification most people keep
talking about: EBU-R128. I’ll come
back to why I think this is wrong for
games, though, because I want to
talk first about the specification you
should be focusing on instead.

ITU-R BS.1770 is a metering
specification embedded with three
important qualities. First, it employs
a scale that emulates human
perception of the frequency spectrum
(thanks to the K equalization
curve). Second, that measurement
takes place over a period of time,
because the duration of a sonic
event affects the way we perceive
it. Third, it specifies a need for “true
peak” metering, a way to calculate
intersample peaking and to correct
for failures of Peak Program Meter
(PPM)/Quasi-PPM integration time.
These are the elements that are most
important to us as listeners. Any
meter that is ITU-R BS.1770-compliant
will meet these requirements.

The awesome thing about
BS.1770 is its emulation of human
perception. This method comes closer
to measuring audio in the way we
hear than any previous meter does.
Let’s say you had two sound files
that measured -30 LKFS (that’s
“Loudness, K-weighted, relative to
Full Scale”; for those who are more
familiar with the nomenclature LUFS,
the two are analogous). One file has no
frequency content above 300Hz, and
the other is broadband and noiselike.
That equal loudness measurement
means that when played through our
speakers, the noise is perceived as
being equal in volume. Those same
two sounds adjusted to the same
meter reading in another scale, dBFS
or LEQ-A for example, will likely not
be perceived as the same volume.
This measurement scale provides
subjective predictability, regardless of
spectral content, which is a good thing.

Why broadcast
models aren’t
good for games

 Now let’s talk about EBU-R128
(and lump in ATSC-RP A/85, for

good measure). These broadcast
specifications are implementations
of ITU-R BS.1770. They do not specify
metering criteria, other than the
fact that BS.1770 is required. They
specify measurement criteria. What
they state is that a specific loudness
measurement, over “infinite”
duration, must be met by broadcast
materials. (“Infinite” simply means
that the measurement must be
averaged over the length of the
program or advertisement.)

These broadcast specs also
dictate that the measurements
also need to remain relatively
static throughout the show; your
measurement at the end needs to
match measurements earlier in the
program. To achieve this immovable
magic number, the dynamic range of
the program is necessarily limited to
a narrower state—nowhere near as
narrow as we find in pop music, but
not as wide as film either. Because
the content of the piece is perfectly
predictable (remember, we’re
discussing broadcast right now),
it’s possible to work some dynamic
range back into the piece.

In a game, your measurement is
going to be affected by the duration
of gameplay states (travel, dialogue,
stealth, battle, and so on). How do
you predict the duration of those
states when they are, in most cases,
entirely dependent upon the player?
If you have too many sustained
quiet moments, your measurement
will drop, and the opposite is true
as well. You could also easily have a
section that goes beyond reasonable
volume limits, but still have a valid
infinite measurement. Working
under an “infinite” measurement
window in this scenario would likely
force you to emulate a broadcast
mix and add compression to hit that
magical number—or possibly move
closer to the kind of compression
found in pop music. There may be
appropriate cases for this, which I’ll
touch on later, but this shouldn’t be
the ultimate goal.

Personally, I like to play games
that have some dynamic range
to them. I don’t need a film mix,
but I want to feel that the sonic
experience is appropriate for the
situation onscreen. If you’re trying to
model a broadcast spec—a specific
number over infinite duration—you

might end up with a game where
explosions from an action sequence
are the same perceived volume as
footsteps during a stealth section of
gameplay. Unless there’s a specific
reason to do that in terms of narrative
or game experience, you’re losing
opportunities to create impact.

People have recognized this,
and I think that’s why there’s
been a lot of head scratching over
the implementation of loudness
metering. While it’s possible
something modeled after the
broadcast specifications may
work—and could even be ideal—for
browser-based social games or
mobile phone platforms, no one has
figured out how to effectively apply
it to console and PC games.

Game audio folks: These
broadcast specifications that
you’ve been hung up on are the
problem. EBU-R128 and ATSC-RP
A/85 are useful for games only if
you’re trying to understand the
logic behind them. You need to
first understand why they work in
the broadcast conditions they’re
designed for, then go back to the
source, ITU-R BS.1770, and develop
your own set of rules. I even have a
few suggestions to get you started.

normalizing
loUdness in yoUr
assets

 Remember why BS.1770 is so
awesome? That predictability of
perceived loudness could be the
goose that lays a golden egg of
workflow efficiency. Let’s say that
your game’s sonic assets fall into
the following categories: ambient
sounds, small weapons, character/
vehicle movement, music, and user
interface. Start by defining a target
loudness measurement for assets
in each category. If you can predict
that all of your ambience assets
are the same perceived volume,
wouldn’t it make it easier to mix and
transition from one ambient area to
another? What if, months after your
initial implementation of weapon
sounds, you had to create three
new weapons? Or perhaps you’ve
been working with placeholder
music and have just received the
final versions. If you knew that all
of your existing weapons measured
at -27 LKFS, you could easily create

new sounds for implementation into
the existing mix engine.

You could conceivably create
a fairly detailed rough mix using
only a limited set of assets in each
category, because your in-house
loudness standards established for
each category of sound asset make
it easier to work in new sound assets
later without worrying about your
levels. This would leave more time for
you to focus on engine optimization,
using system resources, or polishing
your game’s final mix.

If it’s so critical to create
predictable behaviors in the sound
engine for that real-time mix, why
not give that engine predictable
material? NuGen Audio even has
a piece of software called the
Loudness Management Batch
Processor that will take care of it
for you, though I haven’t tried it
myself. Simply drag your files to the
In folder, and the software analyzes
and processes the sounds to match
your loudness and peak-limiting
settings. Done.

“short-term”
measUrements and
loUdness ranges

 PrototyPe 2 audio director Rob
Bridgett recently shared some
interesting numbers from his work.
Here are some “long-term” loudness
measurements from specific states
of the final mixed game: cutscenes
-23, stealth and dialogue-heavy
gameplay -23, action -19, “insane”
action -13. These states were mixed
artistically for maximum impact and
experience, which is important for
the artistic nature of games. Picking
one infinite loudness measurement
to suit this game would not only be
a difficult task, it would lessen the
audio team’s creative contributions.
One solution is to work in smaller
measurement windows and to
utilize a minimum and maximum
measurement range—a pair of
loudness thresholds.

When I say smaller
measurement window, I’m referring
to somewhere in the neighborhood
of five seconds—maybe as short as
two. In this manner, the loudness
measurement will more accurately
reflect the in-game events as they
happen. Because I’m arguing for the
use of dynamic range in games, a

www.gdmag.com 25

target range is more appropriate
for short-term measurements.
Establishing this would require
the identification of anchor states.
When should the game be loudest?
When should it approach the
bottom volume threshold?

If we use PrototyPe 2 as an
example, we’re going to be looking
for archetypal moments of “insane”
action and stealth, respectively.
Start with those two moments and
get a good idea of where the audio
should sit. Those become the anchor
points and inform the rest of your
mix. From then on, the goal is to keep
the loudness levels between the two
thresholds. Mix artistically, and only
worry if you exceed or drop below the
respective loudness levels.

With the exceptions of examples
of social and mobile games, I
think there is only one appropriate
scenario for a specific target
measurement in games. Start with a
dynamic mix that provides flexibility,
and then take a page from DICE’s
playbook for Battlefield 2—more on
that in the next section.

Player-
controlled
dynamic settings

 Battlefield 2 did something
interesting with the dynamic
range—namely, it put that range in
the player’s hands. Not everyone has
a home theater system, and there
are definitely times when it’s a bad
idea to piss off the neighbors with
sudden volume swells. We still want
people to have a good experience
in these situations as well. DICE
created a base mix with a wide
dynamic range, but also allowed
players to choose an audio setting
called “War Tapes.” This setting was a
more compressed mix configuration
and wound up being very popular
with the game’s core players.

You could do this pretty easily
in many games—after all, it should
be a simple matter of a final layer of
compression on the master mix bus
within the game engine. Granted,
few things are ever that simple,
but it’s not a complicated theory. If
you’ve mixed with the minimum/
maximum threshold measurement
model in mind, then you already
know what the perceived dynamic
range of your game is. Narrowing

that range in a predictable manner,
at the parent level, becomes a lot
easier this way. This is a case where
targeting a single infinite loudness
measurement makes sense.

There is also precedent for
this in consumer media devices.
When multichannel bitstreams are
authored, they frequently have a
piece of metadata to indicate an
appropriate compression scheme:
“Film Standard,” “Film Light,”
and so on. Most DVD and Blu-ray
players have a feature built into
them that might be referred to as
“Night Mode” or something similar.
When it is activated, the equipment
checks that piece of metadata
within the audio bitstream and
adjusts its compression settings

appropriately. To my knowledge,
DICE is the first developer to
emulate this functionality in the
game community. If I were to meter
“War Tapes” mode with an infinite
measurement window, I’d bet
that it behaves very similarly to a
broadcast television mix.

metering is not
mixing

 There is a way to employ
loudness metering in the game
industry. Hell, there are probably
several. I’ve laid out a few simple
ideas that I think would benefit
the game-audio community, but
feel free to ignore them. I really
only want you to take one thing
away from this article: Find what

works for you. It’s important to
remember that metering, even
loudness metering, is merely a tool
for mixing. It provides feedback
and helps the sound professional
predict how a mix will behave on
other systems. It should not dictate
your artistic choices, but inform
them. The broadcast industry
has found an application of ITU-R
BS.1770 that works for it, and the
game industry can too.

Shaun Farley is a sound editor and re-

recording mixer, and currently holds down

the fort at Teleproductions International,

working on television and film productions.

He is also a contributing editor on

DesigningSound.org. Contact him at

shaun@dynamicinterference.com.

Battlefield 2.

PrototyPe 2.

http://DesigningSound.org
mailto:shaun@dynamicinterference.com
http://WWW.GDMAG.COM

GAME DEVELOPER | NOVEMBER 2012 26

 B Y E D M U N D M C M I L L E N

On paper, there is simply no reason for a game like THE BINDING OF ISAAC to have
become as huge as it has. It makes no sense—and this is coming from the person
who believed in it the most. I knew ISAAC was special, but if you asked me to bet
on whether ISAAC would sell over one million copies in less than a year, I would
have bet against it. You see, THE BINDING OF ISAAC was made to clash against
mainstream games—it was designed to be a niche hit at best. I had hoped it would
gain some minor cult status in small circles, kind of like a midnight movie from
the 1970s. From any mainstream marketing perspective, I designed to fail—and
that was my goal from the start. >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

p o s t m o r t e m

WWW.GDMAG.COM 27

http://WWW.GDMAG.COM

When I started working on The
Binding of isaac, I was still haunted
by the end of super MeaT Boy’s
development, and the hoops we
had to jump through to get there
(See Game Developer April 2011).
I wouldn’t say super MeaT Boy was
“selling out,” but it was the closest
I was going to come to it when it
came to playing by the rules to
make sure that we could sell the
game that consumed two years of
our lives (and all of our money).
After sMB, I no longer had those
worries—I could afford to take
a bigger risk and fail, if I felt like
failing. I wanted to make something
risky and exciting now that the
financial aspects of that risk were
gone. And I wanted to really push
my limits to get back to where I had
come from—a place where there
were no boundaries, where I could
create anything without worrying
about making a profit.

 The Binding of isaac started in a
weeklong game jam. Tommy Refenes
(super MeaT Boy co-developer) was
taking a vacation, so I decided to do
the game jam with Florian Himsl,
who programmed a few of my
previous Flash games (Triachnid,
coil, and cunT). Florian is the kind
of guy who is up for anything; he
wasn’t worried about his reputation,
and was basically down with
whatever I wanted to do in terms of
content. This was good, because I
had two clear goals when I started
designing isaac: I wanted to make
a roguelike game using the legend
of Zelda dungeon structure, and I
wanted to make a game about my
relationship with religion.

 Both goals were challenging but
very fun to design, and after seven
days we had something that was
turning into a game. It seemed too
good to pass up, so we continued
working on it in Flash (using

ActionScript 2). At this point in the
process, I wasn’t thinking about how
we were going to sell this game (or if
we were going to be able to sell the
game at all!); it was just a challenge
we both wanted to finish.

 We finished The Binding of isaac
after about three months of part-time
development. We released it on
Steam, and it was selling okay; for
the first few weeks, the game was
averaging about 100-200 copies a
day, eventually stabilizing at about
150 a day after a few months. By
this point, the game had already
exceeded my expectations, but five
months after release something very
odd happened. Our daily average
started to climb. 200 copies per day
turned into 500 copies, then 1,000
copies, and by the seven-month
mark isaac was averaging sales of
more than 1,500 copies a day and
climbing. I couldn’t explain it—we
hadn’t put the game on sale or

anything, so I was clueless as to
why sales were continuing to grow.

Then I checked out YouTube,
and I noticed that fans of the game
were uploading Let’s Play videos
constantly—over 100 videos every
day, each getting tons of traffic. isaac
had found its fanbase, and that base
was growing larger and larger. Not
bad for a game that was meant to fail!

what · went · right1

Roguelike design
The roguelike formula is an
amazing design plan that isn’t
used much, mostly because
its traditional designs rely on
alienatingly complicated user
interfaces. Once you crack the
roguelike formula, however, it
becomes an increasingly beautiful,
deep, and everlasting design that

game developer | november 2012 28

allows you to generate a seemingly
dynamic experience for players,
so that each time they play your
game they’re getting a totally new
adventure. I wanted to combine the
roguelike formula with some kind of
real-time experience, like SPELUNKY,
but I also wanted to experiment
more with the traditional role-
playing game aspect of roguelike
games CRAWL and DIABLO.
Fortunately, using the basic LEGEND
OF ZELDA dungeon structure as the
game’s skeleton made it easy to
rework almost all the elements
of a traditional roguelike formula
(procedurally generated dungeons,
permadeath, and so on) into a
real-time dungeon crawler format.
Almost every aspect of the game
seemed to fall perfectly into place
with little effort.

Let’s start by looking at the
LEGEND OF ZELDA dungeon and
resource structure—it’s simple,

and really solid. Keys, bombs,
coins, and hearts are dropped in
various rooms in the dungeon, and
the player needs to collect and use
these resources to progress through
each level. In ISAAC, these elements
were randomly distributed and not
required to progress, but I included
them to add structure to the
experience. I also pulled a lot from
ZELDA’s “leveling structure,” where
each dungeon would yield an item as
well as a container heart to level up
the character and give the player a
sense of growth; in ISAAC, each level
contains at least one item, and the
player can get one stat-raising item
by beating the boss. These items are
random, but still designed in a way
that made it so your character would
have some kind of physical growth
as you progress through the game.

 I approached the roguelike
design from many different
directions with ISAAC, but at its core,

what made ISAAC different than
most roguelike games (well, aside
from its visuals) was how I dealt
with the diffi culty curve. Instead of
using traditional diffi culty settings,
I simply made the game adjust
to players as they played, adding
increasingly diffi cult content to
the game as they progressed.
This made ISAAC feel longer, richer,
and gave it the appearance of a
story that writes itself. Using this
design also allowed me to reward
the player for playing and playing
well, with more items that would
help aid in their adventures and
keep the gameplay fresh and
exciting. Once the player fi nally
overcomes Mom, they usually
assume the game is over, but
instead get a new fi nal chapter, six
new bosses, a new fi nal boss, and
new items that shuffl e into the mix.
When the player beats the fi nal
chapter, they unlock new playable

characters and items, and when
they beat the chapter with each
new character, they’ll unlock even
more content that makes the game
even deeper still.

 With ISAAC, my goal was to create
“magic.” I wanted players to feel like
the game was endless and alive, that
the game had a mind of its own and
was writing itself as they played. I
remember the original ZELDA having
this feeling of magic and mystery.
You weren’t sure what things did

p o s t m o r t e m

the player for playing and playing
well, with more items that would
help aid in their adventures and

exciting. Once the player fi nally

instead get a new fi nal chapter, six
new bosses, a new fi nal boss, and
new items that shuffl e into the mix.
When the player beats the fi nal
chapter, they unlock new playable

WWW.GDMAG.COM 29

http://WWW.GDMAG.COM

http://WWW.GDCONF.COM

www.gdmag.com 31

until you experimented with them,
and you had to brainstorm with
your friends and put all your findings
together in order to progress. I felt
like since I was referencing Zelda so
much in Isaac’s core design, I should
also complement it with the feeling of
mystery I felt it had back in the day.

2

Uncensored, UniqUe
theme
 I strongly believe that game
enthusiasts want what they haven’t
seen yet, and that adult gamers
should be treated like adults. Some
people might argue that Isaac isn’t
“mature” when it comes to its
content, but those people would
be ignorant fools! When I designed
Isaac’s story and overall theme, I
went in wanting to talk to the player
about religion in a manner I was
comfortable with—that is, with dark
humor and satire.

A lot of the content in Isaac is
extremely dark and adult. It touches
on aspects of child abuse, gender
identity, infanticide, neglect,
suicide, abortion, and how religion
might negatively affect a child,
which are topics most games would
avoid. I wanted to talk about them,
and I wanted to talk about them in
the way I was comfortable with, so
that’s what I did with Isaac. I’m not
saying everyone who played Isaac did
so because they cared about these
themes, or that they even understood
why they were in the game, but
I strongly believe that this adult
conversation I dove into with Isaac
is what made the game stand out to
people and kept them thinking.

 I grew up in a religious family.
My mom’s side is Catholic, and my
dad’s side is born-again Christian.
The Catholic side had this very
ritualistic belief system: My grandma
could essentially cast spells of safe
passage if we went on trips, for
example, and we would light candles
and pray for loved ones to find their
way out of purgatory, and drink and
eat the body and blood of our savior
to be abolished of mortal sin. As a
child growing up with this, I honestly
thought it was very neat—very
creative and inspiring. It’s not hard to
look at my work and see that most of
the themes of violence actually come
from my Catholic upbringing, and in a

lot of ways I loved that aspect of our
religion. Sadly, the other side of my
family was a bit more harsh in their
views on the Bible; I was many times
told I was going to hell for playing
Dungeons & Dragons and Magic:
The Gathering (in fact, they took
my MtG cards away from me), and
generally condemned me for my sins.

 I wanted Isaac to embody this
duality I experienced with religion. I
wanted it to show the positive and
negative effects it had on me as a
child—the self-hate and isolation
it instilled in me, but also the dark

creativity it inspired. The Bible is a
very good, creatively written book,
and one of my favorite aspects of
it is how so many people can find
different meanings in one passage.
I wanted Isaac to have this in its
story as well, which is why the
game’s final ending(s) have many
possible interpretations.

3

The WraTh of The
Lamb expansion
 Doing a DLC expansion was never
in the plan for Isaac; I assumed the

game wasn’t going to do well, so it
wasn’t something we really ever even
talked about. I had a few pages of
“dream ideas” that I wanted to add to
the game, but I had to stop working
on them and put them on the back
burner, since I wasn’t sure how much
the extra content would matter if the
game didn’t do well. Six months later,
we ended up taking these dream
ideas and expanding them into an
extra-large DLC expansion.

 The Wrath of the lamb
expansion added over 80 percent
more content to an already-

p o s t m o r t e m

http://WWW.GDMAG.COM

GAME DEVELOPER | NOVEMBER 201232

bloated experience—and people ate
it up. 25 percent of the people who
purchased ISAAC also paid for the
expansion, and that ratio is going
up by the day. We honestly didn’t
expect to make it, but once I started
seeing such a positive, creative
fan response, I felt obligated to
continue Isaac’s adventure.

 Honestly, however, the
number-one reason why I did the
expansion was because my wife
Danielle had already 100-percent-
completed the game. It was the
fi rst game I had designed that
she became obsessed with (she’s
actually playing it right now, behind
me, while I’m writing this), and it
made me extremely happy to see
her fall in love with something I
had made. I just had to continue it
(also, she wouldn’t shut up about
wanting more).

4

CIRCUMVENTING
CENSORSHIP WITH
STEAM
Steam is amazing, and with the
ISAAC release experience I’ve found
another crucial reason why: You
can use it to sell uncensored and
unrated games. This was vital with
ISAAC, because I wasn’t going to
bother with getting an ESRB rating
for a game I wasn’t sure was going
to sell more than 100 copies. Valve
knew the game was weird and could
possibly get some backlash, but
they allowed it on Steam because
they felt it had potential, and I love
them for that.

 Another huge plus to working on
Steam was the ability to constantly
update ISAAC with fi xes, updates, and
new content. They would upload
a new build within the day we
submitted it to them, and if we had
released it on any other platform this
would have been impossible (and
probably cost us about $40,000).

5

ISAAC’S FANS
The main reason why you’ve heard
about ISAAC is its fans. Releasing
SUPER MEAT BOY and being in Indie
Game: The Movie has shown me a
wide range of fan types, but ISAAC
fans are just in a league of their own.
At the time of this writing, there are
well over 30,000 videos of ISAAC on

YouTube, countless pieces of fan
art, animations, and plush toys
all over the Internet, and over 30
fi ctional fan blogs where people can
ask characters in ISAAC questions
and get in-character responses.
It’s totally surreal. Something in
ISAAC just spoke to a large group of
creative people, and they held him
up and ran with him.

 Recently, I’ve been trying to
fi nd out how ISAAC attracted such
a creative and dedicated fanbase.
What is it about the game that spoke
to this large group of artistic men
and women? I can’t ever know for
sure, but I strongly believe that
something in ISAAC’S theme and
story connects to a large number of
“creative outcasts.” I made it from
the standpoint of a creative outcast;
the game is about a creative child
who is looked at as “made wrong”
by the one person who cares about
him, and his only real escape is his
imagination. This is a story I could
relate to, and it’s one I think a lot of
creative people latched on to mostly
because it’s not really a story you
see in video games at all.

 I am forever in debt to these
people. Not only did they get
the game to the masses, they
also inspired me so much. You
guys make me want to continue
designing this game forever.

what · went · wrong1

SHAKY LAUNCHES
THE BINDING OF ISAAC was updated
every day for two weeks during
launch, and each time we thought
we had solved all the issues. (Each
time we were wrong.) Luckily, we
were able to remove all game-
breaking bugs in the fi rst two
days, but there were still many
smaller bugs left that gnawed at us
for a long time. It sucked to launch
with so many issues—we had
save bugs, game-breaking bugs
that wouldn’t let you complete the
game, bugs that would not reward
unlocks and achievements, and
even some really odd ones that
would scramble item clips and
cycle through art from the game
constantly. It wasn’t pretty, and
it was even more painful to watch

WWW.GDMAG.COM 33

so many upset players posting
in the forums about the many
issues with the game. (The biggest
question, of course, was “Why
didn’t you test the game?”)

The reason we released ISAAC when
we did was because it was done (if
untested), and I didn’t want to waste
any more of my time on something I
expected would crash and burn. I was
just so worried it would suck that I
wanted to get it out and over with.

2

TESTING (AND THE
LACK THEREOF)
At launch, THE BINDING OF ISAAC
had 100 items and fi ve playable
characters. 70 percent of the
items in ISAAC stack, and all the
item abilities will affect Isaac in
some way, so there were so many
variables to keep track of that all
the testing in the world couldn’t
have prepared us for launch.
Everything about the game was
based on complex variables that
multiply with each level you pass.
In order to fully test all the variables
we had in place, it would have taken
hundreds of testers several days of
extensive play time to fully debug
this little monster—there were
bugs that actually took 100,000+
people four weeks to find due
to how buried and rare some of
them were. Also, launching on
PC meant launching on 10,000
different PC configurations, so we
had bugs that would be caused
by antivirus software, clean-up
tools, and even some types of
keyboard configurations.

 The sad fact was that it was
the day-one buyers that ended
up fully testing ISAAC for us, and I
felt really shitty about that. A few
weeks after launch I put together a
free mini-expansion to make up for
our shaky launch—but that, too,
was fi lled with bugs.

3

PERFORMANCE AND
FEATURE ISSUES WITH
ACTIONSCRIPT 2
The biggest downfall of THE BINDING
OF ISAAC is its performance. ISAAC
was designed in Flash using
ActionScript 2; that’s what Florian
could program in, so those were
the limitations we had to work

around. Sadly, Flash AS2 is quite
outdated, and even with all the
amazing work Florian put in, we
simply couldn’t get the game to run
well on lower-end PCs. Flash even
had major issues with PCs that
used dual-core processors, so even
PCs with amazing specs would slow
down at times.

 If I had known that anyone
would have cared about ISAAC, I
wouldn’t have made it in Flash
at all. Framerate issues aside,
Flash’s lack of controller support
and integrated Steam features
really hurt ISAAC. It pained me to
release a game that was lacking
features almost all games
have. You’d think by now Flash
would have added some kind of
controller support, but no. Tommy
actually wrote an achievement
program specifi cally for ISAAC so it
could award Steam achievements,
which was hugely helpful, but I
couldn’t ever really feel satisfi ed with
the product due to our AS2 limitations.

4

TOO BIG IN SCOPE
 FOR FLASH
Aside from the performance issues
and AS2’s limitations, late in ISAAC’S
development we soon realized that
Flash simply wasn’t at all made to
support a game of ISAAC’S size. Once
the .FLA fi le rose above 300MB, we
couldn’t even consistently generate
an .SWF fi le from it without crashing.

 This issue almost prevented
WRATH OF THE LAMB from coming out at
all; we were at a point in development
where simply saving the .FLA would
corrupt it about 25 percent of the time.
Florian would have to restart his PC
and save the .FLA in a new folder every
time we had to export an .SWF just to
test it, and 50 percent of the time
it wouldn’t work for no apparent
reason. It was quite a horrible
experience, and if we could have
seen into the future with a crystal
ball, we would have simply not used
Flash. (Maybe this will be a feature
in Flash CS7....)

5

�BLASPHEMY�
AND CONTROVERSY
Not surprisingly, controversy made
a few appearances in ISAAC’S
release year, but not in the way

you might think. During ISAAC’S
German retail launch, the German
ratings board gave ISAAC a 16+ due
to “blasphemy.” That itself didn’t
cause controversy—instead, it was
the idea that said blasphemy could
affect the age rating on a video
game. Blasphemy isn’t something
you can defi ne for everyone
(what’s blasphemous for one religion
isn’t necessarily so for another), so
how could one defi ne something
as containing blasphemy? It was a
very interesting argument, and I’d
be lying if I said that having the fi rst
game rated 16+ due to blasphemy
didn’t feel awesome, but sadly it
was this controversy that I believe
eventually led to Nintendo’s decision
not to port ISAAC to the 3DS.

 I remember my wife being
worried about ISAAC’S release,
worried that it might offend the
wrong people and someone
could end up being hurt. I can’t
say I didn’t have some hesitation
about this aspect of talking
about religion in a satirical and
possibly blasphemous way, but I
couldn’t help but avoid the simple
logic that, well, most of those kind
of people don’t play games. And
after over a year, I really believe
that’s true. (Thank God!)

ISAAC
REBORN
As of writing this postmortem, THE
BINDING OF ISAAC has sold over one
million units on PC and Mac in its
fi rst year on Steam, one-quarter of
the people who own the main game
paid for the WRATH OF THE LAMB
expansion, and the interest seems
to continue building.

 A few months ago I was
contacted by Tyrone of Nicklas
(CAVE STORY, VVVVVV) and asked
about how I felt about remaking
THE BINDING OF ISAAC for consoles. I
love consoles as much as the next
guy, but dealing with the business
end of console development wasn’t
something I wanted to dive back
into at this point. I told them yes,
but I had a few strict guidelines
to make sure an ISAAC remake
was perfect. I wanted the game
to feature the second planned
expansion that I couldn’t do in the

Flash version, I wanted it to feature
local co-op, I wanted the graphics to
be totally remade in 16-bit but still
look and feel like the Flash version,
and fi nally, I didn’t want to deal with
anything when it came to business.
Nicklas has agreed to these terms,
and development has started on THE
BINDING OF ISAAC: REBIRTH.

 It’s still too early to tell for sure
what consoles the game will end
up on, but both Microsoft and Sony
feel like it would be a perfect fi t for
their digital platforms, and we have
a feeling the new look might soften
up a few people at Nintendo for a
possible Wii U/3DSWare release. I’m
wary about how the game might
control on iPad, but if they can
make it work, I’m all for it.

 THE BINDING OF ISAAC was a huge
personal achievement. I was able to
talk about something personal and
meaningful in a way I felt comfortable
with, and I was able to get my feet in
the water with the roguelike formula
and random generation.

 When I started on ISAAC, my
goal was to make a niche cult
classic, something with a tiny but
die -hard fanbase. What I didn’t
expect was how large a “tiny” niche
audience would actually be.

 But what moved me the most
is the amount of creativity ISAAC
inspired in others. Every day I
read fi ction blogs, watch YouTube
animations, and look at others’
illustrations while thinking
about how honored
I am to have made
something that could
have helped motivate
so many to create. The
three months Florian
and I put into creating
THE BINDING OF ISAAC didn’t
just pay off with a fi nancial
windfall—it also gave us an
eye-opening experience that
proves to me without a doubt that
people truly want and respect
games that are uncensored
and risky, and that ask more
of the player than most games
these days do.

EDMUND MCMILLEN is an independent

game designer known for his work on SUPER

MEAT BOY, GISH, and THE BINDING OF ISAAC. He

is based out of Santa Cruz, CA. You can fi nd

his personal blog at edmundm.com.

p o s t m o r t e m

illustrations while thinking

just pay off with a fi nancial
windfall—it also gave us an
eye-opening experience that

http://edmundm.com
http://WWW.GDMAG.COM

TOOLBOX

GAME DEVELOPER | NOVEMBER 2012 34

BETTER THAN EXCEL?
» Almost all game professionals
have tools they’re unsatisfi ed with:
Programmers have their IDEs and
debuggers; artists have Maya, 3ds
Max, and Photoshop; and level
designers have tools like UnrealEd.
Writers have Excel—which is hardly
a great writing tool because the
amount of information needed for
a compelling story slows it down
so much that it becomes almost
unusable. Excel also doesn’t have
good tools to lay out story fl ows or

to display nonlinear content. The
only reasons I know of that writers
use Excel is so information can
easily be put into columns, and so
they can create material that can
easily be used for voice recording
and communicating with the
development team.

But unless you’re working for
a developer with a better in-house
tool, Excel alternatives are rare—
which means that a tool like Nevigo’s
articy:draft could be very compelling.
But is it right for your team’s workfl ow?

ARTICY:DRAFT 101
» Think of articy:draft as a
repository for data where you can
store your ideas, plots, characters,
and whatever else you can imagine,
and then organize it according
to your needs and to the project
you’re developing.

Articy:draft has seven main
workspaces, and you can view
these sections side-by-side by
using multiple windows to show
different parts of the project. All you
need to do is move to one of the

edges of your workspace and drag
it to the side to open another work
area. You can also display different
work areas on different monitors.

The fi rst section is the fl ow
chart, where you can lay out all your
storylines, dialogues, and anything
else that is best designed as a graph.
Flow elements can contain other fl ow
elements, and they can be combined
with the template feature, but they
don’t have to be connected with
each other in case you need to build
parallel storylines or feature designs.

The second section is the
entity collection, which lists all of
your game’s entities: characters,
items, or even abstract things
like quest information blocks or
interactive objects. You can add

B Y T O B I A S H E U S S N E R

Writers, game designers, and narrative designers have been on the quest for the perfect creation tool
for years. Excel has been the best choice in most cases (other than in-house solutions, anyway), but
now Germany-based Nevigo claims to have developed the fi rst professional story and game design
tool. This tool allows you to compose nonlinear storylines and dialogues, create collections of entities
such as characters and areas, display fl owcharts, and defi ne custom templates.

Nevigo GmbH

Sketching locations in articy:draft.

toolbox

www.gdmag.com 35

more specific information about
these entities in the template
editor (more on that later).

The third section covers the
locations for your game and story.
You can start with rough sketches,
populate those sketches with
objects from the entity section,
and gradually add more detail to
your locations over time. Place an
entity on your map, and you can
immediately examine and edit that
entity’s properties by double-
clicking on it. Also, the entity will
contain a link to the areas it is
placed in. These two features make
it much easier to avoid duplicating
information and keep everything
in sync.

The fourth section is a
simple notepad, which has some
basic dialogue and cutscene
layout features usually found in
screenwriting programs, which
a lot of writers find useful for
brainstorming. It is also a good
place for your meeting notes and
minutes, since it makes sense to
store them in the same place as
the rest of your design material.
Another great feature of the note
section is that you can directly
import Final Draft documents into
a note, mark the parts you’d like to
use, and drag those parts into the
flow chart section to automatically
create a flow chart based on this
information. (Articy:draft will
automatically link character tags
to the correct entity if there is one;
otherwise it’ll show you a warning.)

The fifth section is the template
feature, which allows you to create
the templates you need for your
project. So far articy:draft includes
only a few very basic ready-for-use
templates, but since most writers
and designers prefer to use their
own templates, it’s probably not a
major problem.

The sixth section, Journeys,
is articy:draft’s newest addition; it
became part of the tool with patch
1.3. Journeys are recorded versions
of walkthroughs through your
flow charts. These walkthroughs
can be created directly from
within the flow chart section, and
display similarly to a PowerPoint
presentation. Note that articy:draft
does not automatically evaluate
any game conditions linked to your

choice points―this feature is simply
to present your game flow and the
results of different in-game choices
while designing your narrative or
explaining it to other team members.

The last section is the asset
collection, which stores all your
reference material so you can
use it within the other sections.
Assets could be anything—artwork,
sketches, screenshots, videos,
documents, sound files, and so on.

Articy, meet the teAm
» As you may have deduced,
articy:draft is a fairly complex
program, and it can be overwhelming
at first. I recommend having a look
at the tutorial videos on the Nevigo
web site (www.nevigo.com/products/
articydraft/media.html) to see
its features yourself, because the
program doesn’t make it immediately
obvious how you’re supposed to use
it. You can also download a sample
project, which can clue you in to
what a possible workflow could look
like, but it’s not a full tutorial, so you
may still need to experiment a bit
before you figure out the right way
to fit it into your workflow. Once
you get used to it, though, you’ll
be defining NPCs in one place and
maps in another, and easily using
that information in story graphs. Get
used to the way articy:draft uses
references as its core organizing
principle and you’ll see how useful it
can be and how much faster it is to
work in compared to Excel.

Of course, articy:draft is at its
most useful if you have as many
licenses as you have developers
involved in your game, which can
get expensive. Fortunately, Nevigo
offers a cheaper viewer license
that enables staff members who
only need read access to view
the project without spending
the money for a full client. Also,
articy:draft readily exports to
Microsoft Word and Excel, though
if you start working with Word
docs or Excel sheets you’ll need
to make sure that they’re up-
to-date when other people start
working on them. Note that the

export-to-Word function is a fairly
new addition to articy:draft. It
works okay, but it still has some
minor issues with the layout of
the different fields, so the Word
file may not look exactly like your
template in articy:draft.

Flow chArts,
entities, AreAs
» As I said before, everything
in articy:draft is built upon the
concept of references—every
object exists only once in your
articy:draft project and then is
referenced to every place where
it is needed. For example, if you
put a character in a relationship
with another character, those two
are linked so that you can jump
back and forth between them.
Characters are similarly linked
when you add them to an area,
which makes it easier to avoid
duplicating information (thus
reducing story glitches).

The flow chart feature is
useful for story flow and dialogue
trees, but it can also come in
handy for more than that; game
designers can use this feature to
create skill trees or menu flows,
and level designers can use it to
lay out level events and connect
them to maps. You could even use
the flow charts to design complex
state machines, which could help
communicate features with the
programming department. (The
flow chart features don’t seem

Price

› Single-user application: $450

system reQUirements

› Windows XP/Vista/7 (32- or 64-bit)

Pros

1 Entity system makes it easy to keep
track of story/game elements

2 Highly customizable
3 Import function for Final Draft

cons

1 Slight learning curve
2 No export function for templates
3 Sometimes a bit slow when creating

complex templates

nevigo gmbh Articy:draft
www.nevigo.com

writing a branching conversation.

http://www.nevigo.com/products/articydraft/media.html
http://www.nevigo.com/products/articydraft/media.html
http://WWW.GDMAG.COM
http://www.nevigo.com

toolbox

game developer | november 201236

to have any notable advantages
over other such tools, mind you―
the main reason you’d do it in
articy:draft is simply to have all
the content development stuff in
the same place.)

With the area feature, you can
sketch out an area with vector-
based tools (and include more
detailed background pictures).
However, it’s mostly useful
because you can link your other
elements into the map and easily
reference their information—
place an NPC guard next to a
guard house, and articy:draft will
place a link to your guard. If you
want to play a certain event at
a certain spot in your map, you
can drag and drop a flow chart
element to this spot and link it
with the map. This is extremely
helpful when you review map
concepts or when you need to
talk about the narrative space
and the choices a player will
have in a certain map. The fact

that everything is referenced is
helpful too, because during the
review process you don’t need
to open other documents or
programs; you can jump to the
needed information whenever
you want and this information
can never be outdated, because if
any other developer updates any
of the references, these changes
will also be visible in your map.

TemplaTes: DIY onlY
» Whether you find articy:draft
useful depends largely on how
well you design your templates.
Articy:draft has some great
tools to create new templates,
but it doesn’t include many
sample templates, so you have
to experiment a bit to find the
best way to lay out and structure
them. It took me some time to
find a good workflow and figure
out what to put where, but it got
pretty easy once I figured out
what worked for me. Be careful—

once you update a template, it
will also update all entities that
use this specific template, which
means you have to be careful
not to lose any information. (On
the plus side, you’ll always be
up-to-date.) Articy:draft will warn
you about the consequences of
changing templates, which helps.

As of this writing, articy:draft
doesn’t allow you export your
templates and use them in
another project, which is one of
the main problems I see, because
normally I don’t want to create
the same templates over and over
again. You could create an empty
project and copy it to create a
new one, but it should be easier
than that. Nevigo has promised to
work on a solution, and hopefully
soon it will be possible to move
templates from one project to
another. Other than that, the
template feature works fairly well,
though it can get a bit slow if the
templates get highly complex.

HappIlY ever afTer
» All in all, articy:draft is a great
tool for interactive story and
game design. It unites all the
different parts that go into good
story and game design in one
tool, and though it has a steep
initial learning curve, it gets pretty
easy to use. For the first hour that
you’re using it, you might not be
convinced to switch from Excel,
but after that hour you’ll find
yourself developing your story
faster―and communicating that
story to your teammates faster
than before.

TobIas Heussner is a game content/

narrative designer, currently working as

a senior level designer on online games.

His areas of expertise are game content

design and game system design, and he

has been involved in professional game

development in design and management

for over 14 years. You can find more

information on his personal web site at

www.theussner.com.

GDM12_Gama_HalfPg_F.indd 1 6/7/12 2:31 PM

http://www.theussner.com
http://gamasutra.com

WWW.GDMAG.COM 37

INNER PRODUCT // NIKLAS FRYKHOLM

IL
LU

ST
RA

TI
ON

: J
UA

N
 R

AM
IR

EZ

 Guess what! You’ve just inherited a stinking, steaming
pile of messy old code. Congratulations, it’s all yours.

Bad code can come from all kinds of places:
middleware, the Internet, or even your own company.

You know that nice guy in the corner who nobody had time to
check up on? Guess what he was doing all that time. Yep, he was
churning out bad code. Do you remember that module someone
wrote years ago, just before she left the company? Twenty
different people have since hacked, patched, and “fi xed” a few
bugs in that module without really understanding what they were

doing. And then there was that open-source thing you downloaded
that you knew was horrible, but it solved a very specifi c and quite
hairy problem that would have taken you ages to do by yourself.

Bad code doesn’t have to be a problem, as long as it’s not
misbehaving (and nobody pokes their nose in it). Unfortunately,
that state of ignorant bliss rarely lasts. Someone will fi nd a bug,
or request a feature, or release a new platform that breaks your
bad code, and now you have to dig into that horrible mess and
try to clean it up. I know—it’s no fun for anyone, so here are 10
tips that will help you save your code (and your sanity).

 FOLLOW OUR 10-STEP PROGRAM FOR REHABILITATING CRAPPY CODE

http://WWW.GDMAG.COM

INNER PRODUCT // NIklas fRykhOlm

 Step 0
IS thIS worth fIxIng?

The first thing you need to ask
yourself is whether the code is
worth cleaning. I’m of the opinion
that when it comes to code
cleaning, you should either karate
do “yes,” or karate do “no,” Daniel-
san. If you decide to fix it, assume
full responsibility for the code and
rework it until you end up with
something that you are actually
happy to maintain and proud to
have in your code base.

The other option is to decide
that even though the code looks
horrible, it isn’t cost effective to
take time out of your busy schedule
to fix it. So instead you just do the
smallest change possible that
solves your current problem.

In other words, you either
regard the code as yours or theirs.

There are merits to both
alternatives. Good programmers
get an itch when they see bad code.
They bring out their torches and
pitchforks and chant: “Unclean!
Unclean!” That is a good instinct,
but cleaning code is also a lot of
work. It is easy to underestimate
the time it takes. It can be nearly
as time consuming as writing
the whole thing from scratch,
and it doesn’t bring any short-

term benefits—two weeks spent
cleaning code won’t add any new
features to your game, but might
give you some new bugs.

On the other hand, the long-
term effects of never cleaning your
code can be devastating. Entropy is
the code-killer.

Often this gets expressed as
a conflict between managers and
programmers. Managers just want
quick fixes and don’t value the work
required to maintain and improve
code. Programmers just want
to spend their time on highbrow
rewriting projects that make the
code beautiful, but don’t add any
value to the company.

Stereotypes aside, there are
merits to both arguments. Believe
it or not, but sometimes the
managers are right. I’ve seen many
cases where an ambitious rewrite
goes over time and over budget and
ends up delivering a product that
while better from a programmer’s
perspective actually ends up being
less useful to the end users.

Both programmers and managers
should listen to the arguments
from the other side. Managers
should realize that unchecked
code rot leads to a culture of
sloppiness, abandonment, and
despair, which is the death of a
development team. Programmers
should realize that their time and
capacity is finite, and they can’t
make every piece of code perfect.

Still, the choice is never easy.

 Step 1
get a teSt caSe

Seriously cleaning a piece of code
means messing around with it a lot.
You will break things.

If you have a decent test
case with good coverage, you will
immediately know what has broken
and you can usually quite quickly
figure out what stupid mistake
you just made, which will save you
a ridiculous amount of time and

anxiety. Get a test case. It’s the first
thing you should do.

Unit tests are best, but not all
code is amenable to unit testing.
Sometimes the amount of hoops you
would have to jump through to make
something testable is just insanely
impractical. (Test fanatics, you can
send me your hate mail now.)

The next best things are
automated integration tests—
scripted tests that produce a
predictable output. Check both the
test and the output into source
control, so that you can see if it
changes and how.

Any test is better than nothing. If
you can’t do an automated test, do a

manual one. Fire up a game level and
run the character through a specific
set of actions related to the code
you are cleaning, and check that the
behavior doesn’t change.

Since such tests are more time
consuming, it might not make sense
to run them after every change
you make, which would be ideal.
But since you’re going to put every
single change you make into source
control (more on this later), all is
not lost. Run the test every once in
a while (maybe every five changes
or so). When it discovers a problem,
you can do a binary search of those
last few commits to find out which
one caused the problem.

If you at any time discover an
issue that wasn’t detected by your
test, make sure that you add that
to the test, so that you capture it in
the future.

 Step 2
USe SoUrce control

Do people still have to be told to use
source control? I sure hope not.

Source control is absolutely
crucial for cleaning work, because
you will be making lots and lots of
small changes to the code. When
something breaks, you want to be
able to look back in the revision
history and find out where it broke.

Also, if you are anything like
me, you will sometimes start down
a refactoring path (like removing
a stupid class) and realize after a
while that it wasn’t such a good
idea, or that it was a good idea but
everything would be a lot simpler
if you did something else first. In
that case, you’ll want to be able to
quickly revert everything you just
did and begin anew.

Your company should have a
source-control system in place that
allows you to do these changes in
a separate branch and commit as
much as you like without disturbing
anybody else. If it doesn’t, you
should still use source control—

download mercurial (or git), create
a new repository, and put the
code that you checked out of your
company’s stupid system there.
Do your changes in that repository,
committing as you go. When you
are done you can merge everything
back into the stupid system.

Cloning the repository into a
sensible source-control system
only takes a few minutes, and it’s
absolutely worth it. If you don’t know
mercurial, spend an hour to learn it.
You will be happy you did. Or if you
prefer, spend 30 hours to learn git
instead. (I kid! Not really. Git fanatics,
you can send me your hate mail now.)

 Step 3
USe the compIler

For languages such as Java and
C#, there are lots of tools that can
help with typical cleaning tasks—
renaming methods and variables,
for example.

In C++, you have to do most
of the heavy lifting yourself, but
you can get some help from the
compiler. For example, if you rename
a method, you will get compile errors
everywhere it was used.

You can use this to your advantage
by deliberately introducing a
compile error. For example, suppose
there is this method:

set_pos(float y, float x);

Say that you want to change the
order of the x and y parameters
so that it is consistent with other
methods. Instead of doing a global
search (which may find lots of
other methods named set_pos),
just rename the method to:

set_pos_swapped(float x, float y);

Now all the old calls will give compile
errors. As you fix those compile
errors, you swap the parameters,
and when you are done, you can
rename the method back to set_pos.

 Step 4
make one (Small) change
at a tIme

There are two ways of improving
bad code: revolution and reform.
The revolution method is to nuke

gamE DEvElOPER | NOvEmbER 2012 38

 Managers just want quick fixes and don’t value
the work required to maintain and improve code.
Programmers just want to spend their time on
highbrow rewriting projects that make the code
beautiful, but don’t add any value to the company.

www.gdmag.com 39

INNER PRodUcT // NIklas fRykholm

everything from orbit and rewrite
it from scratch. The reform method
is to refactor the code with one
small change at a time without ever
breaking it.

This article is about the reform
method. I’m not saying that
revolutions are never necessary.
Sometimes things are so terrible
that you have no other option. But
people who get frustrated with the
slow pace of reform and advocate
revolution often fail to realize the
full complexity of the problem, and
thus don’t give the existing system
enough credit.

When you do a full rewrite, you
often miss some of the nuances,
special features, and bug fixes in
the original code, and you end up
with a system that is less useful
than the original one. Then, over the
next few months, you have to add
those features back one by one. In
the end, your new system might
be just as messy as the one it was
intended to replace—and the Code
Phoenix’s cycle of destruction and
renewal can continue.

The reform approach is a more
ecologically sustainable method
of code development. When you
reform, you know at each step what
changes you make. You can still
decide to throw out a little-used
feature in order to simplify the code,
but then at least you know that’s
what you are doing. You can look at
each single change you make and
see that it is good. This doesn’t mean
that you can’t do drastic changes
to the code, just that you have to do
them one step at a time.

relevant read:

Stack Exchange co-founder Joel
Spolsky has written a classic
article about this called Things You
Should Never Do. Look it up here:
www.joelonsoftware.com/articles/
fog0000000069.html

The best way of reforming code is
to make one minimal change at a
time, test it, and commit it. When
the change is small, it is easier
to understand its consequences
and make sure that it doesn’t
affect your existing functionality.
If something goes wrong, you only

have a small amount of code that
you need to check. If you start
doing a change and realize that it is
bad, you won’t lose much work by
reverting to the last commit. If you
notice after a while that something
has gone subtly wrong, a binary
search in the revision history will
let you find the small change that
introduced the problem.

It is a common mistake to try to
do more than one thing at the same
time. For example, while you’re
getting rid of an unnecessary level
of inheritance, you might notice
that the API methods are not
as orthogonal as you would like
them to be and start to rearrange
them. Don’t do this! Get rid of the
inheritance first, commit that, and
then fix the API.

At first, this often feels like
a slower way to work, but it
is actually a lot faster. Smart
programmers organize the way
they work so that they don’t have to
be that smart.

Try to find a path that takes you
from what the code is now to what
you want it to be in a sequence of
small steps. For example, in one
step you might rename the methods
to give them more sane names. In
the next, you might change some
member variables to function
parameters. Then you reorder
some algorithms so that they are
clearer. And so on. If you start doing
a change and realize that it was a
bigger change than you originally
thought, don’t be afraid to revert and
find a way of doing the same thing in
smaller, simpler steps.

 Step 5
Don’t clean anD fix
at the Same time

This is a corollary to #4, but important
enough to get its own point.

It is a common problem. You
start to look at a module because
you want to add some new
functionality. Then you notice that
the code is really badly organized,
so you start reorganizing it at the
same time as you are adding the
new functionality.

The problem with this is
that cleaning and fixing have
diametrically opposite goals. When
you clean, you want to make the

Before you commit to fixing the code, ask
yourself these questions:

Q How many changes do you expect to make to the code?
a Is it just this one small bug that you need to fix, or is this

code that you expect to return to many times to tweak,
tune, and add new features? If it’s just this one bug, then
perhaps it is best to let sleeping dogs lie. However, if this
is a module that you will need to mess around with a lot,
then spending some time to clean it up now will save a
lot of headaches later.

Q Will you need/want to import upstream changes?
a Is this an open-source project that is under active

development? If so, and you want to pull the changes
made upstream, you can’t make any big changes to the
code or you will be in merge hell every time you pull. So
just be a nice team player, accept its idiosyncrasies, and
send patches with your bug fixes to the maintainer.

Q How much work is it?
a How many lines of code can you realistically clean in a

day? An order of magnitude estimate says more than
100 and less than 10,000, so let’s say 1,000. So if the
module has 30,000 lines, you might be looking at a
month of work. Can you spend that? Is it worth it?

Q Is it a part of your core functionality?
a If the module does something peripheral, such as

rendering fonts or loading images, you might not care
that it is messy. You might swap out the whole thing
for something else in the future—who knows? But you
should own the code that relates to your core competence.

Q How bad is it?
a If the code is just slightly bad, then perhaps you can live with

it. If it is mind-numbingly, frustratingly, incomprehensibly
bad, then perhaps something needs to be done.

Q Do you have to clean all of it?
a Perhaps you can clean just the high-level interface

and leave the low-level code as it is. Dividing the
cleaning task into smaller, simpler steps makes it more
manageable. It also provides useful checkpoints where
you (and your manager) can ascertain that the cleaning
progresses as planned, and abort if there are problems.

http://www.joelonsoftware.com/articles/fog0000000069.html
http://www.joelonsoftware.com/articles/fog0000000069.html
http://WWW.GDMAG.COM

INNER PRODUCT // NIklas fRykhOlm

code look better without changing
its functionality. When you fix, you
want to change its functionality to
something better. If you clean and
fix at the same time, it becomes
very hard to make sure that your
cleaning didn’t inadvertently
change something.

Do the cleaning first. Then, when
you have a nice clean base to work
with, add the new functionality.

 Step 6
Remove any functionality
that you aRe not uSing

The time it takes to clean is
proportional to the amount of code,
its complexity, and its messiness.
If there is any functionality in the
code that you are currently not
using and don’t plan to be using in
the foreseeable future, get rid of it.
That will both reduce the amount
and complexity of the code you
will have to go through (by getting
rid of unnecessary concepts and
dependencies). You will be able to
clean faster, and the end result will
be simpler.

Don’t save code because
“who knows, you might need it
someday.” Code is costly. It needs
to be ported, bug-checked, read,
and understood. The less code you
have, the better. In the unlikely
event that you do need the old
code, you can always find it in the
source repository.

 Step 7
Delete moSt of the commentS

Bad code rarely has good
comments. Instead, they are often:

// Pointless:

// Set x to 3 x = 3;

// Incomprehensible:

// Fix for CB (aug) pos +=

vector3(0, -0.007, 0);

// Sowing fear and doubt:

// Really we shouldn’t be doing

this t = get_latest_time();

// Downright lying:

// p cannot be NULL here

p->set_speed(0.7);

Read through the code. If a
comment doesn’t make sense
to you and doesn’t further your
understanding of the code, get

rid of it. Otherwise you will just
waste mental energy on trying to
understand that comment each
time you read the code in the
future. The same goes for dead
code that has been commented
or #ifdef’ed out. Get rid of it. It’s
there in the source repository if
you need it.

Even when comments are
correct and useful, remember that
you will be doing a lot of refactoring
of the code. The comments may
no longer be correct when you are
done. And there is no unit test in
the world that can tell you if you
have broken the comments.

Good code needs few
comments because the code
itself is clearly written and easy to
understand. Variables with good
names do not need comments
explaining their purpose. Functions
with clear inputs and outputs
and no special cases or gotchas
require little explanation. Simple,
well-written algorithms can be
understood without comments.
Asserts document expectations
and preconditions. Comments
should only be used when the code
is not obvious to an experienced
professional. And whenever
possible, it is better to rewrite the
code so that it is obvious than to
add a comment.

In many cases, the best thing
to do is just to get rid of all old
comments, focus on making the
code clear and readable, and then
add back whatever comments
are needed—comments that
reflect the new API and your own
understanding of the code.

 Step 8
get RiD of ShaReD
mutable State

Shared mutable state is the single
biggest problem when it comes
to understanding code, because
it allows for spooky “action at a
distance,” where one piece of code

changes how a completely different
piece of code behaves. People often
say that multithreading is difficult,
but really, it is the fact that the
threads share mutable state that is
the problem. If you get rid of that,
multithreading is not so complex.

If your goal is to write high-
performance software, you won’t
be able to get rid of all mutable
state, but your code can still
benefit enormously from reducing
it as much as possible. Strive
for programs that are “almost
functional,” and make sure you
know exactly what state you
are mutating where and why.
Shared mutable state can come in
different shapes:

Global variables.
The classic example. By now
everybody surely knows that
global variables are bad. But
note (and this is a distinction
that people sometimes fail
to make), that it is only
shared mutable state that is
problematic. Global constants
are not bad. π is not bad.
Sprintf is not bad.

Objects: Big bags of fun.
Objects are a way for a large
number of functions (the
methods) to implicitly share

a big bag of mutable state
(the members). If a lazy
programmer needs to pass
some information around
between methods, she can
just make a new member
that they can read and write
as they please. It’s almost
like a global variable. The
more members and the more
methods an object has, the
bigger this problem is.

Megafunctions.
You have heard about them—
mythic creatures that dwell
in the deepest recesses
of the darkest code bases.

Broken programmers talk
about them in dusky bars,
their sanity shattered by
their encounters: “I just kept
scrolling and scrolling. I
couldn’t believe my eyes. It
was 12,000 lines long.” When
functions are big enough, their
local variables are almost
as bad as global variables. It
becomes impossible to tell
how changing a local variable
might affect a chunk of code
2,000 lines down.

Reference and pointer
parameters.
Reference and pointer
parameters that are passed
without const can be used to
subtly share mutable state
between the caller, the callee,
and anyone else who might
be passed the same pointer.

 Step 9
get RiD of baD conceptS

Bad code doesn’t have to come
from bad coding. It can also come
from bad thinking.

Sometimes, the programmer just
doesn’t have a clear picture of the
problems the code needs to solve,
and ends up coding around basic
concepts that are off-kilter, with a lot

of extra code that just compensates
for that fundamental wrongness.

For example, a horrible system
could use strings to represent
dates and have a lot of weird code
for dealing with the fact that “2012-
10-01,” “2012-10-1,” and “1/10 12”
all refer to the same date.

Often, the problem stems from
a single concept that has been
given multiple responsibilities
that don’t quite gel. For example,
consider the date struct:

struct Date { int year;

int month; int day;

bool is_repeating; int repeat_

interval; };

gamE DEvElOPER | NOvEmbER 201240

 When you have cleaned the code, how do you keep it
clean? I don’t think that is completely possible. Rather,
you should regard code cleaning as a continuous
activity, just like weeding a garden—but there are
some things you can do to minimize the problem.

www.gdmag.com 41

INNER PRodUcT // NIklas fRykholm

Here the simple concept of a date
has been muddled together with
the completely different concept
of a repeating calendar event. The
result is a complete mess.

Finding bad concepts is not
always as straightforward as in
these examples. Often, you need
to work with the code a lot to really
understand what it does—and
what problems it tries to solve.
Only then can you see that some of
its fundamental concepts are not
very well thought out. Sometimes it
only manifests itself as a nagging
feeling that something is wrong.
I’ve found that discussing these
things with other programmers is a
good way of clarifying thought and
finding where the real problem lies.

When you have identified a
bad concept, you want to replace
it with something better. Again,
don’t try to do that all at once as a
single monolithic change. Instead,
start by using the new concepts
in the low-level code. Let the high-
level code continue to use the old
concepts, and write helper code
to translate between the old and
new representations. Then piece by
piece, move more and more code
over to the new concepts.

 Step 10
Get rid of unneceSSary
complexity

Unnecessary complexity is often
a result of overengineering. The

code’s support structures (for
serialization, reference counting,
virtualized interfaces, abstract
factories, visitors, and so on) dwarf
the code that performs the actual
functionality.

Sometimes overengineering
occurs because software
projects start out with a lot
more ambitious goals than what
actually gets implemented.
More often, I think, it reflects
the ambitions/aesthetics of a
programmer who has read books
on design patterns and the
waterfall model, and believes that
overengineering makes a product
solid and high-quality.

This kind of thinking often leads
to a heavy, rigid, overly complex
model that can’t adapt to feature
requests the original designer
didn’t anticipate. Those features
are then implemented as hacks,
bolt-ons, and backdoors on top
of the ivory tower, resulting in a
schizophrenic mix of absolute order
and utter chaos.

The cure against overengineering
is YAGNI—you ain’t Gonna need it!
Only build the things that you know
you need. Add more complicated
stuff when you need it, not before.

a cleaner future
» When you have cleaned the code,
how do you keep it clean? I don’t
think that is completely possible.
Rather, you should regard code
cleaning as a continuous activity,

just like weeding a garden—but
there are some things you can do
to minimize the problem:

Encourage a culture
of responsibility and
professional pride.

Maintain a living discussion
about design issues. Make
sure it stays focused on the
big picture, and doesn’t get
bogged down in pointless
debate about trivialities.

Remember there is no such
thing as throwaway code.
Code always lives longer than
you expect.

Keep the code simple,
decoupled, minimal, and
isolated.

Avoid the temptation of
complex, heavy, coupled
abstract systems.

And don’t forget to minimize
shared mutable state.

That is all. Now, go forth, my
minions, and clean that code!

niklaS frykholm is one of the founders

of Bitsquid AB, where he is architecting a

high-performance multiplatform engine for

licensing. A recently released title based

on the engine is War of the roses from

Swedish developer Fatshark.

Some practical
ideas for cleaning
out unnecessary
complexity:

» Remove the functionality you
are not using (as suggested
above).

» Simplify necessary
concepts, and get rid of
unneeded ones.

» Remove unnecessary
abstractions, and replace
them with concrete
implementations.

» Remove unnecessary
virtualization and simplify object
hierarchies.

» If only one setting is ever
used, get rid of the possibility
of running the module in other
configurations.

Here are some
practical ideas for
getting rid of shared
mutable state:

» Split big functions into
smaller ones.

» Split big objects into smaller
ones by grouping members
that belong together.

» Make members private.

» Change methods to be const,
and return the result instead of
mutating state.

» Change methods to be static,
and take their arguments as
parameters instead of reading
them from shared state.

» Get rid of objects entirely,
and implement the
functionality as pure functions
without side effects.

» Make local variables const.

» Change pointer and
reference arguments to const.

http://WWW.GDMAG.COM

pixel pusher // steve theodore

game developer | november 201242

Valve’s brilliant “Meet the Pyro” trailer for Team
ForTress 2 is a masterful bit of black humor.
The juxtaposition of fiery chaos and chirpy
cheer deftly eviscerates our industry’s endless
appetite for faux-operatic “epicness” with a well-
sharpened lollipop. As a game artist, however, I
think there’s more beneath “Meet the Pyro” than
just a gimmicky short (and its corresponding
in-game Pyrovision mode). The contrast between
the world the Pyro sees and the “real” world gives
us a rare glimpse at one of the most interesting
and least well-mined aspects of game art: the
inherent surrealism of everything we do. If we
can examine and embrace this surrealism,
we may just find an extra tool in our palette to
engage players with our art.

Game artists as practicinG
surrealists
» The original surrealists believed in subverting
the realistic illusions of traditional art, even
though they retained realist trappings that
other avant-gardists disdained. The goal was
to convince people that reality itself was a

shared delusion with no solid existence of its
own. Almost a century later, games are almost
perfect embodiments of this basic idea—a set of
artificially constructed realities that appear solid
and consistent, and yet are completely illusory.

I don’t mean that games are surreal because
they offer startling imagery. Sure, after two
decades of real-time 3D we’ve finally gotten over
the worst of our obsession with photorealism,
and now it’s easy to find games that toy with the
conventions of realistic graphics: exaggerated or
cartoon-style shading, color manipulation, and
painterly rendering, for example. Once-skeptical
publishers, reassured by hits ranging from World
oF WarcraFT, to Borderlands, to Team ForTress 2,
no longer demand that every game look exactly
like a TV show. And of course, the renaissance of
traditional animation that’s accompanied the rise
of casual, social, and mobile games has done a
lot to broaden our palette.

But even though we’ve outgrown slavish
devotion to realism in rendering, it’s a stretch
to suggest that modern WarFare 3 has much
in common with René Magritte from a visual

standpoint. The surrealism of games lies less
in their visual styles than in their essential
insubstantiality; in the end, it’s all just pixels,
which we can splash on screen with all sorts of
fancy tricks. We have the power to completely
rewrite game reality every 16.7 milliseconds.

What’s remarkable is that we almost never
actually use this power. Models and textures
and animations become, after a fashion, as
solid and persistent as the objects and actions
they represent, even though this continuity is
entirely voluntary on our part—and even when
the models or actions are inherently fantastic.
We worship consistency. We have the option of
suddenly and radically rewriting reality whenever
and however we’d like. We just choose not to—at
least, most of the time.

persistence of memory
» André Breton would have salivated over being
handed the chance to repeatedly rewrite reality.
If Dalí had made a video game, it probably would
have been a lot like Pyroland (or caTherine). If
one were feeling like an art critic, this would

seeinG throuGh goggles
pyroland, surr ealism, and how your art can
mess with players’ minds

“one shudders to think what inhuman thoughts lie behind that mask...
what dr eams of chronic and sustained cruelty...”

pixel pusher // steve theodore

www.gdmag.com 43

be the place to point out that voluntarily
surrendering the pretense of a stable external
reality is a powerful tool for deconstructing the
illusion of the game world, and inviting the player
to recognize the hopelessly problematic nature
of game “reality.”

But in the more philistine world of commercial
entertainment, we don’t usually have the option to
pursue those kinds of ideas too far. Occasionally,
a masterpiece of postmodernist play also turns
out to be a great (and commercially viable)
game—PaPer Mario was a brilliant meditation
on 3D graphics, and BioShock played plenty of
games with your head. Most of the time, however,
working hard to yank the rug out from under your
players usually works the same way avant-garde
tricksterism does other media: A few people will
love it, but most will stick to safer fare and keep
their philistine dollars to themselves.

For developers who are more interested in
mainstream success (and paying the mortgage)
the illusion of a stable, externalized reality
remains a more or less obligatory part of the
fantasies that we’re selling. Few players would
be happy if they plop down $60 for the chance to
smite the minions of the Dark Whatchamacallit
and suddenly found themselves bathing them in
rainbows and candy instead. Not many players
(except, perhaps, ardent fans of LiMBo) will be
happy to discover that the timing of their platform
jumps is hopelessly borked because the laws of
motion or perspective have changed midframe.

Nevertheless, even games with no
postmodernist theoretical pretensions can
find a lot of artistic opportunity in the ability to
subvert, circumvent, or just plain muck about
with the stability of the player’s world. To return to
Pyrovision for a moment, it’s obvious on reflection
that the trick is not really new: Pyrovision is
just a variation on familiar gimmicks like night
vision, thermal vision, X-ray vision, and the host
of other special view modes that games have
served up over the years. What’s radical is neither
the sudden change of player perception, nor the
tech behind it (though Valve provides a detailed
walkthrough of the technique on its developer blog
at www.teamfortress.com/post.php?id=8502).
The innovation in Pyroland is purely artistic: a
technique that’s usually deployed to support a
familiar shooter mechanic is instead used for
aesthetic effect, turning the already campy TeaM
ForTreSS world into a brutal full-body takedown of
FPS pomposity.

ExquisitE corpsE
Of course, satire isn’t the only way in which
clever teams can subvert game reality to make
an artistic point. Many titles with darker themes
blur the boundaries of the “real” game world
by overlaying ghostly or possibly imaginary
characters—the on-again, off-again specter of
Alma in the Fear series is a classic example.

BioShock occasionally used “ghosts” to lead
the player to plot points and set mood. Even
haLF-LiFe’S mysterious G-Man, who crops up
inscrutably in inexplicable locations, could be
considered an example of the same genre.

In the film world, hallucinatory flash-cuts
have a long history—The Shining is practically
a textbook on the uses of imaginary characters,
temporary visions, and impossible spaces.
Because the tradition is so well understood,
hallucinatory visuals in games are really more
like cinematic vignettes or scripted sequences
than a radical break in the rules of the game
world—particularly when it’s accompanied by a
burst of discordant audio.

This level of comfort with said hallucinations
makes this technique a very lightweight form
of exposition, and a very efficient storytelling
mechanism. The here-and-gone again “ghost”
visuals don’t require you to break in-game flow
like a cutscene, and since they tend to draw
attention to themselves, they don’t require the
careful staging of a scripted sequence. Despite
this long track record, however, this technique
is rarely seen in games outside the horror and
thriller genres, which is a shame. It’s easy to
see how flash-cuts, in the form of conventional
psychological flashbacks rather than
supernatural events, could fit into a conventional
military shooter, a story-driven cop game like
SLeePing DogS, or character-driven RPG.

thE lugubrious gamE
The inherent instability of game worlds is even
more obvious in multiplayer games. Despite
our labors, shared online spaces are full of
small paradoxes, errors, and lacunae. The
basic building blocks that we ordinarily use to
create a reality for our players—continuity in
space, continuity in time, and the laws of game
physics—all become unreliable when they have
to be synchronized between multiple clients
over the imperfect medium of the Internet. We’re
unhappily inured to teleporting characters,
unsynced animation, and conflicting views in
online games—though I’m sure that somewhere
in academia there are eager critical theorists
gleefully outlining how radically post-modern all
those damn glitches are.

Be that as it may, the imperatives of online
play have tended to make us look at online
reality as a problem to be solved, rather than an
opportunity for artistic exploration. If you’re an
animator tasked with multiplayer animations,
you’ll be hemmed in on all sides by technical
requirements meant to prevent the sort of
situation where one player thinks they’re safely
under cover while an opposing player has their
noggin in the crosshairs. Artistry and nuance get
a lot less attention than network prediction and
reliable hit resolution, which is why multiplayer
animation is one of the toughest jobs in game art.

That said, a surrealist approach to online
games has fascinating possibilities. Modern
game design has many sophisticated tools
for encouraging different kinds of interactions
between players—to make them cooperative
or mutually suspicious, to encourage them to
share information or to work in secret, and so
on. However, many of these designs are not well
supported by visuals. Instead, they’re being
communicated through ham-handedly “gamey”
mechanisms like points or multi-key puzzles.

If we start from the surrealist position—
that there’s no single authoritative view of the
world that all players must share, but rather a
shifting collection of individual perspectives
(each of which we can manipulate for effect),
then many interesting possibilities arise.
Allowing some characters fleeting glimpses of
enemies (real or imaginary) that aren’t visible
to others could promote communication—or
paranoia, depending on the mood we want to
establish. NPCs who appeared subtly different
to different players in the same party could
provoke meaningful discussions about who
could be trusted, as well as priming players with
different emotional cues for events to come. And
of course, asymmetrical views of the world are
a very powerful tool for shaping the perceptions
of different player races and factions. Does the
world really look the same to elves, dwarves, and
halflings? Or can we encourage a wider range of
experiences and interdependence among players
by visually rewriting the world in the idiom of
each type of player character?

Game artists love to complain that, unlike our
cousins in the film business, we have no control
over the player’s point of view. An animator I know
once described his job thusly: “I’m supposed
to make a great movie, except my director of
photography is a 13-year-old on his fourth can of
Red Bull who insists on crouch-jumping during
key scenes.” It’s true that we don’t have the kind
of compositional control and framing that make
movie stills so appealing, but it’s also worth
remembering that we have all sorts of powers
that can compensate. We can change the laws of
the universe any time we want to, in pursuit of
the stories we want to tell and moods we want
to evoke. You don’t need to be a surrealist or a
theoretician to want to grab every one of those
advantages when you can. And in the case of
control over the player’s perceptions, it’s mostly a
matter of changing your own mental filters. Just
put on these goggles and you’ll see what I mean—
it’s magical!

Steve theodore has been pushing pixels for more than

a dozen years. His credits include Mech coMMander,

half-life, TeaM forTress, counTer-sTrike, and halo 3. He’s

been a modeler, animator, and technical artist, as well as

a frequent speaker at industry conferences. He’s currently

the technical art director at Seattle’s Undead Labs.

http://www.teamfortress.com/post.php?id=8502
http://WWW.GDMAG.COM

design of the times // soren johnsondesign of the times // soren johnson

game developer | november 201244

The simplest way to
become a designer, of
course, is simply to start
making games. Individual
developers can take
advantage of more tools
and distribution channels
than ever before to make
great games. Andreas
Illiger made Tiny Wings.
Brendon Chung made
ATom Zombie smAsher. Vic
Davis made ArmAgeddon
empires. Jonathan Mak
made everydAy shooTer.
You do not need anyone’s
permission to become a
game designer.

Nonetheless, not
everyone has the
resources, or simply
the guts, to go it alone.
Unfortunately, for
established companies,
starting game design jobs
are nearly mythical; the
job simply requires too
much experience, and the
competition is too fierce.
Most game companies are
already full of developers
who want to be designers,
so most new recruits
are hired because they
possess a specific skill,
such as coding or art. One
needs to earn the position
of game designer, and one
earns that position on the
job. If you position yourself

correctly to do design work,
design work might just
find you.

1/ learn to program
» Games are a very
broad category, often
encompassing multiple art
forms (words, music, and
visuals). Some games have
strong story elements.
Some are almost pure
abstractions. However, the
one aspect they all share
is that they are all based
on algorithms. Code is the
language of games, and
knowing how to code will
help qualify you for a great
variety of roles.

Maybe someone
needs you to script enemy
behavior, or your team
needs a scenario editor but
no one has time to build it.
Perhaps your game needs
more random map scripts,
or a senior designer needs
someone to prototype a
new idea for a game. All of
these tasks could grow into
more established game
design roles, but only a
programmer can undertake
them.

2/ work on the UI
or aI
» There are two areas of
game development that are

not strictly thought of as
“game design” but actually
are—user interface and
artificial intelligence.
Artificial intelligence
controls the behavior of
non-human agents in the
game world, and as such
it is so inseparable from
gameplay that working on
AI is impossible without
daily interaction with the
designers. If an AI coder
does a consistently good
job and keeps asking for
extra responsibility, game
design is the obvious
 next step.

This path is even
more clear for interface
work, which is on the
very forefront of the
user¹s experience.
Game mechanics are
useless if they cannot
be communicated to
the player, and UI is the
most important tool for
solving that problem.
Thus, interface design is
game design. The best
part of the “interface
track” to game design
is that very few game
developers want to work
on the interface. Senior
artists and programmers
often view interface
work as only suitable
for junior developers.

Use this prejudice to
one’s advantage and
volunteer for the job;
game companies are
always looking for capable
developers excited to work
on interface design.

3/ volUnteer for DlC
» Downloadable content
can be an easier way to
work directly on game
design roles. The stakes
are inevitably lower for
these smaller releases, and
a game’s official designers
are usually too burned out
from the final push to even
want to think about the
DLC, so it can be a good
opportunity for aspiring
designers to step forward
and demonstrate their
ambition and potential.
Companies want to see
their employees grow
into the role, as hiring
new designers is a huge
gamble; DLC provides a
great, low-risk opportunity
to train them internally.

Working on DLC
design also has a huge
benefit for the aspiring
designer—namely, you
don’t have to start out
trying to create fun from
a blank slate, which can
trigger crippling pressure
for a new designer. Instead,
you can simply continue to
iterate on the core design,
while applying lessons
you’ve learned after seeing
your game in the hands
of thousands of players.
Most games have plenty

of low-hanging fruit that
only becomes obvious after
release; focus on these
improvements, and players
will respond positively.

4/ foCUs on feeDbaCk
» Game design is part
talent and part skill. Noah
Falstein once postulated
that a disproportionate
number of designers
are INTJ on the Myers-
Briggs scale (meaning
Introverted, iNtuitive,
Thinking, and Judging),
which suggests that some
personalities are better
suited to game design than
others. However, talent
will never be enough; you
should actively develop
your design skills, and
there is only one true way
to do that—implementing
a design and then listening
to user feedback. My own
design education didn’t
really begin until the day
CiviliZATion iii was released,
and players proved that
many of my assumptions
about how the game played
were completely false.

A game is not an inert
set of algorithms; it is a
shared experience existing
somewhere between
the designers and the
players. Unless a game
is constantly exposed to
a neutral audience, its
design is only theory.
Games should have as
much prerelease public
testing as possible; the
designer’s skills will only

how to beCome a
game DesIgner
 fIve tIps for swItChIng to the game DesIgn traCk

People enter the game industry for many different reasons. For some
talented artists, programmers, and musicians, a game job is a great way
to employ their talents in a vibrant and creative field. Others simply enjoy
being involved with one of their own hobbies and personal passions.
However, for many, there can be only one reason to join the industry—to
become an official game designer.

design of the times // soren johnson

www.gdmag.com 45

design of the times // soren johnson

grow stronger with each
successive exposure.
Aspiring designers
must find some way to
experience this feedback
loop. Releasing a simple
mobile game or a mod to
a popular game and then
learning from the public
feedback is much more
valuable than working on
some mammoth project
which is unlikely to ever
gain an audience before
release. Even creating a
simple board game can
improve one’s skills as
long as the designer can
find a testing group
for feedback.

5/ Be humBle
» Personal humility is a
key attribute for success
in today’s game industry. A
designer must accept that
a majority of their ideas are
not going to work. Indeed,

the game designer’s job is
not to follow one’s muse
or ego, but to choose a
vision and let the team lead
the way. Designers need
to be humble listeners,
not persuasive orators.
If a designer ever finds
themself arguing why a
playable game mechanic is
fun to a skeptical audience,
then the game might be
in big trouble. Designers
still need to be assertive
and confident—or else no
one will ever take them
seriously—but they also
need to be humble enough
to be able to see things as
they are, not how they wish
them to be.

For aspiring designers,
of course, this rule counts
double. Coming across as
arrogant or too certain of
one’s ideas is a sure way
to appear unready for the
job. Having a great idea that

no one takes seriously can
be immensely frustrating,
but the key is to maintain
the right attitude. If your
idea gets implemented,
don’t think that your idea
has won, think of it as
putting it to the test. The
real work begins once the
idea is playable, and then
it belongs to everyone. All
game teams have more
ideas than they will ever
be able to implement,
so developers should all
ensure that the best ideas
are pursued, regardless
of their origin. Indeed,
the origin of an idea is
usually forgotten; what is
remembered is who put in
the hours to get it right.

Should you Be a
deSigner?
» Finally, all aspiring game
designers should answer
these simple questions:

Have you ever made a
video game? A scenario or
a mod? A board or
card game?

If you answered no
to all of these, then you
should ask yourself if you
really are meant to be a
game designer. Painters
start drawing when they
are young. Musicians
learn to play instruments
in grade school. Writers
start to write. Actors
act. Directors direct.
Young game designers
make games. If it’s a
passion—and it has to be
a passion to succeed—
then designing games
is something that you
absolutely have to
do, not just want to do. A
true game designer cannot
be stopped from
creating games.

Designing games is
not the same thing as

playing them. The set of
people who enjoy making
games is much, much
smaller than the group of
people who enjoy playing
them. Designing a game
can mean years and
years perfecting a single
concept and demands the
strength to learn from all
the criticism that will be
heaped upon the design.
Ultimately, the mark of a
true game designer is that,
given free time on some
random weekend, that
person will sneak in a few
hours of what he or she
enjoys most—making a
new game.

Soren johnSon was the

co-designer of Civilization III and

the lead designer of Civilization

IV. He is a member of the GDC

Advisory Board, and his thoughts

on game design can be found at

www.designer-notes.com.

 Five tipS For Switching to the game deSign track

il
lu

St
ra

ti
on

 B
y

ju
an

 r
am

ir
ez

http://www.designer-notes.com
http://WWW.GDMAG.COM

http://MIGS.CA

www.gdmag.com 47

aURaL FIXaTIoN // damIaN KaSTBaUER

It’s Just a Jump to the Left
 Dynamic animation SounD now

The art of animation sound
tagging in games has
blossomed from single-sound
playback to a multilayered
mashup of dynamic sounds.
As game developers seek to
match player interactions
with ever-more-responsive
character representations,
sound is working toward the
same dynamism. However,
if we want sounds to take
in-game variables into account,
we’ll need to move the sound-
authoring process out of the
Digital Audio Workstation and
into the development pipeline,
which means that you’ll need
to have a strong understanding
of how these variables work so
you can pull your sound design
together and make it sound
like one cohesive whole.

and then a step to the RIght
» Fundamentally, a sound for an
animation is played (or triggered)
based on a timing reference (either
seconds or frames) corresponding
to the moment when the sound is
intended to be heard, though how
developers author this depends on
their tools and pipeline. Sometimes,
this information is added as tags or
flags within an animation tool that
are then communicated from the
animation, and that animation tool
simply saves that information to a text
file that tells the engine which sound
file should play and when at runtime.

Most of the time, playing a
single sound is enough, but there
are a handful of regular in-game
interactions that require additional
considerations:

WILL the same anImatIon be used
WIth dIffeRent chaRacteRs, and
If so, shouLd the same anImatIon
pLay dIffeRent sounds?

shouLd the sound change
based on suRface mateRIaL oR
cLothIng type?

can the mass oR speed of the
anImated obJect change?

What peRspectIve WILL the pLayeR
have When heaRIng the sound?

shouLd the sound be dIffeRent
When pLayed IndooRs vs.
outdooRs?

By leveraging dynamic aspects of
the game and designing sounds that
can react accordingly, you can better
define your palette of animation-
based sounds and make sure the
player feels your sound design is
fresh, reactive, and diverse.

Once your sounds are ready for
animations, you’ll need the ability
to audition sounds within your
animation tool to see how your
sound-animation interactions play
out in theory. Current-generation
game development often depends
on a developer’s ability to iterate
quickly toward a final result. In the
frame-to-frame immediacy of the
animation pipeline, this means
you’ll need to play sounds from an
animation with different conditional
combinations―such as footstep type
vs. surface type, spatial or positional
considerations, and character or
outfit type, among others.

spaced out on sensatIon
» But the fun doesn’t stop there.
Other game design elements can
expose different aspects of your
game’s animation pipeline―and thus,
its relation to sound. For example,
think about how your sounds would
play differently with factors like time
dilation, dynamic player movement
speed, and extreme camera angles.

You probably won’t ever forget
the time you first saw the slow-
motion bullet-time sequence in The
Matrix. The first Max Payne turned
bullet-time (that is, the concept of
adjusting in-game playback speed)
into a proper game mechanic
that we would later see echoed

by Fallout 3, Mirror’s edge, and
several Prince oF Persia titles,
among other games.

This time manipulation is
often reflected as a percentage
variable plus or minus the normal
playback speed of the game engine
or animations, and that variable is
often used (in addition to any other

specific audio mix-related changes)
to pitch specific parts of the in-game
sound in accordance with the
timing change. That means that for
animations playing back at a slower
speed, the sounds triggered via
animation often unfold under a sonic
microscope of detail that is usually
undetected during normal playback.
Depending on how you’ve designed
your sound, this could be a very
good thing or a very bad thing.

For example, when the player
is in control and able to creep
along at a snail’s pace, the need for
separate heel and toe sounds can
make or break the player’s feeling
of immersion during these highly
focused situations. Additionally,
there is always the possibility
of walk and run animations that
“blend” from one to the other based
on a parameter from the game
defining the player’s speed. In
these cases, the footstep sound
should ideally be exchanged when
the player transitions to a running
state in order to represent the
increased impact of feet pounding
the pavement.

The sound and position of these
same feet can also wreak havoc in
certain situations―specifically when
an in-game cinematic features feet
moving up close. Imagine a scene of
the player’s feet moving stealthily
toward cover, or a cinematic that
focuses on a player climbing a ladder,
for example, you’ll immediately see

that sounds for explicit left- and right-
foot positioning should be translated
to the correct speaker. This means
that during animation tagging, you’ll
need to indicate the appropriate
footstep sound and playback position
for a specific foot or foot bone.

Let’s do the tIme WaRp agaIn
» Our industry (and our audience)
continues to demand more
cinematic-looking games―which
means more cinematic-sounding
games as well. Take advantage of
your ability to tie your sound design
to the gameplay itself, and this
additional level of detail will help
your players favorably measure
their in-game experiences against
their out-of-game experiences.

“With a bit of a mind flip, you’re into
the time slip, and nothing can ever
be the same.” —The Rocky Horror
Picture Show

damIan KastbaueR is a technical sound

design vagabond living out of a suitcase

at LostChocolateLab.com and is @lostlab

on Twitter.

Prince of Persia

http://LostChocolateLab.com
http://WWW.GDMAG.COM

http://WWW.GDCVAULT.COM

WWW.GDMAG.COM 49

THE BUSINESS // KIM PALLISTER

 USING STORYTELLING TO CREATE BETTER PITCHES

THE BUSINESS // SANA N. CHOUDARY

In my role as the CEO of
the only game-focused
accelerator in the
business, I listen to a lot of
pitches. Between pitches
from YetiZen applicants,
hopeful game developers
at the YetiZen pitch
competitions, hardcore
hackers at hackathons,
and game jams I judge
or organize, I’d estimate
I probably hear about a
thousand pitches a year.

I learned early on that a poor pitch
is not necessarily a mark of a poor
entrepreneur. Pitching is a learned
skill—and one that most talented
game entrepreneurs haven’t spent
time perfecting. Because of this,
my team and I take signifi cant
time to get to know the people
behind the pitch. In the last year
alone we have had half- to one-
hour conversations with a few
hundred potential entrepreneurs,
many of whom were often rejected
from the running by our fellow
judges at pitch competitions. When
it comes to dealing with most
potential investors and publishers,
however, you won’t have that much
time to work with. If you want to
make your pitches more impactful
in less time, you’ll need to start by
telling a story.

STORIES WORK
» Most pitches I hear start out
with either 1) market numbers
that are commonly known by
those in the game industry, such
as the number of mobile games
or the dollar value of the virtual
goods market, or 2) by mentioning

no numbers at all, leading instead
with something generic like
“We are a social mobile gaming
company.” Both of these are
damaging to the pitch, since you
have not presented something
novel or interesting about yourself
or your team.

 When I point this out I
am often told: “We can’t share
internal company numbers—that
is competitive information!” or
that “Our current numbers may
not be as good as those you are
hearing thrown around by larger
companies in the press. We need
investment to get there. Sharing
our numbers now will only make
us look bad.” If that’s the case,
then you should...

TELL ME A STORY
» While the writing of numbers
has existed for over 40 thousand
years, the writing of language
has only been around for a little
over fi ve thousand years. (1) This
means that for the majority of
history, the way human beings
communicated ideas and passed
them down from generation
through generation was through
oral storytelling. As a result, our
brains have evolved to accept
and remember stories—our
very survival depended on it. For
other reasons on why stories
work please see my essay on
neuroscience and pitching (the
essay is not specifi cally on the
use of stories, but many of the
neuroscience fundamentals apply
to storytelling as well)(2).

But before you start telling
stories all the time, keep in mind
that not all stories are equal. Some

are clearly better than others. The
type of story I recommend most
for a pitch is the creation story.

TELLING YOUR
CREATION STORY
» A creation story is a story
that explains why you started
your company. These stories are
generally characterized either by
a painful moment, frustration,
or a more positive and inspiring
experience. Whichever you choose,
it has to be followed by a deep
desire to create the reality of your
vision by forming your company.
The key to an effective creation
story is that the listener must
understand the reason you formed
your company at a core emotional
level. You know you have hit this
level if you see your audience
respond with a “me too,” or “I get
it!” or are otherwise intrigued and
hooked by what you will say next.

Note that this effect can
be achieved with very few
words. The length of your pitch
is less important than the
use of appropriate emotional
punctuation—use pauses,
silence, volume, and other
gestural mechanics to transmit

the emotional moments in
the story. After all, nonverbal
communication is 93 percent of all
communication. (3)

The mistake most
entrepreneurs make after this
point is that they follow up by
talking about their product when
they should be using the story as a
launching pad into compelling facts
about the market. If you can show
that the story applies not just to
you but many other customers like
you, you have effectively made the
leap from story to factual evidence.
Only then can you delve into the
nitty-gritty of execution and your
secret sauce.

There you have it. Try it out in
your next few pitches. If you want
to talk about this further, you
know where to fi nd me. Do let me
know how this ends up working
out for you!

SANA N. CHOUDARY is the CEO and

founder of YetiZen (www.yetizen.com),

which includes the YetiZen Innovation Lab

(a game-industry community space) and

the games-focused YetiZen accelerator

program. You can follow her and YetiZen at

yetizen.com/blog/ or ask her a question

on Twitter at @SanaOnGames.

TELL STORY, SELL GAMETELL STORY, SELL GAME

f o o t n o t e s

[1] http://en.wikipedia.org/wiki/History_of_writing_ancient_numbers
[2] http://yetizen.com/2012/07/04/avoid-nude-beach-pitches/
[3] http://humanresources.about.com/od/ interpersonalcommunicatio1/a/

nonverbal_com.htm

http://www.yetizen.com
http://yetizen.com/blog/
http://WWW.GDMAG.COM
http://en.wikipedia.org/wiki/History_of_writing_ancient_numbers
http://yetizen.com/2012/07/04/avoid-nude-beach-pitches/
http://humanresources.about.com/od/interpersonalcommunicatio1/a/nonverbal_com.htm
http://humanresources.about.com/od/interpersonalcommunicatio1/a/nonverbal_com.htm

GAME PLAN // BRANDON SHEFFIELD

GAME DEVELOPER | NOVEMBER 2012 50

INSERT CREDIT // BRANDON SHEFFIELD

HOLISTIC DESIGN
» With older games, graphical techniques were a
lot less sophisticated (in certain ways—I will still
never understand how those assembly wizards
managed to create THE ADVENTURES OF BATMAN
AND ROBIN on Genesis hardware). Because of
this simplicity and unity of hardware, you could
create a game that felt completely self-contained
from start to fi nish, from its menus to its music.
Everything was being drawn in the same way
by the same part of the hardware, there was
usually just one sound chip, and the hardware’s
limitations often guided what could and couldn’t
be done. In many modern titles, the variety of
shaders, textures, and lighting arrangements
that are possible make it tougher to keep menus,
characters, text, and environments feeling like
they’re 100 percent part of the same world.

For a retro game on modern hardware, this
gets more interesting. For my racing game, it
would be far easier to create a 3D road—but
how would that fi t with our pixelated cars and
backgrounds? If you look at FINAL FREEWAY 2R on
iOS and Android, the 3D road feels very smooth
compared to a proper 16-bit approach, and the
ability to can’t the camera as you turn makes
the pixels of the cars behave in odd ways as it
rotates in hardware instead of being redrawn.
That’s clearly what they’re going for—they’ve
used a variety of techniques to try to emulate
that old look, but for my purposes it can’t match
the dirty, sketchy roads in ROAD RASH II on
Genesis hardware, which make you feel like the
road is the game.

Our current road approach is to slice the
screen into small horizontal chunks, and as the
camera moves forward, it looks for new chunks
to render. This includes small bits of road, but
also spaces out our sideline environmental

dressings, which live as billboards along those
horizontal lines. This emulates the approach of
the older games, but is done for every scanline,
since modern hardware is much more powerful.
While this may not wind up being our fi nal
approach, it’s interesting to see how neither
fully old nor fully new approaches work perfectly
when recreating the vintage look on new devices.

The main lesson here is that with a smaller
game, we have an excellent opportunity to
create a product that looks very integrated and
internally consistent, but it can be challenging
because newer techniques make it easier to
create something that looks almost as good but
sacrifi ces that holistic feel. It’s actually tougher
to do it the old way!

FLOATY CONTROL
» You’d be surprised how many of those old 16-
bit games that we remember as being so sharp
and precise actually had rather fi ddly controls.
In good games like SUB-TERRANIA on the Sega
Genesis this was purposeful, and part of the
challenge. Your ship was hard to control and had
a lot of inertia, but was incredibly quick to turn,
meaning if you got used to the unique playstyle,
you could master it.

In less-successful games, having too much
inertia in a platformer or imprecise hit boxes
in a beat-em-up ruins an otherwise enjoyable
experience. We see this comparison today, where
games like SUPER CRATE BOX on iOS have simple
controls (left, right, jump, and shoot) that at fi rst
feel imprecise, but have a quick learning curve,
and ultimately inform better play. This works
because the environments are static, single-
screen, and easy to navigate. You don’t need to
wall-hop or do anything complex—just jump, land
on a platform that you know is always there, jump
over an enemy, and shoot. On the other hand,
there are games that try to be full-on platform
game experiences, with triangle jumps and fl oor
stomps, and I’ve yet to see a one that didn’t
frustrate me into wishing I had an actual controller.

The lesson here is to make sure your
control method informs your design. The simple
environments in SUPER CRATE BOX are a good
example of this. With scrolling and complex jumps,
the game just wouldn’t work as well as it does.
Another great example is SUPER HEXAGON, which is
a twitchy, hardcore game that only lets you rotate
left or right. It’s precise and accurate, meaning
whenever you die, you know it’s your fault.

THAT OLD-SCHOOL FEELING
» More important than anything else is the
old-school vibe. It’s hard to pinpoint what exactly
triggers that particular feeling in a player, but
there are some common threads in the more
successful older games.

Pattern learning through failure
Most good vintage games show you how to
succeed by showing you how you can fail.
Missing jumps, knowing that spikes show up over
red pits but not blue ones, realizing you can duck
to escape enemy fi re—these were the teaching
methods of old. (And when you die, it’s back
to the start of the level with you.) It might feel
slightly unfair the fi rst time, but usually if you’re
quick enough, you can learn the pattern as it’s
happening without too much actual punishment.

This kind of approach to learning and
diffi culty has fallen out of favor in modern
games, which have frequent checkpoints and

HOW DO YOU RECAPTURE VINTAGE MAGIC ON MODERN TOUCH DEVICES?

One of my current game projects is a 16-bit arcade-style racer for mobile
devices, which puts me in the position of trying to marry an older aesthetic
with newer input methods and design. Along the way, I’ve been playing
(and watching videos of) lots of games from the era, to try to catch hold
of the vibe, while also seeing what works in modern times. Through the
process, I’ve found there’s a lot that can be learned from what’s good and
what’s bad about older games.

SU
B-

TE
RR

AN
IA

www.gdmag.com 51

insert credit // Brandon sHeFFieLd

variable skill levels for casual players. But I
think the hardcore nature of these older games
contributes a substantially retro vibe, and as
games like Super Crate Box, Super Hexagon,
and Super Meat Boy prove, good control plus
punishing difficulty and pattern learning
can really engage players, even today. (Also,
adding “Super” to your game title boosts sales.)
Repetition bonds you with a product—that’s
why kids still learn SAT words with flash cards.
We remember the games from our childhood
so well in part because we had to play through
them so many times in order to beat them.

Distinctive music
Many games these days (especially in the
triple-A space) give music the backseat, and

choose to let it linger in
the background without
major melodic hooks.
Super Mario BroS.’S music
was fantastic because
it added ragtime to an
action game. StreetS of
rage 3, composed by
Motohiro Kawashima,
is an early study in

progressive, experimental electronica. The
unexpected sounds give these games an edge.

Appropriate control
As previously hinted, precision isn’t necessarily
the hallmark of good control, but the control
method has to be appropriate for the game. There
were six buttons (eight if you include select and
pause) on the SNES controller, but you didn’t
have to use them all. Also, your game’s genre

may inform your players’ preferences; I’m a
particular fan of sticky, inertia-free jumps in
platforming and action games, but with flight or
driving games, I like a bit of wiggle room.

Easter eggs
One thing that is more
difficult to represent
in larger games is the
little subtle nuances
that made 16-bit
games so charming.
Hidden paths and
secrets in these living worlds led to a great
feeling of discovery. In Bonk’S revenge for the
TurboGrafx-16, enemies on a ship cook food and
wander about if you leave them alone. Sure,
you’ll find a developer’s face in a portrait in

unCHarted 3, or an interesting poster in Call
of duty, but a better example would be Halo’S
hidden, hard-to-reach cavemen. In the arcade
racer outrun 2, when you stay at the starting
line instead of driving off with your peers, the
flag waver will do stretches, breakdance, and
a host of other actions while you wait. There’s
no reason to do this—95 percent of players will
never see it—but that kind of dedication to the
world really helps make it feel alive, and gives
the player a great feeling of discovery.

RetRo futuRe
» For the last decade or so, retro-inspired
developers have pondered what makes these
games feel the way they do. Ultimately, the vibe
may come down to individual nostalgia—what
resonates with that game’s director? To rekindle

that feeling myself, I’ve been
playing Genesis and TurboGrafx
games daily, and encouraging
my team to do that as frequently
as they can as well. It’s been
immensely informative, and I
can’t recommend this enough
for anyone trying to make a
retro title.

I don’t know if we’ll be
successful in taking that
vintage vibe and bringing
it into the future, but the
learning process is already
showing me how much vintage
titles have to teach about
present and future games.

BRandon Sheffield is director of

Oakland, California–based Necrosoft

Games, and editor emeritus of Game

Developer magazine. He has worked

on over a dozen titles, and is currently

developing two small-team games for

PlayStation Mobile. Su
pe

r
Cr

at
e

Bo
x.

H
al

o
3.

http://WWW.GDMAG.COM

Ne w s aNd iNformatioN about the Game de velopers CoNfereNCe® serie s of e veNts www.GdCoNf.Com

GDC NEXT, APP DEVELOPERS CONFERENCE
COME TO L.A. IN 2013

game developer | november 201252

The growing session lineup for this
November’s GDC China in Shanghai
is quickly gaining steam, and the
show’s organizers have revealed
three new talks in the Smartphone
& Tablet Games Summit.

This time, these new sessions
include an examination of PopCap’s
Bejeweled Blitz, a case study from
Limbic Software on the challenges
of mobile game growth, and Appy
Entertainment on pivoting from
“premium to freemium” in the
smartphone space.

As part of the Smartphone
& Tablet Games Summit, these
sessions will run alongside the
rest of GDC China from November
17-19 at the Shanghai Convention
Center in Shanghai, China, and will
offer specialized content covering
the ins and outs of mobile game
development.

The full details on these new
Summit sessions are as follows:

In “Bejeweled Blitz: One Year
in the Life of a Top-Grossing Mobile
Game,” PopCap’s Giordano Bruno
Contestabile will discuss how

Bejeweled Blitz made the jump
from Facebook to iOS, and became
one of the platform’s most long-
lasting success stories. Along the
way, he’ll explain how other cross-
platform social game developers
can emulate that success by
combining smart game design,
data analysis, and more.

Elsewhere, Limbic Software
cofounder Iman Mostafavi will
host “Getting Out of the Garage:

Managing Teams, Customer
Relationships, Cloud Servers,
and 97 Other Things to Handle
Growth.” During this session,
Mostafavi will examine Limbic
titles like towerMadness, nuts!,
and zoMBie Gunship, and will detail
the technical and operational
challenges the studio faced as
its games began to grow. It’ll
be a great chance to learn from
Limbic’s experience and gain a
better understanding of how to
deal with rapid changes in scale.

Finally, Appy Entertainment
brand director Paul O’Connor
(spellCraft sChool of MaGiC, truCks
& skulls) will present “Premium to
Freemium: Pivoting Monetization
Method for Best-Selling Apps,”
detailing how his studio “converted
two best-selling premium apps
to freemium monetization and
increased their audience, grew
their revenue, and made the games
better in the process.”

These talks join a number
of other previously announced
sessions for GDC China, including

a handful of additional talks in
the Smartphone & Tablet Summit,
Main Conference sessions from
Volition and Naughty Dog, and
much more. More information on
any of these sessions is available
on the “Announced Sessions”
page on the official GDC China
website (www.gdcchina.com).

Be sure to keep an eye out for
even more updates on GDC China
in the weeks ahead, as show
organizers have plenty more to
announce for the upcoming event.
For all the latest information on
GDC China, visit the show’s official
website, or subscribe to regular
updates via Facebook, Twitter, or
RSS. (GDC China is owned and
operated by UBM TechWeb, as is
Game Developer.)

GDC CHINA 2012 ADDS BEJEWELED BLITZ,
ZOMBIE GUNSHIP SMARTPHONE TALKS

The organizers of Game
Developers Conference (GDC)
have announced a brand-new
event, featuring two market-
leading conferences and a shared
expo floor, debuting in Los Angeles
in November 2013.

Game Developers Conference
Next will be the reimagined
successor to GDC Online, whose
final iteration took place in
Austin this year from October
9-11. Meanwhile, App Developers
Conference (ADC) is a brand-new
event dedicated to key takeaways in
app technology, creation, business,
and marketing outside of gaming.

GDC Next and the App
Developers Conference will debut
as a co-located event at the Los
Angeles Convention Center from
November 5-7, 2013.

GDC Next focuses on what’s
next in smartphone and tablet,
social, independent, cloud, and
other major forms of games.
Whether you’re a designer,
programmer, architect, producer,
artist, marketer, businessperson,
or all of the above, the new show
will prove vital to making great
games and making money in the
most vibrant new areas of the
game industry.

From the creators of GDC, ADC
is a brand-new event focusing on
the very best development, UI,
marketing, and business of apps.
Organizers will be recruiting the
very best app creators, whether
they be on mobile devices, the
web, or beyond, and getting them

to present their best practices to
attendees.

Attendees will be able to sign
up individually for the GDC Next
2013 and ADC 2013 conferences
(November 5-7, 2013) or attend
both at a discounted price.
The shared expo floor for the
two shows will be open to all
attendees on November 5 and 6.
For further information, please
visit the GDC Next website (www.
gdcnext.com) or the ADC landing
page (www.adconf.com). (GDC
Next and ADC are owned and
operated by UBM TechWeb, as is
Game Developer.)

Ph
ot

os
 c

ou
rt

es
y

of
 G

am
e

De
ve

lo
ep

rs
 C

on
fe

re
nc

e
an

d
LA

CC
 b

ro
ch

ur
e.

http://WWW.GDCONF.COM
http://www.adconf.com
http://www.gdcnext.com
http://www.gdcnext.com
http://www.gdcchina.com

www.gdmag.com 53

good job
hiring news and interviews

Hired someone interesting? Let us know at editors@gdmag.com!

whowentwhere

new studios

Designing A Whole New
Type of Health Meter

/// After 20 years with the company, Cliff
Bleszinski (above) has resigned from Epic
Games. No word on what he’ll do next,
other than move on to the “next stage of
his career.”

/// BioWare cofounders Greg Zeschuk
and Ray Muzyka have departed the RPG
giant five years after its acquisition by
EA. Neither have announced further
game-related plans, though Zeschuk will
be pursuing a long-standing passion for
craft beers.

/// Former CBS TV executive Nancy Tellem
is heading up a new studio at Microsoft,
which will focus on creating “storytelling
experiences for the Xbox brand.” The recent
Kinect Nat Geo TV and Kinect Sesame Street
TV are two early results of this new direction.

/// Two more executives have resigned from
social games giant Zynga. Infrastructure
CTO Allan Leinwand and chief marketing
and revenue officer Jeff Karp join COO John
Schappert and vice presidents Bill Mooney
and Brian Birtwistle, among others.

/// Microsoft has created a new studio
that will focus on content for Windows 8
tablets. The London-based developers, led
by ex-Rare staffer Lee Schuneman, will
focus on the concept of “entertainment as
a service.”

/// Epic Games is opening a new studio in
Seattle. As of this writing, the new studio
is currently unnamed and is in the early
stages of organizing and staffing.

/// Mobile/social developer Mediatonic has
opened a new studio in Brighton, England.
The company plans to hire as many as 50
new positions over the next year.

Alexandra Hall: What does
it feel to leave triple-A
development?
Derek Manning: It was quite
the transition. I think the
biggest change was the shift
in demographic. Working
on a game like Tomb RaideR
or Legions gave us certain
expectations about the
player’s skill level, and
you can make a lot of
assumptions. When it came
to Facebook, there was such
a different crowd that for the
most part you couldn’t really
make any judgments about
the experience levels of your
user. A lot of them may have
just started playing games for
the first time on Facebook.

Another big change
was the smaller production
cycles. You usually have
a couple years at least to
produce a big-budget console
title, but Facebook games
only grant you maybe six to
nine months. However, the
upward trend in the quality of
Facebook games has that gap
slowly closing.

AH: How do your prior level-
design skills apply to your
current projects?
DM: The focus of your job
is really the same, and that
is making sure that you’re
creating a fun experience
for the user. It’s all about
looking at what you have
to work with. I used to look
at the mechanics available
in a given game and then
try to weave those in a fun,
unique manner for each level.
Now I look at the different
resources available in our

company versus the time we
have and try to create the
best look and experience for
the user for each project.

AH: Were there any health-
related skill prereqs for this
job class?
DM: Yes, but more for my own
knowledge and benefit rather
than any requirements from
the company. I try to keep
up on the latest research on
health and happiness in order
to create products that will
have the biggest impact.

AH: Do you think we’ll start
seeing more crossover
between the game and
health-care industries?
DM: I think that very soon
we’re going to see a lot
more gaming companies
entering into the health
field. Over the recent years
our methods of engagement
with users has increased
dramatically with things
such as the Wii, Kinect,
tablets, smartphones, and
devices like the FitBit. These
are allowing endless new
possibilities for merging
games with health. We’ve

started to see a few health-
related games, such as Wii
FiT or YouR HeaLTH, but most
of them are solely focused
on the exercise aspect. There
are many other ways of
improving your quality of life
that we are just now seeing
products tackle.

AH: Do you have a different
attitude about your work
now that you’re making
games that aim to concretely
improve your players’ lives?
DM: My degree is actually
in psychology. I was going
to school to become a
psychologist before I
switched to working in
the game industry. Ever
since I was little I have
wanted to help people to be
healthier, both mentally and
physically. ORCAS provides
an amazing opportunity for
me to merge my knowledge
of gaming with the science
literature to make fun,
enjoyable products that
make life better. It’s great!

AH: Has working at a health-
focused company changed
your own self-care habits?
DM: Not surprisingly, it has.
Most of the people here
lead very active lives. We
even have an ultrarunner
on the game team. Being in
this kind of health-centered
environment has definitely
made me exercise more.

AH: What’s your #1 health tip
for fellow game designers?
DM: Get a standing desk at
work. It does wonders for
your back!

GaMe DesiGner Derek ManninG talks transition to health-care inDustry

over the past few years, GaMe DesiGner Derek ManninG has transitioneD froM craftinG Tomb RaideR levels to
DesiGninG health anD well-beinG apps at orcas, a 20-year-olD health-care business that is now DevelopinG
increasinGly GaMelike interactive health apps. we checkeD in with Derek to chat about DevelopinG GaMes at
what MiGht be terMeD a nontraDitional GaMe coMpany.

who
went
where?

ph
ot

o
co

ur
te

sy
 o

f
ga

m
e

de
ve

lo
pe

rs
 c

on
fe

re
nc

e

mailto:editors@gdmag.com
http://WWW.GDMAG.COM

educated play!
STUDENT gamE PROFILES

http://oflightandshadow.at/ Of Light & ShadOw
Of Light & ShadOw is the game debut of 12 angry devs, developed over 18 months by a group of game design students at the salzburg university of applied sciences.

OL&S weaves puzzles into its platforming by letting the player switch between two characters, one of whom can only exist in light, and another who needs to

lurk in shadows. we checked in with 12 angry devs (a misnomer on several fronts) to chat about the dev process, working with unity, and making games in austria.

game developer | november 201254

Alexandra Hall: How did the Of
Light & Shadow project come to
be? Were you all students?
12 Angry Devs: it started with
eight MultiMediaart students who
wanted to create a game as part
of their Ma course. they started
brainstorming, came up with the
core mechanics, and pitched the
project to the programmers at
MultiMediatechnology. four of
them jumped on board—and thus
we were “12 angry devs.”

we started building a
prototype in March 2011, and
after that iterated regularly on
the results. in January 2012 we
had our first finished level, and
in June we released the game
with seven levels. Recently, we’ve
added more difficult versions of
these levels to the game—and
we’re currently considering the
possibility to apply for Steam
greenlight, using the resulting
“deluxe version” of the game.

AH: Did you like working with
Unity?
12AD: the Unity engine offers a lot
of functionality out of the box. that’s
something really useful if you care
more about developing a game than

developing a game engine. Unity is
also an engine that can actually be
used by nonprogrammers as well
(to a certain extent, anyway). the
editor works in a similar fashion
to 3d animation packages, so
our artists were able to integrate
assets and build levels quite
easily. this of course helped us a
lot with our workflow, because the
programmers could focus on actual
programming instead of integrating
assets or tweaking values.

a downside of Unity (and
its ease of use) is that if the
engine doesn’t support a certain
feature (like a specific rendering
technique, for example), you have
little chance of implementing it into
the engine. we had this problem
early on when we wanted to render
some dynamic volumetric lighting.
But eventually we managed to
work around these limitations by
using some shader trickery.

these issues aside, we felt
that Unity was pretty much the
way to go within a setting such as
ours; you just have to be aware of
its limitations in advance.

AH: How’d you come up with the
light/dark game mechanic?

12AD: as with other teams we
know of, light and consequently
shadows are amongst a set of core
mechanics and gameplay ideas
that are obviously quite popular.
that being said, we think we didn’t
take an all-too-obvious approach
to that particular concept and
iterated several times on the idea
of platforming combined with
lights and shadows. Originally, Mr.
Light and dr. Shadow would have
been two separate characters
with unique abilities and played in
turns, so you can see we’re quite
far off with the final gameplay now.
Early in development we started
to build a playable prototype and
constantly kept playing around with
the mechanics, filtering out the fun
parts of play, and cutting everything
that wasn’t fun in our point of view.

AH: Did you run into any
particularly tricky problems
during the development process?
12AD: the visualization of the
light cones was one issue that
kept us busy for quite some time.
we experimented with several
approaches like volumetric lighting
and manipulating meshes, but
in the end decided to go with a

shader-based approach.
another tough nut to crack

was the movement of the dr.
Shadow character. Mr. Light has a
pretty traditional movement, but
dr. Shadow needed to be able to walk
on walls and ceilings, to stick to and
to drop off those level parts. we had
a long and tough time of tweaking
and adjusting the abilities of dr.
Shadow to make it work within the
setting and for each level specifically.

AH: What’s the dev scene like
in Austria? Are there many
opportunities?
12AD: a lot of student projects
are produced at the University of
applied Sciences Salzburg because
there are art and programming
courses for game development.
there is not a huge gaming
industry in austria, only a couple
of companies that are mostly
based in Vienna. So quite a few of
the students end up going abroad
to work after they graduate.
Of course, we hope that this is
going to change in the coming
years because of all the young
game development graduates
who might to try to build up their
own company. And Yet It Moves
developer Broken Rules actually
started this way, and more of that
is sure to happen.

developer: 12 angry devs
Release date: 06/06/12
development time: Roughly 18
months, not full time
development budget: Just enough for
Chinese takeout (seriously, we had
no budget)
a fun fact: in one of our levels the girl
of the BAlloon Quest floats around in
the background. also, one of the first
mechanics for dr. Shadow was the
ability to “flip” as seen in vvvvvv.
team members: florian Jindra, Michael
fuchs, Markus huber, Martin Kenzel,
Martin Klappacher, Vinzenz Mayrhofer,
Sophie Müller, Clemens Stangl, Patrick
topf, Stefan wiesenegger, Michael
Kenzel, Manuel hoffmann, Vedad Siljak,
andreas Stallinger, Michael webersdorfer

Of Light And ShAdOw.

HTTP://OFLIGHTANDSHADOW.AT/

BECOME A LEADER IN DIGITAL MEDIA
With digital media in mind from conception to completion, the new CENTRE FOR DIGITAL MEDIA
features student apartments, project rooms and classrooms all designed to inspire creativity and

part-time Master’s program that focus on real-time, industry-facing collaborative projects.

Learn more about our MASTERS OF DIGITAL MEDIA PROGRAM at www.thecdm.ca/programs/mdm

The future of work is at the new CENTRE FOR DIGITAL MEDIA.

CENTRE FOR DIGITAL MEDIA | www.thecdm.ca

EPIC GAMES C2

HAVOK C3

MASTERS OF DIGITAL MEDIA PROGRAM 55

MONTREAL INTERNATIONAL GAME SUMMIT 46

PERFORCE SOFTWARE 22

RAD GAME TOOLS C4

TWOFOUR54 3

VANCOUVER FILM SCHOOL 21

COMPANY NAME PAGE COMPANY NAME PAGE

ADVERTISER INDEX

gd Game Developer (ISSN 1073-922X) is published monthly by UBM LLC, 303 Second Street, Suite 900 South, South Tower, San
Francisco, CA 94107, (415) 947-6000. Please direct advertising and editorial inquiries to this address. Canadian Registered for
GST as UBM LLC, GST No. R13288078, Customer No. 2116057, Agreement No. 40011901. SUBSCRIPTION RATES: Subscription rate
for the U.S. is $49.95 for twelve issues. Countries outside the U.S. must be prepaid in U.S. funds drawn on a U.S. bank or via
credit card. Canada/Mexico: $59.95; all other countries: $69.95 (issues shipped via air delivery). Periodical postage paid at San
Francisco, CA and additional mailing offices. POSTMASTER: Send address changes to Game Developer, P.O. Box 1274, Skokie, IL
60076-8274. CUSTOMER SERVICE: For subscription orders and changes of address, call toll-free in the U.S. (800) 250-2429 or fax
(847) 647-5972. All other countries call (1) (847) 647-5928 or fax (1) (847) 647-5972. Send payments to gd Game Developer, P.O.
Box 1274, Skokie, IL 60076-8274. Call toll-free in the U.S./Canada (800) 444-4881 or fax (785) 838-7566. All other countries call
(1) (785) 841-1631 or fax (1) (785) 841-2624. Please remember to indicate gd Game Developer on any correspondence. All con-
tent, copyright gd Game Developer magazine/UBM LLC, unless otherwise indicated. Don’t steal any of it.

>> GET EDUCATED

55W W W . G D M A G . C O M

http://www.thecdm.ca
http://WWW.GDMAG.COM
http://www.thecdm.ca/programs/mdm

game developer | NovemBer 201256

arreSTed developmeNT // maTTHeW WaSTelaNd & magNuS uNderlaNd

The Real hollywood Mojo
GeTTinG beTTeR voice acTinG in youR GaMes

Yes, even though voiceover
recording has been greatly
improved by today’s technological
developments (motion capture, text-
to-speech technology, and so on),
there’s still room for improvement.
Great performances have always
been a hallmark of movies (who
could forget that orc who runs at
Helm’s Deep’s drainage culvert in
The Two Towers?)—but they haven’t
always been a hallmark of games.

Thankfully, the game industry’s
plan to win at every point-by-point
comparison to Hollywood doesn’t
have to be stymied by the unfamiliar
terms and methods of the art and
science of acting. With a few simple
tips from yours truly, you’ll be able
to get the voices in your game (or
the “VO,” as we folks in the know like
to call it) at a level where IGN will
be hailing it as worthy of a dozen
Oscars and Academy Awards!

Tips foR indies
» You’re probably thinking, “Hey,
we can’t afford voice acting.
We’re indies!” But it doesn’t have
to cost anything if you’re clever
and resourceful enough. Think
about how everyone on the team
already has a voice. Can they can
read words on a page and then
speak them? Well, that’s all a
“professional” voice actor does,
really, when you get down to it.

Now think about all the different
voices you have access to. It may
seem at first like most of your
characters will have to be young
white males. But wait! Surely you’ve
got a couple of guys on staff who
love to do hilarious voices. Ask for a
Sean Connery or Werner Herzog and
let diversity fly! (I suppose those
examples are also white males,
but hey, you get the idea, right?)
Audio programs often have features

that make people sound different,
anyway. They have dials and knobs
that can make someone sound like a
zombie or a pirate, or even a zombie
pirate ghost!

Oh, yeah: Don’t forget that
you need a computer with a
microphone. Most laptops have one
built in these days.

Tips foR pRos
» In most cases the approach
above will work wonders, but if
you’re big shots and rolling in
money (call me, Mr. Kotick! I can
help you!), you might think about
hiring some professionals. Working
with actors can be intimidating at
first—you’ve probably heard all
about how they make millions of
dollars, have temper tantrums on
the set, and make weird demands.
But a little confidence can go a
long way to coaxing that perfect
guttural outburst from a star’s
vocal chords.

The director’s first job is
to make sure the actors really

understand what’s going on in the
game. How are gamers going to be
able to understand the difference
between pre-Empire Maldichori
GuardWalkers and post-Empire
Maldichori GuardStalkers if the
actress playing the Academician
who explains the difference can’t
explain it herself? You know?

After you’ve walked your
actress through the nuances
of the different societies,
political systems, histories, and
mythologies of your game world,
you’ll begin to really “direct” her as
she acts. Now, directing is truly a
mysterious art. I have been doing
it for over three months now and I
daresay I still don’t understand all
of it. Some people think it consists
of sitting in a folding chair and
yelling “Cut!” every so often, but
nothing could be further from the
truth: It is highly engaged, active,
and exhausting work.

By way of an example, I
present a transcript from one of
my most recent sessions.

[recording begins] “...Great. Okay.
Now, you’re dying from a blunt
instrument to your abdomen, even
though you had a ‘Flesh to Iron’ spell
cast at the time. But it’s the ‘Flesh
to Iron’ learned from the trainer near
the SkyVessel docks, not the trainer
near the old guard tower that was
burned in the Crisis of Hellistria
riots. So you’re kind of, like, sad, but
also angry at the same time. But
still dying—the dying is important.
The player needs to feel the dying.
Again.” [recording ends]

Note how I’ve expertly woven in
the vital contextual information
that the actor needs to hear while
still focusing on the outcomes.
Directing is no easy task, but that’s
why directors are famous and get
paid so much (except for me (just
kidding (Bobby! Call me!!))).

ThaT’s a wRap
» I could talk forever describing
more tips and tricks—like how to
save time by making new lines
out of the ones you’ve already
recorded, how to navigate those
arcane union rules, even the subtle
differences between “grunts,”
“exertions,” “exclamations,” and
“heaves”—but it looks like we’re
out of time for today. Look for my
upcoming seminar to be held in the
Activision headquarters parking lot!
If anyone sees Bobby walking by,
let me know!

MaTThew wasTeland writes about

games and game development on

his blog, Magical Wasteland (www.

magicalwasteland.com). email him at

mwasteland@gdmag.com.

MaGnus undeRland writes about games

and other topics at www.above49.ca. email

him at magnus.underland@gmail.com.il
lu

sT
Ra

Ti
on

: j
ua

n
 R

aM
iR

ez

If you’re reading this magazine, you know that video games have surpassed Hollywood in emotional depth, breadth of
subject matter, relevance, and, most importantly, revenue (take that, Ebert!). But if there is one area left where games
might not yet totally be the equal of the motion picture, it is acting. And I should know! That’s the very stuff I deal with for
a living as a voiceover director in the video game industry.

http://www.magicalwasteland.com
mailto:mwasteland@gdmag.com
http://www.above49.ca
mailto:magnus.underland@gmail.com
http://www.magicalwasteland.com

Havok™ Technologies Include:
Havok Physics • Havok AI • Havok Animation • Havok Behavior • Havok Cloth • Havok Destruction • Havok Script • Havok Vision Engine

Learn More: www.havok.com

Award-winning technology.

Unparalleled support. Flexible licensing options.

Havok is hiring! Visit www.havok.com/careers for more information.

OF VIDEO GAME DEVELOPMENT
UNLOCK THE POTENTIAL

http://www.havok.com
http://www.havok.com/careers

http://www.radgametools.com
mailto:sales3@radgametools.com

	Contents
	postmortem
	THE BINDING OF ISAAC

	features
	POWER 50
	SHOOT MANY ROBOTS: ARENA KINGS MIDMORTEM
	HOW LOUD SHOULD IT BE?

	departments
	EDITORIAL - GAME PLAN
	NEWS - HEADS UP DISPLAY
	REVIEW - TOOLBOX
	PROGRAMMING - INNER PRODUCT
	ART - PIXEL PUSHER
	DESIGN - DESIGN OF THE TIMES
	SOUND - AURAL FIX
	BUSINESS - THE BUSINESS
	EDITORIAL - INSERT CREDIT
	NEW - GDC News
	CAREER - GOOD JOB
	EDUCATION - EDUCATED PLAY
	HUMOR - ARRESTED DEVELOPMENT

