
NOVEMBER 2000

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N✎

L E T T E R F R O M T H E E D I T O R

N early four and a half years

ago, Alex Dunne first

appeared in this space. Four

and a half years! That’s a

long time to be doing any-

thing, even more so in our industry, where

it’s rare to be working on something for

longer than two years (well, except for a

few games!). To give you a sense of per-

spective, in that issue of Game Developer
DirectX 2 was highlighted. At the Com-

puter Game Developers Conference that

year, Intel announced MMX, 3Dfx

announced the Voodoo graphics chipset,

and Apple announced Game Sprockets.

Doesn’t that seem like a long time ago?

Many things have changed during these

years, but you could always depend on

Alex and Game Developer. Month after

month, Alex gave readers insight into our

industry, pointed out the shadowy nooks

and crannies, and guided developers over

bumps such as software patents. Alex

didn’t just point out industry issues, he cre-

ated things like the Independent Games

Festival, an annual showcase for independ-

ently developed games.

It is with sadness that we bid Alex good-

bye, but of course he hasn’t gone very far.

Alex is now the executive producer for our

sister publication, Gamasutra.com, and I’m

sure he’ll bring to that forum the same dis-

cerning eye for what’s important to you.

Enter, Stage Right

S o you may be wondering, who is this

guy, and what’s he doing here? Hi, I’m

Mark DeLoura, the new editor-in-chief for

Game Developer. Like many of you, I’ve

worked at numerous places, but my pri-

mary gig for the past five years has been as

software engineering lead at Nintendo of

America. While at Nintendo, I was the key

Nintendo 64 developer relations person,

and I wrote the November 1999 article on

rendering Bézier surfaces using N64 micro-

code. For the last year and a half I’ve led a

team of brilliant software engineers, work-

ing on demos and libraries for Nintendo’s

Gamecube and Game Boy Advance.

My background prior to working at

Nintendo includes a heavy dose of virtual

reality and an arcade game that never

shipped. I spent quite a few years working

with virtual reality at the Human Interface

Technology Lab and UNC-Chapel Hill,

and I co-moderated the Usenet newsgroup

sci.virtual-worlds. Then there was the

whole networked multiplayer arcade game

thing, which sounded like a great idea, and

did actually work as long as you ran it on

a $250,000 SGI Onyx.

Most recently I organized and edited the

book Game Programming Gems, which is

a collection of programming tips and tricks

from 40 professional game developers.

(And yes, that would be a shameless plug!)

Engage

W here are we going from here? It’s an

incredibly exciting and challenging

time to be a game developer. In the console

space we’re faced with four very different

platforms to work on: porting games

between them is going to be ugly. On the

PC side, the range of performance you now

must account for demands scalability and

hardcore bug-testing. Handheld gaming is

launching into completely new areas, with

cellular communication, four-player multi-

play and console-handheld connectivity.

And then there’s web gaming, persistent

worlds, and the mod community. So we

certainly have a lot of material to cover!

It’s clear that having a resource to help

you make decisions about your games is

valuable. We’re pleased that one resource

you’ve chosen is Game Developer maga-

zine. Our commitment to providing timely,

innovative material is unwavering. We plan

to broaden our coverage of many types of

gaming, as interactive entertainment contin-

ues its transition from a niche activity to a

truly mass-market art form. These next few

years are going to be a doozy!

Sunset, Sunrise

C
Let us know what you think. Send

e-mail to editors@gdmag.com, or write

to Game Developer, 600 Harrison St.,

San Francisco, CA 94107

w w w . g d m a g . c o m

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

600 Harrison Street, San Francisco, CA 94107

t: 415.905.2200 f: 415.947.6090 w: www.gdmag.com

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief

Mark DeLoura mdeloura@cmp.com
Senior Editor

Jennifer Olsen jolsen@cmp.com
Managing Editor

Laura Huber lhuber@cmp.com
Production Editor

R.D.T. Byrd tbyrd@cmp.com
Art Director

Audrey Welch awelch@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Daniel Huebner dan@gamasutra.com
Jeff Lander jeffl@darwin3d.com
Maarten Kraaijvanger maarten@nihilistic.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed Independent
Dan Teven Teven Consulting
Rob Wyatt The Groove Alliance

ADVERTISING SALES
Director of Sales & Marketing

Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218

National Sales Manager
Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217

Account Manager, Western Region, Silicon Valley & Asia
Mike Colligan e: mcolligan@cmp.com t: 415.947.6223

Account Manager, Northern California
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Sales Representative/Recruitment
Morgan Browning e: mbrowning@cmp.com t: 415.947.6225

ADVERTISING PRODUCTION
Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Kevin Chanel

Reprints Stella Valdez t: 916.983.6971

CMP GAME MEDIA GROUP MARKETING
Senior MarCom Manager Jennifer McLean

Strategic Marketing Manager Darrielle Sadle

Marketing Coordinator Scott Lyon

CIRCULATION
Group Circulation Director Kathy Henry

Director of Audience Development Henry Fung

Circulation Manager Ron Escobar

Circulation Assistant Yumi Sato

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes
t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Robert J. Abramson and Associates Inc.
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Corporate President/COO John Russell

CFO John Day

Group President, Business Technology Group Adam Marder

Group President, Specialized Technology Group Regina Ridley

Group President, Channel Group Pam Watkins

Group President, Electronics Group Steve Weitzner

Senior Vice President, Human Resources Leah Landro

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, Business Development Vittoria Borazio

General Counsel Sandra L. Grayson

Vice President, Creative Technologies Johanna Kleppe

Game Developer
magazine is

BPA approved

W W W . C M P G A M E . C O M

7

Z F R O N T L I N E T O O L S
W H A T ’ S N E W I N T H E W O R L D O F G A M E D E V E L O P M E N T | j e n n i f e r o l s e n

w w w . g d m a g . c o m

ALIENBRAIN TURNS UP THE POWER

NxN has introduced a new, more powerful server for its Alienbrain data

management system for game development, the Alienbrain XTreme

server. Largely a response to the rapidly increasing content demands of

next-generation games, Alienbrain XTreme is optimized for projects

with well over 100,000 files and more than 20 developers, num-

bers which are increasingly characteristic of today’s game develop-

ment projects. The Alienbrain XTreme server allows users to widen the scope of

the projects managed by the Alienbrain system, handling larger data sets and providing

simplified backup options plus faster startup and shutdown times.

ALIENBRAIN XTREME SERVER | NxN | www.alienbrain.com

INTRINSIC ALCHEMY
BETA RELEASE

Intrinsic Graphics has announced the

first publicly available version of their

Intrinsic Alchemy game development plat-

form, aimed primarily at simplifying sim-

ultaneous cross-platform development,

something many game companies are pon-

dering for current and upcoming projects

as the next generation of game platforms

emerges. Intrinsic Alchemy works by sepa-

rating a game’s processing blocks from the

application structure and data flow of the

underlying platform, and using an Appli-

cation Graph as the identity of processing

blocks and the data connectivity

between them. A developer’s

compiled C and C++ functions

can then traverse the Application

Graph at run time and execute

the processing blocks on the

intended platform.

The current beta release sup-

ports Windows, Playstation 2, and

Sony’s GS Cube, with licenses

available for single or multi-plat-

form use. Support for Gamecube,

Xbox, and unspecified STB systems is

planned for upcoming releases.

INTRINSIC ALCHEMY | Intrinsic Graphics |
www.intrinsic.com

MULTIGEN CREATOR 2.4

M ultigen-

Paradigm has

updated its

Multigen Creator

3D modeling pro-

gram with a major

new release.

Creator 2.4 adds

multi-texturing of

up to eight textures

per polygon, the

Irregular Mesh poly-

gon-generation algo-

rithm for terrain creation, a new unified project management interface

for Terrain Pro, plus an updated OpenFlight file format, giving access

to multi-texturing and terrain T-mesh nodes for irregular mesh data-

bases. Creator 2.4 is available for Windows 98/NT/2000 and IRIX

6.2 or higher.

MULTIGEN CREATOR 2.4 | Multigen-Paradigm | www.multigen.com

SAFEDISC 2.0 TRIES TO THWART
HACKERS

Macrovision has released a

new version of its SafeDisc

PC CD-ROM copy protection

system for publishers, develop-

ers, and replicators. SafeDisc 2.0

includes a major overhaul of the

SafeDisc code architecture, in an effort to circumvent auto-

mated hacking tools and provide additional encryption to

delay hacking. In addition, Macrovision has added new digi-

tal signatures to improve resistance against copying, and

manufacturing assurance that SafeDisc masters will only be

mastered on SafeDisc-enabled production lines. SafeDisc

includes authenticating digital signature(s) embedded on a

CD-ROM, an encryption wrapper, and an antihacking tech-

nology that secures the CD-ROM executable and prevents

copying to standard CD-R drives. SafeDisc 2.0 is available

now for Windows 95/98/NT/2000/ME.

SAFEDISC 2.0 | Macrovision | www.macrovision.com

NETIMMERSE 3.1

A new version of NDL’s NetImmerse game

engine has arrived, featuring additional

plug-in support for real-time previewing, better

Playstation 2 performance, and new animation

features. In addition to improving the existing

MaxImmerse plug-in for 3D Studio Max,

which now features real-time previewing for

PS2, NetImmerse 3.1 adds two more plug-ins:

MyImmerse, a real-time previewing plug-in for

Maya 3 with multi-texturing support, and

MultImmerse for Multigen Creator 2.3. Other new features include an optimization

library and keyframe verification tools, aimed at helping programmers to write better-per-

forming code, plus support for the Miles Sound System on PC, as well as better animation

blending and control over sequences. NetImmerse currently supports Windows, MacOS,

Linux, and Playstation 2, with Xbox support planned for the near future.

NETIMMERSE 3.1 | NDL | www.ndl.com

ODDWORLD: MUNCH’S ODDYSEE, Oddworld Inhabit-
ants, All Rights Reserved

Nintendo Announcements
Nintendo used Spaceworld as its

venue to finally unveil its

next-generation console

and handheld. The sys-

tem formerly known as

Dolphin has been rechris-

tened the Nintendo

Gamecube. The

Gamecube is built around

a 405Mhz copper cen-

tral processor from

IBM, an ArtX-developed

graphics processor, and 40

MB of memory. As many had

speculated, the Gamecube will

use an 8cm, 1.5GB proprietary

optical disc. Gamecube will

not feature a harddrive,

instead utilizing flash

memory cards. Nintendo

also revealed details about

the upcoming Game Boy

Advance. The new handheld

is powered by a 32-bit ARM

processor and features a reflective TFT

screen that is 50 percent faster than the

current Game Boy Color. Game Boy

Advance ships in Japan in March 2001 at

a price of around $90; it will arrive in

North America and Europe next July. The

Gamecube is expected in Japan in July

2001, and should make its way to the rest

of the world by October of the same year.

New FTC Report Calls for Stricter
Rules for Selling Games
A much-anticipated government report

titled “Marketing Violent Entertainment

to Children: A Review of Self Regulation

and Industry Practices in the Motion

Picture, Music Recording and Electronic

Gaming Industries” strongly criticizes the

entertainment industry for its marketing

practices. Written by the U.S. Federal

Trade Commission, the report recom-

mends that more should be done to ad-

dress how media markets violent enter-

tainment to children, and calls for stricter

measures at the retail level to prevent min-

ors from purchasing violent games. In an-

ticipation of the report, K-Mart and Wal-

Mart made moves to restrict sales of ma-

ture games. K-Mart announced that the

chain will refuse to sell M-rated mature

game titles to anyone under the age of 17,

and Wal-Mart has an-

nounced that its stores

will enact the same

policy. More retail-

ers are expected to

follow suit, and

companies such as

Electronic Arts are

voicing support.

Game Ban Suit
Two game in-

dustry groups are

suing to overturn an

Indianapolis law barring

minors from certain coin-

operated videogames. The

Indianapolis law allows

coin-operated games fea-

turing graphic violence

or sexual content to be

played only by those over

18, and such machines

must be affixed with

warning labels and kept

out of the view of minors.

Indianapolis Mayor Bart Peterson, county

prosecutor Scott Newman, and local

police officials are named in the suit.

The American Amusement Machine

Association and the Amusement

and Music Operators

Association (AMOA) want a

judge to grant a tempo-

rary restraining order to

keep the law from going

into effect on September 1.

“We are on the edge of a slip-

pery slope, and our industry has been

forced to litigate to protect core constitu-

tional rights,” explained AMOA president

Frank Senisky.

Nvidia Sues 3dfx
Graphics chipmaker Nvidia is suing

competitor 3dfx for patent infringement.

The suit, filed in a Northern California

district court, involves five Nvidia patents

that the company believes have been

infringed upon by 3dfx products. Nvidia

is asking for an injunction to prevent

3dfx from selling its Voodoo 3, Voodoo

4, and Voodoo 5 product lines, and is

also seeking monetary damages. 3dfx

believes that Nvidia is bringing the suit

solely in order to force a settlement of the

multi-texturing patent suit 3dfx filed

against Nvidia in 1998.

Ubi Buys Red Storm
Paris-based Ubi Soft Entertainment is pur-

chasing North Carolina’s Red Storm En-

tertainment. Red Storm will become a

wholly-owned subsidiary and brand of Ubi

Soft. Though sales and distribution func-

tions for the two companies will be inte-

grated, Red Storm will continue to operate

independently continuing to focus on its on-

going projects as well as continuing its asso-

ciation with Tom Clancy, a license that has

been extended as part of the Ubi Soft deal.

Other developer buyouts are also afoot,

with Champaign, Illinois–based Volition

becoming a part of THQ. The publisher

bought Volition, a spin-off from DESCENT

developer Parallax Software, in exchange

for stock and the assumption of $500,000

in net liabilities. The deal, which also

includes Volition’s Parallax Online game

matching service, was finalized on August

31. Volition is currently working on SUM-

MONER and RED FACTION for PC and PS2.

Sega Price Cut
Sega cut the price of its Dreamcast in

an effort to highlight the con-

sole’s online gaming

capabilities in the wake

of the Playstation 2

launch. The company has

set a price point of $149

for the console, an expense

potential buyers can wipe out

entirely by participating in Sega

Net’s $150 Internet service rebate

scheme. Sega is also tempting con-

sumers by showcasing anticipated online

multiplayer games NFL 2K1 and QUAKE 3:

ARENA for Dreamcast. q

8 n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r

I N D U S T R Y W A T C HJT H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e r

COMDEX FALL
LAS VEGAS CONVENTION CENTER

SANDS EXPO & CONVENTION CENTER

Las Vegas, Nev.
November 13–17, 2000
Cost: variable
www.key3media.com/comdex/fall2000

U P C O M I N G E V E N T S

The Nintendo
Gamecube and
its controller.

10 n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r

S oftimage. For years those three

little syllables rolled off the

tongues of 3D artists every-

where with wonder. But then

something happened. 3D

Studio became 3D Studio Max. Power-

Animator became Maya. And Softimage . . .

well, Softimage remained the same. Of

course, it went through incremental

updates, with feature additions and inter-

face enhancements, but the core remained

the same solid foundation on which hun-

dreds of games and movies have been pro-

duced. While not necessarily a bad thing,

the “buzz” was with Max and Maya. But

there was this word whispered in quiet cor-

ners of studios and art departments around

the world: “Sumatra.” And it wasn’t just a

request for the intern to pick up some

Starbucks. Sumatra was Softimage’s oft-

delayed next-generation 3D production

tool, and it has finally arrived in a big way.

Sumatra, now known by the somewhat less

exciting name of Softimage XSI, builds on

its strong heritage, and adds exciting new

functionality. Drawing on the expertise of

Softimage while adding the talents of Avid’s

engineers, XSI is definitely going to turn a

few heads.

When you first start XSI, you realize it is

not your average Windows application. It

appears as if Avid’s Macintosh legacy has

heavily influenced the interface. The only

standard Windows features I could see were

the title and menu bars. Even the file

dialogs use Softimage’s Unix/Mac-blended

UI design. This unique UI did cause one

minor technical problem: as Softimage

starts, it sizes itself to your current resolu-

tion — ignoring the Windows Taskbar.

Setting the Taskbar to Autohide seemed to

be the best solution. The UI itself is divided

into five main areas. Taking up the most

real estate are the workspace viewports. To

the left is the Toolbar area, which is divided

into Modeling, Animation, and Rendering

tool sets. This is where you readily access

most of your commands. The top is the

main menu bar, where you access all the

general functions of the program, as well as

the toolsets of the Model, Animate, and

Render menus without having to switch

modules. The bottom contains all the time-

line and command line functions. Strangely,

this is also where you access all the anima-

tion editing tools. I say strangely because it

was literally the last place I looked for

them while going over the program the first

time. Finally, the right hand of the screen

contains the Main Command Area. This

ominous-sounding control panel contains

everything from layer controls and selec-

tion filtering to transformation and group-

ing tools.

One very unique feature I have come to

love is the concept of “sticky” hotkeys. By

quickly tapping a key, you enter into a

mode or tool. Tapping the key again returns

you from that mode. In addition, if you

simply hold a key down, you remain in that

tool or mode only as long as that key is

depressed. This is a wonderful enhancement

to standard hotkeys, and I find myself miss-

ing it when I’m working outside of XSI.

I can’t say I liked the interface as a

whole, though. It obviously tries to retain

the feeling of previous versions of Soft-

image while adding workflow enhance-

ments and access to new tools. Anyone

who has become accustomed to the stan-

dard Windows interface will most likely

have trouble. However, artists who have

never ventured outside of Softimage should

have no trouble whatsoever.

The other UI element you will encounter

most often is the Property editor. The

Property editor offers access to every bit of

data available on any object, and is also

XX
P R O D U C T R E V I E W

T H E S K I N N Y O N N E W T O O L S

D A V I D S T R I P I N I S | David is director of animation at Factor 5. Feel free to contact him
at david@factor5.com.

CLARIFICATION: In our two-part review of physics
engines (September and October 2000), we neg-
lected to mention that the version of MathEngine
we used was an alpha. As was mentioned in the
second part of our review, MathEngine is now
shipping alpha version 0.0.5. Havok provided us
with Havok Evaluation version 1.2. Ipion supplied
the Ipion Virtual Physics SDK version 1j9.

Softimage XSI 1.0
b y d a v i d s t r i p i n i s

The XSI Interface with an imported polygonal model from Softimage 3D.

XP R O D U C T R E V I E W

12 n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r

one of the most convenient ways to

access the construction history on an

object, called the Operator Stack.

Everything you do to an object, from

applying a deformer to moving a vertex

creates an operator, and can be easily

accessed and keyframed through the

Property editor.

Modeling

S oftimage has an extensive and robust

set of tools for modeling NURBS sur-

faces. This is a welcome change from the

days of Softimage 3.x, where the NURBS

modeling features were decidedly subpar.

In particular, I found the Curve Net and

Continuity Manager to be particularly

powerful and useful tools in creating

seamless, detailed organic surfaces. In

addition, surface fillets, surface blends, bi-

rail surfaces and four-sided surfaces pro-

vide a complete suite of tools for creating

anything you may desire — using NURBS.

This is where we come to Softimage

XSI’s largest and nearly fatal flaw. You

cannot create polygonal objects of any

real use with the program as it now

stands. While you have access to a variety

of polygon primitives, the only way to

edit them is pulling on vertices or using

deformers. This is, without a doubt,

unacceptable for in-game model creation.

This is the main reason for the inclusion

of Softimage 3D, which has a full suite of

polygon editing and creation tools. In

particular, I found their UV editing tools

to be quite excellent. Luckily, Softimage

XSI can easily import Softimage 3D

scenes completely intact, including any

polygonal objects.

While using Softimage 3D is quite a

powerful solution to XSI’s polygonal

shortcomings, forcing game artists to

learn two programs to create assets is a

hindrance to Softimage XSI gaining

ground with companies dedicated to Max,

Maya, Lightwave, or Mirai. To artists

already using Softimage 3D, this should

be no big deal, and may actually help in

the process of switching to Avid’s next-

generation offering.

Animation

T o most 3D artists, the word “Soft-

image” is synonymous with anima-

tion. Softimage first introduced most of

the indispensable tools and techniques for

modern computer animation. From IK to

constraints, function curves to dope sheets,

Softimage’s touch is felt industry-wide in

every package. They hope to continue that

tradition of innovation and revolution with

nonlinear animation.

Nonlinear animation is nothing new to

game artists. We’ve been doing it for years

without even realizing we were revolution-

izing the very process of animating. To the

uninitiated, nonlinear animation (NLA) is

the process by which different motion assets

can be strung together, blended, combined,

and generally messed with in every conceiv-

able combination, all in a nondestructive

fashion. You access XSI’s NLA features

through the Animation Mixer. This inter-

face is similar to nonlinear editors such as

Adobe Premiere or (this should come as no

surprise) Avid Media Composer. The sim-

plest application of this technology is to use

in-game animation assets to string cutscenes

together quickly, and to keep the motions

“in-character.” But this is missing the true

power of NLA.

By overlaying and blending multiple

clips, an artist can create seamless transi-

tions between separate actions, or layer ani-

mations on top of each other. Once the pos-

sibilities of these functions are fully realized,

animators will be drooling to get their

hands on these tools.

For instance, no longer will animators

slave away trying to get all the start and

end poses of their animations exactly the

same. You can simply save the pose as an

Action Clip and bring it in at the beginning

and end of your cycles to get a perfect

match-up. The blending functions will also

greatly help in hand-creating transition ani-

mations.

NLA is a truly revolutionary tool and

will be welcomed by artists everywhere. It

will be interesting to see how this technolo-

gy develops in the coming years. XSI

already offers a robust NLA tool suite, and

looks to be an industry leader in this excit-

ing technology.

Softimage XSI uses very solid IK rou-

tines. What’s amazing is that XSI builds the

IK directly into the skeletal chains, which

makes rigging skeletons quick and simple.

I’m a control freak, and don’t like being

removed from the rigging process, but I can

see the appeal for many artists.

The Animation Mixer. XSI continues Softimage’s role as innovator with its nonlinear animation
system, which is pictured above.

Because the IK is built into the skeletal

chains, an animator can use forward kine-

matic techniques to pose the skeleton with-

out having to do any wacky constraint

tricks. Simply select the bone and rotate it.

If you’re an animator, I know you’re smil-

ing with glee right now.

Scripting

L ike Max and Maya, XSI incorporates

scripting; unlike Max and Maya, how-

ever, XSI does not rely on a proprietary lan-

guage. Instead, it relies on ActiveX, so any-

thing supporting ActiveX will work, includ-

ing VBScript, Jscript, PerlScript, and

Python. These are proven tools and will

surely be exploited by enterprising artists.

Rendering

Softimage has deeply incorporated

Mental Images’ Mental Ray renderer

into XSI. While I know to many games

artists rendering is completely pointless, I

would not be doing this program justice

without mentioning this aspect. After all,

for many games today, prerendered video

sequences are a major selling point.

The images produced with Mental Ray

are of astounding quality. The system is

renowned in the film industry for its crisp

raytracing and wonderful volumetric

effects. Any company relying on rendered

cutscenes or images for their game will find

the possibilities Mental Ray offers them

intriguing.

The Verdict

Inow have to give Softimage XSI a star

rating. If all you are interested in is cre-

ating a prerendered cinematic, then give

XSI a long look. But its lack of polygon

tools hurts this product too deeply for me

to give it a recommendation. It has poten-

tial, but there really is no excuse for offer-

ing a product without polygon tools at this

stage. I look forward to seeing where Avid

takes Softimage in the near future. q

X XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

fair

don’t bother

P R O D U C T R E V I E W

SOFTIMAGE XSI

STATS
SOFTIMAGE (A DIVISION OF AVID TECHNOLOGIES)
Montreal, Quebec (514) 845-1636
www.softimage.com
PRICE
Softimage XSI Essentials: $7,995
Softimage XSI Advanced: $11,995

SYSTEM REQUIREMENTS
For Windows 2000/NT (SP 4 or higher); worksta-
tion with Intel Pentium or higher; compatible
OpenGL-accelerated graphics card with a mini-
mum 8MB RAM; 128MB RAM required, 256MB
RAM recommended; 195–360 MB disk space. N32
libraries and patches; SGI workstation with MIPS
R10000 or higher processor; 128MB RAM required,
256MB RAM recommended; 645MB disk space.
Both platforms require a three-button mouse and
CD-ROM drive.

PROS
1. Excellent animation tools.
2. Nonlinear animation tools.
3. Powerful NURBS modeling.

CONS
1. No polygon tools.
2. Unconventional interface.
3. No polygon tools.

w w w . g d m a g . c o m 15

z
P A T T E R N S

G A M E P R O G R A M M I N G P A T T E R N S & I D I O M S | c h r i s h e c k e r & z a c h a r y b o o t h s i m p s o n

w w w. g a m a s u t r a . c o m / p a t t e r n s

Problem

G ames often involve intricate puzzles

and sequences of dependent events.

For example, players sometimes must navi-

gate a series of obstacles or traps, using or

avoiding switches, secret doors, mines,

guards, and booby traps. Similarly, a plot

element in a game may need to happen

once a certain character is dead or after the

player has acquired a specific item. Coding

such traps and event-chains directly in a

high-level language such as C or even in a

custom embedded scripting language is

often tedious because it usually involves

numerous arbitrary constants that clutter

the code and change frequently as the game

design is tuned.

Solution

A special in-game object called a

“Trigger” is created that monitors

conditions and responds to them. De-

signers can then create triggers, place

them, and change their conditions and

responses in the game’s design tool.

Programmer time is not required after the

library of Trigger options have been cre-

ated. Conditions can be geometric, time-

based, or event-based. Responses can

include creating or notifying objects, or

other actions such as aggregating and noti-

fying Triggers.

Using a separate Trigger object (as

opposed to hard-coding conditions and res-

ponses), decoupling conditions and res-

ponses, and developing good user interface

in the editing tool can create a powerful

visual programming language for designers.

Examples

C onditions. There are many types of

geometric conditions, like “Has the

player entered the cave?” or “Is the player

within a specified radius of the altar?”

Time- and event-based conditions are com-

monplace as well, including, “Has the

player been in the dungeon for five min-

utes?” and “Is the boss-monster dead?”

Responses. Responses vary widely. For

example, “Fire poison darts at player,”

“Wake up boss-monster object,” “Notify all

objects linked to me,” and “Notify all

enemy-AIs within a given radius.” Triggers

made from multiple conditions and respons-

es are possible and desirable: “If a player

enters the room, picks up the amulet, and

stays for more than two minutes, close the

door and fill the room with gas.”

Issues

E diting. The design tool’s user interface

must be developed to allow creation,

sizing, placement, and other editing func-

tions to be applied to the trigger without

programmatic interfaces. Designers may

want multiple interfaces to the Trigger

objects, including the editing interface and

access via a scripting language, if present.

This UI can become very complex.

Debugging. Complicated sets of Triggers

broadcasting and reacting to one another

can be very difficult to debug. It is helpful

to construct a break-point or single-step

interface that allows the designers to moni-

tor the progress of the system as it exe-

cutes. Visualization tools, such as flying

broadcast tags or flashing the send/receive

pairs, are also useful.

Predicates. As more sophisticated traps

are constructed with Trigger implementa-

tions, it often becomes necessary to include

more traditional programming constructs.

For example, the condition “only if first

time to enter the cave” might be needed on

a specific proximity Trigger. The need for

such specific predicates is usually only dis-

covered during puzzle development, and

therefore such conditions are often added

piecemeal to the Trigger-edit UI until it

becomes cluttered with obscure options.

More general implementations may allow

scripts to be associated with the Trigger

and edited in the same UI without need for

recompilation. However, it is also fre-

quently true that a small and well-engi-

neered set of simple conditions, responses,

and global flags will suffice to create a

large variety of traps. In this case, excep-

tional situations might be more easily

made in the native programming language,

avoiding a complicated scripting solution

that would be used only rarely.

Performance. Triggers that perform

expensive and frequent condition evalua-

tion can be performance problems. Geo-

metric Triggers that query proximity in 3D

space could make use of a Spatial Index.

Scheduling Triggers for condition testing

can be an important part of optimization.

Related Patterns

U ses Spatial Index. See the Patterns

Database mentioned below.

Conditions and responses are called

“Triggers” and “traps” respectively at

some game companies.

Uses, Credits, and
References

T riggers are common in many games.

They date back to the earliest console

computer games. One reviewer mentioned

that THE PIT, a 1982 Atari game, con-

tained the first Trigger he noticed. The

author was heavily influenced by several

proponents at Origin Systems, especially

Gary Scott Smith and Herman Miller. q

Trigger
a.k.a. Trap, Egg, Timer, Condition/Response

C H R I S H E C K E R | Chris Hecker (checker@d6.com) is editor-at-large of Game Developer.

Z A C H A R Y B O O T H S I M P S O N | Zack is the former director of technology at Origin
and Titanic.

This column depends on your contributions!

Send your patterns and idioms to us at

patterns@d6.com. If we publish your pattern,

we’ll give you recognition in print and $100!

Now It’s Up to You!

w w w . g d m a g . c o m 17

A s a child, camping in the woods always fascinated

me. The stillness at dusk and the total lack of light

pollution that made the nights completely dark

brought me a mixture of awe and anxiety. When I

was a camp counselor during the summer, the camp

staff would play on those feelings to enhance the experience for our

elementary-school-age campers. We would tell stories of great

horned owls that flew silently through the night and were large

enough to carry a child away. We warned them to stay away from

the oak grove at night, because the trees came alive, grabbing hikers

and pulling them into their evil core. To support this myth, during

our day hikes we would point out twisted knots in the trees that

looked like faces in agony. Occasionally, on the way to the campfire

at night, several of us would split off into the woods, to make the

forest “come alive.” Yes, we were demented little weasels.

We were not the only ones to play up the myth and mysticism

surrounding great old trees. History’s tales have always been filled

with haunted forests and enchanted trees that both heal and harm.

The tree has become a paradoxical symbol of history, wisdom,

birth, and death. A sapling grows from the rotting flesh of its ances-

tors. The adult tree silently watches the world around it.

It’s no wonder this symbol has been used throughout the history

of storytelling. Directors of Westerns love to evoke the hanging tree

as an image of despair. I remember watching The Legend of Sleepy
Hollow on The Wonderful World of Disney as a child. The way the

trees looked and moved gave me more than a few nightmares. And

now kids, and adults, have been enjoying the lore surrounding the

Whomping Willow in the Harry Potter series. Even games are not

immune to such symbolism. Anyone else remember fighting the

haunted trees in DUNGEON MASTER 2?

So, in celebration of the Celtic New Year, Samhain, this month I

am going to build on last month’s 3D paint system and pull in some

more technology to create a haunted tree.

Planting the Seeds

T he first step is to model the tree. I just built something that I

thought looked like a spooky old tree with limbs that could be

used as arms. You can see the tree mesh in Figure 1.

The next step is to take the old digital camera outdoors and find

a nice tree to capture, and massage it in a 2D paint program to

make a texture that will work. Using the 3D paint capabilities of

last month’s program, I can touch up any areas that need some

work. Actually, to make a confession, I just use the 3D system to

mark places I want to adjust, then go back to a 2D paint program.

I haven’t had time to add different brushes, an airbrush, smudge, or

other nice tools to the 3D paint system. It is pretty useful just for

marking the exact 3D spot on the texture.

Refoliating

T he texture makes a rather nice looking bare tree. Nevertheless, I

really want to add some other branches and leaves to the tree.

Creating 3D trees has been the bane of many art directors in com-

puter games. Artists have tried everything from the simple billboard

tree texture to the pine-tree teepee. Thankfully, computers are get-

ting a lot faster, and we can devote more graphics bandwidth to

improving the objects in our scenes.

I was really impressed with the organic look Disney achieved in

their recent animated feature Tarzan. Through the use of 3D

strokes painted inside the 3D environment, Disney created a very

compelling and complex jungle environment.

The process of painting 3D content directly on the geometry in a

scene is very similar to the 3D texture painting operation I des-

cribed in September (“Art and Intelligence: 3D Painting”). I need to

detect the point where the user clicks on the object. However, for

this application, I need to figure out the actual 3D coordinate in the

scene where the user clicks, rather than the UV coordinate.

There are many methods for calculating a clicked coordinate in a

3D scene. For example, I could look at the transformed coordinates

for each triangle and determine it from that information. This

method doesn’t take advantage of the features of the rendering

hardware such as the Z-buffer. Instead, I’m going to use an image-

based method that is similar to the 3D paint technique, and use the

graphics hardware to make the calculation easier.

Haunted Trees
for Halloween

J E F F L A N D E R | When not scaring the tar out of little children,
Jeff can be found in his deep, dark cave at Darwin 3D. Send him your
favorite spooky story at jeffl@darwin3d.com.

j e f f l a n d e r G R A P H I C C O N T E N T

FIGURE 1. The tree mesh, a good starting point for a spooky tree.

The first thing I need to determine when I click on a mesh is

what polygon I have clicked on. I can encode the polygon number

into a color and render the mesh with that color for the entire poly-

gon. Here is a sample color encoding scheme in OpenGL that will

handle meshes of fewer than 65,536 polygons, which is more than

plenty for my needs.

glColor3ub(polyNum % 256, polyNum / 256, 0);

The red component is the polygon number modulus 256, and

the green component is the polygon number divided by 256.

When I render the scary tree using this technique, I get the image

in Figure 2. Just like this 3D paint application, the user never sees

this rendering. It is drawn to the back rendering buffer whenever

the viewpoint is moved and then stored to a memory location I

created for it. The OpenGL commands to copy this render off my

temporary buffer are:

glReadBuffer(GL_BACK);
glReadPixels(0,0, m_ScreenWidth,

m_ScreenHeight, GL_RGB,
GL_UNSIGNED_BYTE, m_TriCountBuffer);

Now when I click anywhere on the screen, I can consult this

buffer and find out what polygon was hit. That will give me the 3D

coordinates of the vertices in that polygon, but not the exact coor-

dinates where I hit.

To determine the exact location, I am going to create another

buffer. This time, however, I am going to

encode a color at each vertex. My mesh is

a triangle mesh, meaning it has three ver-

tices per triangle. Vertex 1 will be colored

red, Vertex 2 colored green, and Vertex 3

colored blue. The OpenGL code looks

like Listing 1.

The color interpolator on the graphics

card will create a smooth blend between

each color. The resulting image (Figure 3)

looks kind of wacky, but it is very useful.

I get the color at the picked position from

the vertex position buffer that has the colors encoded as RGB val-

ues from 0.0 to 1.0. With these two buffers rendered out, I have

everything I need to find out exactly where I clicked. I take the

location of the click and check the two buffers. That gives me a tri-

angle number, triNumber, and an RGB value for the vertex number,

vColor. The pseudocode for then calculating the clicked point is

shown in Listing 2. Actually, with a Vector class in C++, it would

be fewer lines than what is shown, but not as easy to read.

When the Leaves Turn

Now that I have a fast and easy way to select an exact 3D posi-

tion on a model, I need to hang something on the tree. I could

actually create geometry and add it to the mesh, but I would really

like just to attach the leaves to the tree. I am going to treat the

leaves more like a particle system. The tree structure has a list of

particles that are “attached” to it. Each leaf has its own 3D posi-

tion and orientation relative to the tree’s local coordinate system.

The leaf particles are rendered with a simple polygon, mapped with

an alpha-blended leaf texture like the ones in Figure 4.

For the orientation and size of the particles, I track the stroke

until the user releases the mouse. The length of the stroke deter-

mines the scale of the rendered particle, and the direction of the

stroke determines the rendering orientation. The orientation

allows you to rotate the leaf to point in any direction, though the

texture faces the camera initially. The leaves can either be ren-

dered using the initial facing or be set to orient

so they are always facing the camera. This cre-

ates a different effect that is useful in some

cases.

When sizing the leaves with the brush strokes,

some care must be taken. A bit of variation is

necessary, but too much looks odd. Obviously,

an extremely large leaf would look silly. I can

always randomize the size a bit later if I want,

but giving the artist some control is always

good. I have also experimented with different

types of textures such as other types of leaves,

18

G R A P H I C C O N T E N T

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r

FIGURE 3. Rendered tree with vertex encoding from Listing 1.

FIGURE 4. A couple of leafy textures.

FIGURE 2. Render with polygon number encoded.

twigs, moss, and even mushrooms.

Different brush types and painting methods would create other

effects. Attaching a spray nozzle and allowing the artist to “air-

brush” leaves would give an effect similar to the Paint Effects sys-

tem found in Maya. It’s even possible to create things such as vines

by rendering between two particles.

Because the leaves are treated as particles, they can be controlled

just like a particle system. At the press of a button, all the leaves

could fall off the tree and drift to the ground. By connecting the

particles with springs, you could make vines that actually swing. I

have just begun to explore the possibilities for this real-time dynam-

ic, organic environment.

The Trees Are Uprooting

My goal was to create a haunted tree, and in order to scare the

children, the tree needs to be able to move. Because the tree is

really just a single mesh object with a bunch of particles attached, I

shouldn’t have much problem. Just like a game character with a

skeleton for animation, I can put a skeleton inside the tree and

move it with matrix-deformation techniques (“Over My Dead,

Polygonal Body,” Graphic Content, October 1999). Procedural ani-

mation techniques can make the tree automatically sway as if the

breeze were moving it around.

The only twist to the matrix-deformation system is the leaf parti-

cles. They need to deform with the rest of the tree, so my solution is

to deform the particles using the same routine as the mesh. To do

this, the particles need weights to relate them to the bone matrices.

My simple solution is to have the particles adopt the same weights

as the nearest vertex in the mesh. This seems to work well enough.

However, in order to give the tree the ability to reach out and try

to grab the children, it needs to be able to reach a target. To accom-

plish this task, I am going to pull another tool out of my toolbox

and use the inverse kinematics routines I developed a couple of

years back. In order to use those routines for this application, how-

ever, I want to take a minute to flesh out some new IK ideas.

Inverse Kinematics Revisited

In this column back in 1998 (“Oh My God, They Inverted Kine!”

September 1998), I described a system for iteratively computing

the inverse kinematics for an articulated chain. The sample applica-

tion was 2D, because it made the interface much easier (and I am

lazy). However, the technique worked equally well in 3D, treating

each joint as a three-degree-of-freedom ball-and-socket joint. To

move toward the target, each joint rotated about an arbitrary axis

to move toward the goal.

While quite effective at reaching the goal, treating every joint

like a ball-and-socket led to some weird visual artifacts. For

example, having a shoulder or hip joint behave like a ball-and-

socket is fine, but an elbow or a knee shouldn’t go twisting all

around. At the time, I proposed using degree-of-freedom restric-

tions to combat this problem. Because I was using quaternions to

represent the orientation of the objects, I had to then convert

from quaternion to Euler angles while enforcing the restrictions

and then convert back again. While this is not terribly efficient, it

works well enough. There are times, though, when it doesn’t

make a lot of sense. A knee joint can be modeled efficiently using

one degree of freedom. In order to implement this on my general

IK system, I need to use degree-of-freedom restrictions to keep the

other two angles equal to 0. This works, but it slows the conver-

gence of the IK solution, because the restrictions are undoing

work from the IK routine.

At the Game Developers Conference in 1999, I discussed my

method of treating these 1-DOF joints as a special case. Instead of

calculating the full 3D solution for these joints, I could project the

target point into the plane of rotation for the joint, and optimize

toward that goal. Since that time, I have received a bit of mail from

people who attended that session and others who have run into this

problem independently who were looking to understand the math

behind this idea. This is exactly the type of problem I have attempt-

ed to address through this column by showing practical examples

of how mathematics can be used as a tool to accomplish specific

goals. Let me start by stating the problem.

The problem. I am given a joint in an arbitrary initial orientation

that is free to rotate about one axis and a target position in 3D

space. I want to find the angle to rotate the joint such that the end

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r20

G R A P H I C C O N T E N T

LISTING 1. OpenGL buffer to encode colors at the three vertices.
LISTING 2. Pseudocode for calculating the clicked point.

LISTING 1.
face = visual->index;

for (loop = 0; loop < visual->faceCnt; loop++,face++)

{

glBegin(GL_TRIANGLES);

glColor3f(1.0f, 0.0f, 0.0f); // Vertex 1 is red

glVertex3fv(&visual->vertex[face->v[0]].x);

glColor3f(0.0f, 1.0f, 0.0f); // Vertex 2 is green

glVertex3fv(&visual->vertex[face->v[1]].x);

glColor3f(0.0f, 0.0f, 1.0f); // Vertex 3 is blue

glVertex3fv(&visual->vertex[face->v[2]].x);

glEnd();

}

LISTING 2.
face = visual->index[triNumber];

v1 = &visual->vertex[face->v[0]].x;

v2 = &visual->vertex[face->v[1]].x;

v3 = &visual->vertex[face->v[2]].x;

click.x = (v1.x * vColor.r) + (v2.x * vColor.g) + (v3.x * vColor.b);

click.y = (v1.y * vColor.r) + (v2.y * vColor.g) + (v3.y * vColor.b);

click.z = (v1.z * vColor.r) + (v2.z * vColor.g) + (v3.z * vColor.b);

FIGURE 5 (left). The problem: Rotate a 1-DOF joint to a target.
FIGURE 6 (right). The approach: Project target on rotational plane.

of the joint is as close as possible to the target.

For those of you who are good at vector math and geometry,

this problem is an easy one. Now is your chance to exercise those

math muscles. Set this magazine down, get a piece of paper, and

work out the solution before reading the next section.

The approach. O.K., who cheated? I know that because the

joint in Figure 5 is only allowed to rotate about axis N, the solu-

tion space is the plane where N is the normal to that plane. If I

can find the nearest point to the target on that plane, that would

be the new target point, P.

Start by creating a vector, V, from the base of the joint to the tar-

get. Take the dot product of this vector and the joint’s axis of rota-

tion, N. This result is multiplied by N to determine the distance

along the axis, D. Subtract this distance from the target and you get

the projected point, P.

The dot product comes to the rescue once again. For those clever

ones out there, we need to make a new Schoolhouse Rock cartoon

starring the magnificent Product Brothers: short, stout Dot and his

taller, nimbler brother Cross, fighting the evil force of Geometry.

This formula is useful for another purpose as well. The magni-

tude of the distance vector, D, is the closest distance from the target

to the plane. That can be useful for applications such as collision

detection. By using this new IK method, I can treat the tree’s “el-

bow” joints as 2D joints, making the reach animation a bit more

realistic. Check out the final tree in action in Figure 7.

Scary Monsters

C ombining a 3D paint and particle system with matrix-defor-

mation techniques has allowed me to create a Halloween

tree with a bit of an attitude. If you move the “victim” close to

the tree, it will start to shake and as the victim gets closer still,

the tree will grab for him. Spooky, isn’t it? Grab the demo and

the source code off of the Game Developer web site at

www.gdmag.com. q

r

r r r r

r r r

V T B

D V N N

P T D

= −

= •

= −

()

w w w . g d m a g . c o m

F O R M O R E I N F O R M AT I O N

WEB SITES

The best Schoolhouse Rock site on the Internet:

www.genxtvland.simplenet.com/SchoolHouseRock/

index-hi.shtml

MOVIES

Disney’s Tarzan (1999)

PUBLICATIONS

Daniels, Eric. “Deep Canvas in Disney’s Tarzan.” Proceedings of SIG-

GRAPH 1999, p. 200.

Meier, Barbara. “Painterly Rendering for Animation.” Proceedings of

SIGGRAPH 1996, pp. 477–484.

21

FIGURE 7. The final tree in action.

F or nearly ten years now, com-

puter graphics in film have

dazzled us with realistic simu-

lations. As much as computer

game artists wanted to create

similar high-quality images, limitations of

real-time graphics in videogames have left

artists with imagined characters running

around in their heads rather than on their

computer screens. With the advent of pow-

erful next-generation consoles, many of the

chains that that have held back artists’ cre-

ations can be broken, and a new era of

expression will be possible.

But before we get carried away and

compare the next-generation console

graphics with the computer-generated

graphics in the film industry, we must

realize that game artists will continue to

face limitations and difficult choices. First

of all, most game development teams do

not have the manpower nor the financing

to add unlimited realism to their games.

Second, the graphics for a movie only

need to look good from one angle, on a

2D theater screen. In a game, the viewer

has several viewpoint options, and the art

needs to look good no matter which angle

it is viewed from. Delivering high-quality

graphics in true 3D space can take a lot

of time, and a product cannot be in infi-

nite production. There are always tight

deadlines, and sometimes corners have to

be cut. So, despite all the possibilities that

will come with the next generation of

characters, it is still very important to set

priorities beforehand and figure out a

way to get the most out of your graphics

during your development time.

To break down where character im-

provements can be made most effectively,

we should first look at the different parts

that make up a character model. A char-

acter model is made up of 3D geometry

textures that show color on the model,

and animation or movement that brings

the character to life. These three main

groups are all the aspects that can be

improved upon. A 3D model can be

incredibly detailed, with everything from

eye sockets to dilating pupils, and the

artist has to decide where attention to

detail will have the greatest impact. Better

textures can make that eyeball look wet

and shiny; the skin can have the impres-

sions of the veins underneath. Animation

is another area for character improve-

ment. Animation can now be motion cap-

tured to get simulated movement — for

instance, a character’s mouth can be ani-

mated so that it appears to actually pro-

nounce the words rather than “jaw”

them. The artist will have to decide which

of these aspects are the most important to

make the characters come to life.

Modeling

W ith faster processor speeds, the

first place the artist will want to

concentrate on is the model. The easiest

thing to do would be simply to add more

detail to the model. Rather than limiting

the number of shapes because of tight

polygon restrictions, artists now have a

greater amount of extra polygons to work

with, allowing for much greater detail. A

head can now have a mouth, teeth, eye

sockets with round eyes, ears, and what-

ever other details that fit within the poly-

gon budget. To get the best results, it’s a

good idea first to add detail to the large

shapes and make sure those are refined

before moving on to details that might

not be as noticeable. If the character is

seen from a third-person point of view, it

is best to spend more time on those poly-

gons that will be the most visible. Of

course, if the game has a lot of close-ups

and character interactions, facial details

immediately become very important. A

downside of adding all this detail to a

model is that the geometry can get really

dense, and it is no longer possible to

change a model quickly. Models can still

be carefully built by hand, but some com-

panies have already chosen to scan their

characters instead.

For the game ODDWORLD: ABE’S ODDY-

SEE by Oddworld Inhabitants, the designers

carefully built sculptures of their charac-

ters and then digitally scanned them into

the computer. Although this seems like a

long process, this might soon become a

time-saver for building new models. For

instance, Electronic Arts is scanning in the

wrestlers for their latest wrestling game.

Once a full-body scan of a wrestler is done

by Cyberscan Technologies, game design-

ers have a perfect replica. However, the

dense geometry of this type of character

can be very difficult to manipulate. Com-

panies such as Paraform have created soft-

ware specifically to make this data more

The Evolution of
3D Game Models – Part 2
The Characters of the Next Generation

M A A R T E N K R A A I J V A N G E R | Maarten is the lead artist at Nihilistic Software, which
just completed its first game, VAMPIRE: THE MASQUERADE — REDEMPTION. He is currently
going crazy realizing just how much more time and effort it takes to make more lifelike
game models.

w w w . g d m a g . c o m 23

m a a r t e n k r a a i j v a n g e r A R T I S T ’ S V I E W

FINAL FANTASY. This level of texture graphics
used in the upcoming Final Fantasy feature film
will someday be possible for games.

manageable and able to

be converted into differ-

ent formats.

Until only a couple of

years ago, most pro-

grams only supported

modeling methods with

either polygons or

curves. When Pixar creat-

ed their Oscar-winning short film Geri’s
Game, their resident Ph.D.s came up with

a new modeling method: their models

were built with patches called subdivision

surfaces. The incredible benefits of subdi-

vision models are that the geometry is less

dense and can be manipulated fairly easi-

ly. In addition, the artist has the option to

put more detail where it is needed with-

out having to apply it throughout the

model. With limited RAM on consoles,

the smaller footprint of a subdivision

model could make this format very

attractive to a designer, because many

detailed polygonal characters chew up

RAM very quickly. If the subdivision sur-

face model can be used as a simple yet

detailed template of the polygonal game

model, it could very well become the

standard in the next generation of charac-

ter development.

Textures

A nother improvement for the next gen-

eration of character models will be in

the textures. With the introduction of tex-

ture compression, a lot more can be done

with the texturing of models. Effects such

as bump maps that previously could only

be done in movies are going to become

commonplace within games. New tech-

nologies have been introduced that have

made creating photorealistic textures easi-

er. When a 3D model or a life-size person

is scanned in three dimensions, the color

on the model can be included with the

scan, making it possible to get the exact

color of every hair, pimple, and mole, with

the exception of eye color, because the eyes

must remain closed during scanning. With

the introduction of digital cameras, it is

now easy to get perfect textures of every

wall and billboard, and achieve all the grit-

ty detail without the hassle of developing

film. And finally, the tools to paint the tex-

tures on the computer have developed fur-

ther to make it even easier to paint them in

3D space rather then in 2D.

On the Playstation, the textures that

made up the models were 32¥32 and had

256 colors; on the Xbox, the textures can

be as big as the programmers let you make

them. Best of all, the Xbox can do multiple

rendering passes on the textures. A brick

wall that used to be composed of a flat-

looking color map will now feature a bump

map to push the mortar back a little; a

spectacular texture map can be created to

make the wall appear to those walking by

as if rain has been dripping down the side.

With all the possible texture effects

becoming available to make the game

world more realistic, the availability and

ease of digital photography has made the

color aspect of textures much more life-

like. If we are striving to capture reality,

what better way to create a texture than to

take of picture of it? Some games in devel-

opment have already taken the plunge and

created their entire environments from dig-

ital pictures. MAX PAYNE by Remedy Soft-

ware is one of the first games to rely heavi-

ly on photographic imagery for their char-

acters and world. The results are a unique

look that shows off all the detail of what

you might find in the gritty city. These

photorealistic environments will become

more common because it is much cheaper

and less time-consuming to take a picture

than for an artist to paint the texture from

scratch. Of course, photorealistic environ-

ments are not suited to every game, but

because it’s easier to create higher-resolu-

tion textures and create a more realistic

environment, it is a good fit for many

next-generation games.

However, there can be some problems

using digital photography in games.

Because most games attempt to create a

world that blends all of its elements seam-

lessly, mixing hand-painted textures with

digital photography can look jarring.

Because the detail of digital photography

is a perfect representation of a texture, the

hand-painted textures created by the artist

might stand out and break the illusion.

One common solution is to use a digital

photograph as a template and paint a tex-

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r24

A R T I S T ’ S V I E W

ABOVE. Pixar’s Geri’s Game
featured subdivision sur-
faces.
RIGHT. A photorealistic wall
from Insomnia Software.

ture from it. This can reduce the realism

and give the world a more unified and

unique look. But if the art team is only

using unenhanced digital imagery, they

might find themselves stuck with having

to do all the other textures in the game

with digital photography.

Animation

One of the biggest advances in the

next generation of game models will

be in animation systems. Most of the ani-

mation systems in games so far have

either relied on motion capture or on tra-

ditional keyframe animation. So far these

systems have been great, but they have

their limitations.

Motion capture has been used in a lot

of sports and fighting games, but it is not

appropriate for every game. Motion cap-

ture does exactly what rotoscoping did

for traditional 2D animation: it is capable

of capturing fluent human movement and

the results are extremely realistic. From

timing to the weight and mass of a char-

acter, motion capture provides human

simulation to perfection.

The problem is that in most video-

games you don’t want perfect movement,

but rather something more dynamic and

flashy. You wouldn’t want an average Joe

for your character design, you want your

character to be larger than life. The same

is true for how the character animates.

When doing motion capture, you can hire

an actor that is aware of his movement

and gives the motions more “oomph,”

but no matter what the actor does, he is

always constrained by the laws of gravity

and physics. The actor will always move

and behave in a recognizably human

manner. An animator creating the motion

by hand, however, does not have the same

restrictions, and is free to animate the

character with creativity regardless of

what reality might dictate.

The downside to this is that it takes

much longer to do each animation by

hand, and the costs can add up quickly.

Because it can be very expensive to do tra-

ditional animation, many companies prefer

to do motion capture. For many games it

can work very well, but even when it is

pulled off perfectly it has many limitations.

Because motion capture can, for the most

part, only be done by and for humans,

what do you do for all the other nonhu-

man critters running around in your game?

You can tweak the motion capture data to

fit different humanoid skeletons, but what

do you do about crazy fantasy creatures?

Monsters can have eight limbs, two heads,

and five arms, and there is no way to cap-

ture the motions such creatures would

need to be brought to life. If the developer

wants to use motion capture for the

humanoid characters and hand-animate

the creature, the game developer is once

again faced with the dilemma of mixing

media, much like mixing digital photoreal-

istic textures and hand-painted textures

creates a disjointed feel. It’s possible if the

animator for the monsters is very talented,

but it would be very difficult to match

hand-animated movements to smooth,

motion-captured animations.

For the next generation of games, it will

not be an easy solution to pick between

motion capture and traditional animation.

Because we can never motion-capture all

the creatures of our imagination, tradition-

al computer animation skills will always

be in high demand. What can be done is to

examine traditional animation and figure

out ways to make it a faster and more effi-

cient process. This is where real-time

dynamics comes into play.

Real-time dynamics is where a skeleton

or 3D geometry reacts according to the

laws of physics. The use of dynamics in

computer graphics has been around for a

long time and has been used extensively in

film. Convincing cloth dynamics, on the

other hand, have only been achieved within

the last three years. Geri’s Game was the

first to show cloth behaving as one would

expect. The clothes folded and creased as

you would expect them to. Your eye was

no longer paying attention to the effects,

but rather to the character itself.

So far, real-time dynamics’ use in games

has very limited ways in games because it

squeezes the pulp out of any supercomputer.

In NOCTURNE, developers at Terminal Real-

ity took the plunge and attempted to do

fully dynamic clothing. The results were a

mixed bag. The fact that the clothes on

characters moved and animated differently

depending on the situation added quite a lot

of realism, but the game ended up having

high system requirements and the clothes

did not have much variety in the way they

moved. To do clothes correctly, you need to

have control over properties such as fabric,

elasticity, and weight. For example, a piece

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r26

A R T I S T ’ S V I E W

MAX PAYNE. It is one of the first games to rely heavily on photographic imagery for textures.

of corduroy should not move the same way

as a piece of silk. Many of the features that

provided the realistic cloth simulation in

Geri’s Game have been incorporated into

advanced tools such as Maya. Because it is

now easier to incorporate cloth in 3D ani-

mation packages, it is just a matter of time

before such textures are used successfully in

character models.

Another aspect of character animation

that is on the horizon is full 3D lip synch

for in-game characters. So far, the lip

synch in most games consists of the mouth

simply moving up and down without any

mouth shapes. Lip synch with actual pro-

nunciation of words has been done in

some games with the use of textures, but

not with the mouth actually deforming to

say the words. Facial animation setup can

be quite complex. Although tools to create

3D lip synch are available in most next-

generation packages, most of them are not

very efficient for real-time games. The

most popular method requires the artist to

make multiple copies of the same head and

create different expressions for each one,

which are usually referred to as morph tar-

gets. The lip synch is then accomplished by

actually blending the geometry between all

the different copies with all the different

heads. Whichever method is chosen, they

all present long setup times and lots of

programming to work properly.

Conclusion

W ith all the new technology cropping

up, it is an exciting time to be a

game artist. With fewer limits, game artists

will be able to bring exciting new charac-

ters to life. Now more then ever, game

artists can pursue many of the techniques

and methods pioneered by the computer

graphic artists working in film. Artists

need to make sure they are familiar with

the techniques and tools used so they are

capable of making well-thought-out deci-

sions. All the power unleashed with the

new consoles and graphics cards have

made the artistic possibilities virtually end-

less, yet the resources to create them have

remained finite. With the ability to do so

much more, artists must use discretion and

focus on features that will make the big-

gest impact to separate them graphically

from their pack of competitors. The start-

ing gun for the next generation of games

has fired, and I can’t wait to see what’s

going to be leaping off of the screen. q

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r28

A R T I S T ’ S V I E W

NOCTURNE. The fact that the characters’ clothes animated differently depending on the situation added a lot of realism, but came at a performance cost.

Discuss this article in
Gamasutra’s Connection!
www.gamasutra.com/discuss/gdmag

S o here’s the problem. I’m

minding my own business,

when along came a game

designer with this great idea of

making a Spider Dungeon in

our fantasy role-playing game. If you’re like

me, you always thought about doing that multi-

legged insect animation, but never got around to it.

Well, here’s your chance.

In this article, I’ll cover the basics of how to set up and ani-

mate an eight-legged spider. I’ll also discuss how to create a sim-

plified sequence of leg/foot placements that can be looped.

The target output for this animation is a run-time 3D envi-

ronment. What we end up with is a single looping animation

which the code will take and translate the necessary distance,

causing the spider to appear to walk on the terrain. Because of

the limiting factors in run-time development, we need to create a

compact yet believable animation, in as little time as possible.

The software I used for this tutorial was 3D Studio Max 3 and

Character Studio’s Physique modifier, but the general processes

should be applicable to most of the 3D packages out there. I sug-

gest you have a fresh supply of java (the beverage, not the code)

readily available to help you get things off on the right foot.

References: An Important First Step

O ftentimes, even the most seasoned animator will want to

bypass mundane research and cut to the chase. It’s even

more tempting when the subject is something familiar. But there-

in lies the danger: If the subject matter is famil-

iar, then your audience will have a much more

discriminating eye for errors or anomalies. By

studying a few reference video sequences or mul-

timedia clips, you can pick out subtleties that you

will need in order to bring your animation to life.

Your local library or video store holds a wide variety

of applicable references.

Establishing the Frame Rate and
Step Sequence

T he frame rate (in frames per second, or FPS) you establish for

animating is very much dictated by the type of game you are

working on and the speed at which you want the subject to trav-

el. In this particular example, the animations will be exported

and end up controlling a single skin mesh with a skeletal struc-

ture in a run-time 3D environment. While a high frame rate is

expected, we intentionally animate at a much lower frame rate.

Our target rate will be 12FPS.

There are several reasons for choosing this lower frame rate. If

the animations are done at, say, 30FPS, and the game ended up

going below that speed during gameplay, then the code would

need to truncate some of the keyframes. In most cases, this

means sampling the data at a lower rate. Now the problem

becomes determining which keyframes are more important than

others. Most of the time, resampling simply removes every other

keyframe or every third one. This can lead to disaster in the final

animation, because some of your more important keyframes,

Arachnophobia

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r30

3 D A N I M A T I O N m a r k p e a s l e y

Animating a multi-legged creature

such as a foot planting on the

ground, may end up on the virtual

cutting room floor. If critical key-

frames are removed because of the data

sampling, the entire animation starts to fall apart.

Thus, animating at a lower frame rate avoids this problem.

Initially, this may make it more difficult to get the results you

are looking for, but it also forces you to become more aware of

which motions and poses are most critical to conveying the

movement.

The downside to having fewer keyframes is a less subtle ani-

mation. Often, secondary motion is difficult to capture, and

having to loop the animations eliminates some of the follow-

through motion as well. If the game engine is robust enough,

blending and spline interpolation can compensate for some of

the lost motion. With some work and planning, a 12FPS anima-

tion need not end up looking like Saturday morning cartoons.

The next task is establishing a looping foot sequence. Just as

in traditional cel animation, the two extremes of the leg position

as well as the maximum leg-height frame (also known as the

passing frame in a human walk cycle) need to be established. In

the case of the spider walk loop, I indicate a local Z-axis frame

height with an arrow. This frame is where the leg, as it moves

through the air, reaches its maximum height.

After studying the walk loop of several spiders, I’ve deter-

mined a cycle that looks good enough to use in a run-time environ-

ment and is fairly compact. This cycle isn’t exactly like a real spider

walk sequence, but it approximates it close enough for our purpos-

es and has a fairly low keyframe count.

After some close study, I discovered that each leg on the alter-

nate sides of the spider’s body is doing essentially the same thing.

The only difference is that the sequence of when they plant and

when they transition are simply out of phase

with one another. This repetitive pattern

is echoed for each set of legs from

front to back. Once I have the

whole sequence, I then determine

a loop point.

The length of the sequence has

a direct bearing on how fast the

spider walks. In our case, we are

animating at 12FPS, and have

decided that our in-game spider

should move fairly fast. After some

experimentation, I decided on a

sequence of 12 frames (see Figures 1a and

w w w . g d m a g . c o m 31

M A R K P E A S L E Y | Mark has been in the game industry since the late 1980s and is currently the art director at Gas Powered Games. When
he’s not crackin’ the art whip, he referees three boys at home and enjoys scuba diving in the Puget Sound. Visit his web site at www.pixelman.com
or e-mail him at mp@pixelman.com.

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r32

3 D A N I M A T I O N

1b). This means that one entire looping

cycle occurs every second. This is much

faster than a tarantula-type walk loop,

but it is intentional because our spiders

need to be able to chase down characters

within the game.

The Basics

Iwill assume at this point that you have

already modeled and texture-mapped a

mesh. In the case of our spider, we have a

fairly low polygon count that weighs in at

around 175 faces. The polygon count is low

because we ultimately want to have several

dozen spiders on-screen at once. In addi-

tion, our game camera is far enough away

during the scenes in which this type of spi-

der is present that we can make very simpli-

fied leg joints. The flattening that occurs at

these joints happens quickly enough that it

isn’t really identifiable. (Later on in the

game, we created a higher-polygon spider

that can stand up to much closer camera

views without breaking down.)

While not critical, you can save yourself

some time later on by making each leg an

identical copy of the other, all radiating the

same distance from a center point in the

body. This will make placing and aligning

the skeletal bones easier.

Figures 2a–c show an example of the

spider as well as the texture map used. The

texture map is 256¥256¥32-bit. Because

of graphics hardware requirements within

our particular game, the maximum size we

can go to is 256¥256.

When considering what size to make

your initial texture map, bear in mind your

final camera distance. Often, modelers and

animators work in full-screen mode in their

paint and animation software, and it’s easy

to forget that your character may end up

the size of a dime on the game screen, with

all the extra effort put into the texture lost.

This is especially true if the texture is being

MIP-mapped down. After some testing, we

found that our spider texture was using its

third-level MIP-map (64¥64) at the default

camera view.

Creating the Skeleton

F or this animation, we will create a

combination inverse and forward

R1

R2

R3

R4

L1

L2

L3

L4

FIGURE 1A (above left). The
references to the spider’s
legs used in this article.

FIGURE 1B (right). Each foot
is locked to the ground plane
for three frames, then moving
for three frames. On the third
frame of each moving sequ-
ence, the foot is raised on the
local Z-axis.

FIGURE 2A (left). The texture mapped to our spider model.
FIGURES 2B (below left) & 2C (below right). Two views of our spider model, ready for animating.

1

x

2

x

3

o

4

o

5

o

6

x

7

x

8

x

9

o

10

o

11

o

12/0

x

12/0

x
R1 & R3

L2 & L4

R2 & R4

L1 & L3

1

x

2

o

3

o

4

o

5

x

6

x

7

x

8

o

9

o

10

o

11

x

12/0

x

12/0

x

1

o

2

o

3

o

4

x

5

x

6

x

7

o

8

o

9

o

10

x

11

x

12/0

x

12/0

x

1

o

2

o

3

x

4

x

5

x

6

o

7

o

8

o

9

x

10

x

11

x

12/0

o

12/0

o

Foot

x = locked o = in motion = move on z axis

12 Frame sequence

kinematics skeleton. This allows the best

of both worlds in terms of IK foot control

and FK body control. The IK skeleton

legs allow much easier control of the foot

placement and subsequent editing, while

FK bones will control the body and

“fangs” of the spider. The IK legs also

allow us to animate the body of the spi-

der after the leg sequence has been creat-

ed without altering or affecting the foot

placement. With an FK-only system, sub-

tle adjustments to the body at the end of

the animation process would alter all of

the leg positions, requiring a fair amount

of reworking.

The first step will be to create one leg,

with all of the correct constraints, which

we can then clone and rotate. The result-

ant array of legs will have all of their con-

straint settings automatically duplicated.

This saves some time by eliminating the

need to re-input the settings for each leg

bone separately. It also saves us from try-

ing to set constraint limits on bones that

aren’t perpendicular to one of the main

axes. We build the first leg bone perpendi-

cular to an axis, set the constraints, then

rotate it into position.

The root bone. In Max, the initial root

bone is created as an FK bone. This isn’t a

requirement, but it makes animating the

basic body motion possible without having

to add a linked dummy to the scene. It also

terminates each of the IK leg chains. Once

we create the initial root bone, each of the

leg bones will be gen-

erated, constrained,

and linked to the root

bone. We will place

the initial root bone in

the center of the body,

at the point where the

legs converge.

Setting up a single IK
skeleton leg. I’ll create

a single leg bone in

one of the standard

left/front/top viewports.

In Max, this facilitates the constraining

process. By creating the bone in a standard

view, the constraints will fall on either the

X-, Y-, or Z-axis. If the bone was created

from a “user” viewport, the process of set-

ting the joint limits would get much more

difficult to lock down and get predictable

results. Once we have created and con-

strained the bone, it can be rotated into the

desired position. (See Figures 3a and 3b.)

Making the bones behave. In Max, the IK

bones are continually trying to solve them-

selves. One downside to this is that the de-

fault settings are a fairly low granularity.

This tends to make the bones “settle” over

the course of a few frames once the end

effector is added to the IK chain. Even if

there are no keyframes, the skeleton will

visibly shift over the first five to ten frames.

To avoid this settling effect, we need to

crank up the IK Control parameters. We set

the thresholds for both the position and ro-

tation to 0, and set the IK solution calcula-

tor to a high number, such as 500. The end

result is that the bones will lock into posi-

tion with no visible settling effect.

Setting the constraints. The trick to set-

ting the constraints is to do as little work as

possible. The ideal leg allows the necessary

control with as few dummy objects as pos-

sible. In this example, because the leg of the

spider is mechanically very simple, I can use

a single foot dummy. More dummies can be

added to control each joint, but this addi-

tional control comes at a cost. As you begin

to readjust the legs, each of the additional

dummies will need to be adjusted as well. In

this particular example, a single dummy

was adequate to control the leg movement.

While setting the constraints, you should

continually test the motion extents of the

limb. It is possible to readjust these after the

animation is well under way, but this often

creates undesirable side effects that may

w w w . g d m a g . c o m 33

FIGURE 3A (above left). Creating the bone in a standard view.
FIGURE 3B (above right). Setting the constraints on the leg bones.
FIGURE 4 (right). Rotating the bones into position.

3 D A N I M A T I O N

require you to rework some of the anima-

tions. (See Figure 4.)

Fitting the bone into the mesh. The next

step is to fit the bones inside the leg mesh so

that when we clone the leg IK chain, it will

fit into the remaining mesh with minimum

adjustment. This assumes that you created

your mesh in a semi-orderly fashion and

that the legs are identical copies, rotated

into position. If you didn’t create the mesh

this way, then you can easily fit each leg

bone into the mesh manually, it just takes a

bit longer.

Making multiple legs. Now that we’ve set

the constraints and parameters correctly for

one leg, any cloned duplicates will bring

along the settings that were made for the

first leg. This saves a lot of repetitive input.

The initial leg is selected, copied, and rotat-

ed into each new leg position. Because the

initial root bone is in the center, we can use

it as the rotation point for each duplicate

leg. This places each clone of the leg IK

chain in an appropriate location with a

minimum amount of correction needed.

(See Figures 5a and 5b.) We can make any

minor adjustments to the individual legs

and then link each leg back up to the root

bone. (See Figures 6a and 6b.)

Creating the rest of the skeleton. For the

rest of the spider, I used FK bones. This

allows me to keyframe the body and the

mandible movements without having to add

IK end effectors and corresponding dummy

objects to control them. Once again, I rec-

ommend using a standard viewport so that

any constraints you may want to place on

the bone can be done so with minimum

effort. (See Figures 7a–c.)

Attaching the mesh to the bones. The next

step is to attach the mesh vertices to the

skeleton system. In Max, this is done by

using the Skin modifier, or a Physique

modifier if the Character Studio plug-in is

installed. I prefer the Physique modifier

because it allows type-in weights on indi-

vidual vertices. It’s much easier to get pre-

cise results using the type-in weighting

method rather than the envelopes avail-

able in the Skin modifier. Also, the Skin

modifier has some anomalies where bones

can’t be renamed after the modifier has

been applied, so reworking is painful.

Speaking of naming bones, save your-

self some trouble and give them logical

names. It is much easier to skin or

physique a skeleton that has the bones

named something other than BONE02,

BONE03, and so on. You may find your-

self jumping in and out of the weighting

menus in order to identify bones correctly

if no initial effort was made to give them

logical names.

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r34

FIGURES 5A (top left) & 5B (top right). Cloning the first leg and placing the clones. FIGURES 6A (bottom left) & 6B (bottom right). Making adjustments to
individual legs and linking them back to the root bone.

I could write an entire tutorial just on

vertex weighting techniques. Because this

article deals with animating more than

skinning, I’ll just wave my hands and your

mesh will magically be ready for anima-

tion. This should be familiar ground for

most of you, so I’ll assume that you have

skinned or physiqued your model before

moving on to the next step.

Animating the Spider

F irst, we will create a couple of dum-

mies to control the root bone and one

front foot. Eventually, each of the spider’s

feet will have its own dummy, but it is gen-

erally easier to create and animate one foot

at a time. The first dummy is linked to the

root bone and used to control the body

translation and rotation. While this isn’t

required, I find it easier to have a dummy

for the root. The foot dummy is used to

control the IK chain of one leg. Here, I

start with the R1

foot. Once the

dummy is in place,

I place an end effec-

tor on the last leg

bone. I then link

the end effector to

the foot dummy

and it is ready to

animate. (See

Figures 8a–c.)

Simplifying the view. When animating,

it’s a good idea to eliminate all of the on-

screen noise that has a tendency to creep

in. By noise, I’m referring to all of the

bones, constraint angles, end-effector tar-

gets, and other things that your anima-

tion program displays by default. In Max,

I hide all of the bones I’m not directly

using. I also “freeze” the mesh, which

makes it visible but not selectable. In

addition, I either hide or freeze all of the

dummies except for the one I am animat-

ing. An added advantage of this is that

hiding tends to speed up the screen

redraw. On a simple character like this, it

generally isn’t a problem, but on more

complex ones, it can have a big impact.

Moving the spider. You should now have

only a spider mesh and two dummy

objects visible, with everything else either

hidden or frozen. The next step is to deter-

mine how far we should move the spider

body as it is walking. This is dependent on

the stride length, the number of strides a

single leg makes in the animation, and

how you want it to look. By sliding the

foot dummy along its local Y-axis, you will

begin to see the extents to which the leg

can travel comfortably without clipping

into other legs. Look at it in various views

and then measure the distance. If you take

the stride distance a leg covers and multi-

ply it by the number of strides that the leg

takes during the entire animation, and

then multiply the result by two, you will

find distance the body will need to travel

during the course of the animation. In our

case, this comes out to:

stride distance (600) ¥ number of strides

(2) ¥ 2 = body travel distance (2,400)

This number gets you into the ballpark,

but you will probably want to adjust it to

suit your needs. Once you have determined

a travel distance, you then animate the

root bone across that distance via its

linked dummy. In the case of this spider, it

was translated 2,400 units on the local Y-

axis. I made a keyframe for Frame 0 and

again at Frame 12.

Animating the right front leg. Once you

begin animating, it will become painfully

obvious that the leg and its dummy stay

in place while the rest of the spider

moves. This is because as soon as you

create a position end effector for an IK

chain, it starts to solve for that target.

w w w . g d m a g . c o m 35

FIGURE 7A (above left). Building the spider’s body with FK bones.
FIGURE 7B (above right). Aligning the mandibles to the mesh.
FIGURE 7C (left). The user view allows for accurate bone placement.

3 D A N I M A T I O N

This is one of the primary reasons for not

making dummies and end effectors for all

of the legs at once, because they would all

target their respective dummies at Frame

0. Several work-arounds can solve this

problem, but I find it easier just to do

them one at a time.

Next, we’ll animate the foot to begin

our walk loop. Now is a good time to

review the original step sequence (Figure

1b) to familiarize yourself with what the

R1 foot will be doing. Because the foot is

“planted,” or locked to the ground plane,

during the first three frames, we need to

make the first frame the fully extended

position of the leg. Once it is keyed at

Frame 0, the dummy will remain in the

same place as the body of the spider con-

tinues to move. This causes the leg to

compress as the distance between the

dummy and the body decreases. If you’ve

made any errors in your constraint

angles, they will begin to show up now,

during the extension and compression of

the leg.

At Frame 3, the dummy is lifted. It

makes a full extension once again on

Frame 6, where it is keyed. The dummy is

now keyed in position and remains there

until Frame 8, where another key is set.

On Frame 9, it is again lifted in the air and

then plants to the ground plane again on

Frame 12. Frame 12 should be an identical

copy of the leg pose at Frame 0, because

this is the transition frame for the looping

cycle. (See Figures 9a and 9b.)

Each time the leg extends (Frames 0, 6,

and 12), it is essentially the same pose. The

only difference is that the body has trans-

lated or moved. One down-and-dirty way

to get the same “pose” for each leg exten-

sion is to go to Frame 0, and duplicate or

snapshot the mesh. This creates a mesh

that has no bones but is frozen in the same

pose as the mesh

being controlled by

the skeleton.

Once you have a

mesh snapshot, you

can move it to the

new position on

Frame 6. With the

snapshot in place,

it’s easy to adjust

the dummy so that

the leg position is

nearly identical to that of the original

one. This is critical to do on Frame 12, as

any variance in the leg pose will be seen

as a pop in the animation. Once the du-

plicate mesh has served its purpose, delete

it. After the entire leg sequence is done,

play the animation and admire your

handiwork. Viewing the animation at

one-half and one-quarter speed can often

highlight problem areas. Try to focus on

getting the one leg correct before moving

on to other legs. (See Figures 10a and 10b

and Figure 11.)

Animating the left front leg. Now create

a dummy for the left front leg (L1) fol-

lowing the same procedure used on the

R1 leg. Keep in mind that each leg you

animate has a counterpart on the oppo-

site side of the spider’s body that is ani-

mating exactly the same way — the two

are simply out of phase with one another.

So, each time the right leg is fully extend-

ed, the left leg should be fully compressed,

and vice versa. Using the snapshot method

of duplicating the mesh in a given position

and then mirroring it makes the process of

establishing extension positions for the

opposite side fairly easy.

Because frames 0/12 of the L1 leg in-

volve a “mid-stride” key, it’s easier to ani-

mate the middle-leg moves first. After do-

ing these, we can use the leg positions as

a reference for the more difficult transi-

tion frame.

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r36

FIGURE 8A (left). Verifying the correct bone hierarchy.
FIGURE 8B (below left). Linking the dummy to the root bone.
FIGURE 8C (below right). Placing an end effector on the last leg bone.

Go to the first frame where the left leg is

planted and fully extended (Frame 3) and

begin the process of animating the leg.

Continue all the way through until Frame

11 is keyed and done.

The final thing we need to do for the left

front leg is to create the first and last keys

for the transition. On the right leg it was

easy, because we started the motion after

the Frame 12/0 loop point. For the left leg,

we need to create keys for the mid-stride

leg position. If we simply place the dummy

in identical relative positions at Frames 0

and 12, we will find that the leg behaves or

bends differently. This is because there are

no keys before Frame 0 or after Frame 12

and the IK solutions for each are different.

One way to solve this is to create keys

at Frame 1 and Frame 13 that follow our

established sequence.

This is the cleanest

way to accomplish

the desired result, but

it also takes a while

longer to figure out

where those keys

should be. A quick

way to accomplish

the same results is to

make a snapshot of the leg

from one of the middle sequences, then use

this as a reference for getting the dummy

into the proper position during the transi-

tion. In this case, Frame 6 is the pose that

can be copied. Once we snapshot the Frame

6 mesh, we can slide it into position at

Frame 0 and the leg is adjusted accordingly.

Then repeat this process for Frame 12. If

you play your animation at this point, you

will see the front two legs behaving proper-

ly while the rest of the legs come along

for the ride. (See Figure 12.)

Finishing the leg animations. The next

step is to select one leg at a time and ani-

mate it according to the sequence we

established earlier. I recommend that you

w w w . g d m a g . c o m 37

FIGURE 9A (top left). Front leg in fully extended position. FIGURE 9B (top
right). Creating a duplicate snapshot mesh. FIGURE 10A (middle left).
Using the snapshot mesh for reference. FIGURE 10B (middle right).
Aligning the snapshot mesh over character mesh for keyframing. FIGURE
11 (right). Keyframing the vertical foot movement.

3 D A N I M A T I O N

do it in order from front to back. In our

case, this would be R1, L1, R2, L2, and

so on. Once you have completed one leg,

always do the opposite leg right after it.

After each set is done, run your animation

at various speeds to check for anomalies

or pops in your transition frames. You

may find it necessary to adjust the stride

length of some legs to compensate for the

extension and compression of the leg next

to it. This will avoid the legs clipping into

one another, which is something that is

visible even from the game’s relatively dis-

tant camera.

Adding the Finishing
Touches

N ow that all of the legs are in motion,

your spider should be looking fairly

complete. However, the body will still

appear to move with mechanical preci-

sion, showing no fluctuation horizontally

or vertically as it travels. Adding some

subtle up-and-down motion as well as

some side-to-side motion will make it look

much more natural. An easy way to see

this represented graphically is to turn on

the trajectories in Max (or a similar func-

tion if it exists in the package you’re

using). This creates a visible spline path

that shows where each bone is passing

through space. Trajectories are extremely

helpful in ironing out problems and

smoothing animations. Often they will

show sharp jumps that are difficult to see

when scrubbing the animation back and

forth. By turning on a trajectory for the

body, we can see that it is traveling in a

perfectly straight line (see Figure 13).

Such behavior is unnatural and will

draw unwanted attention to the animation.

You can experiment a bit to find what suits

your tastes visually. The basic idea is to

add some up-and-down motion to the body

as well as some rocking side-to-side. Not

very much motion is needed to eliminate

the robotic feel of the body. Also, as with

most looping animations, you should avoid

drastic or unique motions if possible: while

these unique motions might look great

when played once, they become very obvi-

ous and painfully repetitive during a looped

sequence. The trick is to give the subject

enough motion to make it look alive and

natural, while avoiding any bold move-

ments that will draw players’ attention to

them as the loop repeats during gameplay.

You should also go in and give the fangs

a bit of motion as well. Try to avoid mov-

ing both fangs in an identical fashion. Off-

set the motion of one side by a frame and

it will give them a more natural feel.

Another thing you can play around

with is to which frame of each leg

sequence you apply the Z height adjust-

ment. This can have an effect on how the

spider appears (aggressive as opposed to

tentative, for example). Bear in mind that

any changes may require you to readjust

the transition frames.

That’s it! You now have a spider walk

animation that is compact and ready for

use. Your dungeon can now be filled to

overflowing with fast, creepy spiders that

have an attitude. q

38 n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r

FIGURE 12 (above left). The front two legs animating in a seamless loop. FIGURE 13 (above right). The spider traveling in an unnaturally straight line.

F O R M O R E I N F O R M AT I O N

Check your backyard, garden, or behind

the bookcase.

WEB SITES

The Arachnology Home Page

www.ufsia.ac.be/Arachnology/

Arachnology.html

Ed Nieuwenhuy’s Spiders Page

www.xs4all.nl/~ednieuw/Spiders/

spidhome.htm

FILM AND VIDEO

Arachnophobia (1990) by Hollywood

Pictures and Amblin Entertainment

Also, check your local video store or

library video section on nature and

insects.

CD-ROM

Eyewitness Encyclopedia of Nature 2.0

by DK Interactive

A GE OF EMPIRES II: THE AGE OF KINGS consisted of

more than 40,000 game and production assets,

ranging from bitmaps and textures to 3D models,

sounds and music, and source code files. However,

with the exception of the source code, managing

game assets at Ensemble Studios has largely consisted of

editing, copying, and renaming files on

local and shared network drives. This

process has sometimes resulted in a number

of problems, including misplacement, corrup-

tion, or accidental loss of game assets. All of

these problems result in effort that must be

spent finding or re-creating missing assets.

With the increasing number of assets

and people involved in game projects,

manually maintaining game assets

takes on an ever-increasing portion

of the project. In order to reduce,

and hopefully eliminate, this

time from future game proj-

ects, Ensemble Studios decid-

ed to evaluate its own asset

management needs and imple-

ment a system for storing and

managing all game assets. The

purpose of this article is to dis-

cuss how we translated our asset

management needs into an effective

asset management system for future

games, and the technologies that we

utilized in doing so.

Needs of the Many

D uring the development of previ-

ous Ensemble games, game assets

were managed using a directory structure

that was centrally located on a network serv-

er and copied to the user’s workstation as needed.

Assets were edited locally with final changes copied back up to

the server or edited directly on the server itself. To indicate succes-

sive revisions of an asset, incremental numbers were sometimes

added to the end of the filename.

This combination of local and server files created confusion

when two users both attempted to work on the same shared serv-

er asset, or they made different local versions that were later

copied back up. It was also difficult to determine which older

revisions of assets were truly good enough to keep and which

could be thrown away.

However, even with these potential problems, there were sev-

eral big advantages to a centrally located, directory-based asset

system. The first advantage was that the servers

hardly ever went down. There were few times

during the course of developing AGE OF

EMPIRES II: THE AGE OF KINGS (AOK) when

server or network problems disrupted access

to game assets.

Another definite advantage was simplicity.

Every user was already familiar with copying

files between Windows folders. Updating an

asset on the server, or adding an asset, or

putting a new asset into the game was as sim-

ple as copying between Windows folders. We

were able to use the pros and cons of the cur-

rent directory-based asset management system to

create a list of requirements for the new asset man-

agement system that built on the positives but removed

the negatives.

Beyond these requirements, a new asset management

system had to be able to handle a file of virtually any

size, as art and sound files can range in size up to hundreds of

megabytes. Another requirement was that the new system

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r40

A S S E T M A N A G E M E N T h e r b m a r s e l a s

H E R B M A R S E L A S | Herb is a 3D engine specialist working
on the next age of real-time strategy games at Ensemble

Studios, the creatively titled RTS3. The first rule of RTS3
is that you don’t ask about RTS3. Drop him a line at

hmarselas@ensemblestudios.com.

Where’d It Go?
It Was Just Here!

Managing Assets for the Next Age
of Real-Time Strategy Games

should be based on serving the asset to the user’s local worksta-

tion for editing. This was especially critical, as our main 3D con-

tent package, 3D Studio Max, had problems editing files across

the network.

The new system also had to be capable of exporting a complete

set of game-ready assets from those under asset management. This

would remove the onus from the project teams of trying to verify

that they really had copied the very latest version of an asset into

the appropriate game directory. As long as the latest revision of

the asset was in the asset manager, they could be assured it would

get in the game.

The final requirement was for a simple workflow system to

help the art team keep better track of where assets were in the

art pipeline. The workflow system would have three nodes,

allowing an asset to be tracked from prototype, to ready for

game use, to finalized.

Having established the requirements for the new system (Figure

1), we then faced the looming question: Build or buy?

A Single Solution?

B ecause the programming team was already using Microsoft

SourceSafe 6, the first task was to examine the viability of

using it as an asset management system for the whole team. While

SourceSafe offers a good user interface, a stand-alone version, and

an API to create tools to interface with it, a number of concerns

arose immediately. The biggest of these were issues of dealing

with files, and even a moderate number of users.

w w w . g d m a g . c o m 41

FIGURE 1. Ensemble’s requirements for their asset management system.

Can you count the assets?
Hundreds of new assets were
created for the AGE OF EMPIRES II:
THE CONQUERORS expansion pack,
including those for this Mayan
city deep in the Yucatan jungle.

Asset Management Requirements

1. Shield assets from accidental damage
2. Prevent multiple users working on an asset at the same time
3. Track all asset modifications
4. High availability
5. Simple UI (à la Microsoft SourceSafe)
6. Manage any asset regardless of size
7. Allow user to edit asset only on local workstation
8. Produce game build from current asset versions
9. Simple workflow

With only 15 programmers using it, our

SourceSafe system was having performance

and consistency problems that resulted in a

number of hours spent each month in

maintenance and recovery. Working with

Microsoft support, we found that the

problems we were experiencing affected

some number of SourceSafe sites with no

discernable cause. Other problems with

SourceSafe included a severe performance

problem when attempting to check in large

assets (anything bigger than about 10MB),

even when the files were stored directly,

and there was confusion when a user had

files checked out on more than one work-

station. Although we chose not to use

SourceSafe, it did have two features that

we could not ignore: its simple user inter-

face and seamless integration with Micro-

soft Visual C++. These became our guide-

lines for usability in selecting an asset

management system (see Tables 1 and 2).

In our quest to try to keep the whole

team using a single asset management

tool, we also evaluated Merant PVCS.

With PVCS we came to some of the same

conclusions that we had reached with

SourceSafe. While PVCS is a good tool

for simple programming projects, we

found it to have many of the same short-

comings as SourceSafe for game asset

management. It also lacked a good, intu-

itive stand-alone UI.

Finally, we looked at NxN’s Alienbrain.

Alienbrain is more like an asset manage-

ment toolbox than an off-the-shelf asset

manager. This meant that if we did use it,

we couldn’t just drop it in and go. We

would have to learn how to use its inter-

faces, then build an asset management sys-

tem on top of them.

Three other asset management products

we looked at briefly were eMotion’s

Cinebase 3, Bulldog Two.Six, and File-

maker Pro. In general, these are all compe-

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r42

COMPANY PRODUCT REPOSITORY API? ASSET SERVER? LIMIT ON TOTAL BYTES OF ASSETS?

Bulldog Two.Six Relational Database (RDBMS) Yes Yes Limited only by RDBMS
eMotion Cinebase3 RDBMS Yes Yes Limited only by RDBMS
Filemaker Filemaker Pro RDBMS Yes Yes Limited only by RDBMS
Microsoft Visual SourceSafe 6 File-based Yes No Yes: 4GB
Merant PVCS Proprietary database Yes No Not documented
NxN Alienbrain RDBMS Yes Yes Limited only by RDBMS

PRODUCT PROS CONS BOTTOM LINE

SourceSafe • Simple, easy-to-use interface • File-based repository • Good for teams working on assets
• Integrated with Microsoft Visual • 4GB data limit < ~10MB in size who don’t want

Studio and C++ • Can’t handle really big files or need a back-end server
• Programmers already use it • Gets confused when a single • Competent user interface is

user checks out files on easily picked up by programmers
multiple workstations and nonprogrammers alike

PVCS • Integrated with Microsoft Visual • User interface not friendly or intuitive • Good for teams working on assets
Studio and C++ • Proprietary database < ~10MB in size who don’t want

• Has trouble handling some types of or need a back-end server, but
Visual C++ projects who need more than 4 GB

of asset space
• Programmers may not be happy

about the Visual C++ project
problems, and everyone may
hate the user interface

Alienbrain • Large API • Large API • Good for teams that need a back-end
• Uses relational database • Stand-alone UI, but no integration with asset repository but don’t have

(RDBMS) for asset repository Visual C++ or 3D Studio Max back-end programming, design,
and architecture experience

• The large API may be over-
whelming

TABLE 1. NT-based asset management products.

TABLE 2. Is there a single solution?

A S S E T M A N A G E M E N T

tent asset management tools. However,

they suffer from the same issues that

plague the other products we reviewed in

greater depth — a lack of front-end inte-

gration and workflow. They are potentially

more powerful back-end solutions de-

pending on your need, but in the end a lot

of time will be spent creating a custom

solution relying on their individual APIs.

The Final Solution

T he biggest issues for all these tools,

however, are the lack of front-end

integration and even the simplest type of

workflow. If we were to use any of these

asset managers, we would have to learn

their APIs and then spend the time creating

a workflow system and integration with

front-end tools such as 3D Studio Max.

Because we already had expertise in the

design and architecture of large-scale data-

bases, we decided to spec out how long

the implementation would require if we

created an asset management system from

scratch. We estimated the time needed to

create our system would be approximate-

ly six man-weeks of programming time.

This did not include time for testing or

for major new requirements or features

that cropped up during development, test-

ing, and deployment.

The asset management system we ulti-

mately implemented consisted of four

major components. The largest compo-

nent was the relational database on the

back-end to track and manage the assets,

and the client-side data access layer to it.

On the client side, there were two user

interface components. One was a plug-in

(Figure 3) to integrate the asset manage-

ment functionality seamlessly with Max,

and the other was a stand-alone front end

for those users. The final component was

an exporter used to create game builds

from the latest versions of assets.

Back-End and Client

O n the back-end, we chose to use

Microsoft SQL Server 7 as the cen-

tral database (Figure 2). Oracle or Sybase

would have worked just as well, and may

be required if we increase the number of

users significantly. However, SQL Server

7 running under Microsoft Windows NT

4.0 is enough computing power to handle

our current and future needs at this time.

We also decided to store the asset revi-

sions directly inside SQL Server as binary

large objects (BLOBs). We could have

stored them on a network drive, but we

felt that SQL Server could stand the addi-

tional load, and storing them in the data-

base provided additional security.

To improve performance of the database,

especially with the large number of assets

stored inside it, the database server was

configured with two ultrawide SCSI con-

trollers. Each controller then supports two

ultrawide SCSI hard drives. This configura-

tion allowed us to place the database sys-

tem files and logs, the small asset manage-

ment data, the large BLOBs, and the index

data on separate drives. This improves per-

formance by allowing the database to

spread its access patterns across all four

drives. Database security itself is handled

directly through the Windows NT domain

user authentication system. This means that

granting users database access is as simple

as adding them to one of the existing NT

domain groups.

On the client side, we built a data

access layer using ODBC. This gave us

several advantages. First, it’s simple to

maintain. It’s also easy to learn. More-

over, there is no dependency on bound

data controls (such as MFC), which

allows us to actually build an in-game

connection to the back-end SQL Server by

just adding the additional link to the

ODBC libraries.

All of the asset manager’s client func-

tionality was then created in a single layer

on top of ODBC and other core technolo-

gies (Figure 3). The specifics of the Max

plug-in and the stand-alone user interface

are then abstracted into separate files on

top of the core functionality. This creates

a system where all of the code is com-

pletely shared through most of the two

separate user interfaces.

Regardless of whether the user accesses

the asset manager through Max or the

stand-alone user interface, both systems

present the asset manager to the user with

just a Windows Explorer interface (Figure

4). Because all of the users are already

familiar with navigating a tree structure,

this has significantly reduced the users’

learning curve when using the system.

w w w . g d m a g . c o m 43

3D Studio Max

Asset Manager Plug-in

Asset
Manager
Stand
Alone

Asset Manager Core Functionality

ODBC MaxSDK MFC

Lead Tools

SQL Server 7
DatabaseWorkstation

100 Mbit Network

Workstation NT Domain User
Authentication

Server

System

Data
Indices

BLOBs

FIGURE 2 (above). Back-end network and serv-
er configuration. FIGURE 3 (left). Integration of
client-side components.

Keep the Artist in Max

During the development of AOK, the

art process consisted of a number of

individual steps. Once an artist had creat-

ed a unit for in-game use, it then had to

be rendered out, postprocessed, then

added to the game by a lead artist or

designer. This meant that it could be a

long time between the time artists worked

on an asset and when they actually saw it

in the game.

As we started implementing the asset

management system, our mantra became

“keep the artist in Max.” In other words,

give the artists everything they need to cre-

ate, manage, and view their models and

textures in the game directly in Max. The

only time they should have to leave Max is

to run Adobe Photoshop, which they can

also launch from a button in Max.

This mantra led to the creation of two

additional Max plug-ins to support our

asset management system. The first was a

texture/bitmap browser that allowed the

artist to search, view, check out, and use

any bitmap asset stored in the asset man-

ager (Figure 5). The texture browser was

built as a Max extended viewport plug-in

using MFC and Lead Tools imaging con-

trol. The Lead Tools provided us a very

powerful yet simple-to-use ActiveX

component that could be used directly

in the MFC dialog box that formed the

basis of the texture browser.

The second plug-in was also a Max

extended viewport — it was actually

the entire game running inside Max as

a viewport. This plug-in was relatively

simple to create by making a version

of the game that built as a .DLL

rather than an .EXE file. Some additional

code was required in the window han-

dling code to compensate for the fact that

the game was now running as a child

window and had to interact with the Max

input system.

A small amount of functionality was

also required to allow the artist to specify

which of the objects in a Max scene

should be put into the game. Instead of

creating a cumbersome communication

system between Max and the game, the

artist’s scene is exported to a file in a for-

mat that the game can load. The game is

then told to load the file and display its

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r44

FIGURE 4 (right). Creating a project folder using Windows
Explorer interface. FIGURE 5 (below). 3D Studio Max with RTS3
in-game extended viewport (upper right) and bitmap browser
extended viewport (lower right).

A S S E T M A N A G E M E N T

contents. Because this is the whole game

engine running inside Max, the artist can

examine the model in the context of other

existing game assets and scenarios. As

complicated as getting the game engine

itself to run within Max was, creating

both extended viewports was very

straightforward compared to managing

Max files and seamlessly integrating with

Max itself.

Max files themselves might initially be

located in any local or server directory,

and they may refer to texture files that

exist in any of the Max texture paths.

Adding a Max file to the asset manager

meant moving the file to its managed

directory, then scanning the file for any

texture files and moving those to the

same directory as well, and finally updat-

ing the paths of textures referenced by the

Max file.

If the Max file contained in-game mod-

els, not only was the Max file added to the

asset manager, but an in-game version of

the file was generated and stored in paral-

lel. This allowed the back-end export pro-

cess used to create the game build to be

much simpler. It just had to copy data out

of the database and store it in files.

Every texture also generated one or two

additional files on check-in. A thumbnail

image was created and stored to support

the texture browser, and textures used in-

game automatically generated a texture in

the in-game format.

Integrating
with Max

I ntegrating directly

into the Max user

interface and menu

system was one of the

hardest challenges we

faced in creating a seamless asset

management system (Figure 6). Unlike

the Microsoft Visual C++ IDE, Max

does not have a well-defined interface

for asset management tools to plug into.

Also, it’s not possible to create menu

items in Max using the Max SDK or

MaxScript.

Because we wanted to make the

integration as seamless as possible,

we had to rely on Win32 programming

to manipulate the main Max window and

menu system directly. Although this ap-

peared to be a complicated solution, it gave

us the flexibility we desired to create new

menu entries, and the ability to override

and enhance existing Max functionality.

To facilitate this integration, we used a

Max general utility plug-in (GUP) to glue

Max and the asset management system

together. The GUP is one of a number of

DLL-based plug-ins that Max supports for

modifying or extending existing function-

ality. Before reading the following expla-

nation of how we integrated the GUP

plug-in directly with the Max menu sys-

tem, you may want to download the

source code from the Game
Developer web site at

www.gdmag.com.

The Max plug-in architec-

ture is based on deriving

developer-implemented class-

es from base Max C++ class-

es. In this case, our

MaxUIModGUP class is derived

from the Max GUP class.

Max identifies plug-ins in

two ways: through their file

extension (.GUP for a GUP

plug-in), and with a simple

class factory called ClassDesc.

When this DLL plug-in is

built, we change the file

extension from .DLL to

.GUP and place it in the

MAX PLUGINS\ directory.

As Max scans for each set of

plug-ins it

recognizes, it knows

that this plug-in is at least used

as a general utility plug-in. Once

loaded, Max uses four simple

functions to interrogate the DLL.

LibDescription returns a simple text

description of the plug-in. LibNumberClasses

returns the number of class factories (or

ClassDescs) in the plug-in. LibVersion is the

version of Max that the plug-in will work

with. And most importantly, LibClassDesc

returns an instantiation of our own derived

version of ClassDesc called MaxUIModClassDesc.

Max can instantiate our MaxUIModGUP class

using the MaxUIModClassDesc::Create member.

In the case of some plug-ins (for exam-

ple a viewport plug-in), this class factory

could be called multiple times. For a GUP

it is only called once at startup. This is

why we can simplify the code somewhat

by using global variables to store our flags

and state information.

Once instantiated, the MaxUIModGUP::Start

member function is called. MaxUIModGUP has

access to the main Max window handle

using the inherited member function MaxWnd.

Once we get the window handle, we can

subclass it with our own message handler

(SubclassWndProc) and return success.

Subclassing the window ensures that we

get the Max window messages before its

message handler does.

In implementing our scheme to add new

menu entries and enhance existing func-

tions, we only care about two Windows

messages: WM_INITMENU and WM_COMMAND.

WM_INITMENU is sent to the window when a

menu is about to become active. This

allows us to look for the main menu, and

modify its functionality. However, we must

be careful to modify only the main menu,

and then to modify it only once.

w w w . g d m a g . c o m 45

FIGURE 6. 3D Studio Max menu integration.

Because Max creates a number of

menus, we use GetMenuItemCount and

GetMenuString to make sure the menu we’re

getting is the main menu. Once we’ve

ascertained that we have the correct menu,

the modifyMenu function inserts two new

entries into the file menu. For this sample,

we’re adding a menu option that will force

a complete redraw, plus a separator to

make the menu look pretty. In the end,

DrawMenuBar is called to make sure that the

menu is properly updated when it draws.

Back in the SubclassWndProc function, we

need only add the WM_COMMAND case to look

for the new menu entry we created

(IDC_MAXMENUMOD), and process it accordingly.

One additional piece of functionality that

has been added to this WM_COMMAND handler is

a wrapper for the Max File Open menu

entry. This code stores off the current Max

project filename, calls the default handler

to open a new file, and then displays a

message box to inform you if a new file

has been opened.

Overriding the File Open function in

this way may seem a bit dangerous,

because the File Open menu entry might

not be 0x9c43 in a future version of Max.

Unfortunately, there’s no other viable way

to add a very important piece of asset

management functionality: detecting when

a user opens a file that he or she doesn’t

have checked out from the asset manager.

While you can register a callback using the

Max function RegisterTimeChangeCallback to

determine if the current filename has

changed, you don’t receive the notification

until after the file is opened. The Max

notification system may look like another

alternative, but it’s just that: a notification.

You can’t stop or change something

already in progress.

The asset manager needs to have a pri-

ori access to File Open requests for several

reasons. If the user doesn’t have the file

checked out, it will be read-only. It might

also not be the latest version of the file.

Either way, if the file is under asset man-

agement the latest version of the file needs

to be copied down to the user’s worksta-

tion and made writable if someone else

doesn’t already have it checked out.

Beyond Asset
Management

In addition to the texture browser and

game viewport, we added a number of

other features beyond basic asset manage-

ment. One of the simplest and most use-

ful features was the versioning of Max

plug-ins. File information is stored on

the server about the current versions of

Max plug-ins, including the asset

manager itself. If a plug-in is out of

date, the user is notified upon

starting up Max. This has help-

ed in many situations where

the user has accidentally

installed an older plug-in

when reinstalling a work-

station. Additional func-

tionality was added to

allow the asset

manager to

update itself auto-

matically when new

versions are posted

internally. This has

eliminated the need for

the user to worry about keeping track of

the latest version and its location. All users

need to do to get the latest version is to

restart Max.

The three-node workflow system helped

us understand the state of game assets

more clearly (Figure 7). New assets are

marked “not ready for game.” When an

asset is ready to be exported to the game,

it becomes “ready for game,” and then

finally “final.” An asset can stay in any

node as long as is necessary.

One of the benefits of using SQL Server

directly was that we could create stored

procedures to enhance asset workflow.

One example of this is a config-

urable notification system

that automatically e-mails the

game designer using MAPI

(Messaging Application

Programming Interface) the

first time a game asset be-

comes ready for the game.

This takes the burden off

the creator of the asset of

having to remember to

send a separate e-mail,

and ensures that the

designer is kept

aware of when

assets become

available.

There is

also a bran-

ching sys-

tem so that

an asset

that is either

“ready for game”

or “completed” can be

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r46

Version 32

Version 31

Version 30

Version 3

Version 2

Version 1

Version 32

Version 31

Version 30

Version 3

Version 2

Version 1

Artist
Edit

Version

Artist
Edit

Version

Game
Build
Version

Game
Build
Version

branch branch

Not Ready
for Game

Ready
for Game

Final

Game
Build

Process

FIGURE 7 (above left). A simple three-node workflow system with branching. FIGURE 8 (above right). Example of unbranched (left) and branched
(right) assets.

A S S E T M A N A G E M E N T

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r48

branched to the next lower node. This

allows the artist or designer to leave the

last version that they know is good

enough for the game to continue to be

exported, while allowing them to go back

and potentially make major revisions.

Once the user is ready for the latest ver-

sion of the asset to be exported again, the

asset is unbranched (Figure 8).

Asset types were added to allow the

teams to classify new assets added to the

system. Some of these asset types, such as

“Mesh (in game)” or “Texture (in game)”

are backed by code in the asset manager

that performs special functions. In these

two cases, in-game versions of the assets

are created and checked in whenever the

original assets themselves are checked in.

Future Work

W hile our asset management system

has solved a number of problems

that we have experienced in managing

game assets in the past, several areas still

need additional work. The hardest area

that we have yet to address is the issue of

the “build machine” — the versioning of

the tools themselves. We’ve already run

into this problem once in creating a patch

for one of our previous games almost a

year after it shipped. The original game

was compiled using Microsoft Visual C++

5. Our current compiler is Visual C++ 6

with Service Pack 3.

Getting the game to finally compile cor-

rectly with the latest version of the compil-

er took several days. While the new com-

piler certainly improved the code quality

and allowed us to find some problems that

the old compiler had missed, we don’t

know what additional problems the new

compiler might have introduced.

It seems that the only way to fully ver-

sion-off the tools that were used to create

the game is to set a workstation in the cor-

ner that contains the tools and the ship-

ping version of the source code. Any other

solution that involves storing the program

install disks away and having to reinstall

old software probably will not be utilized.

One of the other problems to solve is

being able to regenerate all the in-game

versions of assets from the original ver-

sions stored in the asset manager.

Although we try to make sure that we

never break existing game assets, there

usually comes a time (sometimes more

than once, unfortunately) where all of the

art, sound, or levels for the game need to

be reprocessed. With the original data, and

the information on how it was exported

for the game stored in the asset manager,

it’s possible to write a batch system that

can perform this reconversion. One of our

next goals is to actually implement this

using the Max DCOM sample code to cre-

ate our own batch system to reprocess

assets as necessary.

Summary

In the end, it would have been easier if

there were an off-the-shelf asset man-

agement solution that met our needs right

out of the box. Those asset management

systems directed towards game and con-

tent creation all seem competent in deliv-

ering basic asset management functionali-

ty, but they are sorely lacking in the areas

of front-end and third-party integration

and workflow.

For us, developing an asset management

system completely in-house was well

worth the effort. We ended up with a sys-

tem that met our needs, and because we

fully understand the design and architec-

ture, we can continue to add functionality

as needs arise.

The total staffing time was about eight

full-time man-weeks of programming, and

three part-time weeks of testing. The pro-

gramming time did run over by a couple of

weeks, but this was mainly due to adding

new features during development. It

should also be noted that the program-

ming time would have taken significantly

longer if we hadn’t already had back-end

server design and implementation experi-

ence in-house.

Overall, the biggest problems revolved

around our inability to modify and inte-

grate with the Max user interface system

more simply. The whole Max user inter-

face needs to be based on MaxScript, and

MaxScript itself needs to be much more

powerful in order to do what we need to

do. An even better solution would be if

Max provided a specified asset manage-

ment interface similar to Microsoft’s Visual

C++, thereby allowing third parties to cre-

ate asset management solutions for it. q

F O R M O R E I N F O R M AT I O N

MSDN

Felder, Ken. “Microsoft Visual Source-
Safe OLE Automation.” Microsoft
Developer Network. Microsoft Corp.,
October 1995.
http://msdn.microsoft.com/library/

techart/msdn_vssole.htm

WEB S ITES

Bulldog Two.Six
www.bulldog.com

Discreet 3D Studio Max
www.discreet.com

eMotion Cinebase3
www.emotion.com

Filemaker Pro
www.filemaker.com

Lead Tools
www.leadtools.com

Microsoft SQL Server
www.microsoft.com/sqlserver

Microsoft Visual SourceSafe 6
http://msdn.microsoft.com

Oracle
www.oracle.com

Sybase
www.sybase.com

Merant PVCS
www.pvcs.com

NxN Alienbrain
www.alienbrain.com

Creating an effective and useful asset manage-

ment system was a team effort. Thanks to every-

one involved throughout the process for remem-

bering those little details. Thanks also to every-

one at Ensemble Studios for reviewing this article.

A S S E T M A N A G E M E N T

A C K N O W L E D G E M E N T S

F ictionally, DEUS EX is set in a

near-future version of the real

world (as it exists if conspira-

cy buffs are right). For some

real shorthand, call it “James

Bond meets The X-Files.”
Conceptually, DEUS EX is a genre-bust-

ing game (which really endeared us to the

marketing guys) — part immersive simula-

tion, part role-playing game, part first-per-

son shooter, part adventure game. It’s an

immersive simulation game in that you are

made to feel you’re actually in the game

world with as little as possible getting in

the way of the experience of “being there.”

Ideally, nothing reminds you that you’re

just playing a game — not interface, not

your character’s back-story or capabilities,

not game systems, nothing. It’s all about

how you interact with a relatively complex

environment in ways that you find inter-

esting (rather than in ways the developers

think are interesting), and in ways that

move you closer to accomplishing your

goals (not the developers’ goals).

It’s also a role-playing game in that you

play a role and make character develop-

ment choices that ensure that you end up

with a unique alter ego. You make your

way through a variety of minute-to-minute

gameplay experiences (which add up to a

story) in a manner that grows naturally

out of the unique aspects of your charac-

ter. Every game system is designed to dif-

ferentiate one player-character from anoth-

er, and to allow players to make decisions

that reflect their own biases and express

character differences in obvious ways in

the game world.

It’s a first-person shooter because the

action unfolds in real time, seen through the

virtual eyes of your alter ego in the game

world. To some extent, your reflexes and

skill determine your success in combat.

However, unlike the typical FPS, DEUS EX

doesn’t force you to shoot every virtual

thing that moves. Also unlike the average

FPS, in which gameplay is limited to pulling

a virtual trigger, finding blue keys to open

blue doors, and jumping to reach seemingly

inaccessible locations, DEUS EX offers play-

ers a wide range of gameplay options.

And finally, DEUS EX is like adventure

games in that it’s story-driven, linear in

narrative structure, and involves character

interaction and item accumulation to

advance the plot. However, unlike most

adventure games (in which you spend the

bulk of your time solving clever puzzles in

a search for the next static, but very pretty,

screen), DEUS EX asks players to determine

how they will solve game problems and

forces them to deal with the consequences

of their choices.

DEUS EX combines elements of all of

these genres. But more important than any

genre classification, the game was con-

ceived with the idea that we’d accept play-

ers as our collaborators, that we’d put

power back in their hands, ask them to

make choices, and let them deal with the

consequences. It was designed from the

start as a game about player expression,

not about how clever we are as designers,

programmers, artists, or storytellers.

Which leads naturally to a discussion of

having clear goals — the first thing I think

we did right.

Ion Storm’s
DEUS EX

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r50

G A M E D A T A

PUBLISHER: Eidos Interactive

NUMBER OF FULL-TIME DEVELOPERS: Approx. 20:
1 of me, 3 programmers, 6 designers,

7 artists, 1 writer, 1 associate producer, 1 tech.

NUMBER OF CONTRACTORS: Approx. 6:
2 writers, 4 testers.

LENGTH OF DEVELOPMENT: 6 months of
preproduction and 28 months of production.

RELEASE DATE: June 23, 2000

INTENDED PLATFORMS: Windows 95/98/NT/2000
plus third-party Macintosh and Linux ports

CRITICAL DEVELOPMENT HARDWARE: Ranged from
dual Pentium Pro 200s with 8GB hard drives, to
Athlon 800s with 9GB fast SCSI, and everything

in between. More than 100 video cards were
cycled through during development.

CRITICAL DEVELOPMENT SOFTWARE: Visual Studio,
Lightwave, Lotus Notes.

NOTABLE TECHNOLOGIES: Unreal engine
and associated tools such as UnrealEd and

ConEdit (our proprietary conversation editor).

P O S T M O R T E M w a r r e n s p e c t o r

W A R R E N S P E C T O R | Warren runs Ion Storm’s Austin, Texas, office. He produced and
directed the action/RPG DEUS EX. Prior to that, he produced ULTIMA WORLDS OF ADVENTURE:
MARTIAN DREAMS, ULTIMA VII PART 2: SERPENT ISLE, UNDERWORLD 1, UNDERWORLD 2, WINGS

OF GLORY, SYSTEM SHOCK, and others for Origin and Looking Glass Technologies. You can
reach him at wspector@ionstorm.com.

51w w w . g d m a g . c o m

The DEUS EX player’s alter ego,
J.C. Denton, strikes a heroic pose.

What Went Right

1.A clear high-level vision. It’s

pretty self-evident that you can’t

achieve goals if you’re not clear about

what they are. We knew with a high degree

of confidence what kind of game we want-

ed to make. This was possible for two rea-

sons. First, DEUS EX is a natural outgrowth

of work done by and in some cases with

the late, lamented Looking Glass Technolo-

gies. We were inspired as well by games

made at Valve, Origin, and a host of other

places. Many of the things we wanted to

do were a reaction to things they (or we)

didn’t do, didn’t do well, or couldn’t do at

all in earlier games. We weren’t building

from scratch, but rather building on a

foundation already laid for us.

Second, and on a per-

sonal level, DEUS EX is a

game I’ve been thinking

about since right around the

time UNDERWORLD 2

shipped. I’ve tried to get a

game like this started sev-

eral times (as TROUBLE-

SHOOTER at Origin; in

some respects, as

JUNCTION POINT, for

Looking Glass). Those

games didn’t happen for

a variety of reasons,

but I never stopped

thinking about them

and, despite the failure

of those games to reach

production, they laid

much of the conceptual

groundwork for DEUS

EX. The lesson here is

that if there’s a game you

really want to make,

don’t give up on it.

Someone will be foolish

enough to give you the

money eventually.

Several years passed. I

left Origin to go work

for Looking Glass, but

TROUBLESHOOTER stayed

on my mind. In the fall of 1997,

before Ion Storm entered the

DEUS EX picture, I draft-

ed a manifesto — a

description of an ideal

game — and also a

set of “rules of role-

playing.” Much of

that material ended

up in an article pub-

lished in Game
Developer (“Remod-

eling RPGs for the

New Millennium,”

February 1999),

which is still avail-

able online on

Gamasutra.com.

The details of

DEUS EX — plot,

character lists, game

system designs and so

on — changed radi-

cally in the years

following the origi-

nal TROUBLE-

SHOOTER proposal and writing my man-

ifesto and rules list. Conceptually, how-

ever, the game still plays much the way

I hoped TROUBLESHOOTER would

play, and it definitely fulfills

most of the ideals I had out-

lined in that Game Devel-
oper article. Quite simply,

with a solid concept of

what we wanted to achieve

in mind, we were able to

assess every design deci-

sion and every game system

specification in light of our

ultimate goals.

2.We didn’t skimp on
preproduction. We

spent the first six months of

DEUS EX (before we licensed a

game engine), with a team of

about six, just thinking about

how we could turn our high-

level goals into a game. We

hammered on the setting and

decided to move the game

into the near future to buy

ourselves some room to

play around — the real

world, as we quickly

discovered, was very

limiting. Ultimately,

we settled on a con-

spiracy-oriented

background.

We did a vast amount of research into

“real” conspiracies — the Kennedy assas-

sination, Area 51, the CIA pushing crack

in East L.A., Dwight Eisenhower’s UFO

connection, and of course Freemasons tun-

neling below the Denver airport and build-

ing abducted-baby cafeterias for alien

invaders at George Bush’s direction. Only

a fraction of this stuff ended up in the

game, but it gave us a peek into the minds

of conspiracy buffs that was both scary

and useful.

We worked on back-story stuff so we’d

know what was going on in the world,

even in places the player never got to visit.

Some of this stuff may come to the fore-

front in DEUS EX 2 but, for DEUS EX, it was

just a way of making sure we knew enough

to include the kinds of small details that

make a fictional world convincing.

We also created a cast of more than 200

characters, many of whom didn’t yet have

specific roles in the game. Ultimately, this

list proved to be both a help and a hin-

drance to designers as they fleshed out the

missions. Characters sometimes suggested

missions or subquests, but just as often

ended up being filler we were reluctant to

cut, even though their missions or story

purposes changed during our storyline-

focusing passes.

We hammered on game systems. We

conceived a skill system that didn’t depend

on die-rolls or tracking skills at a fine level

of granularity. We came up with a system

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r52

P O S T M O R T E M

ABOVE. Real-world spaces, such as the Statue of Liberty in New York
City, can be compelling game spaces, but offer unique challenges to
game developers.

of “special powers” (nanotech augmenta-

tions) that differentiated the player charac-

ter from ordinary humans. We designed a

conversation system with some cinematic

elements and some elements borrowed

from console RPGs. We mocked up 2D

inventory, skill, and augmentation upgrade

screens, map screens, even a text editor so

players could take notes. We conceived

several player reward systems, including

skill point awards, augmentation upgrades,

weapon availability timelines and tool/-

object availability timelines.

By March 1998, we had 300 pages of

documentation and thought we knew

everything we’d needed to know to make a

game. Were we ever wrong. In the time

between March 1998 and our Alpha 1

deadline of April 1999, that 300-page doc-

ument mushroomed into more than 500

pages, much of it radically different from

what we thought of and wrote initially.

Clear goals and a detailed script are all

well and good, but goals change, thinking

changes, and game designs have to change,

too. Which leads nicely into the next thing

that went right.

3.Recognizing that game design
is an organic process. Why did

our thinking and goals change? There were

lots of reasons. First, new people joined

the team, with new ideas. Our staff grew

from six people to roughly 20. I hired a

bunch of people, of course, but we had the

added excitement of integrating an entire

art team assigned to us, in Austin, by an

art director a couple of hundred miles

away in Ion Storm’s Dallas office. As we

brought on new people, we found our-

selves to be a team of hardcore ULTIMA

geeks, hardcore shooter fans, hardcore

immersive sim fans, strategy game nuts,

and console gamers. Some of our new

team members proved to be “maximal-

ists” — wanting to do everything, special-

case lots of stuff, and stick as close to

reality as possible. Other team members

proved to be minimalists — wanting to

include fewer game elements but imple-

menting them exceptionally well, in ways

that could be universally applied rather

than special-cased.

Also, we made a point of letting select

friends and colleagues play the game at

various points along the way. We were

interested in well-reasoned opinions from

folks who understood the kind of game

we were making intimately and who had

a handle on the development process that

was at least as good as our own. With all

the new folks contributing and all the

feedback from our chosen critics, well,

let’s just say we had some interesting

debates at Ion Storm, Austin. Out of

those debates new ideas arose, and the

game changed as a result.

Technology forced design changes, too.

It took time to become familiar with the

Unreal engine. I wish I could say we

uncovered all its potentials and limita-

tions quickly, but we didn’t. Months of

experimentation were necessary to reveal

how best to do things in Unreal and what

things not to do at all. When we stopped

playing with Unreal and actually started

working with it (roughly six to nine

months after we got our hands on it), lots

of ideas we’d come up with in the abstract

didn’t work quite as well in reality.

A third area that influenced the chang-

ing nature of the game’s design was when

the game systems didn’t work as we

intended them to. We quickly found that

descriptions of game systems are no sub-

stitute for prototypes and actual imple-

mentation. We prototyped every game sys-

tem as it was documented relatively early

on. We also built some test missions, not

quite early-on enough, but still early.

These test systems and missions

revealed gaping holes in our thinking, or

things that we thought would be true and

which turned out not to be true at all.

For instance, once implemented, our aug-

mentation and skill systems proved dry

and rather dull, despite looking really

good on paper. I thought the tension of

standing outside a locked door, not

knowing if a guard was going to show up

while you picked the lock, would provide

sufficient excitement. I thought knowing

you could leap across a chasm because

you had the Jump augmentation at Tech

Level 3, and opening up new paths

through maps that were inaccessible to

players without that augmentation, would

be cool enough to keep players interested.

w w w . g d m a g . c o m 53

LEFT. A Hong Kong temple, modeled from actual photographs. RIGHT. Either a failed stealth attempt or a frontal assault — the choice is up to the
players in DEUS EX.

As it turned out, when Gabe Newell

from Valve came down and played our pro-

totype missions, he correctly identified the

utter lack of tension in our skill and aug-

mentation use as they were written up in

the design document and ably implemented

by the coders. The worst was confirmed

when Marc LeBlanc, Doug Church, Rob

Fermier, and other friends from Looking

Glass Studios and Irrational Games played

the proto-missions and came to the same

conclusions — actually using skills and aug-

mentations revealed things that simply

thinking about them could never have

revealed. We took this criticism, and with it

in mind, lead designer Harvey Smith revised

the skill and augmentation systems pretty

thoroughly, increasing the tension level,

providing new rewards, and allowing play-

ers to think and make informed decisions.

None of this would have happened without

the prototype missions and some harsh (but

fair) criticism they elicited.

Another big reason for changes from our

original design document was our realiza-

tion that the idea of a real-world RPG,

with real-world locations and real-world

weapons, was cooler in some ways than it

turned out to be on the screen. Not to put

too fine a point on it, but DEUS EX became

a lot less realistic as time went on. When

we started building places like the Statue of

Liberty, a few square blocks of New York

City, the White House, Parisian streets, and

so on, we found that most of the real

world is not all that interesting as a gaming

environment. Basically, hotels and office

buildings aren’t great game spaces. We

also found it difficult to live up to

people’s expectations

of places they’ve

actually been.

We began to

hear com-

ments like, “That’s not what the inside of

the Statue of Liberty looks like. I’ve been

there. I know.” We created an object-rich

environment, only to hear things like,

“Hey, why can’t I use that telephone to call

anyone I want whenever I want?” and had

to cut some objects whose real-world func-

tionality we couldn’t capture in the game.

Finally, we had to ask ourselves whether

human non-player characters (NPCs) are

interesting enough to carry an entire game.

We were about a year into development

when designers and artists balked at a

game entirely about human beings. Movies

don’t need nonhumans to be cool but the

same cannot be said, apparently, for games.

People want monsters and bad guys. The

feeling was so pervasive that it changed my

thinking completely. The original design

spec called for a couple of robots, but the

team demanded that they be made a more

important part of the landscape, and we

introduced genetically manipulated animals

and some alien-looking creatures. (Luckily,

our game fiction supported all of this.) The

game benefited, but this was a radical

change from the original plan.

4. Creating “proto-missions.”
It’s a truism that milestones

should be testable, showing visible

progress, whenever possible, and we lived

up to that standard. We could always pull

a version together, always show off for

press or our publisher. Most importantly,

we always knew where we were (even if

that knowledge was sometimes painful).

But the proto-mission idea is something

beyond simply visible, testable milestones.

The proto-mission is criti-

cal in the process of

design, as well as in

milestone and

schedule setting.

One example of

where our proto-mission idea

was successful was in May

1998, when our milestone was

to have prototypes of critical

game systems in place and two

test maps running, in this case

the White House and part

of Hong Kong. The

maps were crude, the

conversations raw,

and the game systems

hacked, but we could see — and show —

the potential. To our advantage, we resis-

ted the temptation to do just the stuff we

knew would work and the stuff that

would look the prettiest, and prototyped

new, risky stuff first. Conversation, inter-

face, inventory, skills, and augmentations

were all at least hacked in so we could see

them in action. The White House was like-

ly to prove our toughest map challenge, so

we built it first. (Almost unbelievably, I

missed what may have been the riskiest,

most critical game system in all of our

early prototyping, NPC AI. I should have

insisted on early prototyping of our AI but

I didn’t.) With the proto-mission system,

we could immediately see some of the limi-

tations of our technology. For example, we

had some serious speed problems with

areas as big as the White House and Hong

Kong. After this, we knew we’d have to

break maps up into small pieces. And we

began to suspect, though I couldn’t quite

embrace the idea, that we’d eventually

have to cut maps and missions from the

game — most notably the White House.

In May 1999, we had a milestone call-

ing for the delivery of the first two mis-

sions of the game, playable start to finish.

All of our game systems were implemented

(not hacked) as originally documented.

You could start a game, create a character,

upgrade skills, solve problems in a variety

of ways, manipulate inventory, acquire

augmentations, talk to NPCs, get and

accomplish goals, save your game, and so

on. To the team’s chagrin, I had a tenden-

cy to call this the “Wow, these missions

suck” milestone. It was around this time

when Gabe Newell came for a visit and

gave us our wake-up call, and where we

all went, “Ulp! We have a lot of work to

do.” Our earlier demos had shown the

potential of what we were doing. This

demo showed us how far we had to go

before we reached that potential.

This milestone also benefited us in that it

showed us all the steps necessary to create

a mission, and revealed the elements that

really made the game work. That knowl-

edge allowed us to go through our 500-

page design document and cut everything

that was extraneous, winnowing it down

to a svelte 270 pages. Less game? Not at

all. What was left was the best 270 pages

— the stuff that worked. “Less is more”

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r54

P O S T M O R T E M

RIGHT. A
genetically
manipulated
creature called a
“Greazel” was added
to DEUS EX in response
to the team’s feeling
that human interaction
might not be enough to
carry the entire game.

was something Harvey Smith had said over

and over, from the day he signed on as lead

designer. While some team members resis-

ted this notion outright, I took a middle

road, which just frustrated everyone. In the

end, we cut a lot, left a lot, and made a

game that everyone on the team was happy

with (I think). This milestone made it clear

that the time had come to make cuts, while

giving us enough knowledge to cut intelli-

gently. If we had waited until beta to make

cuts, with just a few months to go before

our ship date (as many developers do), it

would have been a disaster.

5. Licensing technology. We went

into DEUS EX hoping that licensing

an engine would allow us to focus on con-

tent generation and gameplay. For the most

part, that proved to be the case. The UN-

REAL TOURNAMENT code we ended up going

with provided a solid foundation upon

which we were able to build relatively easi-

ly. Dropping in a conversation system, skill

and augmentation systems, our inventory

and other 2D interface screens, major AI

changes, and so on could have been far

more difficult. UnrealEd, the main tool our

designers used to generate our maps, was

superior to anything else available. Unreal-

Script was very powerful and allowed pro-

grammers to do lots of interesting things

quickly and easily. The dollars and cents of

the deal were right, and I didn’t have to

hire an army of programmers to create an

engine, 80 percent of whose functions

already existed in UNREAL TOURNAMENT.

We were able to make what I hope is a

state-of-the-art RPG-action-adventure-sim

with only three slightly overworked pro-

grammers, which allowed us to carry larger

design and art staffs than usual.

However, to my surprise, licensing tech-

nology didn’t save us all the time I’d hoped

it would. You’d think cutting a year or

more of engine-creation off a schedule

would result in an earlier release date. On

DEUS EX, that didn’t prove to be the case.

Time that would have been lost creating

tools was lost instead to learning the limi-

tations and capabilities of “foreign” tech-

nology. Time that would have gone into

making an engine went into focusing more

on gameplay systems and tuning than nor-

mal. Unreal certainly allowed us to focus

on content generation over everything else,

but we spent more time doing it.

The biggest downside to licensing was

that we were just never going to under-

stand the code as well as we would have if

we’d created it ourselves. That led to two

distinct kinds of problems. First, there

were areas where we ended up treating the

engine as a black box. I think it’s pretty

well documented by now that we shipped

DEUS EX with some Direct3D performance

issues. Honestly, that didn’t show up in

any significant way during our QA process

— a slight problem here or there, but none

of the dramatic slowdowns some players

reported in the early days following our

ship date. Once players started reporting

troubles, we were kind of in a lurch — we

couldn’t very well go in there and mess

with the Unreal engine — we just didn’t

understand it well enough to do that safe-

ly. We had built around the edges of

Unreal without ever getting too deeply into

the nuts and bolts of it.

Second, because we didn’t know the

code inside out, and because we’d shelled

out a fair amount of money for it, we

tended to be conservative in our approach

to modifying it. There were times when we

should have ripped out certain parts of the

UNREAL TOURNAMENT code and started

w w w . g d m a g . c o m 55

ABOVE LEFT. Everything in DEUS EX is about choices — who you are in the world, how do you interact
in the world, what are you carrying, and so on. In this case, the player has clearly decided to go
through the game as a heavy weapons specialist, despite the fact that this will leave little room in
inventory for anything else. ABOVE RIGHT. One of the many weapons which can be chosen by play-
ers. RIGHT. A detailed weapon sketch.

from scratch (AI, pathfinding, and sound

propagation, for example). Instead, we built

on the existing systems, on a base that was

designed for an entirely different kind of

game from what we were making. It’s not

that Unreal had bad AI or pathfinding or

sound propagation, but those systems were

designed for a straightforward shooter,

which was not what we were making.

Technology licensing bought us a lot

and cost us somewhat less. I guess the fact

that we’ll be licensing technology for our

next round of projects, DEUS EX 2 and

THIEF 3, says the price was right. But it

remains an interesting dilemma, and we

will be able to approach our next licensed

engine with the wisdom gleaned from

using Unreal for this project.

What Went Wrong

1.Our original team structure
didn’t work. You’d think after 17

years of making games and building teams

to make games, I’d have a clue about team

structures that work and those that don’t.

Ha! When I started pulling the DEUS EX

team together I had a core of six guys

from Looking Glass’s Austin office. Hav-

ing tapped Chris Norden to be lead pro-

grammer, I needed to find a lead designer

and a lead artist. As I started casting about

for the right person for the design job,

something really good, but ultimately real-

ly bad, happened — two guys came along

with enough experience to expect a leader-

ship position. Instead of doing the sensible

thing and picking one of them, even if that

meant the other chose not to sign on, I got

cute. I created two design teams, each with

its own lead.

I put together two groups of people

with differing philosophies — a traditional

RPG group and an immersive sim group.

We were making a game designed to bust

through genre boundaries, and I thought a

little competition and argumentation

would lead to an interesting synthesis of

ideas. I thought I could manage the ten-

sion between the groups and that the

groups and the game would be stronger

for it. My plan didn’t work.

The design team was fragmented from

the start. We had to name one of the

groups “Design Team 1” and the other

“Design Team A.” (Neither group would

settle for “2” or “B.”) It became apparent

— later than it should have — that I was

going to have to merge the two groups and

have a single lead designer. When I finally

made that change I disappointed some

folks, but the game was the better for it,

and that’s what’s important in the end.

There were also challenges on the art

side. DEUS EX suffered dramatically

because for over a year, the artists “on the

team” worked not for me or for the proj-

ect, but for an art director in Ion Storm’s

Dallas office. Don’t misunderstand — the

art director was a talented guy. But talent

doesn’t make up for a matrix management

structure (wherein resources in a depart-

ment or pool are “lent out” to a project

until they’re not needed anymore) ill-suit-

ed to the game business, and it doesn’t

make up for being off-site. During this

time, the art department drifted a bit. It

was unclear whether the artists worked for

me or for the art director in Dallas. I

couldn’t hire, fire, give raises to, promote,

or demote anyone on the art team. We

were assigned some artists who weren’t

interested in the kind of game we were

making. The matrix management experi-

ment made things a little tense, and pre-

sented many unanswerable dilemmas.

Matrix management may work in some

circumstances, at some companies, in some

businesses. But I’ve never seen it work in

gaming, and I’ve seen it attempted at three

different companies. It especially doesn’t

work when one of the department man-

agers isn’t on-site.

I argued for a year that matrix manage-

ment had failed at Origin and at Looking

Glass. I had no doubt it would eventually

fail at Ion. Eventually I got my way, and

things got much better on the art front

once the artists were officially part of the

DEUS EX team. Still, I can only imagine

how DEUS EX might have looked if we’d

been one big happy team, including the

artists, from the start.

If the experience of DEUS EX taught me

one thing, it’s the importance of team

dynamics. You have to build a team of

people who want to be making the game

you’re making. You have to deal with per-

sonnel issues sooner rather than later. And

there has to be a clear chain of command.

Many decisions can be made by consensus,

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r56

P O S T M O R T E M

ABOVE. Bringing believable human characters to life is no easy task. The artists, whether working on concept art, 3D models, or texturing, had their work
cut out for them. The job was made harder than necessary by a less-than-optimal team structure.

w w w . g d m a g . c o m 57

but there can only be one boss for a project,

there can only be one boss for each depart-

ment, and department heads have to answer

to the person heading up the project.

2. Clear goals are great . . . when
they’re realistic. We started out

thinking very big. That in itself isn’t bad

— it’s necessary to advance the state of the

art — but we were unrealistic, blinded by

promises of complete creative freedom, and

by assurances that we would be left alone

to make the game of our dreams. A really

big budget, no external time constraints,

and a marketing budget bigger than any of

us had ever had before made us soft.

Let me give you some specific examples

of ways in which we outreached ourselves

in the original design of DEUS EX (before

we made significant cuts). For one, there’s

no way, in a first-person RPG, to stage a

raid on a POW camp to free 2,000 cap-

tives. Also, there’s no way to re-create all

of downtown Austin, Texas, with any

degree of accuracy. Third, blinded by the

power of UnrealScript, many of our origi-

nal mission concepts depended upon spe-

cial-case scripting and lots of it. We dis-

covered the need for general solutions

rather than special-case solutions later in

the project than we should have (this

despite much harping on the subject by

some team members).

Find your focus early and maintain that

focus throughout. General solutions are

better than special casing. Give players a

rich but limited tool set that can be used in

a variety of ways, not a bunch of individ-

ual, unpredictable solutions to every prob-

lem. Always work within the limits of your

technology rather than trying to make

your tech-

nology do

things it

wasn’t

meant to do.

Big budgets, lots of

time, and freedom from

creative constraints are seductive traps.

Don’t fall into them. Don’t settle for

less than greatness, but don’t think

too big. Balance should be the goal.

3.We didn’t front-load
all of our risks. In

fact, we missed a big one. We

were smart enough to realize

we’d have to prototype and imple-

ment our new game systems early so

we’d have time to tweak and refine

them sufficiently. We did our conversation

system and our complex 2D interface

screens early, which was a good thing,

too — they required as much tweaking as

we feared. And in the end, they turned

out pretty well, I think.

Unfortunately, we missed one huge risk

area — artificial intelligence. I don’t

know how we missed it, but we did. It’s

not that we didn’t spend time on AI. We

started thinking about AI early in prepro-

duction. Unfortunately, what that meant

was that the AI was, to a great extent,

designed in a vacuum, and as is often the

case, we didn’t really know what the

game required with respect to AI until rel-

atively late in development. And that

meant implementing AI features early on

that ended up being unnecessary later,

once our design had evolved into its final

form. In addition, building on the base of

UNREAL TOURNAMENT’s pure shooter AI

meant that, instead

of designing a sys-

tem specifically

for our needs, we

ended up adding

stuff and tweaking

until the bitter end, causing

NPC behavior to change con-

stantly, right up to the last day

of development.

We ended up with some pretty

compelling AI, but the problem

of convincing people they’re

interacting with real people is

immense, particularly when

you’re talking about characters

whose reactions have to run the

gamut from fear to friendliness

to violent enmity. That’s not a

challenge many games take on

(with good reason), but it was

one we had to take on for DEUS EX. Our

sin was, I think, giving people a hint of

what human AI could be in games, but

delivering the goods inconsistently.

As I write this, we’re discussing

whether we want to risk making some

fairly radical changes to the AI in a patch

for a game that most people seem to like,

and in which NPCs basically behave as

much like real people as they ever have in

any game. There’s no telling which way

our decision will go at this time.

4.Proto-missions redux. Game
Developer’s Postmortems typically

focus in on things the team clearly did

right and things the team clearly did

wrong. It sure is nice when things are that

clear. Maybe it’s just me, but I almost

never see things in such black-and-white

terms. Most of the time, problems are

knotty and solutions are far from obvious

or clear-cut, which is where the final two

“What Went Wrongs” fall.

As I already mentioned, we recognized

the need for proto-missions relatively

early on, and built our schedule around

the idea. We implemented two such mis-

sions, which helped us identify many

things that didn’t work (and many that

did). With proto-missions in hand, we

found ourselves at a critical juncture with

two possible choices to make, the impli-

cations of which I still don’t entirely

understand.

ABOVE LEFT & RIGHT. Not all of the places players visit in DEUS EX were modeled after real-world
spaces. The team had to make concessions to gameplay and create spaces more dramatic or more
“3D” than one usually encounters in the real world.

On one hand, I could have gone off

with some subset of the team and

tweaked our proto-missions until they

were absolutely right and models for all

subsequent mission implementation

before turning the rest of the team loose

on implementation of the rest of the mis-

sions. On the other hand, I could have

kept the entire team in implementation

mode, getting all of the missions to the

level of the proto-missions, meaning none

of them would be exactly right but we’d

be able to see the shape of the entire

game and all of the missions would be

ready for tuning at about the same time.

The first approach would have left large

portions of the team in thumb-twiddling

or make-work mode for some unspecified

period of time. This promised to prove

that we could create a ground-breaking,

compelling game, but could leave us

without a finished game to ship. The sec-

ond approach would have kept everyone

productive throughout the project and at

least put us in position to decide whether

or not to ship the game at some foresee-

able point in the future. The question was

whether we would be able to turn all of

the bare-bones missions into something

fun or not.

I chose the latter approach and told

everyone to get the game “finished”

and playable at a bare-bones level.

We’d worry about fleshing out

all the missions, making the

game as interesting and fun and

dense and exciting as it needed

to be during the inevitable

gameplay tuning, tweaking,

and balancing phase at the

end. This probably isn’t so

much of a “What Went Wrong”

as it is an open question of

whether that was the right call.

I think so, and the plan clearly

worked to the extent that we

shipped a game that people seem to

like pretty well. But it’s unclear to

me whether using our proto-mis-

sions to fine-tune might not have

resulted in an even better game.

5.Is it true that any pub-
licity is good publicity?

Naturally, this wouldn’t be a

complete or accurate picture of

the development of DEUS EX if we didn’t

take a look at the Sturm und Drang that

was Ion Storm. In case you you’ve been

living under a rock, there’s been a lot of

hype surrounding the company. On the

negative side, Ion Storm was heaped with

bad press for much of 1998 and 1999.

The company did the same things all

game companies do, went through the

same problems, but because we painted a

big ol’ “suck it down” target on our

chests, the gaming press and a fair num-

ber of hardcore gamers went after us

with a vengeance.

Not too surprisingly, this had an effect

on those of us working away in the Au-

stin office. Morale hits were frequent and

problematic. It simply isn’t possible to be

bombarded by negative press about the

company you work for and not take it

somewhat personally. Trust me when I

say that seeing your personal and private

e-mails posted on the Internet is a devas-

tating experience. Also, recruiting was

more difficult than it should have been.

We were able to put together an incredi-

bly talented team for DEUS EX, but too

many talented people told us that while

they would like to work on DEUS EX, they

couldn’t work for Ion Storm. Eventually,

a “we’ll show them” mentality

became prevalent in Austin. I

don’t know that anyone who

worked on DEUS EX thought

of him- or herself as part of

the same company making

DAIKATANA and ANACHRO-

NOX up in Dallas. That

kind of us-versus-them

thinking is rarely good in

the long run.

Now that we’ve shipped,

the reviews seem to fall into

two categories — those that

begin with some statement

implying that Warren

Spector makes games all by

himself (which is silly), and

those that begin with some

statement proclaiming that

DEUS EX couldn’t possibly have

been made by Ion Storm (also

silly). Silly or not, there’s a level

on which we’re still trying to

live down our past, at least in

terms of the media’s percep-

tion of our game and the company that

paid the bills here.

But, for all the problems, being associ-

ated with Ion Storm wasn’t all bad — far

from it. On the plus side, it isn’t as if

anyone from Rolling Stone, Entertain-
ment Weekly, the New York Times, the

L.A. Times, USA Today, Mother Jones,
the Wall Street Journal, Forbes, Fortune,

Time, Architectural Digest, CNN, or the

BBC ever banged down the doors at

Origin or Looking Glass to talk to me or

anyone on any of my teams. In reality,

the bad publicity was almost entirely lim-

ited to the gaming press. The mainstream

media, which barely notice anything

about gaming (other than the fact that we

supposedly turn normal kids into vicious

killers) didn’t seem to care about the bad

stuff. But they sure did take notice of us.

Ultimately, Ion’s ability to attract atten-

tion to itself, even if it was sometimes in

negative ways, probably worked to our

advantage. Whether publicity at any cost

is good or bad is still an open question

for me.

The Bottom Line

P art of the challenge of game develop-

ment is making the tough decisions

along the way, the many difficult junc-

tures when you have to determine that

something that can’t be done right in the

game shouldn’t be done at all. It’s all well

and good to have design goals and an

ideal game pictured in your head when

you start, but you have to be open to

change and realistic about what can and

can’t be done in a reasonable time frame,

for a reasonable amount of money, with

the personnel and technology available to

you. And if you don’t have time to do

something right, cut it and do everything

that’s left so well that no one notices the

stuff that isn’t there.

I’m not saying we did that perfectly on

DEUS EX. We certainly didn’t ship a per-

fect game. But if we hadn’t gone into

development with the attitude that we’d

do things right or not at all, we would

have fallen far shorter of perfection than

we did. How close we did get is some-

thing all of you can decide for yourselves.

All I know is we’re going to get closer

next time. q

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r58

P O S T M O R T E M

n o v e m b e r 2 0 0 0 | g a m e d e v e l o p e r64

S O A P B O X p h i l g o e t z

The AI is in the Mail

I t seems every new game has a

blurb touting its artificial intelli-

gence. The Game Developers Con-

ference has more talks on AI every

year. Developers are allocating

more CPU cycles to AI. At least three com-

panies offer AI tools to game developers.

As I came home from the American Asso-

ciation for Artificial Intelligence’s first

symposium on computer games and AI in

April 1999, the future seemed rosy for

game AI.

I soon left the game company I was

working for at the time, and began apply-

ing for other game AI positions. It would

go something like this:

“How much experience do you have

with 3D graphics programming in C++?”

my interviewer would ask.

“Some, but I’m responding to your ad

for an AI programmer.”

“How about DirectX experience?”

“I have a DirectX book bag that I

sometimes carry my AI texts in.”

“Well, what sort of graphical APIs do

you use?”

“Um, can we clarify what we mean by

AI programmer?”

“You make things move around on the

screen.”

“I’d call that a ‘graphics programmer.’

Making creatures smart is very different

from putting pixels on the screen.”

“Oh, you write finite-state automata!”

“That would be a ‘scripter.’”

“We only use finite-state automata,

because we need to draw a million poly-

gons a second. We tried fancier AI once,

and it was a mess — slow, buggy,

unmaintainable.”

“Maybe if you found someone with an

AI background . . .”

The interviewer interrupts, “Oh, we’re

still committed to improving our AI. We’re

very excited about the improved AI in our

next sequel.”

“Oh?”

“The new NPCs will have twice as

many polygons! . . . Anyway, there’s a

problem with your résumé. It seems you’ve

spent a lot of time in college.”

“To study artificial intelligence.”

“We don’t want a lot of absent-minded

ivory-tower types. And most of your work

experience is outside the computer game

industry, so that doesn’t count. Say, do you

know any 3D graphics programmers?”

O.K., so not every encounter went like

that. Some companies knew what they were

doing. But I did not make any of it up.

Talk about AI is still mostly lip service.

Sure, graphics hardware has freed up some

CPU cycles for AI, but an appreciation for

its fundamental importance to gameplay

has not entered developers’ mind-sets. No

one would release a 3D shooter today with

the QUAKE 1 engine, but people are not

embarrassed to release strategy games with

WARCRAFT-era AI. We still see shooters

with intentionally dumbed-down AI, on

the theory that players get a bigger rush

shooting a lot of dumb monsters than a

few smart ones. Many developers still jus-

tify shoddy AI by saying that players are

better at imagining reasons why random

behavior is intelligent than programmers

will ever be at making intelligent behavior.

When developers discuss immersiveness,

they mention high polygon counts, color

depth, animation, physics, and good voice

acting, but seldom AI. The typical develop-

er’s reaction to the word “AI” is not one

of excitement about possibilities, but fear

for their frame rate and unit count.

One problem is that AI is not integrated

into the design process early enough. The

top three things that visitors to my game

AI survey web site (www.cse.buffalo.edu/

~goetz/AI/API/gameai.html) want are all

variations on pathfinding.

AI will never reach its potential as long

as it is confined to a supporting role. What

designers really need to ask is not, “How

could I make my game better with AI?”

but, “What game could I make with better

AI?” Looking Glass modeled the effects of

shadow and sound on NPCs’ perceptions,

and was able to create THIEF, arguably an

entirely new type of game. Imagine what

war games would be like if players could

issue orders such as “secure this area,”

instead of building structures one by one.

What if the computer tried to fool players

ill
us

tr
at

io
n

by
 B

en
 F

is
hm

an

continued on page 63

S O A P B O X

about where its forces are? What if units

could command other units? What if they

could disobey?

This leads to a second problem: legacy

gameplay and game design tunnel-vision.

We need to rethink gameplay paradigms

that evolved to meet AI limitations that no

longer exist. We need to have the courage

to build games that players don’t yet know

they want. It may take a WOLFENSTEIN 3D

of AI to change industry attitudes. If that

happens, it’s not going to be an AI retrofit

of an existing game, but rather a design

arrived at by thinking carefully about AI

capabilities and their gameplay potential.

A final problem is that developers don’t

acknowledge that AI is a specialty. On a

résumé, they value non-AI work within the

game industry more than AI work outside

the industry. They don’t want an AI spe-

cialist; they want a person who is someone

they would normally hire, “plus AI.” The

results end up being similar to what com-

puter game art was like in the early 1980s,

when it was assigned to whichever pro-

grammer had done the most doodling in

high school.

As a result, buggy AI, slow AI, pre-

dictable AI, and inhumanly perfect AI have

made developers more afraid of too much

AI than too little. The director of a well-

known massively multiplayer online game

told me that they had “tried AI” unsuc-

cessfully, and did not intend to try it again.

I had a martial arts instructor who

would say “no” when asked if he knew

karate, because he believed no one person

could ever “know” karate. AI is like that.

If you don’t have enough work to hire a

full-time AI specialist, you would do bet-

ter to hire an AI consultant than to try to

find a graphics programmer who also

“knows AI.”

The situation is better than it was a

year ago. More resources are being spent

on AI, but we can have great game AI

now. All that game developers have to do

is to want it. They have to want it badly

enough to find out what it is, include it in

the design process, and hire people who

can do it. q

3Dlabs 6

Alias|Wavefront 9

American Inst. for Computer Sciences 21

Anthony Mitchell 62

Apple Computer C2,1

Auran Development Pty Ltd. 60

Cyan Inc. 60

Dice 60

Discreet 19

Macrovision C3

Metrowerks Inc. 29

Multigen 14

Musicandsfx.com 62

Newtek 25

Numerical Design Ltd. 5

RAD Game Tools C4

Rainbow Studios 61

Savannah College Of Art 62

SGI 13

Softimage 2

Sony Computer 59

Sound Werx 22

Staccato Systems 11

Swingin' Ape Studios 60

Vancouver Film School 62

A D V E R T I S E R I N D E X

P H I L G O E T Z | Phil has a doctorate in
artificial intelligence from SUNY-Buffalo. He
has been a roboticist, a mathematician, and a
game AI programmer at Zoesis. He is cur-
rently working at Intelligent Automation Inc.
on partly automated air traffic control. You
can reach him at philgoetz@yahoo.com.

continued from page 64

C O M PA N Y N A M E PA G E C O M PA N Y N A M E PA G E C O M PA N Y N A M E PA G E

Writers‘ guidelines can be
downloaded from our web site:
www.gdmag.com/writguid.htm

Dear Professional
Game Developers,

I f you’re technically astute and have a way

with words, Game Developer magazine needs

you. We’re looking for feature articles on pro-

gramming (graphics, AI, networking, and so

on), art and animation techniques, game/level

design, audio technology, testing and QA issues,

and other relevant technical topics. We want

topics for a variety of platforms, including the

PC, console, arcade, web, and handhelds. Give

back to the community some of the hard-won

knowledge that you've learned! Please send

your article abstract, outline, or wacky idea to:

mdeloura@cmp.com.

Thanks,

Mark DeLoura,

Editor-in-Chief

Call for WritersCall for Writers

w w w . g d m a g . c o m 63

	01nov cover
	02gameplan
	07frontlin
	08indwatch
	10prodrev
	15patterns
	17graphic
	25artview
	30f-peasle
	40f-marsel
	50postmort
	64soapbox

	return:

