
V

NOVEMBER 1998

G A M E D E V E L O P E R M A G A Z I N E

G ame development is no
walk in the park, especially
when it comes to managing
the business aspects. And

possibly the most stressful period for a
studio is when it finds itself falling
behind schedule.

Missing a milestone has several rami-
fications. The two most notable side
effects are a souring of the developer-
publisher relationship and the post-
ponement of milestone payments. The
latter is especially serious for developers,
and can propel a studio into crisis
mode. Creditors go unpaid, medium-
and long-term planning go out the win-
dow, and the team pulls together to sat-
isfy immediate goals.

If these consequences weren’t bad
enough, often it gets worse. Pressures
can lure developers into the "second-
title trap.” Faced with a high burn rate
and limited funds to complete a title,
it’s common for a development studio
to pull some people off of the current
project to put together a design docu-
ment for a second title, in the hope that
after a couple of months and more con-
tract negotiations, a publisher will
green-light it. The second revenue
stream would offset the lagging mile-
stone money from the first project,
buoying the company for a while.

Watch out. Don’t forget that many
publishers insist on the first right of
refusal for a developer’s second title, so
the developer has to approach his cur-
rent publisher first. If the first project is
going poorly, this publisher probably
knows it, and is therefore bargaining
from a position of strength. If the pub-
lisher gives the second project the
thumbs-up, this contract will probably
be much less favorable for the developer
than the previous one.

If the publisher punts on the second
project, the developer may decide to
look for funding elsewhere. So now the
developer, who hasn’t been talking up
other publishers in a while, must shop
the second project around the industry.
Back in the office, the original game
may fall further behind because key
staffers are absent. Bills for plane trips
and hotel rooms from the far-flung
schmoozing trips pile up in the office.

And here we go down the spiral. Wheee!
If you find yourself in this situation,

my condolences. Your management
skills will be put to the test, and hard
decisions regarding layoffs, budgets, and
vacation plans will be forced upon you.
One tidbit of advice: if your publisher is
ranting at you over a blown deadline,
maintain your cool. It’s an emotional
time, and taking the high road rather
than getting into a war of words will
help preserve your relationship.

Of course, there are ways to avoid
falling into this morass at all. Account
for downtime in your budget. When fig-
uring out how much money you need
to complete a title, factor in a couple of
months’ worth of operational capital to
get by after the product is completed.
Don’t tap into that money if you run
short. Instead, immediately go back to
your publisher, confess that you’ve gone
over budget, and face the music.
Running out of money before you deliv-
er the title puts you in a better position
than if you run out after you’ve deliv-
ered the completed product to your
publisher. The undelivered product is
your only leverage during development.

Never factor royalty payments into
your business plan. Think of royalties as
bonuses or stock dividends (windfall). If
your budget depends on royalty pay-
ments from your games, rest assured
that you’ll run out of money.

Don’t wait until the last second to put
together a design document for the sec-
ond title. Presenting a publisher with a
second proposal earlier forces the pub-
lisher to either fund it or fan it more
quickly. If it decides to pass, you can
pursue other publishers before the cash
from the first project dries up. If possi-
ble, plan two titles from the start, using
two different publishers. Of course
you’ll want to stagger the delivery dates.

Finally, brush up on your business
management skills. I highly recommend
Gordon Bell’s High-Tech Ventures: The
Guide for Entrepreneurial Success (Addison
Wesley, 1991). Bell’s been around the
block many times, and the case studies
in his book offer priceless lessons. ■

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8

2

P L A NG A M E

The Second-Title Trap

www.gdmag.com

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.4962 w: www.gdmag.com

Publisher
Cynthia A. Blair cblair@mfi.com

EDITORIAL

Editor-in-Chief
Alex Dunne adunne@sirius.com

Managing Editor
Tor D. Berg tdberg@sirius.com

Departments Editor
Wesley Hall whall@sirius.com

Art Director
Laura Pool lpool@mfi.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Mel Guymon mel@surreal.com
Omid Rahmat omid@compuserve.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook id Software
Susan Lee-Merrow Lucas Learning
Mark Miller Harmonix
Paul Steed id Software
Dan Teven Teven Consulting
Rob Wyatt DreamWorks Interactive

ADVERTISING SALES

Western Regional Sales Manager
Alicia Langer alanger@mfi.com t: 415.905.2156

Eastern Regional Sales Manager
Kim Love klove@mfi.com t: 415.905.2175

Sales Associate/Recruitment
Ayrien Houchin ahouchin@mfi.com t: 415.905.2788

ADVERTISING PRODUCTION

Vice President Production Andrew A. Mickus

Advertising Production Coordinator Dave Perrotti

Reprints Stella Valdez t: 916.983.6971

MILLER FREEMAN GAME GROUP MARKETING

Group Marketing Manager Gabe Zichermann

MarComm Manager Susan McDonald

Marketing Coordinator Izora Garcia de Lillard

CIRCULATION

Vice President Cirulation Jerry M. Okabe

Assistant Circulation Director Mike Poplardo

Circulation Manager Stephanie Blake

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Joyce Gorsuch

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
President Libby Abramson
720 Post Road, Scarsdale, New York 10583
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

Chairman-Miller Freeman Inc. | Marshall W. Freeman
President/COO | Donald A. Pazour
Senior Vice President/CFO | Warren “Andy” Ambrose
Senior Vice Presidents | H. Ted Bahr, Darrell Denny
Galen A. Poss, Wini D. Ragus, Regina Starr
Ridley, Andrew A. Mickus, Jerry M. Okabe
Vice President/SD Show Group | KoAnn Vikören
Senior Vice President/Systems and Software
Division | Regina Ridley

BPA International Membership
Applied for March 1998

Miller Freeman
A United News & Media publication

Indie Game Festival? Take Two.

W here's our Sundance? (from
September 1998 GamePlan)

What a strange question. By your own
admission, Sundance is used to
screen completed films. How
many games do you know of
that are actually completed
without a publisher paying the
bill? An indie market doesn't exist.
Instead, you would be more likely to see
a "technology
demo" of a
game
which
may
“wow”
— but
this is
like watching a
trailer instead of a completed film.

Indie films are financed out of pocket,
in the hope that the producers will gain
big when a distributor picks it up. There
are over 80 years of procedure and
analysis for how a film producer will
make his money back, including the
fact that technology for showing the
media already exists in mass formats.
Every time a movie shows, the producer
gets a check.

Currently, the best an "Independent
Game Producer" could see is his money
back (ooh) and perhaps a small royalty
(the bulk of it goes to the game develop-
ers) if the game's sale recoups its cost. If
the game fails, that's it, it's gone forever
(no market for residuals, as old games
are low tech.). Being an independent
game producer would be great for tax
write-offs, but not much for income.

Indie films are also quickie films. The
production is complete in under a
month. Games can take 6 to 12 produc-
tion months (especially if low budget).
That's a lot of time to have one's money
tied up with no guarantees. Bottom line,
this business needs to mature and
become more profitable. Then, and not
before, we can have comparisons with
Sundance (or the Oscars or Variety, or
many other Hollywood examples we do
not currently fit).

Now the obvious. E3, as you noted, is
not the Sundance equivalent. But the
Computer Game Developers
Conference [now the GDC] is as close
as you are going to get today.
Networking, seminars, demos and yes,

even a completed independent game
may be found there (in a relaxed
venue).

T o n y V a n

P r o d u c e r , E l e c t r o n i c A r t s

I agree
with your
editorial
in Game

Developer
100 percent.

As a developer for
Sierra, I see how large companies are

incapable of exhibiting the faith and
vision required to break out of the "How
do we copy id this time?" mentality.
Marketing drives the industry more
than the talent. "How do we sell this to
Wal-Mart?" becomes the make or break
moment for a game concept.

Continuing with your Hollywood
analogy, too many games are put into
production on pitches such as, "It's a
cross between QUAKE and DIABLO with a
little MYST thrown in." OpenGL,
DirectX, and the Internet have provided
indie developers with all of the resources
needed to make a great game but little
chance to get that game to market.

An added benefit, if this could grow
to other cities, would be the contact
between gameplayers and developers. At
screenings, indie filmmakers get instant
feedback on what worked and what
didn't allowing them to improve on the
next one. Game players also get insight
into why decisions are made in the
games they like or don't like. E3 does
not provide that kind of contact.

J i m E d w a r d s

v i a e - m a i l

Your idea promoting the organization
of an independent game developer festi-
val is intriguing, but given the nature of
the software development industry, I'd
be surprised to see anything like it take
shape. E3, obviously, is not a festival so
much as it is a conference — a place
where established companies showcase
their products before other industry
executives, and where even smaller
development houses typically have the
support of a larger parent company. To
bring a game concept to playable demo
level, much less completion, requires a
lot of resources (money, talent, equip-
ment, salaries, and so on) that don't
exist in the same way that they do in
the film industry. To top it off, smaller

companies developing a product for,
say, a popular console, must do so in
the usual entanglement of legal secre-
cies and NDAs, as well as laboring under
the financial responsibilities of licenses,
development kit purchases, and other
complications.

Maybe the landscape for indepen-
dent development would be different if
things like the black PlayStation
(Yaroze) were more widespread. The
problem is, once you're involved in
technology, you're involved in licens-
ing. Software products don't stand
alone as autonomous entities the way
films do (meaning: platform and hard-
ware, not marketing and distributing).

There are so many other problems —
the time to develop a game vs. the time
to shoot a film (16 weeks for a film
compared to over a year for a game),
the presence of independent sources of
money for filmmaking, and so on. The
notion that a team of developers can
bring a product to bear, showcase it,
only to then have it picked up and dis-
tributed is, frankly, almost absurd.

There are currently a number of festi-
vals which highlight the underground
of digital filmmaking (D.FILM,
ResFest), and perhaps something that
provides a showcase for all indepen-
dent digital creativity (games, films,
animation, graphic design, and the
like) would be more likely to succeed.

As a video maker and game animator
myself, I would be more interested in a
project that is more encompassing.
Let's not forget that Sundance has
become an inflated feeding frenzy, crit-
icized profusely and abandoned by
many members of the independent
film community.

S e a n C a p o n e

v i a e - m a i l

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

4

Y O US A Y S

Got an idea? E-mail us at
gdmag@mfi.com. Or write to Game
Developer, 600 Harrison Street, San

Francisco, CA 94107.

v

Due Credit for the October Cover Image.
The Skaar from GT Interactive/Epic

MegaGame’s UNREAL, was modeled by

Dave "Motornerve" Carter. Dave built

this image with Kinetix’s 3D Studio R4,

BonesPro from Digimation, and propri-

etary texture-mapping tools. It should

be noted that the image shows actual

in-game models, skins, and environ-

ments. Dave can be reached at

motonerv@xnet.com.

h t t p : / / w w w. g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

New Products
by Wesley Hall

New Network Engine
RTIME recently released the latest ver-
sion (V3.0) of the RTIME Interactive
Networking Engine, a scalable, high-
performance client/server networking
engine that supports real-time, multi-
player gaming over both the Internet
and Local Area Networks (LANs).

The engine enables game developers
and publishers to build or port multi-
player games to the Internet. This new
release is built on top of a completely
rebuilt core engine, extends the
engine’s performance and capabilities,
and includes new features in response
to the requests of RTIME’s customers.
One such feature is the new RTIME
Integrated Server. Now RTIME-enabled
games no longer require a dedicated
server to act as a host. A client applica-
tion can now link directly with a local
server library that services all other
connected gamers. V3.0 also helps
reduce bandwidth consumption
through the use of server-side dynamic
filter management. The Parallel
WorldMasters feature extends the previ-
ous WorldMaster (a server-side, super-
client used to drive inanimate objects,
provide server-based authority and
security, maintain scores, and so on) to
enable multiple copies to run in paral-
lel. Each one can be used to control dif-
ferent simulations in the virtual world.
Other new features include the ability
to specify restriction information on
public and private objects, enhanced
transport directives, and streamlined
object-level API. These build on already
existing functions such as the

Distributed Timebase Manager (to keep
global time synchronization), the
Realtime Filter Manager (uses affinity-
based data distribution to determine
the appropriate information to send
each player in realtime), the Intelligent
Update Manager, and Server-to-Server
Communications. These features are
beneficial for many game genres,
including action, strategy, sims, sports
titles, and persistent worlds. RTIME
V3.0 is currently being integrated into
several fall titles, including Acclaim’s
TUROK 2: SEEDS OF EVIL, and Ripcord’s
SPECOPS: RANGERS LEAD THE WAY.

The RTIME Client runs on Windows
95, Windows NT, SGI, and Solaris. The
RTIME Server runs on SGI, Solaris, and
Windows NT. A development-only ver-
sion is available for Windows 95.
■ RTIME Inc.

Seattle, Wash.

(206) 281-7990

http://www.rtimeinc.com

Glide 3.0
3DFX just announced Glide 3.0, the new
version of its low-level software inter-
face that enables control of the compa-
ny’s Voodoo family of graphics chips.

Glide can serve as the primary appli-
cation program interface (API) or may
work in conjunction with another API
to enable optimal acceleration on 3Dfx
hardware. The API is designed specifi-
cally and only for 3Dfx hardware. Glide
3.0 is more streamlined than previous
versions in an effort to make it easier to
write complex games or applications
that can fully take advantage of present
and next-generation 3Dfx chips. Glide
3.0 utilizes triangle strips and fans, and
has new features including gamma table
support for complete control over light-
ing brightness (including individual

color brightness control), vertex layout
support for complete control over indi-
vidual vertices, and an extension mech-
anism to allow developers to add addi-
tional functionality and optimizations.

The Glide software developer’s kit
(SDK) is available free of charge via the
3Dfx web site. The kit also includes
Glide programming libraries, tools, and
sample code. Glide 3.0 and its SDK are
available for download immediately.
■ 3Dfx Interactive Inc.

San Jose, Calif.

(408) 935-4366

http://www.3dfx.com

Updated PolyTrans
OKINO recently updated its stand-alone
PolyTrans Model Translator (for
Windows and SGI) to version 2.2.

PolyTrans is a model translation pro-
gram that allows 3D models and scene
files to be converted between various
industry standard file formats in their
entirety. Rather than convert just sim-
ple geometry and some material attrib-
utes, the PolyTrans program converts
every aspect of a file so that the trans-
lated file is "render ready.” New fea-
tures include: animation conversion,
auto-bitmap conversion for RIB
exporter; animation conversion
between 3D Studio MAX, Lightwave,
RIB, and DirectX; Direct plug-in sup-
port for 3D Studio MAX v1.2, v2.0,
and v2.5; support for several new file
formats; and fully integrated trimmed
NURBS support.

PolyTrans is available for Windows
95/NT and SGI. Pricing starts at $395
(PC, Windows) and $495 (UNIX).
■ Okino Computer Graphics Inc.

Mississauga, Ontario

(905) 672-9328

http://www.okino.com

New Products: RTIME Interactive
Networking Engine V3.0, 3Dfx’s Glide
3.0, and Okino’s new version of
PolyTrans p. 6

Industry Watch: Many mergers, ups
and downs at 3Dfx, and Broderbund’s
layoffs p. 8

Product Reviews: Intel’s VTune 3.0
and Sonic Foundry’s Acid p. 10News from the World of Game Development

6

B I T B L A S T S

Industry Watch
by Alex Dunne

EIDOS announced record results for the
three months ending June 30. It saw
record revenues to the tune of £25.8
million (up from £9.4 million last year),
amounting to a net loss of £3.0 million
(compared to a £6.8 million loss last
year). In other news, the company
acquired Crystal Dynamics in a deal val-
ued at about $47.5 million, but don’t
expect any Gex-Croft collaborations.
GT BAGS FUGITIVE. GT Interactive
acquired equity interest in Fugitive
Studios, a recent startup cofounded by
Greg Williams, James Phinney, Jess
McReynolds, and Brian Sousa. Many of
the Fugitive employees were among the
contingent that bolted from Blizzard
after STARCRAFT shipped. In the deal, GT
gets exclusive global publishing rights to
Fugitive software titles for both PC and
console platforms, plus print and mer-
chandising rights. Fugitive’s first title
will be an “innovative 3D game” for the
PC, and should ship in late 1999.
AS EXPECTED, Broderbund layoffs will
be heavy as a result of the company’s
acquisition by The Learning Company.
Approximately 500 of Broderbund’s
1200 jobs will be trimmed. Half of these
cuts will come from Broderbund's
California operations in Petaluma
(which is closing this month) and
Novato. The company hasn’t yet decid-
ed where the other 250 layoffs will
come from.
LUCASARTS SIGNED an exclusive two-
year publishing and distribution agree-
ment with Activision, whereby
Activision will handle all upcoming LA
titles in the United Kingdom,
Scandinavia, Central Europe, the Middle
East and certain African countries.
ELECTRONIC ARTS completed its previ-
ously announced acquisition of
Westwood Studios from Virgin
Interactive Entertainment (which is
itself a division of Spelling
Entertainment Group). As a result of the
$122.5 million cash deal, Westwood
Studios becomes EA’s tenth studio. Brett

Sperry and Louis Castle have agreed to
five-year employment contracts, and
will remain with Westwood.
DISCREET MAX! The 3D tools industry
has seen quite a bit of activity lately,
and plots continue to unfold. Following
closely on the heels of Microsoft’s sell-
off of Softimage to Avid, Autodesk
acquired Discreet Logic for $520 mil-
lion, creating quite a powerhouse of
digital content creation tools. As a
result, Autodesk's Kinetix division has
merged into the new Discreet division,
and tools such as 3D Studio MAX will
now carry the Discreet name.
NEW PARADIGM. In the world of real-
time 3D tools, MultiGen and Paradigm
Simulation merged, creating MultiGen-
Paradigm Inc. MultiGen, with its strong
modeling tool Creator (recently high-
lighted in the August 1998 Postmortem
of Atari’s SAN FRANCISCO RUSH) is a good
match-up with Paradigm’s simulation
tools, such as Vega. MultiGen will con-
tinue its operations in San Jose, and
Paradigm offices will remain in Dallas,
and the two firms will combine their
worldwide sales operations.
3DFX’S MIXED NEWS. The burgeoning
3D hardware market isn’t all happiness
and joy. In fact, it’s getting awfully
crowded on those store shelves. 3Dfx
announced that its Q3 retail sales fig-
ures would be lower than anticipated,
due a slowdown in the retail channel.
Now there’s a glut of 3D inventory in
the hands of retailers, and the company
is pinning hopes on a healthy
Christmas season to clear out some
inventory. Assuming there’s no increase
in demand, 3Dfx anticipates losing sev-
eral million dollars at the pre-tax oper-
ating level for its third fiscal quarter.
Fortunately for the firm, its recent set-
tlement with Sega (over the Dreamcast
deal) gave it some wiggle room, and
3Dfx still anticipates a profitable third
quarter. Following 3Dfx’s announce-
ment, Robertson Stephens downgraded
3Dfx shares from "Strong Buy" to "Buy",
and the stock at press time is trading at
its 52-week low (about $9).

On the upside for 3Dfx, software
retailers Babbage's and Software Etc. just
announced the creation of a special

3Dfx section within their 450 nation-
wide stores. This 3Dfx-only area will sell
3Dfx-related hardware and software
products, such as the Diamond Monster
Fusion and Creative Labs' 3D Blaster
Voodoo2, plus 3Dfx-optimized titles
such as UNREAL, NFL GAMEDAY '99, NEED

FOR SPEED 3: HOT PURSUIT, and FINAL

FANTASY VII. ■

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w. g d m a g . c o m

8

Game Developers Conference
RoadTrip: Seattle

WASHINGTON STATE CONVENTION

AND TRADE CENTER

Seattle, Wash.
November 9-10, 1998
$225
www.gdconf.com/1998/road-
trips

Game Developers Conference
RoadTrip: Austin

AUSTIN CONVENTION CENTER

Austin, Texas
November 16-17, 1998
$225
www.gdconf.com/1998/road-
trips

Game Developers Conference
RoadTrip: S. San Francisco

SOUTH SAN FRANCISCO

CONFERENCE CENTER

South San Francisco, Calif.
November 21-22, 1998
$225
www.gdconf.com/1998/road-
trips

Digital Content Creation

LOS ANGELES CONVENTION CENTER

Los Angeles, Calif.
December 2-4, 1998
$595
www.dccexpo.com

UPCOMING EVENTS

B I T B L A S T S

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w. g d m a g . c o m

10

VTune 3.0
by Dan Teven

If it seems as though we’ve devoted
a lot of coverage to Intel’s VTune
profiler this year, you’re not imag-

ining it. Ron Fosner awarded four stars
to VTune 2.5 in an April review. Then
we wrote up VTune again, in June,
when it won the Front Line Award for
Programming Utilities. And now,
despite déja VTune, I’m going to tell
you why release 3.0 is worth an addi-
tional half star.

I’ll assume you’ve seen an earlier
incarnation of the product, or at least
read Fosner’s review (which is online at
www.gamasutra.com/tools/reviews/).
While VTune has always been a great
product for optimization junkies, its
old user interface was seriously flawed
— Fosner called it “cluttered” and
“annoying.” Happily, Intel has jetti-
soned the old UI and replaced it with a
far superior one.

Releases of VTune have always
advanced the art of performance mea-
surement, and 3.0 is no exception.
You can now view an annotated func-
tion-call hierarchy, showing explicitly
how many times a function was
called as well as the time taken by the
function and its descendants. You can
also correlate operating system events
such as context switches or page
swaps with your application’s behav-
ior. The new information dovetails
nicely with conventional hotspot
analysis, resulting in a more complete
picture of performance.

QUICK START. The first time you run
VTune, you’ll see an Easy Start menu
with three options: Quick Performance
Analysis, New Project Wizard, and
Open VTune Project. All of these tasks
are just as easily accomplished from
the File menu, and you have the
option of turning off Easy Start.

Quick Performance Analysis samples
the current CS:EIP of each processor —
yes, VTune 3.0 supports multiprocessor
systems — every millisecond for 20 sec-
onds. It automatically charts the results
by process, by processor, and by mod-
ule, in three tabs of a single window. A
second window shows the hotspots
within the main module you’ve speci-
fied. The main module doesn’t have to
be an executable file; it can be a .DLL,
an .OCX, a device driver, a Java class,
or even an object module.

Quick Performance Analysis is an
excellent place to begin when you’re
profiling anything that takes less than
20 seconds. The two-window view is
just right. You not only find the bottle-
necks in your main module, you find
out if other modules are consuming
more time than you expected.

Behind the Easy Start menu, the old
postage-stamp-sized main window
(with multiple pop-ups) has been
superseded by a full-size main window
(with multiple children). Child win-
dows can be tiled, minimized, and
maximized. Not only is this layout
more familiar, it’s less cluttered.

The Navigator window, down the left
side of the screen, is a tree control that
lets you switch quickly among myriad
sampling sessions and views of the data.
I like this feature, but I do some of my
work on a notebook with a 640×480
display, and it’s not worth the screen
real estate in that situation.
DRILLING DOWN. More improvements are
evident as soon as you try to drill down
to the instruction level. In earlier ver-
sions, you would start with a system-
wide view and select the module that
interested you. This would pop up a

new window showing hotspots in that
module. Then you’d select the hotspot
that interested you — and pop up
another window. Eventually, you’d get
to a window with a source or disassem-
bly view. To make matters worse, you’d
frequently have to perform these opera-
tions by selecting a pixel-wide bar with
your mouse, and VTune’s hit testing
was sometimes off by a couple of pixels!

Now, VTune opens the hotspot win-
dow for the main module automatical-
ly, saving a step. And you don’t get a
new window every time you zoom in;
instead, windows are recycled. It’s still
possible for the hotspots to be a pixel
or two wide, and I wish Intel would
implement a magnifier tool to make
the selection process easier, but the
mouse click precision bug is fixed.

Whether you’re looking at graphs
or raw sample data, time-based or
event-based sampling, or static or
dynamic code analysis, all windows
share the same main menu and tool-
bar. This is a big improvement. In
earlier releases, where windows had
their own individual interfaces, I
often had trouble figuring out how to
get from point A to point B.

The source and disassembly views
haven’t changed much since earlier
releases. It’s easy to see where you’re
spending CPU cycles, and VTune does
an excellent job of explaining pairing
issues and execution penalties. I was
happy to find the reference manuals
for the Pentium Pro instruction set and
for Intel’s MMX intrinsic functions
added to the online help. Likewise, the
event-based sampling feature hasn’t
changed much.
CALL GRAPH ANALYSIS. Consider a pro-
gram that decompresses a bitmap and
then, accidentally, copies it to the
screen twice. Hotspot analysis by itself
won’t reveal the problem. Say you pro-
file with VTune 2.5 and observe that
half the time is spent in your decom-
pression code, with the rest spread out
among the operating system (BBiittBBlltt)
and video drivers. You optimize the
decompressor, but the program’s still
too slow, and you’re stymied.

Fortunately, VTune 3.0 lets you do
call graph profiling. This means collect-

Not so long ago, Dan Teven was obsessed with making a really cool game go really,
really fast. This morning, he saw the game in a bargain bin for $15. Write him at
dteven@ici.net to commiserate.

Excellent Very Good Average PoorBelow Average

h t t p : / / w w w. g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

11

ing data about every function call in
your program: not only who called
whom, but how many times, and how
much time elapsed between the func-
tion call and the return. You find that a
decompression call takes twice as long
as a call to BBiittBBlltt; from the hotspot
analysis, you’d have expected the calls
to take equally long. This can only
mean you’re calling BBiittBBlltt too often.
VTune reveals the extra call, from an
unexpected place. Bingo — another 25
percent speed improvement.

I’m a firm believer in using call-tim-
ing data to crosscheck hotspot data. In
fact, I’ve often instrumented my pro-
jects with function timing calls. Now
that I can use VTune to gather the
same information — more thoroughly
and with better viewing capabilities —
I’ll be retiring that code.

The only downside to call graph pro-
filing is that it affects the performance
of a program. The instrumented calls
are slower to execute, and the extra
code can have adverse effects on the
cache. VTune gives you some basic
choices about which modules to instru-
ment, but I’d really like to see an API
so I could have fine-grained control.
CODE COACHES. VTune now has code
coaches for five languages: C, C++,
Java, Fortran, and assembly. The
coaches are surprisingly skilled. I ran
the C coach on a program with an
obvious bottleneck: a brute-force check
for duplicate strings in a list. The bot-
tleneck is so obvious that a comment
in the source code warns about it and
suggests binary searching as a fix.
VTune not only recognized that the
problem lay with the algorithm, it
offered better advice than the com-
ment, suggesting both binary search-
ing and hashing as solutions.

The assembly coach, which is new in
3.0, looks for assembly-level optimiza-
tions such as instruction scheduling
and partial stall elimination. It won’t
find much that a good optimizing
compiler wouldn’t, but it would be an
excellent learning tool for an assem-
bly-language programmer.
EVENT CHRONOLOGIES. Two new features
that promise more than they deliver
are Processor and OS Chronologies.

Essentially, VTune tracks various events
during the session — processor events,
such as cache misses, or OS events,
such as page swaps (the same ones you
can display in System Monitor) — and
graphs the data over time. Selecting a
time range on the graph opens a new
window illustrating the modules that
were active during that time period.
However, sometimes the window
wouldn’t open. And when the feature
worked, there wasn’t much feedback to
confirm what I was viewing.
CODE AND SYMBOL FORMATS. VTune 3.0
supports C/C++ compilers from
Microsoft, Intel, Inprise, Watcom, and
IBM; Java compilers from Microsoft,
Inprise, and Asymetrix; Delphi, from
Inprise; Microsoft Visual Basic; and
Intel’s Fortran. Most PC games in
development are Windows 98 titles
using one of these compilers (OK,
maybe not the Fortran). Some features
aren’t available with all compilers. In
general, the closer you are to the main-
stream of development, the more fea-
tures are supported.

Alas, VTune won’t be of much help
in speeding up any legacy tools upon
which you may still be relying. I was
able to profile a DOS-extended build
tool running in a DOS box. Unfor-
tunately, I couldn’t get VTune to map
the samples to instructions properly,
and I had to correlate the results
manually. I had even less luck when I

tried to statically analyze an object
module from a ROM BIOS. VTune can
parse COFF object files, but not
Intel’s own OMF.
WRAPPING IT UP. There’s a lot that I
didn’t discuss here, because Intel had
the good sense not to fix what wasn’t
broken. Instead, they fixed all the bugs
that used to frustrate me, added a cou-
ple of features from my wish list, and
made the product a lot easier to use.
This is a mandatory upgrade, and if
you don’t already own the product,
you’re in for a treat.

One important feature remains on
my wish list: an API. I’d like to be
able to write loaders for different
module types, monitors for different
performance events, and filters for dif-
ferent output formats. I’d like to be
able to control VTune’s behavior from
my program. I’d even like a redistrib-
utable run-time module, so I could
write a program that monitored its
own performance.

Company: Intel Corp.
Santa Clara, Calif.
(800) 253-3696
http://developer.intel.co
m/design/perftool/vtcd/

Price: $429 ($169 upgrade
from any previous ver-
sion)

System Requirements:
Windows 95 or 98,
Windows NT 4.0 (SP3) or
NT 5.0 beta 2. Intel
Pentium, 32MB RAM,
50MB disk space. The
event-based sampling
feature requires a
Pentium Pro family
processor.

Pros:

1. Shows performance
information in abundant
detail, by instruction,
module, process, or
processor.

2. New call graph profiling
feature counts, times,
and charts function calls.

3. Code coaches and online
help are excellent teach-
ing tools.

Cons:

1. Needs an API that devel-
opers can use to control
and extend the product.

2. Data in Chronologies
view is hard to correlate
with other views.

3. Limited support for non-
Windows code running
on the Intel architecture.

VTune 3.0:

B I T B L A S T S

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w. g d m a g . c o m

12

Sonic FoundryÕs Acid
by Andrew Boyd

A cid is not, and is not intended
to be, a standard multitrack
audio environment. Unlike

Pro Tools or Cool Edit Pro or even digi-
tal audio sequencers, Acid is completely
focused on building music from loops.
You can’t do much in Acid that you
couldn’t also do in one of these other
environments, but if you find yourself
making music out of looping audio,
you won’t find an easier, faster, or more
fun program in which to do it. And
Acid does offer enough peripheral fea-
tures to make it flexible. It isn’t perfect,
but it is very impressive, and it could as
easily find a place with a complete
novice as with a hardcore professional.
Essentially, this is a product you proba-
bly didn’t know you needed, but that
once you’ve tried, you won’t give up.
USING ACID. Acid isn’t so much about
composing or even editing as it is
about assembly. It accepts sound files
of three basic types (in several formats)
— loops, one-shots, and disk-based —
and gives you a set of specialized tools
with which to piece them together.
Loops and one-shots tend to be short
sounds loaded in RAM (Acid provides a
RAM monitor so you’ll know when
you’ve filled available memory). The
main difference between them is that

one-shots don’t loop — they tend to be
crash cymbals, drum hits, vocal snip-
pets, and so on. Disk-based files are
often larger files that Acid can get off
disk as the project plays. So you might
build a rhythm track out of a bunch of
drum and bass loops, then load in (or
record) a long vocal track to play along
with it. That file would be a disk-based
stream by default. If for some reason
you wanted to load it into RAM, and
had enough available, you could over-
ride the default settings to do just that.

The program presents a screen split
into three adjustable viewing panes: the
Track View, the Track List, and a multi-
function section that can be set to
show an Explorer, an Edit Window, a
Mixer, or Effects plug-in pages. The pri-
mary pane is the Track View — this is
where you put together loops, draw
automation curves (“envelopes” in Acid
parlance), drop markers, and so on.
Though this section looks a lot like a
typical multitrack editing environment,
its function is pretty different. For
instance, a given track can only hold a
single sound. It can be any supported
type and can have as many instances as
you want, but you can’t slip a drum fill
into a space in a drum loop track to
save tracks — the fill will initiate its
own track. The down side is that pro-
jects build up a lot of tracks very quick-
ly and viewing and navigating through
them can become a bit of a chore.

The Track List sits next to the Track
View and provides the name of the file
in the track, an icon to indicate its
type, and some mixing controls (level,
pan, effects sends, output assignment,
solo, and mute). The bottom pane has
a number of modes selectable by stan-
dard Windows-style tabs. Most often I
used it in Explorer mode, where it pro-
vides a standard Windows Explorer
view from which to select loops and
sounds to load into the project.
Another mode allows for “Acidizing” a
loop, which involves adding propri-
etary information, including a root

note for transposition, number of beats
and/or tempo for time scaling, and so
forth. This pane also lets you access a
Mixer application, which presents level
controls for all wave devices installed
in your system (nice — discrete outs
for multiple sound cards). Finally, there
are tabs to select settings for up to
eight DirectX-compatible effects plug-
ins (I used some CFX plug-ins installed
by Cakewalk Pro Audio 6.01).

The first thing that’s noticeable about
using Acid is that it has essentially no
learning curve. If you’ve ever done any-
thing with computer audio before and
have even a basic idea of how looping
works in a musical context, you’ll be
making music in minutes. The program
ships with a number of very usable
loops on its CD (additional Loop
Libraries from Sonic Foundry are about
$60), and these are a great place to
start. Set the bottom pane to Explorer
view and locate the loops on the CD.
As you click on them, they’ll automati-
cally play an audible preview. When
you find one you like, a double-click
will add it to the Track List and create a
track for it in the Track View pane (you
can also drag and drop it into either
pane). Click and drag anywhere in the
Track View with the pencil tool (here’s
one of those really innovative features),
and you’ll draw a perfectly looped and
quantized bit of that sound. Oops,
dragged for five bars instead of four!
Hold the cursor near the end of this
chunk of sound and it becomes a trim-
ming tool. Click and drag back and it
will snap to the next bar (or whatever
quantization resolution to which you’re
currently zoomed). On the next track,
drop another loop that works well with
the first (because tempo and key are
matched automatically, nearly every-
thing sounds good together), draw a
section of it out, and a song is born.
Repeat until done.
WILL COMPOSE FOR FOOD. Of course, if
you really consider yourself a musician
or a composer, there’s a chance Acid
will insult you. Let’s face it: it’s cheat-
ing. Using Acid to compose music is
like sculpting with Legos rather than
clay. One method requires talent, skill,
training, and patience while the

Andrew Boyd has been creating sound for games since 1993. He now runs Audible
Images, a music and sound design house in San Francisco, Calif. He can be reached
at andrew@audibleimages.com.

Excellent Very Good Average PoorBelow Average

h t t p : / / w w w. g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

13

other… well, if you have thumbs to
grasp the pieces, you’re pretty much
on your way. Still, schedules and bud-
gets being what they are for game
sound, you’ve probably found yourself
building pieces entirely out of samples
and loops anyway. Why not make it
easier on yourself? You’ll be able to put
together polished pieces that impress
clients in no time, you’ll own the
license to the music, and you’ll even
have fun. If you know music and
audio, your Acid arrangements will be
the better for it, plus you’ll work faster
and more efficiently.

One potential use for this program in
a serious music environment is as a
writing or practicing tool. Use it as a
super sophisticated drum machine —
get a CD full of drum loops, pick out a
couple that fit the direction you want
to go, and set them to looping. Then
you can play your own parts — say on
a guitar — over the loops until you get
them just right. Want to change the
tempo? Just drag the slider (no process-
ing all the loops and reloading them
into the project or any of that kind of
nonsense). Add a baseline to fill out the
groove and you can easily transpose its
key too. When your jam sounds good,
you can record the guitar part right
into Acid along with the rhythm track,
and then export it as a sound file to
whatever program you use for final
production. Acid doesn’t really have
the features to do a full production, but
as an accessory to a more general tool,
its simplicity and ease of use can free
up time and creative energy.

Which brings me to a few of Acid’s
limitations and shortcomings. For
instance, because each loop gets its own
track, screen real estate becomes very
precious very quickly. The ability to
resize the various viewing panes pro-
vides some flexibility, and there is a
zoom shortcut menu available through
a simple right-click, but the only real
solution is to run in absurdly high reso-
lutions. I tested at 1,024×768, and it
wasn’t nearly enough to get a good view
of the piece being edited. I don’t have a
suggestion for how to show the infor-
mation better, but the way it is now can
get pretty frustrating on a big project.

Also, the mixing function-
ality is too limited. For
instance, while eight effects
sends is pretty generous,
because individual tracks
don’t have even simple EQ
controls, if you want EQ
(and to mix a lot of pre-
made loops well, you will)
you’ll have to start burning
through those sends. Because
the source material is usually
a bunch of little files, it’s
easy and fast enough to pop them into
your wave editor (a single button-
click), EQ them, and reopen them in
Acid. But given the clean, simple
approach of the rest of the program, it
doesn’t seem as though that should be
necessary for so fundamental a process.
PERFORMANCE. Sonic Foundry has obvi-
ously got some real throbbing-brain
types engineering its stuff. Acid’s per-
formance is stunning. My test machine
ran Windows 95 on a not-very-impres-
sive-anymore Pentium 200MMX with
64MB RAM and a Turtle Beach
Pinnacle sound card. Acid was always
quite responsive, even while playing
huge projects with time and pitch scal-
ing and a couple of effects plug-ins
running. Specifically, I noted the fol-
lowing: on a 15-track piece with no
time or pitch modulation and a CFX
two-band EQ on FX1 and a CFX
Reverb on FX2, the program used
about 50 percent of available processor

power, occasionally peaking as high as
70 percent. Enabling some time and
pitch scaling added around 5 to 10
percent to these numbers. But on a
current, fast machine you should run
out of the desire to add loops or effects
before you run out of horsepower.
WHAT A TRIP. When I first heard about
Acid, I thought it seemed like a good
idea, but I really didn’t see the point.
I’ve built plenty of pieces of music out
of licensed loops and samples, and I
have plenty of tools with which do it.
But as I started playing with this tool, I
thought about how many hours of my
life have been sunk into searching
around for that perfect loop at the
right tempo, trying to pitch-adjust all
the loops in a song individually so
they’ll work in the right key, and so
on. Acid does what it does so well, and
is just so much fun to use, that I have
little doubt it will soon be a standard
audio tool. ■

Company: Sonic Foundry
Madison, Wis.
(800) 57 SONIC
http://www.sonic
foundry.com

Price: $399

System Requirements: An
Intel Pentium 133 or
Alpha AXP microproces-
sor, Microsoft Windows
95 or Windows NT 4.0 or
later, a Windows-com-
patible sound card, a
VGA display, a CD-ROM
drive, 32MB RAM, and
5MB hard-disk space for
program installation.

Pros:

1. Very fast and transparent
way to assemble loop-
based productions.

2. An interface so intuitive
it’s actually fun to use.

3. Excellent sounding (and
efficient) real-time pitch
and time scaling algo-
rithms.

4.Ability to utilize discrete
outputs is a nice touch.

Cons:

1. Somewhat inadequate
mixing functionality.

2. Limited built-in wave
editing.

3. Homemade loops require
more fine-tuning than
claims indicate.

4. As fun as it is, it’s a bit
pricey for a toy — make
sure you actually have a
use for it.

Sonic Foundry’s Acid:

b y M e l G u y m o n A R T I S T ’ S V I E W

this is done through the use of color
vertices. Color vertices allow us to give
life to our environments through the
use of light and shadow, and also allow
us to alter the colors of our 3D models
without changing the textures or map-
ping coordinates. Although the tech-
nology for using color vertices has
been around almost as long as we’ve
been rendering polygons, the applica-
tion and widespread use of the tech-
niques has been largely ineffective due
to limited on-screen polygon counts.
This is yet another example of how the
increase in rendering power of today’s
hardware accelerators has an unexpect-
ed side-benefit.

This month we’ll look at three exam-
ples of how to use color vertices to our
advantage, and also talk about the
tools and technology that make these
changes possible.

Terms and Definitions

C OLOR VERTEX. In many real-time 3D
engines, the RGB value of each

vertex is stored right along with the
geometry. In most cases, this value is
normalized to somewhere in the
lighter end of the spectrum (on a scale
from 0 to 255, values of 175, 175, 175,
or about 2/3 the distance between
black and white). If at some point in
the data generation process these val-
ues can be altered, we can add and
adjust the colors in our geometry with-
out spending any of our valuable tex-
ture space.
GENERAL COLOR VERTEX APPLICATION. Color
vertices derive their color through a
combination of up to three basic
processes:
• Color vertices can be modified by

hand, by directly choosing the color
of each vertex

• Color vertices can be procedurally
generated through lighting

• Color vertices can be procedurally
generated through texture sampling.
While there are many capable pro-

grams on the market that support and
allow modification of color vertices,
we’ll only be looking at two, 3D Studio
MAX 2.5 and Softimage 3.8.
VERTEX COLOR LIMITATIONS. The main limi-
tation when working with color ver-
tices is that you need to have a vertex
in order to have vertex color. This com-
mon-sense notion comes into play par-
ticularly when you use color vertices to

add areas of shadow to your environ-
ments. Typically, large flat floors are
made up of a minimum number of
polygons simply for efficiency. Yet, as
Figure 1 shows, trying to use color ver-
tices to represent cast shadows requires
that you have sufficient vertices to add
color. You may find yourself doing
some tesselating in certain areas simply
to get enough vertex resolution.
BASIC COLOR THEORY. There are many
excellent references on this topic, and
it helps to have an idea of what works
before sitting down to add lighting to
a scene. Here are some very general

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

25

Painting With Vertex Colors

Y et another weapon in the arsenal of today’s 3D artists, vertex colors

allow us to get more bang for our pixel buck without spending an iota

of texture space. Most of today’s cutting edge 3D engines support light-

ing of some sort, either dynamic or precalculated, and in many cases,

Mel has worked in the games industry for several years, with past experience
at EIDOS and Zombie. Currently, he is working as the art lead on DRAKAN

(www.surreal.com). Mel can be reached via e-mail at mel@surreal.com.

F I G U R E 1 . When using color vertices to represent cast shadows, you must have a

sufficient number of vertices to add color.

principles to remember when working
with color:
• Colors affect emotion. Reds are hot

and elicit excitement and restless-
ness, while cool blues and warm
greens tend to engender feelings of
happiness and calm.

• Color affects perception. Objects that
are lighter in color appear larger,
especially when placed in dark
spaces. The flip side is true as darker
objects appear smaller.

• Complementary colors contrast. The
boundary between complementary
colors acts as a focal point; choose
yellow lights to highlight areas in a
blue-lit environment, red for cyan,
and so on.

• Color balance is key. Subtle lighting
effects are usually more effective in
setting the mood; try to stick with
two or three colors in each scene.

Environmental Lighting

I n this case, we’ll look at environ-
mental lighting with procedural

color generation through raytraced
lighting. Most 3D engines support
real-time dynamic lighting using sim-
ple point lights in 3D space. These
lights can greatly enhance the mood
of an environment, but can be com-
putationally expensive. In this exam-
ple, we look at how to create a lighted
environment in Softimage without
using any real-time lights.

Although animation is probably
Softimage’s real strength, Softimage
does have a rather robust native mod-
eling and texturing package, as well as
a color vertex utility called
RenderVertexColors. This aptly named
plug-in, found in the Matter module,

allows the user to “bake” the colors
into the vertices based on the material
properties and lighting in the scene.
It’s actually as simple as it sounds; you
select the object whose vertices you

want to color, then you execute the
RenderVertexColors utility. The pro-
gram then renders the object internal-
ly, and determines the color of each
vertex based on the lighting and/or

A R T I S T ’ S V I E W

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

26

F I G U R E 2 . Wireframe-rendered envi-

ronment in Softimage 3.8.

F I G U R E 3 . The wireframe scene after the application of textures and a generic

lighting model.

F I G U R E 4 . The scene was lit using several point lights, and then the lights were

removed, so that the lighting values remain, stored in the vertices.

texturing of the object. The vertex is
then assigned that color, and the data
is hardcoded into the geometry. The
lights can now be removed from the
scene and the geometry exported to
the 3D engine.

In Figure 2, we have a Softimage
wireframe of a scene in a real-time 3D
game. Figure 3 shows this same scene
with a generic lighting model and tex-
tures applied (this is similar to what
we usually see in most 3D engines: a
statically lit world with some areas of
color). Figure 4 shows the result of
lighting the scene with several point
lights, removing those lights, and then
storing the lighting values “in the ver-
tices.” Note that to light this single
scene in real-time with eight to ten
lights would bring most 3D engines to
a shuddering halt, yet we’ve accom-
plished the same result without the
use of a single real-time light.
SUGGESTIONS FOR IMPLEMENTATION. Leave
the lighting alone until the final pass.
Taking the time to get the lighting
right can make the difference between
a really stunning environment and
one that’s just run of the mill. But this

time is often wasted if the geometry
needs to be modified for game play or

polygon-count considerations. Don’t
be afraid to use primary colors. A good

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

27

F I G U R E 5 . Character before the addition of color vertices in 3D Studio MAX 2.5.

lighting scheme is a blend of both
high and low-saturation light sources,
blue/yellow, purple/orange, purple/
green, and blue/red combinations are
all pretty safe.

Procedural coloring routines, such as
the one in this example, are fine for
making macroscopic adjustments to ter-
rain and environments, but what if you
want to do some fine detail work, such
as coloring the vertices on a character?

Hand-Adjusted Color

G enerating color vertices based
upon lighting for characters is

usually not effective. Characters tra-
verse several lighting schemes while
interacting with their environments, so
it’s virtually impossible to find a single
set of color vertices that works for all
cases. We can, however, modify the
color vertices by hand to give highly
detailed results. Coming up with ways
to distinguish between damaged and
healthy characters without blowing a
texture budget can drive a good texture
artist off the deep end. In this example

we’ll look at ways to accomplish the
same effect using 3D Studio MAX’s ver-
tex coloring tool without adding a sin-
gle pixel to the texture budget.

3D Studio MAX’s Assign Vertex
Color utility works in much the same
way as Softimage’s RenderVertex-

Colors. Vertices receive their color data
either from a texture map or from
lights in the scene. We can also modify
the vertex colors by selecting the ver-
tices and assigning the colors directly.
Figures 5 and 6 show a player character
in a “before” and “after” mugshot. To

A R T I S T ’ S V I E W

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

28

F I G U R E 8 . Textured terrain using color vertices.

F I G U R E 6 . Hand-painted color vertices using MAX’s Assign Vertex Color utility.

F I G U R E 7. The two textures that cre-

ate the terrain in Figure 8.

get this same effect using textures, we would need to dupli-
cate the entire set of textures for the face and upper body.
Furthermore, until we get a really good 3D paint tool, the
process of painting blood onto a character is anything but
an exact science; you’ll end up swapping back and forth
between paint programs and 3D programs to get it right.

To achieve this effect using vertex colors literally took
about five minutes. Using MAX’s vertex selection tool, you
simply select the vertices you want to color, and then select
the color you want. The process is fully interactive, and the
result updates in the shaded window as you change the col-
ors. This same method can be used on static objects to create
the illusion of dirt and grime, or to make an object appear
damaged. The only limitation is the number of vertices in the
model, because the resolution of the color vertices is directly
linked to the detail you can achieve.
SUGGESTIONS FOR IMPLEMENTATION. Most engines allow you to
store multiple versions of each object, usually for level of
detail. One way to take advantage of this process is to store
multiple versions with identical vertex counts, but with
differing color vertex sets. And because the storage space
required for 3D geometry is virtually nothing compared to
that required for texture space, it’s possible to get a large
degree of diversity at virtually no expense. The last exam-
ple uses both of the previous techniques, as well as a third
aspect of the color vertex process: baking a texture map
into the geometry.

Large-Scale Terrains

One of the problems encountered by people doing flight-
sims is how to texture map extremely large expanses of

terrain. This is one case where the application and use of color
vertices provides an interesting solution to an otherwise
daunting problem.

Figure 7 shows the two textures that were used to create this
terrain. The first is a simple color gradient and the second is a
tiling noise map. The gradient texture is applied with a hori-
zontal projection, so that vertices of a given height all corre-
spond to the same color. Note the high, uniform vertex densi-
ty in this example — this would probably represent a fairly
highly detailed patch.

Figure 8 shows the fully lit terrain after the application of
color vertices, and the small noise map which serves to pro-
vide the requisite pixel detail. Again, note that there are no
lights in this scene; the lighting information has already been
stored in the color vertices. The final result is pretty impres-
sive, since we only take up around 20K of texture space, and
we get several square miles of detailed terrain in the bargain.
SUGGESTIONS FOR IMPLEMENTATION. Try a combination of all
three processes; bake the lighting and texture values in, and
then go back and adjust areas of interest by hand. Try using
a high-density mesh with a top-down project of a photo-
realistic texture map, then go back with a noise map and
tweak the result.

We’ve just scratched the surface when it comes to ways to
effectively use color vertices, and with our polygon-budgets
continually on the rise, we are sure to see even more.

Special thanks to Melisa Bell, Hugh Jamieson, Hayley
Reed, and Louise Smith. ■

b y O m i d R a h m a t H A R D T A R G E T S

The value of PC game sales through
the various retail channels comes to
about $3 billion. Let’s look at how these
4,200 titles find their way into homes.

Skewed SKUs

A ccording to PC Data, software and
computer stores carry approxi-

mately 1,500 SKUs each (these include
all software — games, applications, utili-
ties, and so on). Direct mail vendors
carry nearly 700 SKUs, and the Wal-
Mart-types carry about 500 software
titles. (Note that CompUSA, with over
twenty thousand square feet of store
space, carries fewer than 6,000 SKUs.)

Compare these numbers to a large
bookstore like Barnes & Noble, which
can carry up to 12,000 book titles at any
one time. Granted, there may only be
one or two copies of some books in
stock, but most titles can sit there on
the shelf quite happily for six months or
more. Unfortunately for us, these condi-
tions don’t apply to software. Software
retail establishments simply don’t have
enough shelf space for all of the titles
the game industry puts out, and this
shortage of “shelf space” is especially
detrimental to independent developers
and self-publishers. (Although, sadly,
since the top ten game titles account for
15 percent of all the game industry’s
revenue, the lack of shelf space might be
a moot point.)

Internet game sales aren’t even a blip
on the radar right now. Many publish-
ers, however, feel that the Internet
could account for as much as 20 percent
of all revenues within the next five
years. Could this be possible? Even if
this prediction pans out, I don’t think
that we will see a jump in the number
of SKUs retailers put before consumers.
The reason is that Internet vendors, like

direct mail vendors, don’t want to stock
a large selection of titles. These firms
want to pitch a product, get the order,
collect the money, and ship it from a
consignment warehouse belonging to a
distributor or publisher. To get 4,200
SKUs out before the public would
require one monster consignment ware-
house, and I doubt that level of coopera-
tion between the various publishers and
distributors will happen anytime soon.

What about taking the Internet to the
next step and making it a delivery vehi-
cle for software as well? Ideally, con-
sumers would embrace the idea of pur-
chasing and downloading a title,
thereby eliminating the box and printed
documentation. But at today’s retail
prices that’s a no-go. Psychologically,
when you pay big money for goods you
want something more substantial than
a three-hour download. Hence, I’m not
enthusiastic about the Internet’s
chances as a fulfillment mechanism.

Segment and Conquer

I ’ve noticed an interesting phenome-
non in the retail sales channel: the

best place to sell game titles is not nec-
essarily the best place to buy game titles.
For example, although a computer store
like CompUSA or Fry’s Electronics may
continue to be the primary source of
sales for PC games by market share (see
Table 1), these types of stores don’t ful-
fill the entire game industry’s needs.
The reason is that computer stores cater
to all computer users, from novice con-
sumers all the way up to large corporate
buyers. With a desire to move volume

hardware, peripherals and software
(and the commensurate margin
squeeze that accompanies this kind of
selling), the computer superstores want
publishers to prominently display their
titles and offer them at low prices to
boot. This is how Broderbund keeps
selling copies of MYST and Print Shop
Deluxe: the titles are easy to recognize,
easy to find, and a nice item to dunk in
the shopping cart as a person walks
down the aisles. Unfortunately, not
every publisher can afford lavish dis-
plays or cut margins enough to succeed
in computer superstores.

Next, let’s examine consumer elec-
tronics stores. These stores, such as Best
Buy and Circuit City, currently sell
tremendous amounts of software.
Recently, though, they have begun to
cut back on their computer products
sections to enlarge their consumer elec-
tronics and appliances sections (which
have fatter margins and are poised for
high growth with the emergence of digi-
tal television products). So I don’t view
stores like Best Buy as a source of growth
for the PC game industry.

Toy stores such as Toys ‘R Us can’t
help the PC game industry much. The
young demographic of the Toys ‘R Us
shopper certainly appeals to publishers
of console games, but not necessarily to
PC games publishers.

A Console Future?

I ’m more optimistic about console
games. Console game publishers are

not too reliant upon the traditional soft-
ware retail channels like CompUSA, and

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

31

Trends in the Sales Channel

T here are many changes happening in software sales channels today. As a

result, the opportunities for game publishers and developers are shifting.

This is especially true for game companies in the PC sector; the large chains

and the big warehouse clubs are eating up the market.

Omid Rahmat works for Doodah Marketing as a copywriter, consultant, tea boy, and
sole employee. He also writes regularly on the computer graphics and entertainment
markets for online and print publications. Contact him at omid@compuserve.com.

H A R D T A R G E T S

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

32

Store Type Name Number of Total Software Sales
Stores ($M)

Consumer Electronics Store Best Buy 285 $3,422.00

Computer Store CompUSA 153 $3,178.00

Office Superstores Office Depot 565 $2,350.00

Consumer Electronics Store Circuit City Stores 493 $1,810.00

Computer Store Computer City 96 $1,375.00

Office Superstores Staples 523 $1,250.00

Office Superstores OfficeMax 713 $1,080.00

Computer Store Micro Center 13 $1,030.00

Department Store Sears, Roebuck 835 $890.00

Warehouse Clubs Sam's Club 444 $728.00

Computer Store Fry's Electronics 16 $705.00

Mass Merchants Wal-Mart Stores 1,700 $700.00

Warehouse Clubs Costco 204 $502.00

Consumer Electronics Store RadioShack 6,906 $341.00

Military Store Army Air Force Exchange 142 $305.00

Software Stores Egghead Computer 86 $280.00

Computer Store PC Warehouse 82 $263.00

Software Stores Electronics Boutique 470 $229.20

Computer Store J&R Computer World 1 $195.00

Consumer Electronics Store Future Shop 27 $194.80

Software Stores Babbage's Etc. 466 $175.00

Consumer Electronics Store Sun TV & Appliances 48 $160.00

Consumer Electronics Store The Good Guys! 76 $140.00

Retail Dealer Computown 5 $140.00

Retail Dealer Creative Computers 8 $126.00

Consumer Electronics Store Nobody Beats the Wiz 49 $125.00

Retail Dealer Computer Renaissance 187 $107.00

Bookstore Barnes & Noble 1,013 $105.00

Consumer Electronics Store Nationwide Computers 4 $95.00

Computer Store CDW Computer Centers 2 $84.00

Toy Store Toys R Us 686 $75.00

Retail Dealer PC Club 15 $73.00

Warehouse Clubs BJ's Wholesale 87 $70.00

Mass Merchants Target Stores 799 $69.00

Computer Store RCS Computer Experience 2 $59.00

Music Stores Musicland 226 $58.00

Consumer Electronics Store P.C. Richard & Son 40 $57.80

Consumer Electronics Store American TV 8 $56.40

Retail Dealer SBI Computer Warehouse 6 $56.00

Retail Dealer Computer Ware 10 $52.00

Computer Store DataVision 1 $50.00

Retail Dealer Lucky Computers 18 $48.00

Retail Dealer Computer Town 7 $46.00

Direct Mail Global DirectMail 2 $25.00

Direct Mail Micro Warehouse NA NA

Direct Mail Insight Enterprises NA NA

Direct Mail PC & Mac Connection NA NA

Direct Mail Multiple Zones NA NA

Direct Mail Damark NA NA

TA B L E 1 . Top retailers by software sales alone (Source: Computer Retail Week).

with Sega, Sony, and Nintendo spend-
ing hundreds of millions of dollars on
Christmas promotions and sales, the
console industry is set for healthy
growth for the next two years.

