
NOVEMBER 2001

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N
L E T T E R F R O M T H E E D I T O R

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Laura Huber lhuber@cmp.com
Feature Editor

Curt Feldman curt99@aol.com
Production Editor

Olga Zundel ozundel@cmp.com
Product Review Editor

Tor Berg tberg@cmp.com
Art Director

Audrey Welch awelch@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Daniel Huebner dan@gamasutra.com
Jeff Lander jeffl@darwin3d.com
Tito Pagan tpagan@wildtangent.com

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Beemania
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed WildTangent

ADVERTISING SALES
Director of Sales & Marketing

Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218
National Sales Manager

Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217
Senior Account Manager, Eastern Region & Europe

Afton Thatcher e: athatcher@cmp.com t: 415.947.6224
Account Manager, Northern California

Susan Kirby e: skirby@cmp.com t: 415.947.6226
Account Manager, Recruitment

Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225
Account Manager, Western Region, Silicon Valley & Asia

Craig Perreault e: cperreault@cmp.com t: 415.947.6223
Sales Associate

Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz
Advertising Production Coordinator Kevin Chanel
Reprints Stella Valdez t: 916.983.6971

GAMA NETWORK MARKETING
Senior MarCom Manager Jennifer McLean
Marketing Coordinator Scott Lyon
Audience Development Coordinator Jessica Shultz

CIRCULATION
Group Circulation Director Catherine Flynn
Director of Audience Development Henry Fung
Circulation Manager Ron Escobar
Circulation Assistant Ian Hay
Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes
t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas
t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall
Executive Vice President & CFO John Day
President, Business Technology Group Adam K. Marder
President, Specialized Technologies Group Regina Starr Ridley
President, Technology Solutions Group Robert Faletra
President, Electronics Group Steve Weitzner
President, Healthcare Group Vicki Masseria
Senior Vice President, Human Resources & Communications Leah Landro
Senior Vice President, Global Sales & Marketing Bill Howard
Senior Vice President, Business Development Vittoria Borazio
Vice President & General Counsel Sandra Grayson
Vice President, Creative Technologies Philip Chapnick

Game Developer
is BPA approved

W W W . G A M A N E T W O R K . C O M

✎

4

M obile gaming: the new
frontier. Or is it? What
do game developers
know about these
emerging platforms, and

what do hardware manufacturers and serv-
ice carriers for mobile devices know about
games, both those who make them and
those who play them?

Entering the mobile gaming arena is
becoming increasingly attractive to game
developers at companies of all sizes and
experience levels. The mobile market
throws open the doors to millions of new
potential game players who would other-
wise never play games on a PC or buy a
dedicated game console. Nokia sold 128
million mobile phones last year alone; it
took Nintendo more than 10 years to sell
100 million Game Boys. Even if only a
fraction of the hundreds of millions of
mobile-device owners in the world are
playing games on their devices, the size of
this market and its potential for growth
cannot be ignored.

Established game publishers and content
providers have taken notice. THQ
announced the establishment of its Wire-
less Division last May, and Sega recently
partnered with Synovial to bring Sega
Game Gear emulation to Pocket PCs; other
big game companies are still flying low on
the radar in this arena, but are poised to
pounce.

If you’re a gadget geek like me, you
already own a PDA and a mobile phone,
and have made a decision as to what level
of service you demand from these devices.
Your contact list, calendar, and Sonic the
Hedgehog can coexist happily together on
your iPaq. But what about that fellow sit-
ting next to you on the subway? What
about the woman who’s waiting for a cab
at the airport? Or the young adults sitting
in a bar waiting for their friends? What, if
anything, do they want to play?

Game developers have been clamoring
to gain access to the true mass market for
years now, and bringing games to mobile
devices is perhaps more mass market than
we’ve bargained for. Catering to trusted
hardcore audiences you’ve depended on for
years won’t work, as these are the last peo-
ple who will be satisfied with playing

games on such a restrictive platform. A
fresh approach to game design is the only
hope for groundbreaking success on
mobile devices and winning support from
the most casual of game players, à la the
TETRIS revolution of the late 1980s. Some-
one has to help lead the way.

There have been to date at this early
stage in the life of mobile gaming more
promises made than promises kept. Every-
body seems to have a differing opinion
about which revenue models are sustain-
able, the real potential of next-generation
networks and when they will arrive, and
how games fit into the broader picture of
this large, complicated, and ever-changing
global market. Game developers must nav-
igate a tangled web of device manufac-
tures, service carriers, game publishers, and
technology providers to help them realize
the importance of providing customers
with content that surpasses their expecta-
tions for quality and keeps them coming
back for more. For whoever succeeds,
however, the trailblazing will have been
worth it.

Changing of the Guard

L ast month, we bade farewell to Mark
DeLoura, who headed this magazine

for the past year. You know the old saying:
You can take the boy out of game develop-
ment, but you can’t take game develop-
ment out of the boy. So Mark left the gen-
eral’s post here at Game Developer and
has charged out on to the front lines, from
where he’ll continue to provide us intelli-
gence as a wily informant.

As for me, it’s been my privilege for the
past three years at Game Developer to
help remind our readers on a monthly
basis that the world of game development
extends far beyond your cubicle or office
walls, your current project, your daily
pressures, your boss’s ego, your own meth-
ods and expertise. We hope you’ll continue
to turn to Game Developer each month for
both a sizeable helping of technical
resources and perhaps even a little moral
support along the way.

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090
www.gdmag.com

Brave Small World

6 n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r

I N D U S T R Y W A T C H
Jd a n i e l h u e b n e r | T H E B U Z Z A B O U T T H E G A M E B I Z

Changes at Interplay and Midway.
Interplay’s poor second-quarter results will
be its last as independent company. The
company posted a net loss of $12.4 million,
up from a loss of $1.9 million in the second
quarter one year ago. Revenues slipped to
$14.8 million, down 41 percent from last
year’s second quarter. Interplay released just
four new titles in the second quarter.

Interplay’s red ink comes on the heels of
an announcement that Titus Interactive
would seek to take control of the company.
Titus increased its ownership stake in Inter-
play from 34 percent to 51.5 percent by
exchanging 336,070 convertible bonds for
over 6 million Interplay shares. Following
the move, Interplay announced that it will
change the composition of its board of
directors and make additions to its senior
management team. As a result of negotia-
tions with Titus Interactive, three of Inter-
play’s existing directors have resigned and
three new directors nominated by Titus
were elected to fill the vacancies. The new
board consists of five individuals nominat-
ed by Titus and two directors previously
nominated by Interplay management.

Midway’s financial woes are also forcing
changes in the boardroom. The company
posted quarterly revenues of $20.2 million
for its fiscal fourth quarter, down from
$24.7 million last year. That figure includes
a charge of $8.9 million related to the com-
pany’s departure from the coin-op business.
The loss for the quarter came to $30.5 mil-
lion, compared with a loss of $30.7 in the
same period last year. For the fiscal year
ended June 30, revenues hit $168.2 million,
down from a total of $333.8 million in rev-
enues last year. The loss for the fiscal year
reached $69.3 million. Midway officials
attribute the poor results to a transition
year, citing its move away from older plat-
forms and arcade products.

Following closing on the poor financial
results, Midway announced the resignation
of Byron Cook from the position of vice
chairman of the board. Cook has been a
senior executive with Midway since the
company’s acquisition of Tradewest in
1994. Midway did not name an immediate
replacement.

Take-Two financials. Take-Two Interac-
tive managed higher revenue but lower
profits in the third quarter. Net sales for the
quarter increased 18 percent over last year
to $84.5 million, benefiting from the suc-
cess of Remedy’s MAX PAYNE. Net income
was $409,000, including the retirement of
$1.5 million and a $651,000 gain on sale of
its Jack Of All Games distribution sub-
sidiary. Take-Two reported net income of
$3.4 million in the same period a year ago.

Jack Sorensen to head up THQ’s stu-
dios. THQ has tapped Jack Sorensen, who
formerly spent six years at the helm of
LucasArts, to join the company as execu-
tive vice president of worldwide studios.
Sorensen will oversee each of THQ’s six
internal development studios, including
Volition, Pacific Coast Power & Light Co.,
Cedar Ridge Construction, Genetic Anom-
alies, Heavy Iron Studios, and THQ’s
Game Boy Advance studio, Helixe. He will
also manage THQ’s product and studio
acquisition activities.

Sierra shuts Dynamix. Sierra has closed
TRIBES developer Dynamix as part of a cor-
porate restructuring plan. The move elimi-
nates 97 jobs at the Eugene, Ore., studio.
Responsibility for the TRIBES franchise, as
well as other Dynamix projects, will be
transferred to Sierra’s Bellevue, Wash.,
headquarters.

Changes are also being made in Sierra’s
corporate structure, with the elimination of
148 non-development positions. The
moves are intended to better integrate Sier-
ra into the larger Vivendi Universal Interac-
tive structure. “While any reorganization
involving staff reductions is difficult, there
is no doubt that this is the right thing to do
for the business,” said Sierra president
Michael Ryder.

Nvidia earnings jump 50 percent.
Nvidia saw its second-quarter earnings
jump 50 percent from the same period last
year. Based on that result, the company
raised its outlook for the coming two years
and also announced a 2-for-1 stock split.
The company’s earnings for the quarter
reached $33.6 million, compared with
$22.5 million for the same period last year.
Revenue for the quarter reached $260.3
million, up 53 percent from $170.4 million
last year. q

Sierra has shuttered TRIBES creator Dynamix as
part of a corporate restructuring plan.

M O B I L E G A M E S S E C O N D
I N T E R N AT I O N A L C O N -
V E N T I O N
CONRAD INTERNATIONAL
Dublin, Ireland
November 5–7, 2001
Cost: variable
www.ef-telecoms.co.uk/mgames

D V E X P O
LOS ANGELES CONVENTION CENTER
Los Angeles, Calif.
December 3–7, 2001
Cost: variable
wwwdvexpo.com

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

Remedy’s MAX PAYNE. published by Take-Two’s
Gathering of Developers.

Taldren’s new feature, STAR TREK: STARFLEET COM-
MAND – ORION PIRATES, published by Interplay.

A s I am accustomed to writ-
ing games for simple
machines such as the PC
and Dreamcast, I found
the alien architecture of

the Playstation 2 to be an inhospitable
environment; so many different processors,
any of which can fail. Fortunately, we have
SN Systems’ ProDG development system,
which allows us to do source-level debug-
ging on the Emotion Engine (EE), the I/O
processor (IOP), or either of the vector
units (VUs).

Because we do cross-platform develop-
ment for both the Xbox and Playstation 2,
we need an OS that can develop code for
both of them, which means we’re stuck
with Windows. Thus, we had a limited
choice of development systems for the
Playstation 2, the most obvious choices
being SN Systems or Metrowerks.

After being burned by Metrowerks’
Codewarrior when writing code for the
Dreamcast — we had to give up and switch
to GCC because of the number of bugs the
Metrowerks compiler would introduce into
our code — we were willing to try any-
thing else for our Playstation 2 develop-
ment needs. Because our engine was
already GCC, we used the development
tools that came with our T10000 and used
ProDG for debugging. Later we tried SN
Systems’ tool chain and discovered they
had a faster link.

Once we switched, we never wanted to
go back. Because GCC supports dual-
processor compilation, a single target of
our 200,000-line, STL-using engine com-
piles in around six minutes on our dual
1GHz Pentium II machines, although we
had to create metafiles that contained lists
of included .CPP files in order to prevent
the huge headers from recompiling endless-
ly. And, because it’s GCC, it has optimiza-
tion options for inlining and unrolling
loops, which noticeably sped up our code.

The ProDG debugger does
everything a debugger needs
to do: watch windows, local
variable windows, call
stacks, register dumps, and
TTY output. It steps into
template code without a
hitch. Looking at variables
declared anywhere in the
callstack is no problem.

Because the Playstation 2 is a beast with
multiple processors, the ProDG debugger
provides source-level debugging for any of
the processors you’ll be writing code for:
the IOP, both VUs, and the EE. It’s easy to
load up an IOP module, set breakpoints,
and step through both main CPU and IOP
code. Switching from one processor to
another is as easy as pushing a button; you
can have panes devoted to different proces-
sors open at the same time. You can split
and tile windows and panes to your heart’s
content. The debugger is solid; it crashes
less often for me than Visual C++ does.

ProDG supports hardware break-on-
read and break-on-write, but the imple-
mentation is a little flaky. When we set a
hardware breakpoint that didn’t break,
we could never be sure whether the pro-
gram was accessing that memory or if the
hardware breakpoint failed. However, this
failing seems to be due to a limitation of
the Playstation 2 — it will occasionally
reset its hardware breakpoint registers —
rather than a problem on the part of the
compiler. Still, this quirkiness could be
better documented.

ProDG users can run the target manager
and debugger from the command line,
which is something I couldn’t live without
because I like to schedule automated tests.
This feature also helps us run a special
build of our program to generate some of
the content that we ship.

ProDG has some of the slick GUI fea-
tures that a Visual C++ programmer

might be used to: you can hold the cursor
over a variable name to reveal its value,
and you can drag addresses between win-
dow panes. You can quickly go to any
function in your program by entering the
function name in the Go To Address box
— if you don’t remember the exact name
of the function, ProDG offers an auto
complete feature, which works in the
source, disassembly, and memory panes.
ProDG’s memory pane is better than the
one in Visual C++; it always aligns by
words and can view your data as floats or
even as fixed point.

ProDG provides integration with Visual
C++, a feature that we don’t actually use
on our project but which is used by anoth-
er team in our company. David Cook, the
lead programmer on that project, said,
“Overall, I think it’s great. You can set up
a project with minimal effort, and you can
stay in Dev Studio practically all the time.
You can set up dependencies between pro-
jects, so your libraries get rebuilt automat-
ically as needed. You add new files to the
build just by adding them to the project.
You can launch the Target Manager or
Debugger from Visual Studio, or launch
VS edits from the debugger. You can pass
breakpoints back and forth. The main
drawback is loss of control. You don’t
have a makefile, so you are limited in
what you can customize about the build.
Passing in GCC command line arguments
is a bit cryptic. And it’s difficult to tell
what build tools (compiler, linker, and so
on) are being used.”

8

XXT H E S K I N N Y O N N E W T O O L S

P R O D U C T R E V I E W S

SN Systems’

ProDG 2 for
Playstation 2

by jamie fr istrom

n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r

w w w . g d m a g . c o m 9

ProDG tries to emulate Visual Studio’s
keys, with some differences (Ctrl-O to
open a file in the source window, Ctrl-G
goes to an address instead of a line num-
ber). It’s frustrating that an important
operation such as opening a file doesn’t
have a keyboard shortcut. Changes to your
font settings don’t affect the current win-
dow immediately; you can find yourself
with different windows showing differently
sized fonts.

ProDG’s copy protection is tied to the
network card; we’ve found the easiest way
to hand a ProDG license from one pro-
grammer to another is to swap the net-
work cards in their machines, which is
annoying.

Furthermore, ProDG lacks conditional
breakpoints and the ability to evaluate
sizeof() expressions in the watch window.
It can’t evaluate functions, either. Because
GDB, the Playstation 2 debugger that runs
under Linux, can do this (and is free), it
seems as though ProDG should have the
ability to evaluate functions. Still, I’ll admit
that such a feature isn’t strictly necessary in
a debugger. And ProDG does offer a “Set
PC to cursor” feature, so if you really want
to evaluate a function, you can move the
PC there yourself.

One thing that has occasionally made
me wistfully wonder what we might be
missing if we were using Metrowerks is its
performance analysis tools. ProDG does
have a profiler, but in the words of John
Hall, a coder on my team, “It’s barely
worth messing with.” The information the
profiler gave us was that we were spending
an awfully long time waiting for the GS to
page-flip, which is something we knew
already. ProDG’s profiler isn’t fine-grained
enough to tell us why our slow functions
are slow.

The important thing about ProDG is
that it has rarely given us grief. We have
never torn our hair out because a line of
source compiled incorrectly. And it has
caught some bugs that our previous com-
pilers let slip.

As an added bonus, the employees of
SN Systems are cool. When we needed to
get a build of the code running at a Sony
development conference and were running
into operating system hassles, they offered
to let us use their machines and even
helped us debug our code. That attitude

inspires some developer loyalty. Also, SN
Systems is committed to improving its sys-
tem constantly. For example, when we
first started using the ProDG debugger,
we found it cumbersome; there was no
way to search for text within a source file.
That discrepancy has since been fixed,
and the company has also optimized the
symbol loading in order to minimize the
turnaround between making a change and
testing it.

We’re glad we chose ProDG. We’ve pur-
chased many licenses for the company, and
we also use SN Systems’ ProView product
to run builds of our game on debug sta-
tions. I’m confident that we’ll stick with
ProDG for the duration of our project and
use it for many products to come. ProDG
hasn’t given us any reason to switch.

Jamie Fristrom is a lead software engi-
neer at Treyarch LLC, currently working
on SPIDER-MAN: THE MOVIE for Playsta-
tion 2, Gamecube, and Xbox.

DIGITAL ELEMENT’S
ANIMATEK WORLD
BUILDER 3.0 PRO

by tom carroll

R egardless of what you’re doing for
your next videogame — knocking

out storyboards, populating an island
with rocks and trees, or constructing a
low-polygon in-game environment —
flexible world-building tools are very
important. First published in 1995 by
Animatek (Digital Element acquired the
publishing rights earlier this year), World
Builder 3.0 Pro is a comprehensive, high-
end package that can be used for model-
ing, animating, and rendering realistic,
fully functional 3D landscapes.

On the surface, Animatek World Builder
3.0 Pro may seem lightweight — the box
and contents are light as a feather. Don’t let
appearances fool you, though. This soft-
ware is quite powerful. The Professional
package includes two CDs: the program
CD itself, plus a bonus CD called Plants
Thematic Library Disk 1. The library
comes in handy right away; let’s face it,
nothing says landscape better than plants.

Having already used several terrain-
building packages (most recently, the editor
produced by Planet Moon Studios for the
PC version of GIANTS: CITIZEN KABUTO), I
was anxious to get started with World
Builder. The software proved easy to install
on my 850MHz Pentium III desktop
machine with 256MB of RAM running
Windows NT. It synched up with my
copies of 3DS Max 3.1 and Lightwave 6.5,
all the better to facilitate data exchange.

World Builder 3.0 Pro’s interface is the
very familiar quad-screen arrangement,
with the lower right corner reserved for list-
ings of textures, objects, scenes, terrains,
trees, and such. The right-most portion
contains the project manager, where you
control the parameters of all the elements
in your scene. The tool buttons on the bot-
tom right are used for viewpoint control
and are pretty much just like those in 3DS
Max. Top and left-side menus complete the
interface; I began to appreciate its efficient
design as I worked with it.

The first step in developing terrain in
World Builder 3.0 Pro is to draw skeleton
lines within one of the viewports. Next,
you skin the skeleton lines to create a sur-

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

disappointing

don’t bother

ProDG 2 for PS2 XXXX

STATS
SN SYSTEMS LTD.

4th Floor - Redcliff Quay, 120 Redcliff Street
Bristol, BS1 6HU
United Kingdom
+44 (0)117 929-9733
www.snsys.com

PRICE
$5,000 per unit for the first 19 units (prices
go down for more), including unlimited tech-
nical support.

SYSTEM REQUIREMENTS
486 or higher processor (Pentium II recom-
mended) with Windows 95/98/NT/2000,
16MB of RAM (64MB recommended, 128MB
for Windows NT/2000), 300MB hard disk
space, CD-ROM drive. 8MB of video memory
recommended.

PROS
1. Debugs EE, IOP, or VU code at the source

level.
2. Offers GCC-based tool chain with fast link.
3. Generates solid code and the debugger

rarely crashes.

CONS
1. Includes a mediocre profiler.
2. Generates flaky hardware breakpoints.
3. Does not support conditional breakpoints.

XP R O D U C T R E V I E W S

10 n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r

face. By adding more bones and increasing
the fractal value on the skeleton lines, it’s
possible to control the overall look of the
terrain. The last step is to add in numerous
types of surface objects, including grass,
trees, compound sky, and clouds.

You can also control animation of sur-
face objects. With a camera operating in
OpenGL mode, visual updates are quick
enough to make on-the-fly editing quite
manageable. Numerous render levels are
available, including bounding box, skele-
ton, wireframe, OpenGL, draft, preview,
and production render.

World Builder also includes a 3DS Max
plug-in that lets you make changes to mod-
els in Max and transfer those changes to
the World Builder development bed in real
time. You can also share such assets as
lights, cameras, and camera paths. I tested
this feature and found it to be very useful
and an incredible time saver.

Animating objects is refreshingly sim-
ple. First, click on the AutoKeyFrame but-
ton, then slide the timeframe slider while
changing some parameters (changing the
camera makes for an easy test). World
Builder tweens smoothly from keyframe
to keyframe. And nearly every parameter
can be keyframed in World Builder 3.0
Pro, enabling rivers to flow and clouds to
scud across the sky, all with a great deal
of realism.

Because rendering times are longer for
complex scenes, World Builder 3.0 is com-
pliant with network and multi-processor
rendering. Although I did need to reboot
my system a couple of times as system
resources hit the ceiling, overall memory
management seemed fine. This kind of
activity is de rigueur for 3D animators,

though you’ll almost certainly want to
have 512MB or even 1GB of RAM if
you’re seriously considering swapping back
and forth between World Builder 3.0 and
3DS Max.

World Builder 3.0 Pro is available for
Windows 98/NT 4.0/2000 for $999 (the
Standard version is $399). On September
1, Digital Element began shipping World
Builder 3.0 Pro with a plug-in to allow full
integration of Curious Labs’ Poser scene
files, saving further time and trouble.

XXXX | Animatek World Builder 3.0

Digital Element | www.digi-element.com

Tom Carroll is a 2D/3D artist who
would be quite happy if he could somehow
fit 25 (or more) hours in each day. Reach
him at jetzep@pacbell.net.

PIXOLOGIC’S
ZBRUSH 1.23

by spencer lindsay

E mploying aspects of both 2D and 3D
applications, Pixologic’s ZBrush is

one of the fastest modeling, rendering, and
texturing programs I have come across. I
was able to crank out fully finished 2D
artwork in a fraction of the time it would
have taken with my usual tool set of
Maya, 3DS Max, and Photoshop. How-
ever, ZBrush also features an Everest-like
learning curve.

Although the majority of the work that
is posted on Pixologic’s web site is ren-
dered 2D images, the 3D objects created in
ZBrush can be exported with textures and
coordinates to either .OBJ or .DXF for-
mats (or Pixologic’s proprietary .ZTL for-
mat). ZBrush also imports .DXF and .OBJ
formats, and both worked well in my pre-
liminary tests. A few developers are using
this function to modify their existing mesh-
es and textures.

The most difficult aspect of ZBrush is
becoming accustomed to the fact that the
objects that you create in 3D are tempo-
rary. Once you create an object and posi-
tion it, it’s locked onto the canvas in that
orientation (scale/rotation/translation) and
cannot be moved again. It’s as if you’ve
created text in Photoshop and then flat-
tened the text to your image. You can’t
change fonts once you’ve flattened the text.

After you’ve locked the 3D object in its
position in ZBrush, you can still apply
materials and textures and place other 3D
objects on its surface, but the original
model itself is no longer a true 3D object.
Think of it as modeling something in clay,
cutting it in half, and then mounting it on
a canvas. The 3D topology still exists, but
only from the plane of the canvas towards
you. Stay with me, it gets weirder.

The user interface is like nothing I’ve
ever seen before, and it can be pretty con-
fusing for those of us accustomed to the
File/Edit/View toolbar menus in the Mac
OS and Windows GUIs. There are plenty
of places to get lost. For example, in order
to texture-map an object with planar coor-
dinates, you must first dig through menus
to convert it into a polymesh object, apply
the map, and then dig down through sever-
al more pull-down menus to find the map-
ping type.

One of the more useful things about this
program is its ability to add 3D components
such as lights and materials in the scene and
affect the look of the geometry (“pixols”)
on the canvas. If you’re not satisfied with
the lizard skin you applied to the original
model, simply choose another material, tex-
ture, or color and paint it on. Adding and
changing lights is intuitive and easy and
affects the scene in a predictable way.

One excellent use for this application
would be to create and texture a character’s
head. Starting with a primitive sphere
object, you push, pull, scale, and warp the
surface with tools that make it feel very
much like sculpting with clay. Once you’ve
got your geometry built, you save it into the
tools menu and then begin applying texture
and material. The texturing is accomplished

Animatek World Builder 3.0 Pro employs the
familiar quad-screen interface.

With ZBrush and a warped imagination, creating
models such as this mutant heart is amazingly
fast and functional.

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

disappointing

don’t bother

12 n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r

XP R O D U C T R E V I E W S

via a complex series of tasks involving sav-
ing the mesh’s position, painting on it, copy-
ing the screen pixels to the texture map,
reloading the mesh, repositioning, saving the
position information, and then repeating for
all angles. This process is quite confusing at
first, but once you get the hang of it, it’s
amazingly fast and functional.

I found the macro-like Zscript tutorials
to be very useful once I learned how to
slow down the playback. One feature that
might be helpful in future releases would
be pause and speed controls, so that one
could skip to the appropriate sequence in
the tutorial. Zscripts are somewhat like
MEL or MaxScript in the way that you
can, as an artist, record and play back
operations that would otherwise be tedious
and time consuming.

The support for this product at the
Pixologic’s ZBrush Central web site
(www.pixolator.com) was invaluable. I reg-
ularly received three to five replies to my
newbie questions within a few minutes.
This forum is almost like a chat window;
it’s that fast. Without this support, the
process of learning this tool would have
been too much to bear.

If you’ve got your character or scene
sketched out and you know what you want
to create, ZBrush will have you cranking
out world-class images, models, and tex-
tures at a fraction of the time it takes with
your traditional tools. Just put aside a few
weekends to learn it.

XXX | ZBrush 1.23 | Pixologic

www.pixologic.com

Spencer Lindsay has been an art monkey
in 3D and games for over 12 years and is
currently looking for a job. Hire him.
Reach him at lindsay@etribestudio.com.

GAME DESIGN:
THEORY & PRACTICE
BY RICHARD ROUSE

reviewed by damion schubert

H ey, designers: You know all those
snot-nosed high-school students, QA

guys, and distant cousins that ask you
how to break into the game industry?
Richard Rouse has thankfully provided an
answer with his solid Game Design:
Theory & Practice.

The book’s chapters can be divided into
three categories, each worth discussing in
its own right. Possibly the most enjoyable
of these contains the six interviews that
Rouse conducts with bona fide legends of
the gaming industry, including Jordan
Mechner, Chris Crawford, Will Wright,
Steve Meretsky, Ed Logg, and Sid Meier.
All of the interviews are long and in-depth,
with detailed descriptions of the early days
of the industry and surprisingly candid
opinions on where we are now.

These interviews tend to contain more
war stories than practical advice, and most
are with those from the golden age of gam-
ing, which means that they offer little
information on how to make games for
today’s audiences, with today’s larger
teams and budgets. Nonetheless, the inter-
views are highly entertaining, and Rouse’s
more experienced readers will be wishing
that the book had more of them.

In the second part of the book, Rouse
breaks down five popular games: MYTH,
CENTIPEDE, LOOM, THE SIMS, and TETRIS.
These examinations vary in quality, with
the chapter on CENTIPEDE being perhaps
the single most eye-opening in the book, in
terms of design insight. More useful is sim-
ply the innate importance that Rouse man-
ages to place upon the examination of
completed games as a design tool.

All the remaining chapters of the book
discuss, in a very broad sense, the process
of coming up with an initial design for a
game, from conception to the completion
of the design document. This final section
also examines certain aspects of game
design that require a high degree of design-
er insight, such as artificial intelligence,
level design, and design of the game’s tools.

These chapters are a mixed bag. Rouse’s
chapter on AI provides an extremely strong
overview of the real design-side goals of
artificial intelligence, all without going into
indecipherable technical jargon. Most
young designers would benefit greatly from
reading this chapter. Even stronger is
Rouse’s discussion of prototyping and
organic design — hundreds of thousands of
industry dollars would be saved if more
teams approached the initial design of their
game in the manner that Rouse suggests. In
particular, Rouse counsels his readers to
avoid too much detailed design work
before the game has reached a certain

threshold of
technological
advancement.

Similarly,
his discussion
of play-testing
is extremely affirming, and most designers
will want to give a copy of this chapter to
their bosses. Most notably, Rouse advises
against using producers and marketing
people as official play-testers, and then
gives extremely obvious, logical reasons
why this is the case. I remember the words
“Preach it, brother!” leaving my lips as I
read that passage.

I found my self in sharp disagreement
with some of Rouse’s assertions. His chap-
ter on storytelling, in particular, often
seemed to be in strong opposition with my
own opinions on the subject. A matter of
ideology? Perhaps. But while I prefer non-
linear games, his blanket dismissal of linear
storytelling as a failed and outmoded con-
cept seems to ignore both the fact that
many games that have succeeded with lin-
ear storytelling, and also that nonlinear
storytelling has enormous design challenges
of its own. Similarly, his assertion that
games with strong, central, player-con-
trolled characters are doomed to inferiority
will fall on deaf ears to anyone who has
ever played and enjoyed DUKE NUKEM 3D.

Several subjects are surprisingly absent
from the book. Rouse fails to include any
real, in-depth discussion on player interface
design or multiplayer and online play. Even
more concerning, Rouse provides no exam-
ination or discussion of more modern, col-
laborative design techniques (such as Use
Cases and UML).

Overall, however, the book is very solid.
Most experienced designers will learn little
from the book, instead finding that it merely
encapsulates that which experience has
already taught them. Designers who are new
to the field, however, will find the book to
be a good primer on the art and business of
being a professional game designer.

XXX | Game Design: Theory & Practice

Wordware Publishing | www.wordware.com

Damion Schubert was the lead designer
of MERIDIAN 59 and the late ULTIMA

ONLINE 2 project. He currently acts as the
creative director of Ninjaneering. He can
be reached at damion@ninjaneering.com.

14

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | c u r t f e l d m a n

n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r

Y oot Saito’s SEAMAN was a genre-breaker when it
was released on Dreamcast. Now the title is bound
for Playstation 2 — and in Japan, for cell phone
users. We talked to Yoot Saito about SEAMAN, his
thoughts on wireless gaming, and what it feels like

to be the owner of a brand-new puppy — and we don’t mean the
kind that lives in a chipset.

Game Developer. Congratulations on the news that SEAMAN is coming
to Playstation 2.

Yoot Saito. Yes. Thank you.
GD. Will you and the Vivarium team be working on the programming?
YS. We are working with ASCII on the project. Vivarium, my

company, will be focusing on the AI, voice recognition, and logic.
The ASCII team is developing the graphics part and the Playstation
2 part. The Playstation 2 environment is not easy, but ASCII has
already been involved in Playstation 2 development. I think it’s a
very good collaboration.

GD. Where does your fascination with AI and voice recognition come
from?

YS. SEAMAN didn’t come from a fascination with voice recogni-
tion or AI. I had a passion to realize my original idea — creating a
pet that talks back to its owner.

GD. But this isn’t your average pet.
YS. My new dog, Ma-ru, is very cute. People are likely to think

that if he could speak he would say, “Hi, Yoot, I’m Ma-ru and I’m
very happy today.” But one day I thought it might say, “What’s
up, man? I’m not very happy today. Don’t talk to me now.” The
process and the approach we needed was through voice recogni-
tion and AI.

GD. One thing is for sure, Seaman ain’t cute.
YS. Let me explain. Seaman is not speaking rudely on purpose;

rather, he speaks colloquially. He’s just casual, speaking like regu-
lar people do on the street. Those people are not always rude, just
more direct than most other speakers.

GD. Do you sense a lack, or even fear, of creativity in the game
space in Japan?

YS. Last night I went to see Final Fantasy. The computer graph-
ics were great. It was a CG demo reel. But the script, stories, and
background stories were very . . . well, let’s just say they didn’t
compare to the graphics. Currently, game development is getting
bigger and bigger. The technical part and the story part, or plan-
ning part, are two different components. Fifteen years ago, say,
programmers did the music, script, and everything else. But now,
game development is getting more like the movie industry. We
have so many programmers, graphic designers, and hardware-ori-
ented people, designing and the scriptwriting talents are not as
well developed.

GD. What sort of encouragement did you get when you were working
on SEAMAN?

YS. When you are starting a new project, you don’t want to take
big risks, so you are likely to depend on the existing genres. When
you create a brand-new genre, you need quite a lot of encourage-

ment to take a risk. Most of the
publishers here are public com-
panies, and they can’t take such
huge risks. They want to follow in
the footsteps of the existing genres
and stick with FINAL FANTASY or
some other existing franchise.

GD. How did you secure the
backing for SEAMAN?

YS. We [went to banks and]
explained a nonexistent game,
and they said they could not loan
us the money because the market was very unclear — this sort of
game had never existed, and there was no data to consult. It was
heartbreaking news, but it was also encouraging. If the bankers
had liked it, it would have meant it had already existed.

GD. And then came Sega.
YS. Yes. Based on the contract with Sega, we were able to get

loans.
GD. SEAMAN is also going wireless. How will SEAMAN perform in the

wireless space?
YS. SEAMAN helps people deliver messages that you can’t easily

tell. Like confessions.
GD. It sounds kind of . . . dark.
YS. It’s not always like that. If you are not encouraged to say “I

love you,” or “Would you marry me?” or “I think it’s time to get
divorced” [Seaman can help]. Seaman understands what you want
to say, and on behalf of you he speaks about that and gets the
answer and brings it back. It helps with communication. Actually,
I don’t know if it’s helpful or disturbing.

GD. How does it work?
YS. With the SEAMAN program, he asks some questions and you

tell Seaman how you want your message to be told. Seaman under-
stands what you want to say, goes to the other side, and explains
the situation in his own way.

GD. Sounds like Seaman does a little interpretation along the way.
YS. That’s right.
GD. How far along in the process are you?
YS. We’ve done the basic R&D on the PC and we are porting that

onto a server so that all the cellular users can use it. Only the cellu-
lar program couldn’t have voice recognition, so now it’s text-based.

GD. Do you view the cell phone as a new gaming console?
YS. You wouldn’t believe how many telephone calls I’ve

received, people asking, “Are you interested in mobile games,
wireless games?”

GD. Do you think it is an authentic gaming platform?
YS. My point of view is that the wireless platform is a tool,

something like a PC. When new software is being developed, peo-
ple get excited. After the first thousand games, after one or two
years, after the honeymoon is over, you’ll like games less and focus
more business and more utilitarian uses. Game development on
that platform will be a part-time job. q

Yoot Saito: SEAMAN Unbound

SEAMAN creator Yoot Saito

w w w . g d m a g . c o m 17

j e f f l a n d e r G R A P H I C C O N T E N T

A t this time of year, the days
are becoming colder and
darker (even in Southern
California, where I live).
Children are trying to take

advantage of the few hours of light by
playing in the trees, even while the last few
leaves are clinging on. It makes me wonder
when we are going to get to the point
when an interactive character can actually
climb a tree. Sure, BANJO-KAZOOIE had
that bear that could shimmy up a tree, and
I think AMERICAN MCGEE’S ALICE included
a section in which players jumped from
branch to branch. But in that game, each
branch looked more like a flat concrete
ledge with a bark texture on it. I am talk-
ing about getting up there, really grabbing
a branch, and swinging around from limb
to limb. The zoologists call it brachiating,
but for games it’s just broken.

If our primitive game characters are ever
going to swing from the trees, they’re
going to need to do some seriously quick
evolution. They need to evolve much more
sophisticated skeletal systems and methods
for animation. We still build characters
largely for standing on the ground upright
(in an evolutionarily ironic twist). Howev-
er, the “backbone” in most animated char-
acters is a reasonable enough skeleton.

Generally, the artist that designs the
character also creates the skeletal hierarchy
for that character. Art departments at
many companies have standards that dic-
tate how a character should be created.
For example, some like to start with the
hips. It’s also fairly common for people to
build skeletons with the skeletal root on
the ground, between the character’s feet.
This approach makes collision detection a
bit easier. When this position hits the
ground, you know the character’s feet are
fairly close. Of course, that doesn’t mean

that the feet will actually end up on the
ground. You see this all the time in games.
A 3D character will jump off a ledge onto
a flight of stairs. The collision point
between the feet is used to determine when
the character has hit the ground. But the
feet don’t know about the ground, so it is
not only possible but also pretty likely that
one or both of the feet will have passed
through a step.

The animation system in most games is
kinematic, meaning that it is driven directly
by animation data without any physical
interaction with the world. Generally, not
much is ever done to correct the problems
of kinematic animation. Most game devel-
opers feel lucky if they can get all of their
animation data exported from their anima-
tion program and actually working in the
game. Keeping the feet from penetrating
the ground is often a luxury that is the first
thing scratched off the to-do list when the
bugs start rolling in.

There have been several games that use
a standard, simple system to detect when
the character has hit the ground, but then
project rays out from the base of the legs
to detect where the feet would actually hit
the ground. They then can use inverse
kinematic methods to place the feet cor-
rectly. An even more sophisticated system
would calculate the center of mass and
make sure that the character is in balance,
as I discussed in this column last month
(“A Fine Balancing Act,” October 2001).

Making It Happen

A s you recall from last month, I
described a system by which it is pos-

sible to calculate the center of mass of an
articulated 3D character and then move
the feet of the character so that the center
of mass is supported by the feet. This

J E F F L A N D E R | Jeff has decided the whole walking upright thing was a mistake, and he is heading back to
trees. Luckily his laptop has a long extension cord and is scratch resistant. Swing on over to his branch at
jeffl@darwin3d.com.

Falling
from

the
Trees

Limitless

creativity,

once

impossible,

is now just

a matter of

experience,

time, and

money.

Falling
from

the
Trees

approach is fine if you have a situation in
which you don’t mind the feet actually
moving in order to support the character.
Many times, however, we might prefer to
have the character just shift its weight
rather than move the feet for balance.

This approach requires that I move the
object from the point of view of a fixed
support point, meaning that the root of the
animation hierarchy must be one of the
feet. Last month, I discussed how to imple-
ment this method simply by selecting a
dominant foot as the root of the animation
system. However, this implementation is
clearly not a very easy way to animate a
character. You would need the dominant
foot to position the character, and then
every time you moved that foot, the entire
character would change position.

Let’s take a look at this graphically. I
have an articulated character that I want
to represent. For simplicity, I’m going to
pick a biped. As you can see in Figure 1,
the character is composed of objects in a
hierarchy that branch out from the hips
and chest.

Because all of the body parts radiate
from the central point, it’s convenient to
animate the character by moving the cen-
ter points first, with all the branches fol-
lowing along. So if I organize the character
into a parent-child hierarchy based on the
hip as my root point, I get the branching
tree structure that you see in Figure 2.

This type of animation setup is com-
monly used in game production. As I said
before, often a root bone exists above the
hips in the hierarchy, but generally, the
hierarchy in Figure 2 is what you will see
for animated characters.

From this structure, you can see why
I’m not able to dynamically rebalance my
character by simply moving the hip. If the
position or orientation of the hip moves,
the entire rest of the tree will shift around
as well. Thus, the feet will move and need
to be repositioned using inverse kinematic
constraints to keep them in the same place
on the ground.

Now, if I select a dominant foot to be
the root of the hierarchy, I get a different
tree structure that looks like I grabbed the
character by a foot and let it hang there, as
you can see in Figure 3.

You can see from this structure that if I
were to manipulate the hips, most of the
character would still move but the domi-
nant foot that is anchored to the ground
would stay in place. The secondary foot
would still need to be placed with inverse
kinematics, but at least the main support
leg wouldn’t move.

I could just build my character hierarchy
in this form and have my animator simply
animate the character this way. But this
approach has a few problems. The first is a
practical production problem — the anima-
tor is probably going to want to strangle
me. This approach is not the easiest way to
move a character, and most artists really
like having the flexibility to set up the ani-
mation system the way they want it

Another problem is that while picking a
foot to be dominant will probably work
well in some cases, other cases dictate that

the selection of dominant foot won’t work
well at all. For example, you may have a
walk cycle where the dominant foot is in
the air when the character falls, or a kicking
animation where the character leads with
that dominant foot. The ideal solution
would be to allow the selection of a domi-
nant foot to happen automatically, and then
the character hierarchy can be reordered so
you can start the balancing process.

Shaking the Tree

So, I need to come up with a way to
dynamically change the animation

hierarchy so that I can select the root of
the system as needed. This kind of task is a
pretty common one. I remember that one
of my first computer classes in college had
similar problems. Given a hierarchical tree
structure, rebalance the tree by selecting a
new root bone — basic programming 101
stuff. Rebuilding the hierarchy is the easy
part; all you need to do is select the new
root. Then you walk through, up the hier-
archy, making each parent bone a child
instead. All the children at each bone
remain children. Then, when you reach the
current root, you are done.

This approach will get the hierarchy the
way I want it. However, because the ani-
mation is dependent on inheriting rota-
tions and positions from the character

n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r18

G R A P H I C C O N T E N T

FIGURE 1. The basic character setup.

head

neck

chest

hips

ruarm

ruleg

rlegl

rfoot

luleg

llegl

lfoot

luarm

rlarm llarm

rhand lhand

FIGURE 3. The foot as the root.

neck

chest

hips

ruarm

rlegl

rfoot

luleg

llegl

lfoot rlarm

rhand lhand

head

luarm

llarm

ruleg

neck

chest

hips

ruarm

ruleg

rlegl

rfoot

luleg

llegl

lfoot rlarm

rhand lhand

head

luarm

llarm

FIGURE 2. The hip as the root.

hierarchy, just rebuilding the tree is not
enough. Once everything is reparented, the
entire character is completely messed up,
as you can see in Figure 4.

So what is the correct solution? I need
to recalculate the translations and orienta-
tions so that the original position is main-
tained. I can begin with the root bone.
When I select a new root bone, such as the
right foot, I know the final position and
orientation of the foot by where it sits in
world space in the initial tree structure. I
create the world transformation matrix for
the foot by going through the initial tree
and accumulate the rotations and transla-
tions into a final world-space matrix. This
matrix is assigned to the foot and becomes
the new foot matrix.

Then I proceed up the tree, looking at
the parent of each bone. So I start with
the right lower leg (RLLEG). I need to
determine the position for this bone. In
order to place RLLEG correctly, I actually
have to use the initial values for the right
foot (RFOOT). Originally, the right foot
was translated down from the root posi-
tion of RLLEG (the knee) and there was
no initial rotation.

To reverse the position of RLLEG, I just
need to assign it the inverse of the transla-
tion and rotation of the new parent,
RFOOT. In this case, I just negate the ini-
tial translation. If the bone also had a
rotation, I would just invert that rotation
as well. In my case, I am using quaternions
for the bone orientation, but it would be
just as easy to use Euler angles or a matrix
and invert them for this step. Degree-of-

freedom restrictions are also reversed in
the same way (more on that later).

If any children are encountered along
the way, they just remain children. Once I
have reached the original root, I am done.
I have just established the algorithm for
reversing a hierarchy.
1. The new root is assigned the world

space orientation and translation of the
original position.

2. Each parent of the new bone becomes a
child of that bone and inherits the
inverse of the original translation and
rotation of its new parent.

3. Children of the new bone remain chil-
dren, untouched.

4. When the original root is reached, I am
done.
With this algorithm, I am able to dynam-

ically rebuild the animation hierarchy with-
out affecting the pose. I just select the root
that I want as the anchor position and run
the routine. I can then use my dynamic bal-
ancing system from last month, reset the
hierarchy, and blend the balanced pose
right in with my regular animation.

In fact, having this algorithm available
in my run-time animation system allows
for a great deal of flexibility. I am no
longer constrained to solving inverse kine-
matic chains that the artist sets up ahead
of time. I can dynamically create and then
solve an IK chain that, for example, goes
from one of the feet to the opposite hand.
A lot of possibilities exist.

It’s Always Something

O f course, as with any algorithm, there
are some issues. The iterative inverse

kinematics systems that I use for coming
up with these dynamic poses require some
help. I need to define the degree-of-free-
dom restrictions for each link. This keeps
the system from ending up in a position
that is not actually possible for the char-
acter to achieve in real life.

When the hierarchy of the skeleton is
reversed, the degree-of-freedom restrictions
need to be reversed as well. This step can
lead to some ambiguities. It’s possible to
have a sequence of bones for which I
haven’t defined a set of degree-of-freedom
restrictions. This problem is particularly
apparent where multiple bones come
together to a common parent.

Otherwise, the dynamic hierarchy cre-
ation is an easy-to-implement and very
useful tool. It will certainly become a stan-
dard part of character animation systems
as more dynamic animation becomes com-
mon in interactive applications.

Parting Shot

W ith a bit of a heavy heart, I have
decided to take a break from this

column. It has been an amazing experience
that I have thoroughly enjoyed since I
wrote my first piece for Game Developer
all the way back in January 1998. Over
the years, we have covered a great deal of
ground together. I hope you have enjoyed
following the exploits of an independent
game developer as he struggled to stay on
his board and post a good score riding the
game technology wave.

I cannot emphasize enough what an
amazing time it is to be working in this
exciting and dynamic field. We finally have
the power to create worlds with limitless
creativity. Things that were once impossi-
ble are now just a matter of experience,
time, and money. Research in cutting-edge
game technology has become a hot topic
not only at the Game Developers Confer-
ence, but also at the big leagues of graph-
ics research, Siggraph, as well as at schools
and research facilities around the world.

Through the columns in Game Developer
as well as articles on Gamasutra.com, game
development issues have reached a world-
wide audience. I have been stunned by the
amount of e-mail I receive from around the
globe. People interested in games are work-
ing on projects of every level in each corner
of the planet. At last check, I have received
e-mail from more than 100 countries, from
places as varied as Iran, Tonga, Siberia, and
Iceland. All the international gamers have
humbled me with their amazing knowledge
of English, as well as technology. I haven’t
been able to write back to everyone yet, but
I hope to soon.

So, get out there and create. There is a
whole lot of work to get done. Just make
sure that when you come out with that
great new graphics algorithm, you share it
with the gaming community. Write an arti-
cle, give a talk, rant away on Usenet.
Great things happen when we all learn
from each other. q

n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r20

G R A P H I C C O N T E N T

FIGURE 4. The character before (left) and after
reparenting.

RRIIGGGGIINNGG

w w w . g d m a g . c o m 23

W hen you want believ-
able character ani-
mation in your
game, proper char-
acter setup, or “rig-

ging,” is essential, second only to good
animation talent. The general consensus
among seasoned animators is that a good
virtual rig for your virtual puppet is the
foundation for good animation. If you cur-
rently work as a character animator in
today’s frugal game industry, then you are
likely to be responsible for rigging your
own CG character as well. The challenge
of rigging a quadruped or something
anatomically more complex than a biped
can be difficult using basic animation
tools. With a bit of creative thinking, you
can go beyond the basic humanoid rig.
Having been given the responsibility for
finding reliable solutions to such chal-
lenges, I’d like to share with you my find-
ings and several proven approaches to
some pleasant experiences.

Let me start by defining the term “rig-
ging.” Rigging is the process of outfitting a
character mesh with an armature or skele-
ton hierarchy that enables you to deform
the character mesh and thus pose it for ani-
mation. The animated skeleton is the under-
lying structure that drives the movement of
geometry, thus creating a virtual character.
A successful character setup for a game
hero or evil creature takes into account all
of the worst-case motion sequences that the
real-time character will encounter through-
out the game. Your rigged actor should be
ideally suited to handle all animation
sequences that will be visible from the in-
game camera’s point of view.

Unlike our counterparts in the film busi-
ness, game industry character animators
are not as specialized and usually wear
several hats during any given project.
Shortcuts and plug-ins will often help
expedite and streamline an art path while
addressing some common issues experi-
enced by production animators. The bene-
fit of personally creating a custom rig for
each character before animating it is that

you can go back at any time and address
any problems you may have with your
original structure for optimal animation
performances. Quite often, very subtle yet
undesirable behaviors with a rig don’t
show up until the animator is well into
creating sets of animations. One example
is the correct positioning of each rotational
joint. You will want an art path for creat-
ing CG characters that is flexible enough
to allow you to go back and make such
changes without losing existing keyframed
animation that took some time to create.

Features of Desire

I n a production environment, the right
tool can take the work out of work. A

common and obvious tool of choice for
many game companies developing real-
time character animation is Discreet’s
Character Studio (CS). It has been a staple
tool for me on many projects for several
years. CS is a plug-in for 3DS Max that
provides professional tools for building
and animating 3D characters quickly and
easily. CS has a broad range of tools that
aid in the creation and animation of virtu-
ally any type of two-legged character.
With one of its two components, conve-
niently called Biped (the other component
is Physique), you can create a basic biped
skeleton hierarchy instantly and then alter
its structure using Biped’s parametric fig-
ure controls. You can add tails and pony-
tails for animating ears, jaws, or insect
antennae. It’s also possible to add modi-
fiers to Biped objects for creating precise
bone shapes. In addition, the software
uses many built-in 3DS Max features to
provide a foundation for character skin
modeling, as well as general manipulation

tools for object transformations and
keyframe editing.

As a time-saving animation aid within
CS, you can apply footsteps (Biped’s foot-
step-driven keyframe animation feature) or
free-form animation from one Biped char-
acter to any other Biped character, regard-
less of height, proportion, or even structur-
al differences between them. A simple yet
useful feature is Autogrid, which lets you
build Biped skeletons with their feet plant-
ed on top of other objects. You can also
use Autogrid to place footsteps on uneven
terrain. Another powerful feature is the
Motion Flow Editor, which makes it easy
to create long, complex animations by
breaking them down into smaller motion
clips that you can link together. You do
this by stringing together multiple Biped
animations (based on .BIP files) using a
motion flow graph that resembles a simple
flowchart. CS also supports the use of
ever-popular motion capture data.

Who You Calling a Biped?

A s game environments become more
ambitious, the number and variety of

characters that inhabit them increases.
Many fantasy, science fiction, or even true-
to-life game experiences today call for crea-
tures that are not humanoid or bipedal in
structure at all. This requirement presents a
challenge for any animator that is more
comfortable with human animation or soft-
ware packages or plug-ins (such as CS) that
are better geared towards bipedal character
motion. Again, with a bit of creative appli-
cation, animators can use a modified CS
Biped to get their rig work done without
changing or adding to the existing skeleton
hierarchy (Figure 1).

T I T O P A G Á N | Tito is a seasoned 3D artist/animator work-

ing at WildTangent and teaching at DigiPen in Seattle. His

e-mail address is tpagan@w-link.net, and his web site is

www.titopagan.com.

BBEEYYOONNDD BBIIPPEEDDSS

t i t o p a g á n A R T I S T ’ S V I E W

Every time I think about what I can do
with a CS Biped, I arrive at the same con-
clusions. With a bit of experimentation, I
can create just about any rig I need. When
necessary, I also link regular Max bones to
a Biped. This extends the use of a Biped
structure beyond the default batch of the
more than 75 predefined bones it normally
provides. But why limit yourself to just this
set? For example, I often use my extra
bones at the extremities of my skeleton
structure and animate them using forward
kinematics (Figure 2). This approach makes
it easier for me to continue using a Biped,
as I am accustomed to doing, and reap the
benefits of using all the features that come
with this plug-in. By doing so, I can still do
things such as save the majority of my
Biped motion and reapply it to the same
character or any other similar character
physiology to save myself production time.

Made for Real Time

A s the former lead animator on Gas
Powered Games’ soon-to-be-released

RPG DUNGEON SIEGE, I was responsible for
rigging and animating many unusual crea-
tures. This PC title is Gas Powered Games’
first in development and has all the mak-
ings of a robust good-versus-evil real-time
RPG. We used CS as well as many of the
built-in features in 3DS Max to get the job

done. The development team also called
upon the character concept work of tradi-
tional artist Joe Kresoja (Figure 3). Besides
the typical clichéd bipedal humans for this
game genre, Joe dreamed up many weird
and unusual beings that really challenged
several artists and animators.

These fantastic fictional creatures, which
range in status and scale from minions to
bosses, were given a wide range of abilities
by the game design. Many of their perform-
ances required much more than a typical
walk cycle. Joe, I, and a few others would
model, texture, and rig each of our assigned
characters and ultimately animate them
using free-form animation. Free-form ani-
mation is an option that CS gives you to
animate character poses with or without the
aid of footsteps. In free-form mode, you set
all the keys manually. We had a blast mak-
ing characters fly, crawl, hop, swim, float,
slither, run, die, attack, fidget, taunt, and
react to pain. We took turns acting out
what our characters would do physically to
accomplish their individual performances.

For such projects, I typically animate a
game character using 12 frames per second
instead of 15, 24, or 30. This produces less
keyframe data, thus creating a much small-
er file. For real-time game characters, the
keyframed rotation and/or position data
for each rotational joint of this skeleton is
read directly by the game’s animation sys-

tem. This underlying rig deforms the mesh
that is attached, or weighted, to it. Using
as few bones as possible also contributes
to smaller file sizes. This optimization is
preferred by most real-time game develop-
ers, especially those developing web-based
games that still require smaller assets for a
faster download. Having fewer keyframes
in general also makes it much easier to
manage and manipulate your keys
throughout the motion creation process.

When using a CS Biped, however, you
are confined to a minimum set number of
skeleton objects you can use in your struc-
ture’s parameter setting. For example,
Figure 2c actually has a Biped Spine, Neck,
and Head bone in the middle of the char-
acter that I’m not using. Because I can’t
make them go away by setting their
parameter values to 0, I hide them all or
scale each one down to make it very small
so that it is visually out of my way. I freeze
such objects to avoid accidentally selecting
them while working with their adjacent
bones. I usually avoid weighting any of my
vertices to these bones.

I find that with fewer frames to animate
an arm wave or a tail swing smoothly, I
am challenged with ensuring that I ani-
mate each joint rotation with a more linear
interpolation between frames. To assist
myself in the process, I often display the
trajectory for each joint, found in the
Display Properties section of the Display
panel (Figure 4). Biped offers a similar fea-
ture for its bone objects (see the white
arrow in Figure 5) but only displays it
when that bone is selected. For a smooth
and more natural motion, avoid having
spikes or too much noise in your trajection
lines. Sometimes your best option is to
remove unimportant keys that don’t con-
tribute much to the motion path shape or
timing of the motion.

n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r24

FIGURES 1A–1D (top). A Character Studio Biped structure will bend and contort to satisfy your needs.
FIGURES 2A–2C (bottom). You can augment your skeleton rig with extra bones to accommodate a
more complex character design.

FIGURE 3. Joe Kresoja’s character concept.

A R T I S T ’ S V I E W

If you would like to see some of these
finished character models up close and
fully animated, I have posted examples on
my web site. I invite you to view them in
real time, as they were intended to be seen
in a game. I use free-form animation with
a combination of forward and inverse
kinematics. A Biped supports both.

The hand and foot bones of a Biped are
similar to IK handles or end effectors.
Whether you need them for your rig or not,
having them exposed at all times makes it
easier for the animator to grab them and
animate the entire limb at once. As an ani-
mation aid, these hands and feet can also be
locked down in space so that they hold
their position through any number of
frames (see yellow arrow in Figure 5). You
can later “bake” that position in by placing
new keys in the frames where you’ve
anchored them via the Anchor tools.

The latest version of Character Studio,
version 3, has implemented additional fea-
tures that really improve this process, espe-
cially the selectable IK pivots for the feet
and hands. It makes free-form animations
with IK blends for the feet much more flex-
ible, and also makes animating quadrupeds
using a biped very easy and precise.
Previous versions of CS had problems with
unwanted sliding of feet and feet moving
through the surface they were supposed to
be walking on. CS3’s improved IK key con-
trol makes it easy to fix feet firmly in place.

Are We There Yet?

Setting up a custom rig for a new
model requires much trial and error.

Getting it to work well isn’t a trivial issue.
Don’t be afraid to try something and then
abandon it moments later if you find it

isn’t working
properly. This
means that you
must test your
new rig as much
as you can at
every step. I can’t
stress this enough.
Get into the habit
of attaching your
mesh to your rig
quickly and as
often as you can.
If you are creating

this character for a real-time game, make
certain that your team can provide you
with the internal tools, exporter plug-ins,
game or animation engine, and so on, to
view these new assets in the intended con-
text. Besides the immediate gratification
you will enjoy while viewing them, you
and your team will appreciate knowing
that your art path and character specifica-
tions are optimal.

Figure 6 shows a character, modeled and
textured by Rick Winter, for which I recent-
ly built a rig. Because it is a fairly complex
model, I felt I had some options about how
I could structure this model using a combi-
nation of two Bipeds or a combination of a
modified Biped with a few bones.

I had two things to consider before I
could start. I knew that this model was
intended for WildTangent’s new web-based
game EVILUTION and would be viewed in
real time from within a web browser. First,
I had to make my rig with as few bones as
possible. Then I would need to test its
effectiveness by laying down some keys
and exporting it using WildTangent’s 3DS
Max exporter.

The second thing I had to be certain of
was that I could create an atypical rig that

would use only one skin modifier (Phy-
sique) to attach the character mesh to the
skeleton (the exporter currently doesn’t
support using two or more). After a few
tests, I abandoned the rig in Figure 6b
that uses two Bipeds linked together with
a link controller.

I also knew that this character would be
seen on a cliff overhead, so I could get
away without having the feet locked down
perfectly. I settled for the rig in Figure 6c.
Here I have a bone hierarchy attached to
the Pelvis of my Biped with two end effec-
tors at the other end. These help to “hold
down” the back legs while I bob the char-
acter up and down.

The alternative to good planning can
be painful in this line of work. Nothing is
more frustrating than being given a list of
characters to begin cranking out without
first knowing certain technical issues,
such as whether you are well over budget
in polygon count, how many frames you
can use per animation sequence, whether
your character will eventually hold a
weapon or interact with other characters,
the correct orientation for your character,
and so on. These may seem like simple
problems, but they do add up quickly in
the loss of man-hours that become week-
end makeup time.

The revisions involved in this kind of
work can put a damper on the develop-
ment experience. It’s always fun for the
first few months until overcoming these
technical issues becomes challenging. This
is another important reason to use the
tools that can help make up for lost time,
or at least ease the pain of having to
revisit a large cast of character anima-
tions over and over again. Such tools can
make the process as iterative as possible
and easier to troubleshoot. q

n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r26

A R T I S T ’ S V I E W

FIGURE 4 (left). Display trajectory. FIGURE 5 (right). Animation aids.

FIGURES 6A–6C. There is always more than one approach you can take. Make the time to find the
right one.

w w w . g d m a g . c o m 29

W I R E L E S S G A M I N G

A t a time when the
game industry
stands at the thresh-
old of a long-await-
ed hardware transi-

tion that will carry us forward
into next few years, why take
this opportunity to address
the still relatively nebulous
world of mobile gaming?

Most game developers have come
to rely on the trusty tide of Moore’s law
to drive PC hardware advancement, and
on console manufacturers to give their
hardware a respectable life cycle in the
market in order to recoup as much of
their hardware investments as possible.
Compared to the traditional game mar-
ket, there are as yet relatively few known
quantities in the rapidly developing
mobile game space.

Still, the market has matured just
enough at this point that it is possible to
shed a reasonably accurate light on the
state of the industry from the perspective
of those operating on the front lines of
mobile game development. These people

have heard all the analysts’ and big
mobile companies’ lofty statistics and
assurances of astronomical global growth,
the magnitude of which hearken back to
the early promises made about the rev-
enue potential of e-commerce or online
gaming or widespread broadband adapta-
tion — and we know where those stand
today. But, as developers in this space
have discovered, mobile gaming presents
some unique opportunities unlike any
we’ve experienced before.

Whether you’re currently developing
games for PCs or consoles, or have already
sallied forth into the mobile game develop-
ment wilderness, the following pages pres-
ent a circumspect view of the current state
of mobile game development around the
world, from current and next-generation
technologies, to the reinvention of game
design, to working and nonworking busi-
ness models, to the promises and lessons
that the mobile gaming markets in Europe
and Asia present. The growth of mobile
gaming will ultimately affect the rest of the
traditional game market, whether you’re
ready for it to or not.

W I R E L E S S G A M I N G

Wireless Game Development: Coding Without a Net

Wireless Game Content: How to Think Big In A Small World

The Business of Mobile Games

The Wireless Scene in Europe

Japan Gets Hooked on Java

30

34

36

38

40

It’s a

Wireless
World

D eveloping for new plat-
forms is business as usual
in the electronic gaming
industry, but in today’s rel-
atively mature marketplace,

the number of platforms and standards to
develop for is quite small, and new devices
appear with a relatively low frequency.

The infant field of game development
for wireless devices is a different story. As
with any up-and-coming industry, there are
many competitors hoping to set the new
standards. Even within given platforms
and SDKs, there are numerous variations
in everything from screen resolution to
control-key layouts.

The transition from developing titles
for PCs and consoles to developing for
wireless and mobile devices is a challeng-
ing one; it is also rewarding. At Nuvo-
Studios, we have developed (or are in the
process of developing) titles for a number
of these new platforms. By the time you
read this, we should have 12 titles for
Binary Runtime for Wireless (BREW), 8
titles for J2ME, 7 titles for Palm OS, and
10 for Windows CE complete and in the
marketplace.

Our primary experience in wireless
devices has been with mobile phones, prin-
cipally with the J2ME and BREW environ-

ments. However, and although most of the
examples herein relate to our mobile
phone game development, observations
about Palm and Windows CE are included
throughout.

The Control System

D evelopers of console games in partic-
ular know that control systems are

not a strange place to begin discussing
development. The controls are of such pri-
ority that it’s vitally important to figure
out how the user might operate the game
before even considering the technical feasi-
bility of executing the title. After all, if
there’s no way to control the game, there’s
no point in doing it.

For example, while a mobile phone
might at first glance appear to have more
possibilities as an input device than even
a dedicated game controller due to its
large number of buttons, these keys are
obviously not designed or laid out like a
joypad or other game controller. The but-
tons are often recessed to prevent acci-
dental presses and are typically clustered
very tightly together. Furthermore, while
many recent models have joypadlike
directional buttons, these are often small
and imprecise.

When we developed a suite of solitaire
games for the BREW-enabled Kyocera

QCP 3035 phone, the clumsy soft keys
made a PC-like point-and-click cursoring
system difficult, and the card layouts pre-
cluded using the buttons to move a high-
lighter from card to card in any kind of
intuitive fashion. Our solution was to
address the most obvious interface of the
phone, the number keys. We placed small
numbers alongside each playable card, and
players simply press the indicated button
to act on the card. As cards are removed,
these numbers “follow” the card forma-
tions as if on small tracks. This means no
action in the game requires more than one
or two button presses, whereas attempting
to move a cursor around would have been
awkward and frustrating, if not visually
unpleasant due to some of the other limita-
tions of the phone’s graphics (which we’ll
discuss later).

Palm and PocketPC devices can be just
as bad or worse than mobile phones.
Palm-compatible devices typically have a
two-directional button pad (up and down)
and four additional buttons. The buttons
immediately flanking the up-and-down
buttons can be used as left and right to
simulate a typical four-way directional joy-
pad, but their placement isn’t very suitable
to this. And, as with the phones, they are
often recessed and difficult to press.
PocketPCs typically have a four-way direc-
tional pad, but these often have their own

n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r30

Wireless Game Development:

Coding Without a Net

W I R E L E S S G A M I N G d a l e c r o w l e y , m a u r i c e m o l y n e a u x , w

Lack of transparency forces use of composite
graphics containing all elements required for
that portion of the screen.

D A L E C R O W L E Y | As founder and CEO of NuvoStudios, Dale was responsible for the
studio’s initial push into the wireless and mobile space. He established early relationships with
Motorola, Nokia, and Qualcomm and has guided NuvoStudios through the production of
more than 75 games on six platforms. Dale can be reached at dale@nuvostudios.com.

M A U R I C E M O L Y N E A U X | Maurice is the director of production for NuvoStudios. With
more than 13 lucky years of game development experience, Maurice applies his extensive back-
ground in art, animation, scripting, design, and project management to all of Nuvo’s games.
Maurice can be reached at maurice@nuvostudios.com.

W A Y N E L E E | Wayne is senior engineer at NuvoStudios and has been responsible for many of
the company’s key technology innovations. Wayne can be reached at wayne@nuvostudios.com.

R A M E S H V E N K A T A R A M A N , P H . D . | Ramesh is NuvoStudios’ CTO and has helped
lead NuvoStudios through the many technology hurdles that an emerging-market game devel-
oper faces today. Ramesh can be reached at ramesh@nuvostudios.com.

problems, such as the difficulty of actually
depressing the buttons. A traditional joy-
pad offers comparatively little resistance.

