
T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E

>>PRODUCT REVIEWS SIDE EFFECTS’ HOUDINI 9

DISPLAY UNTIL DECEMBER 18, 2007

0 71486 02133 9

1 1

$5.95US $6.95CAN

>>AURAL FIXATION
AUDIO LOCALIZATION
AROUND THE GLOBE

>>Q/A’S 10 COMMANDMENTS
HOW TO BEST UTILIZE
YOUR TESTING FRIENDS

>>PORTING WITH POWER
BRINGING A GAME ENGINE
FROM PC TO NINTENDO DS

N O V E M B E R 2 0 0 7

2K GAMES’
BIOSHOCK

POSTMORTEM:

In Assassin’s Creed,
Ubisoft used
Autodesk® 3ds Max®
software to create
a hero character so
real you can almost
feel the coarseness
of his tunic.

Using Autodesk®
HumanIK® middle-
ware, Ubisoft
grounded the
assassin in his
12th century boots
and his run-time
environment.

Autodesk®
MotionBuilder™
software enabled
the assassin to
fl uidly jump
from rooftops to
cobblestone
streets with ease.

odesk®

middle-
oft
the
n his
y boots
-time
nt.

I tt f Ubi ftImmmmImagagagagagge ee eee cocoocouru teesyy oof UbUbisisofoft
Autodesk, MotionBuilder, HumanIK and 3ds Max are registered trademarks of Autodesk, Inc., in the USA and/or other countries.

All other brand names, product names, or trademarks belong to their respective holders. © 2007 Autodesk, Inc. All rights reserved.

HOW UBISOFT GAVE
AN ASSASSIN HIS SOUL.

autodesk.com/Games

http://autodesk.com/Games

1W W W . G D M A G . C O M

NOVEMBER 2007
VOLUME 14, NUMBER 10

COVER ART: 2K Games

CONTENTS[]

✔
20

7

13

COLUMNS
31 THE INNER PRODUCT By Mick West [PROGRAMMING]

Embedded Scripting

35 PIXEL PUSHER By Steve Theodore [ART]

Every Picture Tells a Story

38 GAME SHUI By Noah Falstein [DESIGN]

Fishy Rules

40 AURAL FIXATION By Jesse Harlin [SOUND]

Speaking in Tongues

48 BUSINESS LEVEL By Russell Carroll [BUSINESS]

Where Credit is Due

DEPARTMENTS
2 GAME PLAN By Brandon Sheffield

Japan’s Slipped Grip

4 HEADS UP DISPLAY
Tokyo Game Show quotes, EA buys Pandemic and BioWare, IGF Mobile
announced, and more.

28 TOOL BOX By David March

Side Effects’ Houdini 9 and product reviews.

POSTMORTEM
20 2K GAMES’ BIOSHOCK

Iterate, iterate, iterate. That’s the message from 2K Games’ BIOSHOCK

postmortem—from the game’s humbling early user tests to the last-
minute spit and polish, iteration saved the day for this artistically
excellent title. That, and an Australian team that could work while the
main team in Boston was sleeping.

By Alyssa Finley

FEATURES
7 SCALING SMALL

What do you get when you take a PC engine
and move it to the Nintendo DS? A mess of
memory problems, that’s what. Austrian
developer Sproing went through the laborious
process of porting its adventure game engine
from PC to DS, and learned a lot of
workarounds and techniques along the way,
which could very well help your company if it
decides to undertake a similar endeavor.

By Stefan Reinalter

13 TEN COMMANDMENTS OF
QUALITY ASSURANCE

As an industry, we’re not traditionally good at
determining universal best practices. This
could be due to the frequent changes our
medium goes through, or the fact that
everyone’s just too busy working to take an
overview. But luckily for us, the IGDA quality
assurance special interest group has come
up a list of ten equally important
commandments for Q/A which should help
you better utilize that mysterious group of
people on the other side of the office.

By Chuck McFadden

http://WWW.GDMAG.COM

2 N O V E M B E R 2 0 0 7 | G A M E D E V E L O P E R

THE OVERARCHING STATEMENT I HEARD FROM
Japanese game developers at the recent Tokyo
Game Show was this: The market is changing and
shrinking, and nobody knows what to do about it.

When I was a kid, all the best console games
came from Japan. That’s just how it was. While
Atari was fiddling around with the 7800, Konami
was releasing CONTRA, and Capcom was bringing
out MEGAMAN. Based on this, my Japanese video
game snobbery continued through the Saturn and
PlayStation eras, on through the Dreamcast days
and into the beginning of the PlayStation 2 reign.
Then, something happened.

WHAT RISES IN THE EAST
These days, for every KATAMARI DAMACY or KILLER7
you get five cookie cutter dating sims, or bare-
bones fighting game upgrades, or any number of
generic action adventure games with plodding
stories about saving the world (a world which
exists pretty much exclusively in Tokyo, I might
add). Western developers are at the top of the
heap now, not just from a technical standpoint,
but also in many ways from a design standpoint.
It used to be that we Western folks were known
for our shoddy ports and sports games more than
our innovative blockbusters. This was especially
true in the U.S. The Europeans had a very nice
creative scene surrounding the Amiga which has,
unfortunately, yet to be matched.

Granted, we still have our share of shoddy ports
and franchise-branded sports games, not to
mention an intense publisher-driven case of “me
too”-ism when it comes to popular genres, but
Westerners weren’t making many games like
HALO, GRAND THEFT AUTO, BEYOND GOOD AND EVIL, CALL

OF DUTY, FLOW, and BIOSHOCK back in the 8- and 16-
bit eras.

Certainly, that statement is incredibly debatable—
not everyone in this office even agrees with me.
LucasArts’ adventure games were enormously
influential in terms of story for instance, and
American arcade games like ROBOTRON, BREAKOUT,
and GAUNTLET continue to spawn imitators. But the
fact is, if you wanted an experience like SUPER

MARIO BROS., SONIC THE HEDGEHOG, STREET FIGHTER II,
or FINAL FANTASY, Japan was it.

SETS IN THE WEST
The development community has no doubt
noticed that Japan currently has its eyes set
squarely on Western markets. The fact is the
higher powered next-gen consoles just aren’t taking
off over there the way anyone hoped they would.

With that in mind, companies like Capcom are
making games like DEAD RISING and LOST PLANET

specifically for the West. Most other large
companies are looking to do the same.

Developers in Tokyo told me over and over that
their native market was stagnating. Consumers
bought Wiis and DS systems, but as NanaOn-Sha’s
Masaya Matsuura indicates in an accompanying
news story (see pg. 4), many feel the DS software
bubble has burst. It used to be that anything on
the console would sell; now in a glut of low-quality
games, only Nintendo products are selling well,
once again.

Japan’s game market has simply not kept up
from a technology standpoint. Companies were
incredibly late to adopt middleware or engine
technologies for fear of losing a competitive edge.
A lack of communication with other developers
(the kind Game Developer magazine strives for or
the kind found at the Game Developers
Conference) means Japanese developers are all
trying to solve the very same problems in isolation.

I even heard once of teams working on two
similar games simultaneously, one for the
American market and one for Japan, who were not
allowed to share assets, engine, code—nothing.
And these games were the same genre, made by
two different teams within the same company! It’s
not easy to convince the higher-ups to share
information. Western developers have been able
to do it because they always have, and perhaps
because in a sense they came from behind. It
takes cooperation to get ahead.

SUN FOR EVERYONE
The upshot of this is that there’s a lot more
opportunity now to work with Japanese
publishers on games for your own market. I think
we’re going to see a lot more cross-cultural
collaboration to this end. Japanese design
sensibility and Western technology could yield a
much-needed sense of renewal.

Japan isn’t going anywhere. Nintendo and
Sony’s in-house teams continue to release games
that push the envelope, and companies like
Capcom, Konami, Square Enix, and Namco-Bandai
all have excellent products coming out. But
they’re all working harder than ever to get
Western attention. It will be very interesting to see
how these companies adjust to the changing
climate, or whether Japan will just become the
land of Nintendo. * Brandon Sheffield

Senior Editor

GAME PLAN[]

JAPAN’S
SLIPPED GRIP

W W W . C M P G A M E . C O M

CMP Media, 600 Harrison St., 6th Fl., San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

www.gdmag.com

W W W . C M P G A M E . C O M

SUBSCRIPTION SERVICES
FOR INFORMATION, ORDER QUESTIONS, AND ADDRESS CHANGES

t: 800.250.2429 f: 847.763.9606 e: gamedeveloper@halldata.com

EDITORIAL
EDITOR-IN-CHIEF

Simon Carless scarless@gdmag.com
MANAGING EDITOR

Jill Duffy jduffy@gdmag.com
FEATURES EDITOR

Brandon Sheffield bsheffield@gdmag.com
ART DIRECTOR

Cliff Scorso cscorso@gdmag.com
CONTRIBUTING EDITORS

Jesse Harlin jharlin@gdmag.com
Noah Falstein nfalstein@gdmag.com
Steve Theodore stheodore@gdmag.com
Mick West mwest@gdmag.com

ADVISORY BOARD
Hal Barwood Designer-at-Large
Ellen Guon Beeman Microsoft
Brad Bulkley Neversoft
Clinton Keith High Moon Studios
Ryan Lesser Harmonix
Mark DeLoura Ubisoft

ADVERTISING SALES
DIRECTOR OF SALES

Steve McGill e: smcgill@cmp.com t: 415.947.6217
GLOBAL SALES MANAGER, RECRUITMENT & EDUCATION

Aaron Murawski e: amurawski@cmp.com t: 415.947.6227
SR. EVENTS ACCOUNT MANAGER, SOUTHWEST

Jasmin Davé e: jdave@cmp.com t: 415.947.6226
SR. ACCOUNT MANAGER, EAST COAST, EUROPE & EASTERN CANADA

Cecily Herbst e: cherbst@cmp.com t: 415.947.6215
MEDIA ACCOUNT MANAGER

John Watson e: jmwatson@cmp.com t: 415.947.224

ADVERTISING PRODUCTION
ADVERTISING PRODUCTION MANAGER Kevin Chanel

REPRINTS
REPRINTS ACCOUNT MANAGER

Cindy Zauss t: 951.698.1780 e: czauss@cmp.com

MARKETING
MARKETING MANAGER

Hilary McVicker e: hmcvicker@cmp.com t: 415.947.6207

CMP GAME GROUP
VP, GROUP PUBLISHER APPLIED TECHNOLOGIES Philip Chapnick
VP, STRATEGIC MARKETING Michele Maguire
GROUP DIRECTOR Kathy Schoback

AUDIENCE DEVELOPMENT
GROUP DIRECTOR Carolyn Giroux e: cgiroux@cmp.com
DIRECTOR Mary Griffin e: mkgriffin@cmp.com
ASSISTANT MANAGER John Slesinski e: jslesinski@cmp.com
LIST RENTAL Merit Direct LLC t: 914.368.1000

INTERNATIONAL LICENSING INFORMATION
Mario Salinas t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP TECHNOLOGY MANAGEMENT
PRESIDENT AND CEO Steve Weitzner
EXECUTIVE VP AND CFO Adam Marder
SENIOR VP, AUDIENCE MARKETING & DEVELOPMENT Bill Amstutz
SENIOR VP, CMP INTEGRATED MARKETING SOLUTIONS Joseph Braue
SENIOR VP AND GENERAL COUNSEL Sandra Grayson
SENIOR VP, CORPORATE MARKETING Lisa Johnson
SENIOR VP, CORPORATE SALES Anne Marie Miller
SENIOR VP, MANUFACTURING Marie Myers
SENIOR VP, COMMUNICATIONS Alexandra Raine
VP, AUDIENCE DEVELOPMENT Michael Zane
PRESIDENT, CHANNEL GROUP Robert Faletra
PRESIDENT, CMP ENTERTAINMENT MEDIA Tony Keefe
PRESIDENT, BUSINESS TECHNOLOGY GROUP Jeff Patterson
SENIOR VP, GROUP DIRECTOR, ELECTRONICS & SOFTWARE GROUPS

Paul Miller
SENIOR VP, GROUP DIRECTOR, COMMUNICATIONS GROUP,

Stephen Saunders

W W W . C M P G A M E . C O M

CMP Media, 600 Harrison St., 6th Fl.,
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

www.gdmag.com

W W W . C M P G A M E . C O M

SUBSCRIPTION SERVICES
FOR INFORMATION, ORDER QUESTIONS, AND ADDRESS CHANGES

t: 800.250.2429 f: 847.763.9606 e: gamedeveloper@halldata.com

EDITORIAL
PUBLISHER

Simon Carless scarless@gdmag.com
MANAGING EDITOR

Jill Duffy jduffy@gdmag.com
SENIOR EDITOR

Brandon Sheffield bsheffield@gdmag.com
ART DIRECTOR

Cliff Scorso cscorso@gdmag.com
CONTRIBUTING EDITORS

Jesse Harlin jharlin@gdmag.com
Noah Falstein nfalstein@gdmag.com
Steve Theodore stheodore@gdmag.com
Mick West mwest@gdmag.com

ADVISORY BOARD
Hal Barwood Designer-at-Large
Ellen Guon Beeman Microsoft
Brad Bulkley Neversoft
Clinton Keith High Moon Studios
Ryan Lesser Harmonix
Mark DeLoura Ubisoft

ADVERTISING SALES
DIRECTOR OF SALES

Steve McGill e: smcgill@cmp.com t: 415.947.6217
GLOBAL SALES MANAGER, RECRUITMENT & EDUCATION

Aaron Murawski e: amurawski@cmp.com t: 415.947.6227
SR. EVENTS ACCOUNT MANAGER, SOUTHWEST

Jasmin Davé e: jdave@cmp.com t: 415.947.6226
SR. ACCOUNT MANAGER, EAST COAST, EUROPE & EASTERN CANADA

Cecily Herbst e: cherbst@cmp.com t: 415.947.6215
MEDIA ACCOUNT MANAGER

John Watson e: jmwatson@cmp.com t: 415.947.224

ADVERTISING PRODUCTION
ADVERTISING PRODUCTION MANAGER Kevin Chanel

REPRINTS
PARS INTERNATIONAL

Joe Nunziata t: 212.221.9595 e: reprints@parsintl.com

MARKETING
MARKETING MANAGER

Hilary McVicker e: hmcvicker@cmp.com t: 415.947.6207

CMP GAME GROUP
VP, GROUP PUBLISHER APPLIED TECHNOLOGIES Philip Chapnick
VP, STRATEGIC MARKETING Michele Maguire
GROUP DIRECTOR Kathy Schoback

AUDIENCE DEVELOPMENT
GROUP DIRECTOR Carolyn Giroux e: cgiroux@cmp.com
DIRECTOR Mary Griffin e: mkgriffin@cmp.com
ASSISTANT MANAGER John Slesinski e: jslesinski@cmp.com
LIST RENTAL Merit Direct LLC t: 914.368.1000

INTERNATIONAL LICENSING INFORMATION
Mario Salinas t: 650.513.4234 f: 650.513.4482 e:
msalinas@cmp.com

CMP TECHNOLOGY MANAGEMENT
PRESIDENT AND CEO Steve Weitzner
EXECUTIVE VP AND CFO Adam Marder
PRESIDENT, CHANNEL GROUP Robert Faletra
PRESIDENT, CMP TECHNOLOGY INNOVATORS GROUP

Paul Miller
PRESIDENT, CMP BUSINESS TECHNOLOGY GROUP Tony Uphoff
CORPORATE SENIOR VP SALES Anne Marie Miller
SENIOR VP, CMP INTEGRATED MARKETING SOLUTIONS Joseph

Braue
SENIOR VP, HUMAN RESOURCES Marvlieu Jolla Hall
SENIOR VP, MANUFACTURING Marie Myers
SENIOR VP, COMMUNICATIONS Alexandra Raine
VP, INTERNATIONAL BUSINESS DEVELOPMENT Patrick Brennan

W W W . C M P G A M E . C O M

CMP Media, 600 Harrison St., 6th Fl.,
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

www.gdmag.com

W W W . C M P G A M E . C O M

SUBSCRIPTION SERVICES
FOR INFORMATION, ORDER QUESTIONS, AND ADDRESS CHANGES

t: 800.250.2429 f: 847.763.9606 e: gamedeveloper@halldata.com

EDITORIAL
PUBLISHER

Simon Carless scarless@gdmag.com
MANAGING EDITOR

Jill Duffy jduffy@gdmag.com
SENIOR EDITOR

Brandon Sheffield bsheffield@gdmag.com
ART DIRECTOR

Cliff Scorso cscorso@gdmag.com
CONTRIBUTING EDITORS

Jesse Harlin jharlin@gdmag.com
Noah Falstein nfalstein@gdmag.com
Steve Theodore stheodore@gdmag.com
Mick West mwest@gdmag.com

ADVISORY BOARD
Hal Barwood Designer-at-Large
Ellen Guon Beeman Microsoft
Brad Bulkley Neversoft
Clinton Keith High Moon Studios
Ryan Lesser Harmonix
Mark DeLoura Ubisoft

ADVERTISING SALES
DIRECTOR OF SALES

Steve McGill e: smcgill@cmp.com t: 415.947.6217
GLOBAL SALES MANAGER, RECRUITMENT & EDUCATION

Aaron Murawski e: amurawski@cmp.com t: 415.947.6227
SR. EVENTS ACCOUNT MANAGER, SOUTHWEST

Jasmin Davé e: jdave@cmp.com t: 415.947.6226
SR. ACCOUNT MANAGER, EAST COAST, EUROPE & EASTERN CANADA

Cecily Herbst e: cherbst@cmp.com t: 415.947.6215
ACCOUNT MANAGER, WESTERN CANADA, INDIA, AUSTRALIA, & ASIA

Amanda Mae Miller e: ammiller@cmp.com t: 785.838.7523
SALES REPRESENTATIVE, EDUCATION & RECRUITMENT

Gina Gross e: ggross@cmp.com t: 415.947.6241
MEDIA ACCOUNT MANAGER

John Watson e: jmwatson@cmp.com t: 415.947.224

ADVERTISING PRODUCTION
ADVERTISING PRODUCTION MANAGER Kevin Chanel

REPRINTS
PARS INTERNATIONAL

Joe Nunziata t: 212.221.9595 e: reprints@parsintl.com

MARKETING
MARKETING MANAGER

Hilary McVicker e: hmcvicker@cmp.com t: 415.947.6207

CMP GAME GROUP
SENIOR VP, TECHNOLOGY INNOVATORS GROUP Philip Chapnick
VP, STRATEGIC MARKETING Michele Maguire
GROUP DIRECTOR Kathy Schoback

AUDIENCE DEVELOPMENT
GROUP DIRECTOR Carolyn Giroux e: cgiroux@cmp.com
DIRECTOR Mary Griffin e: mkgriffin@cmp.com
ASSISTANT MANAGER John Slesinski e: jslesinski@cmp.com
LIST RENTAL Merit Direct LLC t: 914.368.1000

INTERNATIONAL LICENSING INFORMATION
Mario Salinas t: 650.513.4234 f: 650.513.4482
e: msalinas@cmp.com

CMP TECHNOLOGY MANAGEMENT
PRESIDENT AND CEO Steve Weitzner
EXECUTIVE VP AND CFO Adam Marder
PRESIDENT, CHANNEL GROUP Robert Faletra
PRESIDENT, CMP TECHNOLOGY INNOVATORS GROUP

Paul Miller
PRESIDENT, CMP BUSINESS TECHNOLOGY GROUP Tony Uphoff
CORPORATE SENIOR VP SALES Anne Marie Miller
SENIOR VP, CMP INTEGRATED MARKETING SOLUTIONS Joseph Braue
SENIOR VP, HUMAN RESOURCES Marvlieu Jolla Hall
SENIOR VP, MANUFACTURING Marie Myers
SENIOR VP, COMMUNICATIONS Alexandra Raine

VP, INTERNATIONAL BUSINESS DEVELOPMENT
Patrick Brennan

W W W . C M P G A M E . C O M

CMP Media, 600 Harrison St., 6th Fl., San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

www.gdmag.com

Game Developer

W W W . C M P G A M E . C O M

SUBSCRIPTION SERVICES
FOR INFORMATION, ORDER QUESTIONS, AND ADDRESS CHANGES

t: 800.250.2429 f: 847.763.9606 e: gamedeveloper@halldata.com

EDITORIAL
EDITOR-IN-CHIEF

Simon Carless scarless@gdmag.com
MANAGING EDITOR

Jill Duffy jduffy@gdmag.com
FEATURES EDITOR

Brandon Sheffield bsheffield@gdmag.com
ART DIRECTOR

Cliff Scorso cscorso@gdmag.com
CONTRIBUTING EDITORS

Jesse Harlin jharlin@gdmag.com
Noah Falstein nfalstein@gdmag.com
Steve Theodore stheodore@gdmag.com
Mick West mwest@gdmag.com

ADVISORY BOARD
Hal Barwood Designer-at-Large
Ellen Guon Beeman Microsoft
Brad Bulkley Neversoft
Clinton Keith High Moon Studios
Ryan Lesser Harmonix
Mark DeLoura Ubisoft

ADVERTISING SALES
DIRECTOR OF SALES

Steve McGill e: smcgill@cmp.com t: 415.947.6217
GLOBAL SALES MANAGER, RECRUITMENT & EDUCATION

Aaron Murawski e: amurawski@cmp.com t: 415.947.6227
SR. EVENTS ACCOUNT MANAGER, SOUTHWEST

Jasmin Davé e: jdave@cmp.com t: 415.947.6226
SR. ACCOUNT MANAGER, EAST COAST, EUROPE & EASTERN CANADA

Cecily Herbst e: cherbst@cmp.com t: 415.947.6215
MEDIA ACCOUNT MANAGER

John Watson e: jmwatson@cmp.com t: 415.947.224

ADVERTISING PRODUCTION
ADVERTISING PRODUCTION MANAGER Kevin Chanel

REPRINTS
REPRINTS ACCOUNT MANAGER

Cindy Zauss t: 951.698.1780 e: czauss@cmp.com

MARKETING
MARKETING MANAGER

Hilary McVicker e: hmcvicker@cmp.com t: 415.947.6207

CMP GAME GROUP
VP, GROUP PUBLISHER APPLIED TECHNOLOGIES Philip Chapnick
VP, STRATEGIC MARKETING Michele Maguire
GROUP DIRECTOR Kathy Schoback

AUDIENCE DEVELOPMENT
GROUP DIRECTOR Carolyn Giroux e: cgiroux@cmp.com
DIRECTOR Mary Griffin e: mkgriffin@cmp.com
ASSISTANT MANAGER John Slesinski e: jslesinski@cmp.com
LIST RENTAL Merit Direct LLC t: 914.368.1000

INTERNATIONAL LICENSING INFORMATION
Mario Salinas t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP TECHNOLOGY MANAGEMENT
PRESIDENT AND CEO Steve Weitzner
EXECUTIVE VP AND CFO Adam Marder
SENIOR VP, AUDIENCE MARKETING & DEVELOPMENT Bill Amstutz
SENIOR VP, CMP INTEGRATED MARKETING SOLUTIONS Joseph Braue
SENIOR VP AND GENERAL COUNSEL Sandra Grayson
SENIOR VP, CORPORATE MARKETING Lisa Johnson
SENIOR VP, CORPORATE SALES Anne Marie Miller
SENIOR VP, MANUFACTURING Marie Myers
SENIOR VP, COMMUNICATIONS Alexandra Raine
VP, AUDIENCE DEVELOPMENT Michael Zane
PRESIDENT, CHANNEL GROUP Robert Faletra
PRESIDENT, CMP ENTERTAINMENT MEDIA Tony Keefe
PRESIDENT, BUSINESS TECHNOLOGY GROUP Jeff Patterson
SENIOR VP, GROUP DIRECTOR, ELECTRONICS & SOFTWARE GROUPS

Paul Miller
SENIOR VP, GROUP DIRECTOR, COMMUNICATIONS GROUP,

Stephen Saunders

W W W . C M P G A M E . C O M

CMP Media, 600 Harrison St., 6th Fl.,
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

www.gdmag.com

W W W . C M P G A M E . C O M

SUBSCRIPTION SERVICES
FOR INFORMATION, ORDER QUESTIONS, AND ADDRESS CHANGES

t: 800.250.2429 f: 847.763.9606 e: gamedeveloper@halldata.com

EDITORIAL
PUBLISHER

Simon Carless scarless@gdmag.com
MANAGING EDITOR

Jill Duffy jduffy@gdmag.com
SENIOR EDITOR

Brandon Sheffield bsheffield@gdmag.com
ART DIRECTOR

Cliff Scorso cscorso@gdmag.com
CONTRIBUTING EDITORS

Jesse Harlin jharlin@gdmag.com
Noah Falstein nfalstein@gdmag.com
Steve Theodore stheodore@gdmag.com
Mick West mwest@gdmag.com

ADVISORY BOARD
Hal Barwood Designer-at-Large
Ellen Guon Beeman Microsoft
Brad Bulkley Neversoft
Clinton Keith High Moon Studios
Ryan Lesser Harmonix
Mark DeLoura Ubisoft

ADVERTISING SALES
DIRECTOR OF SALES

Steve McGill e: smcgill@cmp.com t: 415.947.6217
GLOBAL SALES MANAGER, RECRUITMENT & EDUCATION

Aaron Murawski e: amurawski@cmp.com t: 415.947.6227
SR. EVENTS ACCOUNT MANAGER, SOUTHWEST

Jasmin Davé e: jdave@cmp.com t: 415.947.6226
SR. ACCOUNT MANAGER, EAST COAST, EUROPE & EASTERN CANADA

Cecily Herbst e: cherbst@cmp.com t: 415.947.6215
MEDIA ACCOUNT MANAGER

John Watson e: jmwatson@cmp.com t: 415.947.224

ADVERTISING PRODUCTION
ADVERTISING PRODUCTION MANAGER Kevin Chanel

REPRINTS
PARS INTERNATIONAL

Joe Nunziata t: 212.221.9595 e: reprints@parsintl.com

MARKETING
MARKETING MANAGER

Hilary McVicker e: hmcvicker@cmp.com t: 415.947.6207

CMP GAME GROUP
VP, GROUP PUBLISHER APPLIED TECHNOLOGIES Philip Chapnick
VP, STRATEGIC MARKETING Michele Maguire
GROUP DIRECTOR Kathy Schoback

AUDIENCE DEVELOPMENT
GROUP DIRECTOR Carolyn Giroux e: cgiroux@cmp.com
DIRECTOR Mary Griffin e: mkgriffin@cmp.com
ASSISTANT MANAGER John Slesinski e: jslesinski@cmp.com
LIST RENTAL Merit Direct LLC t: 914.368.1000

INTERNATIONAL LICENSING INFORMATION
Mario Salinas t: 650.513.4234 f: 650.513.4482 e:
msalinas@cmp.com

CMP TECHNOLOGY MANAGEMENT
PRESIDENT AND CEO Steve Weitzner
EXECUTIVE VP AND CFO Adam Marder
PRESIDENT, CHANNEL GROUP Robert Faletra
PRESIDENT, CMP TECHNOLOGY INNOVATORS GROUP

Paul Miller
PRESIDENT, CMP BUSINESS TECHNOLOGY GROUP Tony Uphoff
CORPORATE SENIOR VP SALES Anne Marie Miller
SENIOR VP, CMP INTEGRATED MARKETING SOLUTIONS Joseph

Braue
SENIOR VP, HUMAN RESOURCES Marvlieu Jolla Hall
SENIOR VP, MANUFACTURING Marie Myers
SENIOR VP, COMMUNICATIONS Alexandra Raine
VP, INTERNATIONAL BUSINESS DEVELOPMENT Patrick Brennan

W W W . C M P G A M E . C O M

CMP Media, 600 Harrison St., 6th Fl.,
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

www.gdmag.com

Game Developer
is BPA approved

W W W . C M P G A M E . C O M

SUBSCRIPTION SERVICES
FOR INFORMATION, ORDER QUESTIONS, AND ADDRESS CHANGES

t: 800.250.2429 f: 847.763.9606 e: gamedeveloper@halldata.com

EDITORIAL
PUBLISHER

Simon Carless scarless@gdmag.com
SENIOR EDITOR

Brandon Sheffield bsheffield@gdmag.com
SENIOR CONTRIBUTING EDITOR

Jill Duffy jduffy@gdmag.com
ART DIRECTOR

Cliff Scorso cscorso@gdmag.com
ASSISTANT PRODUCTION EDITOR

Jeffrey Fleming
CONTRIBUTING EDITORS

Jesse Harlin jharlin@gdmag.com
Noah Falstein nfalstein@gdmag.com
Steve Theodore stheodore@gdmag.com
Mick West mwest@gdmag.com

ADVISORY BOARD
Hal Barwood Designer-at-Large
Ellen Guon Beeman Microsoft
Brad Bulkley Neversoft
Clinton Keith High Moon Studios
Ryan Lesser Harmonix
Mark DeLoura Ubisoft

ADVERTISING SALES
MEDIA ACCOUNT MANAGER

John Watson e: jmwatson@cmp.com t: 415.947.6224
GLOBAL SALES MANAGER, RECRUITMENT & EDUCATION

Aaron Murawski e: amurawski@cmp.com t: 415.947.6227
SALES REPRESENTATIVE, EDUCATION & RECRUITMENT

Gina Gross e: ggross@cmp.com t: 415.947.6241
DIRECTOR OF SALES

Steve McGill
SR. EVENTS ACCOUNT MANAGER, SOUTHWEST

Jasmin Davé
SR. ACCOUNT MANAGER, EAST COAST, EUROPE & EASTERN CANADA

Cecily Herbst
ACCOUNT MANAGER, WESTERN CANADA, INDIA, AUSTRALIA, & ASIA

Amanda Mae Miller

ADVERTISING PRODUCTION
ADVERTISING PRODUCTION MANAGER Kevin Chanel

REPRINTS
PARS INTERNATIONAL

Joe Nunziata t: 212.221.9595 e: reprints@parsintl.com

MARKETING
MARKETING MANAGER

Hilary McVicker e: hmcvicker@cmp.com t: 415.947.6207

CMP GAME GROUP
SENIOR VP, GAME, DOBB’S, ICMI GROUP Philip Chapnick
GROUP DIRECTOR Kathy Schoback

AUDIENCE DEVELOPMENT
GROUP DIRECTOR Kathy Henry e: khenry@cmp.com
DIRECTOR Kristi Cunningham e: kcunningham@cmp.com
LIST RENTAL Merit Direct LLC t: 914.368.1000

INTERNATIONAL LICENSING INFORMATION
Mario Salinas t: 650.513.4234 f: 650.513.4482
e: msalinas@cmp.com

CMP TECHNOLOGY MANAGEMENT
PRESIDENT AND CEO Steve Weitzner
EXECUTIVE VP AND CFO Adam Marder
PRESIDENT, CMP BUSINESS TECHNOLOGY GROUP Tony Uphoff
PRESIDENT, CMP CHANNEL Robert Faletra
PRESIDENT, CMP ELECTRONICS GROUP Paul Miller
PRESIDENT, CMP GAME, DOBB’S, ICMI GROUP Philip Chapnick
CORPORATE SENIOR VP SALES Anne Marie Miller
SENIOR VP, HUMAN RESOURCES Marvlieu Jolla Hall
SENIOR VP, MANUFACTURING Marie Myers
SENIOR VP, COMMUNICATIONS Alexandra Raine

http://WWW.CMPGAME.COM
http://WWW.CMPGAME.COM
http://www.gdmag.com
mailto:gamedeveloper@halldata.com
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:jduffy@gdmag.com
mailto:cscorso@gdmag.com
mailto:jharlin@gdmg.com
mailto:nfalstein@gdmag.com
mailto:stheodore@gdmag.com
mailto:mwest@gdmag.com
mailto:jmwatson@cmp.com
mailto:amurawski@cmp.com
mailto:ggross@cmp.com
mailto:reprints@parsintl.com
mailto:hmcvicker.com
mailto:khenry@cmp.com
mailto:kcunningham@cmp.com
mailto:msalinas@cmp.com

www.kynogon.com
France United Kingdom Canada

You’ve got
the looks.

We’ve got
the brains.

Kynogon’s A.I. middleware, Kynapse, is the brains behind
the work of some of the leading game developers out there.
In fact, 6 of the top 10 game publishers use Kynapse in
developing their best-selling titles.

Kynapse A.I. Middleware

http://www.kynogon.com

4 N O V E M B E R 2 0 0 7 | G A M E D E V E L O P E R

]HEADS UP DISPLAY[
GOT NEWS? SEND US THE BIG SCOOP AT EDITORS@GDMAG.COM

TGS 2007: DEVELOPERS SPEAK

Tetsuya Mizuguchi
Chief Creative Officer of Q Entertainment
on making a true artistic game in the vein of Kandinsky

We need to cover two directions. The realism, and the organic and
abstract—the softer direction. The console is like a canvass for us, so if I
got a new canvass—high def, high res—and have lighter and softer
vivid colors, we'll draw and create a new world.

But this is not a painting. We have to think of one more layer, which is
that something is moving all the time, with music. It's really tough—we
have to think about all the time something moving, the color changing,
the sound and the music through the interactive process—with cause
and effect.

Masaya Matsuura
President of NanaOn-Sha
on the current state of the Japanese market

It's getting much more difficult. The game market, especially in this
country, is still very conservative. Many people know that the DS has
very unique titles like BRAIN TRAINING, or things like that. But it's not for
the younger market, more for old folks like me. The young age market is
still very conservative (in Japan).

We have to focus on the worldwide market simultaneously at the
start of development. Many developers didn't have to care about the
overseas market, because the Japanese market used to be powerful
enough. But now it's not so powerful. This is a very big point. Actually
the offer to make new game titles is increasing from overseas publishers.
So we have to think about American kids, and European kids.

Some people say that the DS software bubble has already burst. I
heard about a case with some sort of learning game—the first one sold
over 200,000. The second one sold 8,000. These kinds of things are a
big concern.

Kazuhiro Yamao
President of Killaware (maker of the upcoming
original DS title LUXPAIN)
on starting up a new independent company in Japan

Naturally it's not easy at all, and you need a good creator involved who
has past results. If you look at Killaware, we don't have a long past. So if
companies just look at our past games, there's nothing to see, but since
we had established creative talent (Kiyotaka Ueda, previously of Atlus),
Marvelous invested in us for this title.

Of course it's riskier to invest in original titles, and we know that. We
can always try to make some movie licensed titles, or sequels of
another company's games, but we know we won't go that far making the
same thing over and over again. We knew at some point we had to take a
risk, so we just said yeah, let's give it a try.

Yasuhiro Wada
Managing Director and President of the digital contents
company within Marvelous, and creator of the HARVEST
MOON series
on the paradoxical use of technology to promote a
pro-environmental idea

Technology is just a tool, just a medium to get the message. It is a bit of
a dichotomy, but not contradictory. I'm not pushing everyone to go back
to country life, but just to realize that nature is important too.

I want to let people know that the countryside is important—and
everyone wants to move to the cities, and nobody wants to live in the
country to take care of the environment there. In Japan, several people
have played this game, and because they liked it, they went to Hokkaido
to see what the farm life is like.

Interviews and photo by Brandon Sheffield.

THE INDEPENDENT GAMES FESTIVAL HAS LAUNCHED
a new IGF Mobile competition to encourage
creative, independently developed games for
mobile devices such as cellphones and Palm
OS, as well as handhelds like the Nintendo DS
and Sony PSP. Running parallel to the main IGF
competition, IGF Mobile will award a total of
$20,000 in prizes to the most innovative
entries, and all the finalists' games will be
playable in a special pavilion at the 2008 Game
Developers Conference.

The winnings include $2,000 for best in Audio
Achievement, Technical Achievement,
Achievement In Art, Innovation In Augmented
Design, and Innovation In Mobile Game

Design, while the overall IGF Mobile Best Game
will be awarded $10,000. Three finalists will be
announced in each category in December
2007, along with five finalists for the IGF
Mobile Best Game. Winners will be honored
during the main IGF Awards on Wednesday
February 20, 2008.

The competition's 'Augmented Design' award
will be presented by IGF Mobile Founding and
Platinum Sponsor Nvidia in recognition of games
that best utilize mobile-centric technology such
as GPS, camera, motion-sensing, Wi-Fi, or
Bluetooth features in gameplay.

According to IGF Chairman (and Game
Developer publisher) Simon Carless, the award

should be of particular interest to independent
developers. “There are all kinds of cool game
design things you can do if you have a handheld
device and other add-ons such as GPS, a camera,
Internet connectivity and so on,” he said.

“There are great, innovative indie games out
there which use the unique advantages of
handheld hardware,” he continued, speaking of
the event in general, “from Gamevil's NOM and
SKIPPING STONE for cellphones through DS games
such as 5th Cell's DRAWN TO LIFE or even group
games such as PAC-MANHATTAN, and we're
delighted to set up a new awards to help
promote titles such as these.”

—Jeffrey Fleming

CALENDAR
Independent Game Conference:
Austin 2007
Austin Convention Center
500 E Cesar Chavez Street
Austin, TX 78701
November 29-30, 2007
Price: Approx. $125
www.independentgameconference.com

11th International Conference on
Computer Games: AI, Animation, Mobile,
Educational & Serious Games
Université de La Rochelle
La Rochelle, France
November 21-23, 2007
Price: 450 Euro
www.scit.wlv.ac.uk/gamecentre/
cgames07_lar/index.html

GRAPHITE 2007: 5th International
Conference on Computer Graphics and
Interactive Techniques in Australasia
and Southeast Asia
Perth
Western Australia, Australia
December 1-4, 2007
Price: $1,050 AU
www.graphite.siggraph.org

Australasian Conference on
Interactive Entertainment
RMIT University
Melbourne
Victoria, Australia
December 3-5, 2007
Price: $520 AU
www.ie.rmit.edu.au

IN A WELL-PUBLICIZED MOVE, ELECTRONIC ARTS HAS
purchased Pandemic and BioWare parent company
VG Holding Corp for well over $800 million, which
brings the two influential and previously independent
firms under the EA Games label, run by Frank Gibeau.

“We're really excited about the chance to work
with John (Riccitiello) again,” said BioWare co-CEO
Greg Zeschuk. “We had a great working relationship
in the early days of BioWare and Pandemic, and we
have a strong vision for what we want to do. We
think that BioWare/Pandemic joining EA gives us the
chance to do even more stuff. Everyone knows
BioWare's very focused on making quality games.
We think this gives us even more people to interact
with, more things to learn, more technology, more
know-how to share and to do things even better.”

Pandemic attempted to allay fears that this is an
act of hegemony on EA's part, with chief production
officer Greg Borrud saying, “Nothing is changing
internally in terms of management, nothing is
changing in terms of the way we develop games, the
kind of games we want to develop, our core pillars of
building big brands and having event launches, and

attracting the best talent in the industry. Those have
been kind of core to who we are at Pandemic for
years, and we think that actually EA allows us to take
that to the next level.”

In the investor conference call that followed the
announcement, EA CFO Warren Jensen mentioned
that EA “had [its] eye on these studios for several
years,” indicating that the acquisition fills a gap in
EA's lineup—namely RPGs and action-adventure
titles, presumably referring to original IP.

An on-message Ray Muzyka (Co-CEO of BioWare)
confirmed this idea: “I think BioWare is known for a
lot of things, and it's associated with quality,” he
said. “We have great people here that make it
happen, and that's only going to be enhanced by
this. (EA is) looking for excellence in games, the
best story-driven games in the world. We're proud to
be part of that team.”

With this acquisition, EA has cemented its position
as the largest game-related publishing and
developing organization in the world, adding some
800 employees to its growing roster.

—Brandon Sheffield, Christian Nutt, Brandon Boyer

EA ACQUIRES
PANDEMIC/BIOWARE

5W W W . G D M A G . C O M

IGF LAUNCHES
MOBILE COMPETITION

http://www.independentgameconference.com
http://www.graphite.siggraph.org
http://www.ie.rmit.edu
http://WWW.GDMAG.COM
http://www.scit.wlv.ac.uk/gamecentre/cgames07_lar/index.html
http://www.scit.wlv.ac.uk/gamecentre/cgames07_lar/index.html

Download a free copy of Perforce, no questions

asked, from www.perforce.com. Free technical support is

available throughout your evaluation.

The Perforce Plug-in for Graphical Tools, P4GT, makes version control

painless by seamlessly integrating Perforce with leading graphical tools.

Drop-down menus allow access to Perforce from within 3ds Max, Maya,

Softimage XSI, and Adobe Photoshop.

Art and development teams can standardize on Perforce to version and

manage both source code and digital assets. Enhanced collaboration

during the design process helps teams to work together in real time to

release small patches or create whole new worlds.

P4GT is just one of the many productivity tools that comes with the

Perforce SCM System.

Introducing P4GT,
a productivity feature of Perforce SCM.

P4GT

Perforce Fast Software Configuration Management

All trademarks and registered trademarks are property of their respective owners. Adobe screen shot reprinted with permission from Adobe Systems Incorporated.

http://www.perforce.com

7W W W . G D M A G . C O M

>>AFTER FINISHING OUR PC-ADVENTURE GAME UNDERCOVER:
OPERATION WINTERSUN (released in the U.S. on August 28), Sproing
Interactive Media started to work on its successor UNDERCOVER:
DUAL MOTIVES, a prequel to the original for the Nintendo DS.

Up to this point, all our adventure technology was completely
PC-based and had to be ported to the DS. Most of the taxing tasks
centered on the fact that the DS has far less main memory and
CPU resources than a standard PC. Because of this, we had to put
quite a bit of effort into managing the memory resources,
avoiding memory fragmentation, and coming up with new
algorithms because the existing ones simply didn’t work on the
handheld platform.

MEMORY LANE
The Nintendo DS has 4MB of main memory in which to fit the
program executable and all application memory. With

UNDERCOVER: DUAL MOTIVES, the executable was approximately
1.5MB, leaving us only 2.5MB for the program itself. After
deducting another 900KB for playing music and sound effects,
we were left with 1.6MB for all game elements, characters, text,
and animations.

At some points in the game, there are up to seven characters
visible on both screens, with each character taking up 64x128
pixels in VRAM and main memory (see Figure 1). The animation
data needed for that number of characters would never fit into
the available memory, so all in-game animations had to be
streamed from the cartridge and decompressed in real-time.

Animation data consists of single rendered frames for each of
the characters’ animations. These single frames were put into a
large strip for each animation, which in turn were palletized
and compressed by one of our tools. We used simple Run
Length Encoding (RLE) packing for our compression scheme

>> s t e f a n re i n a l t e r

SCALING SMALL

P O R T I N G

P C T E C H N O L O G Y

T O T H E N I N T E N D O D S

S T E F A N R E I N A LT E R

was lead programmer on

UNDERCOVER: OPERATION

WINTERSUN for PC and

UNDERCOVER: DUAL MOTIVES

for the Nintendo DS and

built the adventure

technology for both

platforms. Email him at

sreinalter@gdmag.com.

mailto:sreinalter@gdmag.com
http://WWW.GDMAG.COM

SCALING SMALL

because, for one, it provides a good
tradeoff between data size and
CPU-time needed for
decompression, and two, each
frame can be accessed individually,
which was a must. Because of this,
we couldn’t use other more
conventional compression
techniques, such as zipping.

Because streaming many chunks
of data per frame can quickly

consume precious milliseconds, we implemented asynchronous
streaming for all animation data. At the beginning of each frame,
the asynchronous calls to the file system are initiated so that
the streaming process can take place while all the other game
objects are being updated. At the end of each update cycle, the
animations are decompressed and uploaded into VRAM.
Decompression of the RLE data was done using standard C++
code, additionally utilizing the SDK’s fast copy-routines for
larger blocks resulted in a general speed-up. It is possible to
squeeze a few more cycles out of the code by using assembler
or resorting to a different compression algorithm, but luckily we
had no need to go that far.

In addition to having little memory, memory fragmentation
can be an absolute killer. Because our base technology (and
some game-code, too) used Stereo Lithography (STL) vectors
and strings, we had to be extra careful about memory usage. We
cut down STL usage as much as possible, and used a separate
heap for all allocations smaller than 256 bytes, in which most of
the STL allocations fit. Using about 150KB for this heap proved
reasonable and didn’t fragment our main heap where all the other
allocations resided. Of course, we could have gotten rid of the STL
completely, but our implementation shows that it’s possible to
use the STL on such platforms too, without any major hassle.

Other developers who attempt this approach should know
that if you end up having too little memory during development,
you should check the compiler settings to favor either
compiling for speed or code size. When there are still clock
cycles to waste, it might be better to opt for a smaller
executable and free up some memory.

AN INTEGRATED WHOLE
For rendering in UNDERCOVER: DUAL MOTIVES, we used the
Nintendo DS’ dual 3D rendering mode, giving us 256KB available

video memory in which all the textures used per frame had to
fit. With up to seven animated characters at 64x128 pixels and
two simultaneous scenes at 256x192 pixels, that left us little
room for anything else, such as text, sprites, icons, and
whatever else might go into an adventure game.

Our main strategy for VRAM allocation was to avoid
fragmentation at all costs. Specific assets like backgrounds, in-
game text, and small menu icons, which were used throughout
the game, were assigned their own fixed region in our texture
manager. In addition, through careful organization of all VRAM
allocations along with automatic management of releasing and
reloading the required assets, we ended up having zero VRAM
fragmentation for the entirety of the game! At some points, for
example when initiating a dialogue between characters or
switching to the in-game menu, some assets are temporarily freed
from VRAM and reloaded later when they are needed. Admittedly,
some freeing up and reloading had to be done manually by
giving hints to our texture manager, but it was worth it to do so.

As mentioned previously, there was not much VRAM to spare,
so we had to cut down wherever we could. Developers who want
to repeat some of this work should know that if standard 8-bit
textures are used, the displaying text can lower the available
VRAM pretty fast.

In DUAL MOTIVES, we used a screen-sized (256x192 pixels) 2-bit
texture in which all currently displayed text was tightly packed.
Whenever new text was to be displayed, the corresponding
string was streamed from the cartridge and rendered and
packed into the texture.

Rendering the text with the given font only had to be done
once using this method (upon the first frame being displayed);
we were also able to render whole sentences with just a single
rectangle. Plus, we could render the text in different colors using
flat-shaded rectangles without having to upload new palette
data, and we could add outlines to the text with only four
additional rendered rectangles.

SCROLLING, BITS, SPRITES,
AND SHADOWS
Most of the backgrounds in DUAL MOTIVES are scrollable and do
not need to be power-of-two in size. However, the Nintendo DS
does demand such formatting, thus requiring us to adapt the
memory layout of our background images.

All the background images are rotated clockwise by 90
degrees and are split into two parts: one 128 pixels wide and the

FIGURE 1 As many as seven characters must appear

on screen during the game, and each character eats

up 64x128 pixels in VRAM and main memory.

FIGURE 2 The decal sprite mask (in white) shows where objects and characters will be occluded.

8 N O V E M B E R 2 0 0 7 | G A M E D E V E L O P E R

other 64 pixels wide to meet the power-of-two
restriction. Using this layout, only one line of new
data has to be copied to the texture for each
scrolled pixel. Furthermore, every line is aligned
on 16-bit boundaries, which allows for faster
copying. Upon rendering, the textures are then
rotated back 90 degrees.

The characters in the game should be able to walk
behind objects in various scenes, but we had tight
restrictions with the VRAM. The easiest solution
would have been to use 8-bit sprites and just render
them with a smaller z-position than the characters,
but then we would have used up four times as
much VRAM as we really needed to. Instead, we
used the Nintendo DS’ decal sprite functionality
and 2-bit masks for all occluding sprites.

Every occluding object is already contained in
the background (see Figure 2) and is rendered
using the background image with a binary mask at
its desired z-position. The DS hardware then takes
the source image (the background) and rasterizes
the pixels into the z-buffer only where the binary
mask is set; the remaining pixels are untouched.

At run-time, no 3D information about the scene
is available, so we had to fake the character
shadows in some believable manner. Our
approach was to take the character’s current
texture, scale it and skew it, and then render it
using alpha-blended rectangles. This resulted in
nice smoothed shadows. For additional fine-
tuning, the scale and skew values as well as the
shadow’s color and offsets can be edited in real
time, which gave our designers greater control
over this feature.

One obvious flaw of this method is that shadows
can’t properly creep up on walls, so you either
have to come up with a solution for this problem
or be on a team with clever artists and designers.

PATHFINDING
Our adventure technology on the PC uses the
familiar A* algorithm for pathfinding. However,
with the Nintendo DS’s memory and CPU limitations, this is not
feasible in real time, so we had to come up with a different
solution. We used a combination of pre-computed paths and
ray-casting at run time. (See Figures 3–5.)

First, the level designer adds polygons for traversable or
blocked areas in our editor. Then, using these polygons, the
editor computes a binary mask of traversable and blocked areas
(see Figure 4).

Every vertex is used as a node in our pre-process for
calculating paths between them. This pre-process uses a
modified Floyd-Warshall algorithm to determine the shortest
paths between all pairs of nodes. We use the distance between
the pair of nodes as their weight and set it to infinity if there’s no
connection between them. The shortest path for all nodes can
be conveniently stored in a matrix, where each matrix element
depicts the previous node to use on this path. By constraining

the number of nodes to 255, each element in the matrix takes
up one byte and is just an index into an array of nodes. Thus, the
amount of memory consumed by our pathfinding algorithm is
kept really low.

At run-time, the pathfinding algorithm casts a virtual ray
(shown in Figure 5) from start to end in our binary mask to check
whether the path is blocked. Ray-casting is done using a standard
implementation of the Bresenham line-drawing algorithm.

If the path is blocked, our algorithm finds the nearest node to
the first and last points of intersection along the ray. Using our
pre-computed path matrix, the shortest path between these
nodes can be determined with just a few array lookups.

The last step of our algorithm then optimizes the path by
throwing away redundant nodes, which can be reached from the
start and end points without hitting any blocking area. Again,
this happens by casting rays in the binary mask image.

FIGURE 4 Areas where the player can walk are shown here superimposed on the background. Traversable areas are

depicted in green, where as blocked areas are shown in red. Polygon vertices are shown using white rectangles.

FIGURE 5 The virtual ray cast by our pathfinding algorithm.

FIGURE 3 A typical background in which pathfinding is necessary.

9W W W . G D M A G . C O M

C O N T I N U E D O N P G 1 0

http://WWW.GDMAG.COM

10 N O V E M B E R 2 0 0 7 | G A M E D E V E L O P E R

It should be possible to further enhance our algorithm to account for
dynamic objects as well, although it was not necessary for UNDERCOVER:
DUAL MOTIVES.

SCRIPT COMMANDS AND INPUT CONTROLS
Our scripting system consisted of small script commands, which can be
called from scripts within the code. Scripts themselves are similar to self-
contained state machines that only use memory for states and
parameters. Because we’re not using co-routines or something similar for
script commands, the scripting system from our PC games instantly
worked on the Nintendo DS without any changes.

One thing to keep in mind is that all the scripting code will make your
executable bigger, essentially eating up main memory.

We wanted to exploit the input mechanisms of the Nintendo DS as much
as we could; one of the highlights is a mini game that requires the player
to fire birdshot by blowing into the microphone. Unlike PC adventure games,
there’s nothing like mouse-over events on the Nintendo DS, unless you want
the user to constantly move the stylus over the screen. So we had to come
up with different methods of input—and there was a multitude of iterations
during development. In the end we settled for hotspots, pop-up menus, and
gestures for quick interaction with interactive game elements and characters.

Existing technology made it easier to build a complete editor for our
game. We simulated the Nintendo DS’s rendering capabilities using OpenGL,
and most everything else was already available through existing technology.

During development, it proved handy to have a fully functioning working
environment running on the PC. This way, not everybody on the team
required a development kit, making turn-around times much shorter. Of
course there were specific features of the Nintendo DS (for example, the
microphone input and certain mini games) that could only be
implemented and tested using a proper dev kit.

ROOM FOR IMPROVEMENT
Once we had the streaming of sound effects, animations, and texts in
place, the cartridge was already becoming quite stressed. However, we
believe that there is still room for improvement for other developers who
are working on this problem. One possible solution is to stream ADPCM-
compressed audio files from the cartridge to achieve far superior music
quality compared to using MIDI files. Another option might be to stream
background animations—our team would need a better suited
compression algorithm than simple RLE-coding for that, otherwise there
might not be enough CPU-time left for the remaining tasks with all the
streaming and decompressing going on.

All in all, we’re happy with how the development of UNDERCOVER: DUAL

MOTIVES turned out. The Nintendo DS is a fine piece of hardware and is easily
capable of doing more than a developer’s first impressions might suggest. *
The author wishes to acknowledge his co-workers for their valuable suggestions for this article.

SCALING SMALL

C O N T I N U E D F R O M P G 9

http://www.lyongdc.com

Spicy Horse. “Working with the great people at Epic
Games China allows us capture rapidly expanding busi-
ness and creative opportunities in Chinese and global
gaming.”

Paul Meegan, CEO of Epic Games China said, “We’re
very happy to be working with American McGee and
his team at Spicy Horse. American has a reputation
for being highly creative, and his is one of the first
independent teams to make games for the global
marketplace entirely in China. We look forward to
seeing what they do with the technology.”

EPIC’S UE3-BASED PC GAMES ALMOST GOLDEN
The Windows versions of Gears of War and Unreal
Tournament 3 will soon be on their way to stores
world-wide.

Both releases are important
milestones for UE3. Gears
of War supports Microsoft’s
Games for Windows LIVE plat-
form, and Unreal Tournament
3 uses GameSpy’s multi-player
platform. Our licensees have a
fast path for integrating either
solution. Plus, our multi-
platform approach required
a network abstraction layer
which makes it easier than ever
for licensees to use other net-
working libraries, or to create
their own in-house solution.

We’ve just released the UT3 beta demo, generating
feedback from thousands of end-users ahead of our
retail release. In addition to gameplay feedback, the
demo helped us gauge our efforts to create a highly
scalable graphics engine. We’ve spent considerable
time and effort optimizing the engine for older PC con-
figurations. Feedback from the demo shows this was
time well spent, because a surprisingly wide range of
PCs can run this cutting-edge game. In fact, UT3 runs
smoothly on hardware that was generally available
when the last Unreal Tournament game was released,
back in September 2003.

UT3 is also in development for PS3, Xbox 360, Mac and
Linux. Gears of War is also in development for Mac.

UMBRA JOINS THE UNREAL ENGINE 3
INTEGRATED PARTNERS PROGRAM
Umbra Software Ltd., the visibility optimization ex-
perts, today announced they have joined Epic Games,
Inc. in the prestigious Integrated Partners Program for
Unreal® Engine 3. The industry-standard Umbra(tm)
visibility optimization middleware has been fully
integrated into Unreal Engine 3 and is now available for
licensing directly from Umbra Software.

 UE3 includes occlusion culling, using a mix of
automated and manual processes which has been
used successfully in many games. With the integra-
tion of Umbra Software’s hierarchical occlusion culling
technology, developers will have a fully automated
system that is scalable to very large worlds. This can
result in time savings in content creation, and allow
for much more complex
content. Umbra middleware
also optimizes player-created
content, effectively allowing
the players to modify worlds
on the fly. Massively Multi-
player online (MMO) games
in particular benefit from the
increased freedom of move-
ment brought on by visibility
optimization.

 “Several Unreal Engine 3
licensees already use Umbra’s
middleware and have been
delighted with the results,”
said Michael Capps, President, Epic Games, Inc. “They’re
a perfect fit for our partners program, and now it’s
easier than ever for Unreal licensees to integrate Umbra
software’s technology.”

 “We’re thrilled to have the Umbra technology inte-
grated into Unreal Engine 3,” says Farhad Taherazer,
Umbra Software’s VP of Marketing. “Our rock-solid
middleware and the fantastic Unreal Engine 3 are a
boon to all game developers.”

AMERICAN MCGEE’S SPICY HORSE GAMES
LICENSES UE3 FROM EPIC GAMES CHINA
Spicy Horse Games, a Shanghai based game developer,
together with Epic Games China announced that it has
entered into a multi-title agreement to license Unreal
Engine 3. Spicy Horse Games is using UE3 for “American
McGee’s Grimm” along with upcoming PC and console
game titles. “Grimm” is a part of the GameTap original
lineup, expected to launch starting in 2008.

“Unreal Engine 3 has given our team the tools they
need to express their creativity in a rapid and predict-
able way,” said American McGee, Creative Director of

Canadian-born Mark Rein is
Vice President and Co-Founder
of Epic Games based in
Cary, North Carolina. Epic’s
Unreal Engine 3 has won
Game Developer Magazine’s
Frontline Award for Best
Game Engine for the past
three years and Epic was
recently awarded Best Studio
at the Spike TV Video Game
Awards. Epic’s Gears of War,
won Gamespot’s overall Game
of the Year and sold over
4,000,000 units on Xbox 360.
Epic is currently working on
the Unreal Tournament 3 for
publisher Midway and a PC
version of Gears of War for
publisher Microsoft Game
Studios.

Upcoming Epic
Attended Events:

Lyon GDC
Game Connection
Le Palais des Congrès de
Lyon
December 4-6, 2007

GDC 2008
San Francisco, CA
February 18-22, 2008

Please email:
mrein@epicgames.com
for appointments.

For UE3 licensing inquiries email:

licensing@epicgames.com

For Epic job information visit:

www.epicgames.com/epic_jobs.html

W W W . E P I C G A M E S . C O M

Unreal® Technology News
by Mark Rein, Epic Games, Inc.

Gears of War, Unreal and the Powered by Unreal Technology logo are registered trademarks, or trademarks of Epic Games, Inc. in the United
States and other countries. All other company and/or product names are trademarks of their respective owners.

Unreal Tournament 3 demonstrates the
great scalability of Unreal Engine 3

ADVERTISEMENT

mailto:mrein@epicgames.com
mailto:licensing@epicgames.com
http://www.epicgames.com/epic_jobs.html
http://WWW.EPICGAMES.COM

Now Hiring
for

LEGO Universe

www.netdevil.com/employment/
Submit your resume online:

Tech
Lead Programmer
Senior Programmers
Graphics Programmers
Programmers
Assistant Technical Director
Database Administrator

Art
World Art Lead
3D Character Animators
3D Artists
Concept Artists
Motion Graphics/Flash Animators
LEGO Digital Designer Artists
Special F/X Artists

Community
Assistant Community Manager

Design
Senior Content Designer
Systems Designer
Scenario Designers

Production
Platform Producer
Associate Producer

NETDEVIL
R

NetDevil, the NetDevil logo and all related images are trademarks of NetDevil, Ltd. © 2007 NetDevil, Ltd. All Rights Reserved.

LEGO, the LEGO logo, the Brick and Knob configurations and the Minifigure are trademarks of the LEGO Group. © 2007 The LEGO Group. All rights reserved.

http://www.netdevil.com/employment/

1 Employ the Scientific Method.

2 Understand the difference between playing a game
and testing a game. Spend most of your time doing the latter.

3 Be flexible.

4 Find and report bugs as early as possible.

5
Think like a hacker.
Be creative in finding problems with the game.

6 Put in as much effort with your regression testing
as you do with your initial testing.

7 Don’t let Q/A members test designs they’ve created.

8 Don’t write sloppy bugs. Spell and grammar check everything.

9 Test everything you can reasonably test.

10 Work under the assumption that most (if not all) bugs can be
consistently reproduced.

✔
COMMANDMENTSTENOF QUALITY ASSURANCE

13W W W . G D M A G . C O M

>> C h u c k M c Fa d d e n

>> IF Q/A HAD A SET OF 10 COMMANDMENTS, WHAT WOULD THEY BE?
Approximately two years ago, a member of the IGDA’s Q/A Special Interest
Group (SIG) posed that very question, which ignited the SIG into lengthy
discussions and friendly arguments until, weeks later, we settled on 10. They
were compiled and listed on the SIG site, where they have remained in relative
obscurity ... until now.

This article lists the commandments in no particular order and examines each
in detail. Each has equal value; no one commandment is more important than
any other. But ignore them and the god of game development will smite you.

CHUCK MCFADDEN is an associate producer at Factor 5. He was

previously Q/A manager at Namco Bandai Games, and a member

of the IGDA Q/A SIG. Email him at cmcfadden@gdmag.com.

C O N T I N U E D O N P G 1 4

mailto:cmcfadden@gdmag.com
http://WWW.GDMAG.COM

1. EMPLOY THE SCIENTIFIC METHOD.
When you boil it down, this is what separates a good tester from
a bad tester: the good tester—consciously or unconsciously—
uses the Scientific Method. Make this a part of your Q/A team’s
training process, just in case one of your testers paid as little
attention during science class as this author. If trained well in
the Scientific Method, upon observing a bug, a tester will:

a) Observe and describe. At the least, the tester should take
notes on what happened. Ideally, your tester is recording
everything (with a VCR or digitally), which helps the tester with
the next few steps. Either way, this step simply states what
happened, for example that the game crashed at the second
save point.

b) Formulate a hypothesis. The tester should speculate on
what might have caused the bug. Did they try to save when the
game was streaming off the disc? Was a character talking when
the save action triggered? Did the character “die” at the same
time the save initialized? Based on the observed behavior, a
tester can develop a testable hypothesis to repeat the bug. (An
inexperienced or less-thorough tester will end the process here,
writing up the bug based on his/her speculation.)

c) Experiment. The hypothesis should then be tested to see if
it results in the initially observed behavior/bug. Re-experiment
to narrow down the steps to repeat the bug. If the hypothesis is
true, move onto the next step. If the hypothesis is false, refer to
step A and start again at step B.

d) Draw a conclusion and communicate the results. Once the
tester has verified that they can repeat the bug with the minimal
number of steps (in other words, once they have verified that
the hypothesis is true), they should write it up. How your tester
writes up the bug is up to you and your established procedure.
Regardless of how they write up the bug, if they use this
method, the bug will be solidly researched and consistently
reproducible.

2. UNDERSTAND THE DIFFERENCE
BETWEEN PLAYING A GAME AND TESTING A
GAME. SPEND MOST OF YOUR TIME DOING
THE LATTER.
The most common misconception I’ve seen with new hires (and
with industry colleagues who don’t know much about Q/A) is
they believe testers “play games all day.” If this is 100 percent
true with your Q/A team, you release terribly buggy games.
Quality assurance is not just a matter of testing how a game is
supposed to work, but how the game is not supposed to work.

The difference is simple. A good tester knows that losing
needs to be tested as thoroughly as winning. He understands
that getting the best lap time in a racing game is only half the
job. Otherwise, a bug as simple as a crash at the “game over”
screen will never come up if the tester is always playing to win.

This commandment also speaks to another philosophy: Don’t
exclusively hire “hardcore” gamers. While employing hardcore

14 N O V E M B E R 2 0 0 7 | G A M E D E V E L O P E R

1

2

3

4

5
6

7

8

9 10 1 0 C O M M A N D M E N T S
O F Q U A L I T Y A S S U R A N C E

MY EXPERIENCE WITH Q/A OVER THE

years has been interesting. I

started out as a tester in 1993,

knowing nothing about software

development. I was an enthusiastic

video game player, a writer, and a

pen-and-paper RPG fanatic. This list

of commandments would have

instantly accelerated my learning

by a year.

Now, as a creative director, I

crave more polish in games relative

to everything else, which usually

stems from good development and

tech practices. Best practices

impact gameplay much more than

people often acknowledge. Even in

cases where development teams

are trying something new and

ambitious, a fast frame rate, a solid

interface, stability and lots of

feedback are the real key to

enhancing the player's experience.

I especially like number five

from this list, about inspiring

testers to play creatively. There's

always one person on the test team

who thinks like that—someone who

covers the basic route that 90

percent of mainstream players will

take, then tries five or six creative

alternatives. After a while, you

develop this as an instinct. “Hmm,

this front door triggers a scripted

door-opening sequence ... I wonder

what happens if I break the side

window and skip the door.”

HEARTS ARE MADE
FOR BREAKING
Q/A people know that most games

can be broken (or will at least

expose something that looks silly)

if you try hard enough. Citing alt-

path problems, then speculating on

their likelihood is very useful;

sometimes we take things like that

and run with them creatively. We

might say “If five percent of testers

think to try this, what if we bullet-

proof it, then make it more

attractive or obvious, so that it

occurs to maybe 20 percent of

players.” Working on the DEUS EX

games, which were incredibly free-

form, this happened a lot. Even

working on an FPS like BLACKSITE,

over the last year we've seen lots of

cases where testers approach a

combat scenario in a way we didn't

expect—routes which might be

under-supported and cause

frustration. In all cases, having

great dialogue with Q/A will make

the game better.

THE FINAL PUSH
The very concept of “testing” has

evolved a lot to include a bunch of

best practices for the genre, such

as blind usability tests and post

production (as a serious phase of

development). The game never gets

good as fast as it does in the final

months, so it pays to invest in post

production testing. Ideally you'll

finish the game from beginning to

end as soon as you can, then spend

a ton of time pounding on it,

observing new players stumble

through it, and looking for

opportunities to pay off dramatic

moments. Bringing in round after

round of people who have never

seen BLACKSITE has taught us

invaluable lessons about where

players get stuck, run out of ammo,

get lost, and have the most or least

fun. I wish we had three to six more

months of that sort of thing—it

would make a tremendous difference

in the final quality of the game. I

think the difference between great

and mediocre publishers is the

wisdom to invest in the final period

of testing and tuning; the discipline

to avoid cheating into this phase,

even if a game is late.

—Harvey Smith,

Midway Austin creative director

a production perspective

C O N T I N U E D F R O M P G 1 3

http://www.havok.com
http://www.gdmag.com
mailto:salesteam@havok.com
mailto:salesteam@havok.com

16 N O V E M B E R 2 0 0 7 | G A M E D E V E L O P E R

gamers is important, it’s equally important to cultivate more
casual players. As a lead or manager, you’ll be tempted to hire
the most dedicated gamers in your neighborhood. Unfortunately
those testers invariably have the hardest time losing. Moreover,
the more they “test” your game, the less likely they are to lose.

You can avoid this problem almost entirely if you write good
test plans. But if your tester is also conscious of the difference
between playing and testing, he’s sure to find bugs beyond the
scope of what the average test plan can predict. Occasionally
remind your testers that you’re paying them to do a job. They
can play games on their own time. While they’re on the clock,
they are there to test.

3. BE FLEXIBLE.
Video games represent a truly collaborative art form. Everyone
involved in the game development process needs to work with
at least one other person and working with someone else
requires flexibility. So, how can Q/A teams be flexible?

Q/A teams are always doing more for their game (and their
company) than simply testing the latest build for bugs. This
commandment recognizes and encourages that. Be flexible
enough to allow your testers to demo their game for the press.
Help your marketing and PR teams with screenshots and/or
videos. After all, who knows how to avoid all the embarrassing
bugs better than the people who found them? The Q/A team
knows the workarounds better than anyone. If your company is
flexible enough to allow the Q/A team to help out with this work,
the results might be surprising.

Be cautious not to let your Q/A team take on too much work,
however. Don’t take on so much extra work that you find your
team testing less than they should. If your Q/A team ceases to
find important bugs, all those screenshots and videos won’t
amount to much.

Your Q/A team should also be flexible with the bugs they
report. As a game nears completion, Q/A will invariably disagree
with the production/development team on some of the bugs

THOSE IN THE TRADITIONAL

usability/user research field

(outside of the games industry)

have often created golden rules,

commandments, or heuristics for

practitioners to adhere to. Many

times they focus on principles of

interface design that strive to make

things simple, efficient, easy to use,

and so on. These lists haven't really

had as big an impact in the games

industry. Why? It could be that

usability as a functional discipline

is too new to the games industry. It

could be that the usability golden

rules just aren't as applicable. It

could be that the heuristics are

perceived as a threat to the “art”

side of game design.

Several of the commandments in

this article jump out loud and clear

as having just as much relevance to

the usability practitioner as the Q/A

tester. Employ the scientific

method—usability and user research

methods were built on experimental

psychology and experimental

research methods. To take it even

further, usability engineers I work

with (myself included) were all

trained in behavioral science

research, so that's an easy one. Be

flexible—it is our job to try and

account for as many sources of bias

and influence when we run usability

tests and collect data, but

sometimes the ideal is simply not

practical. Don't let Q/A members test

designs they've created—usability

engineers will often have

recommendations to solve usability

problems, which is great. However,

as McFadden points out, it is hard to

be objective about one's own design.

USABILITY COMMANDMENTS
So what else? As a practicing

usability engineer in the games

industry who has shipped nearly

fifteen titles over the course of

seven years now, what other

commandments would I put forth

for fellow usability engineers? Here

are a few unrefined ideas I’ve had.

Users have opinions, but

designers make the call. During

your research and testing, users

will always have opinions on things

they do or don't like. Your job isn't to

adhere to user whims—your job is

to identify areas where user

behavior is not consistent with the

designer's vision. What do you from

there will be context-dependent.

No one likes an ivory tower

academic (especially in crunch).

Most developers aren't interested

in the classic “it depends” answer

to something. They also aren't

interested in inferential statistics,

hypothesis testing, or the number

of users you need for a valid test.

When asked to do something or

answer a question, do your

research and testing, and give it

your best shot. Don't be afraid to

have an informed opinion, even if

your research wasn't suitable for a

scientific peer-reviewed journal.

Usability engineers don't own

the market on data analysis. Let's

be clear, just because a usability

engineer may have a Ph.D. in

Experimental Psychology, that

doesn't mean he or she is the only

one who can analyze data.

Show passion and dedication

equal to your partners. Working in

this industry can be a labor of love.

In my experience, the most

successful games I've worked on

have been the ones where the

entire team was equally passionate

about what they were making. The

more passionate you are, the more

trust you'll gain, and the more

effective you'll be.

Iterate, iterate, iterate! It doesn't

matter how many usability issues

you may uncover in a usability test.

What is more important is how many

issues you identified, then fixed.

When you think you're done—

you're not. As long as designers

have questions or new ideas, you'll

always have something worth

researching. You can always go the

extra mile and provide more

feedback and more data to your

partners that will help them make

better decisions.

LEARN AND LET LEARN
The usability/user research

discipline in games has clearly not

been around as long as Q/A, so I

don't feel too bad stealing some of

their good ideas, and I don't feel too

bad that my discipline doesn't have

our own commandments list ... yet.

Whether you agree or disagree, I've

thrown out a handful for us to start

with. If you've got any more, then

let's get to it!

—Randy Pagulayan, Microsoft

user research lead

1

2

3

4

5
6

7

8

9 10 1 0 C O M M A N D M E N T S
O F Q U A L I T Y A S S U R A N C E

usability research commandments

17W W W . G D M A G . C O M

they want to close out. Be flexible enough to let less important
bugs go (all games ship with some bugs, after all), but insist on
fixing the bugs that make the biggest difference.

How do you know the difference? If your Q/A team isn’t already
using some sort of prioritizing scheme in their bug database, get
one started. It’s as simple as assigning a letter (or number, or
both!) to a kind of bug. When it comes time to close out the
bugs, it can save you hours upon hours of headaches. (For more
on this, see ‘Setting the Bar,’ January 2007.)

4. FIND AND REPORT BUGS AS
EARLY AS POSSIBLE.
This is a tricky one. Q/A is usually employed at the end of the
development process, which is absolutely the right way to build
a game. This commandment isn’t condoning full-blown testing
before your alpha milestone. Doing so would only clog the bug
database with annoying bugs like “game-has-no-sound.”

However, it is helpful to have a lead tester review the save flow
(for example) long before it’s implemented in the game. If an
experienced tester can look at a save flow system design and
tell you what will fail a technical requirements checklist, it’ll
save both the Q/A team and the development team hours or
even days of work down the line.

You could also ask a few testers to take a look at the first
iterations of your control scheme. Don’t tell them how to control
the game, just give them the controller and ask them to play
around a little. If they can intuitively understand how to interact
with the game, then you know you’re on the right track with your
controls. If they have problems with certain aspects of the
controls, you know what to work on next. This won’t give you the
feedback you need if you’re wondering how intuitive a casual
gamer would find your controls, but it’s a good place to start.

You can have your lead tester look at the game’s text to verify
correct usage of naming conventions long before you’ve
implemented the text into the game. These are things they’ll
test for anyway once the text is in-game, so why not have them
look at it before doing difficult implementation?

The save flow, controls, and text check examples are just that,
examples. There are many little things an experienced Q/A tester
can do for you before the alpha milestone. If you schedule these
things out ahead of time, and make sure the tester knows what
he/she should not work on, your development team will have
more time to work on more important things and the inevitable
crunch time will be less ... crunchy.

5. THINK LIKE A HACKER. BE CREATIVE IN
FINDING PROBLEMS WITH THE GAME.
It’s relatively easy to find a spelling error or a level load bug. The
best testers flex their mentality toward the test cases at hand,
ranging from a technically skilled hacker to an anti-intuitive four
year old. Crash bugs can be found from altering core files and
manipulating fifteen different user interface screens (hacker) to
smashing your palm on the keyboard and causing a buffer
overrun (four year old). And there are plenty of bugs in between.

Hardcore gamers love to bend the game rules as far as
possible. Keeping this commandment in mind can help you
avoid shipping with those nasty “exploit” bugs found in
multiplayer games (both console and PC). But this

commandment doesn’t just apply to multiplayer. Thinking like a
hacker simply means looking for the flaws buried deep in the
game, not just on the surface.

Don’t only play the game the way you think the average
consumer will. Think of ways to play that no one else will. If the
main character is supposed to exit a room by using the door,
ask your tester to find other ways out of the room. Can the
character use the window? Can he jump through the ceiling?
Can he walk through a wall? Approaching a seemingly
mundane task and finding a creative way through it can result
in a lot of surprising bugs.

6. PUT IN AS MUCH EFFORT WITH YOUR
REGRESSION TESTING AS YOU DO WITH
YOUR INITIAL TESTING (HALO TESTING).
Finding and reporting the initial bug, as well as properly
regressing that bug, are two important and essential job
responsibilities for every Q/A tester. However, there is a third
area of testing that occurs: Halo testing. No, this isn’t about the
Bungie game. Halo testing is when a tester checks for newly
uncovered or added bugs resulting from the fixed bug they are
regressing. Successful Halo testing requires the tester to
possess Q/A experience (or an innate talent for finding bugs),
intimate knowledge of back-end systems, how the product is
built or developed, and guidance by the Q/A management team
overseeing the title.

Regression testing is more than just reproducing the initially
reported issue. When a fix for a bug is checked in there is

always a risk associated with that fix. That risk must be
evaluated not only by the programmer, designer, or artist but
also by the Q/A lead and tester. Ensuring the bug at hand is fixed
is only the first step—the tester must then Halo test around
that fix looking for new bugs that could have been a result of
that fixed bug.

7. DON’T LET Q/A MEMBERS TEST
DESIGNS THEY’VE CREATED.
Otherwise known as the conflict of interest commandment, this
one can get you in trouble with your ambitious testers. Every
tester, at some point, has a brilliant idea. Be very careful when
this happens.

It’s human nature to be biased against one’s own ideas.
Therefore, when a tester’s suggestion makes it into the game,
don’t allow her to regress it. By seeing her idea become reality,
she cannot effectively Halo test the new feature. She will be less
likely to observe any bugs resulting from this feature. Get

✔1 0 C O M M A N D M E N T S
O F Q U A L I T Y A S S U R A N C E

The most effective testers are not those
with the highest Gamerscore, but those
possessing exceptional written and
verbal communication skills.

http://WWW.GDMAG.COM

1

2

3

4

5
6

7

8

9 10 1 0 C O M M A N D M E N T S
O F Q U A L I T Y A S S U R A N C E

18 N O V E M B E R 2 0 0 7 | G A M E D E V E L O P E R

another tester to put the new feature through its paces. This will
ensure that the new feature gets the same objective attention
as any other.

This commandment does not discourage testers from making
the leap to level designer or some other position in the larger
organization. Many industry luminaries started their careers in
Q/A, and this commandment recognizes that. But it also serves
as a reminder to resist allowing your tester’s objectivity to be
overshadowed by a really good idea.

8. DON’T WRITE SLOPPY BUGS. SPELL AND
GRAMMAR CHECK EVERYTHING.
The most effective testers are not those with the highest
Gamerscore, but those possessing exceptional written and verbal
communication skills. This is because clearly-communicated
bugs get fixed faster and better than sloppy, confusing bugs.
Moreover, as a group whose fundamental responsibility is to
find other people’s mistakes, it’s simply embarrassing and
unprofessional when Q/A’s own work is full of errors.

This commandment doesn’t insist that every tester hold a
Ph.D. in English. Even if your testers lack perfect grammar
skills, the least they can do is spell check their work. Most bug
databases have a spell check function built in. Insist that your
testers use it.

9. TEST EVERYTHING YOU CAN
REASONABLY TEST.
Don’t ignore a feature just because it gives a good first
impression. If it’s in the game, test it (and test it often) to
ensure it works as designed.

For example, upon initially testing the newest gun in a FPS, a
tester will notice that it fires correctly, the correct sound plays,
it deals the correct amount of damage to the enemy, and it
depletes its ammunition according to spec. Oh! And it’s really
fun to shoot! At this point, your inexperienced tester (having
finished the test plan for this gun) may think he’s done. He’ll
move onto the next gun.

But, what if that new gun, when fired at an explosive crate,
crashes the game? It seems tedious, but every feature needs to
be tested in every reasonable way. That means firing weapons
at every interactive target (and most non-interactive targets).
Make sure everything from the smallest decal to the biggest
explosion trigger and play correctly, lest you prematurely
approve a new feature.

As another example, at some point we’ve all heard a developer
say, “I only fixed X bug. I didn’t touch anything else, so don’t
worry about testing the whole Y feature.” An inexperienced

tester will take that developer at his word and only test the
change as reported. He would miss the bugs that unexpectedly
resulted from the change to “X bug.”

A good, thorough test plan (one that includes, for example,
causing an explosion with every weapon type) can help you
avoid this problem, but no test plan can predict every
possibility. Your testers need to be aware that they are
ultimately responsible for the stability of the game. They need to
make sure everything works to spec in every situation. They
also need to understand that a “simple change” to a seemingly
innocuous feature can have unexpected results. Never settle for
spot-checking and don’t say you’re “done” testing a feature until
you’re ready to ship it.

10. WORK UNDER THE ASSUMPTION THAT
MOST (IF NOT ALL) BUGS CAN BE
CONSISTENTLY REPRODUCED.
It’s only a question of how difficult the bug is to repeat. Even the
most “random” bug is repeatable given enough time and effort.
Granted, it’s not always wise to spend time attempting to
consistently repeat an elusive bug, but if you can, it’s much
easier to fix.

This commandment ties into the first commandment
(Scientific Method), but also begs the question: How much time
should one spend trying to consistently repeat a bug? You
might work under the assumption that every bug is repeatable,
but is it advisable to consistently repeat every single bug?

Ask yourself—how important is this bug? If the tester
“randomly” crashed the game after beating the first boss, isn’t it
justified to spend a day attempting to consistently repeat it? On
the other hand, if the tester found that the credits scrolled
unusually quickly once out of 10 viewings, you probably don’t
need to research the bug for more than a few minutes.

Consider the severity of the bug when you determine how
much time to invest in getting it repeated. You know it can be
consistently repeated, but you need to use your judgment to
determine if it’s worth the effort. If your testers can’t get the
bug to repeat, list how many times they attempted to against
how many times they successfully repeated it (i.e. 1 out of 10
times, the credits scrolled at 5x speed). That way, the
development team can address the bug knowing it’s not yet
consistently repeatable.

A GOLDEN RULE
Summing up these 10 commandments into one all-inclusive
statement might look something like this: Test scientifically,
creatively, and thoroughly enough to catch all the bugs, but not
so obsessively as to jeopardize your ship date.

Whether you follow one golden rule or 10 commandments, Q/A
work is as much an art as a science. It’s at its best when a
diverse team passionately comes together to work on a
common goal; to do everything they can to help the
development team make the best game possible. Hopefully
these commandments can inspire you and your Q/A team to
better serve that common goal.

The author acknowledges Rob Thompson, Q/A manager at Sony Online
Entertainment for his contributions to this article.

While employing hardcore gamers is
important, it’s equally important to
cultivate more casual players.

http://www.replaysolutions.com
mailto:info@replaysolutions.com

20 N O V E M B E R 2 0 0 7 | G A M E D E V E L O P E R

WHAT WENT RIGHT

1EVERY DEMO TELLS A STORY. Demos
were galvanizing moments for BIOSHOCK.

They led to a unified team vision,
identification of problems and solutions,
external excitement, and internal support.
For example, the project was signed after
GameSpot ran an exclusive feature based
on a single-room graphics demo.

Since BIOSHOCK was a relatively unknown
IP outside the game development
community, the public’s impression of it
would be critical to building the buzz we
needed to make it a commercial success.
As a result, every time we took the game
out in public, we put great thought into the
message we wanted the demo to deliver
and the level of polish of the presentation.

Our first public presentation was at E3
2006. We had developed a great deal of
content before that point, but hadn’t yet
built a space that really demonstrated the
game experience to our satisfaction. The
E3 demo forced us to focus the whole
team on what the user experience should
be. We defined a message for the demo—
player choice—and built a narrative
around that message. Even though the
experience was highly scripted at the time,
it effectively demonstrated the feel of the
game we wanted.

Another example of demo-inspired
development was the “Hunting the Big
Daddy” demo. Though Big Daddies and
Little Sisters had been part of the game in
some form since the beginning, initially

ALYSSA FINLEY was the project lead on BIOSHOCK for 2K Boston. During her 15 years of experience

in the game industry she has also worked as a lead programmer, technical director, and producer.

Email her at afinley@gdmag.com.

THE STORY OF DEVELOPING BIOSHOCK IS AN EPIC ONE AND ISN’T
easily expressed in 10 postmortem points. The team and the
game changed remarkably over the course of development. A
company was acquired. The team size doubled. The product focus
changed from RPG hybrid to shooter.

It’s easy to talk about the processes we used to develop the
game, but it’s harder to describe the creative spark that somehow
managed to turn the most unlikely of premises (a failed
underwater art deco utopia set in the 1960s) into a marketable
shooter. It took a visionary to make the creative choices to guide
the game, and an incredibly talented and hardworking team to
bring that vision to life.

2K GAMES’

BIOSHOCK

mailto:afinley@gdmag.com

21W W W . G D M A G . C O M

DEVELOPER
2K Boston and 2K Australia

PUBLISHER
2K Games

PLATFORM
Xbox 360 & PC

RELEASE DATE
August 21, 2007

DEVELOPMENT TIME
3 years

NUMBER OF FULL TIME
DEVELOPERS AT PEAK
93 in-house developers, 30
contractors, 8 on-site publisher testers
(see the sidebar on pg. 22 for details)

HARDWARE
PC; AMD Athlon X2 dual core or
Pentium 4 Intel-Duo dual core
processors; NVidia Geforce 8800
graphics cards; Xbox 360 dev and
test kits

SOFTWARE
Microsoft Visual Studio 2005,
Perforce, Xbox 360 SDK, Xoreax
Incredibuild, Visual Assist X, Araxis
Merge, BoundsChecker, Purify, VTune,
3ds Max 8, Photoshop CS2, ZBrush,
Flash 8, SoundForge 8, Sony Vegas,
Acid, Ableton Live

TECHNOLOGY
Unreal Engine, Bink, Havok, Fmod

NUMBER OF FILES
3,775

LINES OF NATIVE C++ CODE
75,8903

LINES OF SCRIPT CODE
187,114

GAME DATA

http://WWW.GDMAG.COM

22 N O V E M B E R 2 0 0 7 | G A M E D E V E L O P E R

the player could confront Little Sisters directly without
necessarily needing to dispatch the Big Daddy that protected
them. During the development of this demo, the team discovered
that with some polish and tuning changes the act of dealing with
a Big Daddy could be a truly epic battle in itself. This led to the
realization that Big Daddy battles should be the key to player
growth, essentially providing a roving boss battle that players
could undertake at a time and place of their choosing.

Another example is the graphical effects on the player’s hands
when using plasmids, which came out the first BIOSHOCK trailer
created with Blur Studios. In that cinematic, the player uses a
hypodermic needle to make his arm into a weapon; after the
injection the protagonist’s skin blackens and swells and angry
hornets burst out of it to attack the Big Daddy. When working
with Blur to develop the trailer, we knew that the sequence
didn’t accurately reflect the game’s visuals, but we did it
because it really captured the vibe of what the “genetic
modification” part of the game was all about.

2 COURSE CORRECTIONS. One of the true successes of
BIOSHOCK’s development was our ability to identify and react

when the game was not shaping up to become what it needed to
be. For example, the first vertical slice prototype we built was an
non-navigable linear corridor shooter that looked like it took
place in an abandoned box factory. It didn’t provide a compelling
experience as either an RPG or a shooter. In response, we threw
away that prototype and started again from scratch with the
goal of building a single room that felt like the ruined
underwater utopia we were trying to build.

First we did concept art passes. Once we got a concept that
worked, we built it. Then we used it as a demo space. We used
that single room (now Kashmir Restaurant in the first level of
the game) as an artistic reference that guided us in creating an
aesthetic unlike any other game on the market. (For more about
the artistic style of BIOSHOCK, see the free art book download at
www.2kgames.com/cultofrapture/artbook.html.)

Each department went through a similar crisis moment over
the course of the project. These frequently came as the result of
the demos, but not always. At one point, when facing a shortfall
of programmers and an overflow of tasks, we proposed
removing physics objects from the game entirely in favor of

having only large, constrained physics actors.
This would have allowed us to spend much less
time tuning the physics of individual objects
while allowing the world to seem somewhat
dynamic. However, doing so would have removed
a huge level of interactivity from the game, so
that decision was corrected relatively quickly.

In terms of design, we created a depth and
density of game systems that fit into a game
about character building and choice, but would
not have been competitive as an FPS. Around the
time that the game went into alpha, we took a
hard look at that gameplay and realized that,
although there were many choices, they weren’t
very compelling. This was because we hadn’t
been thinking as much about making a shooter
as we should have, and many of our key
interactions (weapons tuning, plasmids, length of
AI engagement) were designed and tuned for a

slower and more cerebral experience. To put it another way,
nerdy RPG-like stat changes just didn’t seem meaningful in the
vibrant and dangerous world of Rapture.

Once we recalibrated the game to be more like a shooter, we
simplified many of the deeper systems tremendously so that the
user would be able to understand them. We also put more polish
time into the core interactions of the game, such as the weapons,
plasmids, and user interfaces. We ended up with fewer choices
overall, but each one of those choices was infinitely more
functional, understandable, and fun than the previous ones.

It was inevitable that we lost some progress due to these
major corrections. But the team’s ability to pull together and
address the fundamental problems was amazing, and the
results were well worth it.

3 INPUT FROM OUTSIDE. The first external BIOSHOCK focus test
was meant to be a sanity check: to get a better sense of

what was working well but needed polish and what wasn’t
working at all.

At this point we had already done one small round of internal
focus testing with friends of friends, which had turned out
mostly positive feedback. So, just after the first beta, the entire
design team plus a contingent of 2K producers headed off to
see how a group that knew nothing about our company or
BIOSHOCK would react to the first level.

It was brutal.
The first level, they said, was overly dense, confusing, and not

particularly engaging. Players would acquire new powers but
not know how to use them, so they stuck to using more
traditional weapons and became frustrated. They didn’t interact
with the Big Daddies, and they didn’t understand (or care) how
to modify their characters. They were so overwhelmed by
dialogue and backstory that they missed key information. A few
of the players did start to see the possible depth of the game,
but even they were frustrated by the difficulty of actually using
the systems we had created.

Based on this humbling feedback, we came to the realization
that our own instincts were not serving us well. We were making
a game that wasn’t taking the initial user experience into
account, and we weren’t thinking enough about how to make it
accessible to a wide variety of players.

TEAM
BREAKDOWN

IN THE BOSTON STUDIO:

PROGRAMMER
1

ARTISTS AND ANIMATORS
15, plus 2 borrowed from
Firaxis

DESIGNERS
6 in-house, 1 contract

AUDIO DEVELOPERS
2 in-house, 7 contract

PRODUCERS
3 in-house, 2 contract

TESTERS
13 contract, plus 8 on-site
publisher testers

IN THE AUSTRALIA STUDIO:

PROGRAMMERS
12

ARTISTS AND ANIMATORS
10

DESIGNERS
5

AUDIO DEVELOPER
1

PRODUCERS
2

TESTERS
1 in-house, 7 contract

IN THE SHANGHAI STUDIO:

ARTISTS AND ANIMATORS
12

DESIGNERS
3

C O N T I N U E D O N P G 2 4

http://www.2kgames.com/cultofrapture/artbook.html

Mild-Mannered ALM,
Super Quality

©2007 Seapine Software, Inc. Seapine, TestTrack Studio and the Seapine logo are trademarks of Seapine Software, Inc.
All Rights Reserved. All other trademarks are the property of their respective owners.

Download your fully functional evaluation
software now from www.seapine.com/gd08

Developing quality software requires a heroic effort, from tracking thousands of the tiniest details,
to keeping team communication flowing smoothly.

TestTrack Studio 2008 powers the application lifecycle, automating processes and keeping track
of issues, change requests, test cases, and test results. With TestTrack Studio 2008, you have the
tools and the time to prioritize, communicate, and track the status of your projects more
effectively, without breaking a sweat.

Let TestTrack Studio 2008 do the heavy lifting—Be a superhero!

http://www.seapine.com/gd08

24 N O V E M B E R 2 0 0 7 | G A M E D E V E L O P E R

After the focus test, we went back to the drawing board for the
entire learning sequence of the game. We scrapped the
gameplay in the first two levels entirely and re-architected them
to be a much slower paced experience that walked the player
through the more complicated gameplay verbs, such as “one-
two punch”—combining weapons and plasmids. We changed
the medical pavilion from having sandbox-style gameplay to
using a series of locks and keys that were set up to ensure that
the player knew how to use at least a few key plasmids. And we
made a development rule that future changes would be data-
driven, not based solely on our own instincts.

After the first round of changes, we had two rounds of internal
2K play testing to gather more data about the user experience,
releasing builds of the game to several 2K studios and soliciting
feedback about how far people got and which weapons or
systems they enjoyed. We received feedback from 2K game
analysts, Microsoft, and a few other advisors.

When we brought the demo back to focus testing, which was
barely a month before we were (then) scheduled to complete
the game, the experience was very different. Although players
still got stuck and frustrated at various spots, they understood
the game systems and saw the potential inherent in them. While
we still had work to do to make the game more accessible, at
least now the problems were much more easily solvable.

4 SMALL EMPOWERED TEAMS. While developing our first
internal demo, we realized just days before completing it

that it was on the wrong track. By that point it was too late to
take on all the problems in the demo, but we decided to try to
improve the core interactions. We used a small, focused strike
team approach to target and solve AI problems, choosing one
problem at a time, analyzing and tackling it, then moving on.
Although this approach wasn’t enough to salvage the original
demo, it was recognized in our internal postmortem of the demo
as an effective process that we should do more often.

One of the most visible successes of the strike team system
is the tuning of the weapons of the game. All the weapons had
been in and working for several months, but as the game got
closer to content lock, they still weren’t feeling as good as they
should. To tune each weapon, a team consisting of one designer,
an animator, a modeler, a programmer, the effects specialist,

and an audio designer held a kickoff meeting
where they analyzed and brainstormed about
each aspect of a single weapon. They came up
with a task list for each team member, went off to
work for a day or two on their tasks, then came
reviewed all the results. When they were
satisfied, they moved on to the next weapon.

Over the course of development, we created
multidisciplinary strike teams to work on a wide
variety of problems, including AI, animation,
visual effects, and cinematics. The results of
those teams were universally better than the
previous non-iterative process.

5 TALENTED PEOPLE, FLEXIBLE STAFFING.
BIOSHOCK was initially scoped to be developed

in about two years with a small team of 30
people—25 in Boston focused on gameplay and
five in Australia working on the core engine. As

the team completed successful milestones and demos, and
made strong cases for more development resources it became
clear that we needed to tap into the Australian office.

Initially, Australia was intended to supply a small core
technology team that worked on the renderer, engine, and core
tools and processes for console
development. The Australians had a
tremendous impact on development
because by taking care of the core
engine and pipeline tasks, the Boston
programming team was free to focus
on gameplay systems and production.

One of the fastest and easiest ways
to staff up any newly-opened position
on the BIOSHOCK project was to pull
from the Australian team. By the time
BIOSHOCK went gold, almost everyone
in the Australian office had worked on
the game in one way or another.

The huge advantage to using the
Australian team resources was that
they already knew the engine and the
game, and had easy access to the
core technology team. They came up
to speed incredibly quickly, and could
be productive almost immediately
upon getting project tasks. And
although the time difference made
communication a challenge, it also
meant that critical bugs could be
worked on literally day and night.

WHAT WENT WRONG

1EVOLVING PRODUCT
POSITIONING. The spec of

BIOSHOCK changed so much over the
course of development that we
spent the majority of the time
making the wrong game— an
extremely deep game, and at times
an interesting one, but it was not a

C O N T I N U E D F R O M P G 2 2

The 2K Boston BIOSHOCK

team.

groundbreaking game that would appeal to a wide audience. We
knew from the start that we’d have to make late changes to
really bring the game to life—we had even built our original
schedule to allow for six months of finalizing—but the amount
of change that we ended up needing seriously exceeded our
remaining schedule. Ultimately, we were very lucky to get an
extension in the eleventh hour.

Part of the reason for the late course change came from not
having our internal product message clear from the beginning.
BIOSHOCK had initially been positioned as a hybrid RPG FPS. The
decision to reposition the game as a focused FPS came later,
after our initial production phase in summer of 2006. Had we
been working with an FPS mentality earlier, we could have made
better use of our time.

Another contributing factor to the late switch was that the game
had been more or less proceeding according to plan throughout
development, so there didn’t seem to be any emergencies that
needed intervention from higher levels of management. Milestones
were completed, goals were met, development seemed to be
proceeding uneventfully. But as the game neared alpha, key
people began looked more closely and saw that BIOSHOCK wasn’t
on track to become an accessible and marketable game.

As mentioned in the first What Went Right point, the real
turning point for BIOSHOCK came when we had to present the

game to the outside world, which forced us to carefully consider
the story and takeaway message. In retrospect, we should have
tried to develop some of that thinking sooner.

2 NARRATIVE CONTENT DEVELOPMENT HAPPENED LATE. We
had many drafts of the story over the course of

development, but the final draft turned out to be an almost
complete rewrite. To make matters worse, we failed to fully
exercise the narrative production path in early versions, so once
the final draft was complete and recorded, many
implementation and pipeline problems appeared for the first
time that should have been caught and resolved earlier.

The core issue was that a giant pile of content came online
well past beta, and the team had to scramble to get that
content correctly installed while also fixing bugs. Competing
demands for time and resources meant that, unfortunately,
some of the important narrative details of the game weren’t
created until the final rewrite, and therefore required quite a
bit of work to retrofit them into an existing game.

To add to our woes, the first focus test feedback on the
narrator’s voice came back extremely negative. People found the
character extremely off-putting, so we recast the part at the last
possible moment. On the positive side, this allowed us to refine
several areas of the game (including the intro sequence) to

25W W W . G D M A G . C O M

http://WWW.GDMAG.COM

26 N O V E M B E R 2 0 0 7 | G A M E D E V E L O P E R

ensure that the player knew what to do at the right time. On the
other hand, it was difficult to get all the content in, debugged,
and polished in the remaining timeframe.

3 SCALING VISION TO TEAM SIZE. Our goals and vision pretty
consistently overreached our production capacity. Ideas

that started out small turned out to require a tremendous
amount of coordinated support to reach a polished state.
Although we were able to add resources regularly and make
some cuts late in the game, our ability to plan for how much
work it would take to bring any single idea or space from
concept to completion was poor.

In addition, we didn’t have an effective internal review process
set up until very late in the development cycle. We would work
on levels to the definition of a milestone, get feedback, and then
set it all aside for a while or leave it in the designer’s hands to
polish. It wasn’t until we created a more regular review cycle,
where all the key players sat in one room and watched the
gameplay session and someone logged all the bugs, that we
were really able to define the amount of remaining work to bring
a feature or level to completion.

The ultimate reason we were able to pull off the game we
made to the level of polish we did, was the sheer dedication of
the team working on it. Even though we had padded the
finalizing schedule, we still far exceeded it. It’s to the team’s
credit that they stepped up to the challenge with incredible
dedication. The final crunch period on BIOSHOCK was long and
hard. People who had been pacing themselves for six more
weeks of work had to reset to three more months of work rather
suddenly. Had we understood our polish cycle requirements
sooner, or had known about the additional time earlier, we could
have paced ourselves better.

4 INEFFICIENT PROCESSES AND TOOLS. Many of the
processes and tools we used to develop BIOSHOCK were

inefficient or confusing in implementation, leading to slow
iteration cycles and bugs. Using a modified version of the Unreal
engine, which the team had already used to ship two previous
games, gave us a huge head start in developing BIOSHOCK. The
gameplay team was able to mock up a playable version of the
core game mechanics in just a few months, and the team’s
familiarity with the tools allowed us to get new gameplay
spaces up and running quickly.

However, the ease and familiarity of the workflow often led us to
accept a solution that was faster to implement but slower to use

rather than taking the time for a more efficient implementation. For
example, there was no good convention for how to name script
actions. Depending on the system, one script action might be
called “Change<SystemProperty>” while another would be called
“Set<SystemProperty>” or “Modify<SystemProperty>”. With
hundreds of scripting actions available, designers often spent way
too much time searching for the right tool to use. This could have
been avoided with a scripting code standard.

The content baking process for the console was time-
consuming and difficult to troubleshoot. Frequently the only way
to either identify or resolve a bake problem was to re-bake at the
cost of up to an hour of work, and if the tools were actually
broken in some way, it would take at least another bake cycle to
be able to work effectively again. Once we reached crunch time, it
was extremely painful to have to wait for the bake process to
complete when people could have been working productively
instead. We should have put more energy and time into speeding
up the bake process sooner.

5 POOR DATA COLLECTION. One of the most frustrating things
about our decision to be more data-driven in tuning the

game was the lack of actual good data to base that tuning on. Our
game log system was barely adequate to analyze single play-
throughs and became completely unwieldy when trying to
analyze a single log file containing data from multiple play-
throughs. We had no good methodology to define what
information was logged and at what level of detail, so the job of
parsing out the logs into understandable “gameplay metrics” was
painful, slow, and ended with inadequate results. To further
complicate the problem, most people in the office used shortcuts
or cheat codes at the start of a level rather than playing from the
beginning of the game, which caused us to base a tremendous
amount of early tuning on a shaky set of assumptions about how
players would choose to build their characters.

BLOCKBUSTING
Our goal when we set out to make BIOSHOCK was very clear. We
wanted to get to the next level, moving beyond our suite of
critically acclaimed games to make a blockbuster. A lot of
factors aligned to make this possible: the commercial backing of
2K; the game design knowledge we’d acquired from building
SYSTEM SHOCK 2; the technological familiarity with our UNREAL-
based engine that we’d built with previous games. But we still
had to figure out how to make it all big—blockbuster big.

A lot of our problems came from underestimating how big the
task of making a triple-A product for multiple platforms and
multiple regions really is. And other problems came from over-
estimating our capacity to solve those problems using our
existing procedures and staffing levels.

If there’s an over-arching theme of our development, it’s that
we, like many other developers, believe that ultimate success in
this industry comes from iteration. You have to build, evaluate
(and have others evaluate) and be prepared to throw things
away and rebuild. The products we make are just too complex
and our industry reinvents itself too rapidly to do anything else.
But we believe that if you are truly prepared to turn a critical eye
on your own product and honestly respond to that criticism
you’ll get quality at the end. As to whether you get a
blockbuster, only time will tell. *

http://jobs.ea.com

28 N O V E M B E R 2 0 0 7 | G A M E D E V E L O P E R

TOOL BOX[]

BEFORE THIS REVIEW, I HAD ONLY HEARD
here and there about Houdini, either in
passing or when some 3D production
magazine mentioned that the application
was used on this or that big-budget film.
Maybe it’s just my particular
circumstances, but I don’t personally
know any game developers who use it for
modeling, texturing, or animating.
Houdini has a reputation for being a tool
only used by film artists for complex
algorithms in special
effects work. But there’s
no reason game
developers shouldn’t adopt
it for special purposes—or
for the whole enchilada, if
they’re not already
married to one of the three
packages that dominate
our industry.

IF YOU LIKED THE
ORIGINAL, YOU’LL
LOVE THIS!
After I installed the
software, I really had no
clue what to expect. All I
had read so far was a brief caption on
Side Effects’ web site about how the
company had changed the UI and
“workflow enhancements” to be way
more “artist-friendly.”

That being said, I decided to give
Houdini 9 the old newbie test, and
promptly skipped over the UI quick start
videos. And there it was ... Maya. Just
kidding. I mean Houdini. But it really did
remind me of Maya’s UI, with the shelves
at the top and similar icons, and buttons
on the right-hand side. Even the panels
on the left side have a similar feel, too.
The likeness to Maya made me feel
completely comfortable with Houdini
from an artist’s standpoint. If Side Effects
did this intentionally, I say, “Brilliant.”

Without having seen Houdini’s previous
versions I cannot compare how much
more artist-friendly the UI is now, but
Side Effects sure has hit their mark with
the first impression a new user gets from
the design.

I immediately clicked the left mouse
button while holding down the Alt key,
then the control key, and then the shift

key, saying to myself, “Hey wait a
minute. How the heck do I navigate?” I
felt quite silly shortly thereafter because
you have to use the right, middle, and left
mouse buttons to dolly, pan, and zoom.
Yep, it’s that simple.

Next I clicked the box icon and—
shazam!—with no surprises there was a
basic box with a gizmo around the object
for translating and rotating. But after
clicking around some more I got stuck.

TIME FOR TV
I decided it was high time I watched
those videos that I first saw upon booting
up the program. Then, remembering that I
had also seen a link on the web site to
video tutorials, I instead jetted over to the
Houdini 9 interface lessons where I found
about 13 bullet tutorials with links to
even more.

The only thing I initially stumbled on
was the fact that you have to hold the
space bar down to get to the point where
you can move and dolly around in and
out of the object mode. Even though I
didn’t like doing this for the first few
minutes, it became very natural after a
short time.

A NOD TO THE NODE
After watching quite a few tutorials and
playing around with Houdini, the one
feature that stands out from other 3D
applications is the node-based workflow.
It’s construction history on crack. Every
decision you make in creating a scene is
created as a “network node” that you can
come back to and edit.

The node workflow is extremely
powerful, as it allows you to manipulate
the changes you’ve already made and
gives you much more control to explore
new techniques. Basically it lets you back
up and make a change to what you’ve
created, plotting out your entire process.

I also felt quite comfortable with simple
node tasks, though the type of artwork I
was creating was very rudimentary.
However, I can immediately see how the

node-based workflow would
benefit video game artists in
the thick of things, creating
complex models without
remembering exactly how
they got there and wanting
to change one of the
elements without disturbing
the rest of the work.

I also really like a minor
feature in the node window
that color-codes different
icons to represent the state
of an object, such as “active
node” or “node change.”
After toying around with
Houdini, I must say I wish

every 3D program had such a useful
construction history— Houdini has one
of the best, if not the best. Side Effects is
clearly one of the few companies in the
game market that has evaluated what
works in the other software packages
and has added those features into its
own tools.

SPECIAL EFFECTS
The special effects abilities are what
really piqued my interest in this
software, but being a video game
developer, I wondered, “What am I really
going to do with them?” Maybe I could
use Houdini for pre-rendered cinematics
for cutscenes or pre-visualizations. But
based on my professional experience,
those things usually don’t happen very
often in games (or at least not the games
I’ve worked on). Still, it’s cool to have
them on hand.

Judging by what Houdini has produced
in films and by reading about it in
production magazines, I’d say it has a
one of the more advanced particle
systems on the market today. Version 9

SIDE EFFECTS’ HOUDINI 9
BY DAVID MARCH

HOUDINI 9

STATS
Side Effects
123 Front St. West,
Suite 1401
Toronto, Ontario
Canada M5J 2M2
416.504.9876
www.sidefx.com

PRICE
$1,995

SYSTEM
REQUIREMENTS
Windows and Linux
operating system.
Support for 64-bit
Windows and Linux
available. 512MB
memory required. AMD
or Intel compatible
processor (PIII or later).
1GB disk space.
Workstation-class
OpenGL graphics card
with a minimum
resolution of 1,024x768;
color depth of 16-bit
and support for OpenGL
1.2 or later.

PROS
1. Construction history

on crack.
2. Robust channel

editing.
3. More familiarity in UI

for new users.

CONS
1. Would like to see

expanded Sub D
modeling tools.

2. Would like quick click
normal mapping
tools.

3. Small community of
users in game
development.

Houdini 9’s interface will be comfortable for users already familiar with Maya.

http://www.sidefx.com

29W W W . G D M A G . C O M

also comes with an updated fluid
dynamics solver, which can simulate
liquids, fire, and smoke. Not only can you
simulate these effects, but you can also
use them with rigid bodies and particles.

ANIMATION AND TEXTURES
Houdini has a robust channel editor
called CHOPS. The system gives you a
world of control over the data in your
channels, including layering animation,
which is a must with any animation
software. If you can’t layer with your
current animation software, it’s time to
get new software.

In addition to layering and blending
motions, Houdini is procedural in nature
so there are many other possibilities for
things you may want to do. You can layer,

shift, and mix motions and then blend
them to any channel or mix them with
other premade clips. And you can
simulate motion dynamics on top of it.

All the basic texturing tools are right
where they should be in Houdini,
including one for pelt mapping. Pelt
mapping is that tool most 3D apps added
about a year or two ago that lets you to
cut a seam and flatten your UVs, as if
they were skinned animals, and slap
your textures right on.

One thing that seems to be missing,
though, is a quick way to create normal
maps, although Houdini does have
occlusions and displacement maps. But
even in these areas, I felt like Houdini
could use a bit more work.

IS IT A CONTENDER?
Houdini has covered all the bases, with a
bit of an extra kick in the node-based
workflow and special effects. Still,
whether game developers decide to
adopt the tool will depend on what they
are trying to execute in a project.

I actually tried to dream up a few
scenarios in which Houdini’s node-based
workflow would be unbelievably powerful
for a game engine, but I struggled to
come up with anything solid. However,

it’s quite obvious why Houdini is used for
pre-rendered cinematics.

Technically, if your game world was set
up to go straight from your 3D application
into your engine, it could be quite useful
with some of its procedural workflow. I
don’t know of any engine that could
handle such a large input of work, but it
could be created somehow to batch
process out elements. And I do know of
some engines out there that can take
files straight from one 3D application
right into the engine. (Basically, the 3D
application is the engine, sort of.) Houdini
seems like a candidate that could have
quite some potential for this type of work.

Even though Houdini has all the nuts
and bolts of any other major 3D package,
I find it hard to imagine the game
community jumping ship from their
existing staples. Yet with Houdini’s
improved user-friendly interface and solid
set of tools, it can stand on its own for
sure. I can also see it being used for
specific specialized purposes within a
studio—for example, making reusable
tools that can automate redundant tasks.

D A V I D M A R C H is lead animator at
Irrational Games in Australia. Send
comments to him at dmarch@gdmag.com.

OUR RATING SYSTEM :

EXCEPTIONAL GREAT FAIR POOR UNFORTUNATE

OUR RATING SYSTEM :

EXCEPTIONAL GREAT FAIR POOR UNFORTUNATE

Houdini 9’s fluid dynamics solver allows

liquids, fire, and smoke effects to be used with

rigid bodies and particles.

product news
SUPPORT FOR PHYSX SDK EXPANDED
AGEIA
Ageia Technologies expanded its
licensing and support model for the
PhysX SDK, in which the SDK binaries will
be offered royalty-free, while the SDK
source code is licensed at $50,000 per
application. Their support model covers
game profiling and optimization for
console, multi-core and PPU, augmented
with both off-site and on-site support
options. The PhysX software supports PC,
PlayStation 3, Xbox 360, and Wii.
www.ageia.com

WII SUPPORT ADDED TO GAMEBRYO
EMERGENT
Emergent Game Technologies’ Gamebryo
game engine now supports the Nintendo

Wii, enabling the development of titles for
Nintendo’s console using the latest
version of the engine also used on
Bethesda’s OBLIVION.

Emergent also unveiled an upgrade to
its Gamebryo engine focused on
performance and feature enhancements
for next-generation platforms. The latest
release aims to enable dramatic
rendering results while attempting to
significantly reduce development
resources required for production.
www.emergent.net

CARRARA 6
DAZ 3D
Carrara 6 is DAZ 3D’s modeling,
animation, and rendering application,
with the latest version adding a host of

features including the handling of morph
targets, conversion of surface materials
and rigging. New enhanced remote
control grants users simultaneous
control over multiple translation and
transform dials.

Also new is non-linear animation,
dynamic hair, and displacement modeling—
in which the user can paint detail on a
model using free-form brush tools.

Symmetrical modeling has been added,
which allows content creators to edit
both sides of a symmetrical object at the
same time using a variety of editing
tools; and in-scattering of light, which
when combined with the new Ocean
primitive, provides water surface and
wave simulation.
www.daz3d.com

http://www.ageia.com
http://www.emergent.net
mailto:dmarch@gdmag.com
http://www.daz3d.com
http://WWW.GDMAG.COM

2008

 If you are
 going to attend
one game industry
 event in 2008,
 this is the one.

Save up to 30% when you register by January 16, 2008. www.gdconf.com

Insider Tip:
The event dates are earlier this year

so book your hotel asap!

Expanded Summit Lineup:
• Casual Games
• Independent Games
• Game Outsourcing (new!)
• Serious Games
• Worlds in Motion (new!)

Simplified Pass Structure
• All Access
• Main Conference
• GDC Mobile
• Summits and Tutorials
• Expo

New for GDC08!

GDC08:
Transform Your Game.

myGDC: Our New Professional
Networking Resource
• Set up profiles
• Search and connect with thousands

of game development professionals
• Share projects, images, and ideas

http://www.gdconf.com

AFTER DEVELOPING YOUR GAME ENGINE
in C++ and implementing game content
using C++ for a while, you might start to
consider what options you have for using
scripting languages. This article looks at
various options for adding scripting to a
game, with a focus on embedding Ruby
into an existing engine.

Implementing game
logic in C++ can work
quite well in small
games, but in large
games, the rebuild
time can become an
issue. You may have
to spend up to five
minutes rebuilding
and reloading the
game just to see the
effects of one change. Scripts, on the
other hand, don’t need to go through the
entire compile and link process. You can
modify a script and re-launch the game in
seconds.

In an ideal situation, you would be able
to make changes to the script and see
the results in real time. This is not always
possible, but it is something that should
always be kept in mind as a goal.

A large proportion of one’s time in game
development is spent iterating possible

ways of doing things and fine tuning
them. Anything that can reduce the cycle
time in this feedback loop is very important.

ROLL OR ADAPT
Do you roll your own scripting language
or adapt an existing one? There are pros
and cons of both approaches. If you roll

your own, then you have full control over
aspects of the script language that could
affect your game’s performance,
specifically the speed of execution and
how memory is allocated. This may be
very important if your target platform has
limited resources and if a more compact
and targeted scripting language would
work for your application.

Rolling your own also has the
advantage that you will be very familiar
with the inner workings of the script
compiler or interpreter, and this will aid
you greatly when it comes to debugging
issues that have to do with low-level
problems with scripts or script objects.
The downsides of rolling your own are 1)
the large amount of time it takes to get a
fully featured language and 2) the
inevitable number of bugs involved in
developing something from scratch.
Maintenance of the code may also be an
issue if your script programmer leaves;
then extending and debugging the
script language may become
problematic and messy.

If you choose to adapt an existing
language, you benefit from getting the
language up and running with minimal
work. However, there’s still a significant
portion of code to be written: the
interface between the script engine and
your game engine. But once this interface
code is written, you’ll have a powerful

scripting language
with an extensive set
of features and
generally with a lot of
documentation on
how to write code
using it. Using an
existing language
also allows you to
hire script
programmers who are

already highly proficient in the language,
avoiding a lengthy ramp-up time for a
proprietary language.

CHOICE OF LANGUAGE
There are several available scripting
languages than can be embedded in a
game engine. Lua, Perl, Python, and Ruby
are some of the more popular ones.
Each comes with its own set of benefits
and problems.

Perl and Ruby are quite well known, as
they have been used for some time for
writing web server applications and
general-use scripts. Perl is the older of
the two and hence is more widespread,
but Ruby is increasing in popularity and
is considered something of a “modern”
language. Perl usually executes faster
than Ruby, but both suffer from being
slightly overweight and from sometimes
taking up a lot of memory.

Lua and Python are more lightweight
languages, sacrificing some power for
simplicity, and possibly speed of
execution. Lua in particular has been a

31W W W . G D M A G . C O M

THE INNER PRODUCT

MICK WEST

>>

EMBEDDED SCRIPTING
A Closer Look at Ruby

M I C K W E S T was a co-founder of Neversoft Entertainment.

He's been in the game industry for 17 years and currently

works as a technical consultant. Email him at

mwest@gdmag.com.

Adding a scripting language to an
existing game engine can greatly

aid the development process.“
”

mailto:mwest@gdmag.com
http://WWW.GDMAG.COM

32 N O V E M B E R 2 0 0 7 | G A M E D E V E L O P E R

THE INNER PRODUCT

popular choice for game scripting and is used in
several commercial games including WORLD OF

WARCRAFT and FAR CRY. Lua is a popular choice for
defining the user interface.

Ruby is a powerful language with a very active
user community. There are several
books on the market which
discuss how to program in Ruby,
and many libraries exist for
performing a wide variety of
functions. Unfortunately, Ruby is a
bit lacking in documentation
regarding the actual internal
workings of the language. If you
want to incorporate Ruby into your
game engine, you would benefit
from a little understanding of
what’s going on under the hood. Here we’ll take a
very brief look at what’s involved.

EMBEDDING RUBY
The basics of embedding Ruby into another
application are relatively straightforward. At the
time of writing the latest stable version of Ruby
was 1.8.6, on which these examples will be based.
Ruby is implemented in C and can be built into a
DLL using the supplied makefile, and then linked
in with your project. However, if you’re planning to
incorporate Ruby at a fairly low level, you may
want to build the source directly into your project,
which will let you customize the language,
remove parts you don’t use, and have finer control
over debugging.

The first stage in embedding Ruby in your game
is simply to get it to compile and link with your
code. Then you need a mechanism for loading and
executing scripts. The very simplest way is shown
in Listing 1.

The first two lines initialize the Ruby system. The
third line tells Ruby that we’re running from an
embedded script. The fourth line actually loads
and compiles the script “hello.rb.”

While Ruby is an interpreted language, it’s actually
compiled into a tree of “nodes” when the source file
is loaded. This compilation can also happen off line
if you don’t want to ship with your source code.
Here the call to rb_load_file() will load the

source file and compile it into the Ruby node tree.
It will also set the global variable ruby_eval_tree
to point to this newly loaded set of nodes.

The call to ruby_exec() then executes this
compiled program, and then returns control back
to your code.

With this simple example we can look at some of
the immediate practical implications of using Ruby
as an embedded language. The most obvious one
is the use of memory.

Incorporating the full Ruby compiler and
interpreter into a code base may add more than
500K to the executable size. This alone may be a
prohibitive amount for certain platforms with
limited memory. But for something like a PC game,
or even a PlayStation 3 or Xbox 360 game, it’s not
an unreasonable amount—about 1 percent of the
available memory. You’re weighing several factors
here, with more memory used, you get more
power and flexibility in your scripting language.

COMMUNICATION
Now that you’ve got Ruby to compile and run,
what next?

Ruby comes with a fully featured C API that
allows you to specify all manner of ways of

communicating between Ruby and
your C/C++ code, calling functions
and passing parameters. The
simplest way is show in Listing 2.

Everything in Ruby is an object. All
Ruby objects are represented in
C/C++ by a “VALUE” data type. A Ruby
VALUE is a loosely typed object, and
pretty much every Ruby function in
the C API takes parameters of type
VALUE, regardless of the actual
nature of the object being passed. A

VALUE can be anything from an integer to an array
or hash table of other VALUE objects.

A VALUE is not an object in the sense of a C++
object. In C++, a VALUE is (usually) a 32-bit word,
which typically is a reference to the actual object.
However, a VALUE can also be one of several
compact data types, the most common of which is
a “small integer”; in this case, the value is simply
shifted left and ORed with 1. This is what’s
happening in Listing 2.

It’s a bit of a hack to illustrate what’s happening
at a low level when passing simple parameters to
Ruby functions. You can do the same thing with the
INT2FIX(n) macro. Encoding a concrete data object
in a VALUE is a much more efficient way of
manipulating objects (such as small integers) than
requiring all objects be represented by reference.

Suppose you wanted to pass a string to Ruby.
You would have to make an object of string type
and pass that. Listing 3 demonstrates this. A new
Ruby object is created called “ruby_string.”
Again, this is just a VALUE type, so for C++, it’s just
a 32-bit word (an unsigned long, to be precise,
which is generally a 32-bit word). Passing this
string to the Ruby function is exactly the same as
passing the small integer, and the Ruby function

LISTING 2

C++ Code:

rb_funcall(Qnil, rb_intern(“simple1”),

1, (125<<1)+1);

Ruby Code

def simple1(arg1)

puts arg1

end

Output:

125

LISTING 3

VALUE ruby_string = rb_str_new2(“Hello World”);

rb_funcall(Qnil,

rb_intern(“simple1”), 1, ruby_string);

Loading and executing a Ruby script.

LISTING 1

RUBY_INIT_STACK

ruby_init();

ruby_script(“embedded”);

rb_load_file(“hello.rb”);

ruby_exec();

C++ calls a Ruby function directly, passing a parameter. Passing a string object.

Using an existing language also
allows you to hire script

programmers who are already
highly proficient in the language.

“
”

simple1 does not care if it’s a string, or an integer,
or a 20MB array of red-black trees, or whatever.
This loose typing makes Ruby very flexible. The
internal representation using 32-bit VALUES makes
handling Ruby objects reasonably lightweight on
the C++ side.

Functions (or methods) and variables are all
referenced by an ID type. Like a VALUE, an ID is a
32-bit word. An ID represents a Ruby symbol or
name. The second parameter to rb_funcall here is
an ID, and in this case it’s the ID of the function
“simple1.” This simple way of referring to
functions makes it very easy to reference them
and object methods.

Going the other way (calling C++ from Ruby) is
slightly more complicated. To call a function from
Ruby, we first have to tell Ruby that the function
exists and what its name is. See Listing 4 for an
example. First, we have the function we’re going
to use.

The function load_asset takes two parameters:
an ID and a VALUE. The ID is the receiving object,
which in this case will be the Ruby special value
Qnil (4, in this implementation). The VALUE is
whatever is passed in by the calling Ruby script. It
could be any Ruby object. From the point of view
of C++, it’s just an unsigned long, and we’ll need to
call a Ruby function to get the contents—hence
the call to rb_string_value_ptr. We can return a
Ruby VALUE back to the Ruby calling function, but
in this case we just return Qnil.

Now that we’ve got our function, we need to
register it with a call to
rb_define_global_function, which just takes as
parameters 1) the name of the function (which
need not be the same as the C++ name), 2) the
address of the function (using the RUBY_METHOD_FUNC
macro to cast to the correct type), and 3) the
number of parameters (which is over 1, in this case).

Then we can call our function from Ruby. From
C++, we call the Ruby script load_some_assets,
which simply calls the C++ function load_asset()
ten times, with a different string parameter each
time, and then returns back to C++.

This barely scratches the surface of what’s
possible in interfacing Ruby and C++. You can also
extend Ruby objects by adding C++ member
functions. You can give Ruby members access to
your C++ objects. And you can even do all this
automatically using a pre-processor such as SWIG.
These examples should give you a sense of how
simple it is to incorporate a scripting language into
an existing code base. You can couple them as
loosely or as tightly as you want.

PERFORMANCE ISSUES
In games the two perennial performance issues
are memory and frame rate. With a language like
Ruby, these two issues combine in one particular
issue: garbage collection.

In Ruby, as in many scripting languages, you do
not specifically allocate and free memory. Instead,
memory is allocated automatically for objects as
needed and is also freed automatically when it’s
no longer being used, at least in theory. In practice
what happens is unused objects are kept around
until Ruby detects a need for “garbage collection,”
which happens when a heap gets full. You could be
merrily sailing along, when all of a sudden the
heap fills up and a massive garbage collection
operation is initiated which takes a frame or so to
process, resulting in a frame rate glitch.

All this is highly
dependent on several
factors, like how you
use objects, how big
they are, and how big
your default heap is. To
avoid garbage collection
going off at an
inopportune time, you
can call it yourself
manually with the
function rb_gc(). You
could call this every
frame, giving you a
fixed overhead, which
might be quite

reasonable if you don’t have an immense amount
of Ruby objects. You could also defer it until a less
noticeable point in the game, such as a level
transition. If you don’t use it in the real-time
potions of your game, then it’s less important.

A GEM IN THE ROUGH
Adding a scripting language to an existing game
engine can greatly aid the development process
by allowing rapid iterations of game logic that
would ordinarily require a rebuild of the C++ code.
Adding a script engine creates an immediate
resource loss by taking up additional memory, and
the logic that was in C++ will now be running
slower in script.

Generally, these are manageable problems, and
the benefits of the additional flexibility of scripting
should greatly outweigh the negatives over the
long term.

Ruby is a mature and powerful scripting language.
It might be too heavyweight for some applications,
but it also could work very well in games that can
afford to spare some memory and CPU cycles.
Integrating Ruby with C++ is very straightforward
and should allow you and the content creators on
your team to begin using the language for
scripting after only a few days’ work. *

LISTING 4

// C++ Function to be called from Ruby

// with one parameter

VALUE load_asset(ID recv, VALUE asset)

{

printf (“Loading asset %s\n”,

rb_string_value_ptr(&asset));

return Qnil;

}

// Code to register the C++ function

rb_define_global_function(“load_asset”, RUBY_METHOD_FUNC(load_asset), 1);

// And run a script to test it.

rb_funcall(Qnil,rb_intern(“load_some_assets”),0);

Example Ruby script calling C++

def load_some_assets

for i in 1..10 do

load_asset “asset_”+i.to_s+”.jpg”

end

end

Calling C++ from Ruby, which is called from C++.

33W W W . G D M A G . C O M

THE INNER PRODUCT

Thomas, D. and Hunt, A. “Extending Ruby,” in Programming Ruby: The
Pragmatic Programmer’s Guide. Reading, Mass.: Addison-Wesley, 2001.
(Includes the Ruby C API documentation.)
www.rubycentral.com/pickaxe/ext_ruby.html

Gutschmidt, T. Game Programming with Python, Lua and Ruby. Boston, Mass.:
Premier Press, 2004.

RESOURCES

http://www.rubycentral.com/pickaxe/ext_ruby.html
http://WWW.GDMAG.COM

http://www.sijm.ca

35W W W . G D M A G . C O M

PIXEL PUSHER

STEVE THEODORE

>>

WE GEEKS OF A CERTAIN AGE EXPERIENCED
a little thrill of nostalgia during the
blizzard of pre-HALO 3 marketing. For
most industry folks, the commercials
featuring Stan Winston’s mammoth
“Believe” diorama were an intellectual
exercise: a chance to speculate about the
end of the trilogy, to nitpick about the
details of the beautifully executed hand-
built models, or to debate the marketing
merits of the ad campaign. (See
Figure 1.)

For the more retro among us,
though, the mockumentary footage
showing the painstaking modeling
work resurrected some pungent
memories, the lemony smell of
polystyrene glue, the slimy slide of
water-release decals, and the
tedium of filing mold-marks off of
various Panzer sprockets and
Mustang manifolds.

The plastic modeling scene of 25
years ago might seem irrelevant to
a magazine that specializes in
whiz-bang next-gen game graphics.
The technical challenges of
modeling in plastic and in polygons are
completely different, but the artistic
demands of level design and asset

modeling are actually quite similar to
those facing diorama builders and other
real-world model-makers, like effects
houses and set dressers.

Physical and digital modelers both
need to engage their audience in ways
that differ from most of the other arts.
Temporal media like animation or comics
tell stories by controlling the audience’s
experience of time and sequence.

Traditional graphic arts like painting and
illustration set the stage with a 2D
composition that guides the eye and
shapes the viewer’s sense of occasion.
Physical and virtual modelers, however,
must both cope with a viewer who can
inspect the finished piece from any angle
or distance. Of all the disciplines,
modelers face the toughest challenge in
reaching the audience emotionally. Just
as animators still find value in the works
of Seamus Culhane or Preston Blair (even
if they’ve thrown away their pegboards),
modelers should ponder the lesson of the
pioneering modelers of the 1970s and
80s, artists like diorama builder Shep
Paine, miniaturist Bill Horan, or ILM’s

Lorne Peterson—even if we never need to
know the right way to vacuum-form a
new Messerschmitt canopy or how to
unblock a dodgy airbrush.

PLASTIC TO PIXELS
The central task of any modeler, physical
or virtual, is to give a static object or
scene enough life that it can reach the
audience emotionally without the kind of

framing devices that other media
have. Most of us deal with subjects
that are basically anonymous:
mass-produced vehicles,
manufactured goods, generic
architectural spaces. Only a
fraction of our work is devoted to
unique capstone designs that are
strong enough to capture the
imagination based on design
alone. For every Death Star or TIE
Fighter there are miles of faceless
corridors, inevitable period
vehicles, and necessary but
uninteresting bric-a-brac.

Thus every game modeler faces
the same problem many times:

How can I make my Sherman tank
different from all the other 3D Shermans
out there? How will my shipping
container yard stand out from all the
other container yards? Even if I’m lucky
enough to work on a strong, unique
design, how can I anchor that design in
physical reality for the players? Those
questions would be equally familiar to
earlier generations of model builders.

Real-world modelers and scenarists try
to compel the audience by presenting
objects or spaces as slices of living
history, not static images. By now most
game artists have learned the obvious
truth that the world isn’t factory fresh,
and most modelers today add a dash of

EVERY PICTURE
TELLS A STORY
Modeling and Narrative

FIGURE 1 Stan Winston’s “Believe” diorama—the missing link

between modern game graphics and old-school modeling skills.

S T E V E T H E O D O R E has been pushing pixels for more

than a dozen years. His credits include MECH COMMANDER,

HALF-LIFE, TEAM FORTRESS, and COUNTER-STRIKE. He's been a

modeler, animator, and technical artist, as well as a frequent

speaker at industry conferences. He’s currently content-side

technical director at Bungie Studios. Email him at

stheodore@gdmag.com.

mailto:stheodore@gdmag.com
http://WWW.GDMAG.COM

noise or a bit of wear as a matter of
course. The classic models of artists like
Paine and Francois Verlinden, or the
miniature work in the pre-CG era Star
Wars films, take this principle several
steps further. They are built around
details that can turn an empty room or a
simple object into something like a
character with a past and a distinct

personality. Great models never let the
viewer forget that every object or scene
had a past that made it different from all
the others of its kind. Whether it’s a lucky
pet name chalked on a tank turret, some
jerry-rigged repairs on the Millennium
Falcon, or just the litter of paperwork and
coffee cups on a desk, classic modelers
always remind the viewer that what they
see is a moment in an ongoing story—
not just a tank, a spaceship, or an office.

BACKSTORY
Shep Paine’s famous Monogram diorama
series is a great example of how details
can be chosen to create miniature
narratives. The B-17 kit (see Figure 2) in
particular, shows storytelling and

modeling welded together into a single
process. The diorama centers on a
crashed bomber, a subject that could
easily find a home in many game
settings. The execution, though, shows
how the artist’s careful thought has
transformed a simple premise into a
unique form. Rather than simply layering
on scorch marks and gibs, Paine has

imagined the entire crash
sequence: flak over the
target, a limping flight
home, the failure of the
plane’s landing gear(see
Figure 3), and a final skid
off the runway into the
muddy verge of the
landing field.

That story drives the
details of the final model.

Everything, from the streaks of oil smoke
on the wings to the way the propellers
were bent back asymmetrically by the
climactic belly flop, helps support the
background story. Instead of a
forgettable icon that simply checks the
“plane crash” checkbox, the imagined
scene invites the viewer to envision the
off-screen drama, as well as appreciate
the final result. The viewer doesn’t need
to decipher the details of the story
correctly to be affected by it. The logic of
the imagined events gives the whole model
an artistic unity and authentic presence
that a random collection of brownouts and
debris could not.

An example of the same principle
rendered in up-to-the-minute shader 3.0

glory, is the artwork in 2K’s BIOSHOCK. The
drowned city of Rapture abounds in well-
chosen narrative details, even aside from
the important set pieces, which are
important to driving the game’s complex
interwoven stories. Many of the stories
are played out in very literal ways for
macabre effect, bodies hung from
meathooks, stores looted, and so on. But
what really helps sell Rapture’s unique
feel are the hundreds of tiny stories
scattered throughout the city. Even in out
of the way corners, you’ll find small
stories that illustrate how or why the
utopia failed: a barricaded spare room
with a filthy mattress, a few bottles of
booze, a couple of books; a policeman’s
office, buried under piles of paperwork
from toppled book shelves; the wreckage
of a garden party in Arcadia, complete
with empty champagne bottles and an
overturned tea table.

Perhaps the way the city itself is being
destroyed by internecine warfare and the
encroaching sea is the inspiration for the
use of narrative details. Whatever the
reason, the overall effect is compellingly
immersive in ways few games can match.

VARIETY
There’s an obvious cost to thinking about
every modeling task or environment as a
story. Inevitably, relying on shorthand
symbolism is easier and quicker than
imagining an entire history behind every

36 N O V E M B E R 2 0 0 7 | G A M E D E V E L O P E R

PIXEL PUSHER

FIGURE 3 The key to diorama is the artist’s

thorough conception of the events leading up to

the crash. Here the bent and twisted landing

gear, the torn control surfaces and the scarred

landing field all help convey a complete

narrative in a single moment.

FIGURE 2 Shep Paine’s Monogram B-17 diorama is a study in the art of bringing backstory and

personality to a static model.

Physical and digital modelers both
need to engage their audience in
ways that differ from most of the

other arts.
“

”

S
H

E
P

 P
A

IN
E

 D
IO

R
A

M
A

 I
M

A
G

E
S

 C
O

P
Y

R
IG

H
T

 M
O

N
O

G
R

A
M

 1
9

7
2

37W W W . G D M A G . C O M

PIXEL PUSHER

poly and pixel. The time differential may
be a lot less than it seems. The actual
amount of detail necessary to sell a story
can be quite minimal. The mental effort,
on the other hand, is considerable.

Artists who like to wade right into a
project and start laying down polys will
find it uncomfortable to put the building
on hold while they ponder a bit of
backstory. If the task seems daunting,
though, it’s worth remembering that the
modeler or level designer doesn’t
suddenly have to become a screenwriter
to make use of narrative detail. The
stories don’t need to have a lot of depth
or character development; they simply
need to respect and reward the player’s
latent powers of observation.

There is one practical drawback to
focusing on narrative details. The
essential point of a storytelling approach
to modeling is to emphasize the
individual history—the
“personality”—of the
subject. In games,
unfortunately, we have to
manage scarce runtime
resources, and many of
the assets we create
have to be reused. The convincing detail
that turns a model into a uniquely
believable object can backfire when it
shows up again and again. Asset
modelers will have to plan carefully how
to avoid undermining their own efforts
through repetition. Even environment
artists will find that key details will
repeat, whether common elements like
doors and fixtures or, more often,
textures. Balancing the need for

reusability with the power of hand-crafted
individualizing detail is a tough trick.

RETREAD LIGHTLY
One common strategy is to build both
individualized and generic versions of the
same asset. For example, if you have a lot
of stop signs in your city, you’ll probably
need to reuse them often. But if the mix
is leavened with a couple of variants,
such as a bent stem from being hit by a
car or a vandalized version with a “‘Stop’
Eating Animals” sticker, the monotony is
relieved and even the generic variants
gain a touch of extra depth.

Ideally, the variants can share
geometry or texture work with the
generic versions so that the resource
costs of the whole package aren’t
overwhelming. Designing assets from the
outset so they support cheap color
variations, part swaps, and decaling

makes life much easier as you balance
unique details with unobtrusive generics.

Rigging assets for animation and then
“re-posing” them to build variants
cheaply is another good investment.
Naturally, of course, the amount of
energy you’ll put into individualizing
assets will scale with their relative
importance. You probably want the
details of the heroine’s car to tell the
player something about her and her

history, but you probably don’t want to
spend too much time on the life and
times of her toaster oven.

Although game technology seems to be
at the height of information age
modernity, the basic challenges of the
working artist never really change.
Learning some tactics from real-world
modelers isn’t an unreasonable stretch
for the modern pixel pusher. We’re the

latest generation in a line
of modelers that goes
back at least to the days
of the Egyptian Pharaohs,
who passed into the next
world accompanied by
detailed hand-carved

dioramas of daily life in this one. The
4,000-year old diorama in Figure 4,
despite its simple execution, still conveys
startling immediacy. You can almost hear
the commotion and smell the sawdust in
the crowded carpenter’s workshop.
Though we work in ways that
anonymous 11th dynasty craftsman
never dreamed of, we’re still hoping to
achieve the same things. Let’s hope we do
an equally good job.*

FIGURE 4 This 4,000 year old Egyptian diorama

displays many of the artistic techniques a modern

environment artist or modeler would recognize.

SHEPHERD PAINE’S BOOKS Modeling Tanks and Military
Vehicles (Kalmbach Publishing, 1982) and How To Build
Dioramas (Kalmbach, 1999) are great introductions to Paine’s
narrative approach to detailing. His web site,
www.shepherdpaine.com, contains a gallery and
reproductions of his famous Monogram series dioramas,
which show the narrative principle applied to a number of
historical military vehicles.

Bill Horan’s Military Modeling Masterclass (Osprey, 1994)
focuses on the details of painting technique rather than
modeling per se, but it’s still a good showcase for the way in

which detail choices can take stock subjects and give them
personality. Many of the best pieces can be seen online at
www.kitpic.com/pf.php?fid=479.

Lorne Peterson’s Sculpting a Galaxy (Insight Editions, 2006)
is a lushly illustrated tour of the physical models from the
early years of the Star Wars franchise, the most famous
application of narrative detail in modeling.

The Association of Professional Model Makers is the
professional group for modelers in the engineering and
entertainment. Its web site, www.modelmakers.org, has a
good bibliography of modeling-related books.

more on modeling

Respect and reward the player’s
latent powers of observation.“ ”

http://www.shepherdpaine.com
http://www.kitpic.com/pf.php?fid=479
http://www.modelmakers.org
http://WWW.GDMAG.COM

I’VE RANTED BEFORE ABOUT HOW PEOPLE
have told me I’m missing the most
important rule of game design: “Make it
fun!” I usually try to politely explain that
it’s such a basic rule that if it’s news to
someone, they should reconsider
becoming a designer.

But is that necessarily true? I’ve
written before about how I’m not crazy

about the term
“serious games”
for games that
have a purpose
beyond
entertainment
because most—
but not all of them
are supposed to
be entertaining
and fun too. It’s
possible to
conceive of a

game that very effectively categorizes
photographs or awakens people to take
action against genocide that might not be
fun per se, but it might be quite effective
in its main purpose.

Perhaps stating the blindingly obvious
is useful in getting us to challenge our
assumptions, which is a useful rule. Like
the old cliché about fish not being aware
of the water they’re swimming in,

examining our most basic assumptions
may reveal some important facts to
which we’ve become blind.

THE FISHWATER RULES
What are these rules of game design that
are so basic every game—or at least 99
percent of them—have them as part of
their basic DNA? Are they rules that help
us define what a game is?

I’m not sure I trust myself to even see
them, as by definition they should be
nearly invisible to me, so I’m working on
instinct and feeling and am ready to be
corrected by my readers. That said, here
are a few that come to mind.

START WITH WHAT
WORKED BEFORE
Starting with what has been proven
successful in the past is not so much a
rule as a truism. Virtually all current
games are heavily inspired by previous
ones. I’ve been a game developer long
enough to remember the 1970s, when
we had no idea what was even possible
for video games, and tried all sorts of
wild experiments.

But now, for people who have been
exposed to games for decades, I doubt
it’s even possible to truly start fresh.
Certainly when people begin with the
pitch, “I don’t play games, but I’ve come
up with an idea so new and exciting that
even I’d play it, so I know it’s good!” then
often the idea is one that has been done
dozens of times before.

Some of the current masters of
experimental gameplay manage to
consistently break rules and come up
with interesting things, but even their
games often share a basic structure with
preexisting titles.

INCLUDE INTERACTIVITY
Our medium is about setting up lots of
interesting choices for the player. Is it
possible to make a title without choices

that can even be called a game? I can
conceive of games that minimize choice,
but if you eliminate it completely it
seems that it’s not a game anymore.

HAVE GOALS
I’ve written previously about more
sophisticated rules for giving the player
short, medium, and long-term goals, or
how to use visual or implied goals. Will
Wright is fond of so-called software toys
that lack explicit goals, but even those
have pretty strong implicit goals. It’s hard
to get people to define a game, but
something fun without goals tends to be
called a toy or perhaps a hobby or pastime.

NEAR-UNIVERSALS
I considered other possible rules that are
common to many games, but with some
significant exceptions. For example, the
vast majority of games involve some sort
of gradual increase in difficulty, or at
least in scale or complexity. But somehow
that doesn’t seem inherent to actually
being a game. I can even think of some fun
games that maintain a pretty consistent
difficulty like THE SECRET OF MONKEY ISLAND

series, which entertained more through
humor than through challenge.

Similarly, almost all games have a
theme and often a story or narrative, but
there are some very abstract puzzle
games that are so lacking in this respect
I hesitate to suggest it.

WHAT’S THE POINT?
Why is it worth questioning our basic
assumptions about what must go into a
game? I believe that if we are to continue
advancing the state of the art, it’s very
helpful to know what assumptions we
make in case we’ve been treading down a
road for years without even noticing it’s
not the only option. Just because everyone
does it doesn’t make it right. Or to quote
another saying I believe in, “Everybody
knows that” is not a valid proof. *

38 N O V E M B E R 2 0 0 7 | G A M E D E V E L O P E R

GAME SHUI

NOAH FALSTEIN

N O A H F A L S T E I N has been a professional game developer

since 1980. His web site, www.theinspiracy.com, has a

description of The 400 Project, the basis for these columns. Also

at that site is a list of the game design rules collected so far and

tips on how to use them. Email him at nfalstein@gdmag.com.

>>

FISHY RULES
Water? What water?

Will Wright’s “software

toys” such as SIMCITY

2000 may lack explicit

goals but they often have

strong implicit goals.

http://www.theinspiracy.com
mailto:nfalstein@gdmag.com

20082008
Learn more about at www.gdconf.com

New for 08! Purchase a Conference Pass and

 Gain Access to

www.gdconf.com
February 18-22, 2008

San Francisco
Visit gdconf.com for more information & event updates

 The Ultimate
Game Developer’s Networking Resource

myGDC enables you to:

• Create and customize your profile on gdconf.com

• Search a database of thousands of game developers
attending GDC

• Message and network with other members of the
myGDC community

• Share your profile, projects, and ideas with your peers

 Connect with the most influential and

internationally diverse audience of game industry professionals

 before, during, and long after the conference!

http://gdconf.com
http://www.gdconf.com
http://www.gdconf.com
http://gdconf.com

THE GLOBAL ECONOMY NECESSITATES
global communication, and for game
development that means ensuring your
final product is translated into a host of
local languages. To help combat piracy
and extend customer appeal to non-
English speaking countries, international
versions of games must
be produced alongside
domestic products to
ensure a simultaneous
worldwide release. This
process, known as
localization, can be
complex with endless
opportunities to introduce language-
related bugs into the game.

Luckily, well-established practices are
slowly developing to help teams steer
clear of the potential pitfalls of localization.
One aspect in particular that is seeing
more and more best practices is the
recording of international voice dialogue.

M’AIDEZ!
The most common process of localization
involves translating game text and
recorded dialogue from an original
English source. It’s common for tens—if
not hundreds—of thousands of dollars to
be spent on scriptwriters, voice talent,
and audio professionals, all to ensure the
highest quality source material during
domestic development. However, outside
of a few ancillary tasks, this critical
domestic audio team rarely has much
involvement in the creation of the
international voice assets—and with

good reason, as few of these teams
include native speakers of a worldwide
collection of languages.

The standard range of localization
includes French, Italian, German, and
Spanish (often abbreviated as FIGS) as
well as Japanese. As more markets open

up across the globe, though, additional
languages are making their way into
games, such as Mandarin, Arabic, Korean,
and even Polish.

Localizing a product begins with
casting the domestic title. Once cast, a
casting package is assembled by
producers or a head writer who might
have some input as well. The package
includes concept art and descriptions of
key characters; for example, “male, 17
years old, computer nerd with high voice
and a slight lisp.”

Ideally, the package should also include
some audio reference of the domestic
actors. Interestingly, actors in Europe are
often affiliated with recording studios
rather than talent agencies, so selecting
a studio goes a long way toward casting
the FIGS voice set.

The casting package is typically sent to
the publisher’s international partners,
whether Sony Computer Entertainment
Europe, Sega Europe, or domestic
companies such as Babel Media or
Medialocate, which specifically handle
international localization. It’s these
international partners who then handle
outsourcing the FIGS voice set to established
European localization companies.

Luckily for domestic audio teams
tasked with localization, the same
companies used by the likes of Sony and

EA are available for hire to smaller teams
as well. Companies such as SideUK,
France’s La Marque Rose, or Germany’s
Effective Media can handle all aspects of
localization from casting to recording to
delivery, depending on the project’s
specific needs. These companies are

also tasked with
translating the full
domestic script into the
various target languages,
a job undertaken by
native speakers of the
languages hired by the
localization company.

MULTI-LINGUAL ACTORS
Once the casting and translation is
completed, the various versions of the
game’s script go into the recording studio.

There are three main ways to record
international dialogue:

1. Have the actors perform it as written
without any other restraints.

2. Ask the actors to constrain themselves
to an approximate time with an
acceptable variance of about 10
percent of the original domestic line’s
timing.

3. Have the actors perform so as to be
lip-synced for cinematics or
important in-game animations.

A large percent of the actors employed
by these European localization
companies are Automatic Dialogue
Replacement (ADR) actors from European
film and TV, so they’re well versed in the
process of time syncing voice. If they feel
too restricted by lip-sync or timing
issues, the actors may improvise with
more colloquial or truncated versions of
the lines so as to make the dialogue fit
the scene.

After the raw international assets have
been recorded and edited, if the domestic
audio team is going to be responsible for

40 N O V E M B E R 2 0 0 7 | G A M E D E V E L O P E R

AURAL FIXATION

JESSE HARLIN

>>

J E S S E H A R L I N has been composing music for games

since 1999. He is currently the staff composer for

LucasArts.You can email him at jharlin@gdmag.com.

SPEAKING IN TONGUES

Actors in Europe are often
affiliated with recording studios

rather than talent agencies.“ ”

Localizing at home and abroad

mailto:jharlin@gdmag.com

41W W W . G D M A G . C O M

anything more before final delivery, it’s
now that they may find themselves
involved in specific or complex creative
processing or international cut scene
mixing. Otherwise, the international voice
files are delivered and implemented into
the game.

Once everything has been implemented,
the international voice set undergoes
linguistic quality assurance. This testing
is handled by either the publisher’s
international partners, the company
contracted to create the FIGS assets, or
both, and consists of native speakers
playing through the game to make sure
the dialogue makes sense or hasn’t
accidentally had the wrong language
implemented into the wrong SKU.

ORIGINS IN THE EAST
When English isn’t the initial source
language, the process is relatively

similar. For games from Japan, translation
work is done by native speakers of
English after which voice direction is
frequently outsourced to Hollywood film
and animation voice directors, such as
Jack Fletcher (FINAL FANTASY X) and Ginny
McSwain (RESIDENT EVIL 4).

Rather than utilizing studios with a
stable of ready talent as in Europe, these
voice directors most frequently utilize
the available talent pool of Los Angeles
voice-over actors. These actors perform
in the same manner as European actors,
recording either with timing or lip-sync
concerns, or freely without any restraints
to their performances. However, it’s much
more common in Japanese game
development than in English-language
development to have the game’s director
or producer on hand at the localization
sessions actively partaking in the
direction of the voice talent.

In the end, the process of localizing
game dialogue for a global market is a
global endeavor, as it should be. Efficient
international systems exist to ensure not
only the widest reach of your game’s script,
but also your game’s unique voice. *

Babel Media, U.K.
www.babelmedia.com

Medialocate, U.S.
www.medialocate-usa.com

SideUK, U.K.
www.sideuk.com

La Marque Rose, France
www.lamarquerose.com

Effective Media, Germany
www.effective-media.de

RESOURCES

http://www.babelmedia.com
http://www.medialocate-usa.com
http://www.sideuk.com
http://www.lamarquerose.com
http://www.effective-media.de
http://WWW.GDMAG.COM

http://www.igf.com
http://www.gdconf.com

http://www.activision.com

http://www.f9e.com

vfs.com/enemies

Game Design at
Vancouver Film School

The Leader.
Dave Warfield, 15-year veteran game
designer for over two dozen titles.

The Know-How.
In just one year, you’ll learn every
aspect of game design. Your portfolio
project is a playable, industry-ready
video game.

The Results.
Our graduates work at top game companies
including Backbone Entertainment, BioWare,
EA Black Box, Next Level Games, and
Propaganda Games.

V
FS

 S
tu

d
en

t
w

o
rk

 b
y

Je
ff

 P
la

m
o

n
d

o
n

http://vfs.com/enemies

http://fullsail.com

Please geek responsibly.
You may speak the language,

but are you geeked?
Here’s a chance to prove it.

www.uat.edu > 800.658.5744

GAME DESIGN COMPUTER FORENSICS

DIGITAL ANIMATION NETWORK SECURITY

ARTIFICIAL LIFE SOFTWARE ENGINEERING

DIGITAL VIDEO TECHNOLOGY MANAGEMENT

WEB DESIGN GAME PROGRAMMING

http://www.uat.edu
http://www.gdmag.com
http://www.cdiabu.com
mailto:info@cdiabu.com

48 N O V E M B E R 2 0 0 7 | G A M E D E V E L O P E R

QUICK, NAME A CASUAL GAME DEVELOPER
other than PopCap! You didn’t come up
with anything immediately did you? Even
for those who work in the casual game
industry, naming more than a handful of
developers can be difficult. This is true
despite the fact that there are many
casual game developers making a very
lucrative living.

Why is it that many of the extremely
successful developers in the casual space
haven’t gained any name awareness?

Though it is probably only a part of the
explanation, an interesting phenomenon
has occurred in the casual game
industry. When you purchase a non-
casual game in a retail store or at an
online store such as Amazon, you will
always see credit given to the creator.
The creator’s name and logo usually
appear on the front, spine and back of the
game box. The creator’s name is credited
on the product page in online stores.

However, this is not the case when you
look at the majority of the casual game
distribution portals. When visiting Real
Arcade, MSN, iWin, Big Fish Games,
Yahoo! Games and most other portals,
there is no mention of either the
developer or the publisher on the game
product page. Clearly the lack of creator
credit is not an oversight. Real Arcade, for
example, formerly included credits on
their pages, but has since removed them.

Why don’t the portals want to give
credit where credit seems due? Are
portals marginalizing developers in order to
try and keep another PopCap from rising
up? This is a question that most portals
avoid answering.

Now before going further I should
mention that I work for Reflexive

Entertainment, a game developer which
also runs www.reflexive.com, a casual
game distribution portal that does
include creator credits. Take as many
grains of salt as you need.

With that said, I have some thoughts on
why portals are not crediting game
creators. The reason is tied into the value
of traffic to the portal. As is true in all
businesses, casual game distribution
portals need customers to survive. To
accomplish this, the portals take every
opportunity to keep all the eyeballs on
themselves. Not crediting is only one of
many things done to accomplish this goal.

While the portals don’t credit the
games’ creators, they do require a portal
credit of sorts inside of the games they
distribute. You may have noticed that
every casual game that you download
has the logo of the distribution portal it
came from inside the game. In fact, every
major portal requires that their logo
appear in equal size and prominence with
the developer’s logo, wherever the
developer’s logo is displayed in the game.

Imagine if this happened in other parts
of the industry. Can you picture a
Walmart splash-screen at the beginning
of HALO 3 if you bought it from Walmart
and a GameStop screen if the game were
purchased at GameStop?

However, the fact that the mainstream
game industry readily credits creators and
not the point of purchase is not a good
reason for the casual industry to change.
They are different industries and you
could argue that without the portals, there
wouldn’t be a casual games industry. The
portals invested in the infrastructure and
the marketing to create the customers.
Don’t the portals deserve to recoup on
their investment in the way that makes
the most business sense to them?

The answer to this question is ‘yes’ with
one very important caveat. Misleading
customers in regard to who has created a
game is nigh unto plagiarism.

Imagine going to an art gallery where
every painting had a plaque with a

description next to it, but without any
mention of the artist. Imagine further
that each art piece had an imprint of the
gallery’s name on it equal in size and
prominence to the artist’s signature.
Though this example may seem a bit
extreme, a search through the forums on
any portal finds that the customers
believe the portal to be the author of the
games they are enjoying.

In considering the problem, it seems
clear that some changes are needed. The
IGDA casual games steering committee is
currently considering an initiative to
standardize developer crediting to ensure
that developers and publishers receive
credit for the games that they create.

In considering different options, one
suggestion may please both creators and
portals: game credits that link to a page
containing a selection of the developer’s
games within that portal. One of the most
difficult things for portals to do as their
catalog of games expands daily is help
their customers navigate to relevant
games. As different developers have
different styles, using linked game
credits could be used to direct customers
to other games that might appeal to
them. This provides credit to the game
creator, and potentially creates revenue
from increased cross-selling on the
portal. Reflexive, and to some extent Big
Fish Games, are both currently using
linked credits on their pages, and I can
say for the Reflexive side that the results
have been positive.

The creator of a work deserves to be
credited for it. While some portals are
crediting developers, including PlayFirst,
Shockwave, and a handful of others,
most of the casual game distribution
portals do not. With the IGDA casual
games steering committee currently
considering this issue, it’s a good time for
game creators to do likewise and push
for the casual game industry to adopt
guidelines that will help give credit where
credit is due. *

BUSINESS LEVEL

RUSSELL CARROLL

>>

WHERE CREDIT IS DUE

R U S S E L L C A R R O L L is the director of marketing for

Reflexive Entertainment. Email him at rcarroll@gdmag.com.

Email him at rcarroll@gdmag.com.

mailto:rcarroll@gdmag.com
mailto:rcarroll@gdmag.com
http://www.reflexive.com

http://www.viciousengine.com

http://www.radgametools.com/miles
http://www.radgametools.com/miles

	Contents
	Features
	Scaling Small
	Ten Commandments of Quality Assurance

	Postmortem
	2K Games' Bioshock

	Departments
	Game Plan
	Heads Up Display
	Tool Box

	Columns
	The Inner Product
	Pixel Pusher
	Game Shui
	Aural Fixation
	Business Level

