
NOVEMBER 2002

G A M E D E V E L O P E R M A G A Z I N E

L E T T E R F R O M T H E E D I T O R

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Everard Strong estrong@cmp.com
Production Editor

Olga Zundel ozundel@cmp.com
Product Review Editor

Daniel Huebner dan@gamasutra.com
Art Director

Elizabeth von Büdingen evonbudingen@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Jonathan Blow jon@bolt-action.com
Hayden Duvall hayden@confounding-factor.com
Noah Falstein noah@theinspiracy.com

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Beemania
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed WildTangent

ADVERTISING SALES
Director of Sales/Associate Publisher

Michele Sweeney e: msweeney@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Account Manager, Northern California & Southeast
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Recruitment
Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225

Account Manager, Western Region & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Account Representative
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz

Advertising Production Coordinator Kevin Chanel

Reprints Cindy Zauss t: 909.698.1780

GAMA NETWORK MARKETING
Director of Marketing Greg Kerwin

Senior MarCom Manager Jennifer McLean

Marketing Coordinator Scott Lyon

CIRCULATION

Group Circulation Director Catherine Flynn

Circulation Manager Ron Escobar

Circulation Assistant Ian Hay

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Executive Vice President & CFO John Day

Chief Operating Officer Steve Weitzner

Chief Information Officer Mike Mikos

President, Technology Solutions Group Robert Faletra

President, Business Technology Group Adam K. Marder

President, Healthcare Group Vicki Masseria

President, Electronics Group Jeff Patterson

President, Specialized Technologies Group Regina Starr Ridley

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, HR & Communications Leah Landro

Vice President & General Counsel Sandra Grayson

Vice President, Creative Technologies Philip Chapnick

W W W . G A M A N E T W O R K . C O M

✎

T he game development world

has long been dominated by

the triumvirate of superpow-

ers encompassing North

America, Japan, and Western

Europe, where the vast majority of devel-

opment work has taken place over the

last 25 years. Now, as the game industry

continues to grow and expand, the gravy

train is rumbling into territories hereto-

fore not associated with professional

game development, places such as

Russia, the Czech Republic, Vietnam,

and South Korea to name just a few.

Development in these emerging markets

is much cheaper, which is a primary

attraction both for publishers and for

developers looking to subcontract work.

Cost savings is a huge consideration as

teams grow, development times lengthen,

and more experienced developers and stu-

dios command bigger cuts.

Some think the corollary to this trend is

“you get what you pay for,” assuming

that game development done in far-flung

places is going to be fraught with logisti-

cal problems such as language and cultur-

al barriers, and of inferior quality to work

done by more established professionals

occupying the traditional game develop-

ment landscape. But with technology,

physical barriers aren’t what they used to

be, and there are tools on the market now

such as Renderware Studio and NXN

Alienbrain that aim in part to keep far-

flung teams better connected.

As for the quality issue, OPERATION

FLASHPOINT, developed by Czech

Republic–based Bohemia Interactive

Studio, is a great example of not getting

what you pay for in the best way. The

game racked up $400,000 in develop-

ment costs over four years, the kind of

change that an increasing number of

today’s AAA games lose under their sofa

cushions, and proceeded to sell 1 million

copies worldwide for publisher

Codemasters while garnering plenty of

critical acclaim. Success in the PC market

then paves the way for console work and

the potential for a whole new audience;

FLASHPOINT is on its way to Xbox, as is

Croteam’s SERIOUS SAM, which originated

in Croatia. Most recently, the Czech

Republic’s Illusion Softworks, makers of

the HIDDEN & DANGEROUS series,

released the much-hyped MAFIA; it would

not be surprising to see both properties

end up on consoles as well.

Tangentially, MAFIA raises one caution-

ary point for publishers and hardware

makers looking to extend their develop-

ment frontiers — not the game itself but

the problem in many emerging economies

of organized crime. This is a real issue for

companies looking to do business in

Central and Eastern Europe and in some

areas of Eastern Asia. Until the regulatory

efforts of the governments involved stem

the rampant proliferation of organized

crime, due diligence can’t be short-

changed when seeking out business part-

nerships of any kind. However, many

expect at least the Central European coun-

tries to be admitted to the European

Union within the next few years, which

will greatly ease commerce with fair trade

standards to which member countries

must adhere.

Games are indeed going global, both in

content and in business. Having come out

in the world as far as the business has,

there’s no reason to think it will retreat

back to the safety of traditional strong-

holds rather than continue to blossom in

emerging markets. Any backlash or resist-

ance from studios in more established

regions would be both unfortunate and

short-sighted. Recently I attended a panel

at GDC Europe called “Developing in a

Developing Country,” and when the ques-

tion arose of whether cut-rate develop-

ment costs fostered profiteering among

the big game publishers to the detriment

of established (and more expensive) stu-

dios, Bohemia Interactive’s Marek Spanel

answered succinctly, “Our goal is not to

be cheaper, our goal is to be better.” That

goal is exactly what drove many of

today’s best studios to their current suc-

cess levels, and who did they let stand in

their way?

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

4

Game Developer
is BPA approved

G A M E P L A N

Jennifer Olsen

Editor-In-Chief

Hello World

Greek gaming ban. An effort to restrict

illegal gambling in Greece took an unex-

pected turn when the Greek government

admitted that it wasn’t able to distin-

guish between illegal gaming machines

and innocuous videogames. The result-

ing law decreed a ban on the use of all

electronic, electromechanical, and elec-

tronic game devices in public places. The

law went into effect in July, leaving play-

ers of arcade, PC, handheld, console,

and mobile games in Greece to face fines

of €5,000 to 75,000 and jail terms up to

12 months.

The confusing law failed its first judi-

cial challenge in September when, in a

case brought against three Internet café

owners arrested in August after police

found customers playing online chess in

their establishments, The Court of First

Instance in Thessaloniki ruled that the

law contravened constitutional provi-

sions on the free movement of ideas.

Hanging on to Nasdaq. 3DO and

Interplay both made moves to secure

their places on the Nasdaq stock

exchange, at least temporarily. 3DO

obtained shareholder approval to enact

an eight-for-one reverse stock split

intended to push the company’s share

price, hovering at the time around 20

cents per share, back above Nasdaq’s $1

minimum share price requirement.

Interplay’s position is a bit more pre-

carious as it fights to keep its place on

Nasdaq’s Small Cap market. The com-

pany missed its August 13 deadline for

compliance with the $1 minimum share

price requirement and also failed to

meet requirements of $5 million in

shareholder equity, $50 million market

value of listed securities, or $750,000

net income on continuous operations to

become eligible for a 180-day extension.

Interplay was to face de-listing on

August 23, but was granted a short stay

of execution when the Nasdaq Listing

Qualifications Panel granted the compa-

ny’s request for a hearing.

Rumors around Rare sale. Microsoft

has, since the inception of the Xbox,

been rumored to be involved in the pur-

chase of nearly every developer in the

industry. Word of Microsoft’s interest in

Nintendo stalwart Rare, however, took

an unexpected turn in September when

Nintendo first voiced its approval of the

idea. Nintendo and Rare have had a

long-standing relationship, and Nintendo

holds a 49 percent interest in the studio,

but Nintendo recently declined to pur-

chase Rare’s remaining shares and was

know to be reconsidering the developer’s

Nintendo exclusivity. Citing Rare’s

diminishing importance as a Nintendo

developer, Nintendo was at press time

welcoming buyers interested in its share

of the company, including Microsoft.

Rare titles accounted for 9.5 percent of

Nintendo’s unit sales in 2001 but slipped

to just 1.5 percent this year.

Console price cuts in Europe. Basking

in the glow of better-than-anticipated

sales in Europe, Sony announced a new

round of price cuts for the Playstation 2.

The price of a PS2 in Europe dropped by

15 percent in the U.K. to £169.99, and

to €249 to 259 on the continent. Micro-

soft announced an even more aggressive

price cut less than one hour later. The

Xbox price was slashed from €299 to

249 on the continent, with the U.K. price

hitting £159, making a new Xbox less

expensive than a PS2 in the U.K. for the

first time.

Sony drops Playstation 3 hints. While

Sony is remaining tight-lipped about its

plans for a Playstation 2 successor, signs

are pointing to the company taking its

console in a new direction sometime in

2005. The 2005 date comes from the

estimated completion date of a four-year

chip researcher project, codenamed

“Cell,” currently underway as a joint

project of Sony Computer Entertain-

ment, Toshiba, and IBM. Whenever the

PS3 arrives, it’s likely to take a different

form, possibly arriving as an integrated

part of other devices. “We’re not think-

ing about hardware,” explained SCE’s

Kenichi Fukunaga. “The ideal solution

would be having an operating system

installed in various home appliances that

could run game programs.” q

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r6

I N D U S T R Y W A T C H
T H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e rJ

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

STAR FOX ADVENTURES: Rare’s last outing for
Nintendo?

Despite publishing the critically acclaimed
HEROES OF MIGHT AND MAGIC IV earlier this year,
3DO is fighting to stay listed on Nasdaq.

T H E A U S T R A L I A N G A M E
D E V E L O P E R S C O N F E R E N C E

MELBOURNE CONVENTION CENTRE

Melbourne, Australia
December 6–8, 2002
Cost: variable
www.agdc.com.au

D V E X P O
LOS ANGELES CONVENTION CENTER

Los Angeles, Calif.
December 9–12, 2002
Cost: variable
www.dvexpo.com

XX

A t its heart, ProFace

Complete, the latest incar-

nation of Famous3D

Animator, is a cluster ani-

mation tool. The program

has a wealth of features specifically

designed for the efficient tagging, weight-

ing, and animating of vertex or NURBS

point clusters. ProFace has strong ties to

a motion capture workflow, but it’s also

quite easy to rig and animate a head

without the benefit of mocap data.

A typical workflow involves building a

character using a modeling package,

importing the model into ProFace, defin-

ing clusters, applying and tweaking

motion data, then exporting back to the

modeling package or creating a new file.

Currently, ProFace Complete interfaces

(via a plug-in) with 3DS Max, Maya,

Softimage 3D, Lightwave, and Filmbox.

Without a plug-in, geometry import is

limited to .OBJ and .3DS files (with .OBJ

export only). Motion data can be brought

in from most popular systems, including

real-time capture setups. Audio and video

files can also be imported, and a text-to-

speech and audio-to-speech engine allows

for facial poses and lip-synch to be created

based on spoken or written dialogue.

ProFace in Action. ProFace’s interface is

clean and uncluttered, with a Max-ish

command panel that toggles between

modes. The program has no built-in help

system other than a table of mouse and

keyboard shortcuts, although a decent

set of printed and PDF manuals and

tutorials is supplied with the software.

After a head model is loaded in

ProFace, the real work of building clus-

ters can begin. ProFace uses a brush-

based system, similar to Maya’s Paint

Effects, for this task. A brush’s attributes

are easily defined, although custom brush

settings cannot be saved for later use.

Also missing is a symmetrical or mirror

painting mode, which tags mirror sets of

vertices on either side of a model (such as

the cheeks or jowls). Clusters are dis-

played as color gradients that indicate

their hotspot (center) and area of influ-

ence, and are defined as one of five types:

translation, rotation, double rotation, eye

(for, you guessed it, eyes), or spline.

The spline cluster is something special

and represents a jackpot for lip-synch

artists. In this type, vertices follow the

shape of a spline curve, as opposed to a

single hotspot. This approach works

great for animating the lip and mouth

areas on a character.

Once defined, clusters are married to

channels of animation data. Given its

mocap heritage, strong tools exist for

defining, scaling, and applying imported

motion channels. Mocap data can be

either 3D or 2D, as the program works

with the optional vTracker module to

translate video of an actor wearing facial

markers into 3D animation data. A good

expression and constraint system allows

users to re-create 3D movement based on

2D mocap (for example, an expression

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r8

P R O D U C T R E V I E W S
T H E S K I N N Y O N N E W T O O L S

S T E V E B O E L H O U W E R | Steve is the vice president of creative services for The
Vendare Group, a Los Angeles–based network of game, entertainment, and marketing com-
panies. Contact Steve at steve@vendaregroup.com.

Famous3D ProFace
Complete

by steve boelhouwer

Famous3D ProFace Complete provides a range of facial animation tools.

could translate the lips forward whenever

they purse together in a pucker).

ProFace also has a keyframe editor

that allows for direct access to individual

animation channels. Essential for tweak-

ing existing animation as well as for cre-

ating it from scratch, the editor can also

be used to define morph targets that can

be utilized internally or to export

deformed geometry.

When the animation is complete, the

plug-ins take your model and its newly

married animation channels back to the

original program. Animation data can

also be exported separately as a MEL

(Maya Embedded Language) script or a

well-formatted text file for game engine

use. Web authors will be happy to learn

the program can export animations to

either Shockwave 3D or its own propri-

etary format. ProFace can also render the

viewport animation as an AVI movie.

Bottom Line. ProFace’s narrow focus is

both its greatest strength and its biggest

liability. For projects that involve a lot of

detailed facial animation and lip-synch,

particularly if the animation will originate

from a mocap source, it’s the ideal tool.

But it’s an expensive package, and given

its lack of suitability for other purposes, it

may be a tough sell for smaller studios.

To address this issue, Famous3D now

offers different subsets of ProFace at

varying price points and with different

motion input capabilities. ProFace Voice

($995) accepts text and voice input only,

ProFace Video ($1,995) supports live

video capture only, ProFace Mocap

($3,995) does 2D and 3D mocap input,

and ProFace Complete ($5,995) has it all.

For 3DS Max users who are only interest-

ed in a tool to help them paint and build

clusters, there’s also FaceAce ($495),

which is specific to that task. Addition-

ally, a lower-priced line of software is

aimed specifically at web animation. By

offering features of Famous3D ProFace à

la carte, studios that need to make their

characters talk are much more likely to

find a tool suited to their needs.

APPLE TITANIUM
POWERBOOK G4

by david stripinis

F ew can look at Apple hardware like

the sleek Titanium Powerbook with-

out admiring its physical beauty, but

Apple has always been handicapped by a

perception that there is no software avail-

able for it. While you definitely have more

options available on Windows, Lightwave,

Maya, and at last Photoshop all have OS

X versions available. (3DS Max, however,

remains available only under Windows.)

The loss of some applications gains you

access to a variety of Apple-exclusive

applications, including — most notably

for game developers — Final Cut Pro,

Apple’s exquisite video-editing software.

Apple has recently released a version of

Shake, a high-end compositing product

for OS X, at a significant price reduction

over the Windows and Linux versions.

My review unit had an 800MHz

PowerPC G4 processor and 512MB of

RAM, a setup that retails for $3,199.

The base model Titanium Powerbook has

a 667MHz G4 processor and 256MB

RAM for $2,499. Both come with ATI’s

Radeon Mobility 7500 with 32MB of

DDR video memory. Other custom-built

options are available direct from Apple.

When discussing the hardware, before

you even turn it on, you just want to sit

back and admire the artistry of the indus-

trial design. It measures less than one

inch thick, but the titanium shell feels

incredibly solid.

Looking around the edges of the

machine, it appears to lack ports. Looks

are deceiving, however, because under a

clever flip-down rear plate the Power-

book reveals two USB ports, nine-pin

Firewire, a gigabit Ethernet port, as well

as a built-in modem. There is also built-in

802.11b connectivity (standard on my

review model, an add-on on the lower-

priced version), though I did find the

reception to be spotty compared to some

other computers. For anything else you

may need, a PC card slot allows for

future expansion.

Not just pretty on the outside, the

TiBook has real juice to it. Photoshop 7

zips along with ease. It’s hard to get any

real work done with a touch pad, but

you can easily add a mouse or tablet,

both of which travel well. In fact, I know

of one artist who brings his Powerbook

and tablet to life-drawing sessions

instead of a sketch pad.

Maya is currently available for Mac

OS X in version 3.5, though Alias|Wave-

front announced that version 4.5 will

bring Maya into parity across all plat-

forms. Alias|Wavefront actually recom-

mends against using the Powerbook to

run Maya, though for me everything

seemed to run at a more than reasonable

pace for a laptop, with only minor hassle

depending on whether you are working

with a one-, two-, or three-button mouse.

Also, Alias|Wavefront does not offer the

Unlimited version of Maya for the Mac,

only the Complete package.

Apple recently released the DVI to

ADC adapter, which allows Macs with

DVI connections (like the Titanium

Powerbook) to use their line of fantastic

Studio Display monitors.

As for battery life, the TiBook had

incredible legs, as long as I wasn’t using

the hybrid CD-RW/DVD-ROM drive

constantly watching movies or playing

XP R O D U C T R E V I E W S

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r10

STATS
FAMOUS3D

San Francisco, Calif.
(415) 835-9445
www.famous3d.com

PRICE
$ 5,995 (MSRP)

SYSTEM REQUIREMENTS
Pentium 133 or higher CPU with 128MB

RAM, OpenGL accelerator, and video
capture board for motion capture.

PROS
1. Powerful cluster animation tools.
2. Flexible and open mocap interface.
3. Multiple data export options.

CONS
1. Expensive.
2. No integrated help system.
3. No Softimage XSI plug-in yet available.

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

FAMOUS 3D
PROFACE COMPLETE

XXX]

audio CDs. Average life on a single

charge was approximately 3 hours and

45 minutes. OS X includes a relatively

accurate battery life utility that not only

tells you how much time you have left

while operating on a battery, it tells you

how long till you have a full charge while

running off the AC adapter.

Putting a Mac person and a PC per-

son in a room to debate which is faster

hardware is like putting two wet badgers

in a sack. When it’s all over, you can’t

really tell who won, and all it leaves is a

big old mess. I’m not going to lie to you

— the G4 is not as speedy as your latest

Pentium or Athlon, and the ATI Mobile

Radeon does not give the polygon per-

formance of a Quadro4 2 Go, never

mind a desktop workstation–class video

card. But for 3D modelers and animators

working with high-density geometry, this

is not a workstation replacement. It’s a

great system to use on the road, or as a

personal system.

For texture artists, sound designers,

and programmers, it has all the power

you need, with the style and user inter-

face Apple is famous for. Add in the new

capabilities of OS X and you have a plat-

form ready for anybody. This is best evi-

denced to me by the fact that at the com-

pany I work for, our lead artist just

bought one, and our technical director

(of the programming variety, not the art

kind) was planning to get one within a

couple weeks. A computer that satisfies

the needs and wants of not only an artist,

but a programmer? Inconceivable.

XXXX|Titanium Powerbook G4
Apple Computer | www.apple.com

David Stripinis is director of anima-
tion at Factor 5. Contact him at
david@factor5.com.

ROBERT MCNEEL AND
ASSOCIATES’
RHINOCEROS 2.0

by tom carroll

U sing NURBS, almost any object that

can be imagined can be described as

a combination of relatively simple forms.

Finding those forms is up to the individ-

ual artist or designer, and bringing them

together is made much easier with

Rhinoceros 2.0 — affectionately called

Rhino by those who use it — a 3D

design package developed by Robert

McNeel & Associates. For the price, a

relatively modest $895, Rhino is the

highest-quality, most feature rich model-

ing package on the market today.

As a pure surface-modeling package,

Rhino is easy to learn and simple to use.

The package’s powerful import and

export features that allow it to be con-

nected to other programs such as Adobe

Illustrator and IGES.

With Rhino, all curves and surfaces,

including the surfaces of solids, are

NURBS-based. The package supports an

impressive set of tools for creating sur-

faces, including edge curves, planar,

extrudes, lofts, networks, rail sweeps,

revolves, drapes, height fields, blends,

and offsets. Once a surface has been cre-

ated, it can be trimmed, split, moved,

rotated, scaled, filleted, chamfered,

and/or copied, as well as joined to other

surfaces. It’s also possible to alter sur-

faces on an elemental level by editing

their control points. Rhino has an equal-

ly impressive set of methods for creating

and working with curves.

To a first-time user, however, the first

thing about Rhino that makes an impres-

sion is its rather modest system require-

ments: A Pentium, Celeron, or higher

processor, Windows 95/98/NT/Me/2000

for Intel or AMD, 40MB disk space, and

64MB RAM (more is recommended, as is

an IntelliMouse).

The default user interface is divided

into four views (Rhino 2.0 allows an

unlimited number), and toolbars are in

the places most 3D modelers expect them

to be. Rhino’s refresh rate is impressively

fast, even with shading turned on. All of

the control mechanisms you’d expect to

find are present, including an array of fil-

ters, object and grid snaps, construction

planes, and layers.

A host of friendly features are new in

Rhino 2.0, including the ability to add

plug-in applications. One such plug-in is

Flamingo, an advanced raytracing ren-

derer also from McNeel & Associates

(available bundled with Rhino 2.0 for

$1,195). Additional plug-in programs

(most not directly applicable to the

videogame field) are available from third-

party sources.

Release 2.0 also includes enhance-

ments to Rhino’s built-in renderer and

adds new options and capabilities to

many tools for creating, analyzing, and

modifying curves and surfaces. It also

introduces VBScript and JScript support.

Last, but certainly not least, is The

Zoo. The Zoo provides for efficient use

of Rhino licenses within workgroups

(Rhino 2.0 can be installed as either a

workgroup node or stand-alone license).

McNeel (and his associates) should

consider adding a feature tree in Rhino

3.0 that will help while editing composite

geometry. Most other complaints relate

to folks using Rhino for architectural

purposes (such as providing comprehen-

sive 2D drawings and cross-section views

of 3D models); game developers proba-

bly won’t even be looking for the pack-

age to do such things in the first place —

problem solved, case closed.

In a nutshell, Rhino 2.0 provides great

value for a singularly small dollop of

dough. It’s the perfect choice for taking

your modeling to an even higher plane.

Unfortunately, those who believe that any-

thing powerful must come with a power-

ful price tag may just overlook Rhino. q

XXXX]
| Rhinoceros 2.0

Robert McNeel and Associates |
www.rhino3d.com

Tom Carroll is lead level designer at
Vision Scape Interactive. Reach him at
tcarroll@vision-scape.com.

XP R O D U C T R E V I E W S

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r12

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

Rhino offers low-cost NURBS modeling for
Windows.

I f he isn’t the most

influential person in

the world of RPGs,

Gary Gygax certain-

ly belongs in the

pantheon of the giants of the

genre. He started out by

writing his own pen-and-

paper (P&P) games during

the late 1960s and early

1970s, and went on to revo-

lutionize gaming with his

involvement in the creation

of Dungeons & Dragons.
Now, Gary Gygax is looking to bridge the gap between pen

and keyboard by throwing his LEJENDARY ADVENTURES P&P

RPG into the MMOG ring (currently being produced by

Dreams Interactive). Ion Storm project director Harvey Smith,

being an RPG fan of both electronic and paper varieties,

seemed like a natural — and very willing — volunteer to talk

to Gary about RPGs, MMOGs, and the transition from P&P

to M&M (mouse and monitor).

Harvey Smith. The time seems right to launch LEJENDARY ADVENTURES

as an MMOG. The commercial success of The Lord of the Rings:
Fellowship of the Ring cannot be denied, not to mention the suc-
cess of EVERQUEST. Are you happy with the game so far?

Gary Gygax. As we spent several months discussing the shape

of the LEJENDARY ADVENTURES RPG online before concluding

a deal with Dreams Interactive, I must say that we share the

same vision, so I am indeed pleased. Of course right now

there is not much game to look at. However, we have the sys-

tems and mechanics pretty well set for alpha testing, so soon

the shape will be changing, as all the usual glitches and kinks

in a design and graphic presentation are discovered and

ironed out.

HS. RPGs often split people into several camps: Some are polar-
ized between those players more interested in interactive story-
telling and those more interested in killing monsters and collect-
ing treasure. There are also people who play for the interesting
tactical challenges, seeing the game as an extended board game.
Then, of course, there are those of us who enjoy all three. How
heavily will LEJENDARY ADVENTURES cater to each of the player types
described above?

GG. Insightful, that question, and allow me comment on it a

bit before answering.

I do not, and I stress not, believe that the RPG is “story-

telling” in the way that is usually presented. If there is a story

to be told, it comes from the interaction of all participants, not

merely the Game Master — who

should not be a storyteller, but a nar-

rator and co-player. The players are

not acting out roles designed for

them by the GM, they are acting in

character to create the story, and the

tale is told as the game unfolds, and

as directed by their actions, with ran-

dom factors that even the GM can’t

predict altering the course of things.

Storytelling is what novelists,

screenwriters, and playwrights do. It

has little or no connection to the

RPG, which differs in all aspects from

the entertainment forms such authors create for.

LEJENDARY ADVENTURES was designed to accommodate any

and all styles and play approaches, and hopefully so presented

as to encourage an amalgam of all the elements of the game

form. That encourages varied adventures, different challenges

from time to time, and well-rounded characters (and players)

that find the game has long-term interest for them. In short, I

agree with you in that all aspects of the RPG should be present-

ed and played.

HS. Role-playing games have filtered their way into the world in
a number of ways. They’ve brought with them authorital ownership
over play experiences, and also persistence to play experiences.
The impact on computer gaming has been huge, and many people
have been affected on a personal level as well. How do you feel
about having played such an influential role in so many lives?

GG. It is a vastly stimulating thing, that impact you men-

tion, and also quite humbling. I am always greatly heartened

when I hear from fellow gamers who pass along how much

enjoyment my work has brought to them, usually coupled

with the camaraderie and friendships made, how much the

game aided them in dealing with life and helped in attaining

their potential. Had I initially realized how great the impact

was to become, I would certainly have reflected on how I

should present the initial work, and that might well have sti-

fled the creativity. Still, as the positive is something well over

90 percent — more like 99.9 percent from direct communica-

tions I receive — from my current perspective I don’t think I’d

change a thing in regards to the concept.

HS. The sky is slate gray and purple. The clouds overhead form
large faces wearing ominous expressions. Backed by this gloomy
sky, a pale young sorcerer regards you warily from atop the ivy-
covered remains of a shattered tower. What do you do?

GG. I waste him with my crossbow, quickly loot his body, and

then complete the destruction of the tower, of course! q

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r14

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | h a r v e y s m i t h

Gary Gygax
P&P, RPGs, and MMOGs

Gary Gygax, legend of the RPG world, is taking his LEJENDARY

ADVENTURES from P&P to MMOG.

L ast month (“Toward Better Scripting, Part 1,”

October 2002), I proposed a scripting language

that automatically maintains history about the

behavior of its variables, so we could more easily

write scripts that ask time-oriented questions. I

implemented an array of frame-rate-independent filters for

each variable. The filters converged at different speeds, and I

used them to estimate the mean and variance of each value

over time.

Target Applications

T o experiment with the history feature, I chose three time-

oriented scripting tasks. I’ll run through them one at a

time, discussing how you can implement them with the history

feature versus how you would do them without the feature.

I’ve included implementations of all three scripts in this

month’s sample code (available at www.gdmag.com). Howev-

er, the scripting language is still very simple, because I wanted

to keep the sample code minimal and easy to understand. The

scripts use a command/argument syntax with many restric-

tions; you might think of them as being written in a high-level

assembly language. Just keep in mind that syntactic con-

straints have made the scripts a little bit strange, but the

semantics are much more powerful. In this article, I will use

pseudocode to provide clearer illustrations.

Scenario 1: DANCE DANCE REVOLUTION
Commentator

I n DANCE DANCE REVOLUTION (DDR), you have to press but-

tons at appropriate times. The game gives you a health bar,

which you can conceptualize as a scalar between 0 and 1.

When the health bar reaches 0, you die. A commentator says

things about your performance, such as “You’re doing great!”

The problem with current implementations of DDR is that

the game chooses the commentator’s words based on the

instantaneous value of your health bar. So suppose you mess

up and come close to losing, but then you start doing

extremely well, you’re acing all the moves, and you feel really

good. But then the announcer says, “You’re not following the

music!” because, even though you hit the last 20 targets per-

fectly, your health bar is still low. The commentator bludg-

eons your feeling of satisfaction, and he just seems broken,

because you had been following the music perfectly when he

said that.

Ideally, we want the commentator to detect patterns in the

player’s performance, rather than relying on the instantaneous

value of the health variable. Not only does this increase the

accuracy of comments, but it expands the scope of available

comments. So he can say “Great comeback! For a while I

thought you were going to lose!” which would have been

impossible before.

In the sample code, script1 implements such a commentator.

The game engine provides an instantaneous player_goodness value,

ranging from 0 to 1, based on how well you hit the last target.

The scripting system automatically and invisibly filters this value

over time. The script queries an estimate of how well you’ve been

doing for the past 40 or so seconds, which it uses to output a

PARAPPA-style “You’re doing bad/O.K./good/cool” message.

The script then asks for the derivative of the goodness and

queries the derivative for a period of about 20 seconds. The

script uses this information to choose from a range of appropri-

ate comments, using rules such as “Was the player doing badly

for a while, but is his goodness now increasing?”

The core system does not directly maintain the derivative.

When you ask for the derivative, the system approximates it

by taking finite differences on the history slots for the variable

in question.

In one interesting case, I wanted not only the mean value of

the player’s goodness, but the variance as well. I wanted the

announcer to say, “Great! You’re unstoppable!” if you consis-

tently perform well. One way to accomplish this result is to

take many queries from the history and ensure that they are all

above some threshold. But it was more natural to formulate the

question in terms of “Is the long-term goodness high, and has

the goodness been stable?”

All of these functions were easy to perform due to the auto-

matic history keeping. Listing 1 shows a pseudocode fragment

of the script.

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r16

j o n a t h a n b l o w

Toward Better
Part 2Scripting

I N N E R P R O D U C T

JONATHAN BLOW I Jonathan is a game technol-
ogy consultant who doesn’t like scene graphs.
Send comments to jon@number-none.com.

How would a programmer typically

implement this scenario in the absence of

a history feature? I think they would end

up implementing an ad hoc averaging

scheme somewhat like our history feature,

but probably not so well-defined (not

frame-rate independent, or not providing

estimates of variance). Sometimes pro-

grammers don’t think of maintaining run-

ning averages at all; they resort to storing

the player_goodness value for each frame

into a circular array and querying the

array. This technique gets extremely messy

and almost never works properly, since

you need a lot of weird code to handle

aliasing problems.

Scenario 2: Mortar
Unit for an RTS Game

C onsider an RTS game where a mor-

tar vehicle fires ballistic projectiles

over obstacles. Because the projectiles

are slow, they are only effective when

you can predict the target’s position at

the projectile’s impact time.

Game programmers usually imple-

ment a mortar-firing heuristic in one of

two ways. One way is to just fire at

anything, and fire a lot. The mortar will

miss much of the time, but at least there

are a lot of cool-looking explosions.

Recently, though, players have been

clamoring for better AI; since the mor-

tar’s indiscretion in choosing its target is

an obvious example of dumbness, it

would be nice to avoid.

The second approach is to fire only at

stationary or very slow moving targets,

but this heuristic will fail in many cases.

Consider a soldier in a trench alternating

between two gunning positions. Overall

he stays in the trench, but his instanta-

neous velocity is high while he is switch-

ing from one position to another. If the

mortar makes its firing decision while he

is moving, it will not consider him a

valid target. Furthermore, a player can

exploit the heuristic by, say, placing

many units in a tiny but fast patrol route.

The units are staying within a small area,

so the mortar could easily hit them, but

their instantaneous velocities are large, so

the mortar doesn’t consider them.

Prior to this scripting language proj-

ect, I (and I think most programmers)

would have tried to solve this problem

with some kind of bounding volume. I’d

create a circle of a fixed size centered on

the initial position of each unit in the

game. Whenever the unit crossed the

border of the circle, I would reset the

circle to the unit’s current position. But

if a unit didn’t cross the border for

some amount of time, the game consid-

ered it “not moving much” and would

flag it as a mortar target.

On a full-game scale, there are a few

ways to organize this computation. The

way most like the real world is for each

mortar vehicle to compute its own

bounding volumes around all targets in

the world. Unfortunately, this is O(n2
) in

execution time and memory usage, so we

would like something faster. The most

natural solution from an optimization

standpoint is for each unit in the game

to manage its own bounding circle. But

then the implementation of each basic

game entity becomes more complicated,

all for the sake of one specific entity

type that most of the game has nothing

to do with. If you have to add this kind

of uncompartmentalized handling for

even a third of the entity types in your

game, things quickly get messy. This also

means that the game is, in a practical

sense, hard to expand; if implementing a

new unit typically requires changing the

core entity movement code, the system is

just not very modular.

A compromise between these two

approaches is to implement a separate

system, one not associated with entities

in the game world, that serves as a “mor-

tar brain”; there’s only one of these, or

one per team. The mortar brain keeps

track of all the bounding circles, and the

individual mortar vehicles query the mor-

tar brain to make their firing decisions.

From a software-engineering standpoint,

this technique is cleaner than the uncom-

partmentalized version, but it’s more

work to implement than either of the

previous approaches. If a substantial

number of the unit types in your game

require supplementary systems like this

one, your game’s complexity (and imple-

mentation time and number of bugs) will

rise substantially.

All of this is an example of a common

software-engineering ugliness. There’s

probably a name for it in some pattern

book, but I will call it “overextended

responsibility.” The requirement for effi-

cient computation of bounding volumes

creates complexity that pollutes the

entire system.

In the end, none of these bounding-

volume schemes is very good. If the pro-

jectile travel time differs substantially

over the mortar’s range, a fixed-size cir-

cle will not be good enough to segregate

possible targets. In this case, to avoid

the n2
solution, we must maintain sever-

al bounding circles of various sizes for

each entity; the mess gets bigger, and the

firing heuristic is only accurate to the

quantum between circle sizes, so it’s

hard to gauge the effect of such inaccu-

racy on gameplay and game tuning.

By altering the firing heuristic to use

position history, many problems magi-

cally go away. We fire at a target if the

ellipse representing its recent position

variance is very small. Already we have

a solution comparable to the bounding-

circle version, but since the scripting

system remembers histories for us, we

get everything for free. We quantify the

variance by looking at the ellipse’s cir-

cumference and area, as I discussed last

w w w . g d m a g . c o m 17

LISTING 1. Automatic history-keeping script.

recent_average = mean(player_goodness, 30); // Mean over 30 seconds

recent_change = mean(derivative(player_goodness), 20); // Mean of derivative over 20 seconds

if (recent_average < POOR && recent_change > IMPROVEMENT) {

output(“Keep going, you’re starting to get it!”);

}

month. Because our measurements are

continuous, we don’t have any quantiza-

tion problems like the bounding circles

had. We just ask whether the variance is

small enough, based on the amount of

time the projectile will take to get there.

Given many targets, some of which

are valid, we still need to choose one at

which to fire. So we still have to deal

with an O(n2
) problem, but it’s much

simpler, since there’s no bounding data

to manage. A mortar brain that sorts

targets by variance is so simple that it’s

almost not worth thinking of it as a sep-

arate system.

Interestingly, using position history

solves some problems with which the

bounding volumes don’t help. Suppose

we want to fire at targets that are mov-

ing at reasonable speeds but in pre-

dictable fashions. In other words, we

want to do dead reckoning. Most games

simply extrapolate the instantaneous

velocity of the target. Now suppose you

have a vehicle that is generally traveling

west, but is constantly zigzagging in an

attempt to be evasive. If you sample the

instantaneous velocity, the mortar shells

will land to the northwest or southwest

of the vehicle, whereas anyone can see

that we should target them to the vehi-

cle’s west. With position history, we eas-

ily query for the vehicle’s average veloci-

ty over an extended period of time,

which leads us to fire at the right spot.

The sample code script2 implements

this scenario. The mouse pointer controls

a target, and a mortar vehicle attempts to

fire at it. The mortar shells are color

coded: white shells mean that the mortar

sees the target traveling in a coherent

direction and is dead-reckoning it; red

shells indicate that the target’s movement

is too erratic to predict, but it is remain-

ing within a confined area so the shell is

targeted at the center of that area. If the

target is moving erratically over a large

area, the mortar will not fire.

You can still confuse the mortar by

moving in large but obvious patterns,

such as large circles or other curves.

That’s because the current dead reckon-

ing is only linear. You could implement

nonlinear dead reckoning by making

several queries of the mortar position

and curve-fitting them. And with the

finite-differencing operator I mentioned

in the previous section, the implementa-

tion could become easier than that.

Scenario 3: A Tailing
Mission

S ometimes you want to know if one

entity has been in the proximity of

another for a period of time. Maybe one

entity is a proximity mine, or an

unidentified cargo ship that you are sup-

posed to scan in an X-WING–style space

game. The fiction of script3 in the sam-

ple code is that you are a thief and

you’re supposed to follow a messenger

at nighttime long enough to get a good

look at him and identify him.

This is a case where we want a primi-

tive that operates on the entire history

of its inputs. We want to say (differ-

ence_vector = the_whole_history_of(messen-

ger_position - thief_position)), then ask,

“What is the typical length of differ-

ence_vector over the past 30 seconds?”

This task is easy; we can define a

whole-history version of subtraction

that returns a variable whose mean is

the difference of the arguments’ means.

Some simple math tells us that this

process gives the same result as if we

had subtracted the two values every

frame and built a history that way. So

to ask our question, we just query the

average of this result for 30 seconds and

then take its length.

In some cases, like in the tick code that

evaluates mission objectives, it would be

just as easy and clean to find the differ-

ence vector between the thief and mes-

senger every frame and put the result

into a variable that builds its own histo-

ry. But suppose we’re not writing tick

code, we’re writing one-shot code that

happens when an event is triggered. Say

the messenger has a conversation with a

third party, and the end of the conversa-

tion fires an event that asks whether you

have been near enough to witness most

of the conversation. With a whole-histo-

ry subtraction, we perform a single query

and we’re done. Without history, we

need to add tick code to the thief that

maintains a distance measure for the

event script to have a reference point. So

we need to coordinate information

between two scripts that run at different

times, which is the kind of spaghetti code

that strangles you if too much of it builds

up. We ought to be able to implement a

simple event without having to modify

the entity tick, right?

Essentially the history-less solution is a

bounding-volume implementation like

Scenario 2, but it’s not as nasty because

the volume only concerns two specific

entities and the measurement is one-

dimensional. Even so, this solution suffers

from discontinuities. We would have a

time stamp that gets reset whenever you

are standing at a distance greater than k
from the messenger; our query would end

up being something like “Is the current

time, minus that time stamp, greater than

the number of seconds required for suc-

cess?” Success or failure is determined by

a discontinuity that is hard for the player

to intuit; if he steps a tiny distance over

some invisible line, the timestamp resets

and he probably fails, regardless of how

well he did during the rest of the mission.

The history solution is continuous with

respect to the instantaneous distance and

has some forgiveness built in (you can

make up for some poor performance by

exhibiting some better performance). This

is probably better default behavior for

most game design cases. Though there are

times when you want a hard discontinuity,

they’re rare.

Wrap-up

I’ve only just touched the surface of the

huge pile of time-related features a

scripting language could support. I hope

I’ve encouraged you to think about the

space of features available to you when

designing your next language.

Even if you never make a scripting lan-

guage, the history techniques I’ve

described can still be useful. It is not diffi-

cult to code them up in C++ or whatever

your favorite language is; they won’t be as

transparent, but the problem-solving

power is still there. q

I N N E R P R O D U C T

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r18

w w w . g d m a g . c o m 19

D o you remember your

first job interview? Mine

was for a summer job at

Star Value, a discount

store that lurked next

to some waste ground in the less

attractive end of my hometown. I

was 16, and the interview was

quite simple. The owner wanted to

establish:

1. Was I able to move at least 100

sacks of potatoes an hour?

2. Was I prepared to act as a

human garbage compactor by

jumping on top of piles of dis-

carded chicken entrails and rotten

broccoli until there was more

space available?

3. Would I do all of this for an

hourly rate that would have

appalled even my great-grandfa-

ther in 1889 as he began work as a

coal miner on his 10th birthday?

Unfortunately for me, the answer

to all of these questions was “yes.”

Where I lived, jobs were hard to come

by, and at 16, I had things to buy.

As unpleasant as this experience was,

it taught me (among other, less palatable

things), that once I was in a position to

look for a real job, I was going to have

to find something that I really wanted

to do (preferably something that didn’t

involve entrails of any description).

Fast-forward a number of years to

when I was finally qualified to look for a

proper job. My first choice was advertis-

ing, and applying to the big London firms

required the completion of a wide range

of forms and some work on mock ad

campaigns. The ratio of applicants to

available positions was in some cases as

bad as 3,000 to 2, but by a combination

of luck and ignorance, I got through to a

handful of sec-

ond interviews, where I realized that most

advertising jobs allow you to be about as

creative as a bucket of Jell-O. If that

weren’t bad enough, you have to use the

word “synergy” quite regularly and spend

at least 16 hours a day in a suit.

Evidently, this career path didn’t pan

out for me, and here I am working in

the game industry, an area of employ-

ment that opens up a whole world of

creative possibilities with very little dan-

ger of having to wear a suit. But com-

pared to advertising, or many other

more mainstream jobs, what makes a

successful candidate when applying for

a position at a development studio?

Getting a foot on the ladder may

be the hardest step, but the jour-

ney is unlikely to end there. Any

technology-driven industry is

subject to pressure created by

the relentless rolling forward in

the world of high-tech. With

the complex interweaving of

hardware manufacturers, pub-

lishers, and developers, along

with such elements as the con-

sole life cycle, rising development

costs, and an evolving market-

place, job security is not what it used

to be. Plus, few of us working in

games will find that the first job we get

will give us exactly what we’re looking

for, and as we grow in skill and experi-

ence, we naturally look for something bet-

ter, or even something different.

So, as a professional game artist or ani-

mator (or both if you’re showing off),

what’s the best way to go about finding

the next job?

The answer lies partially in your cir-

cumstances and situation, but I thought

A R T I S T ’ S V I E W h a y d e n d u v a l l

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r20

Time Changefor a

H A Y D E N D U V A L L I Hayden started work in 1987, creating
airbrushed artwork for the game industry. Over the next eight years,
Hayden continued as a freelance artist and lectured in psychology at
Perth College in Scotland. Hayden now lives in Bristol, England, with
his wife, Leah, and their four children, where he is lead artist at
Confounding Factor.

it would be useful to collect some information from some peo-

ple actually in charge of hiring. The following is by necessity

a generalization but should give some useful pointers to any-

one considering a move, and is focused on the difficult

process of assembling a portfolio or demo reel, which is cen-

tral to any application you might make.

Preparation

L ack of preparation is where many efforts fail before they

even start. You should be prepared to put in some effort

before you apply. The mass-mailing approach is impersonal

and easy to spot. More importantly, sending a portfolio or

demo reel that has no relevance to the company or position

you’re looking for is a waste of time.

Presentation

A s in so many aspects of life, the packaging is often nearly

as important as the contents. Ultimately it is the work

that counts, but prospective employers begin their assessment

as soon as they hold your demo tape or CD in their hand, or

the second they log on to your web site and get confused by

poor or confusing presentation. Thus it’s essential to recognize

the difference between an effective, attractive presentation and

superfluous fluff that will detract from your application rather

than add to it.

Burying your work deep within a Flash-strangled site may

seem like a good idea from your end (“dude, my intro is, like,

eight minutes long”), but anyone who is having to sort through

a stack of submissions is likely to get impatient and move on.

Content

The single most important question in putting together a port-

folio or demo reel is, “What do I show?” Conventional wis-

dom is divided on deciding what to show, given the inherently

subjective nature of any art appraisal. Nevertheless, there are a

few points that are worth considering.

The showstopper. Chances are you have one Big Piece.

Whether it’s the hand-animated reconstruction of the barn-rais-

ing scene from Seven Brides for Seven Brothers, or the render

you did that re-examines da Vinci’s The Last Supper in the con-

text of contemporary science fiction illustration, this Big Piece

may not be of any relevance to the specifics of the job for

which you are applying. It’s designed to get the attention of the

person looking at your work.

If you don’t have a piece of work that fits this description, give

some thought to creating one. In this case, technical limitations

are of no consequence; your job is to show off. Talent is hard to

quantify accurately, especially within the limited confines of a

demo reel or portfolio. However, one element that can help in

this assessment is a piece of unbridled creative work that show-

cases your eye for detail, composition, weight, balance, lighting,

and so on. This piece is unlikely to get you the job on its own

(and it probably shouldn’t), but chances are that it will stick in

the minds of those who are looking at your work.

How much stuff? In terms of animation, some people would

rather see one long AVI that shows a whole variety of move-

ment and a selection of models. Others prefer a host of concise

walk cycles and attacks, each rendered out separately so they

don’t have to pick through extended cinematics. Where most

agree, however, is on the spread of ability shown. Animating

different behaviors and different creatures can cover all the nec-

essary ground, so animations, whether long or short, need to

make every frame count. In general, two to three minutes of

animated work is deemed to be about right.

With modeling samples, volume is key. The more work dis-

played, as long as it demonstrates a range of skills (20 versions

of essentially the same soldier is not advised), the more confi-

dent someone assessing the work can be of your ability.

Textures are often assessed in the context of a model, but

showing original textures in their raw form can be useful. If 2D

skills are a definite part of the position you are looking for, do

not leave this area of your portfolio too austere.

What should you show? When asked what they’d like to see as

part of a portfolio or demo reel, many managers agree on some

key points. First, they expressed an emphatic “no!” to space-

ships. If you’ve been in games for a while, you may have noticed

the groundswell of anti-spaceship opinion (you might even be a

leader of the movement), but whatever the case, stay away.

Why? As far as difficulty goes, spaceships are at the easier

end of the spectrum, and while a genuinely good spaceship is

not as easy to achieve as some might think, I have to bow to

the majority in advocating a strict no-spaceship policy. Some

developers go as far as to remove a demo tape at the first sign

of any spacecraft. You’ve been warned.

The second area of consensus relates to human characters.

Almost everyone I have spoken to expressed a particular interest

in work that demonstrated high-quality modeling and animation

of humans. Again, this relates to the difficulty involved in pro-

ducing a convincing human character and animation. If you have

them, you should include human models in your portfolio.

Should you include a piece of work that you have done

specifically to reflect a target company’s particular style or

product? Some people think that this shows initiative and a

genuine interest in their games; others think it’s a nasty piece of

brown-nosing. As a guide, if your body of work has no real

bearing on the job for which you are applying, you may need

to show that you are flexible enough to work in that style. If

you already have this covered, don’t overdo it.

Should you use high- or low-polygon models? How low is

low? It’s difficult to be exact about a number, but at present,

“low-polygon” work seems to represent characters in the range

of 1,000 to 3,000 triangles. Higher polygon counts are getting

increasingly more prevalent, and work up to the 10,000-poly-

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r22

A R T I S T ’ S V I E W

gon range is becoming the norm. One thing is vital: You should

show work that you’ve created for a game, to illustrate that

you understand the process.

Do traditional art skills have any relevance? This question pro-

vokes an almost universal “Yes.” Most employers value an appli-

cant more highly if they can demonstrate traditional drawing,

painting, or animation skills, as many consider specific tools easi-

er to learn, while a natural aptitude for traditional art is harder

to come by. Therefore, if you’ve got it, flaunt it.

In terms of content, try to provide something different. Many

of the developers I canvassed mentioned that they kept seeing the

same thing. Don’t undervalue originality, as long as it’s relevant

to your application.

Format

I n terms of format, make sure your work is as accessible as

possible. The people who need to see your work don’t want

to jump through any hoops before being able to look at it.

As far as tape goes, if you are a European working in PAL,

make sure you send an NTSC tape to the U.S. (and vice versa,

of course): that’s just basic common sense. Drawbacks of show-

ing demo reels on videotape include:

• They are no good for browsing static images.

• Image quality can be poor or inconsistent.

• They often have to be played in a separate room (few people

have TVs and VCRs at their desks), and this small journey

can see your reel put to the bottom of the pile for “later,”

which may in fact be “never.”

• The allure of an empty tape can incline an animator to fill it

with more than is prudent.

CDs are more accessible these days, and almost everyone owns

a burner. A CD should be able to hold enough material for a

demo reel, and if it doesn’t, you might want to consider being

more rigorous in your selection. Again, don’t feel pressured to fill

it, and make the directory structure clear.

With the advent of broadband, web sites are increasingly use-

ful for demo reel and portfolio purposes. The interface needs to

be clear, and it’s important to provide any static images at a

respectable resolution (don’t think that those viewing your

work aren’t aware that substandard images can look better

when small). Present your work so that it can be appreciated,

or you will arouse suspicion of its quality.

Be aware of issues surrounding AVIs that use obscure codecs.

A great deal of negative feedback I got from developers indicated

that any AVI submitted should be in a standard format

(Windows Media Player, for example) and at the very least, you

should include codecs if needed.

Other Points Worth Considering

F ollowing are a few other points that came up in the course

of my polling of hiring managers.

Group work. Try to avoid sending work that is a complex

team effort, where your contribution is hard to separate from

the rest. If you aren’t responsible for all the work, make it clear

exactly what parts you worked on.

Plagiarism. Straight copies of other people’s work are not

viewed favorably, especially when the fact that they are copies

isn’t made clear from the start. Remember that the company

to which you are applying will already have a varied selection

of artists there who stand a good chance of having seen pla-

giarized work before.

Your worst piece. You should consider your portfolio or demo

reel only as good as its worst piece, so you should have a rigor-

ous vetoing procedure in place. Get as many informed, objec-

tive opinions as possible, and don’t damage a sound body of

work by including a single poor piece.

Jack-of-all-trades. Strike a balance between showing versa-

tility and flexibility, and don’t spread yourself too thin. If you

are weak in one area, leave it alone. It’s unlikely that the com-

pany to which you are applying is going to expect perfection

in every category.

Technology. Game artists have to wrestle with technology as

they aim to bring maximum visual impact to their game with-

in the constraints of their hardware and software. There are

some basic industry-standard tools, such as Photoshop, 3DS

Max, and Maya, but chances are that changing jobs will also

require that you learn to use a new piece of software, possibly

something specific to your new project. Therefore, your abili-

ty to demonstrate a grasp of not only the fundamentals

behind modeling or animation but also an understanding how

your job fits within the development pipeline is often more

useful than being an expert in a particular package.

Tests. Be prepared to do some form of on-the-spot test.

More and more companies use tests now to try to reassure

themselves that your work is genuinely your own. Try not to

be intimidated by the pressure. The time limitations naturally

restrict what’s possible, but you should aim to produce some-

thing that is competent and as specified.

Think like an employer. Looking only at the work on show,

would you hire yourself? If not, what area is lacking? Most of

the time, you will not get a lot of mileage from applying to

the same company twice in close succession, so make the first

application count by holding back until you are as ready as

you can be.

Be Realistic

I t’s impossible to please everyone, no matter how perfect your

qualifications. Whatever you decide when you put your port-

folio or demo reel together, it will never be all things to all peo-

ple. What you should do is convey consistency, versatility, and

(hopefully) talent. Once you’ve done that, all you have to

worry about is the interview, a subject into which I’ll delve

more deeply next month. q

w w w . g d m a g . c o m 23

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r24

G race Jones, flat-topped

diva of 1980s post-punk

rock, used to refute her

critics, saying, “I took a

singing lesson once, and

they tried to tell me how to breathe; I

was born breathing! I don’t need to waste

my time being taught!” Around the same

time, Harrison Ford, in an oft-repeated

myth, was filming Star Wars: The Empire
Strikes Back. One imagines a cold Hoth

morning after a few flubbed takes, when

the actor, perhaps crabby and probably

without coffee, said to his executive pro-

ducer: “You know, you can write this s—,

George, but you can’t say it.”

Perhaps exacerbated by the

man/woman-of-many-hats history of

development teams, writing for games

can suffer a similar condition. Like

Grace Jones, producers, game designers,

and project leaders were all born

breathing. Soon, they were also all talk-

ing. So how hard can it be for these tal-

ented creators of new worlds to write

concise, powerful dialogue that leads to

good acting and immersive gameplay?

Unfortunately, it’s harder than one

might think.

Writing for speech, as opposed to writ-

ing for a reading audience, is a finely

tuned blend of thinking-out-loud that

involves placing oneself in both the char-

acter’s shoes and also the actor’s. Words

must convey the emotional power of the

scene while remaining easily spoken and

free from cliché (how many more times do

you need to hear the word “very” before

“soul,” “heart,” or “existence”?). New

alien worlds filled with consonant-heavy

planet and species names are, while origi-

nal, ideal only when matched with a pho-

netic translation. Planet Kjjllygian will be

correctly pronounced only if “Kohl-EE-

ghee-ann” is noted somewhere close by.

One simple way to increase the quality

of a script greatly is to actually say the

words out loud that you are writing for

the actors. A “table read,” in which your

team monopolizes a conference room,

gets some food, and acts out the script

together is not only fun, it will give you a

more accurate idea of your characters’

development and personal presence. You

know that level designer who doesn’t say

much? Give him the biggest role; you’ll

quickly know if “super-secret sugar-spun

task force” can have all those s sounds

without becoming a tongue twister.

While professional voice talent can make

just about anything work, a non-tangled

phrase allows them to focus on an accu-

rate emotional performance. The table

read is storyboarding for voice. You

couldn’t imagine artists spending expen-

sive hours on levels you hadn’t sketched

and planned in advance. Voice (particu-

larly because it, too, is expensive to go

back and rework) should be no different.

Similarly, pay attention to whether

the writing sounds too closely related to

movies most people in the target market

know and love. For mature and action-

oriented games, throw out the scripts to

Quentin Tarantino movies, Alien
movies, The Godfather, and their ilk.

Unless you’re making direct, pop-culture

in-jokes, the impact of such homage

may be dulled by its familiarity among

your audience. Look into sharp, pull-

no-punches films such as Sunset
Boulevard, All About Eve, and The
Sweet Smell of Success. These are just a

few films from a particular era (film

noir and its kin) that can provide insight

into how what is unsaid wields as much

power as what is said. They served as

the building blocks upon which many of

the current films we have come to know

and love were based.

Whatever the genre (excepting educa-

tion), catch your audience’s ear with inten-

tion rather than explication. Humans tend

to want what’s elusive and eschew what is

plentiful. Snag your player’s attention with

loaded, promising brevity in the dialogue,

and they’ll be more willing to suspend dis-

belief to enter your newly created world.

Simple tips, such as avoiding allitera-

tion, too many vowel sounds, and, con-

versely, too many consonant sounds

(unless it’s a character trait) are self-

explanatory and cannot be overempha-

sized. If you’re using an external director,

take the time to go over the script with

him or her in meticulous detail. They

should be delighted you are willing to

explain your vision and intent. Because

the director’s job is to get the actor to do

what you want, he or she should not want

to reinvent or guess about your script

once in the studio, and any preparation

and consideration made in advance will

pay back at least tenfold in the final

actors’ performances.

Most game designers and producers

have a wealth of talent and imagination

upon which to draw. With awareness and

attention, good writing can be improved,

and can allow those charged with bring-

ing your visions to life to do the finest

job possible. As clients and creators, you

deserve no less, and the gaming audience

appreciates ever more captivating,

immersive creations. q

k h r i s b r o w n

K H R I S B R O W N | Khris began casting at Universal Pictures
and joined LucasArts Entertainment Company in 1990. KBA
(Khris Brown & Associates) was formed in 1998 to bring profes-
sional voice production to the industry at large. Recent projects
include Doublefine’s PSYCHONAUTS, Presto Studios’ WHACKED!, and
the film Minority Report. Visit www.kbavoice.com.

You Write “Tymghte,”
I Say “To-mah-toe”

S O U N D P R I N C I P L E S

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r28

I ’m still getting a lot of e-mail

about my save-game challenge

(“Turn-offs,” July 2002), so this

month I’d like to see if I can

keep things interesting by pro-

viding a few more questions than

answers on a new topic.

As an early employee of both Lucas-

Arts and Dreamworks Interactive, I’ve

heard more than my share of the old

Hollywood-versus–Silicon Valley debate.

At the risk of straining the analogy

between movies and games yet again, I’d

like to look at one difference between the

two industries: the success of sequels.

As a general rule, sequels to hit movies

don’t do as well as their predecessors,

either in box-office receipts or in critical

acclaim. One rare exception was Francis

Ford Coppola’s The Godfather, Part II,
which won him a Best Director Oscar

that had eluded him with the original

film, although both won Best Picture in

their respective years. Likewise, the num-

ber of movie series that have thrived for

more than three films is relatively tiny,

beyond a few horror series and the ven-

erable James Bond and Star Trek films.

The rarity of these exceptions shows how

strong the trend is.

Should we just make more games about
mobsters? But the game industry is full of

sequels that have done better both finan-

cially and critically than their predeces-

sors. Despite being a much younger

industry than movies, we have lots of

series that have gone on for eight or

more releases — ULTIMA, FINAL FANTASY,

WIZARDRY, and the Mario games to

name just a few. Why the difference?

For one thing, games are fundamental-

ly about interactivity and movies are fun-

damentally about storytelling. Or, as an

old friend liked to say, “Movies are a

telling, but games are a doing.” I think

it’s easier to provide an interesting new

experience in an interactive medium,

because the player’s participation helps

keep a sequel fresh and unpredictable in

a way that passive film cannot equal.

The phenomenon of The Rocky Horror
Picture Show, a movie that with audience

participation became an interactive expe-

rience worthy of dozens or even hun-

dreds of repeat viewings, suggests that

this is so.

Also, it’s clear that to succeed with a

sequel, you must make it similar enough

to its predecessor to capture the audience

it had originally, but make it different

enough to avoid boring or disappointing

that audience with stale repetition. The

very nature of our changing technology

injects some of that critical freshness into

games, while still enabling developers to

use the same popular characters and situa-

tions. On the N64, Mario can do things

he could never do on the SNES (much less

the NES), and he looks much better too.

The movie exceptions also seem to benefit

from technology in the form of better spe-

cial effects, breathing life into the Star
Trek films or the smash hit Terminator 2.

An offer you can’t refuse. How can we

apply this theory to game design rules?