A further consideration beyond the
ergonomics of the available controls on
mobile and wireless devices is that the
underlying hardware has limitations that
no self-respecting game-controller designer
would allow. A common one with hand-
held devices is that you cannot press more
than one key simultaneously. The iPaq
H3650 suffers from this, and on that
device the problem is so serious that it
effectively prevents the developer from
using its directional pad analogously to a
videogame joypad, because while both are
four-switch devices, the iPaq cannot read
two switches as being pressed at once to
make a diagonal, whereas a joypad can.

Not being able to read input from two
or more buttons simultaneously can be a
severe limitation for action games. For
example, when we ported a version of
TETRIS to the J2ME platform, one of the
issues that arose was that the arcade and
home versions of the game allow you to
simultaneously move and rotate a piece by
working two controls at once. Since the
target phones did not allow for two con-
trol inputs, we had to consider slowing
down the game in order to allow the play-
er to make these moves separately.

Device Speed and
Memory

T he processor speeds on devices cur-
rently on the market are obviously

much lower than what we are used to
when writing games for PCs — with the
possible exception of the newer PocketPCs.
This affects everything from the speed at
which data can be loaded to the
frame/refresh rate, and seriously limits the
ability to animate characters or otherwise
rapidly change the screen.

As with most small devices, there are
two kinds of memory, the storage memory
(usually flash RAM or static RAM), and
the memory in which the application runs
(dynamic RAM).

On mobile phones the storage RAM is
usually extremely limited, and, because
each phone allows the user to store multi-
ple applications, the allowable maximum
sizes for a given program can be extreme-

ly small. One device we considered devel-
oping for permitted an application size of
no more than 10K of storage space!
Others are more generous, with upwards
of 60 to 80K. Upcoming color devices
promise more memory still, but if their 8-
bit color graphics take up eight times as
much space, then the problem might be
just as severe.

Another reason application sizes have to
remain small is that these devices typically
have limited heap space, restricting the
amount of dynamic memory for variables,
stack, and graphics.

BREW is especially nasty with memory
currently, because, as on the Kyocera QCP
3035, the application isn’t just executed in
dynamic RAM; the entire application is
copied from storage RAM into dynamic
RAM and then executed. You’re effectively
penalized twice for a big application.

The memory constraints of the Palm OS
are nowhere near as restrictive as for
BREW, but if you’re supporting older
hardware and older versions of the Palm
OS, be aware that heap space is very limit-
ed, as low as 36K for Palm OS 3.0. On the
plus side, any Palm-powered device run-
ning OS 3.0 only supports black and white
or grayscale graphics, reducing your mem-
ory requirements. Any color Palm device
uses at least Palm OS 3.5, which has a
much roomier heap. And, like the Kyocera
3035 phone, images stored in resources do
not use any of the dynamic RAM until
they are loaded into the heap, so you
should unload images as soon as you are
done using them. Also, data stored in data-
bases are placed in storage memory, so
consider putting large tables in .PDB (Palm
Database) files.

Since all shipping Pocket PCs have at
least 16MB of RAM, storage and heap
space is less of an issue on these devices
than others.

Power-Save
Considerations

V irtually all wireless devices have
power-saving modes where they shut

themselves off, deactivate the screen, or
turn off the screen’s backlighting. On
most devices this doesn’t cause any loss of
data or necessarily terminate the applica-
tion running.

However, on some devices not only does
the power-save mode turn off the screen’s
backlight, but the entire device slows! We
first noticed this on our WWF MOBILE

MADNESS game for the J2ME Motorola
i85s, which has a “spectator” mode that
lets you watch a match without playing.
Unless you thump a key now and then to
keep the phone in an active mode, the
match starts to look like a slow-motion

w w w . g d m a g . c o m 31

LISTING 1. On the Kyocera QCP 3035 BREW
phone, example B is an order of
magnitude faster than example A.

// A: Draw background with a bitmap

IIMAGE_Draw(f_bg, 0, 20);

// B: Draw equivalent background with just

rectangles

IDisplay *d = a.m_pIDisplay;

AEERect r;

r.x = 0;

r.y = 20;

r.dx = SCREEN_WIDTH;

r.dy = 45;

IDISPLAY_FillRect(d, &r, RGB_BLACK);

r.y = 65;

r.dy = 14;

IDISPLAY_FillRect(d, &r, RGB_WHITE);

r.dy = 1;

r.y = 47;

IDISPLAY_FillRect(d, &r, RGB_WHITE);

r.y = 53;

IDISPLAY_FillRect(d, &r, RGB_WHITE);

r.y = 59;

IDISPLAY_FillRect(d, &r, RGB_WHITE);

r.y = 63;

IDISPLAY_FillRect(d, &r, RGB_WHITE);

w a y n e l e e , & r a m e s h v e n k a t a r a m a n

instant replay. Because the device keeps
shifting gears on players, it can be difficult
for them to get into the rhythm of the
game. There’s no simple solution to this,
because while you might consider tuning
your game so that the maximum time
between required button presses is less
than the inactivity timeout for the device,
fortunately, sometimes these timeouts are
user-adjustable.

Resolution and Screen
Technology

T he limited resolution of wireless
devices is as much a factor on phones

as PDAs. Palm compatibles have a typical
screen resolution of 160x160 pixels, with
palettes of varying ranges. Some are four
grays only; some are 16 grays without OS
support for 16; some are 16 with OS sup-
port for 16, and some are 256-color.
Mobile phones have resolutions as low as
89x99 pixels in black and white, and then
again up to 128x142 in 256 colors.
However, while the difference between a
high-end phone and a low-end PDA might
not seem so pronounced, most users of
such devices don’t have the top-of-the-line
models. The reality is that the mass market
is more likely to be in the low and middle
ranges for each.

The type and quality of the LCD screens
is another factor. Aside from the speed at
which the hardware can update the screen
memory, there is the issue of image persist-
ence. Active-matrix displays refresh much
more quickly than cheaper, passive-matrix
displays. This often leads to momentary
after-images and serious blurring problems
on the passive-matrix devices. So what
might look fine on a Palm m505, which
has an active-matrix screen, will blur sig-
nificantly on a passive-matrix device such
as the Handspring Visor Deluxe. This
means you either have to avoid having lots
of fast-moving objects or scrolling, do dif-
ferent games for different devices (which
no sane product manager will allow), or
just shrug your shoulders and accept the
fact that the game will look great on some
devices and messy on others.

Another big factor is that many of the
devices in question do not have native sup-
port for images with transparency, nor do
the SDKs available for them have any tools

for simulating it. This means that writing
games that include traditional sprites is
difficult. On some platforms, custom sprite
engines can be used with acceptable per-
formance hits, but on others, such as the
J2ME phones, the amount of processor
time required for doing transparent blits
was prohibitive for us.

For WWF MOBILE MADNESS we first
came up with the solution of keeping the
characters moving on a single plane with a
uniform background, and included parts of
the background into the characters’ art,
thus giving the impression of transparent
blitting where none exists. This worked
fine on the Motorola i85s J2ME phone,
but not so well on the Qualcomm QCP
3035 BREW phone. The former could
push upwards of 12 frames per second,
but on the latter we were lucky to get two
frames per second doing the exact same
animation. To eke as much speed as possi-
ble out of the QCP 3035, we abandoned
restoring the background bitmap when
characters moved and instead used
BREW’s rectangle-drawing function to
rebuild the background quickly, effectively
doubling the frame rate. This kind of solu-
tion requires appropriately designed art in
order to be feasible.

Graphics Development

W hereas PC and console graphics
have become increasingly detailed

and colorful, the types of graphics dis-
playable on most wireless and mobile
devices are more akin to computers circa
1984 to 1989. Making good-looking
graphics with these limitations requires
skills that for years have been out of

demand in the mainstream. The ability to
draw clear, concise images in extremely
low resolutions and with very small
palettes is very important. And, if you’re
animating characters at these small sizes,
you need artists who can draw dynamic,
easily read poses; otherwise a kick might
look like a dance step, and a punch like an
arm wave. Your typical Photoshop-trained
artist is not necessarily suited to this realm,
where the placement of a single pixel is
often the demarcation point between clari-
ty and mud.

Naturally, the most challenging screens
to develop for are the 1-bit black mono-
chrome displays. The difference between 1-
bit black and white and 2-bit grayscale is
surprising. In fact, it can be enormous. The
antialiasing provided by the latter can
make a huge difference in the clarity and
detail of images, especially on low-resolu-
tion devices.

Portability

A nother key design issue that needs to
be considered when developing games

is the often dramatic difference among var-
ious handhelds within the same family in
terms of their speed, memory, and other
specifications. For example, while there are
several BREW and J2ME phones on the
market or coming to market, the differ-
ences between the low and high end can be
considerable, especially where graphics are
concerned. As a game developer, you do
not always have the luxury of developing
different versions of a game for each of the
target devices. Often this means that you
end developing for the lowest common
denominator — the cheapest phone or
PDA. That becomes your baseline, and
then you make adjustments for specific
devices.

Graphics are a place where a lot of
adjustments are necessary in both produc-
tion or art assets and game code. For
instance, the version of MUMMY MAZE we
did for JAMDAT required entirely differ-
ent art for the 89x99 1-bit QCP 3035 and
the 128x142 8-bit Sharp TQ-CX1.
Furthermore, the differences in screen reso-
lution required different coordinate offsets
for all the graphics, and even the help sys-
tem text had to be reworked to make the
best use of the larger screen.

n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r32

W I R E L E S S G A M I N G

Test of graphics developed for multiple devices of
different bit-depths.

Case Studies:
Developing for a New
Generation of Phones

D eveloping games with BREW. The
BREW SDK, developed by

Qualcomm, is intended to facilitate the
development of applications that can be
easily ported to various handheld devices.
The BREW SDK consists of an emulator
and a set of APIs that can be used to
develop the required application. With the
BREW toolkit (which we found only
works well with Visual C++) you first
build binaries for the emulator, which take
the form of Windows DLLs. Once the
DLL has been created you can begin test-
ing the application on the emulator.

The emulator is a Windows program
that implements the BREW API.
However, we found that it does not truly
emulate the configuration found on the
phone. For example, we found that the
sound on the emulator did not corre-
spond with the sound that came out of
the phone. Similarly, we found that
refresh rates on the emulators were differ-
ent from the actual refresh rates on the
phones.

In BREW, we found it useful to put
large tables into a file, because these files
are not copied into dynamic RAM (unlike
the code for the application itself).

When you are using bitmapped graph-
ics in BREW, loading images from a
resource is reasonably quick. As a plus,
images that are sitting in such a resource
don’t take up dynamic RAM, so you can
often get away with loading images only
on demand and discarding them soon
after you’re done, even during an anima-
tion. For example, if you have a large
image strip (one graphic containing many
cels), consider splitting it up into several
smaller image strips and then loading
each strip just as it’s needed.

Once you are ready to test the game on
the actual phone, you need to compile
and link the code into ARM binary form
using the ARM BREW developers’ pack,
which includes a compiler, linker, and
assembler. It is this binary that you actu-
ally download into the phone using a seri-
al link. While in theory, whatever com-
piles for the BREW emulator should also
compile when using the ARM developer

kit, there are eccentricities in the compil-
ers that can cause headaches for the
developer. For example, the use of global
variables was not disallowed when we
were writing for the BREW emulator.
However, this was flagged by the ARM
compiler and required us to rewrite some
of our code.

In general, expect the same kinds of gen-
eral differences you would expect when
going from one manufacturer’s C compiler
to another.

Developing games with J2ME. In J2ME,
consider using public variables in your class-
es, rather than using accessors (getValue(),
setValue(), and so on). Yes, technically doing
so is “bad” programming practice, but it
saves you space because in Java, the imple-
mentation and the use of accessor methods
add to the size of the code.

To maximize performance, be extra
careful to have things in memory only
when they’re in use. For example, if you
have a splash screen for the game intro,
discard it after it’s done displaying.
Furthermore, consider reducing the num-
ber of classes used if your design allows it.
You can combine classes into one if they
vary only slightly in behavior. There’s an
unavoidable size overhead for each class
you use, even if it does nothing.

It’s also important to remember that
loading and installing applications into
J2ME phones is a relatively slow process.
If you have to do numerous revisions in
QA, this may result in delays because you
can’t quickly test new builds.

Development on the
Edge

D eveloping applications for small
handheld devices brings with it a

unique set of challenges and opportunities.
The newness of these devices means that
many questions about them (such as how
to develop for them) have not yet been
fully answered. Sometimes we have found
ourselves developing for devices that do
not exist outside of someone else’s lab. As
a result, while developing content we have
often found ourselves trailblazing in just
doing things such as shaking the screen.
Frustrating, yes, but ultimately rewarding.
Such are the drawbacks and benefits of
working on the cutting edge. q

w w w . g d m a g . c o m 33

LISTING 2. SmallerClass results in compiled
code that is 30 percent smaller than
BiggerClass.

public class BiggerClass
{

private int f_health;
private boolean f_isGroggy;
private int f_forwardDir;
private int f_index;

public void setHealth(int h)
{

f_health = h;
}

public void setGroggy(boolean groggy)
{

f_isGroggy = groggy;
}

public int getIndex()
{

return f_index;
}

public void setForwardDir(int f)
{

f_forwardDir = f;
}

public static void
ExampleUsage(BiggerClass obj)

{
obj.setHealth(100);
obj.setGroggy(true);
obj.setForwardDir(obj.getIndex()

== 1 ? 1 : -1);
}

}

public class SmallerClass
{

public int f_health;
public boolean f_isGroggy;
public int f_forwardDir;
public int f_index;

public static void
ExampleUsage(SmallerClass obj)

{
obj.f_health = 100;
obj.f_isGroggy = true;
obj.f_forwardDir = obj.f_index ==

1 ? 1 : -1;
}

}

hai·ku (hı´koo) n. pl. haiku, also hai·kus
A Japanese lyric verse form having three
unrhymed lines of five, seven, and five
syllables, traditionally invoking an
aspect of nature or the seasons.

Here’s an example:

Cell phone games are fun
A VC falls in the woods
Alone, will kids pay?

D eveloping for the current
U.S. marketplace for wire-
less gaming is not far from
writing three-line Japanese
poetry in terms of limita-

tions. In fact, on some phones the text will
probably have to wrap and the user will be
required to scroll down to see the whole
thing. O.K., on some other phones, the 96-
pixel-wide by 30-pixel-tall black and white
bitmap of the tranquil forest will also be
displayed above the poem. Of course,
depending on the network, the phone may
also require a connect sequence between
the text and the picture, and you can burn
another three to five seconds waiting. And
that’s the way it is on WAP today.

The BLAM! team has developed titles
for the PC, Playstation, 3DO, desktop
browsers, Palm Pilots, Commodore 64,
Atari ST, Amiga, and Sega Saturn plat-
forms. Coming from today’s world of
high-end graphics, relatively large amounts
of memory, and custom processors on con-
soles, it is easy to see only the limitations
of what can be achieved on phones. Admit
it, on any platform it’s hard to know what
makes those fickle audiences out there like
or dislike a particular game. And consider-
ing the extremely narrow canvas of cell
phones, you might wonder why you
should even try to make games on these
tiny devices at all. The bottom line is that
he formula for a fun, compelling wireless
game title is difficult at best to define. Yet
there are undeniably compelling reasons
for making games for cell phones.

First of all, the cell phone market is con-
tinuing to grow. The numbers are there
from the highly paid market research

firms, so I won’t take the time to justify
that claim. More importantly for the game
development community, people with
phones are looking to fill with entertain-
ment that short sliver of time spent waiting
for the bus or in line at the bank. Even
more importantly, kids will always play
videogames on any device that has a screen
— just because they can.

Second, the cell phone is a personal,
connected communication device, making
it a truly unique platform for game
development. The traditional console or
even the handheld videogame experience
has predominantly been a solo or at best
a very small group experience (four
players or fewer, unless you were lucky
enough to experience eight-player
BOMBERMAN on the Saturn). In contrast,

your average
cell phone
game player
has the poten-
tial to be con-
nected with a
community of
millions of
other users, all
the time —
most people
leave their PCs,
game consoles,
and even hand-
held consoles
at home much
of the time.

The growth
in the mobile
phone market
makes it a
lucrative ven-
ture to try to
capture even a
small part of
the massive
potential audi-
ence. Also, it

doesn’t take 2-plus years of slogging away
at art, design, and programming to com-
plete a project and get to market. But cre-
atively, it is the connectivity and personal
relationships that people have with their
cell phones that compels some of us
mobile game developers to wade through
the sea of incompatible standards, middle-
ware, and platforms to create the content.
The challenge is to make a game that cap-
tures the imagination (often that’s all you
get) and turns game players into addicts.

Early examples of WAP titles such as
Hangman, Trivia, and Solitaire have
evolved and given way to the current gen-
eration of WAP titles, all of which have
elements of community and/or persistent
character development. Audiences have
burned many minutes of their precious air
time playing games, because they were
given an opportunity to care about their
standing in the community on a high score
board, for example. On the persistent-
character development front, once players
invests some time in a character and can
continue to make that character more
powerful by spending time playing, they
will then obsessively burn time to keep
going. Ask any Everquest junkie with a
50th-level or better character. That is true
in the wireless world as well, where popu-
lar games allow users to create and build
their character’s power indefinitely. Even
on a cell phone, players can, for example,
build up their character’s Broadsword Skill
and thus, be able to take on more power-
ful enemies, thus opening up new areas of
the game, and then getting more items,
and so on.

Remember, today’s talk about WAP is
only about today’s content development.
As we see phones enabled with J2ME (Java
2 Micro Edition) and BREW (Binary Run-
time Environment for Wireless) become
adopted by the marketplace, we can easily
expect to see cell phone games look and
play more like Game Boy games. Soon we

n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r34

Wireless Game Content:
How to Think Big

In A Small World

W I R E L E S S G A M I N G j a y m i n n

BLAM!'s SnapShot Live
Football, published by
Sorrent, is available on
SprintPCS and AT&T
Wireless.

J A Y M I N N | Jay co-founded BLAM! in 1995. He and his staff are currently focusing their
efforts on developing entertainment content for desktop browsers and mobile devices. BLAM! has
alliances with publishers, distributors, and carriers, including JAMDAT Mobile, Digital Bridges,
Pogo.com, Iwon.com, Qualcomm, Sun Microsystems, Sprint PCS, and AT&T Wireless.

w w w . g d m a g . c o m 35

will be able to play almost anything that
the early handheld games were capable of
displaying, with scrolling, tiles, sprites, col-
lision systems, particles, and animations.
And they will all be connected.

As audiences start upgrading their cell
phones to more powerful hardware, with
more memory, color screens, Java or
BREW enabled, and faster, always-on con-
nections, we will quickly see games reach a
whole new, increased level of pervasive-
ness. The choice of games that a user
downloads or subscribes to will be part of
the customization of their phones, as much
as ring tones, background pictures, and
custom plastic cases are today.

The games will be with you wherever
you go and will alert you, for example, if a
neighboring clan of warriors is attacking
your territory. You will meet your team-
mates to participate in a large-scale air
attack in your jet fighter as part of a mas-
sive campaign. You will be part of a live
soap opera, administered by a real-time
editor at the server integrating your input
and sending back the resulting script via
SMS. This is all possible today.

Farther off in the future, with global
positioning information becoming part of
the available technologies, we’ll get the
chance to tweak the content formula.
Players in a game will then be able to opt in
to allow for their physical location informa-
tion to be a part of the game world. As you
drive away from a certain city block, you
move out of range of your opponents’ virtu-
al weapons, for example. Voice-activated
menus or even whole adventures based on
voice interactions may also be available to
augment the wireless gaming experience.
Finally, fatter wireless pipes will let develop-
ers create truly robust games with massive
client applications delivering everything
from audio to streaming video.

All that is coming, some say sooner,
some say later. But we must develop for
today, and build up for the future. In the
course of doing so, we must remember
that we cannot approach wireless game
development from trying to figure out how
to replicate the traditional videogame
experience on a personal device. That
approach will inevitably result in frustrat-
ing, unplayable titles that do not take
advantage of the uniqueness of this new
medium: connected and mobile users.

Our job, then, becomes the task of creat-
ing an intuitive interface that does not
require a whole lot of explanation on a
very limited screen space and hardware
while capturing the essence of connected,
community-based games on the cell
phones. Interface design, immediately fol-
lowing game design and technology itself,
will be the make-or-break factor in the

adoption rate of a given title. If audiences
don’t get it, or they have to fumble around
to find which buttons to press, then the
title hasn’t got a chance. Add to it that we
are also trying to capture a multiplayer,
community-based experience, and therefore
has more complex requirements for inter-
face, we have the true challenge for game
development in the wireless space. q

D istributing games through
wireless networks is a new
frontier for both the online
and handheld game devel-
oper. As with any new plat-

form, there is a great deal of hype about
the potential for the mobile games business
coming from hardware vendors, phone com-
panies, and Wall Street analysts. How does a
game developer (or publisher) identify the
real opportunities in this nascent market?

Rule #1:
Follow the Money

T he mobile games market represents the
largest new interactive entertainment

opportunity for developers and publishers.
Around the world, a staggering number of
consumers have access to wireless devices
— currently upwards of 600 million peo-
ple subscribe to wireless voice services, and
that number is projected to grow to well
over 1 billion by 2005. In certain Asian
and European countries, wireless services
have achieved population penetrations
greater than 60 percent.

While wireless phone manufacturers
currently embed a few primitive games in
their devices (such as Nokia’s ubiquitous
SNAKE), the real opportunity for mobile
gaming is tied to the growth of wireless
data services and the corresponding prolif-
eration of data-enabled phones.

Consumers can use data-enabled phones
to access a vast array of content and serv-
ices. Phone technology is advancing
rapidly — new phones have large color
screens, memory, processing power, and an
always-on connection to the Internet at
decent data rates. Games will be one of the
leading applications driving this new mar-
ket — currently, games are generating as
much as 25 percent of data usage in cer-
tain territories — and some analysts have
projected a global mobile games business
as large as $6 billion annually developing
over the next five years.

True, we’ve all seen these kinds of pie-
in-the-sky projections before in connection
with online gaming — and that certainly
didn’t turn out the way the analysts pre-
dicted back in 1995. So why should we

expect mobile gaming to fare any better?
There is one key difference between the
mobile games market and the online games
market: money. Unlike online gaming,
which is either supported by advertising or
which requires consumers to hand out
their credit card numbers on the Internet,
mobile gaming leverages the pre-existing
billing relationship between consumers and
wireless phone carriers.

Every month wireless carriers send out
millions of bills to consumers. Those bills
contain voice charges, as well as other serv-
ice charges (such as directory assistance
calls, or monthly fees for data services). The
carriers’ ability to generate cash by billing
consumers provides the basis for the rev-
enue opportunities of game developers and
publishers (and I might add provides the
leverage carriers use to maintain their posi-
tion as gatekeepers of content).

In Japan, wireless carriers such as NTT
DoCoMo are capable of billing on behalf
of content publishers. The major European
and North American carriers are all work-
ing on their own “bill on behalf of” sys-
tems, which will begin rolling out over the
next year. Once these systems are in place
around the world, game publishers will be
able to get paid for their content directly.
In the absence of new billing systems, con-
tent providers have only indirect revenue
opportunities — sharing the revenue carri-
ers derive from per-minute or per-message
access fees, or monthly service charges.

Where’s the Platform?

P erhaps the most overused term in the
wireless games business is “plat-

form.” Companies large and small have
concentrated on creating game platforms,
attempting to generate predictable revenue
streams through platform license fees and
other associated toll charges. In fact, noth-
ing like a console platform exists in the
mobile games business.

Most companies trying to create plat-
forms for mobile gaming misunderstand
the way console platforms work in the
videogame business. In the videogame con-
text, companies like Sony and Nintendo
absorb massive capital losses manufactur-

ing hardware, develop a retail channel for
software, and spend hundreds of millions
of dollars on marketing. The proprietary
control of content and per-unit license fees
commanded by console manufacturers
acknowledges the huge financial risks they
have taken to propagate their platforms.

In the mobile game business, no single
company stands in the position of a Sony
or Nintendo. Instead, handset manufactur-
ers, applications environment providers,
Internet portals, component suppliers, and
middleware companies have an interest in
defining platforms for mobile games. In
general, publishers and developers should
be skeptical of proprietary platforms at
this early stage of market development.

The lack of standards makes the mobile
games business look more like the PC
games business, without a Microsoft to set
de facto standards like DirectX. For exam-
ple, there are at least a half dozen incom-
patible browsers in mobile phones. Java
Virtual Machines are sometimes imple-
mented inconsistently in mobile phone
handsets sold by the same carrier. The wide
diversity of wireless applications environ-
ments and devices, and the corresponding
lack of compatibility, has required compa-
nies such as JAMDAT and others to invest
heavily in middleware technologies to
enable multi-platform development, data
gathering, and billing integration.

n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r36

The Business of Mobile Games

W I R E L E S S G A M I N G m i t c h l a s k y

JAMDAT’s GLADIATOR is an multiplayer wire-
less experience based on ancient Rome

M I T C H L A S K Y | Mitch is CEO of JAM-
DAT Mobile, a leading provider of mobile
entertainment and enabling technologies. Prior
to joining JAMDAT, Lasky was executive vice
president of worldwide studios for Activision.

Alphabet Soup

I n the absence of broadly-accepted plat-
forms for content distribution, develop-

ers need to be familiar with the most pop-
ular messaging systems, browsers, and
next-generation applications environments.
These technologies provide the base level
of functionality needed to enable mobile
games, but our view of the marketplace
today is that no one platform will domi-
nate. You will need to diversify your devel-
opment chops to survive.

The simplest way of distributing games
to data-enabled phones is through the
Short Messaging Service, or SMS. An SMS
message is typically a 160-character mes-
sage that can be read on a mobile phone.

Next step up in the wireless food chain
are data-enabled phones that contain
Internet “mini-browsers,” which offer a
significantly better platform for gaming.
There are currently more than 40 million
phones with Internet browsers (WAP or
HTML-derived) in the Asian markets,
approximately 5 million in North
America and perhaps 10 million in
Europe.

Then there are the newest standards,
J2ME and BREW. J2ME and BREW repre-
sent a transition from browser-based gam-
ing to gaming based on downloaded, or
pre-loaded, executables. Using phones
equipped with these applications environ-
ments, consumers can download games to
their phones and run them locally.

The download model for J2ME and
BREW games also offers the most com-
pelling revenue model for game providers.
In Japan, for example, consumers can
download Java games and play them for
some specified amount of time for ¥100 to
¥300 (US$0.85 to $2.50) — with 80 to 90
percent of the purchase price flowing back
to the game publisher. A similar download
and revenue model for BREW content will
launch this fall in the United States.

Carriers Rule

T here are many key players in the mobile
content value chain. Developing and

publishing mobile entertainment applications
involves navigating a complex web of carri-
ers, handset manufacturers, operating sys-
tem and application environment providers,

component manufacturers, portals, content
publishers, and tools companies.

The wireless carriers are the most pow-
erful players in the mobile game market-
place. They not only function as the
retailer for software (like Best Buy, Wal-
Mart and Electronics Boutique in the
retail games business), they also subsidize
and sell the hardware devices that can
work on their networks. Often, they dic-
tate the applications environments that
will ship in those devices. In Asia and
North America, carriers are particularly
powerful. In Europe, however, the wide-
spread use of SIM cards to enable net-
work access has put handset manufactur-
ers like Nokia in a much stronger posi-
tion versus carriers.

The high cost of building and maintain-
ing nationwide wireless networks has led
to a lot of carrier consolidation, leaving
only a few important carriers in each terri-
tory. For example, three carriers (NTT
DoCoMo, KDDI, and J-Phone) control
Japan; four carriers (Sprint PCS, AT&T,
Verizon, and Cingular) hold approximately
70 percent of the U.S. market. Therefore,
in order to have a successful distribution
strategy, publishers have to have solid rela-
tionships with the major carriers. It fol-
lows that developers have to have solid
relationships with publishers.

The Role of Publishers

P ublishers (and other aggregators of
entertainment content, like portals)

play an important role in the mobile game
business. Publishers maintain the hosting
and serving environments that carriers rely
on to provide games to end users. Also,
because carriers are unwilling to under-
write the cost of creating content, publish-
ers provide capital to developers in the
form of development advances, just as in
the retail game business.

Quality assurance testing is one of the
most valuable services a publisher can pro-
vide. And as in the videogame console
business, a publisher’s experience navigat-
ing the certification process can be
extremely helpful. Publishers also provide
access to localization services — which are
vital to reaching the global consumer base.

How should developers evaluate poten-
tial publishers? The quality of a publisher’s

carrier relationships is probably the most
important criterion. Are they getting paid?
How is their reputation in the carrier com-
munity? Are they supplying something
other than games (such as enabling tech-
nology) or participating in trials of next-
generation systems?

What about the existing retail game
publishers? In Japan, major publishers like
Bandai, Namco, and others are distribut-
ing mobile games. To date, of the U.S. and
European publishers only THQ, a tradi-
tional powerhouse in handheld gaming,
has announced official plans to publish
mobile games.

Taking the Plunge

I s developing for the burgeoning but
untamed wireless sector for you?

Creatively, mobile games offer some unique
advantages. The games themselves are typi-
cally small (under 100KB for downloadable
games), and it is possible for an individual
or very small development team to create a
product from scratch in a small fraction of
the time it takes to develop a full-featured
PC or console game.

While the current audience for mobile
games is small, it is growing rapidly. Wire-
less carriers are investing heavily in data
services, because the profitability of voice
services has been eroded by stiff competi-
tion, and carriers view data services as the
way to recapture this lost revenue. Thus,
carriers are aggressively promoting data
capabilities and are looking for “killer
apps” — like games — to drive consumer
usage of data services.

Most importantly, the fundamentals of the
mobile game business are very attractive.
Mobile gaming combines the best attributes
of online gaming (lower development costs,
rapid time to market, no physical inventory)
with the best attributes of the retail games
business (access to an efficient distribution
network, the availability of paying cus-
tomers), and has the added benefit of a global
mass market of consumers that will number
in the hundreds of millions in the next five
years — an order of magnitude larger than
the most successful videogame consoles.

The opportunities are there. Choose your
platforms, publishers, and partners with
care. But don’t delay; the sector is picking
up speed with each passing day. q

w w w . g d m a g . c o m 37

E urope has long been at the
forefront of the creation and
adoption of the wireless
Internet, but Europe offers
several significant differences

from the other major markets in the
world, both technically and from a busi-
ness standpoint. What can U.S. developers
learn from our experiences in the U.K. and
on the continent?

Technology. Unlike the U.S., where sys-
tems such as CDMA (Code Division Multi-
ple Access) and TDMA (Time Division
Multiple Access) prevail, and where moving
between states can make your cellphone as
useful and attractive as a brick, the whole
of Europe, as well as most of the Middle
East and Africa, benefits from a single, uni-
fying standard, the Global System for
Mobile Communications, or GSM. This
provides a common underlying structure for
all mobile communications, including voice
and data calls. Users cross from cell to cell,
network to network and country to country
(almost) seamlessly. However, the call
charges will probably kill you. GSM is
making progress in the U.S., so Americans
may yet come to know the joy of SMS.

The current generation of wireless
Internet phones make use of the Wireless
Application Protocol (WAP) to access the
Internet. Graphics are limited, with mono-
chrome screens offering an average resolu-
tion of approximately 90x40 pixels.
Transmission speeds throughout Europe
are currently based on the standard rate of
9.6K per second. Networks offering so-
called 2.5G transmission using the General
Packet Radio Switching (GPRS) system are
rolling out in many territories across
Europe, although GPRS-enabled handsets
are not yet widely available.

Before the end of 2001, phones offering
on-board Java processing and grayscale/
color screens should become widely avail-
able throughout Europe. In the wireless
industry, this is as exciting as the move
from 8 to 16 bit. No, really.

The marketplace. Here’s where things get
more familiar. As in the U.S., almost all of
the operators throughout Europe have cre-
ated their own portals to provide wireless
(and fixed) Internet services to their sub-

scribers. Recent research has shown that
most of the traffic on the wireless Internet
in Europe to date has come through these
operator portals. In addition, several major
mobile network operators in Europe cover
multiple territories.

These portals offer the best possibility
for making money from game and enter-
tainment services, since they tend to have
operator backing and can offer revenue-
sharing deals for inclusion on their menus.

Currently, most of the operators in
Europe are charging users for the air time
they generate while playing games. This is
already in the process of changing, with
most of the portals somewhere along the
line of introducing specific payment
schemes such as monthly subscriptions,
micro-payments, or voucher systems. This is
fairly important, since it creates a direct
value chain with the developer at one end
and the end user at the other.

Gaming. Almost all of the games
available to European mobile phone
users to date have made use of

Short Messaging
Service (SMS) or
WAP services. All of
the major WAP por-
tals now offer a
selection of both
types of games to
their users.

To date, the SMS
games available have
been fairly limited,
offering a variety of
quizzes and adven-
ture games, but
more complex and
sophisticated games
are due out later this
year and in early
2002.

Even WAP games
have grown increas-
ingly sophisticated
over the past 12
months as more

imaginative developers have entered the
market.

There are several companies throughout
Europe who are already working on titles
that offer advanced new services such as
massively multiplayer capability (STAR

TREK: PRIME DIRECTIVE, for one) and loca-
tion-based gaming (BOT FIGHTER). Each
user connects with a central server when-
ever they make a move, therefore creating
multiplayer games is much simpler on
mobile devices than on almost any other
platform. Add to this the fact that all play-
ers are having the game delivered to them,
regardless of different devices, optimized
for different screen sizes and input devices,
and delivered to each player in his or her
native language, well, you see why wireless
is going to be such as big deal globally.

To date, Europe has suffered from a mis-
guided perception that services such as
stocks and share prices and weather reports
would really pull in the punters, but this is
looking less likely. Recent research carried
out by the European wireless trade journal,
Mobile Internet found that on one of
Europe’s top WAP portals, gaming account-
ed for more than 16 percent of the total
traffic generated on the portal, beating
services such as messaging, sports, and even
pornography in terms of popularity.

The future. The European mobile market
is evolving at a staggeringly fast rate.
Before the end of 2001, new handsets with
improved graphics, browsers, GPRS sup-
port, and Java processing will be available.
The operator-run portals will be charging
users via micro-payment or subscription
schemes and advertising key titles available
through their portals. As awareness of
mobile gaming grows, we expect the num-
ber of major publishers and media compa-
nies involved in the industry to multiply.
Within the next 12 months, several multi-
national games and media companies may
set up their own branded gaming channels
to take advantage of new users.

The bottom line. Time to get over the
screen size, guys. q

n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r38

The Wireless Scene in Europe

W I R E L E S S G A M I N G b r i a n b a g l o w

B R I A N B A G L O W | Brian started his games career at DMA Design in Scotland. After
spending a highly educational year and a half at Take 2, he returned to life in Scotland and the
cutting edge of gaming by joining Digital Bridges as global communications manager.

STAR TREK: PRIME

DIRECTIVE developed
by Wirelessgames,
being played on a
Panasonic GD93

N ow, don’t take it personally,
but Japan is way ahead of
the pack when it comes to
wireless gaming. Japan
leads the world in wireless

technology and, more importantly, in craft-
ing mobile Internet access into a hugely
popular, revenue-generating industry, and
games are poised to be one of the major
drivers of technology adaptation and usage.

Games coded in the Java programming
language represent ground zero of the sec-
ond wave of Japan’s mobile game industry.
The past 10 months have seen the three
giants of the cellular space, NTT DoCoMo,
KDDI, and J-Phone, announce or roll out
Java-based services. For the
first time anywhere, Java on
Japan’s wireless Web is
enabling compelling, mas-
sively multiplayer games to
be delivered direct to play-
ers’ pockets, packaged in
tiny keitai (cell phones) and
weighing in at under 50KB.

NTT DoCoMo launched
its i-Appli Java service in
January 2001, and i-Appli
usage has been rising with
i-mode usage. As of July 31,
DoCoMo had 26,085,000 i-
mode subscribers, and Java
users accounted for some 21
percent of all i-mode users,
according to the company.

Japan’s wireless webs. DoCoMo’s i-mode,
KDDI’s EZweb, and J-Phone’s J-Sky services
are packet-switched, low-bandwidth, and
always on, and all deliver text, graphics,
and other web content to a micro-browser
resident on the handset, which also serves
as the user interface for e-mail, short mail,
and telephony control functions.

Carriers allow official site owners to
charge subscribers between ¥100 and ¥300
(US$0.81 to $2.44) per month to access
their sites, which are listed on default
menus preprogrammed into the phones.
The fees are added to the monthly cell
phone bill, and, since the carrier serves as
billing agent, the site owners pay a commis-
sion, presently 9 percent on i-mode, for
example; the balance goes to the site owner.

Java rules. Java games appear to be well
suited to the existing mobile infrastructure.
For Java game sites, a typical fee is ¥300
for three downloads per month. In addi-
tion, carriers earn revenue from data pack-
ets sent to and from handsets — which is
one reason why Java, and in particular,
data-swapping, multi-user, and role-
playing gaming, is being pushed by the
carriers (developers, take note!).

The advent of mobile Java has seen a
tremendous burst of activity by major and
smaller game developers and publishers
alike this year. Two-year-old Tokyo-based
Cybird is a good example of the new breed
of mobile content developers that focus

solely on wireless. The
upstart content developer
supports some 22 sepa-
rate sites spanning shop-
ping, sport fishing infor-
mation, surf conditions,
maps, and ring tones.

Traditional console
and PC companies like
Bandai are also jumping
on Java. Bandai’s i-Appli
channel features the
GUNDAM and YAMATO

series of Java games, with
Java GUNDAM being an
excellent example of co-
branding between game
platforms (versions
already exist for

Playstation and Dreamcast), and other
media (there’s a cartoon series on VHS and
DVD as well).

What’s important for creating successful
games, Bandai PR executive Yukiko Taka-
hashi points out, are features that include
player rankings (national and regional), fre-
quent updates, integration of real-time
information (such as location data), and
making sure that games are “cool.” Tokyo-
based wireless analyst Andrea Hoffmann
agrees, adding that Java games are more
successful if they “have different levels and
rankings, can be easily started and stopped,
and if game status can be transferred to a
larger PC or console version.”

Perhaps the most exciting development
in Japan’s mobile Java industry has been

the emergence of wireless-only, Java-based,
massively multi-user games. Independent
developer Dwango appears to have scored
a hit with SAMURAI ROMANESQUE, in which
players take on the role of 15th century
samurai, foot soldiers, generals, and other
archetypes from Japan’s era of the war-
lords. Dwango claims the game can
accommodate up to 500,000 players,
implying a significant degree of server-side
development, and making the game highly
network-dependent.

One of the game’s most interesting fea-
tures is the integration of real-time weath-
er data provided by the Japan Weather
Association. Game settings vary as local,
real-world weather conditions change, so
when it is (really) raining, a character may
not be able to use firearms (the gun pow-
der would be wet) or travel very quickly
(the roads would be muddy). Bandai has
also integrated weather information into
several of its games, using data provided
by Weathernews.

But a realistic assessment of Japan’s
mobile gaming market reveals that not all
is happiness and light. The carriers accept
only a few companies as official content
providers, who can then list their Java
games on the official menu and earn
download revenues. The rest are no better
off than on the Web at large when it
comes to turning their titles into cash.

And while wireless is fast upending the
tried-and-true console game distribution
channels, in the new free-for-all turf of
wireless content development, independent
game developers worry about where they
stand in the value chain of game content
distribution. Absent the established devel-
oper-publisher relationship, will brand
names become even more important?

Nonetheless, mobile gaming offers
tremendous opportunities for growth and
the subscriber numbers are certainly
impressive — there’s no other market like
it, anywhere. q

n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r40

Japan Gets Hooked on Java

W I R E L E S S G A M I N G d a n i e l s c u k a

D A N I E L S C U K A | Daniel (daniel@japan-
inc.com) has lived in Japan since 1994. He is
editor-at-large for J@pan Inc magazine and
edits the magazine’s “Wireless Watch” weekly
e-mail magazine covering wireless in Japan.

SAMURAI ROMANESQUE, a Java-based
RPG, was developed by Dwango
for NTT DoCoMo's
i-mode service in Japan.

Making sure a console
game is a launch title —
one that’s on shelves the
day a new piece of game
hardware goes on sale —

can make a difference of tens of thousands
of units sold. So it’s no wonder that pub-
lishers do everything they can to get their
top-tier titles ready for launch, especially a
launch as hotly anticipated as that of Nin-
tendo’s Game Boy Advance. The down
side, of course, is that making a game for
hardware that doesn’t yet officially exist
can often bring a huge number of unfore-
seen challenges.

When Ubi Soft first approached Digital
Eclipse about doing a version of RAYMAN

for the GBA, there were four priorities for
the publisher (once we established that we
would convert the Playstation version).
First, the game had to live up to the quali-
ty of Ubi’s flagship mascot. Second, it had
to be a launch title. Shipping even a day
after Nintendo’s new handheld did was
simply not an option. Third, it needed to
be a faithful port of the Playstation ver-
sion. The final requirement was that we
needed to tweak the difficulty.

Rayman had only starred in three games
up to that point: the original 2D plat-
former for PC, Playstation, Saturn, and
Jaguar; a Game Boy Color game; and
RAYMAN 2, a 3D action adventure for
Dreamcast, Playstation 2, Nintendo 64,
and PC. Ubi Soft was interested in a 2D,
side-scrolling version of the game for GBA,
and any design we came up with would
have to live up to an august heritage: one
of the last major 2D platformers, the origi-
nal RAYMAN is widely regarded as one of
the most challenging and well-designed
side-scrollers ever.

When we first talked to Ubi Soft, we
hadn’t gotten our hands on a dev kit yet.
According to the specs we’d seen, however,
the system was about as powerful as a
Super Nintendo, with a couple of addition-
al features — scaling and rotation were
possible on sprites, not just background
levels. Initially, we didn’t expect to be able
to convert the Playstation version of the
game. Rather, we thought we’d create a
new game that looked similar but was
done within the power of the Game Boy
Advance. In fact, Nintendo’s hardware
proved to hold a lot more power than we
expected.

In the process of determining the best
way to do the animation, the project’s lead
artist, Granted Q. Savage, tried two differ-
ent methods. One was hand-animating a
new version of Rayman from scratch, the
second was actually pulling the animation
data directly from the original game. The
conclusion: With some work, Savage felt
that he could get all the graphics from the
PSX or PC version onto the GBA, using its
256-color mode. The next issue was speed.
Programmer Cathryn Mataga felt that the
system could be fast enough, with the big
question being access speeds to various
parts of RAM.

In the end, rather than propose an origi-
nal game, we felt that the GBA was pow-
erful enough to do a conversion of
RAYMAN 1. This also made sense because
of the short (less than eight-month) sched-
ule; by using the original game’s design, we
knew that we already had a fun (and chal-
lenging) game on our hands. Now all we
had to do was remake it.

Adding stress was the deadline — we
knew the game couldn’t go a day late, so
almost every decision we made was irre-

Digital Eclipse’s
RAYMAN ADVANCE

n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r42

G A M E D A T A

PUBLISHER: Ubi Soft Entertainment
NUMBER OF FULL-TIME DEVELOPERS: 6

NUMBER OF CONTRACTORS: 1
LENGTH OF DEVELOPMENT: 8 months

RELEASE DATE: June 5, 2001
DEVELOPMENT HARDWARE: Standard fat PCs
(1GHz Athlons, etc.) and G3 and G4 Macs

DEVELOPMENT SOFTWARE: Photoshop, Debablizer,
and Nintendo's development stuff

P O S T M O R T E M c h r i s c h a r l a

C H R I S C H A R L A | Chris Charla is production manager at Digital Eclipse. Prior to joining
the company, he worked at Imagine Media in a number of roles, including editor-in-chief of
Next Generation and Official Dreamcast Magazine.

versible. Luckily, we made (near-
ly) all correct decisions. Our
nerves weren’t calmed, though, when
Nintendo pushed the release date (and thus,
our deadline) up by several days!

With some herculean efforts by the art and
programming teams, and tons of testing by
Digital Eclipse’s internal senior producer
Renée Johnson and associate producer Bill
Schmidt, we made it. We’ve naturally been
pleased by how the game has been received
both critically and commercially. In some
ways, though, we’re sometimes afraid we did
too good a job: most reviews and comments
describe the game as “just a straight port.” In
reality, doing the conversion was anything
but straightforward.

What Went Right

1. Publisher support. Ubi
Soft is famous for the care

that it takes with RAYMAN games
(the two console games have a total
of eight years of development time
between them). To say that the company is
fastidious about the mascot is an incredible
understatement. Luckily for us, that care goes
beyond lip-service.

Re-creating the game on a small screen and
toning down the difficulty were both major
design challenges for us. While we certainly
felt up to the task, when we started asking
questions about various issues, Ubi Soft sent
one of the designers of the original Playstation
game to our door. Lionel Rico flew in
from Montreal to spend a solid week
consulting on a number of game-
play issues. This was an incredible
help in ensuring that while the
gameplay in our version was easier,
it would remain faithful to the feel
of RAYMAN.

2.Smart graphics choices. The Game
Boy Advance has two options for color

choices. You can either choose to use a single
256-color palette for all the sprites and a dif-
ferent 256-color palette shared among the four
background planes, or you can choose to use

w w w . g d m a g . c o m 43

16 palettes of 16 colors for each. In theo-
ry, it shouldn’t matter to the hardware
which you use, and because “16 16s” can
be more limiting than “one 256,” we had
initially planned to use two 256-color
palettes, one for the sprites, and one for
the background planes.

Once we got our hardware, however, we
quickly learned that “16 16s” has a signif-
icant, though undocumented, speed advan-
tage. Although it required much more
work on the part of our art staff, we
quickly changed plans to “16 16s.”

Cathryn’s original decision to go with
256-color mode was partially for the sake
of trying to do things as simply as possi-
ble. Using 256 colors meant the art would
look exactly like the original game. How-
ever, we discovered that the 256-color art
loaded too slowly and ate up too much
ROM space and VRAM. Switching to 16-
color RAM allowed her to page-flip the
sprite VRAM, and all of sprite VRAM
was reloaded each frame.

It’s no understatement to say that the
biggest factor in the success of the project
was the successful conversion of the
graphics from 8-bit to 4-bit color. Our
CTO, Jeff Vavasour, wrote an excellent
tool that automated this process. Then
Granted went in and hand-tweaked every
palette (around 120 different palettes of
16 colors were used across all the levels
of the game, including sprites and
cutscenes) to make sure the game was
compliant.

Unfortunately, while using 16 palettes
of 16 colors each is faster than using a
single 256-color palette, individual sprites
can still use colors from multiple palettes,
and ours did. To get the final speed boost
needed, Granted had to go in and make
sure that each sprite used colors from
only one 16-color palette. Fixing one
sprite usually required a palette change
that broke a different sprite, and so on
down the line.

The net result was a particularly brutal
challenge, necessitating long nights with
Photoshop and Debabelizer to get every-
thing optimized. Ultimately there’s no
substitute for this kind of meticulous,
back-breaking pixel work, and the work
paid off in the look of the final game. As
for Granted and his assistant artist Eric
Calande, they looked on the task with

pride, not dread — at least the first time
they had to do it (more under What Went
Wrong).

Converting the palettes was just the
first step in what needed to be done to
bring the Playstation graphics to the GBA,
since the original game did things with
sprites that simply weren’t possible on
GBA. The original RAYMAN had large
sprites that far exceed the GBA’s sprite
limits. Cathryn developed a small utility
to assemble the large RAYMAN sprites from
a number of differently shaped GBA
sprites. The code optimized for the num-
ber of tiles, rather than sprites. On the
levels where the sprites overwhelmed
VRAM and the sprite limits, we switched
to low resolution for some large graphics,
such as the save-point graphic or certain
bosses, then scaled them up using the
GBA’s hardware sprite-scaling.

Although the difference is noticeable (to
us, anyway), it actually looks quite good
on the small screen, and we were very
pleased that the graphical compromise
wasn’t mentioned in reviews of the game.
The graphics were tweaked until release to
adjust between the number of enemies on

the screen versus the sprite resolution.
When a conflict occurred, some enemies
were removed so they wouldn’t blink.
Luckily, since one of our goals was to
make the game easier, the need to remove
enemies was never a major issue on any of
the levels.

One of the earliest (and smartest) deci-
sions we made was to not attempt to scale
the graphics to fit the screen. While the
original was 320×240 pixels, the GBA
screen is 240×160. So, not only are the
aspect ratios slightly different (4:3 vs. 3:2),
but the graphics are one of the most
impressive things about the original RAY-
MAN — scaling them down would, to us,
have negated one of the best elements
about the game. Even though viewable
area of RAYMAN ADVANCE is smaller than
that of the original, with the gameplay
tweaks we made (more on this later) we
found a compromise by which no real
playability was lost.

3.Hacker ethic. We made some
choices during development that

probably weren’t what they teach you in
game development school. For instance,

n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r44

P O S T M O R T E M

TOP. Sprites from the PC version of the game, each rendered using a 256-color palette.
BOTTOM. Our GBA versions of the same sprites, each using a single 16-color palette.

we had access to the original source art
and to the original design tools, but all
the art we used we actually took from the
compiled game files. Cathryn did this
because she felt it was easier to extract the
data using the source code she was read-
ing than to try to get the design tools
working. This was a little bit of a pain,
though eventually she extracted every-
thing out to .BMP files for proper color
reduction.

In most of our games, the character
sprites are traditionally animated and
saved intact to an animation file. Not so
with the Rayman character, which is con-
structed from tiny little pieces (separate
files for the hands, the head, and so on
with the rest of the body) connected via
animation tables. And the original table
data was retained exactly. Although it may
seem that it would be better for the artists
to simply start with the source art, clean-
ing up and converting the “ripped” anima-
tions and backgrounds turned out to be
much faster.

Converting the code also took knowl-
edge of languages beyond C — many of
the variable names were in French. A
modest investment in a French-to-English
dictionary solved most of the problems
there.

The initial libraries that shipped with
the GBA dev kit sometimes left something

to be desired. We made many changes to
the library files, which ended up helping
us out down the line.

4.Gameplay tweaking. The origi-
nal RAYMAN is famously hard. It

was released at the tail end of the plat-
former genre’s heyday and may indeed be
the most difficult side-scroller ever
released. With platformers no longer in
vogue, it was an open question at Digital
Eclipse as to whether or not anyone would
be able to beat the original today.

Ubi Soft was very open to tuning the
difficulty of the game — in fact they sug-
gested it. What the company did want to
retain, however, was what Ubi Soft pro-
ducer Yannis Marat called the “gameplay
integrity.” So, things like collisions, jump
properties, timing and sync challenges,
the speed of animation, and enemy
attacks had to be preserved, while actual
platform and enemy locations changed
dramatically.

Retaining the exact position of all the
levels and all the items in the same place
wouldn’t have been possible anyway, since
the original played at 320×240 and the
GBA screen is 240×160. The original
game did several things that at the time
simply made it a challenging platformer
but today would be regarded as cruel. For
example, you flew back when you took a

hit, which often (especially at later levels)
caused you to fly off a platform to your
death. Also, enemies would frequently hit
you without you ever being able to plan
for it (this also usually resulted in a quick
death). Finally, there were several audio-
only clues in the game. For instance, when
you triggered an attack from off-screen,
you’d need to listen for a “ping” sound or
else you’d be caught unawares as an
enemy spawned.

To make the game easier, especially
given the younger audience we expected
the GBA to appeal to (when RAYMAN was
released for Playstation in 1995, the aver-
age age of Playstation owners was 22), we
did several things. First, we got rid of the
“push” when you were hit. Second, we
adjusted all the enemy placements so
you’d never get hit by an unseen foe.

The biggest thing we did, though, was
create a visual representation of the
“pings.” They are now represented
onscreen by small sprites. When you hit a
ping, you know that you’ve set something
off. We also used “tings” (the game’s sec-
ondary collectible) to guide players on
what would otherwise be “leaps of faith”
off the edge of the screen. If a player sim-
ply aims for the tings, he will never leap
to his death. Unfortunately, some critics
knocked the game for the many leaps of
faith, so it’s possible that the “follow the

n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r46

P O S T M O R T E M

This comparison of actual screens from the PC (top row) and GBA (bottom row) versions shows the similarity in the final results.

w w w . g d m a g . c o m 47

tings” mechanic hasn’t been as well
understood for platform hopping as we
had hoped.

Rearranging platforms was also a major
component of the gameplay tweaking.
Putting the original levels on the smaller
GBA screen would make the game, even
with tings, truly unplayable. We tried to
be as unobtrusive with the gameplay
tweaking as possible, and we’ve been grat-
ified to see many comments in reviews
and from players that say the game is
exactly like the original, when in fact the
layout of every single level has been
altered significantly.

5.Adequate testing. Testing is
another element of game creation

where there’s just no substitute for hard
work. Considering the many changes we
made to the levels, we had to test constant-
ly throughout the development process —
not just at the end — to make sure that the
game maintained the “feel” of RAYMAN.
Realizing this early, and doing it, was a
major contribution to making sure the
game felt, and not just looked, like the
original. Associate producer Bill Schmidt
tested and adjusted levels for weeks, and
platform placements were changed for
gameplay and difficulty reasons almost
every day up until the game shipped.

The Ubi Soft test team in Montreal was
also excellent. Some of the guys would go

through the entire game from start to fin-
ish up to four times a day, and if you’ve
played RAYMAN, you know what an
achievement that is. Sometimes developers
and testers have an adversarial relation-
ship, but this was a case where the testers
really came through for us in a big way.

What Went Wrong

1.Multiplayer. We initially planned
to include a competitive multiplayer

mode in the game. It was going to be a
side-scrolling version of capture the flag fea-
turing Rayman and “Dark Rayman.” While
the link capabilities on the GBA are one of
the platform’s key strengths, the libraries
supplied by Nintendo at the time were less
than robust.

When Nintendo moved the release date
up, we were forced to shelve multiplayer,
because testing and debugging were simply
taking too long. Coming by extra dev kits
— needed for testing two-player mode —
was also tough in the prerelease environ-
ment, where kits were strictly allocated by
Nintendo.

2.Music. One of the problems with
developing for new hardware isn’t

just that developers have trouble coming to
terms with it — the hardware makers
sometimes do too, especially since they cre-
ate development tools using even earlier

versions of the hardware than what the
software developers eventually get. This
showed most dramatically in the music
driver that Nintendo supplied. Music took
up far more CPU time than we were com-
fortable with, but our short development
time prevented us from implementing a
custom sound driver. More importantly to
players, because the graphics took up so
much of the cartridge size, we were only
able to include a limited number of songs
from the original game. While they sound
great, the game certainly would have bene-
fited from a wider variety of music.

The music driver supplied by Nintendo
also caused strange crashing problems for
Cathryn. It was tough to figure out if it
was us or the driver, and without access to
the driver source code, there was no real
way to debug the issues. When we reduced
the amount of data transferred during the
vblank, the crashing went away. We didn’t
have time to investigate why that solved
the problem, we were just happy it did.
Needless to say, while we’ve all been there,
these kinds of “voodoo” solutions to
problems are less than optimal.

3. Prerelease hardware. One of
the biggest things that went wrong

was that the hardware we developed the
game on was significantly different from
the final GBA hardware. Some of our dev
kits simply weren’t as capable as final

The colors on the GBA version (right) are much brighter than on the PC (left); it doesn't look good on paper, but it displayed much better on the GBA
screen than the original palettes did.

n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r48

P O S T M O R T E M

hardware. More damaging, though, was
that their displays were far brighter than the
final LCD screen that made it into the pro-
duction GBA. We assume that the brighter
LCDs in our dev systems probably took
more power than Nintendo — legendary for
its commitment to long battery life — was
willing to expend in the system. Whatever
the reason, RAYMAN ADVANCE narrowly
missed being unplayably dark, as we had
spent weeks tweaking and adjusting palettes
for the brighter, prerelease screens.

We got Japanese units just a few days
before RAYMAN ADVANCE was due to ship,
along with some very dark-looking
Japanese launch games. Running our game
on Japanese launch hardware practically
caused a full-fledged panic attack in pro-
ducer Renée Johnson, who immediately
broke the news to Granted that all his
palette optimizations would need to be
“reoptimized.”

To call Granted’s reaction unprintable is
probably an understatement, but the net
result was that, several sleepless nights
later, all of the palettes had been reopti-
mized for the production-level GBA. We
were slightly worried that Nintendo would
re-tweak the screens for the U.S. release,
and so we were probably the only people
on the planet who cheered when we saw
how dark the U.S. screens were. Bad for
CASTLEVANIA, but good for RAYMAN!

4. Cartridge size. The maximum
cartridge size available to third

parties is 64 megabits, to use the standard

cartridge-size definition. That’s only 8MB —
the same size as a memory card for PS2.
The original source code alone was 2.5MB,
so even when it was rewritten, getting art
and music assets into the remaining space
was quite an achievement.

Unfortunately, we didn’t have the space
to include all the music we wanted, and
wrestling with cart size started early and
continued throughout the entire develop-
ment process. Had we been able to be less
efficient about space, we could have been
more efficient about time, which would
have resulted in a less stressful develop-
ment cycle. It’s something that’s not
apparent to players, and it goes with the
territory when developing for cartridge-
based systems, but it remains a constant
challenge. Luckily, Cathryn’s compression
and the artists’ smart tiling means that
players see the full game just as it was on
the Playstation.

A thornier issue was save RAM. We ini-
tially thought that we would have a 64K
EEPROM for save data, but that cartridge
configuration became unavailable, and we
had to go with a 4K EEPROM. Unfortu-
nately, this made the save data too large to
fit in the EEPROM. We solved this by
packing some data that had been stored in
bytes or long words into bits.

5.Unrealistic scheduling. Eight
months is a fairly tight develop-

ment schedule for GBA. Add the uncer-
tainties and false steps that always accom-
pany developing for new hardware, and

the schedule was very short. The truth is
that despite our best efforts, our projec-
tions for GBA development schedules
were woefully inadequate. While we origi-
nally estimated GBA development to be
twice that of Game Boy Color, it wasn’t
until six months into RAYMAN ADVANCE

that we realized it’s more like four times
that of GBC.

With the absolute inflexibility of the
shipping date (a date that actually moved
up a few days near the end of the project
when Nintendo moved up the release
date), and the incredible art conversion
requirements, pressure was mounting as
the final deadline approached.

Luckily we managed the stress well.
Things did get crazy now and then, but
overall everyone on the team emerged
from the project unscathed, with burnout
levels low. The eventual success of the
project also helped everyone bounce back
relatively quickly.

Looking Back

B ringing RAYMAN to the Game Boy
Advance was overall a great experi-

ence for Digital Eclipse. Not only did it
enable us to get up and running with GBA
as soon as possible, but we also considered
it a big honor to be the first non-Ubi team
to do a RAYMAN game. The original is
truly one of the most refined and challeng-
ing platform games around, and the chal-
lenge of bringing it intact to the GBA was
both fun and rewarding. q

RAYMAN's whimsical graphic style should appeal to the GBA target
demographics.

The cart size (8MB) made fitting in the detailed graphics onto the cart quite
a challenge.

n o v e m b e r 2 0 0 1 | g a m e d e v e l o p e r56

S O A P B O X r j m i c a l

Some Assembly
Required

S o what is the future of mobile
games? I’m not talking about
SNAKE on my mobile phone; I
want to know when I will get
to play QUAKE on my phone. I

see a lot of difficulties ahead, but there’s
hope that technology will improve quickly, to
get millions of mobile device owners playing
excellent games on the go very soon.

There’s an inclination to compare
today’s mobile games with PC games,
which is fair but unfortunate. Today’s
hottest mobile hardware is equivalent
to the PCs of 15 years ago. My
cell phone can only dream of
being as good as a Com-
modore 64 one day.
Clearly, we won’t be seeing
PC-quality mobile games
for a while.

Mobile devices have a num-
ber of impediments to imple-
menting complex games, not the
least of which is the fact that the
controls suck. Some devices have
thumb joysticks, but they’re tiny and
don’t behave well during passionate
gaming sessions. There are no cursor
keys, and instead of a mouse we get a
touch-screen. Now, I think we will be able
to create some interesting games using
touch, and soon we will start breaking our
touch-screens as we stab and slash at them
to play our games, but still it won’t be as
good as a joystick or a mouse.

Furthermore, miserly CPU speeds will
limit action, physics, enemy AI, and even
rendering. We’re a long way from having
mobile devices with 3D technology built in
(although at Red Jade, we were building just
such a device, and I’ll bet it’s not long before
someone tries again). We’ve got limited
audio. No networking means no multiplayer
games (though there’s room for infrared
hacks). Limited RAM means limited game
levels, and total game content will be much
smaller. We will be counting mobile game
sizes in K, not MB, for some time.

Even worse, many game developers
have become lazy and fat, because RAM
and other resources on PCs are compara-
tively plentiful and the hardware does all
the hard work. When was the last time
you counted CPU cycles? Fat and lazy
won’t work in the mobile game space.

Perhaps the biggest killer to mobile
game development is the number of
platforms, which is large and growing

larger, with

no clear winner in sight. Yesterday’s dar-
ling is today’s has-been. This churning is
good for the consumer, but bad for the
game developer. How can one make game
development profitable when there are so
many hardware and OS environments?

So, given these limitations, what games
can we make? What religions must we fol-
low? Well, first of all, roll up your sleeves
and prepare to get your hands dirty. Devel-
opers will not be able to code strictly in
C++ or depend on hardware graphics
accelerators and such to do their work for
them. Mobile game coding will require us
to return to the old disciplines. Some
assembly required, you bet! With enough

work, however, good 3D is possible in
these performance-starved environments.
Tight rendering loops can create reason-
ably high polygon counts with textured
surfaces, which look quite good as long as
you’re not expecting trilinear filtering or
curved surfaces. Likewise, although audio
will be limited, we can make decent music
playing samples with simple mixers.

The better PDAs can handle any 2D
game. We can squeeze the heck out of the
higher-performing platforms to get pretty
good 3D, though developers will always
sacrifice beauty as needed for the sake of
frame rate and responsiveness to input. We
soon will be playing DUKE NUKEM or NEED

FOR SPEED, but UNREAL TOURNAMENT is still
off in the future. Without network support
(wireless LAN or phone), we can’t have
multiplayer games, and any server-side

methodology won’t work. We have to
wait for future developments to

support real interconnectivity.
We will need new tools,

and new paradigms, too.
Can’t have a full game in
memory at once because
storage is so limited? No
problem: Create that big
game and provide a
mechanism by which

users can download a subset of
levels into the mobile device.

Likewise, the standard distribution and
profit models for software to which game
developers have become accustomed won’t
work, especially with too few of any par-
ticular target device in the market. We will
see more Internet distribution of game
content, and games for multiple targets
distributed on a single CD. We can solve
the problem of too many platforms by cre-
ating leveling technology that will make it
easy to develop a single game on multiple
platforms simultaneously, just as OpenGL
solved the problem of too many flavors of
graphics hardware.

continued on page 55

Ill
us

tr
at

io
n

by
 P

et
er

 L
ac

al
am

ita

w w w . g d m a g . c o m 55

S O A P B O X

What about the future? In the spirit of
going back to our roots, once again there
will be kids in garages making killer
games on a budget of chips and cola.
Costs will be lower, team sizes smaller,
development cycles shorter. The mobile
arena will allow us to have fun again, to
take risks, and to think lean and mean.
We will see a return to the idea that game-
play is more important than flashy graph-
ics, and I’m looking forward to it.
Meanwhile, come on, Moore’s law! We’re
counting on RAM and CPU capacity to
double and double again. We need mobile
devices to get better LAN support, and we

crave 3G or its equivalent to allow us to
play full multiplayer games whenever we
feel like it, wherever we are. Microphones
and cameras come next, useful for both
communication and gaming.

If the device manufacturers would listen
to me, they would improve their systems in
this order: CPU speed, controls, RAM,
graphics acceleration, network support,
and then audio (once we get graphics in
hardware, we can use more of the CPU for
audio). However, they’re not yet thinking
of these mobile devices as game systems,
but as personal productivity enhancers. So
what we’ll get is improvement in
LAN/phone support before CPU speed,

RAM before graphics, better controls later,
and finally real audio. Sigh, they never lis-
ten to the game developers.

It’s a brave old world that’s coming, and
I’m looking forward to going back there. q

R J M I C A L | RJ is chief architect at
Fathammer, where he is working on the soft-
ware architecture and development interface
for Fathammer’s mobile game engine, X-Forge.
Previously, he was vice president of software
at Red Jade. He was a key member of the
Amiga Computer development team, co-
invented the Atari Lynx handheld game sys-
tem and the 3DO entertainment console, and
has co-developed more than 15 videogames.

continued from page 56

	04gameplan
	06indwatch
	08prodrev
	14profile
	17graphic
	23artview
	29wireless
	30f-crowle
	34f-minn
	36f-lasky
	38f-baglow
	40f-scuka
	42postmort
	56soapbox

	return:
	cover:

