
NOVEMBER 2003

G A M E  D E V E L O P E R  M A G A Z I N E



L E T T E R  F R O M  T H E  E D I T O R

EDITORIAL
Editor-In-Chief

Jennifer Olsen  jolsen@cmp.com
Managing Editor

Everard Strong  estrong@cmp.com
Departments Editor

Jamil Moledina  jmoledina@cmp.com
Product Review Editor

Peter Sheerin  psheerin@cmp.com
Art Director

Audrey Welch  awelch@cmp.com
Editor-At-Large

Chris Hecker  checker@d6.com
Contributing Editors

Jonathan Blow  jon@number-none.com
Noah Falstein  noah@theinspiracy.com
Steve Theodore  steve@theodox.com

Advisory Board
Hal Barwood  Independent
Ellen Guon Beeman  Monolith
Andy Gavin  Naughty Dog
Joby Otero  Luxoflux
Dave Pottinger  Ensemble Studios
George Sanger  Big Fat Inc.
Harvey Smith  Ion Storm
Paul Steed  Microsoft

ADVERTISING SALES
Director of Sales/Associate Publisher

Michele Sweeney  e: msweeney@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher  e: athatcher@cmp.com  t: 828.350.9392

Account Manager, Northern California & Midwest
Susan Kirby e: skirby@cmp.com  t: 415.947.6226

Account Manager, Western Region & Asia
Craig Perreault  e: cperreault@cmp.com  t: 415.947.6223

Account Representative, Target Pavilion, Education, & Recruitment
Aaron Murawski  e: amurawski@cmp.com  t: 415.947.6227

ADVERTISING PRODUCTION
Advertising Production Coordinator Kevin Chanel

Reprints Terry Wilmot  t: 516.562.7081

GAMA NETWORK MARKETING
Senior MarCom Manager Jennifer McLean 

Marketing Coordinator   Scott Lyon

CIRCULATION

Circulation Director Kevin Regan

Circulation Manager Peter Birmingham

Asst. Circulation Manager Lisa Oddo

Circulation Coordinator Jessica Ward

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.647.5928  f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

e: msalinas@cmp.com  t: 650.513.4234  f: 650.513.4482  

EDITORIAL FEEDBACK
editors@gdmag.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Executive Vice President & CFO  John Day

Executive Vice President & COO Steve Weitzner

Executive Vice President, Corporate Sales & Marketing Jeff Patterson

Chief Information Officer  Mike Mikos

President, Technology Solutions  Robert Faletra

President, Healthcare Media Vicki Masseria

Senior Vice President, Operations  Bill Amstutz

Senior Vice President, Human Resources  Leah Landro

Vice President & General Counsel  Sandra Grayson

Vice President, Group Publisher Applied Technologies Philip Chapnick

Vice President, InformationWeek Media Network Michael Friedenberg

Vice President, Group Publisher Electronics Paul Miller

Vice President, Group Publisher Software Development Peter Westerm

Corporate Director, Audience Development Shannon Aronson

Corporate Director, Audience Development Michael Zane

Corporate Director, Publishing Services Marie Myers

W W W . G A M A N E T W O R K . C O M

✎

I t’s like that archetypal dream

where you’re taking a final

exam for which you’re not pre-

pared. And then, as if things

couldn’t get any worse, you

suddenly realize that you’re sitting in

class in front of everyone you know,

stark naked.

Or at least, that’s a pale shade of how

I imagine the developers at Valve felt

when they realized the Half-Life 2
source code had found its way into the

wrong hands — many, many wrong

hands. As I write this the hacker’s trail

is still warm, and both Valve and Havok

(whose physics code was also reportedly

part of the stolen source) declined to

offer me any official comments on the

situation beyond Valve managing direc-

tor Gabe Newell’s posts to the

www.HalfLife2.net forums, where he

first confirmed the hack. Havok remains

in wait-and-see mode.

Developers may grudgingly accept

that cracked or leaked betas will appear

online while they are still fixing bugs

and tuning gameplay, but when news of

the Half-Life 2 source heist broke, it

was hard not to feel the collective shud-

der wriggle up the spines of game devel-

opers the world over. 

Of course no professional would lift

chunks of Valve’s code wholesale for use

in a commercial product, but is there

harm in just looking, poring over five

years’ worth of innovations and opti-

mizations by some of the best in the

business? Well, if you find a wallet on

the street with $5,000 in it and no ID,

do you say, “Hmmm, act of God!” and

go buy a mammoth new plasma HDTV

while blessing your good fortune, or do

you turn it into the police with the con-

tents intact? Most of us like to think of

ourselves as the kind of honest person

who would turn in the money. 

But what if you somehow knew that

the wallet had been stolen ten minutes

before it had been lost, and that the

thief would claim it before the rightful

owner? Is it still wrong to keep the

money if you know the rightful owner

will never get it back anyway? It’s

another case of two wrongs don’t make

a right. Just because something is in

your possession doesn’t mean it actually

belongs to you.

Don’t download the Half-Life 2
source. Don’t keep it if you already have

it. Don’t condone others who do. Don’t

create the lame excuse that “everyone

else is doing it” in the name of staying

competitive. Valve’s developers have

already given more than most to the

game development community, by

speaking at conferences, writing articles,

and posting to mailing lists on a variety

of topics surrounding their work. Don’t

take more than they were already will-

ing to give. 

Welcome, Steve. Finally, and not on an

entirely unrelated note, this month I am

excited to introduce our new Artist’s

View columnist, Steve Theodore, whose

career includes many years at Valve,

where he worked on Half-Life, Team
Fortress Classic, Counter-Strike,

and Team Fortress 2. I have had the

pleasure of knowing Steve for several

years now, and you may have seen his

name before in Game Developer next to

various product reviews and last year’s

feature on animation blending, or per-

haps you’ve seen him speak at GDC on

one of his many areas of expertise. 

As game art is becoming increasingly

specialized, Steve’s as close to a jack-of-

all-trades that could be expected of a

single human these days, and it’s a privi-

lege to have him batting for our team.

That his fluency in Latin and Greek is

almost on par with mine is just so much

satin piping on the jersey. Steve takes on

procedural textures starting on page 22.

I hope you enjoy getting to know him

over the next few months; he’s got a lot

in store for you.

600 Harrison Street, San Francisco, CA 94107  t: 415.947.6000   f: 415.947.6090 

4

Game Developer
is BPA approved

G A M E  P L A N

Jennifer Olsen

Editor-In-Chief

www.gdmag.com

Fixing a Leaky Valve



Diagnosing Addiction 

I n reference to the parents whose 22-

year-old son seems addicted to Ever-
quest (“Says You,” October 2003),

their son is not responding to the world

in a normal fashion. There are a number

of things that can cause addictive behav-

ior, but an all too common one is a

mental disease known as “affective dis-

order” to clinicians, or “clinical depres-

sion” to the layperson.  

If this is his problem, then the issue is

not with the game, it’s an organic imbal-

ance in brain chemistry. If it weren’t this

game it might be booze, drugs, sex, or

anything else that would provide a

respite from his inner turmoil. This is a

potentially fatal disease as one of its

documented symptoms is suicide. 

By coincidence, I myself was diag-

nosed with this disease at age 22 and,

with the help of a few pills each night, I

have since gone on to graduate from

college and have a highly successful 15

years in the technology industry as a

prominent, respected, and professionally

published software engineer. 

Since these parents are concerned

about their son’s future, I would implore

them to stop looking for outside things

to blame and get him to a good psychia-

trist who can diagnose or rule out inter-

nal problems. If he is a depressive, then

we aren’t just talking about his future,

but potentially his very life.

Jeff K.

Santa Clara, CA

Accentuate the
Negatives

Jonathan Blow’s “Using an Arithmetic

Coder” articles (August and Sep-

tember 2003) were fantastic. I’m look-

ing at trying to incorporate this idea

into our title. 

I wondered about the value and limit

being integers. I am hoping to find a

general solution that would work for

almost any kind of number, and I

believe negative numbers would be

problematic with the current solution.

Would it be a better idea to offset my

data to be all positive and take that into

account by the unpacking caller? Or

should I simply encode the sign bit as

another bit and decode it on unpack

automatically? Or is this technique only

applicable in the specialized situation

you described in your article?

Brett Bibby

GameBrains (via e-mail)

Jonathan Blow replies: Actually, I don’t cover
the negative number thing in any of the
articles, but maybe I should have. You’re
right that you can’t just shove a negative
number in there. What I do is, I know
the minimum and maximum values for a
number, and I offset them by the mini-
mum. So, valueprime = value – minimum,
limit = maximum – minimum, and that’s
what I put in the encoder. At decode
time, you do the same thing in reverse.

You can define a new function that
does this so you don’t have to think
about it. I wanted to keep the article
and the example code as simple as pos-
sible, so I left this out. You could also
do something with a sign bit, but it
would be less efficient.

A Distcc Second

I am writing regarding Justin Lloyd’s

review of Incredibuild (March 2003). I

agree with everything he said about the

product. However, Justin writes that

Incredibuild is only available for VC++

6.0 and .NET, thus leaving out platforms

such as Gamecube and Playstation 2, and

more generally any project that does not

(or cannot) make use of VC++.

I must point out the existence of

distcc, a free GPL tool that works over

gcc to allow for distributed builds. It

functions similarly to Incredibuild in

that it does not require distributed

makefiles or any complex additions to

the build process. You run a daemon on

every machine that is to participate in

builds and call distcc in place of gcc.

Your machine will preprocess source

files and send them out to individual

hosts, specified in a local configuration

file, for compilation.

Alban Wood

via e-mail

In the October 2003 feature “Struc-
turing Creativity,” co-author Wolfgang
Hamann’s bio was incomplete. He also
worked on The Hulk, Simpsons Road
Rage, and most recently, Simpsons Hit
and Run. He was previously a record
producer and personal manager in the
music industry. 

Also, in the October 2003 review of
the NXN Alienbrain Integrator SDK,
we overstated the cost of the minimum
configuration due to a recent change in
pricing. The clients now come with the
server software, and are sold à la carte.
The minimum price for a usable con-
figuration is the sum of two $690
developer clients, a total of $1,380.

n o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r6

S A Y S  Y O U
A  F O R U M  F O R  Y O U R  P O I N T  O F  V I E W .  G I V E  U S  Y O U R  F E E D B A C K . . .C

C
E-mail your feedback to

editors@gdmag.com, or write us at

Game Developer, 600 Harrison St., 

San Francisco, CA 94107

C O R R E C T I O N S



Take-Two makes TDK an offer it can’t refuse.
After posting a third fiscal quarter prof-

it of $7.7 million, Take-Two announced

that it will buy TDK Mediactive for

$22.7 million in stock. Take-Two’s

acquisition will give the Grand Theft
Auto publisher access to properties

such as Shrek, Pirates of the Carib-
bean, and Robotech. 

Concerto for videogames. Led by conductor

Andy Brick, the Czech National Orchestra

performed videogame scores to a sold-out

audience in Leipzig, Germany. The fall

game music concert kicked off the GC

Games Convention, marking the first such

event outside of Japan. The concert fea-

tured music from Nobuo Uematsu (Final
Fantasy), Olof Gustafsson (Battlefield
1942), Koji Kondo (The Legend of
Zelda: The Wind Waker), Andrew Bar-

nabas (Primal), Christopher Lennertz

(Medal of Honor: Rising Sun), and

Chance Thomas (Quest for Glory V:
Dragon Fire).

Eidos raids lost profit, whips Gamecube.
Eidos Interactive reported a £17.4 million

($27.4 million) pre-tax profit for the year

ending June 30, 2003, compared to a

£15.3 million ($24.3 million) loss the pre-

vious year. The company was buoyed by

the early release of Tomb Raider: The
Angel of Darkness. Eidos CEO Mike

McGarvey also stated that the company

will no longer release titles for Nintendo’s

Gamecube, claiming that the console is “a

declining business.” A few days later,

Atari also announced that it is canceling

three Gamecube titles. 

Over 150 million served. Nintendo

announced that it has sold 15 million

Game Boy Advance units in the U.S.

since its release in 2001, and 150 million

Game Boy units worldwide since the

brand’s introduction in 1989. 

Playstation 2 levels up with Hard Disk Drive.
Sony plans a March 2004 release for its

Playstation 2 Hard Disk Drive, which

will feature a 40GB drive; a media

manager for games, MP3s, CDs,

and photos; and Square Enix’s

MMORPG, Final Fantasy XI. The $99

internal peripheral will connect to the

required Network Adaptor, enabling

online gameplay and content downloads.

Sony also announced that it has sold

more than 60 million Playstation 2 con-

soles worldwide since its release in 2000.

THX is listening. THX launched a sound

and visual certification standard for

videogames, with EA Games as its first

recipient. The certification program

includes game mixing room analysis and

standardization, and the ability for devel-

opers to test their work as they create it.

THX director of advanced technology

Mark Tuffy said that THX’s goal is to

“let the gamer see and hear what the

game artist intended.”  q

Send all industry and product release
news to news@gdmag.com.

n o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r8

ATI unveils final Rendermonkey. ATI

released version 1.0 of Rendermonkey,

an open, extensible utility for creating

real-time programmable graphic shad-

er effects. Developed in conjunction

with 3Dlabs, Rendermonkey 1.0 sup-

ports the DirectX 9.0 HLSL shading

language. It has a real-time preview

window that shows the current state

of the shader, reflecting any code

changes immediately. This final ver-

sion also includes the Rendermonkey

API. Rendermonkey 1.0 is available as

a free download. www.ati.com   

Araxis simplifies code review. Araxis

announced the availability of Merge

v6.5, the latest revision of its visual

file comparison and merging utility for

keeping multiple folder hierarchies

synchronized. The utility compares

text files in ASCII, Unicode, and

MBCS character sets and produces

detailed reports. New features include

HTML reports of file comparisons,

improved regular expression support,

and a new Virtual File System API.

Merge v6.5 is available for $129–

$219.  www.araxis.com

I N D U S T R Y W A T C H; K E E P I N G  A N  E Y E  O N  T H E G A M E  B I Z  | j a m i l  m o l e d i n a

B U P C O M I N G E V E N T S

CCAALLEENNDDAARR

A videogame music concert performed by the Czech National Orchestra at GC Games Convention.

S TAT E  O F  P L AY :  L AW ,  G A M E S ,
A N D  V I R T U A L  W O R L D S

NEW YORK LAW SCHOOL

New York, N.Y.
November 13–15, 2003
Cost: $125
www.nyls.edu/pages/777.asp

A U S T R A L I A N  G A M E
D E V E L O P E R S  C O N F E R E N C E

MELBOURNE CONVENTION CENTRE

Melbourne, Australia
November 20–23, 2003
Cost: AUD$180–AUD$800
www.agdc.com.au

P TTHHEE  TTOOOOLLBBOOXX
D E V E L O P M E N T S O F T W A R E ,  H A R D W A R E ,  
A N D O T H E R S T U F F

©
 L

ei
pz

ig
er

 M
es

se
 G

m
bH

.



n o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r12

A lot has happened since last

year’s BREW vs. J2ME

showdown (“Product

Reviews,” May 2002).

Markets have matured,

handsets have come and gone, and a real

mobile-game business model has solidified.

Both technologies have undergone exten-

sive enhancements in the area of game

development APIs. In the case of J2ME,

Sun has added their Game API in MIDP

2.0, allowing for native support of sprites

and tiles. BREW 2.0 has introduced many

new advances, including a similar sprite

and tile architecture. This review will com-

pare the two, as well as highlight the

major enhancements of each platform.

BREW 2.0

BREW 2.0 has been available for

well over a year, and although

BREW 2.1 is available, 2.0 handsets are

just now rolling out in the U.S.

The biggest enhancement is native sup-

port for sprites and tiles. Using the new

ISprite interface, it’s possible to draw

sprites and tile fields with bitmaps restrict-

ed to four sizes: 8�8, 16�16, 32�32,

and 64�64. BREW 2.0 also allows for the

transform of bitmaps, allowing you to flip

and rotate images (though only in 90-

degree increments on the LG VX6000).

The newly-introduced IDIB and IBitmap

interfaces replace the old IImage and native

bitmaps from BREW 1.0. Through these

two interfaces one can convert any format

to a device-native bitmap, including com-

pressed PNG and BCI images.

Real-world performance report. The LG

VX6000 — featuring a large, 16-bit

color display, a built-in camera, gobs of

memory, and 1X 3G network speeds —

is the first BREW 2.0 handset being

released in the U.S. However, the hand-

set has some less-than-impressive per-

formance characteristics. I found this

device to be slower than even Motorola’s

old 1.1 T720, released last year.

Although BREW 2.0 has some great

new APIs for game developers, the per-

formance benefits from using them are

nonexistent when compared to the old

ways of bitblt and native bitmaps, at least

on the LG VX6000. But the pixel-level

access to the frame buffer will help some

applications.

MIDP 2.0

S un has added many new features to

MIDP 2.0, its first major update to

the J2ME CLDC/MIDP in some time.

These include new GUI components, a

Mobile Media API for standardized sound

playback, key polling for multiple-key-

press, socket networking, push architec-

ture, and some far-reaching new graphics

classes in the form of the Game API.

The Game API. The Game API consists of

a set of classes that govern the drawing of

sprites and tiles. There’s also a new Game-

Canvas object that can be used to poll keys

for multiple-keypress. In the case of sprites

and tiles, they are all derived from the new

Layer object. Derived from Layer, the Sprite

class features the ability to store multiple

rectangle frames of a sprite in a strip or

rectangle bitmap layout. The Sprite also

performs bounding-box or pixel-accurate

collision against bitmap Image classes, tiles,

or other Sprites. The Sprite object also has

support for animation in the form of frame

sequences that define a list of frames to

display in linear order. You can cycle and

loop through the frame sequence before

painting the Sprite for an animation effect.

The TiledLayer class is derived from

Layer as well. This takes bitmaps in the

same strip or square layout as the

Sprite, but this time they are used as

individual tiles in a tile map. The tile

map is a series of “cells” inside the

TiledLayer that, annoyingly, must be set

on an individual basis. The TiledLayer

also supports animation in an easy to

use manner. Both Sprites and TiledLayers

can be used with the LayerManager object

to automatically manage the draw order

of your bitmaps.

XX
P R O D U C T  R E V I E W S

T H E  S K I N N Y  O N  N E W  T O O L S

RALPH BARBAGALLO | Ralph runs FLARB (www.flarb.com), a game studio in Southern
California specializing in wireless games. He is the author of Wireless Game Development in

C/C++ with BREW (Wordware Publishing) and is currently working on a MIDP 2.0 book.

BREW vs. J2ME: Round 2
by ralph barbagal lo

A screenshot for CALIFORNIA SURF, a game
developed with Brew 2.0.



Real-world performance report. It’s

hard to discuss the actual performance

characteristics of MIDP 2.0, since at

press time, there are no commercial

MIDP 2.0 devices on the market, though

a few devices may begin trickling out by

the time you read this. Sun’s Wireless

Toolkit emulator runs at a horrifically

slow pace, slowing down into the single-

digit frame rates when TiledLayer is used.

(Sun attributes this to a bug, and plans

on fixing it.) However, emulators are

never a good way to gauge the real-

world performance of any mobile API.

The one MIDP 2.0 handset we were

able to get hold of for this article sports

some impressive performance characteris-

tics. However, it is a much higher-end

PDA-style phone. MIDP 2.0 is designed

for a much broader class of devices, this

includes mundane consumer handsets and

expensive Smartphones. Thus, there really

is no comparison to the much cheaper

BREW 2.0 devices.

The Verdict

U ntil we see more MIDP 2.0 devices

on the market, it’s hard to make a

definitive decision. Both APIs compare

favorably, as they have the basics in the

sprite and tile department as well as

other odds and ends. MIDP 2.0 is still

much more restrictive given its sandbox

security model. However, new code-sign-

ing features allow for the use of APIs

which are not bound to these limitations.

Some of the barriers that made BREW

an expensive proposition have been

removed — Qualcomm has provided sup-

port for the free GCC compiler for use

with both BREW 1.1 and 2.0. Now, the

only costs associated with BREW are the

Verisign certificate service and application

certification fees. MIDP 2.0 still has a

wide variety of free tools, including an

updated toolkit from Sun. However,

MIDlet distribution remains a mess of

interlocking carrier agreements, portals,

and so-called “aggregators.”

From a pure development perspective,

it can go either way; you either like Java

or you don’t. BREW has all the pain and

heartache of native embedded develop-

ment, including a lack of on-device

debugging, weird alignment issues, and

sometimes-severe bugs in just about every

phone out there. Java has a deceptively

friendly development environment, how-

ever once you get up and running on an

actual handset you may find that some

VMs don’t exactly work as advertised.

Once again, there is no clear winner. For

small shops, BREW’s simplified billing and

carrier distribution can’t be beat. If you are

looking for worldwide market penetration

you can’t avoid Java. So the war rages on

— you’ll have to drop by next year to see

if there will be a clear leader of the pack.

Corel’s Painter 8
by sean wagstaff

C orel’s Painter has long been recog-

nized for its great natural-media

painting features; brushes and materials

that mimic camel hair, ink pens, oils, inks,

watercolors, canvas, and the rest of a mas-

ter painter’s toolkit. It has also been criti-

cized for the density and complexity of its

unfamiliar interface. Previous versions

were downright hard to master for die-

hard users of Photoshop and other com-

mon painting tools, even while its luscious

features offered plenty of allure.

Painter 8 starts on a clean canvas that

will make it far friendlier as a production-

oriented tool in game studios where there

is a strong need to paint artistic textures,

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

w w w . g d m a g . c o m 13

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

STATS
QUALCOMM
San Diego, Calif.
858.587.1121
www.qualcomm.com/brew

PRICE
Free, but Verisign certificates are still
required

SYSTEM REQUIREMENTS
Windows 2000 or Windows XP, Visual
Studio .NET or GCC, Verisign Class 3
Certificate

PROS
1. Actually available on hardware in con-

sumers' hands now.
2. Sprite and tile engine less restrictive —

leaving more implementation up to the
developer.

3. GCC support now makes BREW devel-
opment costs less of an issue.

CONS
1. Performance of early 2.0 handsets is

equal, if not less than, 1.1 devices.
2. Organizing sprites and tiles into "pages"

is rather inconvenient.
3. Despite a camera in the first 2.0 handset

(VX6000) — no standardized camera
support until 2.1.

BREW 2.O  XXX

STATS
Sun Microsystems
Santa Clara, Calif.
800.555.9SUN
java.sun.com/products/midp

PRICE
Free

SYSTEM REQUIREMENTS
Java 2 SDK, Standard Edition (J2SE
SDK), version no earlier than 1.4, plus
one of the following: Microsoft Windows
XP or Microsoft Windows 2000,
Microsoft Windows 98/Windows NT
(unsupported), SolarisTM 8 (unsupport-
ed), Linux (unsupported).

PROS
1. Animated tile system is actually quite

novel.
2. Pixel-accurate collisions done for you.
3. Standardized socket and music support

(finally).

CONS
1. Not currently on any consumer devices.
2. Sprite and tile architecture can be rather

restrictive.
3. J2ME GUI is still terrible.

MIDP 2.O  XXX



backgrounds, and marketing art. Corel

has finally embraced the fact that Photo-

shop has become the industry standard for

storing and manipulating multi-layered

bitmap image files, making Painter file-

compatible with Photoshop, including

support for layers, multiple masks, and

alpha channels.

Game artists will find great uses for

Painter wherever there is a need for paint

and other real-world art materials.

Texturing building interiors, for example,

can be greatly enhanced by the use of

brushes that simulate sponges and rollers

on stucco, while exteriors can benefit

from being able to easily lay down layers

of stones, foliage, and other elements

into layers of a texture image.

One of the features missing in previous

versions was a way to easily mix and

blend colors the way all painters do when

working with a limited palette of starting

colors. However, with Painter 8’s new

Mixer palette, you can now plop down

swatches of any color and then mix them

together by stirring and swirling bits of

two or more colors; you can then pick

from among the resulting shades to get

your own pure brush colors.

Painter 8 ships with more than 400 new

brushes, but one of the best Painter fea-

tures for texture artists is the Image Hose,

which lets you paint with bitmapped

images, such as photographs of rivets,

stones, or reptile scales. These brushes can

be set to use multiple images, including

alpha transparency, as well as to swap

images in response to stylus pressure,

stroke direction or other combinations of

input. A couple of minutes setting up a

custom Image Hose can save hours of

painstakingly painting details into a tex-

ture or background. However, a feature I’d

like to see is the capability to paint differ-

ent images into different layers for easy

creation of bump and specular maps to

accompany painted Image Hose textures.

One thing Painter 8 doesn’t do is

paint with or store a depth alpha along

with color information. While paint can

react appropriately to an underlying can-

n o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r14

XP R O D U C T  R E V I E W S

Painter 8’s Mixer palette.



vas texture and on multiple layers,

paints are not rendered using lights as

they are with Deep Paint. On the other

hand, Painter offers faster, better manip-

ulation of masks and channels — you

can easily create a manipulated grayscale

version of a painted texture on a sepa-

rate layer, for instance.

Painter 8 won’t replace Photoshop, but

budget developers could get away with

Painter as their primary texture-painting

tool. For the price, it’s a great box full of

art tools to have around.

Painter 8 retails for $299 with

upgrades priced around $149. It is avail-

able for the Windows 2000/XP PC plat-

form, and OS9/X for the Mac.

XXXX | Painter 8  
Corel

www.corel.com

Sean Wagstaff is a freelance 3D artist.
You can reach him at www.wagstaffs.org.

Line 6 PODxt Pro
by todd m. fay 

T he PODxt Pro is an amp/cab model-

ing processor that allows an audio

producer to make their instruments sound

like they’re being played through multiple

different guitar amps (which all have their

own particular sonic characteristics).

The PODxt Pro fits nicely into your

studio recording chain, hooking up via

its digital or analog outs to your record-

ing interface or mixer, or directly to your

computer through its USB port. Your

guitar plugs in the front panel into an

unbalanced, mono jack, which features a

pad for signals hotter than your standard

guitar (or those with active pickups). At

this point you’re given access to an

impressive array of digitally modeled

amplifiers, cabinets, effects processors,

and positioned microphones.

Line 6’s Point-to-Point modeling tech-

nology offers a wide range of sonic

options. They chose the best individual

models in an amplifier series down to the

year, in order to capture the classic tones

we’ve come to identify entire genres of

music with. There are also eight original

models that drive guitar tone in direc-

tions that actual tube and solid-state

amplifiers cannot.

Having 32 amplifier models and 22 cab-

inet models at your fingertips means

searching for the perfect guitar sound has

never been so easy. The PODxt has tons of

effects built-in and even a tube preamp

model for warming up other sources

besides guitars, such as voice, keyboards,

and drums. The PODxt also includes 46

stompbox effects, such as Octavia, Uni-

vibe, Vibratone, as well as four micro-

phone models. And it’s compact, taking

up only two rack space units.

This unit has great factory presets,

many of which are named for familiar

songs with which you’ll instantly associ-

ate the guitar sound. These presets make

getting a particular classic “out of the

box” tone simple. All of the unit’s param-

eters are controllable via MIDI. You can

change them on-the-fly using a footboard

(great for when you’re recording and per-

forming alone) or from your sequencer.

The Pro comes with some studio-ori-

ented advantages that a normal PODxt

doesn’t, such as input/output, indicators,

and routing options. These include

AES/EBU and S/PDIF connections for

keeping your sound in the digital domain.

You’ve also got access to two line-level

inputs in the back, which are great for

taking signal from a keyboard or mixer

for feeding clean recorded guitar tracks

through the POD for “re-amping.”

Introducing a PODxt Pro into your

game audio production studio grants

access to just about any guitar tone that

you could possibly want in one unit.

Listed at $979 retail, it’s extremely cost-

effective and the sound is incredibly

accurate. With it, audio teams will be

able to whip up authentic-sounding

metal mayhem, smokey blues, or film-

noir jazz (á la Peter McConnell’s GRIM

FANDANGO soundtrack).  q

XXXXX | PODXt Pro  
Line 6

www.line6.com

Todd is a producer and consultant in the
music, games, and TV industries.
Contact him at todd@audiogang.org.

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

w w w . g d m a g . c o m 15



L arry DeMar’s involvement with

videogame entertainment can be

traced back to his 21st birthday in

1978, when he received an Atari

2600 system. After college gradu-

ation, he got a job offer from Chicago-based

Williams where he got to work alongside such

notables as Steve Ritchie, Eugene Jarvis, and

Ken Fedesna on classic titles that include

DEFENDER, its follow-up STARGATE, ROBOTRON:

2084, and BLASTER.

Sensing a lull in the market, Larry switched

his energies to his other passion, pinball, and

helped design and create such titles as BANZAI

RUN, HIGH SPEED, and one of the all-time best-

selling pinball games, THE ADDAMS FAMILY.

In 1999, with the pinball field declining in

popularity and having been turned on to video-based casino slot

machines, DeMar struck out on his own, forming Leading Edge

Design (www.ledgaming.com). The company just released its

award-winning MULTI-STRIKE POKER. Why would someone tack-

le the video-based casino market? Try hundreds of thousands —

or even millions — of dollars in revenues.

How has Larry tied in his experiences with videogames, pin-

ball, and casino gambling design together? Read on to find out.

Game Developer: How many lines of code are in ROBOTRON: 2084?
Larry DeMar: I have ROBOTRON: 2084’s source code printed

on a 3-inch-thick ream of standard foldout paper. It contains

roughly 15,000 lines of 6809 assembly code.

GD: In today’s videogame market, where game goals and mis-
sions are usually so well-defined, what makes a game like ROBOTRON

still so addictive?
LD: I agree that the game is more tactical as opposed to the

deeper strategies in play today, but ROBOTRON combined these

tactics with overall play strategies. The things that keep the

players coming back are adrenaline and accomplishment.

GD: What design principles carry over from videogames to pinball
design to gambling games?

LD: In both pinball and videogames you want to have a gras-

pable play mechanic with rules that can be picked up in a few

plays. The most important things are for the player to know

what his mission is and to provide ways to measure progress

toward that mission. In the most successful games, these metrics

are passively passed to the player through the presentation.

In slot machine design, the first and foremost foundation of a

successful game is the math and the “gambling ride.” A key fac-

tor is the volatility of the game, which measures the wildness of

swings on both the winning and losing side.

GD: How do you view the reward system as it
relates to videogames, pinball, and slot machine
design? 

LD: I don’t think that rewards are the key to

pinball or videogames. The most successful

games define a mission and give you an under-

standing of that mission, the tools to complete

that mission, and most importantly, good feed-

back about your progress. Rewards are just one

form of this feedback. In slot machines, you are

creating a roller-coaster of ups and downs in a

player’s cash balance. Rewards are king [for slot

machines]. A successful game combines this

with an interesting play mechanic and attention-

grabbing presentation features.

GD: What benchmark do you use to consider a
game successful? 

LD: The most fun way to play the game should always be the

most rewarding. If there are different fun approaches to play

the game — whether it be a videogame, pinball, or a slot

machine — then the reward of each approach should be bal-

anced by the relative risk. It’s important that there not be ways

to “rape” the game, which are typically caused by a badly bal-

anced (and usually badly thought-out) way to get a higher score

with very low risk.

I think that ROBOTRON’s continued popularity, 20 years after

its creation, is due to a near perfect balance, among other things.

GD: What feedback do you look for from your games?
LD: When we watch a game’s first test or trial, I am less inter-

ested in how many people approach the game and more interested

in seeing how many of them play it again right away.

GD: You have said that “there’s one great game in there, but 99
bad ones.”  What do you mean by that? 

LD: There is not a more important aspect to game design than

this principle. The best designers understand it well. Other

designers and most management personnel usually don’t get it.

Given a broad definition for a game (for example, “Let’s do a

scrolling space game where you track the enemies on a scanner

and protect humans on the surface of a planet”) there are an infi-

nite number of ways to construct the game rules and mechanics.

Most of them will be truly awful. Another large quantity may be

as good as mediocre. Only a very few will be from good to great.

The best designers can figure out how to develop and balance in

this range with some type of consistency (I would consider 30

percent or higher to be excellent). The rest of the pack will hit

from time to time, if at all. q

n o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r16

P R O F I L E S
T A L K I N G  T O  P E O P L E  W H O  M A K E  A  D I F F E R E N C E  |  e v e r a r d  s t r o n g

Bright Lights, Big Payoffs
Leading Edge Design’s Larry DeMar

Leading Edge Design’s Larry DeMar
has a lot to be happy about.



n o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r18

j o n a t h a n  b l o wI N N E R  P R O D U C T

I n a high-performance networked game, we want to

compress our data to make efficient use of bandwidth.

In previous articles I have discussed the use of an arith-

metic coder for compression (August and September

2003). Last month I showed how adaptive compression

could be achieved in the face of unreliable communications, as

when using UDP (October 2003). However, these articles all

assumed that the transmitted data would be built from sets of

discrete symbols, like the alphabets used for text compression.

In a modern game, much of the data we’re transmitting will

not be alphabet-like. An alphabet has the property that neigh-

boring symbols are distinct and largely unrelated. So if you are

transmitting compressed text and the next symbol is “R,” that

means it is not anything like “S.” This influences the data struc-

ture design for these systems; to store symbol probabilities, we

tend to use arrays, with a separate and independent probability

value per symbol. This data structure design then influences the

final algorithm design.

I used the alphabet paradigm in earlier articles for two rea-

sons. First, it helps to keep things simple; I was able to focus on

the issues at hand, without juggling too many new concepts.

Second, most of the arithmetic coder–related information you’ll

find on the Internet assumes the data is built from alphabets; so

there’s an accord between those articles and other sources the

interested reader might seek.

This month, I want to step away from that alphabet para-

digm. In games we often manipulate values that are ideally con-

tinuous, or values where neighboring elements possess strong

semantic similarities. In an earlier article I called these “coher-

ent values.” Some examples of coherent values are a game char-

acter’s health or his position in the world. Sometimes these

types of values have very high resolutions; building probability

arrays for them, as one does with alphabets, would waste a lot

of memory. We want a probability representation (data model)

that exploits the data’s coherency. If we represent the data

model as a smooth continuous function, we can use a piecewise

linear approximation of that function as an efficient way to

store and compute probabilities, hence the title of this article,

“Piecewise Linear Data Models.”

Health

I ’ll now look more closely at the example of player health. I’ll

discuss this in the context of a persistent-world online game,

though the basic ideas apply to many types of games.

Suppose we store a player’s health as a floating-point value

between 0 and 1; 0 indicates that the player’s dead, 1 indicates

perfect health. For the purposes of network transmission, we

quantize this floating-point number into an integer at an arbi-

trary resolution (see “Packing Integers,” May 2002). We could

now transmit this integer directly, but we would be ignoring the

fact that some health values are more likely than others; thus

we would achieve poor compression.

The best way to figure out your data probabilities is to meas-

ure them from actual gameplay; but since we’re talking about a

hypothetical game, let’s speculate about health. Players want to

feel safe, so if they have the ability to rest or be healed in some

other way, they will do so when their health is low and they’re

not preoccupied (with fighting, for example). So if a player’s

health is low, it will likely not be low for very long. In fact, once

health falls below a certain point, chances are the player’s in an

overly difficult combat session and may be killed soon. Thus we

have what statisticians call a “survivorship bias” that drives the

average health value even higher. (Assume that players who are

Piecewise Linear 
Data Models

FIGURE 1. A coarse piecewise linear approximation of a probability dis-
tribution function for player health. The X-axis represents health
values; the Y-axis represents the relative probability of each value.

J O N A T H A N  B L O W  | Jonathan is hang-
ing out in Baltimore, but he hasn’t eaten
any crab. Send admonishments to
jon@number-none.com.



w w w . g d m a g . c o m 19

killed will lie on the ground for a short period of time and then

be reincarnated in a faraway safe area). Given this, we may

expect the function for health values to look like Figure 1. This

figure depicts a piecewise linear approximation; the function is

divided into a small number of segments, and the value of the

function is determined by linearly interpolating the control

points. Control points are defined at segment boundaries.

Recall that to pack a number into an arithmetic coder we

need to define an interval of [0, 1], which means we need two

things, the interval’s size and its starting point. The interval size

corresponds directly to the probability of the value we are

packing. The starting point tells us which actual value it is;

essentially it’s just the ending point of the previous interval. (See

“Using an Arithmetic Coder,” August and September 2003).

Given a piecewise linear function like Figure 1, the appropri-

ate interval width is just the function’s y value at the desired x
coordinate, divided by the total area covered by the function

graph. (Dividing by the area just normalizes the values to make

sense in [0, 1]). The interval’s starting point is the total area of

the function to the left of that x coordinate, divided by the area

of the entire function (see Figure 2).

How the Encoding Math Works

So that we can successfully decode our data, the math we

use to encode must be precise and reversible. Thus we store

our piecewise function in integer coordinates and perform our

area computations using only integer arithmetic. 

Our piecewise function is defined as a collection of segments,

and each of these segments is a right trapezoid. The main thing

we need is a function for finding the area of such a trapezoid. I

derived this by treating the right trapezoid as a rectangle with a

triangle on top, finding the area of each, and summing them.

Then I looked at www.mathworld.com and saw that they have

a diagram and area derivation for a right trapezoid (see Eric

Weisstein, “Trapezoid,” http://mathworld.com/Trapezoid.html).

The area of the entire trapezoid is Area(x) = 1/2 ∆x(y
0

+ y
1
).

However, what we really want is the area of a piece of this

trapezoid. In Figure 3b, we let x
0

= 0 to simplify the math, and

we find Area(x), where x is between 0 and ∆x. After a little bit

of algebraic substitution, we find that Area(x) = y
0
x +

1/2(∆y/∆x)x2
. This result will often not be an integer, but that is

not really important if we minimize the rounding and compute

this function consistently so that rounding happens the same

way. To minimize the rounding, we group the terms like this:

Area(x) = y
0
x + (∆yx2

)/(2∆x). Now there is only one divide

operation, and it happens as late as possible, and it does not

become magnified by any subsequent multiplications. Thus the

rounding error will always be less than 1.

Earlier I said that the width of a coding interval was deter-

mined by its y value in the piecewise linear function. Ideally

that’s true, but in order to make the interval sizes always fit per-

fectly together, and to be consistent with rounding, it is best to

define the interval width in terms of the trapezoid area function.

So, the width of the interval for x is Area(x + 1) – Area(x).

By letting x
0

= 0, we have been computing the area of each

trapezoid in isolation. But it’s easy to iterate over all the trape-

zoids at preprocess time and find their areas. Then we store an

integer value with each trapezoid, telling us the area of all pre-

vious trapezoids in the function. We add that value to the

Area(x) computed above.

The only remaining task is to find the correct trapezoid for a

given x. In this month’s sample code I implemented a simple-as-

possible solution, where I just iterate over the trapezoids from

left to right until I find the one that spans x. This is fine if you

assume that your functions aren’t built from too many trape-

zoids. If you need more speed, you can always binary search or

use a caching scheme.

How to Decode This

W hen decoding the message, the decoder provides us an

area value which we will call A; we want to map A
through the inverse of our area function to find x. A will be

somewhere between Area(x) and Area(x + 1). One simplistic

but slow way to decode it is to iterate over all values of x,

computing Area(x) and Area(x + 1) until we get results that

straddle A. (Hey, it’s not pretty, but it was the first thing I

implemented and it worked the first time. Don’t underesti-

mate the value of simplicity when you are initially getting a

system running.)

For a more elegant solution, we can find an equation for the

inverse of the area function Area(x) = y
0
x + (∆yx2

)/(2∆x); one

way to do that is by applying the quadratic formula. The quad-

ratic formula contains an annoying plus-or-minus, but we can

discard the minus since it represents a solution we’re not inter-

ested in (outside the left-hand edge of the trapezoid). So 

x = –y
0

+ (y
0

2
+ 2∆y/∆xA)

1/2
(∆x/∆y).

FIGURE 2. We wish to pack the value xenc with an arithmetic coder. The
interval width is determined by the function's value at xenc (the
height of the green line). The interval starting point is determined by
the area of the function to the left of the green line (colored in orange).

yenc=P(xenc)

xenc



We need to manipulate this equation to minimize rounding as

before. That square root operation is obviously going to be a

source of rounding, which is then exacerbated due to the multi-

plication by ∆x. To fix this we factor the ∆x into the square root

(valid since ∆x > 0) to yield: x = –y
0

+ (y
0

2∆x2
+ 2∆x∆yA)

1/2
/∆y.

Now there are two sources of round-off, the square root and the

divide, but they compound directly and the error will always be

less than 1.

There’s another rounding issue that’s a little more subtle:

when solving the quadratic we treat the area as a continuous

function on the domain of real numbers; but in reality, it is a

discrete function on the domain of integers. In other words,

we’re not accounting for the fact that the area we compute at

encode time gets rounded down to the nearest integer. We can

rectify this by taking the x given to us by the quadratic for-

mula, checking A against the lower and upper bounds of the

forward area function for that x, and bumping that x upward

or downward if necessary.

Since the inverse function divides by ∆y, it’s undefined

when ∆y = 0, which is a totally reasonable input case. But

then, we can just go back to the area function and write it as

Area(x) = y
0
x, and thus at decode time, x = A/y

0
. Now, this

new function is undefined when y
0

= 0, but that should never

happen, since it means the values in that trapezoid have prob-

ability 0. That would mean it’s not possible to transmit them

in the first place (you should use an escape sequence at times

like that, as we did in the earlier articles). We don’t want to

trust network input, though, so if we encounter this case, we

want to catch it and perhaps reject the entire message (since

this is a sign that someone is screwing with us).

So far I have said that A is the area value gotten from the

arithmetic decoder, but I have glossed over the actual compu-

tation of A. Let B = ((code – low)/range) * A0. The ((code 
– low)/range) gives you a value in [0, 1] corresponding to the

remainder of the message; let A0 be the area of the entire

function. Since we want to use integer math, we refactor the

terms to perform the multiply before the divide: B = ((code 
– low) * A

0
)/range. So B is the amount of area from the left-

hand side of the function up to x. We find the segment of the

function that contains B, then we say A = B – Aprev, where

Aprev is the sum of all the previous trapezoids’ areas. Now A
tells us how much area in the current trapezoid is used by the

message, and we apply the quadratic formula from there. 

In this article I have focused on the details of encoding with

a piecewise linear function. In principle any type of function

will work, so long as we can evaluate it, integrate it, and invert

it. One might try to use a higher-order

function than linear (such as quadratic

or cubic splines), though in practice it

can be very difficult to manipulate these

with integer operations on native

machine registers without overflowing.

On the other hand, if a piecewise con-

stant function yields a good enough

approximation to your probability dis-

tribution, the math is simplified greatly.

You can perform the basic techniques in

this article, but the area function

becomes trivial and there’s no need for

the quadratic formula.

Sample Code

T his month’s sample code (available

at www.gdmag.com) applies piece-

wise linear data models to player health

and position. In order to accommodate

the math from this article, some of the

code uses 64-bit integer operations.

There are some limits on the resolution

of the domain and range of the piece-

wise function (necessary to avoid over-

flow), but these limits are high enough

that they likely won’t be a problem. For

details, see the README packaged

with the code. q

I N N E R  P R O D U C T

n o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r20



A R T I S T ’ S  V I E W s t e v e  t h e o d o r e

n o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r22

P rocedural textures have a bad name among a lot

of artists, particularly in the game industry. Partly

this is because they’re difficult to use: after all,

procedural textures are closer to programming

than painting. Renderman, the best-known name

in synthetic texturing, is a full-blown programming language,

and the various graphic front ends that their packages provide

are almost as mysterious as a shelf-load of C++ reference manu-

als. Procedurals also arouse a lot of suspicion on artistic

grounds. Hackneyed and almost inescapable, veiny marbles and

fractal noise are the CG counterparts of Powerpoint clip art.

With this kind of a buildup, you may be wondering why I’d

devote a column to procedural textures. Here are three good

reasons for giving procedural textures a second glance:

Tool changes. In the past couple of years the major vendors

have added functionality that allows procedural textures to be

unwrapped into standard UV bitmaps. Any fancy procedural

that could be used in a cinematic render can now be converted

into a bitmap and run in real time.

Workloads. Traditional hand-texturing techniques are increas-

ingly stressed as asset lists and texture budgets grow. A 1,024

texture may not be 16 times more work than a 256, but it is still

more work. Add in the need for separate bump and specularity

maps and the burden gets worse. Procedurals are good at filling

space, and they also excel at coordinating bump, specularity, and

effects maps.

Generativity. If somebody decides at the last minute that the

scales of your hand-textured dragon are too small, odds are

you’ll have to redraw the entire texture by hand. A procedural

dragon skin, on the other hand, can be resized with little fuss.

Parametric variations can also generate the whole families of

related textures quickly and cheaply.

Working with Procedurals

I t’s much easier to understand what procedurals can do with a

concrete example. To help break down some preconceptions

about what procedurals are good for, we’ll skip the usual rocks

and walls and go straight to a complex organic subject: a human

head. Each step in creating the texture will also illustrate a fun-

damental technique that can be applied to any project.

Working with procedurals, while far from simple, is not as dif-

ficult as it appears. Texturing with procedurals is in fact surpris-

ingly similar to creating a layered Photoshop texture. If you were

painting a wall texture by hand, you’d begin with a base color

and then build up detail by adding layers for weathering, rain

stains, cracks, and so on. Texturing the same wall procedurally

amounts to very much the same thing, except the “layers” in a

procedural are usually mathematical functions rather than

bitmaps (although hand-painted maps are often vital parts of a

procedural texture). The texture for our example will be built up

in a manner similar to the physical structure of real skin, with

underlying bone and fat and surface details like pores and hair.

We’ll start with a layer that represents subcutaneous fat. More

than anatomical detail, what we really want from this layer is a

basic rhythm for the skin texture. This is very important for this

model, since the scalp and back of the head are mapped at a

much lower resolution than the face. The fat layer is made with a

3D noise tinted red. Since the noise is in 3D space, independent

of the UV mapping, it will help tie the different map regions

together and disguise the differing pixel grains (Figure 1).

Procedural 
Textures

STEVE THEODORE I Steve started animat-
ing on a text-only mainframe renderer
while working on a Ph.D. in ancient histo-
ry. Since then, he has worked on games
including Half-Life and Counter-Strike.
He can be reached at steve@theodox.com.

FIGURE 1. 3D noise helps disguise the differences in underlying UV
map densities and orientations.



Masks

N ow we need a way to represent bone or cartilage in areas

like the ears and nose. The easiest way to do this is by

painting an alpha mask that tells us where cartilage should

replace fat. For simplicity’s sake, the mask is very crude. To

make it subtler we can multiply it against a 3D noise texture

before applying it (a common Photoshop trick). Combining

noise with masks is a timesaving compromise between pure

randomness and the burden of painting too much detail. 

A similar mask is used to represent the blood vessels under the

skin. Since this texture is destined to be rendered to a bitmap and

hand-retouched, it doesn’t make sense to spend a lot of time

hand-placing veins — the suggestion of structure is all we’re after

— so we use a generic veiny bitmap applied with a cubic projec-

tion and multiplied against noise. If placement were really criti-

cal, this layer could be hand-painted for accuracy. We’ve now got

a complex foundation, with multiple overlapping rhythms that

will give the skin a lot of local variation (Figure 2).

Projections

T he job of the next layer will be to tie the final texture

together. In a 2D illustration, we’d probably airbrush in the

traditional portrait painter’s trio of golden forehead, red cheeks,

and blue chin into the skin color. Unfortunately, a gradient that

would be very simple to create in a 2D image is very hard to

apply in a 3D paint package, especially if the underlying UVs

are complicated. To get around this we apply a gradient ramp

with a 3D projection that’s independent of the UV mapping on

the geometry. When we collapse the final texture down to a

bitmap, all of the magic necessary to get that smooth wash into

UV space happens automatically. 

Combining multiple projections into a single texture is

extremely valuable. You can, for example, paint low-resolution

masks using planar projections from whatever angle is conven-

ient, without needing 3D paint software. You can even combine

multiple hand-painted planar maps into a single texture without

old-fashioned cut-and-paste hassles. An excellent aid to this pro-

cedure is a fresnel or “falloff” mask, a procedural that returns a

grayscale value dependent on the facing ratio of a surface. If each

planar projection is masked by a fresnel procedure with the same

orientation, the projections will naturally fade out wherever they

begin to smear or stretch.

Our color wash is made with a procedural gradient ramp run-

ning from yellow to red to blue and applied with a cylindrical

projection. Since all of these colors are pretty high in value and

low in saturation, the range of RGB values is small. To prevent

banding, the gradient has a very high-frequency noise in it, which

acts like an old-school dither pattern. As you can see in Figure 3,

the color wash looks artificial, even when the underlying noisy

layers are allowed to peek through. Some of this is because the

color wash is too cartoony, but the real problem is that the wash

is too independent of the underlying geometry. This is what we

wanted from the separate projection — but the effect goes too far.

Environment Maps

T o bind the texture to the geometry, we’ll add a bit of pseudo-

shading. While higher polygon counts and better lighting

models are gradually making false shading less important to tex-

ture painting, small doses of fake shading can still be very help-

ful. To get the effect without hand-painting, we’ll use an environ-

ment map instead of a standard projection, because environment

maps apply textures according to the facing direction rather than

the spatial position. Figure 4 clearly shows the difference between

a spherical projection and a spherical environment map. This is a

great hack to get a bit of trompe-l’oeil shading or fake global

illumination without hand-painting.

The environment map projects a gradient ramping from a

very pale pink on top to a purplish red on the bottom. This will

accentuate the creases and undercuts in the geometry. Keeping

the variation mostly in saturation (rather than in value) makes

it less likely that the trickery will be exposed by a moving light

source or an extreme animation pose.

Combining the faux-shading layer with the color wash pres-

ents another problem. Again the RGB range is fairly small, so a

simple blend will show a lot of banding. By blending the shade

layer onto the wash using a very high-frequency noise texture as

an alpha mask, we can dither them together. Dithering masks

work best with unstructured or Gaussian noise types similar to

the “Add Noise” Photoshop filter. Fractal noise, similar to

Photoshop’s “Add Clouds,” would produce a patchy look instead

of a smooth blend. Figure 5 shows the composited results.

w w w . g d m a g . c o m 23

FIGURE 4. Two methods of applying the same gradient ramp: a spheri-
cal projection (left) and an environment map (right).

FIGURE 3. A cylindrical projec-
tion provides a nice color wash.

FIGURE 2. Crude textures work
fine for underlying skin structure.



Parametric Variations

In our post–Spirits Within world, no skin texture is complete

without pores, stubble, and other imperfections. Pores are

pretty simple to imagine: they’re just spots in the color map that

also show up as indentations on the bump map and opaque

blips in the specularity. Unfortunately, the size and distribution

of pores in the face varies a great deal. Pores are most promi-

nent on the cheeks, the saddle of the nose, the chin, and the

forehead; around the eyes, ears, and mouth they are both small-

er and more tightly packed. Hand-painting individual pores

would be maddening, but plain random spots, even with a

hand-painted mask, won’t reflect the structure correctly.

To manage the placement of the pores we’ll use a parameter

map to control the procedural, which generates them. The pores

themselves are generated by a bubble noise texture, similar to the

one we used for the fat layer. In this case the density is turned

way down so that the bubbles appear as isolated spots instead of

clumping together into blobs. We’ll need to tweak the parameters

to get reasonable looks for the two extremes of large, sparse

pores and small, tightly packed ones. Once we know what the

extreme values should be, we paint a quick grayscale mask that

says, “big pores here, little pores there.” Then we connect the

mask’s output to the parameters of the noise procedure, remap-

ping the grayscale values to the numbers we had earlier tweaked

out (Figure 6). The same trick with a second mask manages the

distribution of hair on the scalp and stubble on the cheeks.

Parameter mapping is an extremely powerful technique, a

graphically accessible version of the kind of wizardry that used to

be the exclusive province of Renderman programmers. Unfor-

tunately (like programming) it also sports a wicked learning

curve and demands a lot of trial-and-error in the learning stage. 

Endgame: Collapsing and Converting

A ny procedural texturing project eventually reaches a point

of diminishing returns, where the effects to be added are

so subtle that they will no longer repay the effort of creating

them, or where it simply becomes easier and faster to convert

the procedural network to bitmaps and add the remaining

details by hand. Our test case is going to need refinements such

as wrinkles, lips, eyebrows, and so forth that are so closely

dependent on the geometry that handling them procedurally is

only masochism. Knowing when to stop is an important aspect

of working with procedurals — the process can become slightly

addictive. Your audience will care if it looks good, and your

producer will care if its done quickly, but nobody will give you

brownie points just for completing a texture without ever open-

ing a paint program. 

When converting the procedures to bitmaps, you may prefer

to handle the final compositing in a paint package, or you may

try to get the texture network as close to complete within your

package as possible. The former method has the advantage of

familiar tools and easy retouching; the latter allows more iterat-

ing and less hopping back and forth between applications. One

useful trick, which was used in the completion of this image, is

to keep a faint noise layer separate from the rest of the skin pro-

cedural. After the hand-editing is done this noise layer can be

converted to a separate bitmap and composited over the

retouched texture as a “soft light” map. This adds a small

amount of grain to the final texture with a consistent 3D scale, a

great aid to uniting the different UV mapping regions and keep-

ing the manual edits from looking too simple and out of place. 

Because the procedure generated such a strong base, the final

image required only a couple of hours’ handwork to add eye-

brows, wrinkles, and some warts for believability (Figure 7).

Most of the final image is a straight conversion from the proce-

dural (with bump and specularity maps derived straight from

the pore map).

Expanding the Palette

A s models and textures reach ever-higher resolutions, we’re

going to be forced into greater reliance on techniques

beyond painting. Tool vendors can certainly do a much better

job of making these tools more accessible and friendlier to

experimentation; however, we can’t afford to wait until that

day comes — the demands on us are going to increase regard-

less. Working with procedurals is not rocket science; in many

ways it’s just an extension of tools and techniques most texture

artists already know. If the process seems intimidating, it’s

worth remembering the introduction of Photoshop layers or the

early days of UV mapping to realize that many tools that seem

unnatural at first quickly become second nature. q

A R T I S T ’ S  V I E W

n o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r24

FIGURE 6. A grayscale map (left) controls both the density and the size
of the pores (right).

FIGURE 5. Blend between a color
wash and an environment map.

FIGURE 7. Final image with pro-
cedurals converted to textures.



w w w . g d m a g . c o m 25

S ound is a critical element in

film, television, and video-

games, but silence is just as

important as the sounds we

do hear. To instill a feeling

of isolation and vulnerability in a game,

try removing all music and background

sounds. The human ear will adjust to the

silence, trying to make out any sound. A

soft scrape in the rear speaker will defi-

nitely have a player’s full attention and

be far more effective in maintaining that

mood of fear than a gunshot.

A balancing act. It’s often more difficult

to create a sound environment that does-

n’t include gunfire and explosions. While

it’s no more complex to add the sound of

a bird than the sound of a gun, it’s much

harder to impress an audience with a

subtle ambient sound environment than

with an earth-shattering explosion. For

example, in developing the sound for

Jurassic Park: Operation Genesis,

everyone on the team loved to hear the

giant roars of the dinosaurs and the

mighty stomp of the T-Rex. But it was

the tiny sounds that were the most prob-

lematic to blend, such as the sneeze of a

little dinosaur, or the sound of grass

moving when a dinosaur sat down. These

sounds had to be balanced carefully so

that they were audible only at close

range. The team enjoyed the final audio

environment, but they often could not

describe the exact reasons they thought it

was effective; it just felt right. 

It’s often the quiet, so-called unimpor-

tant sounds that are responsible for the

sound environment seeming more real.

The audience doesn’t notice most of

these sounds individually, but they con-

tribute to the player feeling as though

the game world is real. When adding a

new sound to a game I take a slightly

counterintuitive approach: I actually

make it much louder than it should be.

That way I am sure to hear it, and I can

check if it’s in the right place. Then as I

play the game I reduce that sound each

time until I can barely hear it. There are

sounds in Operation Genesis that can

only be heard when a player zooms in as

far as possible on a dinosaur. If you

want to hear a dinosaur’s skin creak

when she sits down, you’ve got to get

really close.

Similarly, loud footsteps can disrupt a

game’s reality. When was the last time

you noticed your own feet thundering

along beneath you? Yet so many games

balance the footsteps as if every character

were a 40-ton mech. By comparison,

imagine the impact when you first

become aware of your character’s steps

echoing as you move across a metal walk-

way in an abandoned warehouse.

Focusing in on sound. Sound can be

moved in and out of focus in the same

way pictures can. For a battlefield scene,

the sound designer can place emphasis on

a particular event in an obvious way by

making the sound louder. Alternatively, a

similar impact can be achieved by sud-

denly reducing all sounds on the battle-

field except for the whistle of the incom-

ing shell. Borrowing from the visual do-

main, this is like changing the depth of

field to focus on a single sound event.

The player will be acutely aware that

something significant is about to happen.

Another way to achieve this heightened

sensitivity is to reduce the background

audio but leave the main sound focus on

the character’s breathing and muddy

footsteps as he skulks through soggy

trenches. This keeps that isolation button

pushed down, even though there may be

many other characters on the battlefield.

When sound is implemented in this way,

a gunshot played at “normal” volume

inserts itself into the player’s world with

such dramatic contrast that the player is

instantly aware that the enemy is within

striking distance. 

Selective use of music. Many games

make use of ambient music tracks that

accompany general gameplay. When there

isn’t anything significant happening, ambi-

ent music plays in the background to

highlight the world’s environment. It

seems, however, that as a legacy of early

games where short music themes looped

eternally, many people expect that music

should always be present in a game. I

once received a bug report from a QA

tester listing a bug with the music system

because music didn’t always play. Music

can also benefit from a “less is more”

approach. If the ambient music is imple-

mented with periods of random silence

between the tracks, say between one and

two minutes, the impact of the music can

be far greater. The music works less as

sonic wallpaper and more to highlight

whatever is happening.

Well-placed silence can be truly effective

in immersing a player and is very cheap

on memory. And while the gentle sound of

leaves moving in the breeze may not shake

everyone’s world, players will appreciate

it, even if they don’t notice exactly what it

is they’re appreciating.   q

S T E P H A N  S C H Ü T Z E  | Stephan is the lead audio designer at
Blue Tongue Entertainment Ltd. (www.bluetongue.com) based in
Melbourne, Australia. He enjoys working as both sound designer
and composer for anything that needs noise. Taiko drumming is his
newest outlet for transmitting large quantities of sonic energy.

Shhhh!
Be Vewy, Vewy Quiet

s t e p h a n  s c h ü t z e

Quiet, natural sounds vary with proximity to
dinosaurs in JURASSIC PARK: OPERATION GENESIS.

S O U N D  P R I N C I P L E S



n o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r26

I recently hosted a dinner for game

designers at a Spanish tapas

restaurant that offers a wide vari-

ety of hot and cold appetizers to

build your meal. Talk turned

immediately to how we should order.

Several ideas were thrown out in typical

brainstorming fashion — “Let’s order one

of each and then get more of the ones we

like.” “Let’s vote on three top choices and

start with those.” “Let’s order one meat,

one fish, and one vegetarian dish first.” 

Lively discussion about the merits of

these and other algorithms ensued, com-

plete with consideration of how we’d keep

track of costs, the relative fairness of dif-

ferent methods, and occasional vehement

interjections such as “I hate eggplant!”

Eventually hunger prompted us to end the

debate. With a group of designers con-

tributing not to a meal but to a game

design, one danger is that the debate will

continue until the project is cancelled —

and then everyone goes hungry.

Rule: Provide a consistent, single vision
throughout the game development process.
My March 2003 column (“Evolving the

400”) alluded to this rule, which I believe

is one of the most important ones of all

the 400. There are many ways to arrive at

a single consistent vision, but without it, a

game is very likely doomed from the start,

or at best will be a mediocre jumble of

conflicting ideas.

The rule’s domain. This is a meta-rule

about the process of game design, and

applies to all games.

Rules that it trumps. This rule trumps

the well-meaning but misguided rule, “Let

everyone contribute to the design equal-

ly.” It is in fact a good, even vital rule that

everyone on a project may contribute and

should have their contribution acknowl-

edged — but having a single, consistent

vision lets people understand which of

their own ideas can help enhance that

vision and which are really better saved

for a different game.

Rules it is trumped by. “Let the game

adapt to the player.” This rule will be cov-

ered in a future column, but in short,

there are times when it is best to allow a

game to appear to be a different game to

different players, even if those different

games appear to have separate visions.

The best solution is for the game to

appear to have a single, consistent vision

in each player’s experience.

Examples and counterexamples. There

are many ways a single, consistent vision

can be achieved. One is the auteur

method, where a single person with a

strong personal style exercises creative

control, but shared visions are increasing-

ly the rule as project sizes grow. An app-

roach that worked well on two Indiana
Jones games I co-designed was to let that

established, strong character franchise

provide the template by which game

design decisions could be measured. It

was easy to ask, “Would Indy do that?”

It’s interesting to note that the Indiana
Jones movies are the result of a shared

creative vision of two filmmakers with

distinct styles.

Then there’s the fabled cabal method

that Valve used to create the original

Half-Life. In such an approach, an entire

team can share a vision without strong

personalities imposing their will, but it’s a

risky undertaking. A method to ensure

this vision that has worked for me is to

put out a vision statement early on, cap-

turing the experience the player will have

in a high-concept–style sentence or two.

This then becomes the standard by which

all ideas are measured, and if they don’t

expedite that vision, they are tabled.

Here’s an example of a vision statement

of a hypothetical mobile phone game in

which players exchange semi-autonomous

“digital celebrities” who gain fame by

being traded multiple times and become

tokens in a simple pattern-based game:

Celebritaire combines the simplicity
and compelling repeatability of Solitaire
with the emergent complexity and social
play of Pokémon.

As you can see, it’s not enough to build

the game, but it can serve as a touchstone

to measure whether the game in progress

has captured the right feeling.

Dessert. Perhaps you’re wondering what

vision prevailed at our designer’s dinner.

We each decided to order the dish we

liked and then pass them around, then

split the bill. It worked fine until it

became apparent that one end of the table

(yes, it was my end) seemed to have a bot-

tomless appetite and was running up the

tab. And even this potentially divisive

problem worked out. A generous design-

er/studio head surprised us all by grabbing

the bill and subsidizing us all. This shows

that in the real world a flawed vision may

need to be saved by an executive with

money. If only all game projects had such

happy endings! q

Tapas-Down Design

n o a h  f a l s t e i nB E T T E R  B Y  D E S I G N

N O A H  F A L S T E I N  | Noah is a 23-year veteran of the game
industry. His web site, www.theinspiracy.com, has a description of
The 400 Project, the basis for these columns. Also at that site is a
list of the game design rules collected so far, and tips on how to
use them. You can e-mail Noah at noah@theinspiracy.com.

Valve’s HALF-LIFE 2: can the cabal approach
succeed again?



steven batisteA N I M A T I O N  C O M P R E S S I O N

n o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r28

tthhee  AAnniimmaattiioonn

S T E V E N  B A T I S T E  |  Steven is co-owner and lead 
programmer at Genuine Games. He is currently developing
an as-yet-unannounced fighting game for Vivendi Universal
on the Playstation 2 and Xbox platforms. He can be reached
at ste@genuinegames.com.

Ill
us

tr
at

io
n 

by
 D

om
in

ic
 B

ug
at

to

As games have become more
complex and visually demanding,
the increasing need for animation

data storage has also become a
difficult and important issue. Since

animation data takes up a huge
chunk of memory map, game

developers need to try to reduce
animation data to the minimum.

SSqquueeeezziinnggSqueezing



w w w . g d m a g . c o m 29

The Memory Squeeze

P reviously, most games only needed to store bone

rotations, as that was all that was required to

make models animate in a basic manner. The

first wave of animation engines in games would

play basic animations, usually using Euler angles

stored in degrees or some other similar format of fixed-inte-

ger–based numbers. These animations would then usually be

exported, so the keys per second rate would match the final

game’s frame rate. In the days of games running at 20 or 30

fps, this wasn’t too much of a concern.

However, as games evolved, so did animation engines. By

1996 many game developers were starting to change or had

already changed from using angles to quaternions for rotations.

With quaternions, people could take their animations exported

at 20 or 30 keys per second (kps) easily and slerp them to run

at any speed without all the problems of angles. The major

downside of switching to quaternions was the increased memo-

ry usage. We went from storing three 16-bit angles to storing

four floating point numbers, that’s six bytes to 16 bytes.

Animation in games now is expected to look more like

movie-rendered CGI, and animators are requesting translations

and scale data stored in the animation. Such a system allows

more realistic skeletal features, such as spine compression that

offers not only bones but bones with spongy cartilage. This sys-

tem also helps keep the skeletal rig simpler, because the bone

chain twists can be aided with translations.

In order to have this animation system to last for the next

five years, it became clear that I needed to support rotations,

translations, and scales for our current and future projects. This

animation engine, if used for characters or who-knows-what in

the future, has to be able to stand next to the best games at E3

2008 without looking inferior in the slightest way.

Opening the Raw Data Cookbook

A s animators and producers increase the total seconds of in-

game animation, developers need ways to compress the data

while still maintaining speed. With our game’s skeletons consist-

ing of 89-plus bones, I didn’t fancy trading memory for speed.

Before thinking about compression techniques for anima-

tions, I researched the existing methods without really find any-

thing. The same was true when I looked through various 3D

game programming books. Most articles would describe the

various methods behind animation, but the memory used was

rarely mentioned.

I started to realize that I would have to come up with some-

thing on my own.

My research indicated that the most common way of storing

animations is as raw data. Motion-captured data is the least

ideal: the percentage of memory it takes is simply too large.

This is mainly because in order to get a good capture of the

marker data, you need a fairly high capture frame rate. This is

then converted into bone data that remains at a high key rate.

As stated earlier, our animation engine needed to use and

store scale, rotation, and translation bone information, with the

rotations stored as quaternions. To make animations visibly

play the same in the game as they did when they were created,

we need to keep a fair amount of precision in the animation

data. This means that we cannot simply reduce a float down to

an 8-bit-signed number and ignore the slight visual differences. 

When I was thinking about ways to compress animation,

there were a few constraints that I needed to follow. First, ani-

mations should be able to play at slower, faster, and normal

speeds; second, animations should be able to play in reverse as

well as forward; and third, animations should visibly look as

they do in Maya or Max.

I identified the first two constraints because they allow some

nice replay and camera effects. Games no longer just require a

camera module; if we are to give players the more cinematic

experiences they demand, games also need a director module

that sits atop the cameras.

The third constraint is for a simple reason: animators like to

see their animations looking as they animated them. They hate

spending their time on making their ideal animation, only to

find out it look less fluid in the game. Also, I though it would

be nice if we could keep the ability to stream animations from

hard drive, CD, or DVD.

FIGURE 1. The relationships between the various data structures.



Compressing the Data

T he first simple compression method is to reduce the number

of keys per second. This is a task best left to the artists, as

they will best know which animations can be reduced to a cer-

tain degree. Based on a game frame rate of 60 fps, we found

that 30 kps worked well for most animations, and a few could

go down to 20 and some even 15 kps. 

When you play the animation back, you will need to interpo-

late between the keys. The standard lerping-and-slerping tech-

niques can be used to interpolate the in-between keyframes.

Although doing so may lose some of the acceleration or deceler-

ation that an animator puts in his or her animations, most of

the time it won’t be noticeable. 

I began the second phase of compression by looking at the

input key data. I first noticed that scales are usually 1.0, 1.0, 1.0

and 0.0, 0.0, 0.0 for the translations. This gave me the idea that

I could somehow flag the key data to say, “Instead of storing the

data, store a flag saying to use an identity quaternion, transla-

tion, or scale.” Secondly, I noticed that for any given bone in an

animation, the same key data would be repeated many times

over throughout the frames. For this reason, I stored a base

bone that has the most popular quaternion, translation, and

scale. Then, like the identity flag, I would use a bitfield flag to

say “Use the base bone” rather than “Use data present.”

The BaseBones has the name of the bone stored as a hash num-

ber, which is useful for applying one animation onto multiple

different skeletons (Listing 1). It also allows the number of

bones in an animation to be less than the number of bones in

the skeleton, which can save a significant amount of memory. 

If all the key data for a bone in the animation is the same, then

the BaseBone has a flag to say use the BaseBone data for all keys for

that bone, and that the key has been stripped from the animation.

The key stream data always start with a U16 flag for each

bone. The data following the flags depends on the flag data.

The first four bits state the quaternion data type, the next

four state the translations data type, and the last four state the

scale data. 

For all the quaternion, translation, and scales, the four bits

represent:

0 – unused

1 – use BaseBone data (no key data present)

2 – use data in key

3 – use identity (no key data present)

The data after the flags is always in the order of quaternion,

translation, and scale. Any, if not all, of these could certainly be

stripped out. 

Because the key data is being stripped, we ended up with

variable key frame sizes. This is fine for streaming animations.

However, since I wanted to be able to play animations at vary-

ing playback rates, I need to be able to retrieve any key data

without parsing through the animation from the beginning of

the file. For this, I stored an offset table in the animation file

that stores for each key the offset into the data stream. Figure 1

(page 29) helps illustrate how the offset table, key data, and

basebones relate to one another.

A N I M A T I O N  C O M P R E S S I O N

n o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r30

struct BaseBone

{

HASH     Name;

U32      Frames;

U16      Flags;    //bit 1 specifies if bone removed from key data

S16      Quat[4];

VEC3DF   Tran;

S16      Scale[3];

}

LISTING 1. BaseBone data structure.

ANIM_KEY *GetKeyData(ANIM_KEY *key, ANIM_BASEBONE *BaseBone, QUATF

&quat, VEC4DF &tran, VEC4DF &scale)

{

S16 *sptr=(S16 *)(key + 1);

if ((key->Flags & 0x00f) == 0x002)

quat.xyzw = (float)(*sptr++) * (1.f / (float)(1 << 15));

else if ((key->Flags & 0x00f) == 0x001)

quat.xyzw = (BaseBone->Quat.xyzw) * (1.f / (float)(1 << 15));

else if ((key->Flags & 0x00f) == 0x003)

quat.xyzw = Identity;

if ((key->Flags & 0x0f0) == 0x020)

tran.xyz = *(float *)sptr++;

else if ((key->Flags & 0x0f0) == 0x010)

tran.xyz = BaseBone->Tran.xyz;

else if ((key->Flags & 0x0f0) == 0x030)

tran.xyz = 0.f;

if ((key->Flags & 0xf00) == 0x200)

scale.xyz = (float)(BaseBone->Scale.xyz) * (1.f / (float)

(1 << 12)), sptr++;

else if ((key->Flags & 0xf00) == 0x100)

scale.xyz = (float)(BaseBone->Scale.xyz) * (1.f / (float)

(1 << 12));

else if ((key->Flags & 0xf00) == 0x300)

scale.xyz = 1.f;

return  (ANIM_KEY *)sptr;

}

LISTING 2. C-style pseudo code to retrieve quaternions, 
rotations, and scales for compression.



Lastly, I used fixed-point math to store the quaternions and

scales (Listing 2). The quaternion is always a normalized quater-

nion with sign, for which I used 1:14:1 fixed-integer format.

This gives us a range of +/–1.0 with a precision of 1 / 32,767.

On the other hand, the scale always remains positive. Therefore,

I used 0:4:12 fixed-integer format, which means the maximum

scale size can go up to 16.0 with a precision of 1 / 4,096. This

gives a 5-to-3.5 compression ratio just on the raw data storage.

Figure 2 shows the packed/unpacked data side by side.

On the Flipside

F or every right-handed move our current project has,

there’s a left-handed move that mirrors its counterpart, so

it seemed like a good idea to make animations able to be

playback-flipped. To accomplish this, I negate the translations

and quaternions in the X-axis after decompression. I also need

to apply any right-side bones onto the left-side bones and vice

versa. In our animation rig, the animators have the ability to

map the left- and right-handed bones to each other. This then

w w w . g d m a g . c o m 31

FIGURE 2. A comparison between a packed and unpacked key.



is stored as a table in the game’s animation manager when the

animations are loaded. We store each of our BaseBones with a

hashed bone name, and our table stores the relationship

between flipped bone names and the non-flipped bone names

(Listing 3). This is a simple table lookup, but for this article, I

will omit how our hashing system works. For the purpose of

keeping the example code simple, it shows the bones as

indices rather than names.

Results and Future Work

O verall, by using the techniques I’ve described we achieved

a compression ratio of 30:1 for our current game. My tar-

get compression ratio before starting work on it was 20:1.

Getting 50 percent compression on top of 20:1 was very pleas-

ing. In fact, because the system works so well, we use it to store

other types of movement in games, such as camera paths and

AI rails. Treating data in this way makes it very easy to put

together a non-interactive polygon sequence system that can

stream from CD, DVD, or hard drive.

The bone translations and scales alongside the rotations

really give the characters a fluid and natural looking move-

ment. The sponginess the translations provide really adds a lot

of weight to the characters. I just hope it’ll add enough quality

to the animations to allow my earlier E3 2008 statement to

stay valid.

Future improvements could include reducing further the

animation keys per second and store the animation tangents

alongside the key data to prevent some of the robotic-looking

artifacts when key frames are reduced. Also, rather than hav-

ing just one quaternion, rotation, and scale stored in the

BaseBone structure, multiple sets could be stored with extra bit

flags to index them. The bone data could also index into a

global quaternion, rotation, and scale table, rather than a

local BaseBone.

In the future, animations with the inclusion of data to store

the different modes of acceleration to get from one key to the

next will reduce the amount of keys needed per second.

Instead of linearly going from one key to another, algorithms

may define a motion that cuts out the need for in-between

keys. This means that more work will be placed on the CPU

to calculate how to get from key n to key p, but this has the

huge advantage of using less RAM, especially as processing

power is increasing at a faster pace than memory growth.  q

n o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r32

A N I M A T I O N  C O M P R E S S I O N

if (flags & ANIM_FLAG_X_MIRROR)

{

bone_index = bone_index_fliptable[bone_index]

translation.x = - translation.x;

quat.x = -quat.x;

quat.w = - quat.w;

}

LISTING 3. C-style pseudo code for converting 
nonflipped into flipped bones. 



chance thomasM U S I C  M A N A G E M E N T

n o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r34

Riffing 
on Tolkien:
The conceptualization, production, 
and dissemination of music in 
Vivendi Universal Games’ 
LORD OF THE RINGS titles.

C H A N C E  T H O M A S  |  This is where I’m asked to list my life’s work in five or less lines, so here
I am, categorized and compressed: Oscar, Emmy, Telly, Addy, Grammys. LORD OF THE RINGS,
MIDDLE EARTH ONLINE, WAR OF THE RING, EARTH AND BEYOND, QUEST FOR GLORY 5, Men in

Black 2 DVD, UNREAL 2. Vivendi Universal Games, Electronic Arts. SEK, AIAS, GANG, Game
Developers Conference, E3, BSA, LDS, and USA. More details at www.HUGEsound.com.



w w w . g d m a g . c o m 35

F or Vivendi Universal Games’ LORD OF THE RINGS

titles, which include MIDDLE-EARTH ONLINE, WAR

OF THE RING, THE HOBBIT, and FELLOWSHIP OF THE

RING, the mandate was to create music that would

approach Tolkien’s idealized descriptions, music

that would represent the relentless pursuit of quality evidenced

in his books and that would also bind an entire series of games

together over time and across multiple developers, composers,

and platforms. I’ll talk about creating an authentic music style

guide for the franchise, producing high-quality music assets, and

managing an innovative music implementation system at both

the publisher and developer levels.

Hallowed Ground

S acred texts. The Tolkien works are highly esteemed by mil-

lions of readers across the globe. For the fantasy genre

faithful, the Lord of the Rings series nearly approaches canon.

Daring to mingle our own mortal efforts with those of Tolkien

was a risky venture and not a quest for the superficially

inclined. This music needed to be drawn from the very pen of

Tolkien’s writings, ringing of truth to anyone familiar with its

pages. The only way to avoid flaming out in the fires of Mount

Doom was to know the literature completely, inside and out.

The Tolkien mind-meld. Thus it was that, over the course of

five years, I logged hundreds of hours researching and annotat-

ing Tolkien’s books for everything they had to say about music.

I found passages describing specific musical instruments used by

the various races. I found information about vocal tone quali-

ties and inferred vocal ranges for the races of Dwarves,

Hobbits, Elves, Men, and even monsters. I found more than 60

different songs in the books and studied them all, including

song forms and styles. It was fascinating to read about the

impact of music on characters, traits, and even the environ-

ment. As a result, my copies of the literature are dog-eared,

underlined, cross-referenced, and yellowing — and not just

from the gaggle of Post-It notes protruding from the pages.

Map of Middle-earth. From these notes, I created a Tolkien

Music Style Guide to offer direction to the many composers

who would be working with me on this game series. The style

guide defines a specific palette of musical instruments for each

race based on actual references in the text. It identifies specific

voice types and ranges for each race, also based on references

in the text. The underscore for each race is given harmonic,

melodic, and rhythmic guidelines inferred from references in

the text. In addition, there are sections in the style guide dis-

cussing production quality standards, music design matrices,

implementation alternatives, music delivery specifications, and

much more.

For example, both Elves and Dwarves are known to play the

harp. But unlike Elven harps, Dwarven harps are “strung with

silver.” We represent this in our scores with a rare wire-strung

harp, recorded especially for our LOTR series by sample maes-

tro Gary Garritan. As another example, Hobbits’ music is

voiced by Celtic ensembles, based on the reference that Hobbits

play “pipes and flutes.” But they also played “horns and trum-

pets.” You’ll find them all in our Hobbit tunes. Also, Dwarves

are reported to play “clarinets” and “viols as big as themselves,”

which we have also reflected authentically in our scores. 

THE HOBBIT. A quick story from the development of THE HOBBIT

(Christmas 2003, all console platforms) is illustrative. Compo-

sers Rod Abernethy and Dave Adams had been creating a won-

derful collection of music to underscore Bilbo’s adventures in

Hobbiton. Almost everything was in complete harmony with the

Tolkien Music Style Guide. But one piece of music seemed a lit-

tle out of character. The arrangement was laced with marimba, a

very cool instrument but decidedly out of place. Referencing the

style guide I told the composers, “You see, there are no marim-

bas in The Shire!” There was a brief moment of silence, after

which we all broke into laughter. The moment was comical in its

self-importance, but the composers did make the change, and

our adherence to the style guide successfully preserved a higher

degree of authenticity in the score.

Other games served by the Tolkien Music Style Guide include

WAR OF THE RING (Christmas 2003, RTS for PC), MIDDLE-

EARTH ONLINE (Christmas 2004, MMO for PC), THE TREASON

OF ISENGARD (recently cancelled), THE FELLOWSHIP OF THE RING

(2002, consoles and PC), and several unannounced titles cur-

rently in development for console and PC. 

Landmarks

T he “five” towers. One of the most important recommenda-

tions in the Tolkien music style guide was that a series of

main themes be written to reflect the essence of each key race in

the story — Elves, Dwarves, Men, Hobbits, and the races of evil,

represented by Sauron. These main themes would then be used

in every LOTR game to lay the thematic underpinning for each

game score. The themes would serve as musical landmarks in

our games, tying all the scores together with a series of common



musical motifs and palettes. The task of composing these main

themes fell to me.

I could have written 12 notes and said, “Here’s the Dwarves’

theme,” but in keeping with VUG’s vision that the series

amount to a “leather-bound edition” quality, I proposed that

each racial theme be showcased in an overture telling key parts

of the LOTR story in music. Not only would this model the

style guide’s recommendations in a broad range of potential

gameplay situations, but it would also provide a plethora of

multiple-utility music assets. These assets include dozens of

high-quality music cues to implement directly in each game

score, sectional stems (choir, strings, brass, and woodwinds)

from the live recording sessions for integration in other com-

posers’ scores, MIDI files to start each composer on the right

track, and feature-length tracks appropriate for a music CD. To

my knowledge, planning such a detailed musical framework in

advance for an entire series of games has never been done like

this before. VUG approved the main themes as outlined, and

we were off to the races. 

The Age of the Elves. As an example, let’s look at the structure

for the Elves’ overture. This piece of music comprises several

movements that showcase our four main Elven themes. The

opening and closing movements, “From Across the Sea” and

“Return to the Sea,” give us a feel for the immortal, solemn,

and sad nature of the Elves. The middle three movements

underscore the Elven strongholds in Middle-earth — Rivendell,

Lothlórien, and Mirkwood — and reflect what the books tell us

about the Elves in each particular region. 

The Tolkien Music Style Guide defines the augmented 5th as

a harmonic signature for the Elves, and the classical harp as a

primary Elven instrument. The entire Elves’ overture is built

upon these two constants, branching out with variations for

each movement in ways that are completely unique and reflec-

tive of the various strains of Elvenkind. 

In addition, each of the three middle movements shows two

variations, which offer additional examples of Style Guide scor-

ing. Thus, the yield from this single five-minute piece of music

would be as follows:

• Eight examples of Style Guide scoring for the race of Elves.

• Five fully orchestrated PCM music cues for implementation

directly in a game score .

• Dozens of sub-mixed music cues (harp, strings and voice,

woodwinds and psaltry, and so on) from each movement for

implementation directly in a game score.

• The source MIDI file for supporting composers to use as a

starting point for their own scoring efforts. 

• An adventurous overture for music lovers, which tells much

of the Elves’ story. 

Visit www.gdmag.com to hear some samples.

The Council of Elrond. This project was innovative and efficient

music design at a global level. In order to ensure the broadest

possible appeal and safeguard against my own potential biases, I

composed the five thematic suites in cooperation with our devel-

opers, VUG management, and the other Tolkien directors. I sent

everyone an MP3 of each draft and invite commentary, and

many good suggestions came in. Kristofor Mellroth, an audio

engineer at Surreal Software (TREASON OF ISENGARD), suggested

we use some of the Black Speech in Sauron’s theme. Chris

Pierson, one of the designers at Turbine Entertainment (MIDDLE-

EARTH ONLINE), suggested specific lines of Dwarvish for the bat-

tle at Helm’s Deep. Daniel Greenberg, our creative director,

helped steer me toward a better feel for Mirkwood. Even Vijay

Lakshman, one of the VPs at VUG, got into the act, suggesting I

beef up the drums in the Dwarves’ theme. It was a total team

effort, and the end result was a collection of compositions we

could all feel very good about. Time to move into production.

Producing the Themes

M iddle-earth or middle-of-the-road? There was never any

question in my mind that we would record the themes

with as many live components as possible, striving for the highest

possible quality standard. We simply had no other choice.

Tolkien’s conceptualization of music was too idealized. He talks

of musical instruments “of perfect make and enchanting tones.”

He describes singing as “clear jewels of blended word and

melody.” He refers to “power” in old songs, and even ascribes

the ultimate creative power to music from the gods.

In addition, we had to consider the level of quality apparent

in Tolkien’s writings. Careful attention to detail, painstaking

effort in choosing words, great skill in painting verbal images of

beauty and artistry, and a tireless thoroughness evidenced in all

his books. It was clear that we must hold to the highest possible

standards of excellence for our themes. And that meant finding

a great orchestra, choir, and ancient acoustic instrumentalists.

And wither then…? There are dozens of orchestras around the

world, but only a handful whose musicians have significant

M U S I C  M A N A G E M E N T

n o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r36

Ancient instruments, such as this dulcimer, lend authenticity to the
LORD OF THE RINGS’ game scores.



experience with film, game, or television scores and whose

facilities are suitable for recording. I quickly narrowed my list

down to four — The Hollywood Symphony, The Northwest

Sinfonia, The Utah Film Orchestra, and the Prague

Philharmonic. 

The L.A. group is the most experienced and claims “the best

players in the world.” But they were the most expensive, even

with the new AFM agreement negotiated by G.A.N.G. My

recording budget would have disappeared all too quickly. Scratch.
The Prague Philharmonic was the least expensive. I could

have recorded there all day every day for weeks. But to my

ears, their performances come off sounding sharp, and their

recorded sound has a brittle edge that I find aesthetically unap-

pealing. Scratch.
That left Seattle and Salt Lake City. Seattle’s musician-per-

hour rate is $55. Salt Lake’s is $50. Seattle’s Bastyr Church

and Studio X are both more expensive than Salt Lake’s L.A.

East Chapel, which goes for $125 an hour. Both orchestras

have tons of experience recording for media. Both groups

have their share of good and bad stories to be told. I had

recorded in Salt Lake City previously with good results, so in

the end I went with the cost savings and experience. I chose

Salt Lake City.

The Bridge of Khazad-dûm. Nothing focuses your attention

quite like hundreds of dollars falling into the abyss every minute

a large group of musicians is in the studio. And yet, nothing

gives such a sick feeling as missing an ever so slightly out-of-

tune phrase that could have been fixed with one more take.

That is why producing a live recording is such a balancing act.

On one side you have aesthetics: timing, tuning, dynamics, all

those elusive ingredients that make emotive magic. On the other

side there’s the budget: there is only so much money, and if you

go over in one area, you generally must cut somewhere else.

Under the incredible pressure of the moment, making those deci-

sions well is the key to effective live orchestral production.

The Orchestra

T hese recordings would be used in current and future games,

so I isolated and recorded the orchestra one section at a

time — strings, brass, and then woodwinds. This approach

yielded undiluted sectional “stems” which would work flexibly

in any number of future arrangements, offering each game a

chance to use the high-quality live recordings we made within

the context of infinitely varied compositions. It maximized qual-

ity and flexibility in one fell swoop. We started with the strings.

Orcs and Elves. We didn’t exactly get off to a smooth start.

Version incompatibility between my Windows XP drives and

the studio’s Windows ME drives made it impossible to transfer

my guide tracks. While the studio scrambled to find a fix, the

orchestra grew restless. An outburst by a prominent member of

the orchestra only added to the building tension. As we waited

on the tech team, I watched the dollars slip into the chasm, and

my blood pressure began to rise.

The control room finally called down with an interim solution.

I rose to the podium and took a moment to gauge the atmosphere

of the room. The players were unfocused, uneasy, and some

seemed antagonistic. I was outwardly calm but totally rattled on

the inside. This was no way to start a session, especially for my

LORD OF THE RINGS score. So I did something I had never done in

a session before. I announced to the orchestra that I was going to

pray, and before they could protest I bowed my head and started

talking loud enough for everyone to hear. I gave thanks for every-

one’s talents and professionalism, I gave thanks for the rare privi-

lege we had of making music for a living, and I asked for help in

capturing a performance that would live up to the lofty standard

of the literature. I said, “Amen,” picked up my baton, and started

describing the story behind the first piece. Interestingly, those ses-

sions gave us some of the best tracks I’ve ever recorded. 

The Choir 

I n contrast to the orchestra, which benefited from some

“divine intervention,” the choir was a hit right from the start.

I contracted an ensemble of singers, most of whom perform with

the Mormon Tabernacle Choir, and they far surpassed my expec-

tations. Here are a few moments from our sessions together.

The Rise and Fall of Sauron. For Sauron’s theme, we took the

inscription from the Ring of Power — “Ash nazg durbatuluk,
Ash nazg gimbatul, Ash nazg thrakatuluk agh burzum, Ishi krim-
patuland” — and set it to music. This is sung twice in Sauron’s

theme, once with men only singing in a profoundly low octave,

and the second time with full choir, including sopranos wailing on

the top end. The singers were just way too good at this. I said to

them, “What’s your choir director going to say when you tell him

you’ve been singing the Black Speech of Mordor?”

The Song of the Dwarves. When we started this piece, the

w w w . g d m a g . c o m 37

Looking down the neck of a double bass from videographer John
Pratt’s LOTR music documentary (see sidebar at www.gamasutra.com).



singing was exceptional, but the feel of the caverns and the

monotonous labor of the Dwarves was just not coming through.

I asked the men’s choir to march in place, and to sway from side

to side for the next take, and their singing was totally altered. It

was uncanny. As Tolkien videographer John Pratt later wrote:

“To my amazement, simply excellent singing was transformed

into the grandeur of generations of tireless hammers echoing into

songs of celebration in the finished halls of Khazad-dûm!” A live

producer needs lots of tricks up his sleeve.

The Ancient Instruments

R are, antique acoustic instruments bring an ancient flavor

and feeling to a game that nothing else in the world can.

In truth, the sounds of these instruments are the only game ele-

ments that actually do come from another place and time.

Getting some of these instruments into our Lord of the Rings
recordings was essential.

From Forochel to Belfalas. Ferreting out ancient instruments in

the 21st century is an adventure game all by itself. You can wan-

der unsuccessfully for days and still come up empty-handed. I was

lucky to find Gael Schults, an ancient Celtic music enthusiast who

knew just about everyone in the world of archaic instruments. She

provided two of the instruments herself and put me in touch with

several other great players. Some of the specialty instruments we

used in recording our themes and songs included the hurdy-gurdy,

viola di gamba, psaltry, penny whistle, recorder, mandolin, rebec,

dulcimer, and even an arch lute (also know as a theorbo).

Getting in the Game

W ith the recordings completed, it was time to get the music

into the hands of the developers and into our games.

This process had great potential to fall apart, since all the devel-

opers had a different composer signed on for their individual

game score. But our music design was developed for this precise

circumstance, and it actually held up remarkably well through

the first round of scoring. Let’s examine some of the specifics.

The Forge and the Blacksmith. After bringing all the music

tracks back to my Yosemite studio in five massive Pro Tools ses-

sions, I started carving out the music cues. By way of explana-

tion, music cues are game-useful segments of music that under-

score a particular mood or game state, and are ready for imple-

mentation as a digital audio file. Every racial overture was bro-

ken down into five to ten such cues of the full orchestration, each

lasting from 30 seconds to two minutes. I now had close to 35

usable cues from the main themes for all our developers.

Next, I went to work creating variations on these cues with

different mixes. One section from “The Overture of Men” is

instructive. From the movement entitled “The Life and Love of

Men,” I was also able to derive a brass-only mix, a harp and

flute mix, a strings-only mix, a woodwinds-only mix, and a

strings and woodwinds mix. Each sounds remarkably different

and conveys a unique atmosphere. Thus each is useful for a dif-

ferent scoring purpose. Suddenly the number of usable music

cues was approaching 100. 

I uploaded all of these music cues to VUG’s FTP site and made

them available to the developers. I also uploaded the original

MIDI files and sectional stems, and I sent each developer an asset

list with recommendations for using them. A personal visit with

each composer followed, offering further instruction, encourage-

ment, and clarification. A brief summary of the development of

three LOTR scores will show how it all came together.

WAR OF THE RING. Composer Lennie Moore and the team at Liquid

Entertainment have taken full advantage of every aspect of our

design. Lennie used the MIDI files as a starting point for 75 to 80

percent of his compositions. He generally began by quoting one of

the themes, working into a variation of the theme, then going off

into a completely original idea. In producing the score, he made

generous use of the choir stems, especially the phrases sung in

Sauron’s Black Speech. Each of the sectional stems has been uti-

lized to add texture and definition to the score, and even the solo

fiddle from “The Overture of Men” is mixed into one of his

pieces. In addition, extra brass, pipes, voices, and Irish whistle ses-

sions were contracted to record fresh material and some wild vari-

ations on Sauron’s theme. Finally, music cues from the main

themes were used under the movies and underscore some of the

key game events and transitions. The result is an artfully complete

score that is perfectly in harmony with the music style guide, sings

the main themes with clarity and variety, and creates a unique

identity for WAR OF THE RING within the body of Tolkien music.

TREASON OF ISENGARD. This game was cancelled, but that too can

be instructive. Composer Brad Spear and the team at Surreal

Software took a more selective approach with our design. Brad

used the MIDI files generously but was more crafty in his

quotes and quicker to move into variation and onto his own

n o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r38

M U S I C  M A N A G E M E N T

The author scrutinizing and weighing every score against quality and
budget.



material. The TREASON score did not include any of the stems

or music cues. Nevertheless, it adhered faithfully to the Tolkien

Music Style Guide and quoted from the main themes reason-

ably enough to establish it as a VUG Tolkien game score.

MIDDLE-EARTH ONLINE. Instead of relying on MIDI files like the

previous two games, developer Turbine Entertainment and com-

poser Geoff Scott prefer sprinkling the game world with the

ready-made music cues pulled from the main themes. These fully

produced theme segments are perfect for an MMO, and MIDDLE-

EARTH ONLINE is taking full advantage of them. As of this writ-

ing, there are at least 90 different cues that have been identified

for implementation in the game. This abundant thematic founda-

tion allows Geoff to concentrate on creating source music and

specialty tunes for the game. In addition, he has contracted addi-

tional recordings on lute, solo woodwinds, and guitars, quoting

some of the main themes by ear and offering grassroots varia-

tions for the score.

An Epic Journey

G reat literature is a wonderful catalyst for the imagination,

and very few works of literature inspire better than The
Lord of the Rings. With our authoritatively documented

Tolkien Music Style Guide, meticulously produced main

themes, and successful franchise music design, each game score

orbits tightly around an authentic Tolkien center, while offering

its own unique adaptation and interpretation of the material.

The result is a desirable union of individuality and continuity. 

I am grateful for the chance given to write music from such a

brilliant font of inspiration. In deference to LOTR fans I have

been as thorough, scholarly, and authoritative as possible in

adapting these works for music, and so have the various com-

posers who have worked with me. I hope fans will find each

game score evocative, authentic, of award-winning quality, and

ultimately irresistible. In addition to the music cues available at

www.gdmag.com, many of the examples I’ve discussed, plus

video footage from the recording sessions and interviews with the

creative team are available at www.LOTR.com, where VUG has

built a web hub dedicated to our LORD OF THE RINGS music.  q

w w w . g d m a g . c o m 39

The composer’s road starts on a blank page and finds its way to a full
orchestral score.

Separate main themes were composed for each of the main races of Middle-earth, including Gimli’s dwarves.



P O S T M O R T E M

G E O F F R E Y  T H O M A S |  Geoff holds a degree in film studies from Queen’s University at
Kingston, Ontario. He spent the last year as assistant producer on HOMEWORLD 2. Contact him
at gthomas@relic.com.
S T E P H A N E  M O R I C H E R E - M A T T E |  Stephane holds a degree in software engineering
from Polytechnic University in Montreal. He spent the last year as lead programmer on
HOMEWORLD 2. Contact him at smmatte@relic.com.
J O S H U A  M O S Q U E I R A |  Josh holds degrees in cinema studies and English literature from
McGill University in Montreal. He spent the last 18 months as lead designer on HOMEWORLD 2.
Contact him at jmosqueira@relic.com.

G A M E  D A T A

PUBLISHER:
Sierra Studios (Vivendi Universal

Games)
NUMBER OF FULL-TIME

DEVELOPERS:
30

NUMBER OF CONTRACTORS:
5 (including 2 testers)

LENGTH OF DEVELOPMENT:
Initial Development Phase:  

22 Months;
Final Development Phase: 

17 Months
RELEASE DATE:

September 2003
PLATFORMS:

PC Windows 
DEVELOPMENT HARDWARE:

1–2GHz CPU PCs with 256MB–1GB
of RAM and GeForce 2–FX cards

DEVELOPMENT SOFTWARE USED:
Visual Studio.NET, Perforce, Maya,

Photoshop, Adobe AfterEffects

N o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r40

g e o f f r e y  t h o m a s ,  s t e p h a n e  m o r i c h e r e - m a t t e



, a n d  j o s h u a  m o s q u e i r a

Developing a Sequel:
Evolution, Not Revolution

Relic Entertainment’s HOMEWORLD 2

41w w w . g d m a g . c o m

W hen HOME-

WORLD hit the

scene in the fall

of 1999 it met

with immediate

success in the industry. Receiving the

Game of the Year award from PC
Gamer, it was hailed as one of the finest RTS games ever

made. The title broke as many conventions as it established

while telling a compelling and engaging story. It was all

that the then fledgling Relic Entertainment could have

hoped for with their first title, both critically and commer-

cially. It should therefore come as no surprise then that

once the celebrations subsided, thoughts quickly turned to

HOMEWORLD 2 and future glories. Flush with success, Relic

and Sierra set out in the fall of 1999 to top the success of

HOMEWORLD. In developing any sequel, the familiar temp-

tation is to eclipse the original title in scope, innovation,

and content. The perception driving this common desire is

that more of the same is never enough, and the only way to

succeed is to outdo the predecessor. It’s surprising then that

in the pursuit of this holy grail, developers quickly forget

the lessons they learn from the original game and make the

same mistakes over again. With HOMEWORLD 2, the origi-

nal development cycle saw many core mechanics and sys-

tems radically changed in a race to re-revolutionize the RTS

experience. What started off as a plan to deliver a sequel

worthy of 1999’s Game of the Year quickly ballooned in

scope to a project beyond feasible development in the time-

frame allocated. The studio learned the hard way not to try

to reinvent the wheel. HOMEWORLD 2’s subsequent volun-

tary six-month cancellation was a direct result of owning

up to this lesson, which then became the vision that fueled

the new team’s phase of development. Building on strengths

and what worked right, while reinventing what didn’t was

our focus.

What Went Right

1. Evolution, not revolution.
The key to sequel development

is to know when to push and when to

polish. If the original title was success-

ful, the last thing you want to do is fix

what isn’t broken. On the contrary, you want to build on

what worked and throw out what didn’t. Invariably this

doesn’t boil down to deciding what features to add but

rather where features can be cut. Developing a successful

sequel is therefore the process of refining and improving

what came before. If you want to dramatically change the

core game concepts and add a slew of new features, you’re

better off with a new IP.

When HOMEWORLD 2 restarted, the team agreed upon a

simple mandate: evolution, not revolution. This mantra

guided us through the next 18 months of development.

Time and again at meetings, in presentations, and in docu-

mentation these words provided the solid ground upon

which we built HOMEWORLD 2. 

Instead of pushing the envelope too far, we focused on

improving those areas where HOMEWORLD fell short and

built on the mechanics and story delivery methods that made

it a critical success. In short, we tried to deliver more of what

made HOMEWORLD great, taken to new levels of polish and

refinement to make HOMEWORLD 2 the definitive sequel. 

A simple concept to understand, the evolutionary vision

permeated into every aspect of development. This concrete

vision underpinned every important decision we made and

gave us insight that proved critical when hard decisions

needed to be made during development. 

2. Scope reduction: The axe is your friend.
HOMEWORLD 2 began its second phase of develop-

ment in February 2002, at which time we planned the



Early ship design, in which elements of the final Hiigaran Destroyer can
be seen. At least, if you turn it upside down.

Very early sketch of the Hiigaran Ion Cannon Frigate. In this case, the
concept was almost identical to the final game asset.

P O S T M O R T E M

development schedule based on the work already done. Unfortu-

nately, this appraisal was at a significant disadvantage, as most of

the team responsible for initial development had left the company.

We didn’t realize the scope of this issue until work began in

earnest. A number of systems considered complete were, to our

dismay, in bad shape. We knew they could be worked around and

patched up, but only at considerable risk to game stability. As a

result we made a hard decision: we removed these systems entirely

and rebuilt them from the ground up. 

As painful as this decision was, it was one of the best we

made on the project. Rebuilding our collision, network, and

rendering code gave us a leg up on optimization and helped

us to weed out systems that were no longer required for

gameplay (for example, the terrain system). With an extra

three months worth of work being dumped onto the pro-

gramming team, we had little choice but to cut features from

the schedule in order to compensate. This unpleasant reality

turned out to be a blessing in disguise, as it gave us the impe-

tus to remove features and units that weren’t essential to the

game. One example of such a cut is the Commander mechan-

ic, where unique units gained experience and shared bonuses

with ships assigned to them. We thought it was cool, but the

mechanic didn’t serve to enhance the core gameplay. Cutting

it gave us valuable art, design, and programming time that we

put to better use on core features such as subsystems, strike

groups, and AI.

3. A strong, experienced team. A project is only as

strong as the people working on it, and in this respect

HOMEWORLD 2 was outstanding. We wouldn’t have been able to

complete this product if we didn’t have a team of strong, experi-

enced people. Out of 28 individuals (aside from leads), six had

been leads on previous projects. Everyone had worked in game

development prior to HOMEWORLD 2, and almost everyone had

shipped a game before. One might expect bruised egos and

sparks to fly, but this wasn’t the case. Everyone on the team was

focused on making a great game and understood that respect

and cooperation were necessary parts of that goal.

Cultural diversity was another key factor. The HOMEWORLD

2 team hailed from Canada, Australia, England, Holland,

Japan, Mexico, and the United States. Each person brought

unique perspectives and diverse game development experi-

ence, including role-playing, first-person shooters, sports, and

real-time strategy. We all brought something to the table, and

the net result was more than the sum of our parts.

4. Art process. In a sea of RTS titles, the original

HOMEWORLD distinguishes itself in large part due to

its art direction. From the moment the game begins until the

end of the final scene, HOMEWORLD is a seamless gestalt cen-

tered around a story-driven gameplay experience. With an

engine capable of gorgeously rendering combat and action, the

experience was unlike anything else available at the time.

The key then to developing a worthy successor fell largely on

the shoulders of the art department — not an easy task, consid-

ering that only three of the artists who worked on HOMEWORLD

contributed to the final development of HOMEWORLD 2. In the

end, however, they not only created visuals that equaled the

first game, they surpassed it beyond anyone’s expectations. The

key to their success lay in strong art direction fueled by a col-

laboration that adhered to the key lessons learned from HOME-

WORLD. They quickly developed a strong collaborative process

that gave each artist, from junior modeler to senior animator,

equal input into what they created. While the art director set

the stage, he thrived on constant input from his team through-

out development.

The result was an iterative process where the art team

shared comments with each other and members of other

departments during texture overpaint sessions. Designers

often sat in on modeling meetings to provide feedback and

insight into unit function and how set pieces would fit with

game mechanics. With each iteration, the result was a

stronger, more refined vision of how each game element

would look in its final form. 

n o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r42



w w w . g d m a g . c o m 43

5. Milestone Acceptance Tests. In order to track and

validate our progress more effectively, we submitted

our milestones to the publisher according to Milestone Accept-

ance Tests, or MATs. Deliverables for the next milestone were

submitted as part of the current milestone’s delivery, and

acceptance of the milestone included acceptance of the next

MAT. Both Sierra and Relic took this document very seriously;

failure to deliver a single item would constitute failure of the

entire submission. Putting into perspective what needed to be

accomplished, the MAT was built from the schedule, and addi-

tional time for testing and build preparation had to be buffered

into the deliverables in order to reach our goals. 

It was only natural that we had an internal and external

MAT for every milestone. The internal document tracked every

deliverable scheduled to be completed, while the external docu-

ment removed those tasks that had the greatest possibility of

hitting snags or being otherwise delayed. Ideally this system

meant that the team began working on the next MAT’s deliver-

ables a full week before the current milestone was finished.

Fortunately this was the case more often than not, and the sys-

tem worked very well right up to our beta milestone delivery.

From our publisher’s viewpoint, we had reached content and

feature complete with our beta delivery and so we stopped

writing any MAT documentation. In retrospect, it would have

been better if we had continued adhering to internal MATs

until much closer to gold.

What Went Wrong

1. Collaborative design process. Much has been said

in recent years about the advantages of the collabora-

tive design process, and in many ways we benefited from this

open approach to game development. HOMEWORLD 2 is what it

is because it’s a gestalt. On their own the engine, art direction,

and game design paint an incomplete picture of the final prod-

uct. Only when seen as a whole does the game’s true character

shine, illustrating what can happen when all three disciplines of

art, design, and programming work with a common vision in

mind. However, collaborative design is not without its dangers,

and we learned some painful lessons as a result. The first mis-

take we made was not establishing a clear delineation of

authority over the script. This created two big problems.

First, with multiple people having sign-off on script deci-

sions, story meetings dragged on for hours — if not days —

with no clear resolution. At times, though rare, the leads found

themselves at an impasse, and invariably capitulation was the

only solution. Inevitable lingering tensions between the art and

design teams hampered productivity and ultimately affected

production schedules.

Second, people who were responsible for areas of the game had

little say when it came to making decisions that affected their

work. Level designers needed to consult with a number of people

before implementing even a small change to their missions. In the

end, this overhead diminished their investment in their work.

These issues caused tremendous grief during development.

Throughout the entire process, what saved us was that every

person involved not only acted professionally but held their

peers and leads in the utmost respect. In the end it was the col-

laborative process that drove the team to resolve impasses and

work as a whole.

However, our collaborative design process shouldn’t have been

a democracy. An open environment is critical to creating games,

especially gestalt-driven titles such as HOMEWORLD 2. But ulti-

mately someone needs to have the authority to make the deci-

sions needed to move the project forward. The balance is in

keeping the process from becoming a dictatorship while main-

taining the authority and conviction to know when to say

enough is enough.

2. Late development iteration. To a person, HOME-

WORLD 2’s art team was staffed by talented perfection-

Concept art illustrating some of the massive terrain pieces envisioned
early on.



ists. They’re the reason the game is beautiful to look at and

feels consistent from start to finish. They’re also the reason that

new content was being submitted well after we reached beta. In

the pursuit of artistic perfection, scheduling and risk manage-

ment unfortunately fell by the wayside. If an artist didn’t feel

that he had achieved an acceptable level of quality in the time

allotted for a task, more time was allotted. This resulted in one

of two possible outcomes: Either tasks yet to begin would have

less time to reach the same level of quality, or the artist needed

to work massive overtime to make up the deficit (which opens

up a whole new can of worms).

It was an incredibly risky way to deliver content that endan-

gered the art schedule, had a cascading effect on design and pro-

gramming tasks, and nearly burned out a lot of very talented peo-

ple. Obviously it’s difficult to quantify what is by definition an

issue of quality, but the schedule is there for a reason, and we

should have made a greater effort to scale our expectations to fit

within its borders. In our drive to make the best game we could,

we too often ignored the facts, in favor of hoping for the best.

Fortunately we didn’t end up paying for this gamble in anything

but lost sleep. It could easily have sunk the project.

3. No feature approval by design department.
When the programming team ramped up in late

August 2002, a number of key design documents were incom-

plete due to a short-staffed design team, meaning that program-

mers started working on features before they had been fully

designed. We had a strong idea of what had to be done, but

without a formal design document the margin for error became

unmanageable. We had many meetings to try to reconcile the

most critical aspects of the game, but in reality programmers

were completing features before their design had been finalized.

The greatest impact, however, was the lack of a formal review

process for new features. All too often a feature was deemed to

be complete when it worked on the programmer’s test map

with default tuning values. As you can imagine, such assump-

tions came back to bite us time and again.

One feature, the ability to harvest resources from dust

clouds, had to be cut when we realized too late that it suffered

from significant mouse selection issues. Completed in February,

our Unit Cap system wasn’t put through the paces until June, a

mere eight weeks before release. We had no choice but to

implement the system used in HOMEWORLD or suffer setbacks to

game balance and AI.

Any request made by the design department needs factoring-in

time for a proper review or it’s at risk of being cut in late stage

development. Our lack of formal design review not only wasted

art and programming time, it negatively affected gameplay imple-

mentation, since some features never made it into the game. 

4. Parallel development. Parallel development

almost crippled the project before it got started. For

most of the last 18 months, all three departments grappled

with an aggressive schedule while clamoring for more

resources. In fact, the first six months of development

occurred with a skeleton crew, frequently putting various

departments behind the eight ball. For over three months the

lead designer was the only designer on the project, resulting in

an understaffed design team mired in conceptualization while

art and programming started full production. This significant-

ly delayed single-player and multiplayer game development.

Certainly it was not a good situation to be in, but things

would get worse before they got better.

With HOMEWORLD 2 back in active development, Relic had

for the first time grown into three full production teams. The

largest of these was IMPOSSIBLE CREATURES, which was in its

final stages at the time and taking most of the company’s

resources. Development of HOMEWORLD 2 had been planned

around the established pipelines, completed tools, and function-

al code base left over from the original development team. And

so a small group would begin production with the idea that it

would soon be reinforced by most of the IMPOSSIBLE CREATURES

P O S T M O R T E M

n o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r44

Laying out a single-player mission map in Maya. An untextured Hiigaran Bomber viewed in Maya.



crew when that game shipped.

None of this turned out to be true. Many HOMEWORLD 2 sys-

tems considered finished needed substantial work and in some

cases had to be scrapped entirely. This situation severely taxed the

already understaffed programming team and turned an aggressive

schedule into a nearly impossible one. And instead of IMPOSSIBLE

CREATURES staff moving onto HOMEWORLD 2 within three months,

many didn’t arrive until six or seven months later, if at all. While

this affected all three departments, design was the hardest hit. 

Realizing the company was spread too thin to support three

full projects, Relic made the responsible choice and shut down

the prototyping group, moving the entire team over to

HOMEWORLD 2. 

5. Quality assurance. Most development teams proba-

bly have something to say about their QA, but for us a

number of issues came up that turned a challenging situation into

a horror show. Our QA team did an amazing job with the

resources available to them, and the game would certainly never

have shipped if not for their tireless efforts and unfailing dedica-

tion. That said, our introduction to the QA process began with

our entire team being fired and then rehired soon after on tempo-

rary contracts (as a result of internal reorganization at Vivendi

Universal Games). In the following

months our QA lead was replaced

three times, and in each instance proj-

ect ramp-up took valuable time. Most

problematic of all, we had restricted

access to the test plan, which put us

in a position where we had no visibil-

ity into when or how systems were

being tested. For example, our com-

patibility testing didn’t begin in

earnest until the final six weeks of

production. As a result, we were fix-

ing OS compatibility bugs after our

first gold candidate delivery.

There were a number of ways we

were able to work around these

roadblocks, however. The first was

to conduct focus group sessions for gameplay and UI. The first

session was held two weeks prior to E3 and gave us a wealth of

feedback that proved invaluable in polishing our E3 demo. We

held two more focus sessions in the final months to identify

which areas needed the most polish and which worked the best. 

The second (and most valuable) way that we managed our

QA risks was to run an internal bug-tracking system separate

from our QA database. Game crashes were always dealt with

as soon as they occurred, and the remaining tasks entered

were dealt with expediently. It’s an ill-advised solution, but in

this case it was one that worked.

Evolve or Die

H ot on the heels of HOMEWORLD’s success, HOMEWORLD 2

initially focused on reinventing the RTS genre all over

again. Concepts like terrain, vector-based attack systems, even

time modulation mechanics (creating a 4D RTS, as it were)

came into play and in some cases were at the core of develop-

ment. As a result, a lot of the things that made HOMEWORLD so

much fun fell by the wayside, and HOMEWORLD 2 stopped

being a sequel.

Six months later we went back into development with a

new focus: evolve the

HOMEWORLD experience rather

than revolutionize it. Every deci-

sion we made, right and wrong,

came from this principle. On

paper HOMEWORLD 2 was in

development for nearly four

years, but in many ways the

game was created in the final 15

months. We set out to make a

worthy sequel to HOMEWORLD

2, and that is  exactly what we

accomplished. 

It’s our third title, our first

sequel, and has proved second

to none as the best experience of

our professional careers.  q

w w w . g d m a g . c o m 45

The mission backgrounds were created in Photoshop and then applied
to the inside of a sphere. Once the texture was applied, the background
tool would turn it into perfectly Gouraud-shaded polygons.

The resulting look is very close to the original Photoshop image without
using any texture memory. An artist hand-corrected the spherical dis-
tortion and seams in the polygons before exporting it into the game.

A pair of Hiigaran Pulsar Gunships assault a Destroyer



S O A P B O X d a n  l e e  r o g e r s

n o v e m b e r  2 0 0 3 | g a m e  d e v e l o p e r72

A non-disclosure agreement is a promise between a

publisher and developer not to discuss the details

of their agreement, and most assume that this is

simply an assurance that developers will not leak

game information to competitors or the press.

But the true impact has less to do with a developer’s propensity

to spill the beans and more to do with how a developer might

use this information to negotiate better contractual terms. In

other words, because non-disclosure agreements prevent develop-

ers from comparing their deals, they may be settling for less than

what they might have effectively negotiated otherwise.

If game developers were suddenly able to compare their

deals, publishers might be put in a difficult position, having in

some cases to justify why more competent developers were

being paid less than inferior ones. You’d be surprised at how

often this happens. 

David Cornwell, President of DNK Cornwell (a former NFL

counsel and attorney for sports agent Leigh Steinberg), agrees.

Cornwell believes that the public disclosure of salary informa-

tion has been instrumental in negotiating higher compensation

for sports players. By using salary information as the basis for

their discussions, sports agents have negotiated record-breaking

deals. For teams, the value of a publicly disclosed deal demon-

strates their commitment to winning, and for players it’s a

badge of honor reflecting their contribution to a team’s success. 

How does this apply to game developers? Despite earning

millions of dollars, today’s hottest game developers may be

leaving millions more on the table simply because they don’t

know what their competitors are earning. Recently I was speak-

ing with the president of a leading independent game company

about this. When I asked him how he would feel if he discov-

ered that another company were earning a 2 percent higher

royalty, he immediately understood the point I was trying to

make. For him, a 2 percent higher royalty could mean millions

of dollars in additional revenue. But without knowing what his

competitors are earning, he has lost this strategic bargaining

chip.

To help you understand what is really at stake, let’s do a lit-

tle back-of-the-matchbook math. Since our developer is the cre-

ator of a series that has sold more than 8 million copies, we

know that his publisher’s gross revenue is likely between $150

and $200 million. Based on this, our developer would have

earned around $15 million, give or take a million or so. Not

bad, right? But had he negotiated 2 percentage points higher

continued on page 71

The Quiet World of 
Non-Disclosure

Words can kill. For game developers, the
most costly weapon a publisher wields
today is the word “non-disclosure.”

Ill
us

tr
at

io
n 

by
 S

te
ve

 M
un

da
y



initially, he would have put an

extra $4 million in his pocket. 

Let’s look at it another way. If

his publisher generated $200 mil-

lion, one could reasonably argue

that a competing publisher might

be satisfied with $180 million,

right? So if our developer then

signs his next deal with the second

publisher and the product does

equally well, then he’s better pre-

pared to negotiate for that $20

million difference. But is it really

possible to negotiate this kind of a deal?

A few years ago baseball star Alex Rodriguez signed a

record-breaking $252 million deal, making him the highest-

paid player in baseball history. Rodriguez is receiving 10 times

more money than the highest-paid player received a decade

earlier. Why? Because Kevin Brown was earning nearly that

much the year before, that’s why. Because Alex Rodriguez’s

camp could argue that Alex was a more valuable player based

on an existing benchmark. And the only difference between

baseball players and world-class game developers is the exis-

tence of that benchmark. Sports players talk openly about their

compensation, and teams compete with each other for the

most talented players based on this information.

It’s highly unlikely that we’ll wake

up tomorrow to find the details of

Electronic Arts’ latest development

deal posted on a web site. On the

other hand, there are promising indi-

cations that one day we will be able

to talk openly about compensation.

Recently at ECTS I met with one of

the top business development execu-

tives in our industry. Over a dinner

of Texas-style barbecued ribs (yes,

you can find them in London) we dis-

cussed the future of independent

developers. In confidence he admitted that when you consider

their creative contribution and the risks they take on behalf of

their publishers, independent developers should be paid more.

Given the competitive nature of our business, getting to the

point where we can more openly discuss contracts may take

more time. Then again, we all know that Atari recently pur-

chased Shiny for $47 million, based largely on the anticipated

revenue of a single license. The real news about this deal is not

the purchase price, but the fact that we all know about it.  q

DAN LEE ROGERS | Dan is president of BizDev Inc., a leading
business management firm in the interactive industry. E-mail him
at dlr@bizdev-inc.com.

S O A P B O X

w w w . g d m a g . c o m 71

continued from page 72

Today’s hottest game 
developers may be 

leaving millions more on 
the table simply because 

they don’t know what their 
competitors are earning.


	04gameplan
	06saysyou
	08indwatch
	12prodrev
	16profile
	18innerp
	22artview
	25soundp
	26betterby
	28f-batiste
	34f-thomas
	40postmort
	72soapbox

	return: 