Are there some basic rules — or even one

overarching rule — that can sum up the

ways to make a hit sequel? My instincts

tell me there are probably a bunch of dif-

ferent rules, both about games themselves

and about the process of making games,

which are likely to apply to different gen-

res or different styles of games. I’d like to

hear some suggestions of yours condensed

into one or two clear, declarative sen-

tences that will be specific enough to be

useful for other designers. (Please, don’t

send in “Make the sequels more fun and

exciting than the original.”)

Mailbox. My favorite letter this month

comes from Greg Costikyan, who, in

addition to his online computer and

mobile-phone game design work, is a

successful paper game designer and nov-

elist. He responded to my suggestion that

the rule about saving games may only

apply to single-player games. Greg says:

“Actually, in a multiplayer game, the

rule changes somewhat; instead, it

becomes ‘The loss of any player should

not adversely affect the experiences of the

other players, to the degree possible.’

How you do this differs with game type;

for example, with an MMOG, it might

hurt a party if a key member disappears

during a fight, but most of the time, it’s

not a big deal for one player to sign off —

the world continues unabated. In a classic

board or card game, you generally have

an AI take over the player’s position and

continue, with the possibility of another

live player taking over from the AI.”

Greg also suggests that a more general

rule would be “A player should be able

to leave the game at any time without

consequences.” This is a good, practical

rule, particularly in the online realm.

Still, isn’t one of our objectives as design-

ers to make the player regret that necessi-

ty of leaving the game? I’ll include more

on that topic when we next revisit the

save-game question. q

n o a h f a l s t e i n

N O A H F A L S T E I N | Noah is a 22-year veteran of the game
industry. You can find a list of his credits and other information at
www.theinspiracy.com. If you’re an experienced game designer inter-
ested in contributing to The 400 Project, please e-mail Noah at
noah@theinspiracy.com (include your game design background) for
more information about how to submit rules.

The Paradox
Godfather

B E T T E R B Y D E S I G N

l e e p e r r yW O R L D B U I L D I N G

Modular Level and
Component Design

So the future has finally

arrived. Technologies we’ve

only dreamed about are

closer than ever, and if

you’re lucky enough to be

on the right project, you’re knee deep in

it already. With polygon counts off the

charts and hardware pushing more

detail than you care to create, environ-

ments can be simply staggering. But

with every step forward in graphics

capabilities, many find themselves won-

dering how to utilize those advances.

The question of “Wouldn’t it be cool if

the engine could do feature X?” is now

rephrased, “Do we have the talent to

utilize feature X at all?” Nowhere in the

industry is that question more apparent

than with environment design.

When we can draw limitless detail, it

seems limitless talent is required to cre-

ate those worlds. How do we quickly

generate enough consistent–quality con-

tent to fill a highly detailed world? How

do we make sure those worlds can be

easily modified and made flexible to

design whims? How do we break up the

team to handle these tasks? These are

daunting problems to address, and even

the most stalwart industry veterans will

find themselves intimidated quickly at

the prospects.

As we stare down the future, it may

help to take a page out of history, from

tile-based platform games. Much like

Super Nintendo worlds of old, it will

inevitably boil down to modular com-

ponents in some way. Until recently tex-

tures provided the bulk of a world’s

detail, but for the foreseeable future,

more and more players will expect that

detail to be full-blown geometry. That’s

a big order to fill, particularly in the

competitive realm of first-person shoot-

ers, where eye-candy often reigns

supreme. However, the solutions to

these problems are not limited to the

worlds of the running guns, they can

solve dilemmas for many genres and

many settings.

Using prefabricated geometry in cre-

ative ways is key to achieving the detail

levels players expect to see in their game

worlds. This article will look at how we

at Epic arrived at the modular solution,

how we implement such a system, and

the benefits and limitations of a compo-

nent-driven workflow.

You May Ask Yourself,
How Did I Get Here?

T he modular level design solution

arose from the need to have great-

looking, high-detail levels without hav-

ing to build and texture every nook and

cranny of the environment. Asking a

traditional level designer to create an

environment (usually from simple tools)

that holds up to artist-like scrutiny is

not a practical idea. Many level design-

ers aren’t deeply familiar with high-end

modeling packages, and even knowing

the tools doesn’t necessarily translate to

creating great content. The days of

aligning textures and moving on have

themselves moved on.

Asking traditional artists to design an

engaging level is not an ideal solution

either. Doing so may produce great-

looking yet highly unpredictable game-

play. Questionable gameplay and per-

formance sacrifices arise regularly when

artists focus on creating large master-

pieces. And both systems easily end

with the creator losing inspiration after

weeks of working on the same content.

Another system many developers

work with is having a dedicated level

designer block out an environment and

pass that progress on to an artist for

final polishing. This works to a degree,

but it can still benefit from modular

design decisions made early on. Model-

Or: How I Learned to Stop Worrying and
Love Making High-Detail Worlds

L E E “ E E P E R S ” P E R R Y | Lee is currently a designer and artist for Epic Games.
Among numerous other projects, previous work includes art and level director for Ion
Storm’s ANACHRONOX, and modeling for Square’s R&D department. He can be con-
tacted at lee@epicgames.com.

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r30

w w w . g d m a g . c o m 31

ing and texturing an entire level at

extremely high detail levels can result in

many months of work that may end up

needing significant retooling. Eventually

someone undergoing such a task will end

up aiming to reuse as much artwork as

possible from one area to the next; why

not keep that tendency in mind from the

beginning and work with it as a founda-

tion for your creative process? Following

are some of the considerations we keep

in mind when designing our environment

construction process around modularity.

Scale

W ith intelligent planning, modulari-

ty is not as restrictive as you

might think. Indeed, modularity can be

implemented on many scales. Some may

choose a path along the lines of MOR-

ROWIND, wherein large buildings are sin-

gle prefabricated items, and entire cas-

tles may break down into a handful of

wall pieces. Other projects, with an eye

on very dense environments, may work

on a smaller scale that incorporates sev-

eral modular components to create a

single wall’s detail, as shown in Figures

1a and 1b.

Where do you start when building a

set of prefabs? First you must decide the

scale of modularity your project is going

to need. This can generally be determined

by the scope of your environments. If

you’re going to be shoving a player

through entire cities in a Porsche, you’ll

want to break everything down into

chunks of geometry as large as entire city

blocks. If you’re going to be creeping a

single player through the narrow, aban-

doned corridors of a derelict spacecraft,

you’ll want to work at a very fine detail

level with layers of components interact-

ing in a complex fashion.

Grids

R egardless of scale, when creating a

set of modular components, noth-

ing is as important as the almighty grid.

Grids may fluctuate wildly between

engines and projects, but whatever sys-

tem you decide on, stick to it religiously,

and always use even divisions of that

grid when working on smaller compo-

nents. If your system dictates that a

generic wall be 256 units tall, try to

keep smaller details at 128 units, or 64

units, and so on.

Be aware of game mechanics when

determining the system. If a character is

128 units tall, or a leaping character can

cover 64 units forward, your system

should take advantage of those values.

Working on a gameplay-conscious grid

aids the level design process greatly,

while significantly reducing “trial and

error” early testing.

Keep animations in mind. Characters

may interact with computer panels, use

door handles, be able to sit on surfaces,

or perform any number of other interac-

tions. Deciding in advance at what

height various animations will happen

can save you a great deal of pain later.

Of particular importance here is stan-

dard stair heights and depths. Lock

down these standards early, print up

guides, and distribute them as soon as

possible. A few hours’ work here will

save weeks of potential headaches dur-

ing later production.

Planning

N ow’s the time to sit down with the

designers and artists responsible for

a given area of the game and discuss

what type of pieces will be required.

Make a list of key features for the envi-

ronment and the unique components

that define the level. These could be any-

thing from a vast missile hangar to a

complex volcano mesh.

Leave the specialized pieces aside,

focusing on the meat of the environ-

ments, the areas where players will

spend the majority of their time. Decide

which key modular components are

needed and plan out the general use of

those pieces. Make a shopping list of

components needed for a flexible base

set; this could range from hallway sec-

tions to generic city streets.

The challenges in this step often come

down to transitions. Plan out how to

blend one theme into another, and save

effort by clarifying which transitions

won’t be needed. Note which structures

may need capping off, and give a

thought to how that should be done. For

example, if you have a modular river

running through your game’s landscape,

have a method handy for capping off

that river by making it run into a grate

or sinkhole, or dissipate over a waterfall.

If you’re building entire buildings from

prefab corridors, make sure you’ve got a

piece to cap off that structure.

Your system could have conceptual

artists start their work at this point, or

they may be involved earlier and have

concepts presented when the initial

shopping list is created.

W O R L D B U I L D I N G

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r32

FIGURE 1A. A larger-scale building set.

FIGURE 1B. The scale has been taken down a
notch, using more components in a single
wall.

Start with the Basics

A t this critical point, be sure to go

through the prefab list methodically,

building the necessary components on

the agreed-upon grid system. Don’t begin

construction with a complicated junction

piece, start with the basics and create the

base unit from which variations can be

created. If you’re making a 3D terrain

set, start with the base tile, duplicate it,

and create variations off the mother

piece. After the various themes and sets

are completed, lay them out and begin

“tweening” them and creating any transi-

tional prefabs needed. Establish an

approval process at some point in the

basic construction, so you don’t end up

with a polished set of geometry only to

find out the basic theme isn’t quite right.

Sign off on work along the way.

Test-map your work by periodically

dropping what you have created so far

into a test environment and verifying that

your work tiles correctly and works well

together. As a bonus, you may find it

inspirational to see complex geometry

emerging as you work.

If your project allows it (and most do)

try to keep multiple purposes in mind for

your work as you go. A cave system may

have ceilings that could easily be used as

floors. Typical metal-plated bulkheads will

often look good regardless of orientation.

Don’t assume a large structure has to

be a single modular piece. For example,

instead of building an entire modular

corridor, build modular wall sections,

ceilings, and floor tiles that snap together

to form a complete corridor. This will

allow for more flexibility when the set

gets into the designer’s hands.

It also helps to provide plenty of varia-

tions. If you have a large stairway piece,

make short, medium, and large versions

for added flexibility, and be sure to con-

sider texture variations as well. With a

change of color scheme, an office hall-

way may appear completely different.

By incorporating relatively minor varia-

tions, an area can feel far removed from

another area that uses many common

elements.

Find out in advance if your prefab sets

will require back-facing polygons.

Leaving the back of a prefab hollow

guarantees someone will make an envi-

ronment to display it.

Mirror, Mirror

D esigners will love you for creating a

flexible set that is painless to work

with. Of key importance to achieving

that flexibility is making sure your geom-

etry can be mirrored easily on as many

axes as possible, so keep a line of sym-

metry through your work as you go.

Cylindrical structures are an important

spot in this regard. It’s a good idea to

give objects such as pipes a number of

sides divisible by four. Initially this may

seem odd, but the first time you have a

row of pipe sections and try to pivot a

seven-sided length of pipe 90 degrees, the

logic will become apparent. Seams

appear, edges don’t line up, and things

get messy quickly. With an eight- or 16-

sided pipe, you can mirror or rotate an

elbow easily without risks of seams.

When working with symmetry in

mind, you’ll want to restrict any lettering

that can’t be mirrored to detail pieces.

Try to create pieces that work when mir-

rored vertically as well as horizontally,

and consider creating transition pieces

that will allow an object to be mirrored

to itself for added flexibility.

Origins

Y ou may have a prefab modeled rigid-

ly on a grid, but if your origin is off,

it may come into the engine off grid as

well. To what degree this happens

depends on your particular technology,

but be aware of it as you build your

meshes in world space. A handy trick for

planar wall sections is to place the origin

in a corner of the mesh, instead of the

center. This allows the wall prefab to be

stretched or pivoted around while one

corner remains on grid. An origin in the

center of a rotated wall leaves both edges

off-grid and makes it difficult to line

them up again (see Figures 2a and 2b).

w w w . g d m a g . c o m 33

FIGURE 2B. A centered origin results in having
to move off the larger grid to cover an angled
gap, scaling in multiple directions, and creat-
ing seams on both walls, thereby complicating
the process and necessitating clean-up.

FIGURE 2A. With an origin in the wall’s lower
corner, a wall can be rotated and stretched to
fill an angled gap easily, while the origin stays
on-grid.

Don’t Forget to
Accessorize

T he next step in the system is to cre-

ate a handful of accessory pieces

that can be used to break up the appear-

ance of tiling. A castle hallway created

from modular wall sections can look

entirely unique with the placement of a

few busted overhead beam meshes, a

worn statue, or loose stones from a col-

lapsed wall. It doesn’t take much to fool

a player into thinking two essentially

identical corridors are unique places;

their differences just need to have

enough visual impact to count.

A good technique to use when creating

accessories is to build them in a further

modular fashion. If you’re planning to

build three different detail statues for the

castle in the preceding example, you

could separate the statue meshes into a

lower section, a torso, and a head. Mix

and match those parts, and with a little

planning before diving in, your castle can

be filled to the parapets with unique stat-

ue variants in every hallway.

Prefabs can be very flexible if built in a

way that frames rough level geometry.

Use a shell system like the one shown in

Figure 3 to give otherwise plain geometry

a more detailed profile.

You can also create accessories

expressly with the intent to conceal vari-

ous kinds of level work. Your system

might match up very well overall, but it’s

a good idea to have some generic con-

cealment pieces handy. For example, if

you’re working with a natural-looking

rock wall system, there may be instances

where the walls are used at odd angles

and cause seams. Example concealment

pieces might be a rustic beam that can be

placed over the intersection, a large sliver

of a stone slab, or perhaps some foliage.

Custom Pieces

A fter you’ve got a base set and

enough accessories to embellish the

environment, the next step is to create

custom areas that the design calls for.

It’s important that this step come after

the basics, as you’ll often need informa-

tion such as how the basic set will transi-

tion into the custom pieces. If the piece

needs to fit very specifically, you or the

designer may consider blocking it in first

and using that work as a template for the

final geometry.

You can take a bit more freedom from

the grid when constructing a made-to-

order section of geometry, but you

should get back on the grid at the edges

of the piece to ensure everything will fit

together seamlessly. Also, when building

a custom mesh, as with the accessories,

ask yourself if there’s an easy way to

divide it that would allow it to be used

more flexibly than just drag-and-drop.

For example, if you’re creating a detailed

starship control room that connects with

modular hallways, look for a way to

divide the room so an extra section could

be added to expand the area. Or perhaps

the customized railing that spans the

bridge could be broken into sections and

used elsewhere.

Level Assembly

N ow comes the payoff, designing the

level by snapping together the Lego-

like units. The particulars of this process

will vary greatly from one project to the

next, but there are still a few general tips

that can help (see Figures 4a–4c).

First, rough in a few ideas before start-

ing construction. Take a blank slate and

see what you can do with the pieces you

have before going back and requesting

more. You might not need that custom

piece at all if you can find a clever

workaround.

There’s nothing wrong with using a

piece in a way it wasn’t intended. If you

create the level simply by snapping

together TETRIS unit shaped corridors,

the player is likely to reject the modular

nature of the environment. It’s critical to

the workflow’s success that users have

the ability to improvise and invent new

uses for prefabs. Some environment

styles are more flexible than others, but

there are generally areas of flexibility for

any genre. A complicated sci-fi doorway

may end up mirrored and used as a win-

dow. An altar may be duplicated and

used as an archaic column. The possibili-

ties for variation are greatly increased if

your particular technology allows for

non-uniform scaling of components.

Mix it up even more by using your

accessory elements in key construction

roles. For instance, you might take a sin-

gle wooden beam mesh and build a shod-

dy doorway with it, or take a piece of

ductwork and duplicate it in an array to

form a unique wall. Each set of geometry

presents an array of possibilities.

Finally, if your engine allows for pro-

jected textures or lighting, be sure to use

them in key spots to further break up

repetition of detail throughout the level.

Consider the Benefits

E ven if modular construction tech-

niques don’t seem like something

your project could utilize, there are a few

key benefits to consider before making

that decision.

First and most importantly, after-

thoughts are rampant and a fact of life in

game development. Working with pre-

fabs offers an unprecedented degree of

freedom to go back and edit an original

piece, while having every instance of that

piece automatically update throughout

your entire world. Don’t like the texture

on that monitor? Implement it for now,

and change it when you have the time. In

many engines, an entire piece of geome-

try could be replaced as long as the new

one fits the function of the old piece rea-

sonably well. Working with movable

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r34

FIGURE 3. Modular boundary systems can give
simple level geometry great detail while main-
taining flexibility.

W O R L D B U I L D I N G

chunks of geometry also allows for easy

revisions on the designer’s end, without

having to go back and consult with

artists. Are testers telling you they

need an alternative exit from that room?

That’s no problem in a modular

environment.

Regardless of rendering power, memo-

ry will always be a concern. Working

modular generally allows an engine to

work with many instances of the same

object. A complicated wall piece can be

duplicated many times with minimal

memory impact after the initial place-

ment. Even the densest-detail environ-

ment can get away with using only a

handful of meshes in memory.

Another important consideration is

consistency, and with bigger teams it’s a

bigger concern. By using a prefab set

that has been built with minimal cooks

in the kitchen, even a sprawling, robust

level will maintain a style throughout.

Such consistency is far more difficult to

achieve in an entire world built of

unique geometry.

We all want to reach as many players

as possible with our games, and a modu-

lar system allows you to create very scal-

able levels of detail (LODs) for different

platform specifications. Developers can

flag high-detail extra touches so they

won’t draw on various video settings. If

your technology allows or requires

LODs, you’ll find a modular construc-

tion technique facilitates that very well.

In addition, modularity allows team

members to concentrate on doing what

they are best at. Level designers with

strong gameplay skills needn’t worry

about creating the loads of details

required in high-end graphics. With a

modular construction set they can focus

on laying out the game and not get

bogged down trying to create what

should be considered art assets.

Finally, working with prefabs can help

greatly if you plan on releasing a game-

editing utility. Titles such as MOR-

ROWIND, NEVERWINTER NIGHTS, the

WARCRAFT series, and countless past

titles that have used modular or tile-

based techniques have made their

editability a key selling point. Editability

helps extend a title’s shelf life and cre-

ates a stronger user community.

Limitations and
Drawbacks

D evelopers on some projects may see

the word “modular” and panic.

Initially, old-school, graph-paper-

designed Dungeons & Dragons levels

come to mind. Ninety-degree hallway

corners and evenly spaced doorways

creep into their nightmares.

The bottom line is that modular con-

struction is indeed more restrictive than

having a staff of dozens create an entire

level as custom geometry and unique art-

work. But for most teams, that kind of

content creation workflow just isn’t feasi-

ble. The key point is that having to fix

some obvious tiling along the way is still

far easier than creating a game full of

custom content. Based on your game and

its goals, you can decide the right level of

modularity for it. If you’re nervous, try

starting on a smaller scale of prefabs

that will allow for more detail in a

smaller area.

Some designers find it incredibly sti-

fling to work with geometry they didn’t

create. This can be a common scenario,

but as graphics continue to improve at a

startling rate, those designers will eventu-

ally have to accept that level-editing tools

are not going to be able to create the

kind of detail we’ll be seeing in the next

few years of AAA titles. It’s really no dif-

ferent from using textures created by

someone else. After getting accustomed

to it, it’s hard to ignore the benefits of

being able to see one’s gameplay ideas

realized quickly.

Farther Down the Road

L ooking farther into the future of

game environment creation, who

knows what we may encounter? Perhaps

modular techniques may lead to truly

immersive procedural worlds. Some say

that’s inevitable to some degree, and oth-

ers aren’t happy about it and want to

resist moving in that direction. Wherever

we all end up, and regardless of the spe-

cific nature of your current project,

you’re using modular construction in

some fashion already. If your artists are

creating tiling textures, if you have a

standard step height, or if you have a

tile-based terrain system, you’re already

in the mentality of building in a modular

way; you merely need to extrude it into

the rest of the environment. q

w w w . g d m a g . c o m 35

FIGURES 4A–4C (left to right). A small selection of instanced prefabs (left) can turn a basic level (center) into a far more complex world (right).

b r i a n h a w k i n sE V E N T - D R I V E N C A M E R A

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r

Il
lu

s
t

r
a

t
io

n
 b

y
 S

t
e

v
e

 M
u

n
d

a
y

36

Creating an
Event-Driven
Cinematic
Camera:

Part 2

Creating an
Event-Driven
Cinematic
Camera:

Part 2

O nce upon a time, it was a death wish for a game

to be based on a movie license. However, things

have changed considerably in recent years.

There have been a number of well done and

successful game titles based on movies, and on

the flip side there have been several movies released that had

games as their origin. With the crossover between movies and

games finally starting to show some success, it is time to revisit

how Hollywood can actually be helpful to the game industry.

In the past century, motion pictures have developed a visual

language that enhances the storytelling experience. Equally

important, audiences have grown accustomed to certain con-

ventions used to tell these visual stories. Unfortunately, very lit-

tle of this knowledge has been translated for use in interactive

storytelling.

Last month, in Part 1 of this two-part series, we looked at

how to describe a cinematic camera shot in general terms so

that it could be automatically converted to camera position and

orientation within the game. To conclude, this month’s article

brings it all together by presenting a system that can choose the

best shots and connect them together. Once finished, these con-

cepts can be joined to form a complete basis for a cinematic

experience that improves the interactive storytelling of games by

giving players access to the action within a game in ways that

make sense to them instinctively.

Film Crew

M ajor motion pictures are made by hundreds of different

people all working together in a huge team effort. To

transfer the cinematic experience to the world of games, we can

take certain established, key roles from the film industry and

translate them into entities in the computer. Objects in object-

oriented languages such as C++ can conveniently represent these

entities. In this article, we will look at the three primary roles

and describe their responsibilities as objects. From this, you can

build architectures to coordinate real-time cinematic camera dis-

plays. Before going into detail about each role, let’s take a brief

look at each in turn.

The first job belongs to the director. In films, the director

controls the scene and actors to achieve the desired camera

shots that will then be edited later. However, because our direc-

tor object will have little or no control over the game world,

this responsibility shifts to determining where good camera

shots are available and how to take advantage of them.

Once these possibilities are collected, they are passed on to

the editor who must decide which shots to use. Unlike in

motion pictures, however, the editor object must do this in real

time as each previous shot comes to an end. The editor is also

responsible for choosing how to transition between shots.

Finally, once the shot and transition have been decided upon,

it becomes the cinematographer object’s task to transform that

information into actual camera position and movement within

the game world. With this basic idea of how all the roles and

responsibilities fit together, we can move on to a closer look at

each individual role.

Through the Viewfinder:
The Director

A s mentioned previously, the director’s role in the game

world is to collect information on available shots and their

suitability for inclusion in the final display. This is the one place

where human intervention is necessary, after which no more

human input is necessary. It is currently impossible to create a

system sophisticated enough to determine the priority of events

within the game world from a creative standpoint.

Instead, programmers and scripters are given the ability to

provide information about priority and layout of interesting

events, hence the term used in this article — event-driven cine-

matic camera, through a suggestShot method on the director

object. This information will then be used by the editor for a

final decision on which shots to include. Following is a break-

down of the information necessary to make these decisions.

The first and most important piece of information is the pri-

ority of the shot. The priority represents how interesting a par-

ticular shot is compared to other shots available at the time.

Thus the value of priority is relative, which means there is no

definitive meaning for any particular number. You must there-

fore be careful to remain consistent within a single game in

order to give the priority levels meaning. For example, all other

values being equal, a shot with a priority of two is twice as

interesting as a shot with a priority of one.

The second piece of information required is the timing of the

shot. Timing is the most complex part of the editing process,

and the sooner an event can be predicted, the better choices the

editor can make. Timing breaks down into four values: start

time, estimated length, decay rate, and end condition. The start

time is obviously the beginning of the event. The estimated

length is a best guess at how long the shot will last. The decay

rate determines how quickly the priority decays once the event

begins. Finally, the end condition determines when the shot

should be terminated. Let’s look at decay rate and end condi-

tions in more detail.

The decay rate is used to determine the actual priority at a

given time t using the starting priority p and a constant, k. The

constant is provided as part of the decay rate information, since

w w w . g d m a g . c o m 37

B R I A N H A W K I N S | Brian began his career doing research at
Justsystem Pittsburgh Research Center, where he focused on scripted
character animation using natural language. He worked at Activi-
sion as the game core lead on STAR TREK: ARMADA, and contributed
to CIVILIZATION: CALL TO POWER and CALL TO POWER 2. His last
project was working for Seven Studios as lead programmer on
DEFENDER. Brian holds a B.S. in mathematics and computer science
from Carnegie Mellon University.

it will differ from shot to shot. The other information for decay

rate is the equation to use for determining the actual priority.

For maximum flexibility, this should be a function object that

takes t, p, k, and the start time, ts, and returns the priority for

that time. Two useful functions that should be predefined as

function objects for this parameter are:

These functions should suffice for most circumstances.

Notice that the second equation cubes the value rather than

squaring it. This is important, because it ensures that the priori-

ty remains negative after a certain amount of time has passed,

whereas squaring would have caused the result to always

remain positive. Figure 1 shows the resulting graphs of these

functions as a visual aid for understanding how decay rate

affects priority.

The end condition is best specified as a function object that

returns one of three values. The first value indicates the shot

cannot be terminated yet, the second value indicates the shot

can be terminated if another shot is ready, and the third value

indicates that the shot must be terminated. The reason for the

middle value is that it gives the editor more flexibility in choos-

ing shots by allowing a choice of new shots within a certain

time, rather than instantaneously when the shot is terminated.

Next comes the shot information. This is all the information

needed by the cinematographer to change the shot from a sug-

gestion into a real in-game shot. This includes information such

as the primary actor and secondary actor, if any. In addition,

the shot size, emphasis, angle, and height may be necessary.

Refer to last month’s article for more information on determin-

ing this information as well as the following scene information.

The scene information consists of the actors within the given

scene and the current line of action for that scene. Unfortunately,

scene information can change dynamically as actors move around

and the cinematographer changes the line of action. Because of

this fact, it is best to store the scene as a reference through the

primary actor of the shot that is being suggested.

The director’s other responsibilities are to provide the editor

with a list of currently available shots at any time and to ensure

that this list is up-to-date. Keeping the list up-to-date primarily

involves removing shots that are no longer valid. A shot

becomes invalid when the priority modified by decay rate, as

discussed previously, falls below zero. Once the editor chooses a

shot, it is also removed from the list of shots. This brings us to

a discussion of how the editor chooses a shot.

Slice and Dice: The Editor

T he editor is responsible for choosing the next shot that will

be shown as well as any transitions between shots. First,

let’s look at the process of choosing the next shot. The majority

of the information needed is provided with the shot suggestions

from the director, but there are parameters that can be used to

give each editor its own style. The two parameters involved in

shot decisions are the desired shot length, lshot, and the desired

scene length, lscene. By setting these for different editors, the shots

chosen will vary for the same set of circumstances. For example,

one editor could prefer short scenes filled with one or two long

shots by setting the shot time and the scene time to be relatively

close values. On the other hand, another editor could prefer

longer scenes filled with short shots. This provides a number of

options when choosing an editor for a particular situation.

The time for choosing the next shot is determined by a change

in the return value of the end condition for the current shot.

Once the current shot indicates that it can be terminated, the edi-

tor must obtain the list of currently available shots from the

director. From this list, the editor object then filters out any shots

whose start time is too far in the future. If the end condition

requires immediate termination, this excludes all shot suggestions

whose start time is not the current time or whose start time has

not already passed. Otherwise, all shots whose start time is no

more than lshot beyond the current time are considered.

To choose the shot from this list, we must sort them based

on a value that represents the quality of each shot suggestion

and then take the shot with the highest value. Before we can

compute this value, we need to introduce a few other values

that will be used in its calculation. First, we consider the

desired shot length versus the estimated shot length, lestimated:

Then we look to see if the actors have any relation to those

in the last shot:

Next, we check to see if the new scene matches the old scene.

For this the editor must also keep track of the time spent in the

current scene, tscene:

E V E N T - D R I V E N C A M E R A

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r38

p() (())t p k t ts= − −1

p() ((()))t p k t ts= − −1 3

FIGURE 1. Decay rate graphs, showing how decay rate affects shot
priority.

0)p(=t

1

1–

0=t
k
1

k
2

0)p(=t

1

1–

=t
k
1

k
20

p
l l l l

l l llength
estimated shot estimated shot

shot estimated shot

=
− >

≤

2 if

if

cactor =

4 if both actors are the same

3 if one actor is the same at the same priority

(primary versus secondary)

2 if one actor is the same at different priority

1 if both actors are different

Finally, the priority is modified by the decay rate discussed

earlier if the shot event has already commenced:

Once we have all this information, we can compute the qual-

ity value of each shot on the list:

Notice that the values cactor and cscene allow us to maintain

consistency for our shots. This is a very important property of

good film directing and editing and should not be overlooked

in interactive cinematography, even though it is more difficult

to maintain.

You may have also noticed that when calculating pΩ(t) that t
can be before ts, thus it is possible under some circumstances

to choose a shot that has not started yet. In this case, we hold

on to the shot and wait for one of two events:

either the shot start time occurs or

the end condition of the current

shot forces us to termi-

nate. Upon the

occurrence of either

event, we must once

again test to see

which is the best shot, in

case a better shot has

come along or we are

being forced to move on

before the shot we would

like to display can start.

Now that an ordering

exists that allows us

to choose the next

shot, the only

remaining choice

necessary is the

transition from the

current shot to the

new shot. If we are

transitioning

between different

scenes, the choice is

easy, a cut or fade should be used.

However, if the transition is

between two shots in the same

scene, the logic becomes

slightly more complex. Within

a scene it is important to maintain the line of action; in other

words, to keep the camera on one side of a plane defined for

the scene so as not to confuse the viewer’s perception of scene

orientation.

Let’s consider the various permutations that can occur bet-

ween shots and what type of transition should be used. For

now, we will break them into fading (think of cutting as an

instantaneous fade) and camera movement.We will go into

more detail on moving the camera later. First, if the actors

remain the same between the shots, then we can preserve the

line of action and use a fade. Likewise, even if the actors

change but the new line of action lies on the same side of the

line of action as the previous camera position, then a fade can

still be used.

However, if the two lines of action differ significantly, then a

camera move needs to be performed. The camera move should

allow the line of action to change without confusing the viewer.

To get a rough approximation of the distance the camera must

travel, compare the distances between the current and new cam-

era positions and the current and new focal points. Now com-

pute how fast the camera must move to travel that distance in

the time it would take for the new shot to become uninteresting:

Where ∆c is the vector between camera positions, ∆f is the

vector between focal points, and p(t) is the priority decay for-

mula for the shot.

If the camera move cannot be made at a reasonable speed,

then a new shot must be chosen, unless the actors from the last

shot would not be visible in the pending shot. Otherwise, a new

shot should be chosen with preference for close-ups that include

only one actor, thus making the next transition easier. We can

now move on to realizing the shot and transition. For the decay

formulas given earlier, t would be tstart + 1/k.

Lights, Camera, Action:
The Cinematographer

L ast month, we covered the math necessary to turn a

description of a shot into actual camera position and orien-

tation. This month, we will build on that and flesh out the role

of the cinematographer by covering the handling of transitions.

The simplest transition is the cut, where we only need to

change the camera position and orientation to a new position

and orientation. Only slightly more complex is the fade, which

provides a two-dimensional visual effect between two camera

views. When fading, it is important to decide whether to fade

between two static images or allow the world to continue to

simulate while the fade occurs. Allowing continued simulation

implies rendering two scenes per frame but eliminates the need

for pauses in gameplay. If you are able to handle the extra ren-

dering, interesting fade patterns can be achieved by using com-

plementary masks when rendering each scene. Depending on

the hardware available for rendering, you may only be able to

do black and white masks, or you could go all the way to

w w w . g d m a g . c o m 39

p ()
p()Ω t
p t t

t t t
s

s

=
<
≥

if

if

q() p ()t t c c pscene actor length= ⋅ ⋅ ⋅Ω

c
l tscene

scene scene

=
≠

− + =

1

1

if current scene new scene

if current scene new scene

s

t t t
=

= ∧ >
max(,)

{ :p() }

∆ ∆c f

0 0

alpha-value masks.

The other group of transitions involves moving the camera.

The three transitions we will consider are pan, zoom, and crane.

The decision of which move to make depends on the camera

and focal positions for the two shots. Figure 2 shows the various

situations that lead to the choice of a particular shot. The pan is

used if the camera is in approximately the same location for

both shots and only the focal point moves. Though this happens

rarely in an interactive environment, when it does happen the

old camera position can be kept and only the orientation needs

to be animated to the new orientation. Similarly, the conditions

for zooming are fairly uncommon, as both the camera positions

and focal points must lie close to the same line, but when it does

occur the camera field-of-view can be used to allow a much

more interesting transition than a simple camera move.

Finally, we come to the most complex transition, the crane.

The best method for creating a crane move is often by borrow-

ing the services of the AI’s path-planning algorithm in order to

avoid moving the camera through objects. It is best if the path

planning also handles orientation, as this will lead to better

results than interpolating between the focal points.

Unfortunately, getting crane shots to look their best is a com-

plex process for which this is only a starting point. If you do

not have the time to invest in making them work, you may

wish to leave them out altogether.

Beyond the Basics

Y ou now have enough information to create your own basic

cinematic system to include in your game. There is plenty

of room to go beyond this basic system. Research on some of

these areas has already been conducted in academic circles. For

instance, events that involve conversations between characters

could be specified as a single suggestion rather than manually

suggesting each individual shot during the discourse. “The

Virtual Cinematographer” and “Real-time Cinematic Camera

Control for Interactive Narratives” (see For More Information)

describe how director styles can be created to specify camera

shots automatically for these situations. This reduces human

involvement, which is always important as it allows other fea-

tures to be added to the game.

Another important aspect of cinematography that is only

now becoming possible with the power of newer graphics hard-

ware is depth-of-field. This is often used as a mechanism to

draw attention to various elements in a scene of a film. As ren-

dering of depth-of-field becomes more common, it will be

important to develop controls for it that are based on the prin-

ciples learned from cinematography. It is even possible to

extend the concept of depth-of-field in ways that would be dif-

ficult in real-world filmmaking. “Semantic Depth of Field” in

For More Information talks about selective application of

depth-of-field effects on important elements of an image.

As you can see, there is a wealth of information out there and

plenty of room for experimentation and new ideas. As games

continue to grow in popularity, they must meet the demands of

the more general audience that is used to the conventions of

films. There is much to do in order to reach this goal and con-

tinue to expand the scope of game development. Continued

innovation and experimentation in this area will bring out

greater variety of expression on the part of game developers,

and richer, more compelling

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r40

Acamera

Bcamera

A
focus Bfocus

er
Pan Zoom Crane

Bfocus

er

er

Bcamera A
focus

Acamera Acamera

Bcamera

Bfocus

Afocus

F O R M O R E I N F O R M AT I O N

Amerson, Daniel, and Shaun Kime. “Real-time Cinematic Camera
Control for Interactive Narratives.” American Association for
Artificial Intelligence, 2000. pp. 1–4.

Arijon, Daniel. Grammar of the Film Language. Los Angeles:
Silman-James Press, 1976.

He, Li-wei, Michael F. Cohen, and David H. Salesin. “The Virtual
Cinematographer: A Paradigm for Automatic Real-Time Camera
Control and Directing.” Proceedings of SIGGRAPH 1996.
pp. 217–224.

Katz, Steven D. Film Directing Shot by Shot. Studio City, Calif.:
Michael Wiese Productions, 1991.

Kosara, Robert, Silvia Miksch, and Helwig Hauser. “Semantic Depth
of Field.” Proceedings of the IEEE Symposium on Information
Visualization 2001.

Lander, Jeff. “Lights… Camera… Let’s Have Some Action Already!”
Graphic Content, Game Developer vol. 7, no. 4 (April 2000):
pp. 15–20.

FIGURE 2.
Shot transition
criteria, where
re is the radius
of acceptable
error.

E V E N T - D R I V E N C A M E R A

P O S T M O R T E M s c o t t g r e i g , r a y m u z y k a , j a m e s o h l e n ,

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r42

S C O T T G R E I G | Scott is director of programming at BioWare and was lead pro-
grammer on NEVERWINTER NIGHTS.
R A Y M U Z Y K A | Ray is joint-CEO of BioWare and NEVERWINTER NIGHTS’
co–executive producer.
J A M E S O H L E N | James is BioWare’s director of writing and design and was
co–lead designer on NEVERWINTER NIGHTS.
T R E N T O S T E R | Trent was NEVERWINTER NIGHTS’ project director and producer.
G R E G Z E S C H U K | Greg is joint-CEO of BioWare and was co–executive producer
on NEVERWINTER NIGHTS.

G A M E D A T A

PUBLISHER: Infogrames
NUMBER OF FULL-TIME DEVELOPERS:

75 at peak, representing approximately 160
man-years of development

NUMBER OF EXTERNAL STAFF AND
CONTRACTORS: Approx. 40 QA testers at
Infogrames, 5 sound contractors, and 20

translators
PROJECT LENGTH: Approx. 5 years

RELEASE DATE: June 2002
PLATFORM: PC, with Mac and Linux

clients forthcoming
AVG. DEVELOPMENT HARDWARE USED:

P3-600MHz to P4-2000MHz with GeForce 3s,
512MB RAM, and 30GB hard drives.

DEVELOPMENT SOFTWARE USED: Visual
Studio C++, 3DS Max 3 & 4, Adobe Photoshop
NOTABLE TECHNOLOGIES: Bink, Miles Sound

System, Gamespy, BioWare Aurora Engine,
BioWare Neverwinter Aurora Toolset

BioWare’s
NEVERWINTER

NIGHTS
N EVERWINTER NIGHTS

(NWN) was conceived in

1997 as the ultimate pen-

and-paper role-playing

game simulation.

BioWare’s goal with the project was to try

to capture the subtleties of a pen-and-

paper role-playing session in a computer

game, including a fully featured Dungeon

Master with full control over the game

world as it unfolds, and an extremely

approachable toolset to allow nontechni-

cal users to make basic content.

Early in BioWare’s development of

BALDUR’S GATE it became clear to us how

the evolution of the role-playing game

genre would unfold. We saw the explo-

sion of fan-created content for first-person

shooters and we rationalized that the role-

playing genre was ready for a similar ren-

aissance. It was going to take a lot of

work to do it right, but even near the pro-

ject’s completion, we realized that at the

start we had greatly underestimated the

effort it would take to complete a project

of this size.

NEVERWINTER NIGHTS was also inspired

by the early massively multiplayer games

like ULTIMA ONLINE. Our experience

online was that we had the most fun

when we were adventuring with a moder-

ate-sized group of friends, with a Game

Master creating an adventure for us in

real time. This experience was one of the

foundations of what we wanted to cap-

ture in NEVERWINTER NIGHTS.

NEVERWINTER NIGHTS was the largest

and most ambitious project BioWare has

yet undertaken, beyond the 250-hour

BALDUR’S GATE II: SHADOWS OF AMN. Our

goal was to create a game with significant

impact, and also to deliver on all of our

goals, not just a couple. As a result we

had an extremely large team working on

NEVERWINTER NIGHTS.

At its peak, the team numbered more

than 75 people — with 22 programmers

working on aspects as diverse as the

game client, independent servers, the

Dungeon Master client, and the world

creation tools (the BioWare Aurora

Neverwinter Toolset). Not only did the

final game feature a large number of pro-

grammed features, but we also had hun-

dreds of monsters, thousands of custom

scripts, and a substantial single- or multi-

player campaign (featuring 60 to 100

hours of gameplay). Coordination of

such a large team presented us with a

number of unique management chal-

lenges, and in retrospect we learned a

number of lessons regarding managing

huge projects, many of which are

described in this article.

t r e n t o s t e r , a n d g r e g z e s c h u k

43w w w . g d m a g . c o m

What Went Right

1.Constant communication. With

the NWN team growing at the end

to upwards of 75 people, communication

of the goals of the project, and the day-to-

day development decisions, became a crit-

ical necessity. We formed a tight commu-

nication network, with the leads in each

area summarizing daily challenges, poten-

tial pitfalls, and areas of concern. Each

significant code change required consulta-

tion with the various people responsible

for the systems that would be touched —

a fundamental change required a quick

meeting between three to five people sim-

ply to make sure everyone who was

affected would be aware of how the

change would affect them. While this

might superficially seem like an inefficient

way to work, it did result in a number of

benefits for the project and the team.

First, the constant communication to

achieve difficult goals brought the entire

team together, and when difficult prob-

lems arose there were always a few

knowledgeable people with a familiarity

with the problem that could be consulted.

Furthermore, NWN was painstakingly

documented, from technical design docs

and art style guidelines to rules and level

design documents. The team leads created

and updated massive schedule documents

detailing every aspect of the project. The

tools group designed and created a project

manager program. This tool facilitated

faster and more organized communication

between the departments. While docu-

ments would sometimes fall out of date, it

was still a big step forward compared to

our previous projects.

While documentation to this level is

probably not required (and might even

prove to be a hindrance to progress) on

many games, on a role-playing project of

P O S T M O R T E M

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r44

the size of NWN, it was critical. With any

large project, one of the major challenges

is making sure the team works as a unit to

achieve a common goal, rather than a

number of parallel but unrelated goals.

We found that the style and manner of

communication on the NEVERWINTER

NIGHTS team was instrumental in both

building the team spirit and making sure

the game was successful.

2.Extensive tool effort.
Compared to BALDUR’S GATE,

NEVERWINTER NIGHTS allocated five times

the manpower to making the game-cre-

ation tools suite. Although part of the

increase was due to the fact that the

Neverwinter Toolset was to be publicly

released, we would have still invested fair-

ly heavily into the tools even if they were

only intended for internal use. The deci-

sion to go forward with a new tool, or a

new feature for an existing tool, depends

on whether the time required to make the

tool will be made up in time saved by

using the tool.

In BioWare’s past projects, we have

generally found that if a task that could

be automated by a tool was going to be

performed more than once, then the tool

saved time in the long run. Despite prob-

lems inherent in using a tool under devel-

opment, having a large and robust toolset

allowed for very rapid implementation of

design and art content. We ramped up

our tools department during NWN’s

development, and it has served the com-

pany well to have a group that can serv-

ice the tools, database, and installer needs

of the entire company.

3.Multiplayer integration from
the outset. Although BALDUR’S

GATE was intended to have multiplayer

support from the beginning, we did not

actually start programming the multiplay-

er systems until relatively late in that proj-

ect. As a result, some of the multiplayer

aspects in BALDUR’S GATE — such as forc-

ing all players to see all dialogue — were

less than optimal.

In NEVERWINTER NIGHTS, the multi-

player systems were integrated directly

into the original design. Even in single-

player, the game acts like a multiplayer

game with a single client attached.

Although this deep integration increased

the time to develop each system (com-

pared to a single-player-only system), it

did result in an overall reduction in the

time required to integrate multiplayer

and ensured that all the systems were

optimized for multiplayer play.

One useful lesson from both the

BALDUR’S GATE series and NEVERWINTER

NIGHTS was how much time QA testing

of a multiplayer game takes compared

with testing just the single-player game.

We have found that three to five times as

much testing is needed for multiplayer

role-playing games compared with single-

player. Thus we require 30 to 50 testers

(including both on-site and external

testers) on our multiplayer projects for

three- to six-month periods — not a

small undertaking.

4.Experienced team members
focused on quality. Having

numerous BioWare veterans on the

NEVERWINTER NIGHTS team was crucial to

holding the project together and ensuring

the development efforts were successful.

We hired a number of new people during

the course of the game, practically all of

whom had no prior game development

experience, but we were very fortunate

that a number of people that had worked

on the BALDUR’S GATE series also worked

key roles on NWN. Their RPG develop-

ment experience served as the cement that

held everything together on the project

and enabled them to circumvent many of

the pitfalls typically encountered when

developing a story-based role-playing

game. In addition, their ability to mentor

A set of Neverwinter City tiles progressing from concept to completion.

new hires was essential in building a

strong team, both for NEVERWINTER

NIGHTS and for BioWare.

Even though the majority of the team

members were not experienced game

developers, after they joined the team they

had access to mentors to help them learn

their craft. BioWare’s culture — based on

a matrix structure with departments of

programming, art, QA, and design —

encourages learning and aggressive trans-

fer of knowledge, which we believe is the

best foundation for building a strong

development team.

Many of the core team members

worked on the project for a number of

years — the entire duration of the project

from the idea stage to completion was

slightly more than five years. While we

pushed aggressively through the entire

development, there was never a sense the

game would be shipped before it was

ready. We set out to achieve all of our

goals, and we never wavered from that

plan, even during some of the complicated

issues that arose in the project moving

from Interplay to Infogrames. Fortunately,

Infogrames was able to come onto the

project late in its lifespan and mobilize the

resources required to ensure the quality of

the game by our intended launch date.

5.Sharing resources with other
projects. BioWare relies heavily

on our ability to draw upon manpower

from the rest of the company to help out

on a project in the final stages of produc-

tion. All of our projects have done this in

the past, and NWN was no exception.

Designers, artists, and programmers came

on from the old Infinity engine team as

soon as BALDUR’S GATE II: THRONE OF

BHAAL was completed. Many of these peo-

ple were responsible for key aspects of the

project, in the same way that many of the

NWN team members had been responsi-

ble for systems in MDK2 and BALDUR’S

GATE II. The development teams weren’t

the only people who helped out at the

end; systems administrators, front-office

staff, and the PR department also helped

test the game.

Even with the help of a lot of people

from BioWare, finishing a game the size

of NEVERWINTER NIGHTS was a huge

undertaking — in addition to our 75-per-

son team working on the game at

BioWare, we had 10 on-site testers from

Infogrames at our office, eight German

and five Korean translators in-office in

the last three months of development

doing simultaneous translation of the

game, and more than 35 external testers

between Infogrames’ various offices.

Coordinating all of these external

resources required the combined efforts

of five producers at BioWare.

What Went Wrong

1.Resources added at
non-optimal times. A

large RPG such as BALDUR’S

GATE or NEVERWINTER

NIGHTS requires a similarly

large amount of art, design,

and programming resources.

One of the problems that

we encountered was what

to do while the new game

engine technology was

being developed. Due to our

schedule, we needed to start

working on art and design assets right

from the beginning of the project. The

problem was that it took the program-

ming team three and a half years to com-

plete the game systems. Thus the art and

design teams had to make assets based

on technical specifications derived from

early prototypes. As the game pro-

gressed, many of these specifications

changed, requiring some assets to be

rebuilt, or else workarounds had to be

adapted in the game code to allow for

old and newer assets to work together.

w w w . g d m a g . c o m

This detailed Minotaur concept was built, tex-
tured, and animated in 3DS Max.

45

P O S T M O R T E M

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r46

In an ideal world, the length of the

project would have been longer, with the

programming done at the beginning with

only a skeleton team of artists and

designers to provide prototypes. Full pro-

duction would have then gotten under-

way once the engine was complete.

Unfortunately, this was not feasible due

to schedule limitations and interproject

scheduling pressures. We have found that

when we are reusing or building on an

existing engine framework, art and design

can be completed with little risk of hav-

ing to rework resources — problems like

we encountered on NWN seem to occur

mainly when we are creating a new

engine from scratch (we encountered sim-

ilar issues during the creation of BALDUR’S

GATE, for example, but not during the

various BG derivatives), and we are keep-

ing this in mind as we schedule new proj-

ects in the future.

2. Incomplete prototypes. Even

though we put a lot of effort into

prototyping important game systems, on

some occasions we completed what we

thought were full-featured prototypes of

major game systems only to find out later

that they didn’t address a number of

important issues. In our haste to get into

full production on NEVERWINTER NIGHTS,

we didn’t properly analyze all of the ques-

tions that needed to be addressed by the

prototypes. This resulted in spending time

late in the development cycle sorting out

problems with key systems of the game.

Development of our new game engine

was an extremely long process, so some of

the initial prototyping lessons were forgot-

ten or inadequately documented. In some

cases we didn’t thoroughly review our orig-

inal goals when implementing features later

in the project.

As with any new-engine game, there

was too little time available to prototype

gameplay. Our prototypes focused instead

on technology and the individual features

of the game. While this kind of prototyp-

ing was important, it would have been

very useful to have early feedback on how

the game played, particularly with regard

to the interface and story line.

Because NWN was a rule-based game,

and rules implementation was at the end

of the schedule, we were only able to test

actual gameplay near the end of the devel-

opment cycle. Due to our inability to pro-

totype a number of design components,

we ended up reworking them. As a result

we plan to prototype story lines in future

games earlier in the development cycle.

One of the ways we plan to do this is to

reuse the BioWare Aurora Toolset as a

rapid prototyping tool for story design,

even for games with radically different

interfaces and rules systems.

3.Delayed rule implementation
(including tools implementa-

tion delay). The Dungeons & Dragons
rules system in NWN was implemented

according to a priority system established

by the leads on the project. We failed to

take into account how some minor addi-

tion to the rules system could have far-

reaching effects throughout the game.

This forced the designers through an

aggressive series of revisions to the areas

and characters in the official campaign

story. In the end, we were able to tune the

game appropriately, but we put the level

designers, scripters, and writers through a

very trying period.

The delay in rules implementation

caused a ripple effect with the tool devel-

opment. Furthermore, we reworked the

tool interface late in the project to make it

more approachable to nontechnical devel-

opers. This rework had a significant effect

on the ability of our designers to finish off

content, since they were using the exact

same tools to fix bugs and finish up the

game’s development.

4.Late feature additions; inno-
vation for its own sake. To

ship a game that takes five years to devel-

op takes a fair amount of intestinal forti-

tude. You really can’t second-guess your

decisions or you’ll have no chance of ever

completing the project, so the leads of the

project agonized over some late feature

additions to NEVERWINTER NIGHTS. Given

that the game was in development for

such a long period, we were all concerned

it might look dated by release. To combat

this issue we laid out a plan to add a

number of high-impact but relatively easy-

to-implement features late in the develop-

ment cycle to improve the game’s visual

Sedos Sebile, a character from NEVERWINTER

NIGHTS’ plot, standing larger than life.

P O S T M O R T E M

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r48

quality. These additions resulted in con-

stant concern among the artists who had

to generate the new art required to sup-

port the late-added technologies. In the

end it all worked out because of large per-

sonal efforts by many team members.

From the start there was a strong

desire to make NWN a unique game dis-

tinct from the BALDUR’S GATE experi-

ence. While this did lead to the develop-

ment of new systems that were better

than those of BALDUR’S GATE, it also led

to an excessive amount of time spent on

design and prototyping of features that

ultimately could not be implemented.

We’d often sink a considerable amount

of research into creating an innovative

system, only to fall back on a similar

system that worked better in the earlier

Infinity engine.

Too often we were determined to start

at square one, instead of expanding on

what had worked with our previous

games. We learned that it is important

to choose our battles. In the future,

when designing a game set in a genre

that we have experience with, we will

look more closely at what has worked

well previously and aim to innovate only

in the areas of our past games that our

fans and critics perceived as weak.

5.A lot of demos. A side effect of

the attention NEVERWINTER

NIGHTS received in the years prior to its

release was that we built a number of

demos for trade shows and press visits,

more than typically occur for most

major releases. We probably announced

the game too early in its development

cycle, and it took a long time to com-

plete the game with the promised feature

set. Each time we built a demo there was

an impact on the team in terms of both

focus as well as schedule.

We felt the demos were successful

overall and that the incremental PR

received from these demos was helpful

to the game’s market success, but each

of these demos consumed considerable

team resources. In spite of this impact,

the team recognized that demos are a

necessary and vital part of the develop-

ment process — however, they should be

part of the schedule and planned accord-

ingly from the start. In our future proj-

ects we are booking more time for

demos in our schedules, since they

always seem to take up more time than

originally anticipated.

Everwinter Nights

T hough BioWare considers NEVERWIN-

TER NIGHTS a critically and commer-

cially successful product by most gener-

ally accepted standards, it is still far

from perfect in our eyes. We try hard to

learn from our mistakes, and when we

run across a hurdle or a challenge we try

to avoid getting caught in the details of

what happened and focus on the solu-

tion. We cast a critical eye on everything

from process to user perception. This

critical approach often allows us to spot

trouble areas ahead of time and plan for

solutions before a trouble area becomes

a project blockage.

In the end, BioWare is a reflection of

the people who work at the company;

NEVERWINTER NIGHTS was completed by

people devoted to a project they

believed in completely; as with many

similarly successful products, without

their hard work it never would have

been possible. But we still have a lot to

learn, and we can only try to improve

each game in relation to the ones that

we released before. Our future games

must and will be better still than

NEVERWINTER NIGHTS.

Our hope is that the game will help

open — and keep open — the door to

user-created content for role-playing

games. So far things seem to be going

well in this regard. As of this writing,

there are more than 1,000 user-created

modules on the Internet, and this is just

a starting point for the hundreds of

thousands of players who have pur-

chased the game and who are now using

the BioWare Aurora Toolset to make

NEVERWINTER modules. We’re hopeful

that our players will continue to make

new content to grow the game’s commu-

nity, and BioWare’s Live/Community

team will continue to support them in

this effort. q

Various NEVERWINTER NIGHTS screenshots show the range of visual effects available to players as they explore the vast Neverwinter world and engage
in combat.

Self-

taught

old-

timers like

myself, who

used to carry each

instruction from the RAM

to the CPU on our backs,

tend to sneer at the idea of aca-

demic research in game develop-

ment. After all, we made it without no

highfalutin’ degree, and besides none of that

stuff’s any use in the “real world.”

Self-taught old-timers like myself had better watch out,

because a new generation of designers and programmers is

coming along that will soon show us up for the dinosaurs

we are.

Being self-taught has a homespun, Abe Lincoln romance

about it, but in real terms it’s impractical. If you only learn

what you need to know as you go along, you end up not so

much self-taught as half-taught, with gaps in your education.

I’ve never had a class in assembly language to this day, and I

only know as much about it as I had to learn for various

projects. Formal education takes the amorphous mountain of

information available on a subject and distills it down into

useful knowledge, passing it on efficiently to new generations

of students. What would take you 10 or 15 years to learn by

yourself through trial-and-error, a good teacher can impart in

three or four years of dedicated learning.

It’s time that we in the game industry changed our attitude

toward formal education and academic research. The acade-

my can do things that industry can’t, because it’s not con-

strained by the

requirement to build

profitable products. It

is foolish of us to

ignore the opportunity

that this represents. Game

developers often say that

academic research doesn’t help

them to make better games, so

they don’t care about it. That’s a

short-sighted attitude. Other businesses,

such as the semiconductor and pharmaceutical

industries, have close relationships with universities because

they know they will pay off in time.

If academic research isn’t helping you to make better

games, I can think of three reasons why not:

Game research is just getting started. It’s still an uphill bat-

tle to do work on games at many universities; senior faculty

doesn’t respect it and there aren’t many sources of funding.

Serious work on games has only started in the last two years

or so (with certain exceptions in the field of artificial intelli-

gence), but it has begun. If developers disparage it too, we’re

further hindering the process. If instead we help, then a few

years down the line there will be rewards to reap.

You may not be paying close enough attention. Much of the

work presented at SIGGRAPH is academic research. There

are still too many developers who don’t bother to find out

what’s going on in university research labs.

You may not be pushing the envelope. Academic research is

necessarily at the frontier — in fact, beyond the frontier, out

in regions where there’s no real way to know whether it’s

S O A P B O X e r n e s t a d a m s

n o v e m b e r 2 0 0 2 | g a m e d e v e l o p e r56

continued on page 55

In Defense of Academe

Ill
us

tr
at

io
n

by
 C

la
ud

ia
 N

ew
el

l

useful or not. This is as it should be.

Since the academy doesn’t have to

sell its work, it can look into

areas that are really speculative.

If you’re making a nice, safe

game in a nice, safe genre, of

course you don’t need the

academy; you’re not taking

any risks.

Someone at this year’s IGDA

Academic Summit at the GDC

pointed out that the industry can

get four useful things from acad-

eme: code, cred, theory, and people.

Code is the most immediately useful:

software that does things we haven’t yet

learned to do ourselves. People are next:

educated workers so we don’t waste

time and money training them. And the-

ory comes in the form of advances in all

sorts of areas that would be useful to

us: AI, simulation, physics, graphics,

and so on.

Cred (cultural credibility) is the

vaguest, and it has the least immediate

use but the most long-term value. Aca-

demic study of a medium is a vital step-

ping stone on the way to its public

recognition as an art form. If you have

to learn something by yourself, it’s

probably just a hobby. But if they

research it and teach it in college, then

it acquires credibility with the public.

I’m sure most people thought the idea

that movies could be “art” was idiotic

in 1915, but they don’t now, and the

existence of film schools has a lot to do

with that.

You may be content for videogames

to remain merely popular culture;

they’re here to stay and the job will

keep you fed until you retire. But if you

have any aspirations for this medium, if

you want to see it achieve some of its

extraordinary potential, then it would

behoove you to support both theoreti-

cal and applied research.

Commercial games can and occa-

sionally do stagnate creatively as

long as they make money. It was

partly this sort of creative stag-

nation that led to the crash of

1983. Game publishers were

making so much money that

they quit bothering to inno-

vate; then they wondered why

the public was suddenly sick of

videogames.

Competition drives advances by

the game industry, but competition

is mindless and dependent on the

fashions of the moment. It’s only moti-

vated by a desire to beat the other guy,

not a genuine wish to explore. For seri-

ous exploration beyond the frontiers of

gaming, we need academic researchers

willing to tramp those woods and ford

those rivers for the sake of knowledge

alone. Let us be Jefferson to their Lewis

and Clark. q

S O A P B O X

w w w . g d m a g . c o m 55

ERNEST ADAMS | Ernest is an independ-
ent game design consultant, with 13
years’ experience in the industry. He
also writes the “Designer’s Notebook”
columns for Gamasutra.com. His
professional web site is at
www.designersnotebook.com.

continued from page 56

	04gameplan
	06indwatch
	08prodrev
	14profile
	16innerp
	20artview
	24soundp
	28betterby
	30f-perry
	36f-hawkins
	42postmort
	56soapbox

	return:

