
T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E

>>PRODUCT REVIEWS LUXOLOGY’S MODO 202 * DARWIN DIMENSIONS’ EVOLVER

DEATHWALK
PREY

POSTMORTEM:

DESIGNING

FOR

>>SURFACE TENSION

PHYSICS TO FLOAT

YOUR GAME’S BOAT

>>LOOKING ASKANCE

ARTISTS: FEAR NOT THE

RISE OF THE SCANNERS

>>LUCK IN GAMES

RICHARD GARFIELD ON

RANDOMIZING FUN

N O V E M B E R 2 0 0 6

mailto:info@replaysolutions.com
http://www.replaysolutions.com

1W W W . G D M A G . C O M

NOVEMBER 2006
VOLUME 13, NUMBER 10

COVER ART BY HUMAN HEAD STUDIOS

CONTENTS[]

30

COLUMNS

37 BUSINESS LEVEL By Pat Christen [BUSINESS]

Serious Expectations

39 THE INNER PRODUCT By Mick West [PROGRAMMING]

Stylus Control

42 GAME SHUI By Noah Falstein [DESIGN]

Changing Brains

43 PIXEL PUSHER By Steve Theodore [ART]

Through a Scanner Darkly

46 AURAL FIXATION By Jesse Harlin [SOUND]

Be a Demo Dynamo

DEPARTMENTS

2 GAME PLAN By Simon Carless

Right of Reply

4 HEADS UP DISPLAY
TGS and GDC London reports, Trion forms, Nintendo announces
LiveMode, and more.

7 SKUNK WORKS By David March and Tom Carroll

Luxology’s modo 202 and Darwin Dimensions’ evolver

56 A THOUSAND WORDS
Nippon Ichi Software’s DISGAEA 2

POSTMORTEM

30 CREEPING DEATH: DESIGNING THE DEATHWALK SYSTEM
IN 3D REALMS’ AND HUMAN HEAD STUDIOS’ PREY

The creators of PREY, the first-person shooter game from 3D Realms
and Human Head Studios, hope you never die—so much so that
they’ve built a system that nearly prevents that ghastly act from ever
ripping game players from the heat of the action again. Twelve-year
game veteran Chris Rhinehart unravels the numerous strategies the
team employed before they were able to pull this trick off.

By Chris Rhinehart

FEATURES

11 GETTING LUCKY

Many video games diminish the importance
of luck, as it’s often considered the opposite
of skill. Magic: The Gathering creator and
game design legend Richard Garfield ponders
the benefits of adding an ounce of luck to
computer game titles.

By Richard Garfield

21 GO WITH THE FLOW

The world of game physics is advancing, but
water dynamics can be difficult to pin down.
Two pros from Resolution Interactive show us
how to use science to make better water and
liquid simulations, which in turn can lead to
more immersive gameplay.

By Erik Winter and Matti Larsson

11 21

http://WWW.GDMAG.COM

2 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

IT’S BEEN MORE THAN 10 YEARS SINCE GAME
Developer first hit gamemakers’ mailboxes. The
magazine, now run by CMP Technology under the
erstwhile command of yours truly, has weathered
the storms of generational transitions and
innumerable game hardware and software wars,
all the while attempting to deliver inspirational
and motivational information to game developers
the world over.

But where will we be after 10 more years?
And how can we ensure we cover the right
material for our extremely varied audience,
while maintaining our wider readability? I’ve
been mulling over this issue for some time and
now seems like a good time to ask for more
feedback, since you are the people we make
the magazine for.

STRIKING A BALANCE
One thing we’ve been striving to get right over the
past few years is the balance of articles that are
suitable for the many disciplines that make up
video game development. Those with longer
memories may recall that Game Developer in the
late 1990s was much closer to being a game
version of Dr. Dobbs’ Journal (another CMP
publication), which is to say it was very technical
and much more programming-focused.

But as the make-up of the industry—and of
Game Developer readers—has broadened, and as
artists, designers, and managers filed into our
readership numbers, we realized that we needed
to counterbalance our technical pieces with
columns and features that discuss other matters.

Trying to appeal to everyone is a tall order—but
what’s your take on it, readers? Would you prefer
fewer State of the Industry features and more
technical features? Are you yearning to read more
practical business analysis? What makes you
turn the pages of Game Developer?

POSTMORTEM PATCH
If there’s one thing Game Developer is known for,
it’s the monthly postmortem articles that dissect
the production of major games. But in today’s day
and age, with PR agencies (most of whom we love
dearly) carefully vetting articles to include
relatively positive spin, it’s sometimes tricky to
acquire true, unmasked “what went wrong”
admissions directly from developers.

In fact, some of our most memorable

postmortems of recent months have been written
by independent developers, who have let loose
with the unvarnished truth. We’re also pretty keen
on the postmortems that discuss one specific
innovation in a game, such as this month’s
investigation of DeathWalk, a feature in 3D
Realms’ and Human Head’s PREY (pg. 30).

But what universal truths are you trying to
discern when reading a postmortem? When do
you really care about what a postmortem has to
say? Would you rather read a good postmortem of
a game you don’t know or an average one from a
game you do? Comments are welcome.

GAME DEVELOPER PLUS?
Finally, you may have noticed that the girth of
Game Developer magazine fluctuates
significantly from month to month, depending
on what’s happening in the game world and
what big show is approaching.

Given the current state of the print market for
consumer game magazines, we’re doing very well
as a smaller professional trade magazine. It helps
that we reach key decision-makers, too.

Still, as long as you are an eligible North
American developer, you’re given the magazine
for free, and this sometimes acts as a strike
against the amount of editorial we’d like to run,
due to the economics of our business model. And
occasionally, we daydream about alternatives:
for instance, would you pay for an enhanced
version of the magazine with more editorial if a
free version were also still available?

The more feedback we receive about Game
Developer—its content, presentation, circulation,
writers, contributors, and editors—the more
options and insight we’ll have to deliver the best
material to our entire readership.

We love Game Developer. We hope you do, too.
And we want to find ways to continue to
differentiate it, so that it’s just as fresh in 2016
years as it was in 1996. Send your thoughts to
editors@gdmag.com. We’ll appreciatively take
them into account and perhaps print some in
forthcoming issues. *

Simon Carless
Editor-In-Chief

GAME PLAN[]

RIGHT OF
REPLY

W W W . C M P G A M E . C O M

CMP Technology, 600 Harrison St., 6th Fl., San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

www.gdmag.com

Game Developer
is BPA approved

W W W . C M P G A M E . C O M

EDITORIAL
EDITOR-IN-CHIEF

Simon Carless scarless@gdmag.com
MANAGING EDITOR

Jill Duffy jduffy@gdmag.com
FEATURES EDITOR

Brandon Sheffield bsheffield@gdmag.com
ART DIRECTOR

Cliff Scorso cscorso@gdmag.com
CONTRIBUTING EDITORS

Jesse Harlin jharlin@gdmag.com
Noah Falstein nfalstein@gdmag.com
Steve Theodore stheodore@gdmag.com
Mick West mwest@gdmag.com

ADVISORY BOARD
Hal Barwood Designer-at-Large
Ellen Guon Beeman Microsoft
Andy Gavin Naughty Dog
Joby Otero Luxoflux

ADVERTISING SALES
DIRECTOR OF SALES

Steve McGill e: smcgill@cmp.com t: 415.947.6217
GLOBAL SALES MANAGER, RECRUITMENT & EDUCATION

Aaron Murawski e: amurawski@cmp.com t: 415.947.6227
SR. ACCOUNT MANAGER, SOUTHWEST, CONTRACTORS, & MARKETPLACE

Jasmin Davé e: jdave@cmp.com t: 415.947.6226
ACCOUNT MANAGER, EAST COAST, U.K. & EASTERN CANADA

Cecily Herbst e: cherbst@cmp.com t: 415.947.6215
ACCOUNT MANAGER, NO. CALIF., NORTHWEST, ASIA & WESTERN CANADA

Nick Geist e: ngeist@cmp.com t: 415.947.6223

ADVERTISING PRODUCTION
ADVERTISING PRODUCTION COORDINATOR Kevin Chanel
REPRINTS Cindy Zauss e: czauss@cmp.com t: 516-562-5000
Julie A. Douglas e: jadouglas@cmp.com t: 516.562.5092

CMP GAME GROUP
VP, GROUP PUBLISHER APPLIED TECHNOLOGIES Philip Chapnick
VP, STRATEGIC MARKETING Michele Maguire
DIRECTOR OF MARKETING Tara C. Gibb
CONFERENCE DIRECTOR, GDC Jamil Moledina
SENIOR CONFERENCE MANAGER, GDC Meggan Scavio
EXECUTIVE WEB PRODUCER Peter Leahy
EDITOR-IN-CHIEF, GAMASUTRA.COM Simon Carless
ASSISTANT EDITOR, GAMASUTRA.COM Frank Cifaldi

CIRCULATION
CIRCULATION COORDINATOR Miguel Mendiolaza e: mmendiolaza@cmp.com
CIRCULATION ASSISTANT Michael Campbell e: mcampbell@cmp.com
CIRCULATION ASSISTANT Andrea Abidor e: aabidor@cmp.com

SUBSCRIPTION SERVICES
FOR INFORMATION, ORDER QUESTIONS, AND ADDRESS CHANGES

t: 800.250.2429 f: 847.763.9606 e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP TECHNOLOGY MANAGEMENT
PRESIDENT AND CEO Steve Weitzner
EXECUTIVE VP AND CFO Adam Marder
SENIOR VP, AUDIENCE MARKETING & DEVELOPMENT Bill Amstutz
SENIOR VP, CMP INTEGRATED MARKETING SOLUTIONS Joseph Braue
SENIOR VP AND GENERAL COUNSEL Sandra Grayson
SENIOR VP, CORPORATE MARKETING Lisa Johnson
SENIOR VP, CORPORATE SALES Anne Marie Miller
SENIOR VP, MANUFACTURING Marie Myers
SENIOR VP, COMMUNICATIONS Alexandra Raine
VP, AUDIENCE DEVELOPMENT Michael Zane
PRESIDENT, CHANNEL GROUP Robert Faletra
PRESIDENT, CMP ENTERTAINMENT MEDIA Tony Keefe
PRESIDENT, BUSINESS TECHNOLOGY GROUP Jeff Patterson
SENIOR VP, GROUP DIRECTOR, ELECTRONICS & SOFTWARE GROUPS

Paul Miller
SENIOR VP, GROUP DIRECTOR, COMMUNICATIONS GROUP,

Stephen Saunders

Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Midway
Paul Steed Microsoft

mailto:editors@gdmag.com
http://www.gdmag.com
mailto:scarless@gdmag.com
mailto:jduffy@gdmag.com
mailto:bsheffield@gdmag.com
mailto:cscorso@gdmag.com
mailto:jharlin@gdmag.com
mailto:nfalstein@gdmag.com
mailto:stheodore@gdmag.com
mailto:mwest@gdmag.com
mailto:smcgill@cmp.com
mailto:amurawski@cmp.com
mailto:jdave@cmp.com
mailto:cherbst@cmp.com
mailto:ngeist@cmp.com
mailto:czauss@cmp.com
mailto:jadouglas@cmp.com
http://GAMASUTRA.COM
http://GAMASUTRA.COM
mailto:mmendiolaza@cmp.com
mailto:mcampbell@cmp.com
mailto:aabidor@cmp.com
mailto:gamedeveloper@halldata.com
mailto:msalinas@cmp.com
http://WWW.CMPGAME.COM

W O N G D O O D Y 8500 Steller Drive, Ste. 5, Culver City, CA 90232 t: 310.280.7800 f: 310.280.7780

User/Prev. User

Art Director

Studio Artist

Copy Writer

Account Mgr

Traffi c

Production

ROUND

Job # Description Last Modifi ed

Client

Bleed

Trim

Live

Gutter

Printout %

Publication

P
E

R
S

O
N

N
E

L

C
O

N
T

E
N

T

S
E

T
U

P

LocationFonts

Placed Graphics Inks

Helvetica (Medium), Kievit (Medium, Regular)

LV1_119_Stranglehold.psd (CMYK; 275 ppi, 276 ppi;
152.3MB; 108.84%, 108.3%), L1_Stranglehold_Wire.
tif (CMYK; 278 ppi, 280 ppi; 12.2MB; 107.65%,
107.12%), L1_Stranglehold_Logo.psd (CMYK; 6252
ppi; 7.9MB; 4.8%), L1_TigerHill_logo.psd (CMYK;
1007 ppi; 1.8MB; 29.78%), L1_Midway2.eps (294KB),

 Cyan, Magenta,
 Yellow, Black,
 2nd Black, PMS 193 CV,
 PMS 1795 C

WD | Studio 02
FIERY-WDLA_Print

06.M&E.119B Stranglehold Single Page 8/15/06 3:23 PM

Autodesk

8 in x 10.75 in

7.75 in x 10.5 in

7 in x 9.75 in

None

100

Game Developer (9/06)

M.Boychuk

Benji

T. Hamling

J.Spenchian

R.Hill

V.Speiser

3 / FINAL proof

Chad Kukahiko / Ben Schneider

Stranglehold © 2006 Midway Amusement Games, LLC. All rights reserved. Stranglehold, MIDWAY, and the Midway logos are trademarks or registered trademarks of Midway Amusement Games, LLC. Autodesk, 3ds Max,
Maya and MotionBuilder are registered trademarks or trademarks of Autodesk, Inc., in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk re-
serves the right to alter product offerings and specifi cations at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document. © 2006 Autodesk, Inc. All rights reserved.

Idea:
Assemble the ultimate team to create a John Woo sequel that you can play.

Realized:
The line between video game and fi lm is offi cially blurred. When faced
with the challenge of creating a video game sequel worthy of John Woo’s
movie “Hard Boiled,” the team at Midway chose to use Autodesk® 3ds Max®,
 Autodesk Maya® and Autodesk MotionBuilder™. Using this 3D arsenal,
artists are able to create graphically stunning characters, backgrounds
and animations with amazing production effi ciency. Get the full story on
this next-generation masterpiece at autodesk.com/stranglehold

8432
Steller
Drive

Southern
Californa
Graphics

Culver City
California
90232

BLACK CYAN MAGENTA YELLOW

JOB NO CLIENT DESCRIPTION IMAGESETTER SCREEN PROOF # DATE TIME OPERATOR

608175 Wong Doody FPS Autodesk Stranglehold 4/C Ad Game Developer Fuji proof 133 1 08-15-06 11:01 p m PC

FILE NAME: INDO1_119B_Stranglehold

S: 7 in
S: 9.75 in

T: 7.75 in
T

: 10.5 in

B: 8 in
B

: 10.75 in

http://autodesk.com/stranglehold

THE THRONGS CRANE THEIR NECKS IN CHIBA
prefecture’s Makuhari Messe to see the latest trailer
for METAL GEAR SOLID 4, as others busily snap photos
of flyer-toting booth babes, while dodging hasty
Western journalists, fighting in vain through the
crushing crowds. The Tokyo Game Show is upon us
once again, and Sony, Microsoft, and to a lesser
extent Nintendo, are all making bids for global dollars.

In the wake of the E3 downsizing announcement,
all eyes were on TGS as the biggest consumer
game show in the world. Though the affair has
always been open to the public, with the first day
exclusive to business and media, it has never
before reached the epic proportions of attendance
as it did this year. Across three days a total of
192,000 fans and business professionals filled the
convention center on the outskirts of Tokyo, a truly
noticeable increase over last year’s 176,000.

Sony’s PlayStation 3, playable for the first time by
the Japanese public at large, drew the biggest and
most eager crowd who waited in two-hour lines for
hands-on time with games. Topical buzz at the show
surrounded the machine itself more than the

games (such as GRAN

TURISMO HD, LAIR, and
RESISTANCE: FALL OF

MAN) though, as the mockup unit on display was
constantly surrounded by photographers.

Sony executives also announced a nearly 20
percent drop in price for the 20Gb-sporting system
in Japan, emphasizing that a lower price point was
essential to promote sell-through. This brings the
price to 49,980 yen, or roughly $418. HDMI support
was also announced for the lower model. As of press
time, no announcements have been made regarding
potential price cuts for the rest of the world.

Microsoft had a very solid TGS showing as well,
with fans most anxious to get a glimpse of
Mistwalker’s LOST ODYSSEY and Epic’s GEARS OF WAR.
The company also unveiled a new trailer for HALO 3,
which was disappointingly short on gameplay
footage, but generated interest nonetheless. In
order to foster excitement around its Xbox Live
service—which like the Xbox 360 itself has yet to
take a significant foothold in Japan—Microsoft
distributed free Xbox Live points, useful toward the

purchase of Xbox Live Arcade titles. These cards
granted the user a mere 100 points, a token
gesture, but a gesture nonetheless. Perhaps
reduced prices and pack-in deals toward the end of
the year may turn the tide in the company’s favor.

Nintendo followed its typical path of eschewing the
consumer-oriented show, only allowing Wii software
to be demonstrated at specific booths by company
representatives. The company is clearly banking on
the price and branding to sell the unit, rather than
significant pre-release buzz on a popular level. DS
games were playable at the show, but only in the
booths of the games’ respective publishers.

The 2006 Tokyo Game Show centered around
anticipation, as the next generation finally rolls out in
full. Each major console manufacturer is taking a
rather different route to success, making this
Christmas holiday an incredibly important one for not
only the big three, but the game industry at large.

—Brandon Sheffield

192,000 people flooded the Tokyo Game Show to lay their eyes on a PlayStation 3 mockup.

4 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

A SLIGHTLY DAMP LONDON IN EARLY
autumn was the venue for the 2006
London Games Festival, a
conglomeration of get-togethers
that combined key public and
industry events throughout the
English capital during the first week
of October, including the London
Games Summit, presented by
ELSPA and TIGA, programmed by the
CMP Game Group; Game Developers
Conference London, also presented
by CMP; the London Content,
Outsourcing and Middleware
Market, presented by TIGA; the
London Game Career Fair, presented

by Gamasutra.com and
GamesIndustry.biz; as well as
BAFTA’s British Academy Video
Games Awards.

The BAFTA Awards, which are open
to video games released worldwide
in the past year, honored Ubisoft’s
GHOST RECON ADVANCED WARFIGHTER as
best game and for best technical
achievement.

A notably large variety of winners
were recognized, with several titles
picking up more than one award:
Sony’s LOCOROCO took two awards for
best character and best children’s
game. SHADOW OF THE COLOSSUS won in

the categories artistic
achievement and best
action and adventure
game. Other notable
winners were Nintendo’s
DS title BRAIN TRAINING in
the innovation category
and LucasArts’ multi-
platform game LEGO STAR

WARS II for best gameplay.
At the Game

Developers Conference
London, keynote speaker Jamie
Macdonald, vice president of Sony
Computer Entertainment
Worldwide Studios, tackled one of

the toughest challenges of
modern game development in a
speech titled “Developing for a
Networked Experience.” He homed

JAPANESE SHOW EXPLODES IN POST-E3 HAZE

GAME WEEK GRACES LONDON

TOKYO
RISING

]HEADS UP DISPLAY[
GOT NEWS? SEND US THE BIG SCOOP AT EDITORS@GDMAG.COM

The child-friendly LOCOROCO won two BAFTA awards.

http://Gamasutra.com
http://GamesIndustry.biz
mailto:editors@gdmag.com

NINTENDO AND AILIVE HAVE
announced the release of
LiveMode for Wii, a product
that allows the Wii remote to
learn via artificial
intelligence. The software is
poised to ease the difficulties
of programming for
Nintendo's new input device;

officials claim it will allow
developers to train the
remote through example
rather than code. In the
hands of developers,
Nintendo hopes this tool will
further simplify the
development process for Wii,
already the most affordable

new console to develop for.
The announcement

specifically calls out
independent developers as
a market for this product
and has priced it to match,
at a mass-adoption license
fee of $2,500 per seat.

AiLive will offer tutorials

and demos of the product.
Its previous product of note
was LiveCombat, which
taught AI characters using
the example of a player-
controlled team leader. The
LiveMode product seems to
build on that concept.

—Brandon Sheffield

GAME DESIGNER JON VAN CANEGHEM (MIGHT AND
MAGIC) and former Electronic Arts executive Dr.
Lars Butler have faith in the power of broadband.
They believe in it so resolutely that they’ve built a
new game development and publishing company,
Trion World Network, devotedly solely to delivering
content with it.

Van Caneghem and Butler insist that, because
the future lies in broadband, media companies
need to rethink their strategies for providing
entertainment, as well as the substance of the
entertainment. How video games are developed
and distributed today, says van Caneghem, “is a
byproduct of old architecture.” Trion, he adds, is
taking multimedia and going straight back to the
drawing board, building new architecture that will
allow for various hybrid types of entertainment,
delivery methods, and connectivity. “All devices
can tie into some game world, and that can only

happen if you build the architecture right,” he says.
Trion is not restricting itself to games. With a

multitude of partnerships, from game development
studios to corporate media giants (think
Paramount), the company plans to do business in
not one type of content, but three: games, online,
and traditional media (television and film).

Funded by Tier 1 Silicon Valley and venture capital
firms DCM and Trinity Ventures—rather than a major
game publisher—the company already has two
major offices in Redwood City, Calif., within sight of
EA’s headquarter campus, and Austin, the U.S.
epicenter of talented online game developers. Says
Butler, “It has not been a challenge for us to raise a
lot of money.” Nor has recruiting talent been a
challenge: Trion has already signed on a number of
expats from EA, NCsoft, and Sony Online, hoping to
get the most out of hiring veterans who understand
connectivity, online delivery, and good game design.

The company is still many months away from
giving consumers (or journalists) anything
tangible. So it’s vagaries and promise for now.
According to Butler, the technology itself won’t
even be ready until sometime in 2007.

—Jill Duffy

CALENDAR

Asia Pacific Entertainment
and Media Summit
Sofitel Los Angeles
Los Angeles
November 6 and 7
Price: $159–$349
www.apemsummit.com

Montreal International
Game Summit
Palais des congres de Montreal
Montreal
November 8 and 9
Price: $150–$495 CAD
(exhibition-only rates also
available: $25–$40)
www.montrealgamesummit.com

eGames & Entertainment Expo
Melbourne Exhibition Centre
Melbourne, Australia
November 17–19
Price: $13–$38 AU
www.auexhibitions.com.au

Sigrad Conference
Högskolan i Skövde
Skövde, Sweden
November 22 and 23
Price: contact organizers
www.his.se/sigrad06

Game Connect: Asia Pacific 2006
Brisbane Convention and
Exhibition Centre
Brisbane, Australia
November 30–December 2
Price: $100–$350 AU
www.gameconnectap.com

BROADBAND BULLSEYE

Jon van Caneghem (l) and Lars Butler (r) want to change

games, one broadband customer at a time.

NEW DEVELOPER, PUBLISHER CARVES MULTIMEDIA HEADWAY

in on some of the next-
generational problems common to
all gamemakers: the increasing
cost of production, a shift from
package-centric to network-
centric gaming and development,
and strategies for success.

Sony’s E-Distribution Initiative,
the rough equivalent of Xbox Live
Arcade, was one particular focus
of Macdonald’s analysis. Its job?
“To drive the direct delivery of
content to consumers through PS3
and PSP’s Network Platform,”
targeting new developers through
lower barriers of entry. “We’re
talking about shortform works of
content, and we really want to
encourage innovation,” Macdonald

said. EDI was devised to allow
developers “to work on those great
ideas that they’ve had but have
been told will never work as a
triple-A, 20-hour game.”

At the related London Games
Summit, an event tailored more to
the business minds of games, the
commencement address was
given by Lord Sainsbury of
Turville, England’s Parliamentary
Under Secretary of State for
Science and Innovation.

Lord Sainsbury, whose position
falls under the Department of
Trade and Industry, stressed that
the U.K. government is working
strongly with the game industry in
the U.K. to create the “best

possible conditions in this country
for your industry to innovate and
grow.” He noted the financial
strength of the game industry in
Europe and the U.K., saying its
worth now surpasses that of the
film industry. “The computer
games industry is economically
much more important (than film),”
he said. “It is the innovation and
creativity that has allowed this
sector to grow.”

A comprehensive digest of the
London Games Festival and its
various events is available on Game
Developer’s sister web site
Gamasutra.com.

—Simon Carless and Jill Duffy

WII REMOTE TO LIGHTEN CODERS' LOADS

5W W W . G D M A G . C O M

http://www.apemsummit.com
http://Gamasutra.com
http://www.montrealgamesummit.com
http://www.auexhibitions.com.au
http://www.his.se/sigrad06
http://www.gameconnectap.com
http://WWW.GDMAG.COM

Translate Multi-Core Power
Into Application Performance.

Put our products to the test! Download evaluation copies
of the Intel® Software Development Products today at www.intel.com/software/products

Find a reseller at www.intel.com/software/products/resellers

 2006 Intel Corporation, Intel, the Intel logo, Intel Core, Itanium, Intel
Xeon and VTune are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.
1Intel® Threading Building Blocks available in C++ only.
*Other names and brands maybe claimed as the property of others.

©

“ We are optimizing RenderMan’s core to be very scalable for future multi-core
architectures. Intel’s Threading Tools have accelerated our development cycle dramatically.”
Dana Batali
Director of RenderMan Development
Pixar

Get your applications ready for scalable, parallel processing.
Intel® Software Development Products help C++ and Fortran
developers create, debug and optimize threaded applications.

Intel® Threading Building Blocks1

Introduce scalable threading through C++ algorithms.

Intel® Thread Profiler
Pinpoint bottlenecks and maximize threading performance.

Intel® Thread Checker
Identify latent data races and deadlocks with a patented
error detection engine.

Intel C++ Compilers
Utilize highly optimized threading capabilities such as OpenMP*
and auto-parallelism.

VTune™ Analyzers
Identify performance bottlenecks in multi-core sharing
of the bus and cache.

http://www.intel.com/software/products
http://www.intel.com/software/products/resellers

7W W W . G D M A G . C O M

SKUNK WORKS[]
OUR RATING SYSTEM :

EXCEPTIONAL GREAT FAIR POOR UNFORTUNATE

WHAT DO YOU GET WHEN YOU ADD A
bunch of cool features and an efficient
SDS modeler to an existing tool that’s
rock solid? Modo 202.

The team that’s driving modo’s
development is definitely listening to and
thinking about what the majority of the
user base wants. After waiting more than
a year for this release, modo enthusiasts
will be extremely pleased with the new
updates from Luxology. Users saw major
updates in the release of modo 201, and
then two months later, after final
tweaking, bug-fixing, and throwing in a
handful of additional features, modo 202
was sent out as a free upgrade to license
holders.

Modo has impressed me with many
improvements in a number of areas,
most notably modeling tools, workflow,
painting tools, and a new renderer. Game
developers will be impressed by the
Power 2 grid, which lets them create
assets using a unit grid (each line of the
grid is set to a power of two, just like
texture resolutions), and the Object
Baking tool, which bakes detail from
high-resolution objects into lower-poly
count models. UV tools have been
revamped as well, giving developers yet
another reason to closely evaluate modo,
and maybe adopt it permanently.

RENDERING
One of the biggest updates to modo is the
new rendering engine. The renderer is
bucket-style, and supports global
illumination, subsurface scattering,
anisotropic blurry reflections, motion
blur, depth of field, and displacement. If
your machine supports multithreading,
you will see a dramatic increase in
performance with modo 202.

Worth checking out is a tutorial video
called “Render Project,” which explains
how to set up a scene and how the
Fresnel option affects the scene. Modo
also has a new preview renderer that
allows you to model in near real time.
This feature is like the surface preview
window in LightWave 3D. Although you

can configure your working environment
any way you would like with this option,
there is a reliable default triview that
supports a preview window, camera, and
perspective view.

Another newly added feature is the
render to region option. This feature is
great if you’re happy with your entire
scene except for maybe some bad
shadow or glow in the corner of your
render. You can render away on that bad
spot without having to redo the whole
scene over and over.

UV IMPROVEMENTS
Newly added to 202, UVs that overlap are
marked in red. It’s a pain to zoom in and
find small overlaps in a tightly packed
map, so this feature makes perfect
sense, especially for creating normals.
Also in 202 the UV Pinning update adds a
whole new level of control over what UVs
you do and do not want relaxed.

A few more of 202’s great updates
include object-to-object detail baking for
displacement mapping or normal

mapping use; a new game creation unit
system; and the all-useful image invert
command, which lets you flip your image
inside modo.

MODELING
New modeling tools were added to
modo’s “best of hybrid” style subdivision-
polygon modeler, including a new Solid
Sketch tool. This tool is great for quickly
laying out a base figure to fill out your
work area. Think of it as a page for quick
concept sketching, using clay-like
connectors in an organic fashion to get
your basic modeling idea down.

It reminds me of how one might create
organic concept art using Zspheres in
Zbrush. The Solid Sketch tool is a great
feature for laying down basic forms to get
you started on any organic form—or
even something that would be hard
edged and mechanical.

Modo 202 also sports a Sculpt tool,
which simulates sculpting in clay. You
can drag across the surface and deform
the geometry, creating bumps—or by
holding down the control key—reversing
the action. Scaling is controlled via the
right mouse button.

Another improvement that I’m very
happy with is the simplified way in which
you can weight simple edges. In older
versions, you had to go to the vertex map
list under weight map and select
subdivision. But in modo 202, all you
have to do is go to vertex map and use
the edge weight tool and drag it out in the
viewport. Because I use this function
frequently when subdivision modeling, I
definitely appreciate modo’s approach.

Smaller updates also dot modo 202’s
fact sheet. For example, the edge slice
tool lets you bevel points in two
dimensions. Also new is a really cool
thicken tool, which is similar to 3ds Max’s
shell modifier.

Finally, there’s a new Pen tool. The
modo Pen is similar to a device found in
the plug-in Polyboost for 3ds Max. The
major difference is that for modo, it’s
free. It’s great for redoing the relief detail

LUXOLOGY’S MODO 202

LUXOLOGY

STATS

Luxology

1670 South Amphlett

Blvd., Suite 214

San Mateo, CA 94402

www.luxology.com

Price

$895 ($395 upgrade)

System Requirements

• 1Gb RAM

• 100Mb available hard

disk space (3Gb

required for all content

and integrated training

materials)

• OpenGL-enabled

graphics card

• Monitor resolution of

1,024x768 or greater

• DVD-ROM drive (for

support materials)

• Internet connection

required for product

activation

• Adobe Photoshop CS

or later required for

modo ImageSynth

Macintosh Requirements:

Mac OS X 10.3.9 or later;

Macintosh G3, G4, G5 or

Intel processor.

Windows Requirements:

Microsoft Windows 2000

or Windows XP; Intel

Pentium 4 or AMD

Athlon processor.

Pros

1. Unparalleled

subdivision modeling

abilities and workflow.

2. A slew of new tools

including a great

painting tool.

3. New renderer.

Cons

1. Wish list 1: animation

and rigging.

2. Wish list 2: particles

with a cloth and hair

system.

3. Wish list 3: physics

system.

By David March

This image, created in modo 202 by Jacques

Defontaine (and courtesy of Luxology), makes

use of the tool’s sub-surface scattering ability.

http://www.luxology.com
http://WWW.GDMAG.COM

on an extremely high-poly model. For
example, you can draw polygons on top
of your high-poly mesh with the
constrain-to-mesh feature turned on. And
with the free update to 202, the Pen tool
has a newer, unique extension for
creating subdivisions with finite control.

Personally, I find that the best way to
learn all these new features is to use
modo’s Quicktime modeling tutorials,
which can be downloaded from
Luxology’s web site.

WORKFLOW
Luxology has definitely spent time from
the beginning making modo’s interface
incredibly user-friendly and customizable.
Users can basically clear out the entire
screen space and lay out the interface
any way they want. I think this feature is
really quite cool, and the possibilities
seem endless.

Modo 202 also allows for customization
of the keyboard mapping and mouse
inputs. Although these features may
seem minor, busy game artists know the
power—in workflow speed—of being able
to map the functions they use most often
to the keys that are most easily reached.
The default keys work just fine, too.

Yet another feature is the Tool Pipe, which
is extremely powerful. It takes modo’s core
functionalities and lets you create
combinations of tools and tool modifiers.
For example, you could create a function
that rotates with a specific falloff every
time. It beats the heck out of scripting.

Other simple workflow features, like
highlighting child-to-parent items to
show their relationship, give modo 202 a
useful sort of elegance. There’s also a
new browser for presets and
expand/collapse usability for sub-items
in trees.

PAINTING TOOLS
Modo 202’s painting tools are a major
added function and are exceptionally user-
friendly, just like the rest of the package.
Simply click and start painting away.

You can create a new image from within
modo or simply import an existing image
to paint on. Not only can you paint on
your 3D model, you can also paint

directly on your 2D UV image view on
your wires with a texture. It’s all pretty
straightforward and reminds me of Deep
Paint or BodyPaint 3D.

As far as the brushes go, you can use
the presets, create your own custom
ones, or even grab them from Photoshop.

The Tool Pipe also allows for
interchangeable brushes, inks, and
falloffs. The image ink tool can be
explained as painting on a preset texture
like a lizard skin onto your models with the
option to blend different scales in. Modo
also has masking and blending features,
which are super handy when painting on
your models. And since the 202 update,
you can display in 3D with handles for
position and rotation, which is extremely
useful. 202 is also “smarter” now about
the way it paints on complex UV folds and
borders. Best of all, painting is supported
by pressure-sensitive input devices,
which is a must if you’re going to paint.

It seems as if the only thing missing for
modo now is an animation system, but
I’ve heard it may be on the way.

WORTH ITS WEIGHT
In short, modo 202 is one of the best—if
not the best—SDS modelers out there. If
modelers test it and use the plethora of
video tutorials that come in the help
directories, I think they will be impressed
on how quickly they can get up to speed.

Luxology has done a great job shipping
these well thought-out
instructional tools while
also fixing, adding, and
updating tools.

There’s little room for
negative feedback about
modo. It works extremely
well with other packages in
terms of importing and
exporting files. Even the
“cons” I listed (see pg. 7)
are personal wish list items,
not failures to deliver on
Luxology’s part.

At this point I can only
selfishly state I want more
videos—I always want more
of the good stuff. With the
new painting and rendering

abilities, artists really don’t have to
export for presentation if they don’t want
to. However, don’t forget that modo was
built from the get-go to be super friendly
and work well with all your tools. For the
$895 price tag, I think it’s well worth its
weight in gold.

D A V I D M A R C H has recently joined

Irrational Games in Australia as lead

animator. Send comments to him at

dmarch@gdmag.com.

DARWIN DIMENSIONS’
EVOLVER
By Tom Carroll
WHO DOESN’T LOVE THE LATE-NIGHT
talk show game of creating hilarious
offspring by crossing the genes of two
celebrities? What would Tom Cruise look
like with Yoda’s ears and skin color? What
would you get if you crossed Christina
Aguilera with Dobby the House Elf (of
Harry Potter fame)? And what might a
character that was half “W” and half Tony
Blair look like?

While not quite apples and apples,
evolver by Darwin Dimensions allows
anyone who’s willing to pay $39 to
combine various attributes from a long
list of faces and figures to form their
own custom characters. The resulting
characters can be converted into a form

8 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

]SKUNK WORKS[

DARWIN

DIMENSIONS

STATS

Darwin Dimensions

1155 University

Suite 901

Montreal, Quebec

H3B 3A7, Canada

888.392.1331

www.darwindimensions

.com

PRICE

$39 evolver Basic

(software only; customers

can purchase geometry-

only of a model for $49, or

fully featured 3D

humanoid for $1,995)

$4995 evolver Pro (ships

with the capability to

output three fully featured

3D humanoid models;

additional models can be

purchased for $1,000

each)

Evolver complete:

Product and pricing not

yet available.

System Requirements

Any Windows XP-

compatible computer

Pros

1. Easy to understand and

use.

2. Extremely fun to play

with.

3. Simple interface.

Cons

1. Not the answer for

companies that create

unique characters.

2. Artists still need to

clothe the characters

and put hair on their

heads.

3. May be too much fun

for its own good.

Darwin Dimensions’ evolver uses a simple interface and a

family tree-style approach to character creation.

mailto:dmarch@gdmag.com

9W W W . G D M A G . C O M

that’s recognized by most customary 3D
packages (those that support Autodesk .fbx) or
that can filter directly into a Maya pipeline. If
you’ve got seven days to kill, download the free
trial version of evolver from the company’s web
site and watch in awe (and shame) as time
flies by.

THEY CAME FROM THE GENE POOL
Darwin Dimensions’ stated reason for evolving
evolver is to “automate the creation of a near
infinite variety of high-quality 3D characters by
blending and combining physical attributes
derived from a vast ‘virtual gene pool.’”

However, my understanding of the software’s
purposes reads something like this: “To make
character creation less like drudgery and more
like a fun game.”

Regardless of the stated reason for
development, the company has succeeded in
making a product that creates interesting
character models quickly and easily—and for
just $39, you don’t have to break the budget to
buy a copy and have a little fun with it.

Users start their evolver experience with a
screen that shows a large selection of heads as
well as a few trolls and aliens thrown in for good
measure. These are called ancestors.

Highlighting an ancestor icon, the user loads it
into one of four boxes by clicking on an arrow
button to the side of the box. Up to four heads
can be loaded at any one time, but ultimately,
up to 20 of them can be used to build a new
character head.

Sliders make it possible to quickly combine
elements (eyes, ears, noses, head shapes,
mouths, and so on) to make a unique head.

If you try, and sometimes even if you don’t,
you can attain some very unusual mugs. But by
predefining the type of character you want to
build (for example: Asian female with elfin ears
and ample chest) and staying within those
parameters, you’ll avoid the silly monkey
business that inevitably results.

CORPORAL CREATION
But what’s a head without a body? The next step
is to repeat the same process, but this time with
a large selection of male and female body types.
The head you previously fashioned is now
positioned atop a body. Within moments, even
the inartistic among us can fashion an
appropriately bodacious body.

The last step is to assign a skin color to the
finished head and body. This is accomplished in
a similarly straightforward way by selecting and
blending iconic images of Caucasian, Black,
Asian, (and alien) faces.

Saving the work is as easy as hitting the
Save As command and typing in a unique
name for your .dde file (Evolver’s proprietary
file format); evolver also supports Autodesk’s
.fbx format.

The file is then submitted to Darwin Dimensions.
Whether purchased geometry-only ($49) or as a
fully featured 3D humanoid ($1,995), the model
is delivered to a secure FTP site for pickup. As of
press time, this automated process was not
operating, but the pros behind evolver were
quite willing and able to process orders on a
case-by-case basis while they perfect their
delivery pipeline.

Evolver is absolutely not the solution for every
company, especially for those with staffs of
hungry character artists, modelers, and
texturers. But it is the perfect solution for any
company that does not have such a staff and
still needs a wide selection of character models
that have the professional quality that the game,
television, and movie industries demand. *

T O M C A R R O L L is a video game artist and

freelance writer who strives to understand only

enough of his corner of the universe to be able to

sleep at night. Email him at tcarroll@gdmag.com.

Evolver allows users to create just heads or both heads

and bodies, though no hair or clothing is available.

mailto:tcarroll@gdmag.com
http://WWW.GDMAG.COM
http://www.anarkgameface.com

http://www.seapine.com/gdtcm

11W W W . G D M A G . C O M

I CAN FIND A BOARD OR CARD GAME FOR ANY GROUP OF PLAYERS.
Game players or people who never played games, old or young,
in large or small numbers, with confrontational or passive
personalities—there are games out there for them all. While I
weigh many factors in choosing a game, by far the most
important is the amount of luck inherent to the gameplay. If the
game has a lot of luck, it usually appeals to a diverse group.

Games in the non-electronic world are widely varied in luck,
but computer games are a different story, as very few of them
allow any real chance for a beginner to win against a skilled
opponent. The number of electronic games I can play with my

parents, kids, wife, or friends from outside the game industry is
extremely limited.

Historically, games usually evolved in such a way as to reduce
the amount of luck in them. Even chess at one time had dice. The
people who are in a position to modify a game are likely to be
very good at it, and the sort of modifications they will be drawn
toward are the ones that showcase their talents and their
friends’ talents—although they, of course, are all top players.

In other words, as games evolve, they tend to become better
for the experts, but not necessarily better for new or non-
dedicated players. A game that illustrates this conflict is

GETTING LUCKY
THE MAGIC: THE GATHERING CREATOR’S STANCE ON CHANCE

>> r i c h a rd g a r f i e l d

C H E S S B O A R D P H O T O C O U R T E S Y O F B E L E N M E N D E Z ;
D I C E P H O T O C O U R T E S Y O F M I C H A E L C O N N O R S

R I C H A R D G A R F I E L D

currently teaches at the

University of Washington. His

first game, Magic: The

Gathering, a collectible card

game, was released

commercially in 1993. He

also consults for video game

design. Send comments

about this article to

editors@gdmag.com.

mailto:editors@gdmag.com
http://WWW.GDMAG.COM

Settlers of Catan, one of the best-selling board games of recent
years. The only consistent criticism I have heard leveled at it
(always from dedicated gamers) is that it has too much luck.
But it’s rather possible that the abundance of luck is exactly
what made the game so wide-reaching.

Enlightened players, skilled or not, will appreciate luck in their
games for a number of reasons. First, they can play challenging
games with a much broader audience, allowing them to easily
assemble a galley of players and lure their friends, who would
otherwise play something else, into the game. Second, if skilled
players want to experiment and try off-the-wall strategies, the
more luck a game has, the more forgiving it is—after all, no one is
expected to win every time. The only cost of all these terrific
benefits is that skillful players must manage to swallow their pride

and settle for winning a majority of
the time, rather than all the time.

We gamemakers are at a
special time in game history. Fifty
years ago, games were made with
no credit to the designers or
perhaps had no designers at all,
with changes being wrought by
players over time. But our
nascent game design community
tends to comprise game experts;
it’s in our best interest to
examine our own instincts openly
with regard to how much luck
should be in a game.

WHAT IS LUCK?
I define luck in games as uncertainty in outcome. If better
players always win against weaker opponents, then there is no
luck in the game. However, if the better player sometimes loses,
then luck must be present, and the more a better player loses,
the more luck is in the game.

Uncertainty in outcome is most strongly associated with
randomizers, such as dice, spinners, shuffled cards, and in the case
of video games, randomly generated numbers. But these overt luck
generators are not the beginning and end of luck. If the game’s
outcome isn’t certain—whether the game is baseball or rock, paper,
scissors—there is luck involved. The variability in baseball may
come from muscle fatigue, or weather, or endless numbers of more
subtle influences that we have no more chance of determining than
the path of a roulette ball. The variability in rock, paper, scissors?
Any randomizer in that game lies in the players’ brains.

This definition of luck, based solely on uncertainty of outcome,
has an interesting consequence in that an otherwise
deterministic game can have luck. Let’s take for example a
game I call pi-eye, in which each player has 30 seconds to guess
a particular digit of pi, say the 37 billionth digit. There is no overt
luck in pi-eye because it’s possible to calculate the answer. Yet,
most players would rather simply take a one in ten chance of
guessing the correct digit. Players could improve their odds by
studying pi or theories about its digit distribution, or even
reduce the luck to 0 by discovering a formula to determine the
digits of pi—but even though those possibilities exist, most of
us would rather opt for luck.

12 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

LUCK VERSUS SKILL IN

TRADITIONAL GAMES

GAME AMOUNT OF LUCK AMOUNT OF SKILL

Poker High High

Basketball Low High

Tic-Tac-Toe Low Low

Slots High Low

G E T T I N G LU C K Y

First person shooters,

such as HALF-LIFE 2,

could use luck to allow

players with greater

variation in skill to

compete with each

other.

C O N T I N U E D O N P G 1 4

http://www.epicgames.com/epic_jobs.html
http://www.epicgames.com
mailto:mrein@epicgames.com
http://www.speedtree.com
http://www.speedtree.com
http://www.quazal.com
http://www.ai-implant.com
http://www.fonix.com
mailto:licensing@epicgames.com

14 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

LUCK VS. SKILL
What is a good amount of luck, relative to skill, for a game?
This question sounds benign, but it contains a common
fallacy about games. How much luck there is in a game has
little to do with how much skill there is. A game can have a lot
of luck and a lot of skill.

An example of such a game is poker. If you sat down with the
world champion, you could win a hand, regardless of your skill.
You might even be able to win a session. But once you start
stringing sessions together you have no hope of winning
(unless you too are a poker stud). In fact, repeated play will
eradicate the luck from almost any game. If players play a game
enough and there is any skill difference between them, the
most skillful player will win the majority of the games.

If poker doesn’t convince you that a game can rely on both
luck and skill, I can introduce you to a game I’ve created called
randochess. In randochess we each roll a die, and the high roll
wins with ties broken by a game of chess. Randochess clearly
has more luck than chess, yet in some sense it has just as
much skill as chess. After all, every book of strategy ever
written about chess applies equally to randochess.

It is just as challenging to be a good randochess player as it is
a good chess player, but you won’t win as often leveraging your
skill in randochess as you will your skill in chess. This
distinction is important because it illuminates the fact that
games can’t be trivialized merely on the basis of luck—games
with a lot of luck can be as rich as any other game, and as hard
to master. In fact, one could argue that games high in luck are
harder to master since a player can more easily win with bad
moves or lose with good moves—which will certainly slow down
the learning process.

BENEFITS OF LUCK
There are three benefits to using luck in game design. First,
high-luck games broaden the range of competition. Second, luck
removes players’ ego crutches. And third, luck increases the
variety of the gameplay.

Range of competition. The more luck there is in a game, the
more easily skilled and unskilled players can play together. In a
game without luck, the more skilled player will win every
competition giving the skilled player no challenge and the less
skilled player no chance of victory. A game with low luck can be
a fine game of course, but it demands that players of similar
skill always compete against each other only. The less luck in

the game, the tighter that range of skill the players will need to
have for a satisfying experience.

Online games, of course, have less need for broadened range
of competition due to computer matching (see “Ranking and
Matchmaking,” October 2006). However, there is something to
be said for being able to choose opponents and teammates
based on criteria other than their skill.

Ego crutch. Why do skillful players frequently criticize luck in
games? It’s probably because the luck in the game can marginalize
their skill. When skilled players have played the better, more
skillful game and still lose, they say, begrudgingly, that only fate is
to blame. And when they win in a game that has a lot of luck, the
opponents won’t credit their brilliant play, only their good fortune.
Luck can in this way become a player’s enemy, denying them their
rightful bragging rights and glory in either case.

This apparently negative aspect of luck is hiding a very useful
concept for game designers. Many people take pleasure in
blaming their defeats on bad luck, but have no problem taking
credit for their victories, regardless of the circumstances.
Certainly, these players will often complain about the luck when
they lose, but really the element of chance is beneficial to them:
it is protecting their egos, just as surely as it can injure the ego
of a skillful player.

Variety of gameplay. Luck in games often broadens the type
of strategies that people can use, adding variety to the game.
With the uncertainty luck brings, the most conservative
players will have to take crazy chances if they want to succeed
from time to time, and the players who always take the long-
shot will find they should sometimes ease back on the throttle
and play it safe.

Suppose in an economic military game, players think that
building a lot of tanks is the best strategy. Whether it is the
best strategy is not too important—what counts is how the
player sees it. Players would spend most of their time building
tanks. The only ones who would typically stray would be the
beginners who didn’t know any better or the elite who were
secure enough in their stature to experiment. Suppose we
introduce a random element into the military units of the game,
such as units being priced randomly, occasionally unavailable,
or varied in power, based on the random availability of
supporting technologies. Players might now regard tanks as
being generally the best unit, but no one will believe as a rule
they are always the best, which might lead to more players
exploring more and different strategies.

short+luck=good combo
FOR A GAME WITH A HIGH AMOUNT OF

luck to be really satisfying for a broad

audience of players, it should be a

game that is also fairly short.

The definition of “short” varies

from group to group: for people with a

lot of free time and energy, having a

high-luck game that is longer won’t be

so bad. However, a long game with a

lot of luck does threaten to frustrate

the more skillful players, who don’t

want to invest a lot of time and

energy on a spurious outcome.

At the same time, a long game with

a lot of luck holds little interest for

less skillful players because they are

not favored to get a taste of victory in

a single play and, being a long game,

starting a new game afresh might

take a while. The shorter the game,

the more likely a less skillful player

will have at least some wins.

The variety of play available in a

high-luck game really shines through

in shorter games. The longer the

game, the fewer games will be played

during a particular game session, and

the fewer games you play in a

session, the less chance for that

variety to show itself.

G E T T I N G LU C K Y
C O N T I N U E D F R O M P G 1 2

C O N T I N U E D O N P G 1 6

http://www.breakawayltd.com

16 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

Another way luck can extract variety from a game design is
when it is used to rebalance the payoff for player skills. If a
game involves two skills, A and B, and A is very important to
winning the game, while B is not so important—by making it so
that A has more luck involved you can raise B’s relative
importance. This could lead to a game in which the players have
more strategic space to explore. Remember the old computer
game ARCHON? ARCHON had a chess-like game, but the battles
were resolved with an arcade-like game. My experience with it
was that a player’s skill at the chess portion of the game was
irrelevant relative to the arcade portion. Presumably, with
players close to one another in arcade skill, the chess portion of
the game would become more important. If the arcade portion of
the game had more luck, then the chance of that part of the
game being interesting with disparate skills is higher, and the
chess portion of the game will become more important.

LUCK AND SINGLE-PLAYER GAMES
Some of the points I’ve made so far don’t apply—or apply
differently—to single-player games. For one, there’s no benefit
to increasing the breadth of player skills that can compete
together if the game is a one-player experience.

The role of luck as an ego crutch in a single-player game can
still apply, though it is less important. Players are less likely to

need the crutch when playing against a computer since it is
generally less threatening to lose to a computer than to another
flesh-and-blood human, who is much more likely to talk trash.
But it still helps to have bad luck be your focus of blame for defeat.

Additionally, if the game is intended to be played only once, as
many video games are, then there’s little benefit to increasing
the variety of the game through luck. Yet, if the game is a one-
player game intended for repeat play, luck can be invaluable for
changing the game each time. CIVILIZATION’s immense
replayability stems in part from the large range of strategic
situations that can affect the player and that arise naturally
from the vast quantity of random elements and how they interact.

Historically, one of the interesting things about games is how
they become better over time, disposable games really only
being children’s games. People can play dominoes or bridge or
chess their entire lives and the games just get better and better.
Striving to make infinitely replayable games is one way to
leverage the power of games.

LUCK AND MASSIVELY MULTIPLAYER GAMES
Massively multiplayer games can be competitive in the sense of
player versus player, cooperative, player versus environment,

and hybrid modes. For player versus player, luck functions as it
does in a head-to-head game. Luck will help broaden the range
of players that can compete against one another, act as an ego
crutch for losses, and, if the system is well designed, generate
variety of play.

In the player versus environment mode, luck will act much like
it does in a solo game. In this mode, luck is unnecessary for
broadening the range of players, useful as a crutch, but not as
critical, and can be useful in generating variety of play.

Whether you have teammates in either mode will not really
change the role of luck, except perhaps in making its use as an
ego crutch a bit more important, since you can avoid losing face
to your teammates by blaming bad luck.

The replayability of these games might be improved by the
variety that extra luck will provide in the game mechanics. In
many MMORPGs there is already a really interesting level of luck
in combat. Unfortunately most of these games have reward
systems that strongly discourage players from getting involved
in the more interesting encounters, pushing them instead
toward combat in which they are enough of a favorite to always
win fairly quickly.

Replayability may be improved greatly if the reward system
encourages players to take on challenges whose outcome is not
so predictable. Since it’s a staple of the genre to have the

players play what are essentially the same battles ad nauseum,
any potential for increasing the replayability should be of
interest to the designers. In most MMORPGs it’s the randomness
of monster drops that provides an element of chance, and which
keeps people coming back—which is a shame, since it’s not
directly a part of the gameplay.

APPLYING LUCK TO EXISTING GENRES
It’s hard to introduce luck to an established game or genre of
games. For example, shooters tend to attract players who have
fast reflexes and accurate aiming; introducing luck will likely
drive away established players, since they want their speed and
accuracy tested. What’s worse, a “shooter with luck” game will
not necessarily find a new audience either, since the reputation
of shooters as a genre is already established.

Although adding luck to an existing genre can alienate fans, it is
often worth thinking about in terms of game design. It may be
possible to add an element of luck that even the elite players will
find cool. Also, if a game of this type is able to reach new
audiences it could make up for the loss of some established
gamers. Game designers would want to take this idea into
consideration if they’re working on a game that’s likely to have

G E T T I N G LU C K Y

ALTHOUGH ADDING LUCK TO AN EXISTING

GENRE CAN ALIENATE FANS, IT IS OFTEN WORTH

THINKING ABOUT IN TERMS OF GAME DESIGN.

IT MAY BE POSSIBLE TO ADD AN ELEMENT OF LUCK

THAT EVEN THE ELITE PLAYERS WILL FIND COOL.

P H O T O C O U R T E S Y O F N A A M A Y M

http://www.perforce.com

18 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

broad audience appeal, such as a game with a popular movie tie-in
or one that will debut on a new platform (iPod games anyone?).

Let’s look at a few established game genres and consider new
ways to introduce luck. These techniques have certainly been
used in one game or another, but the luck introduced is often
minor or dominated by other factors, rather than really allowing
for less skillful players to win from time to time.

Shooters. The expert shooter player has excellent reflexes and
aiming. A lot of other gameplay elements may be present in
varying degrees, such as tactics, strategy, and teamwork, but
these tend to be dominated by reflexes and aiming. The
introduction of more luck could be used to bring the value of
these skills closer together, in addition to reducing the
dominance of the better player.

Inaccuracy is one of the obvious ways to increase the amount
of luck in shooters. Games such as COUNTER-STRIKE do this, but
the high rate of fire and the ability of skilled players to minimize
this effect make it so the aggregate game may actually have
less luck rather than more. It’s easy to imagine a game in which
nearly every shot has a high enough variance that moving
without cover into enemy fire zones, while generally a bad idea,
does not ensure instant death.

Another natural way to increase luck is highly variable
damage. Naturally, if you combine this with a high rate of fire,
the luck you have introduced is incrementally removed. Right
now, the standard way to inject highly variable damage is via
head shots, which does introduce some randomness, since
random sprays of bullets will occasionally yield a critical hit—
but again, this is a randomness that diminishes rapidly with skill.

Randomly distributed power-ups could be another way to go.

Most games have specific spawn spots for weapons and armor.
If these were inconsistent, or the power-ups themselves were
very swingy, it would introduce luck to the game.

Real-time strategy games. The expert RTS player has excellent
massively parallel management skills and speedy clicking. Also
important, of course, are both strategy and tactics; but the best
strategy and tactics won’t help if you can’t implement them fast
enough while juggling all the elements these games typically
throw at you. More luck could be used to raise the relative
importance of these game components, in addition to making
the expert player easier to beat.

Reducing the chance of being hit by a unit or increasing the
variance on its damage might be a way to increase the amount of
luck in an RTS. Units could have special abilities that are
completely out of the player’s control and which are used
inconsistently. The units could have morale that is to some extent
randomly implemented so that your units might start to panic in a
battle you might otherwise have won. Similarly, units might make
all sorts of AI checks which are guided by the outcome, ignoring
players’ commands, gaining bloodlust and the inability to stop
attacking, or maybe focusing entirely on their sworn enemies.

Economics is a natural place to introduce luck as well, in
particular since this facet of many RTS games is often highly
important and yet mostly rote in play value. Mines could give
more variable payouts, and technologies could cost varying
amounts or be randomly available. The expert player may even
enjoy the freedom of exploring parts of the tech tree that are
generally less effective rather than feeling obligated to use the
same proven approach every time.

In thinking about research, players could be kept from learning

G E T T I N G LU C K Y

Real-time strategy games,

such as STARCRAFT, can

introduce luck by including

it in their economic

systems.

19W W W . G D M A G . C O M

what their research might yield, or when it was going to yield it.
Perhaps the research could be guided a bit, without the players
knowing whether the exploration of metals, for example, would
yield good troop armor, good tank armor, a good conductor, or
perhaps a vital ingredient for teleporters. Designers might get
ideas from looking at games such as ALPHA CENTAURI.

Racing games. Racing games reward players who have
knowledge of their vehicles’ capabilities, knowledge of the
racetrack, and reflexes. If your opponent has you beat in these
areas, you will lose every time. Increasing the luck in the game
will allow the less skilled player to take higher risk strategies
and thus occasionally challenge the opponent.

One way to introduce luck into this genre is to create danger
zones, or areas or situations that sometimes get you into
trouble, but not always. An example of a danger zone is a
maximum safe speed, beyond which there is a chance of
mishap or random cornering checks. Good players would know
not to drive faster than the maximum for fear of a mishap—
unless they’re desperate. Alternatively, the further ahead you
are, the more conservatively you should drive.

Including random, wacky power-ups is another way to add
luck to racing games and some titles, like MARIO KART, already
use this feature very effectively. Missile launchers, booster jets,
smoke screens—bring them all!

Shortcuts that are dangerous but are also navigable by all
players could be implemented to increase luck. Many games
have shortcuts, but they typically only favor expert players; less
advanced player can’t navigate the shortcuts or don’t know they
exist. To increase the luck, you need something more like a
chasm that saves you some time but destroys the car 20
percent of the time regardless of expertise.

FUTURE GAMES
If you’re working on a project that for some reason is difficult to
categorize, or may appeal to a different audience than an
existing game, you might consider erring on the side of
including too much luck. You’ll gain the benefit of broadening
your player base’s competitive range while increasing your
game’s variety. Over time, games have a tendency to go down in
luck rather than up, so you can correct your gameplay more
easily in that direction in subsequent expansions and versions.

Video games are journeying into game design territory that
paper games could never go. But the large body of information
that exists outside electronic games can guide all game
developers and help in that exploration. I am hopeful that one
day I will have a collection of computer games that will handle
any group of players in collective play in a manner that rivals
my paper game collection. *

http://www.emotiv.com/GDC07.htm

March 5-9, 2007 in San Francisco

Join the world’s leading developers to exchange ideas, be inspired, and advance the art of game creation.

With the innovative features enabled through next-gen consoles and the growth of diversification in videogame

play, the power is now with you to seize the market. GDC 2007 - Take ConTrol.

 REGISTER

TODAY!
www.gdconf.comTAKE

CONTROL

GDC

GDC07_gdmag_NOV.indd 1 10/10/06 2:16:09 PM

http://www.gdconf.com
judyr
Line

21W W W . G D M A G . C O M

>> e r i k w i n t e r a n d m a t t i l a r s s o n

PUTTING CUTTING-EDGE INTERACTIVE PHYSICS INTO A GAME
can help make it stand out and increase immersion. Faster
processors, hardware acceleration, and new algorithms can
greatly enhance not only the game’s look, but also its feel.
When it comes to creating these cutting-edge effects for
water, it’s now possible to live up to the player’s expectations
of how the game should look, feel, and play when the
character dives into an ocean.

For our new game, CLUSTERBALL 2, we wanted to achieve the
most realistic water possible. The simulated water area had to
give the impression of being without boundaries, just like the
real ocean. We also wanted the water to follow the larger natural
movement of the sea, with waves caused by the wind. Another
goal was to make the water interactive, with splashing, waves,
and wakes. Finally, we wanted to capture and simulate the
characteristic visual properties of water.

RENDERING WATER VISUALLY
Visually, water is very much defined by the way it interacts with
light. Light rays hitting the surface are both reflected and
refracted, making the surface work as a semi-transparent
mirror. The rays are perturbed due to the normal of the surface
and the different indices of refraction of water and air.

The Fresnel effect shows that the mirroring property of the
surface is greater at a distance while transparency is greater when
looking straight down at the water. Capturing these three effects in
simulated water gives it a much more realistic visual appearance.
Yet, the effects must be bound to the water mesh in some fashion.

One popular way to implement the effects is to use projective
textures, a method that will be revised here. This solution works
very well as long as the object’s surface shape stays close to a
plane. Two different cameras are used to render the reflection and
refraction images to two textures. These textures are then blended
into each other and projected back onto the water surface in a
shader. Figure 1 (pg. 22) shows a simple scene in which some
objects will be reflected and some refracted on the water’s surface.

One camera is used to render all the objects below the surface,
the ones that will be refracted, to a texture Trefr. This camera has
the same position and direction as the main rendering camera. A
second camera is used to render all that can be seen in the
reflection of the water surface—only objects that are above the
surface are rendered. The camera position and direction is
mirrored around the surface plane to capture the same scene as
the reflection. The render target is set to the texture Trefl.

Finally, the main camera is used to render the water. The use
of projective coordinates allows the textures to be mapped back

GO WITH THE FLOW
WATER EFFECTS AND FLUID DYNAMICS IN GAMES

E R I K W I N T E R

and M A T T I L A R S S O N

are, respectively, lead

programmer and CTO of

Resolution Interactive, an

online games and technology

company with 10 years in

the business. The company’s

previous titles include

SKI-DOO X-TEAM RACING (PC)

and CLUSTERBALL (PC and

mobile phone). They are

currently working on

CLUSTERBALL 2 (PC, Xbox

360), an online action game

combining the elements of

flight and racing as a sport

with lots of balls. Email them

at ewinter@gdmag.com

and mlarsson@gdmag.com.

mailto:ewinter@gdmag.com
mailto:mlarsson@gdmag.com
http://WWW.GDMAG.COM

to the surface plane. The water pixel shader blends between the
refracted and reflected images, following the Fresnel effect.

This technique works well when the surface is perfectly flat.
But what happens when the surface changes? In Figure 2, the
image on the left shows a flat surface plane with three basic
geometrical objects reflected in the water. A ray of light ray is
emitted from the camera until it hits the water at point P. The ray
reflects around the surface normal N and, in this case, finally
hits the circular object.

We imagine the texture rendered from the camera to be placed
in the surface plane. The texture coordinates are applied with
projective coordinates so that they match the point P where the
reflection occurred.

The right side of Figure 2 shows the surface being perturbed
with the normal directed a little toward the camera. The reflected
ray then changes according to the new normal and hits an object
a little closer to the camera, represented by the rectangle. We do
this by using the same texture as the flat surface and
implementing one additional trick. The rendered texture is placed
as in the left image, but with a vertical offset D. The texture
coordinate used for the rendering is then updated to correspond
to a new point T instead of P. T is created by following the surface
normal from P until it hits the displaced texture plane.

For reasons discussed later, the wind-driven waves have to be
created with pretty low frequencies. To increase the realism,
higher frequency waves are added in a normal map. These
normals are blended with the real vertex normals in the pixel
shader, before reflection and refraction calculation.

COLORING THE WAVES
Another property of water to capture is spray and foam. To
account for these fragmentized effects, we implement
disconnected volumes as particles. To visualize it in the mesh,
we first needed a way to measure its activity. A very active
surface is signified by strong waves with short wavelength.
Therefore we chose to quantify the vertex activity as an
interpolation depending on both the vertex height and the
deviation of its normal from the surface plane normal.

As the vertex activity increases, a second, highly distorted
normal map is blended onto the old one. The colors from the
refracted and reflected images are replaced with green and

white, respectively. Together this gives the impression of a more
fragmentized surface with foam creation.

Listing 1A (pg. 26) shows an excerpt of the water vertex
shader. The wave height at each vertex is calculated. As the water
surface plane is the same as the xz-plane in our implementation,
the wave height will be the same as the vertex y coordinate in
world space. The vertex height is used to calculate a value in the
interval [0,1]. This value is passed to the pixel shader to define
how much the reflected/refracted images should be replaced by
the colors of a fragmentized surface. The function interpol2P()
is used for a linear interpolation, but with three control points
instead of two. Its results are in the interval [0,1].

Listing 1B (pg. 26) shows the pixel shader. Three different
normals are used: the real vertex normals, normals from the
high frequency normal map, and normals from the distorted
normal map. The deviation of the vertex normal from the surface
plane normal is measured with the corresponding dot product.
The result is stored in DistNormWeight and used to interpolate
between the two normal maps. The constant
VX_NORMAL_WEIGHT then blends between the normal maps and
the vertex normals.

The final normal displaces the UV coordinates as described
above before we sample the refraction and reflection images.
We interpolate the sampled colors with the fragmentized surface
colors, using the ratio calculated in the vertex shader.

LET THERE BE HEIGHTS
The physical simulation of water has been studied extensively.
Although the concepts have been well defined, their numerical
solutions still require a lot of computing power.

Simulation methods are highly specialized to the nature of
the liquid being simulated. For example, the simulation of milk
being poured into a glass for the animations of Shrek might
have been just as complex as the animation of the sea
movement for some of the scenes of Titanic, using totally
different algorithms. Therefore, it’s necessary to choose an
appropriate model for the special case.

The water surface in CLUSTERBALL 2 should be able to handle
the propagation of wakes and the interaction of objects falling
down in the water. Because the surface is really large, we
need a fast method, such as using a heightfield. Instead of

22 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

FIGURE 1 Two cameras can

be used for reflection and

refraction textures.

FIGURE 2 To handle

reflection around

perturbed normals,

you can offset the

sampled texture.

GO WITH
THE FLOW

http://www.gamecareerguide.com
http://www.gamecareerguide.com

24 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

using a full 3D representation for
the fluid, a 2D grid is used where
each grid coordinate has a
corresponding height. Therefore,
we can exclude one dimension
from the calculations.

One disadvantage to using
heightfields is that a body with
overhang, such as a breaking wave,
can’t be modelled, as only one height

value is permitted at each 2D position. As long as overhangs
aren’t needed, the heightfield gives efficient approximations.

A variety of different heightfield methods exist. In CLUSTERBALL

2, we used a membrane-based model. Objects interacting with
the surface results in the heightfield grid points being offset,
causing waves to propagate from that position. Although the
membrane is a fast model, it still can’t be used for the whole
water surface. The algorithm complexity grows with the two
dimensions; thus, we must find a way to confine their size.

If we add an upper limit to the number of simultaneous
interactions, it’s possible to assign a membrane object to handle
each interaction. These objects are instances of the physical model,
restricted to a limited area. When all interacting objects have left the
area, the corresponding membrane object could be removed.

The membrane method works well when describing local
waves, such as a ship travelling in the water, but it’s not useful
when simulating bigger effects, such as wind-driven waves.

With the requirement that the simulated water should be
really large comes the need for a physical representation that
can give results over a large area fast. We achieve this by
making sure that the model is tileable, that it can be repeated in
space and time. We used Perlin noise for the wind-driven waves
because of its ability to give fast and realistic-looking results.

COMBINING PHYSICAL MODELS
We still need a way to combine the results of the two physical
models: the membranes and the Perlin noise. One way is to
include the results from one model into the calculations of the
other. Intuitively, the wind-based data should be used when
calculating waves made by object interactions, such as a boat
wake, which might be seen as a small perturbation on the
greater wind-driven movement of the sea.

Is there a way to completely avoid this model interaction? A
straightforward solution is to simply let the models be
superimposed over each other. However, care must be taken
when performing this drastic simplification. For a realistic visual
impression, it’s important that the models’ precedence to each
other follow our expectations.

We created the wind-driven waves with low frequencies and low
amplitude. That way, they are clearly separated from the high and
steep ship wakes, making the superimposing a valid approximation.

But there’s an instance when the models can’t be kept
separated: when calculating the water’s influence on interacting
objects. The interaction is defined in the object interaction
model, but many of the calculations require the current water
height. For example, buoyancy is dependent on how much of the
object is covered by water. This means that whenever water
height is needed in the calculations, it has to be updated with
data from the wind-driven model.

This sharing of information shouldn’t affect performance, as
there are a limited number of interacting objects.

MESH TESSELLATION
In CLUSTERBALL 2, we wanted to have a really large ocean
surface—so large that it would seem infinite. The mesh
representing the ocean surface had to give the impression that
such a large area is covered. To be able to represent all local
effects, the mesh resolution still has to be close to the camera,
so we need some kind of level-of-detail technique.

That the whole mesh should be animated to follow the wind-
driven waves results in another problem. Every mesh vertex has
to be updated each frame, so it’s extremely important to
maximize the vertex efficiency (the number of mesh vertices
that finally show up on the screen). How might the camera’s
viewport be used to achieve this goal?

We focused on the projected grid algorithm (see Resources).
Its algorithm is well constructed to minimize the time it takes to
construct the mesh, while still attending to some of the
problems inherent to a viewport-based approach.

The major drawback of using these approaches is that the
mesh tessellation has to be restructured for each frame update.
Performance can be improved if the restructuring is brief
compared to the extra time caused by calculating height data at
unnecessary vertex positions.

PROJECTED GRID
One of the goals of the projected grid concept was to create a
mesh that, when transformed to screen space, would be as
close to a uniform grid as possible. Such a mesh automatically
has a continuous LOD handling; the mesh has a higher
resolution near the camera, as can be seen in Figure 3.

To maintain high vertex efficiency, the mesh boundaries need
to be as close to the screen boundaries as possible. When
finding these boundaries, we must be careful to include all parts
of the surface that could possibly be seen in the camera.

As the mesh height can vary along its surface normal, it’s not

1. Find the boundaries of the surface on

screen, using the rendering camera’s

frustum. This means, find all points

where the camera frustum intersects

Slower or Supper. Add these points to a

buffer. If any of the frustum’s corners

are within Vdisplaceable, add them as

well. If no points were found, then

none of the water surface is within

the camera frustum and the rendering

can be aborted.

2. Aim the projecting camera so backfiring

is avoided.

3. Project the buffer points onto Sbase.

4. Transform the projected buffer points to

the projecting camera’s space.

5. Find the maximum span in world space

of the buffer points along the projecting

camera’s x and y axis. Construct a

matrix Mrange that scatters screen

coordinates to this span.

6. Mrange is used to transform the mesh

corner points to the world space mesh

span. If homogenous coordinates are

used all other vertices can interpolate

their world space positions from these

four points. Thus a per-vertex matrix

multiplication is avoided.

7. Finally, height data from the physical

models is used to displace the vertices

vertically.

—Courtesy of Claes Johansson

projected grid algorithm

FIGURE 3 A screen space

uniform grid can be

projected onto the water’s

surface.

GO WITH
THE FLOW

25W W W . G D M A G . C O M

enough for the boundaries to include the surface plane—they
must also include the whole volume spanned by all possible
vertical positions of the mesh.

To enclose this volume the water surface plane is defined as
Sbase and its normal Nbase. If the waves are constricted to a
maximum waveheight Hmax, then two planes can be used as
limiters of the variations:

Slower=Sbase–Hmax*Nbase
and
Supper=Sbase+Hmax*Nbase.
All possible vertical positions of the mesh should then be

within Vdisplaceable, the volume spanned by these two planes. The
constructed mesh must include all parts of the screen where
Vdisplaceable can be seen. Furthermore, we must be sure to
account for how much of the screen should be covered by the
water surface. When looking down at the water, the whole
screen should be covered. When looking toward the horizon,
only a portion of the screen should be covered. This puts two
demands on the mesh. First, it should be possible to represent
all conceivable vertex heights, and second, the horizon should
be used to limit the mesh on the screen.

How should we calculate the right span of the mesh? Figure 4
gives some hints. Every part of the surface that can be seen in
the camera must be represented in the mesh, which includes
the intersection of the camera frustum with all possible vertical

heights of the surface (the
volume Vdisplaceable).

Every point that’s necessary
for defining the mesh is stored
in a buffer. The maximum world
space area, including these
buffer points, is used as the
mesh span. Which points
should then be regarded as necessary?

On the right side of Figure 4, a line is drawn between the far
plane’s corner points. The intersection point between the line
and the upper plane signifies the rightmost position a portion of
the water can have within the camera frustum. All intersections
between the boundary planes and the frustum lines should
therefore be stored in the buffer.

The left part of Figure 4 shows another scenario. The boundary
plane intersections are not enough because one of the frustum
corner points falls between the planes and will itself represent
the leftmost position. As a result, all frustum corner points
within Vdisplaceable have to be stored in the buffer as well.

Constructing a screen space uniform grid will settle the x
and y coordinates of each vertex on the screen. Still, it says
nothing about the z coordinate, the depth in the image, which
remains undefined. This means that each point on the screen
will correspond to a line in world space. The object of the

FIGURE 4 Here, the camera

frustum intersects with

Vdisplaceable .

http://WWW.GDMAG.COM
http://www.sketchup.com

26 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

mesh represents the water surface, and the final world
coordinates of the mesh vertices will be where these lines
intersect the water plane.

In Figure 5, point Ps is chosen, and a line is drawn along all its
possible z-values. The final corresponding mesh vertex will be at
Pw, where the line crosses the surface. But a problem arises in
the right image when the camera is no longer directed down
toward the surface.

Two points on the screen are chosen: one on the upper edge
and one on the lower. Their corresponding lines should then
follow the camera frustum. The lower line crosses the water
surface in front of the camera as before, but for the upper line,
no such intersection exists. The intersection is instead behind
the camera, as a consequence of the underlying mathematics.
The camera is said to have backfired.

The resulting mesh should be spanned by all intersections of
lines from the screen points and the surface. The area spanned
goes toward infinity in both directions, clearly not the behavior
we wished for.

The proposed solution in the projected grid algorithm is to use
two cameras: a regular rendering camera and a projecting
camera. This camera is used when constructing the mesh. It
inherits its position and direction from the rendering camera,
but with the ability to adjust them to avoid backfiring. The
camera is always aimed at the surface of the water and keeps
the projecting camera outside of Vdisplaceable. (See the sidebar
“Projected Grid Algorithm.”)

PARTICLES AND ACCELERATION
We chose a mesh-based model as the main simulator for the
water system. The mesh representation restricts the water from
breaking into smaller pieces, such as when a large wave creates
spray, which we implemented by adding a particle system.

Particles are created when the vertical velocity of a vertex gets
too high. The particles should be created with a direction following
the vertex normal and a velocity depending on the vertex velocity.

From which of the mesh representations should the particles
spawn? Using the projected grid’s vertices would be the correct
choice as this is the representation presented to the user.
However these vertices will not be statically located, so finding
the velocity of a fixed world position is not possible.

The Perlin data could be tested but this would be consuming,
as particles have to be emitted for each noise tile. However,
since the energy of the wind-driven waves already has been
chosen as low, the waves will be small and won’t spray. It’s
enough to check the velocities in the object interaction grids and
create particles from them.

FIGURE 5 The left image

shows a screen coordinate

and its corresponding

mesh vertex while the right

image shows a camera

backfiring.

GO WITH
THE FLOW

LISTING 1A water vertex
shader (VS 2.0)

float interpol3P(float x, float minHeight, float middleHeight, float

maxHeight, float weightMiddle){

if(x > maxHeight)

return 1.0;

else if(x > middleHeight)

return (x-middleHeight)*(1-weightMiddle)/(maxHeight-middleHeight)

+ weightMiddle;

else if(x > minHeight)

return (x-minHeight)/(middleHeight-minHeight) *weightMiddle;

else

return 0.0;

}

VS_OUTPUT vs_main(VS_INPUT In)

{

VS_OUTPUT Out;

...

// Transform vertex position from object space to world space

float4 PositionScaleWS = mul(matWorld, In.Position);

// Transform from homogenous coordinates

float3 PositionWS = PositionScaleWS.xyz * PositionScaleWS.w;

// Find a measure on how distorted the water surface should be,

depending on vertex height

// Out.col.x will be used to send the value to pixel shader

Out.col.x = interpol3P(abs(PositionWS.y), WH_CTRL_PNT_1, WH_CTRL_PNT_2,WH_MAX,

WEIGHT_CTRL_PNT_2);

...

}

LISTING 1B water pixel
shader (PS 2.0)

...

// High frequency normals from normal map

float3 HFNormal = tex2D(NormalMap, In.NormalMapUV);

// Convert color values to vector

HFNormal = (HFNormal - 0.5) * 2;

// Highly distorted normals for fragmentized surface

float3 DistNormal = tex2D(NormalMapDist, In.NormalMapUV);

// Convert color values to vector

DistNormal = (DistNormal - 0.5) * 2;

// interpolation between normal maps due to strength of real normal

//The water surface normal is aligned with the z axis

//The dot product of the vertex normal and surface normal can then be simplified

to inNormal.z

float DistNormWeight = smoothstep(NRM_INTPOL_MIN, NRM_INTPOL_MAX, In.Normal.z);

float3 Normal = lerp(In.Normal, lerp(DistNormal, HFNormal, DistNormWeight),

VX_NORMAL_WEIGHT);

...

// Projective coordinates are used to sample the refracted/reflected images

float4 RefractionColor = tex2Dproj(RefractionMap, In.RefractionUV);

float4 ReflectionColor = tex2Dproj(ReflectionMap, In.ReflectionUV);

//

RefractionColor = lerp(RefractionColor, DistRefrCol, In.col.x);

ReflectionColor = lerp(ReflectionColor, DistReflCol, In.col.x);

...

// The final pixel color is blended from reflection and refraction colors

float4 TotalColor = lerp(ReflectionColor, RefractionColor, Fresnel);

...

C O N T I N U E D O N P G 2 8

http://www.mkp.com/graphics

28 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

The particles are rendered with a simple texture, alpha
blended into each other. As they represent small pieces of
fragmentizing spray there’s no need to attach any higher
demanding effects, such as reflections. The size and alpha value
of the rendered particles varies with their lifetime, becoming
smaller and more transparent to mimic dissolving.

One important decision to make is how the particles’ physical
properties should be updated. We want particles to move due to
forces like gravity, and bounce when they collide with rigid
bodies. But should the particles be able to affect each other,
too? If these particle-particle interactions could be ignored,
many fast implementations are possible.

The results of such a particle model will not be realistic when the
particles move slowly or close to each other. Effects like surface
tension need the particles to share information with each other.

Other models (in which inter-particle forces are used to
update the particle positions) tend to be too slow when the
particle system becomes large. A way to circumvent this
problem is to use hardware-accelerated physics. For CLUSTERBALL

2, we looked into using Ageia’s physics processing unit (PPU).
Many suggestions have been made as to how physical

algorithms can be implemented and accelerated in the GPU. Both
basic algorithms such as collision detection and, more interesting,
water simulation methods have been discussed as suitable for
this. Ageia’s solution is to use dedicated physics hardware, adapted
to accelerate physics calculations. The PPU works in many ways
like the GPU, with several processing elements performing
calculations in parallel. One important difference in physics
algorithms is the need to access other objects’ data; the PPU has
been constructed with an emphasis on high inner bandwidth.

The inter-particle interaction model used in Ageia’s PPU is
smoothed particle hydrodynamics (SPH). The technique was
first developed for use in astrophysics when studying
interstellar gas flow. It has become popular for simulating other
highly deformable materials such as liquids or sand.

RESOLVING SAMPLE ARTEFACTS
With two different representations of water, the graphical model
has to sample its data from the physical. Care must be taken to
avoid the classical artefacts combined with sampling. A thin,
strong spike in the physical representation can fall in between
the mesh vertices if the mesh is too sparse. If the vertices
manage to represent the spike at some instant and miss it in
the next, the mesh will start to flicker.

To avoid this problem, the mesh resolution should be kept as
high as possible, which has to be weighted against the extra time
cost for more vertex calculations. The wavelength of the physical
representation should be kept small, which can be arranged for the
wind-driven waves. But as the wavelength increases, the realism

does, too. The waves caused by object interaction will always be
small and strong, thus putting even more pressure on the problem.

Another way to soften the appearance of the problem is to
smooth the mesh. Every vertex height is filtered by its
neighbors, so sudden differences will decrease. The smoothing
will decrease the flickering, but in the meantime, it may erase
those sudden, steep waves that we want to see.

The projected grid provides a mesh on which the resolution
decreases with a growing distance to the camera. This means
that the sampling problem will be even more noticeable at far
distant parts of the mesh.

The step length between two adjacent grid points could thus
be used as a measure of the probability that sampling artefacts
will occur. To hide the artefact, the vertex heights are multiplied
by a smoothing factor, which reaches zero when the grid step
exceeds a predefined maximum value.

EXTENDING THE MODEL
As proposed, the wind-driven waves will have pretty low
frequencies. For now, a normal map has been used to add higher
frequency waves. Because the normal map is a non-animated
texture, the waves sometimes add a static impression to the
water surface, especially when the camera is far away from it. A
better visual result could be achieved if the normal map was
animated too, by the use of high frequency noise. For an efficient
implementation, you could generate the noise in shaders.

The methods and code samples described in this article have
been implemented using vertex and pixel shader 2.0. With
shader model 3.0, we now have the possibility to sample
textures as early as in the vertex shader. This means that a
height map could be sampled to offset the vertex heights.

The mesh in this article has to be high-resolution, and the
underlying representation has to be sampled in each vertex, which
leads to a high time cost. You could avoid this problem if the wind-
driven waves were sampled and superimposed in the vertex shader.
The noise height map should then also be constructed in the shader.

However, when calculating the interaction between objects and
the water surface, the total water height must still be accessed.
The height map should be available in the main application as well.
But these queries are not at all as frequent as the per vertex
samplings, so performance should still improve.

The water simulation method presented in this article works
well as long as the number of concurrent interactions can be
minimal. The time it takes to update the mesh-based simulation
grows proportional to the number of active membrane instances.

The per-vertex cost of the final implementation proved to be
relatively high. The chosen tessellation scheme was a good
choice as it tries to keep a high ratio of mesh vertices within the
camera frustum. *

GO WITH
THE FLOW

Water shader sample code from
ResolutionInteractive.com:
www.resolutioninteractive.com/watereffects

Rendering using projective textures:
Lombard, Yann. “Realistic Natural Effect
Rendering: Water I,” GameDev.net,
September 7, 2004.
www.gamedev.net/reference/articles/article2138.asp

Projected grid algorithm:
Johanson, Claes. “Real-time water rendering—
Introducing the projected grid concept,” Master’s
thesis, Department of Computer Science, Lund
University, Sweden, March 2004.
http://graphics.cs.lth.se/theses/projects/projgrid/

Ageia PhysX development:
www.ageia.com/physx

Noise displacement in vertex shader:
Kryachko,Yuri. “Using Vertex Texture Displacement
for Realistic Water Rendering,” in
Game Programming Gems 2, Hingham, Mass.:
Charles River Media, 2005.
http://download.nvidia.com/developer/GPU_

Gems_2/GPU_Gems2_ch18.pdf

RESOURCES

C O N T I N U E D F R O M P G 2 6

http://www.ResolutionInteractive.com
http://www.resolutioninteractive.com/watereffects
http://GameDev.net
http://www.gamedev.net/reference/articles/article2138.asp
http://graphics.cs.lth.se/theses/projects/projgrid/
http://www.ageia.com/physx
http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch18.pdf
http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch18.pdf

30 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

DEVELOPER

Human Head Studios
and (produced by) 3D
Realms; 360 version
by Venom Games

PUBLISHER

2K Games

NUMBER OF

DEVELOPERS

30

DEVELOPMENT TIME

(FROM NEW

CONCEPT TO SHIP)

5 years 2 months
(May 2001–July 2006)

LINES OF CODE

About 750,000

RELEASE DATE

US: July 11, 2006
Worldwide: July 14,
2006

PLATFORMS

PC, Xbox 360

GAME DATA

31W W W . G D M A G . C O M

DEATH IS AN INEVITABLE PART OF MOST VIDEO GAMES. UNLIKE IN REAL LIFE,
though, death in video games is hardly permanent. The player simply has to insert
another coin, restore a saved game, or restart from a checkpoint to continue playing.

While designing PREY, we at Human Head wondered if there was another way to
deal with death. Could we handle death in a less jarring manner than stopping the
action and flashing a large, red GAME OVER? Is there a way to design the concept of
death into the game that actually makes it part of the overall experience instead of
something that inhibits the player from proceeding?

The game system we created, known as DeathWalk, was intended to reduce the
negative impact of dying and make it a deeper part of the overall play experience.

THE HISTORY OF PREY AND THE DEATHWALK SYSTEM
Before delving into how we handled dying in PREY, here’s a bit of history about
the game itself.

PREY was originally conceived by 3D Realms around 1996 as an internal project.
Prey went through various incarnations until it was put on a back burner in 1999. A
year later, after Human Head Studios released RUNE, 3D Realms contacted us about
partnering with them on a project, similar to the relationship 3D Realms and
Remedy had during the development of MAX PAYNE.

After discussing various ideas, we eventually decided to resurrect PREY in May
of 2001.

While designing PREY, we tried to keep the game as immersive as possible. In fact,
that idea became one of the core design fundamentals of the game, leading to
concepts such as keeping the game in a first-person perspective at all times. We
used no cinematics in the final product, and the player’s control is never taken

C H R I S R H I N E H A R T is a 12-year veteran of the game industry, having previously worked on titles

such as HERETIC and HEXEN. A co-founder of Human Head Studios, he was a programmer on RUNE,

and most recently project lead on PREY. Email him at crhinehart@gdmag.com.

DESIGNING THE DEATHWALK SYSTEM IN

3D REALMS’ AND HUMAN HEAD STUDIOS’ PREY

CREEPING
DEATH

mailto:crhinehart@gdmag.com
http://WWW.GDMAG.COM

away without a logical reason. We also kept the heads-up
display simple and iconic so as not to distract the player’s
immersion. DeathWalk was of course a primary element in
helping to maintain a high level of player engagement.

DeathWalk is a system in PREY that prevents the action from
stopping just because the player-character dies. Upon dying,
instead of resuming the game at some predetermined position,
the character is transported to a dark underworld where he or

she has a limited amount of time to fight
creatures (called DeathWraiths), which restore
the character’s health and spirit power. After the
set amount of time expires, the ground opens up
and slowly pulls the character back into the
physical world, where he can continue playing
exactly where he died. This mini-game takes
between 15 and 20 seconds on average,
depending on how well the player avoids getting
pulled back into the physical realm.

THE EVOLUTION OF DEATHWALK
DeathWalk wasn’t in our original design for PREY.
The idea didn’t come about until early 2003. At
that point, we were discussing various ways to
make the game more immersive. The intriguing
concept of being able to somehow resurrect a
dead character to give the player another chance
was mentioned, and the initial concept for
DeathWalk was born.

The first step was to prototype the system to
see if it even worked. We worked through at least
five major iterations of DeathWalk before we
discovered what we were looking for.

First take. The original implementation of DeathWalk didn’t
have an underworld. When characters died, their bodies dropped
to the ground, but they continued to exist in a ghostly form
where they could walk around but not interact with anything
else in the world. After a short time the DeathWraiths would
swoop into existence, to attack the character and steal spirit
power. If the DeathWraiths reduced the spirit power to zero, the
character would die permanently—death in the conventional

The PREY development

team at Human Head.

32 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

THE 9TH ANNUAL

INDEPENDENT
GAMES FESTIVAL
MARCH 6-9, 2007 • SAN FRANCISCO, CA PLAY THE BEST

INDIE GAMES
OF THE YEAR
AT THE GDC IGF PAVILION
MARCH 7-9, 2007
SAN FRANCISCO, CA

Find out more at

WWW.IGF.COM

REWARDING INNOVATION
IN INDEPENDENT GAMES

NEW FOR 2007:
• MAIN COMPETITION: A new Innovation Award, plus the

$20,000 Seumas MacNally Grand Prize

• MOD COMPETITION: Mods of ANY game are eligible this year.

Prizes will be awarded for Best Singleplayer FPS Mod,

Best Multiplayer FPS Mod, Best RPG Mod, and

Best ‘Other’ Mod—plus an overall Best Mod

• STUDENT COMPETITION: First-ever cash prize for Best Student Game

DEADLINE FOR STUDENT SUBMISSIONS: NOVEMBER 10, 2006

IGF07_gdmag_NOV.indd 1 10/11/06 2:13:56 PM

http://WWW.IGF.COM

34 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

video game sense—and the player would have to
reload from a saved game.

The player’s mission was to fight the
DeathWraiths (using a specific weapon available
when dead) and gain spirit power for each kill.
Once the character’s spirit power was full the
player could be resurrected on the spot where
he first died.

Ultimately, we rejected this first version due to
the unpredictability of where the character could
die. Fighting DeathWraiths was fun in wide-open
spaces, but was frustrating in tight corridors or
other unmanageable spaces.

Take two. The second version solved the
problem of the unpredictability of death location
by introducing the underworld. After dying, the
“dead” character was pulled into an underworld
arena to battle the DeathWraiths. The same
criteria for winning and losing carried over: The
character had to fill up her spirit power to win,
whereas running out of spirit power meant losing.

In this second version, we also experimented
with the character having to navigate to the center of the arena,
where her spirit power would slowly recharge. When the
character was not in the center, her spirit power would slowly
diminish. Meanwhile, the DeathWraiths continued to swoop in,
stealing spirit power and pushing the character out of the center.

We rejected this version due to the confusion about the slow
ticking of spirit power (as testers would suddenly lose without
much warning). This was also rejected due to the passive
nature of the gameplay. Standing in place and waiting for a
meter to fill up just wasn’t very exciting.

Take three. We designed the third version of DeathWalk around
two stages: In the first stage the character’s dead body was also
in the underworld, floating in the air, and slowly rising up into a
glowing cone of light from above. Once the body reached the top
of the cone, the player would lose.

The objective of this stage was for
players to rescue their bodies by
shooting DeathWraiths, which
would energize the body and drop it
closer to the ground. Once the body
reached the ground, the second
stage of this DeathWalk triggered.
The world shook and a hole leading
to the physical world opened up in
the ground. A whirlwind formed
which would gradually pull the body
and the player character into the
hole, back to the land of the living.

Next, the whirlwind continued to
pull at everything in the underworld
with increasing force. During this
stage, shooting a DeathWraith
would give the character a little bit
of health. The objective was to
shoot as many wraiths as possible
before getting sucked back into the
physical world. Players who shot no
DeathWraiths, would resurrect with

one point of health, although this was later changed to 25
percent and then 50 percent health because only giving a single
point of health caused many testers to die repeatedly in certain
circumstances.

This version was the first time we really felt the DeathWalk
mechanic would actually work well in the game. It was rejected,
though, because of the negative feedback loop introduced by
the rising body. The more wraiths the player missed, the more
time passed, causing the body to continue to rise higher,
meaning that many more wraiths had to be hit.

Take four. In the fourth version, we made some major
changes to the mechanic of the body rising and to how the
DeathWraiths functioned. This time, the body started high and
slowly moved down toward the ground. Once the body reached
the ground, the hole opened up as usual. In previous versions,
one of the goals was to save the body by fighting the
DeathWraiths. However, in this version, because the body
automatically lowered to the ground, the whole sequence was
essentially on a timer, making the goal to kill as many
DeathWraiths as possible in the short time allowed.

We also changed the DeathWraiths by introducing a second
type that gave spirit power when shot—so this time the player
simply had a short amount of time to hit as many wraiths as
possible to fill up the character’s health and spirit reserves
before getting pulled back into the physical world.

FINAL VERSION
A few tweaks had to be made to the gameplay mechanic,
specifically when dealing with death pits. We couldn’t have the
character resurrect at the bottom of the pit. To fix this issue, we
created death zones and resurrection locations, a place that the
character would return to if they died in a given death zone. This
seemed to be a pretty simple solution that required a bit more
design work to place and test to ensure the character would
resurrect in a decent location.

Another tweak we made was to give the character a few
seconds of invulnerability when they return from DeathWalk.
Characters often were killed in a firefight, so a few seconds of

A sketch of a DeathWraith.

35W W W . G D M A G . C O M

invincibility gave them a chance to
flee for cover or gain the upper hand
in the battle.

Finally, we constructed three
different DeathWalk arenas; but the
differences are primarily cosmetic,
as the gameplay is essentially the
same in all the arenas.

WHAT WENT RIGHT

1 INCREASED IMMERSION. Since
the character continued to play

even after dying, PREY became a
continuous experience without the
jarring “game over” interruptions
that mentally knock the player out
of the flow of the game.

Additionally, in most games, when
a character dies, the player often
decides it’s an opportune moment
to take a break from playing.

However, in Prey, death is handled as more of a state change
than a do-over, and game players tend to continue playing
because they mentally stay inside the game world.

2 REDUCED THE FRUSTRATION OF DYING. Dying can be an
exercise in frustration in games, especially if the character

dies over and over in the same location trying to get past a
particular puzzle or firefight. Repeatedly dying in the same
place can result in the player quitting the game out of
frustration—sometimes never to return. What’s even more
frustrating is when players die only to remember that they last
saved the game more than an hour ago.

The DeathWalk mechanic helps reduce the frustration by not
forcing players to start the puzzle or fight from the beginning;
they can resurrect and continue where they left off. This is
especially important to non-
hardcore players who are more
interested in enjoying the
experience and finishing the game
than getting beat down around
every corner.

Additionally, players can relax, not
worrying about when they last
saved the game, as DeathWalk
alleviates the need for constant
save crawling.

DeathWalk in action.

C O N T I N U E D O N P G 3 6

http://WWW.GDMAG.COM
http://www.mp3.com
http://www.tv.com
http://www.gamespot.com
http://www.cnetnetworks.com/careers

36 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

3 SOMETHING NEW IN THE
GENRE. Quite simply, this

type of mechanic hasn’t really
been implemented like this in an
action first-person shooter
before. Most FPS games deal with
death in the same way, so it was
a refreshing change to play a
game with a different system for
death. We had a number of
testers report that once they
became accustomed to
DeathWalk in PREY, they started
to miss having this feature when
they played other FPS games.

4 TIME AND FREEDOM TO
EXPERIMENT. Because we

were working with 3D Realms and
they have an open approach to
game design and a “When It’s
Done” philosophy on release
dates, we had the freedom to
experiment with alternative game
design ideas, as well as the time to
prototype and refine the ideas.
Without that freedom, we wouldn’t
have been in the mindset to
develop new ideas in the game.

Without the time, we never would have been able to go through
as many experiments, revisions, and tweaks as we did.

5 A DEDICATED AND OPINIONATED TEAM. Throughout
development, we encouraged team members to bring up

their criticisms about any part of the game. This generated a lot
of discussion about various aspects of the game, ranging from
music to art to story.

DeathWalk was no exception, as people brought up suggestions
quite often about the look and the gameplay of the mini-game.
This feedback was always taken seriously, and it quite often
generated new ideas and directions for the prototyping of
DeathWalk. Without the feedback of the team, we wouldn’t have
explored as many different variations of the DeathWalk mechanic
before deciding on the final version in the game—nor would the
look of the area be as polished as it turned out to be.

WHAT WENT WRONG

1DEATHWALK MADE THE GAME TOO EASY FOR SOME PLAYERS.
Because dead characters come back right where they died,

the game became too easy for some players. Experienced
gamers could just push through the game, die and come back
quickly to finish the fight.

This is especially true during boss battles, when a player can
fight as long as possible, die, and come back repeatedly until
the boss is defeated; the boss’ health does not reset when the
character dies.

2 REDUCED PLAYER CONCERN ABOUT DEATH. Some testers
reported that death no longer felt like a penalty and they no

longer feared dying in PREY. This was one of our concerns

throughout the game’s development and something we watched
closely in the reactions of the focus testers and of the team.

It’s interesting to note that opinions on this were split. Some
testers reported that death felt just as much a penalty as in
other games, while others reported that DeathWalk reduced
the impact of dying. In certain circumstances, we noticed, it
was advantageous to die. For example, if players are low on
health, they can kill themselves, and use DeathWalk to regain
even more health.

3MADE FOR A SHORTER GAME. One of the major comments
we’ve heard particularly from experienced and hardcore first-

person shooter players is that the game is rather short. This
happened for various reasons, but one of them is DeathWalk.

Had we gone the route of conventional FPS games, the player
(upon getting killed) would have had to reload a save game or
restart from a previous checkpoint, either of which would have
required the player to replay a section of the game, possibly a
large section. But with the DeathWalk mechanic, players
continue from right where the character died, without retracing
their steps. Because we didn’t require players to repeatedly play
sections over again until they solved them without dying, the
overall game time was reduced.

4 NOT ENOUGH VARIATION IN DEATHWALK. The gameplay
mechanic of DeathWalk is pretty simple and was intended to

be like a mini-game. While this mechanic worked well, it can
become a bit tedious later if a character dies repeatedly
throughout the course of the game. It would have been
interesting to expand upon the mechanic and provide more
variation in the objectives while still maintaining the original
goal of keeping DeathWalk quick and fun.

5 NO LIMITS ON DEATHWALK. DeathWalk wasn’t limited in PREY,
so the character is able to die and resurrect as many times

as needed. The lack of limitations on DeathWalk contributed to
many of the other things that went wrong in development or
that we would change if given another go around. Had we limited
the number of times or how often the character could play in
DeathWalk, it would have reduced or eliminated some of these
other elements that went wrong.

One suggestion that developed in hindsight is to have set places
where DeathWalk cannot occur, such as during boss fights.

KICKING THE LAST BUCKET
Controversy surrounded DeathWalk after PREY was released.
Opinions on the feature were polarized, as some people liked the
aspect of never having to die permanently, whereas others felt it
reduced the impact of dying and made the game too easy.

Like other game features, DeathWalk could be improved upon,
but ultimately I’m proud of how it turned out and the fact that we
had the opportunity and ability to implement something as
unique as this system. I think the true test of the effectiveness
of DeathWalk is that it’s a feature that I find myself sorely
missing when I play other games (especially if I’ve forgotten to
save in a while). Even if our system isn’t copied directly, I hope
that alternative methods of handling death become more
commonplace in future games. *

PREY’s protagonist, Tommy.

C O N T I N U E D F R O M P G 3 5

MORE THAN A DECADE AGO, HOPELAB
board chair Pam Omidyar had an idea to
combine science and entertainment
technology to create a video game that
would give young people with cancer a
sense of power and control over their
disease. The idea became a reality this
year when HopeLab, the nonprofit Pam
founded in 2001, launched RE-MISSION, a
third-person shooter with 20 levels of
gameplay featuring a gutsy, cancer-
fighting heroine named Roxxi.

For most of us, RE-MISSION marked the
first time we had worked with game
developers, so we weren’t familiar with
the typical challenges they face, like
designing levels, optimizing playability,
and creating engaging characters.

The goal of RE-MISSION was clear from
the start—to improve health-related
outcomes for cancer patients. Now it was
up to us make this goal fit into the game
development process.

WHEN SCIENTISTS AND
DEVELOPERS COLLIDE
Between the HopeLab team and our
outside collaborators, we hold a great
deal of expertise in the sciences. Still, we
had great respect for the fact that game
developers, not scientists, are the real
experts when it comes to creating high-
quality interactive games that young
people actually want to play.

Predictably, tensions surfaced at
certain points in the development
process as we tried to incorporate key
biologic principles into the game’s design,
not always realizing that these principles
didn’t necessarily make for interesting
gameplay. A clear example was the

challenge of developing one of the most
important “enemies” in RE-MISSION: the
cancer cells.

Under a microscope, cancer cells aren’t
particularly fearsome or intimidating. But
our goal was to clearly illustrate to cancer
patients the biology of cancer cells and
how they behave in the human body. In
RE-MISSION, as in real life, if you don’t kill
all the cancer cells you can find, they
multiply and become a deadly threat.
Accurately representing this threat in
gameplay was incredibly important.

Concept sketches of the enemy cancer
cells were reviewed by our team of
collaborators—both the scientists and
the game designers. The drawings that
the scientists liked best were not at all
what the developers considered to be
viable prototypes for video game villains.
Finding a balance between these two
perspectives was critical.

SEEING EYE TO EYE
We decided to seek the advice of young
people with cancer, our primary audience
for RE-MISSION.

Throughout the development process,
HopeLab consulted with young cancer
patients to understand the challenges they
faced physically and psychologically as
they endured cancer treatments in order to
accurately reflect their experiences and
address their needs in RE-MISSION.

Asking these young people whether
they thought the game that was taking
shape was not only true to their life

experience but actually cool and fun to
play was equally important. So when
conflict arose over how precisely we
should represent cancer, our primary
enemy in RE-MISSION, it made sense to go
back to these young people for input.

Ultimately, this customer-focused
approach is what enabled everyone
involved with RE-MISSION to achieve our
goals. It probably comes as no surprise that
our young experts pushed for something a
bit more fantastical than factual. But the
result is an enemy that’s not only based on
accurate biological principles, but also is a
real menace when it comes to gameplay.
It’s gratifying to have Roxxi blast the cancer
cell villains, and, just like in real life, it’s not
always easy to get every last one.

MARK OF SUCCESS
The results we’ve achieved for a project
as ambitious as RE-MISSION have been
terrifically successful by almost any
measure. In March, HopeLab announced
preliminary results from a large-scale,
randomized, controlled trial of RE-MISSION

that indicate the game improves key
health-related outcomes for cancer
patients who play it.

Needless to say, we’re thrilled with
these results and greatly appreciate the
expertise and collaborative efforts of the
game developers who participated with
us. RE-MISSION works, and the rational
engineering and rigorous research
behind it demonstrate that video games
can do good in the world. *

37W W W . G D M A G . C O M

BUSINESS LEVEL>>

37W W W . G D M A G . C O M

PAT CHRISTEN

P A T C H R I S T E N is president of HopeLab, which created

the serious game RE-MISSION. The game is accessible free of

charge to young people with cancer through the RE-MISSION

web site: www.re-mission.net. To learn more about HopeLab

and the making of RE-MISSION visit www.hopelab.org.

Conflating science and game character creation

SERIOUS EXPECTATIONS

Between the concept stage (left) and final art work of the leukemia cells (right)

in RE-MISSION, scientists, game designers, and players all provided input.

http://www.re-mission.net
http://www.hopelab.org

Connect with leading industry professionals at the definitive

mobile game event of the year. At GDC Mobile 2007, you will garner strategic

business contacts, access the latest market information and learn how to challenge current

industry constraints by applying alternative business models. The power is yours to

seize the mobile market. GDC MOBILE - Take ConTrol.

GDC

 REGISTER

TODAY!
www.gdcmobile.com

GDC MOBILEMarch 5-6, 2007 in San Francisco

GDCM07_gdmag_NOV2.indd 1 10/10/06 3:30:27 PM

http://www.gdcmobile.com
judyr
Line

UNTIL RECENTLY, THE MAJORITY OF
games have been controlled with either a
handheld sticks-and-buttons controller or
a combination of keyboard and mouse.
Two factors are changing this. First, the
casual game market’s emphasis on
simple and accessible gameplay has
resulted in a large number of games that
are mouse-only, and that only use single
clicks of one mouse button. Second, the
release of the Nintendo DS has hugely
increased the potential audience for
games that are controlled by a touch
screen and stylus.

Both factors converge in Nintendo’s
TOUCH GENERATIONS branded games, which
are essentially casual games for the DS
that are played with a stylus. An
additional factor is the increase in the
installed base of tablet PCs and the
related emerging market of ultra-mobile
PCs (like the Microsoft Origami spec) that
use touch screens with a stylus or a
finger as their primary input device.

This article discusses a few of the
programming and control design issues
involved with implementing stylus
control (and the related single-button
mouse control) in a game.

DEFINE YOUR ROLE
What should the programmer’s role be in
implementing stylus player control? Are
you implementing the player control or
implementing tools that allow someone
else to implement it? Programmers have
always been a key part of implementing
player control, and it’s one of the few
remaining areas where the programmer
is directly involved in the most critical

aspect of gameplay—the interface
between the player and the game.

Yet, like most aspects of game
development, even player control is
shifting to a more data-driven approach,
where a game designer is able to define
the player control with some script
language or table of data. Problems arise
with this approach when the capabilities
supplied by the programmer do not
adequately match the needs of the
designer, and it can be especially
problematic when the programmer is
tasked with implementing a specific set
of input functionality and handing it
over to the designer before moving on to
other tasks.

The implementation of player control is
an organic, exploratory task, especially
when dealing with a controller (such as
a stylus) that’s new to the team.
Unforeseen inadequacies will inevitably
be found in any control scheme
technical design, and subtle control
bugs will crop up throughout the course
of the project. Hence, it’s highly
recommended that a significant portion
of the programmer’s time is allocated to
making refinements and fixes.

Dedicating programmer time to the task
at hand is especially important if the
coder is working on the actual player
control, not just the underlying code. In
that situation, the programmer needs to
be free to make very rapid changes to the
player control when the need arises.

The role of the programmer is unique
in this area since the effective
implementation of intuitive player control
requires an understanding of what’s going
on at a per-frame level. Most designers are
not typically experienced with such low-
level functions, leaving them to rely heavily
on the programmer to explain what’s going
on when “this just doesn’t feel right.”

Again, programmers are not simply
implementing a control specification;
they are an integral part of organically
developing a seamless user experience.

MOUSE VS. STYLUS
At first glance, a stylus may seem to be
just a mouse that draws on the screen,
and indeed with a tablet PC, you can use
the stylus pretty much as you would use
a mouse. But if you’re asked to develop a
game that works well with both a mouse
and stylus (or convert from one system
to another), you need to think about
what differences exist.

Other than other obvious physical
distinctions, the fundamental logical
difference is that a stylus has no need for
a permanent cursor. A mouse is always
moving a cursor object around the
screen, but the stylus is its own cursor.

The second major difference, which is
related to the first, is that you don’t
always know where the stylus is. With a
mouse, if you move it from one position
to another, say to click on one icon, then
another, the code can detect the
movement of the mouse between these
two icons and use that information as a
hint to the player control.

On platforms such as the Nintendo DS,
the stylus becomes invisible when it’s
lifted off the screen; it essentially
vanishes from one point to appear on
another. On tablet PCs, the stylus can be
detected moving in the air an inch or so
above the surface, but it can still move
out of range, and then re-appear
somewhere else.

DEBUG BEFORE CODING
The single most important tool in
implementing player control is the ability
to visualize exactly what’s going on. The
very first thing you should implement is
the display of the device input data in an
easily understandable form. This need
not be complex. For example, all the
figures in this article use alternating red
and black diamond shapes to represent
every recorded stylus position, with a line
drawn between them. This visualization
will give you a good initial idea of the type
of input you will be handling and can

39W W W . G D M A G . C O M

M I C K W E S T was a co-founder of Neversoft Entertainment.

He's been in the game industry for 17 years and currently

works as a technical consultant. Email him at

mwest@gdmag.com.

THE INNER PRODUCT

MICK WEST

>>

STYLUS CONTROL
A look at the input schemes of alternative game devices

mailto:mwest@gdmag.com
http://WWW.GDMAG.COM

THE INNER PRODUCT

highlight unexpected issues
with either the hardware or the
driver layer you’re using to
read the stylus or the mouse.

Figure 1 shows
approximately the same stroke
performed by two different
mice; each read the same way by simply
handling the WM_MOUSEMOVE messages.
In Figure 1A, notice the points are fairly
evenly dispersed, and the curve is
reasonably smooth—but there are a few
small kinks here and there. In Figure 1B
there are two differences: the line itself is
smoother, with fewer kinks, and more
importantly, there are four samples
“missing” from the data.

The smoothness of the line can be
attributed to the second mouse (Figure
1B) being an expensive wireless laser
optical mouse, whereas the first mouse
(Figure 1A) is a cheap ball-based mouse
that came with the computer. The gaps in
the line could be anything, maybe a
driver bug, or a problem in some higher
layer, but the important thing here is that
the simple visualization reveals these
problems before any coding is done.

DEVELOP A LANGUAGE
For efficient communication between
programmer and designer, you need to
agree on a common language. The
fundamental, low-level, building blocks of
player controls are the device “events”

you are probably already familiar with,
specifically, the movement events and
the contact or button events. But at a
higher level, stylus control consists of a
series of strokes.

A stroke is the path defined by the
collection of points that the stylus moves
through between a down event and an up
event. A stroke can be as short as a
single tap on the screen (equivalent to a
mouse click), or as long as a stroke that
covers the entire screen and indicates
something like the path a weapon should
take or a set of objects to be selected.

Other high-level control events are
game specific. A “throw stroke” might
indicate throwing something in a
particular direction. Words such as “tap,”
“drag,” “gesture,” and “path” have
different meanings depending on the
game type, and it’s important to establish
exactly what these terms mean when
discussing player control.

DIFFERENT STROKES
In my article “Pushing Buttons” (Game
Developer, May 2005), I discussed the
problem of “sloppy thumb,” where

players hold the controller in different
ways causing different patterns of input,
which the programmer needs to account
for. Similar factors apply to stylus control
and simple mouse control.

A stylus can be held at different angles,
which affects how much it might slip
when making contact with the screen.
The force applied when tapping can also
affect the shape of the resultant stroke. A
light-handed person may give a nice
smooth line, whereas a more heavy-
handed person, or someone with poor
motor control, may start the stroke
inadvertently in the wrong direction as
the style makes contact.

Figure 2 shows three different attempts
at drawing the same simple left-to-right
stroke. In Figure 2A, the player creates a
nice clean stroke, holding the stylus
firmly yet precisely, moving it smoothly
and cleanly. In Figure 2B, the player has
hit the screen hard with the stylus, but is
holding it loosely, causing it to slip
upward slightly at the start of the stroke.
In Figure 2C, the start of the stroke is
again indeterminate, as the player has
tapped the stylus down hard and paused

FIGURE 1 These circular lines

represent the slightly inaccurate

path of a ball-based mouse (A) and

the smoother, yet incomplete path

of a laser optical mouse (B).

FIGURE 2 The same simple left-to-right stroke can be interpreted differently depending on how the user

handles the stylus: using a firm and steady hand (A); hitting the screen hard initially and holding the stylus

loosely so it slips (B); or striking hard initially and pausing before completing the stroke (C).

40 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

A B

A B C

41W W W . G D M A G . C O M

for a fraction of a second before starting
the stroke. At the end of the stroke, the
hand movement slows down, and the
angle of the stroke drifts upward. This
ending is more typical of left-handed
players who hold their styluses with a
firm overhand grip, as they would a pen.

What is the programmer to make of
these strokes? It depends on what’s
going on in the game, but a common
control element is “throwing” something,
or shooting a missile in a particular
direction. We need to translate the stroke
into a direction vector. Two obvious
approaches are to either use the vector
from the first point in the stroke to the
last, or to use the vector formed as the
average from all the individual
components of the stroke.

But as we can see from the strokes, the
results of these calculations would give us
a direction vector that is not in agreement
with the intent of our sloppy players. Our
precise player (Figure 2A) would be fine,
but in both Figures 2B and 2C, the
resultant vector would tend upward.

A possible solution would be to simply
chop off the start and end of the stroke
by a certain amount, ignoring, for
example, the first and last 10 percent or
maybe 0.05 seconds of a stroke. But a
more sophisticated solution would be to
try to identify the “straight” portion of the
stroke, which we can easily recognize,
but is a little more complex to program.

Whether you would actually want to
implement this solution depends on the
type of game you’re making and its
intended audience. Some games such as
golf or bowling might depend on the
nuance of a stroke for fine control of ball
spin, and so the degree of slack you want
to give the player would be less. But in
ball tossing games such as MAGNETICA or
LUXOR, all you want is a direction vector.

ACCELERATION INFO
The raw vectors that form a stroke tell
you where on the surface the player
moved the stylus and how fast. But by
looking at the acceleration information in
the stroke data, the programmer can
gather information that indicates what
the user was doing before and after
making the actual stroke.

The two strokes in Figure 3
both cover about the same
distance in the same
direction. However, Figure 3A
shows significant
acceleration at the start of
the stroke and deceleration
at the end, which indicates
that the player deliberately
made the stroke from one
point to another and that the
stylus was not really moving
before or after the stroke. In
Figure 3B, the stroke was
made at the same speed
throughout, indicating the
player was moving the
stylus both before and after
the stroke at the same
speed. This is like the player
moving the stylus through
the air, dipping it down to
briefly touch the surface and
continuing.

These two movements
are very different, yet the
interpretation of the
strokes may or may not be
different, depending on the
type of game.

DEVICE-DRIVEN
DESIGN
Games controlled by a
stylus or mouse are
increasingly common. Their

technical knowledge of the device (and
how input is received by the device)
makes programmers integral to the
design process and the organic
implementation of the player controls.

Visualization is vital. Players have
different input styles and mental
expectations of stroke control, and by
accommodating as many styles as
possible without compromising
coherent controls, you will expand the
potential market and the conversion
rate for the game. *

FIGURE 3 Stylus acceleration varies with the user’s intent. A stroke may begin and end slowly (A)

or may have a continuous and steady speed (B).

A B

http://WWW.GDMAG.COM
http://www.xoreax.com

ONE OF THE POIGNANT STORIES I
remember from my high school U.S.
history class was that of the writer and
socialist activist Upton Sinclair whose
book The Jungle was intended to
awaken the world to the awful injustices
and working conditions imposed on
workers in the meat-packing industry.

And he did awaken
the world—but to
the awful contents
of the sausages
they ate. Later that
year, the Pure Food
and Drug Act was
passed, but
workers continued
to suffer.

What does this
have to do with
designing games?

Let’s consider another quote. Stop me if
you’ve heard this one: “How many
therapists does it take to change a light
bulb? Just one, but the light bulb has to
want to change.”

That joke gets at the heart of a fact of
human nature: getting someone to
change is really tough, unless they
really want to change. Most people
would rather just have fun, perhaps by
playing a game. And yet, as regular
readers of this column know, games are
ultimately about learning, and learning
is the process of changing one’s
knowledge, and often consequently
one’s actions.

Perhaps the proper joke for our industry
is: “How many games does it take to
teach a player? Just one, but the player
has to want to learn.”

SURVIVING ON BROCCOLI
For years, most educators have looked at
games as the enemy, something their
students choose to do instead of serious
study. In the 1980s a few tried to
harness the power of games, reasoning
that if students were motivated to play,
there might be a way to get them to learn
in the process.

Many of the early edutainment titles
were, in the terms of developer Brenda
Laurel, “chocolate-covered broccoli,”
merely the same old boring drills with the
trappings of gameplay as a superficial
and ultimately unsatisfying “topping.” It’s
really only in recent years (with what has
become known as the serious games
movement) that we’re starting to see the
true integration of good game design
techniques with good pedagogy.

SURVIVING ON SKILLS
Still, there’s the tendency to view
gameplay as a kind of fairy dust that
can be sprinkled over boring academic
content. But if you look at the most
popular games, invariably they are
focused firmly on themes of survival, and
the skills one learns while playing are
intimately connected to survival and
social skills (for more on this topic, see
“Natural Funativity,” www.gamasutra.com
/features/20041110/falstein_01.shtml).

Frequently, I’ve found that when an
educator turns to games as a way to
make boring topics more fun, those topics
are far removed from everyday survival.

For straightforward topics, just putting
the material into an arcade context can
sometimes help. TYPING OF THE DEAD is a
typing trainer, and although there’s no
logical reason why being a faster typist
should blow up zombies, it can really
work as a motivator.

However, if you have a more complex
subject that is inherently far from a
student’s everyday survival needs—for
instance, solving differential equations,
or understanding the causes of the Great

Depression—representing the material in
a game becomes much tougher.
Conversely, when you want to teach
something that is closely related to
survival, you can do very well—hence
the success of AMERICA’S ARMY and FULL

SPECTRUM WARRIOR.

MAKING CONTENT PLAYABLE
In the end, it may be that games are the
wrong way to go. Games are powerful
teaching machines, but not the ultimate
solution to every problem.

Alternative approaches are out there,
though. One is to simplify. If a complex
math concept can be broken down into
very simple steps, which can in turn be
linked to an abstract game, that game
might not be able to teach the full subject
of solving differential equations, but it
could get you part of the way there and
shorten (or reinforce) the classroom
instruction.

Another solution is to find a way to link
at least part of your topic to survival. The
political causes of the Great Depression
may be abstract, but the way it affected
individuals and families was quite real,
and could transition easily into gameplay
representation.

One of the few big successes from the
early edutainment days was OREGON

TRAIL, which taught about the American
West through a theme that was heavily
survival oriented. I recently used that
approach myself in the design for a Lauer
Learning game called FREEDOM FIGHTER

56, which teaches about the Hungarian
revolution 50 years ago by putting the
player into the action.

Ultimately, if we designers are supposed
to motivate players to want to change, we
need to reach them with topics and
themes that they care about. Otherwise,
we are likely to aim for their brains, and hit
them in their hand-eye coordination. And
everyone knows if you want to stop a
zombie, you must hit its brain. *

game shui

NOAH FALSTEIN

N O A H F A L S T E I N has been a professional game developer

since 1980. His web site, www.theinspiracy.com, has a

description of The 400 Project, the basis for these columns. Also

at that site is a list of the game design rules collected so far and

tips on how to use them. Email him at nfalstein@gdmag.com.

CHANGING BRAINS

>>

‘I aimed at the public’s heart, and by accident I hit it in the stomach.’

—Upton Sinclair, about his 1906 book The Jungle

Sega’s TYPING OF THE DEAD

is an example of a game

that teaches players

without removing them

from the action.

42 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

http://www.theinspiracy.com
mailto:nfalstein@gdmag.com
http://www.gamasutra.com/features/20041110/falstein_01.shtml
http://www.gamasutra.com/features/20041110/falstein_01.shtml

LAST MONTH, PIXEL PUSHER WAS
chirruping happily about what a great time
it is to be a video game artist. This month,
we return to the moody artist stereotype
to dredge up some doom and gloom.

Anyone who has been to a developers’
beer night or sat through a state-of-the-
industry conference panel knows the
litany of scary, potentially career-
changing technologies and trends
perpetually on the horizon. There’s
outsourcing, next-gen team bloat, the
Autodesk-Alias merger, any number of
ongoing workers’ rights lawsuit, and the
decline of PC gaming—not to mention bird
flu, the loss of Pluto as a planet, and the
return of hair metal bands.

If you’re not depressed already, here’s
another challenging technology that
hasn’t made it onto most artists’ early
warning radars just yet—scanners.

3D scanners have been around for a
couple of decades in various forms, so
they’re not exactly “new,” but in the last
couple of years falling prices and
improving quality have made them
increasingly attractive. Don’t be
surprised if you see a lot of breathless
articles in the press over the next year
about the new generation of scanners,
how they were used for this movie or that
game, and how they produce beautiful
assets on command.

This party line sounds a lot like the one
we heard in the early days of motion
capture, when the media predicted that

animators would be laid off in droves
while an army of drama students in
spandex grabbed all the jobs. The reality
is, of course, not quite so simple or
baleful—but even if scanning won’t put
us all on the breadline, it’s still worth our
time to look at how the technology
behind it is evolving, what it’s good for,
and what it may mean for the industry.

HUMBLE BEGINNINGS
Older scanners were impressive at first
glance, but the results didn’t always
stand up to close examination. Those
complimentary “let us scan your art
director” models that came back from
every Siggraph junket often featured poor
handling of undercuts, noisy data, and
textures with built-in lighting and
projection smears. Mechanical models
sprouted digital acne worthy of Joey
Ramone, with dimpled planes, rough
edges, and crude sculpting. Worst of all,
the raw scan data was monstrously heavy.

Between bloated data, laborious
cleanup, and mediocre results, scanning
didn’t put many modelers on the dole.
The technology did find useful roles in a
handful of niche jobs, such as cranking
out recognizable likenesses of sports
figures or movie stars.

Cinema teams less bound by the limits
of real-time performance were also able
to experiment with scanned characters,
and if nothing else, scanners were
unbeatable for dealing with wrinkles and
folds in clothing. Yet on the whole,
scanning was definitely an exotic way to
generate game content, the sort of
technology that seems to exist primarily
for trade show demos.

THAT WAS THEN
Even the early scanners were impressive
technical achievements. Attempting to
translate a real world object into a 3D
model is a daunting task (pat yourselves

on the back, poly pushers). For us, the
key is to find significant features, like the
corners of a box, the roundness of a ball,
or the features of a face, which become
the basis of the model layout. It’s
intuitive to us, but it’s way beyond the
capacities of contemporary computers.

Scanners, on the other hand, take a
brute force approach. They collect millions
of perfectly accurate bits of data, but they
have no idea which of those bits are
important and which are filler, using sheer
volume of data to capture the nuances. In
a hand-built model, every contour is there
because the artist knows it should be. In
a scanned model, by contrast, the key
visual features don’t really exist, their
presence merely suggested by fortuitously
placed vertices (see Figure 1, pg. 44).

In this way hand-built models are like
vector drawings, whereas scans are more
like bitmaps. Hand-built models elegantly
describe objects with strong forms, such
as sculptures or machines. Scans, like
bitmaps, do a great job on noisier and
more organic shapes (for example,
human faces), but they are also memory
hogs. A scan requires far more data to get
visual results that approximate the
quality of a good model. In the last
generation of games, turning a scanned
model into a real-time-ready model was
almost as hard as building one from
scratch, so scanners rarely emerged from
their specialist roles.

THIS IS NOW
Nothing lasts for long in the game
business. Three important factors have
conspired to make scanning a
mainstream option today.

The first big change is on our end: while
the basic technology behind scans hasn’t
changed, our output technology has.
Having cheap and plentiful normal maps
means we can finally derive some
tangible benefit from all those zillions of

S T E V E T H E O D O R E has been in the game industry for

12 years. He's worked at FASA Interactive, Valve, RAD Game

Tools, and until recently was the technical art manager at

Zipper Interactive. He's now a founding partner at Giant Bite.

Email him at stheodore@gdmag.com.

THROUGH A
SCANNER DARKLY

PIXEL PUSHER

STEVE THEODORE

>>

43W W W . G D M A G . C O M

mailto:stheodore@gdmag.com
http://WWW.GDMAG.COM

PIXEL PUSHER

scanned polys. Per-pixel lighting
preserves the important features of the
high-resolution scan without busting our
geometry budgets. The latest version of
Direct3D and a handful of games have
even toyed with real-time displacement
maps, so we may be able to adopt the
Hollywood technique of storing scan data
as displacement maps on top of Nurbs
curves or subdivision geometry.

Advances in scanning software have
also helped push scanners back into the
limelight. Early scanning applications
were mostly concerned with the messy
business of converting huge clouds of
point data into usable data, or matching
up multiple scans into coherent models.
Nowadays, scan software (such as GSI
Studio, CySlice, or InSpeck) also gives
artists a lot of freedom to draw in
animation-friendly topology, produce
useable UV maps, and quickly generate
normal maps off the original data (see
Figure 2).

All these benefits add up to a real
reduction in turnaround time. A high
quality scanned asset can be almost
ready for prime time in a day or two.

Technical evolution has also brought
scanners back to center stage. The latest
generation of scanners are accurate to a
truly scary degree. There are scanners on
the market today that boast a spatial
resolution of about 0.003 inches (or
0.075mm), literally the thickness of a
human hair.

The increased resolution is less
important for spatial accuracy than for
properly capturing surface texture. A
modern scanner can capture the
stitching in a pair of jeans, the leather
texture of a football, or the pores on a
face. This microscopic resolution,
combined with even larger numbers of
sample points, now lets scanners tackle
planar surfaces and sculpted contours
with much greater success. Instead of
the pockmarks and pimples, the newest
scanners produce very passable
renditions of sculpted surfaces. Modern
scanners can even capture the grip
texture on a pistol or the lettering
embossed on a button.

FIRE!
With all these new and almost magical
capabilities, it’s easy to get spooked and
start thinking the real output of these
new machines is going to be pink slips. At
this very moment, some vice president of
something-or-other is looking at a
brochure for a $300,000 scanner,
wondering how many vacation-taking,
benefit-using, class-action-lawsuit-
bringing modelers it might replace.

Keep dreaming. There are several
reasons massive layoffs aren’t right
around the corner. Remember that we’ve
been through this cycle before, and the
skeptics have always been right.
Survivors of the first wave of commercial
mo-cap production can certainly bear
witness to how people talked about the
end of hand animation; some of us even
remember when people argued seriously
that the availability of 300dpi scanners
would end the art of computer painting
almost before it began.

We’re not quite ready to bow before our
robot overlords just yet. There are four
key areas where scanners need a lot of
help from traditional techniques.

Shaders. The biggest reason scanners
aren’t an end-to-end solution is material
handling. There’s no commercially
available way to capture the surface
properties of an object. Scanners do
capture texture maps, but typically they
do so with plain old digital photography,
so getting those scans into proper
textures with neutral lighting and no
shading or false highlights takes a lot of
attention. Scanned textures are a great
starting point for hand texturing, since
they provide perfect registration with the
geometry, but the process is nothing like
“scan it and can it.”

On top of all that, scanners don’t
capture all the other surface information
that modern shader systems require.
Specularity or incandescence, for
example, or translucent or transparent
surfaces are obstacles to scanning.
Shiny or transparent areas often need
to be painted over to achieve good
quality scans.

Professional doomsayers may point
out the body of academic work on
bidirectional radiance diffusion function
(BRDF) probes, which can capture a very

FIGURE 1 This model of a turbine blade (A) has almost 900,000 vertices, but it still can’t

represent the smooth curvature of the blade perfectly, illustrating the inefficiency of raw 3D

scans. The hand-built model (B) has fewer than 2,500 vertices, but it shades more cleanly. F
IG

U
R

E
 1

A
 C

O
U

R
T

E
S

Y
 O

F
 T

H
E

 G
E

O
R

G
IA

 T
E

C
H

 L
A

R
G

E
 M

O
D

E
L

S
 A

R
C

H
IV

E
.

A B

44 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

full representation of how a surface
interacts with light. The technique was
used to great effect in the last Matrix
movie, but there’s still no off-the-shelf
solution for those of us without a PhD.

Flexibility. Much like motion capture or
asset outsourcing, 3D scanning cuts the
load of asset creators, but it also creates
a lot of work for producers and art
managers. Unless you’re planning to
shell out $300,000 for an in-house
scanner, you’ll probably be sending work

to a service bureau, possibly in
another city or state.

A scan-heavy workflow also
means managing relationships
with prop houses, costume
agencies, model fabricators, and
possibly modeling agencies or
actors’ unions. Riding herd on a
bunch of in-house modelers may
come to seem pleasantly simple
by comparison.

Style. Of all the potential
problems, style is the hardest to
quantify but potentially the most
important.

The exactitude of a good scan
is awe-inspiring. Unfortunately,
the parts of your game that can’t
be scanned could look pretty
pokey by comparison. Sports
games, racing games, and
perhaps contemporary military
games can make very extensive
use of scans without busting
their illusions, but other genres
are more problematic.

Some creature-makers are
scanning in Hollywood-style
maquettes. This produces very
satisfying results (“Leon” from
Matthias Worch’s 2005 Game
Developers Conference talk is a
great example), and hefty clay
statuettes are great sales tools
when dealing with skeptical suits.

Real sculpture, however, can
be even more of an expensive
craft than 3D modeling, so this
route is for the artistically

ambitious rather than the budget
conscious.

Uncanniness. Last but far from least is
the yawning pitfall of next-generation
games, the infamous Uncanny Valley
where characters become so
superficially real that every technical or
artistic flaw becomes weirdly repulsive
(see “Uncanny Valley,” December 2004).

The precision of modern scanners can
actually make it harder to capture people
well. Since no actor can sit perfectly still,

upright scans suffer from drifts and
misalignments. Scanning an actor on a
bed or recliner solves the motion
problem, but then the pull of gravity
distorts the face into a disturbing
zombified mask. Scans will be perfectly
“accurate” and nearly “photorealistic,”
but without careful art direction they
won’t always be appealing.

THE PENULTIMATE TRUTH
Like motion capture and digital
photography before it, 3D scanning is not
going to bring the world crashing down
around our feet. Falling prices and
continuously improving quality mean
that you will definitely be seeing more
scans in the future. It’s quite likely that
some people who make models today will
find themselves touching up scans in the
future, just as some people who used to
set keys now work from mo-cap data.

If the prospect of being second fiddle to
a laser appalls you, start thinking now
about what you can do that scanners
can’t. Do you have a knack for design or a
strong personal style? Are you a pipeline
wizard who can find new ways to
squeeze quality out of a game engine?
Can you mimic any style with aplomb?
The niche you pick matters less than
giving serious thought what you’re good
at and what you want.

That, at least, is something the
machines can’t do ... yet. *

45W W W . G D M A G . C O M

For a list of all things scanning related, including a long list of
scanner manufacturers’ web sites, see:
www.simple3d.com

The Stanford 3D Scanning Repository:
http://graphics.stanford.edu/data/3Dscanrep

The Georgia Tech Large Models Archive:
www-static.cc.gatech.edu/projects/large_models

Scanning service bureau resources:
www.gentlegiantstudios.com

http://xyzrgb.com

www.eyetronics.com

www.cyberware.com/info/scanningCenters.html

RESOURCES

FIGURE 2 With normal maps, we can finally shoehorn all

that scanned data into real-time models.

S C A N N E D H E A D C O U R T E S Y O F C Y B E R W A R E , I N C .

http://www.simple3d.com
http://graphics.stanford.edu/data/3Dscanrep
http://www-static.cc.gatech.edu/projects/large_models
http://www.gentlegiantstudios.com
http://xyzrgb.com
http://www.eyetronics.com
http://www.cyberware.com/info/scanningCenters.html
http://WWW.GDMAG.COM

THE VIDEO GAME INDUSTRY IS NOMADIC
by nature and no field is more transient
than audio. As a result, all audio
professionals are forced throughout

their careers to prove and
reprove their worth solely on
the strength of their resume
and the first 30 seconds of
their demo.

Freelance audio folks rarely
get to see the demos of their
competition and audio
directors don’t have time to
give critiques on the demos
that end up in their “no” pile. So
how do you know if you’re a

“no” or not? More importantly, how can
you ensure you’re in the “yes” pile?

PRESENTING YOUR BEST
No demo exists in a vacuum. To the
contrary, almost every demo will find itself
sitting in the middle of a stack of demos.
Before any tracks can be heard, the first
impression your demo will make is a visual

one. As such, presentation is
everything. Imagine an audio
director staring down a stack of
CDs without any idea of what
the audio on them sounds like.
At that moment, the selection of
one demo over another is
almost completely arbitrary.
The only advantage your demo
has is its ability to stand out
from the crowd.

This means that CD- and DVD-Rs
that have been written on with a

Sharpie marker are automatically at a
disadvantage. At their best, they look
sloppy. Far too frequently, however, they
contain illegible or incomplete text. No
matter how attractive you may think your

handwriting is, it can’t compare to a
printed CD label. But what do you print on
the label?

First and foremost, always include your
name and contact information on every
part of your demo—whether it’s the case,
the disc, the resume, or a business card
you tossed in for good measure. Discs
and cases are easily separated and if
there isn’t any clue as to whose audio the
disc contains, that nameless disc just
lost itself a gig.

Second, if you’re looking to stand out,
avoid the standard cliché images
common to the industry. For composers,
this means never cover your demo with
pictures of sheet music, treble clefs,
noteheads, violins, etc. So many
composers use these images as the easy
way of saying, “This is a music disc.”
Hundreds of composers are all using the
same imagery.

For sound designers, stay clear of
pictures of waveforms, speakers, or
screenshots from Protools as they’re all
overdone. Both disciplines are also guilty
of another common cliché. If you include
a photo of yourself, don’t take it while
sitting in front of your gear. Take a picture
of yourself anywhere else. You’re looking
to stand out and be different. Trust me.
Audio directors will still believe you know
a mod wheel from a pan pot if they don’t
see you beside one.

If you don’t have the graphic design or
Photoshop skills to design something
other than the clichés for yourself, hire a
graphic designer to do it for you. It’s that
important. You’re creating a brand of
yourself that you’re then marketing
throughout the industry. You owe it to
yourself to do everything you can to
ensure that your disc stands out from the
pile of unknowns.

FOCUS YOUR EFFORTS
Once your demo has been yanked from
the pile, your audio chops are finally on
display. There are a number of different
schools of thought regarding how best to
present your work, and unfortunately no

clear answers with which everyone
agrees. Should you make a single
montage piece or a series of smaller,
separate tracks? As someone who
reviews demos, I find that I prefer to see
separate tracks since I can easily skip
back and forth through the demo to hear
tracks again. Should your demo vary
widely stylistically or should it be most
representative of your strongest talents?
That depends on the specifics of the job
for which you’re applying.

Without a doubt, the most important
aspect that is often overlooked with
demos is the ability to focus it
specifically to the job for which you’re
applying. An all-purpose demo is great for
GDC, but if you’re applying for a specific
job you should submit a demo that
speaks directly to that position. A sound
design job does not warrant a music
demo. A company that only makes racing
games does not want to hear a sweeping
fantasy soundscape. Your demo should
be flexible enough that you can select
from a pool of available tracks that are
appropriate at different times for
different job opportunities.

BACK TO BASICS
Never forget the basics. Make sure each
disc works on both Mac and PC platforms,
as you never know what the listening
environment on the other end will be.
Listen through your demo to make sure
all of the tracks play through to the end
of the file. Make sure your demo is
short—no longer than 10 minutes,
preferably closer to five. Unless
specifically requested, don’t send data
discs with anything other than audio and
video clips. Word documents and Excel
spreadsheets are not the stuff of demos.

There’s a certain element of alchemy to
crafting the right demo. Listen when
people give you feedback, update your
demo frequently, but mostly don’t feel
too stressed by demos. Our industry is
full of dream jobs and you’ll have plenty
of opportunities throughout your career
for fine-tuning. *

46 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

AURAL FIXATION>>

J E S S E H A R L I N has been composing music for games

since 1999. He is currently the staff composer for

LucasArts.You can email him at jharlin@gdmag.com.

BE A DEMO DYNAMO

JESSE HARLIN

A bad demo disc cover,

typos and all, will become

lost among all the other

poorly designed discs.

A good demo disc cover,

from composer Duncan

Watt, uses bright artwork

and a catchy design to

make it stand out.

mailto:jharlin@gdmag.com

MWY_GD_May06_Ad.qxd 8/23/06 10:46 AM Page 1

http://www.jobs.midway.com

48 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

>>
C

R
E

A
T

IV
E

 C
A

R
E

E
R

S

http://www.f9e.com

http://www.crypticstudios.com

50 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

>>
G

E
T

 E
D

U
C

A
T

E
D

http://www.vfs.com/enemies
http://www.fullsail.com

ALL EXPERIENCE LEVELS NEEDEDALL EXPERIENCE LEVELS NEEDED

TM

http://www.secretlevel.com/jobs

52 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

B
et

te
r

Co
m

m
un

icatio
n

H
ig

he
r B

an
dw

idth Quality
Searches

Larger Database

Need to learn the skills that today’s employers are looking for?

• Love checking out the latest
video games?

• Have you ever thought about
what it would be like to create
your own video games?

If you want to combine your talent
for design with today's modern
technology, find out more about our
Bachelor of Fine Arts Degree in
Visual Communications with a
concentration in Game Design.
Contact us today and start studying
for a rewarding career in the
growing field of Game Design.

• Financial aid is available for those who qualify • Continuous Education Benefits available to alumni
• Focused hands-on career education • Career Services assistance is available for all students

Give us a call.

You could be a candidate for
career training in Game Design.

The Academy
Offers:

>>
G

E
T

 E
D

U
C

A
T

E
D

judyr
Line

http://www.mary-margaret.com
http://www.iadtchicago.edu

Image by Eva Kolenko, BFA, Photography

The best time to THINK about education was years ago.
The second best time is right now.
IT’S NEVER TOO LATE
REGISTER NOW FOR SPRING – CLASSES START JANUARY 29

1.800.544.ARTS / ACADEMYART.EDU

ANIMATION
AND VISUAL EFFECTS,

ILLUSTRATION, GRAPHIC
DESIGN, COMPUTER ARTS NEW

MEDIA, FINE ART, PHOTOGRAPHY,
ARCHITECTURE, ADVERTISING,
INDUSTRIAL DESIGN, INTERIOR
ARCHITECTURE AND DESIGN, MOTION
PICTURES & TELEVISION, FASHION

79 New Montgomery Street, San Francisco, CA 94105
 Nationally accredited by ACICS, NASAD, Council for Interior Design Accreditation

 (formerly FIDER) (BFA-IAD), NAAB (M-ARCH)

ONLINE DEGREES & CLASSES

Game Developer (Nov).ai 9/26/06 11:32:47 AMGame Developer (Nov).ai 9/26/06 11:32:47 AM

http://ACADEMYART.EDU

54 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

>>
G

E
T

 E
D

U
C

A
T

E
D

create
YOUR WORLD

C E R T I F I C A T E P R O G R A M S A V A I L A B L E

Intensive nine-month programs for the skills and tools you need to turn your ideas into reality.
Financial assistance and career services available. APPLY NOW.

CONTACT US TODAY: call 800.808.2342 or visit www.cdiabu.com

Game Art & Design 3D Animation Visual Effects Recording Arts

Collins College is accredited by the Accrediting Commission of Career Schools and Colleges of

Technology (ACCSCT). Financial aid is available for those who qualify. Career services assistance.

Collins College West is a branch of Collins College. Not all programs available at all locations.

1•800•850•0100
w w w . C o l l i n s C o l l e g e . e d u

M a i n C a m p u s - Te m p e , A Z > > W e s t C a m p u s - P h o e n i x , A Z

by Rick O’Connor

Collins College offers a Bachelor of Arts degree

in Game Design and a Bachelor of Arts degree in

Visual Arts with a major in Game Art.

CALL NOW FOR

INFORMATION

ADD A NEW DIMENSION

TO YOUR LIFE.

Please geek responsibly.
You may speak the language,

but are you geeked?
Here’s a chance to prove it.

www.uat.edu > 800.658.5744

GAME DESIGN COMPUTER FORENSICS

DIGITAL ANIMATION NETWORK SECURITY

ARTIFICIAL LIFE SOFTWARE ENGINEERING

DIGITAL VIDEO TECHNOLOGY MANAGEMENT

WEB DESIGN GAME PROGRAMMING

http://www.CollinsCollege.edu
http://www.uat.edu
http://www.cdiabu.com

55W W W . G D M A G . C O M

>>
G

E
T

 E
D

U
C

A
T

E
D

http://WWW.GDMAG.COM
http://www.guildhall.smu.edu

DISGAEA 2:
CURSED MEMORIES
DISGAEA 2 is the PlayStation 2 sequel to the anime-
style strategy RPG hit from Nippon Ichi Software,
with character designs by Takehito Harada. The
character depicted here is Laharl, one of the main
characters, with a Prinny hanging from above.

56 N O V E M B E R 2 0 0 6 | G A M E D E V E L O P E R

A THOUSAND WORDS>>

Havok Behavior Gives You
Complete Character Control

Author Behaviors Interactively

Plug in custom procedural nodes

Leverage the full power of

Havok Physics and Animation

Are Your Characters
Developing a ‘Tude?

Stay Ahead of the Game!TM

http://www.havok.com

Bink

Video

Technology

Granny 3D

Animation

System

Pixomatic

Software

Renderer

New
Wii support!

New
Wii support!

All trademarks mentioned herein are property of their respective owners

http://www.radgametools.com

	Contents
	Postmortem
	Creeping Death: Designing the DeathWalk System in 3D Realms' and Human Head Studios' Prey

	Features
	Getting Lucky
	Go with the Flow

	Departments
	Game Plan
	Heads Up Display
	Skunk Works
	A Thousand Words

	Columns
	Business Level
	The Inner Product
	Game Shui
	Pixel Pusher
	Aural Fixation