The onslaught of console marketing
dollars means that direct channels, such
as mail order and Internet sales, have
the most potential for the PC game
industry. The factor damping the
growth of these direct channels is sim-
ply the present industry structure. The
top ten PC game publishers are loathe
to damage their existing distribution
channels, limited or not, by putting too
much emphasis on direct sales. So the
two-tier distribution model (where a big
distributor warehouses products, takes
orders directly from retailers, and ships
these stores their inventory) will not see
any significant changes for some time.

Putting the Squeeze On

W hat we can expect from the
top-ten PC game publishers is

that they will squeeze more out of the
existing distribution channels. These

big publishers have already started to
filter the titles carried by outlets such
as CompUSA and Wal-Mart. These
retailers see the game market as benefi-
cial to their business, but they will
become increasingly stringent about
what products make it to their shelves.
Just look at the way EA and GT
Interactive already control their chan-
nels. The publishing community is
becoming a closed set, a private club
with a waiting list.

The only option available to small
publishers and developers going the
self-publishing route is to circumvent
the whole process – to market directly
to the consumers. It’s analogous to the
situation facing the makers of PC
clones. These firms must market direct-
ly via mail order and the Internet, too.
Some clone vendors may someday
grow up to be the next Dell or
Gateway, but for most that’s a long
way off.

PC game developers have to start
viewing publishers as brand equity in
the channel. If developers want inde-
pendence, they must look for niche
audiences that can be targeted with

direct sales. The losers in this scenario
will be the small retailers who can’t
compete with the superstores or take a
slice of the direct marketing business.

I believe that PC game development
is going to shrink in the next two
years, and be replaced in part by con-
sole development projects. The cost of
goods and sales on games will rise,
while the retail prices will continue to
drop. These big publishers with large
catalogues of titles and economies of
scale will be the firms that flourish. ■

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

33

Top Ten Entertainment Software
Publishers In Computer Retail Channels

1. Cendant

2. Broderbund

3. The Learning Company

4. EA

5. GT Interactive

6. LucasArts Entertainment

7. Microprose

8. Interplay

9. Activision

10. Mindscape

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

RunRun

Graphics programmers are constantly looking

for ways to improve the realism of the

graphics in games. One of the simplest techniques

employed to do this is tex-

ture mapping, and

while texture mapping

does add considerable realism to a scene, it

also adds a number of new problems. The

most obvious visual problems that appear when using

textures in a scene are the aliasing artifacts that are

visible when texture-mapped polygons are some dis-

tance from the viewpoint. If you’re moving rapidly

around your virtual world, these artifacts appear as

flashing or sparkling on the surface of the texture. Or,

if the viewpoint is fixed, the artifacts appear as

unwanted patterns within the texture after it has been

mapped to a polygon. This is clearly visible in Figure

1, where the checkered texture map becomes distort-

ed as its distance from the viewpoint increases.

35

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

Andrew Flavell is yet another out-of-work PhD grad, wondering why he spent all
of those years at school studying graph-theory and Markov models. Questions
regarding the article and job offers can be sent to mipmapping@weta3d.com

Time
MIP-Map
Filtering

Time
MiP-Map
Filtering

b y

A n d r e w

F l a v e l l

Illustration by Robert
Zammarchi

MIP-mapping helps alleviate this problem. The acronym
MIP comes from the Latin phrase multum in parvo, meaning
“many things in a small place.” Researchers at the New York
Institute of Technology adopted this term in 1979 to
describe a technique whereby many pixels are filtered and
compressed into a small place, known as the MIP-map. To
see how MIP-maps improve visual clarity, see Figure 2, in
which MIP-mapping with bilinear filtering has been used to
smooth the texture.

In order to understand what is what’s causing the prob-
lems in the Figure 1, you have to look within the texture-
mapping renderer and understand how the process of sam-
pling the texture maps affects what’s displayed on the
screen. Look at Figure 3A, in which a sine wave is being sam-
pled at a much higher frequency than the wave itself. As you
can see, a fairly good representation of the wave can be
obtained from these samples. However, if the sampling fre-
quency drops to exactly two times the frequency of the
wave, as shown if Figure 3B, then it’s possible that the sam-
pling points will coincide with the zero crossing points of
the sine wave, resulting in no information recovery.
Sampling frequencies of less than twice that of the sine wave
being sampled, as shown in Figure 3C, causes the informa-

tion within the samples to appear as a sine wave of lower fre-
quency than the original. From these figures, we can guess
that for complete recovery of a sampled signal, the sampling
frequency must be at least twice that of the signal being
sampled. This is known as the Nyquist limit. So, from where
does the seemingly magic value of twice the signal being
sampled come? In order to answer, that we’ll have to digress
a bit further and take a stroll into the Fourier domain.

A Stroll in the Fourier Domain

A complete discussion of Fourier theory could take up sev-
eral books by itself, so for those of you who haven’t suf-

fered through a signal-processing course at college, I suggest
that you take a look at the text by Bracewell that’s mentioned
at the end of this article. What follows is a very limited intro-
duction to Fourier transforms and sampling, but it should be
enough to demonstrate how the Nyquist limit is derived.

Figure 4A shows a plot of the function h(t)=sinc2x and a
plot of its Fourier transform, H(f). It’s convenient to think of
H(f) as being in the Fourier (or frequency) domain and of
h(t) as being in the time domain. (If you’re wondering why I

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

36

M I P - M A P P I N G

F I G U R E 1 . Checkerboard with no MIP-mapping.

F I G U R E 2 . Checkerboard with MIP-mapping and bilinear filtering.

chose to use sinc2x for this example, it’s because it has a sim-
ple plot in the frequency domain.) To convert from the time
domain to the frequency domain, the following transform is
applied to h(t):

Eq. 1
In this form of the Fourier transform, f defines the frequen-

cies of the sine waves making up the signal, and tells us
that the exponential term is complex (that is, it has both real
and imaginary parts). The operator ⊃ is often used to denote
“has the Fourier transform,” so we can write h(t)⊃ H(f). Figure
4B shows the train of impulses used for sampling and the
Fourier transform of the impulses. An impulse, denoted as
δ(t), is a theoretical signal that is infinitely brief, infinitely
powerful and has an area of one. An interesting property of
an impulse train with a period of Ts is that its Fourier trans-
form is an impulse train with a period of 1/Ts.

Eq. 2
The effect of sampling h(t) with the sampling function s(t)

is shown in Figure 4C. In the time domain, the sampling can
be thought of as multiplying h(t) by s(t), and in the frequen-
cy domain, it can be thought of as the convolution of H(f)
and S(f).

Eq. 3
Convolution of any two functions f(x) and g(x) is given by

Eq. 4
If the thought of plugging the Fourier transforms of both

h(t) and s(t) into Equation 4 has you wanting to skip to the
current Soapbox article (p.72), just hold on a second — it
isn’t as bad as it looks. The convolution of a single impulse
located at t=t0, with h(t) is just the value of h(t) shifted to
that location.

Eq. 5
We can apply the result of Equation 5 to find the convolu-

tion of H(f) and S(f).

Eq. 6
Equation 6 simply means that the result of the convolu-

tion of H(f) and S(f) is such that H(f) is duplicated at inter-
vals of 1/Ts, as can be seen in Figure 4C. The sinc2x function
is bandlimited (that is, its bandwidth is limited) to fmax, so
the only requirement needed to ensure that there are no
overlapping portions in the spectrum of the sampled signal
is that fs>2fmax, where fs=1/Ts. So, this is from where the
Nyquist limit comes. As you can see in Figure 4D, if the sam-

pling frequency drops below 2fmax, adjacent spectra overlap
at higher frequencies, and these frequencies are then lost in
the resulting signal. However, instead of disappearing com-
pletely, these high-frequency signals reappear at lower fre-
quencies as aliases; this is where the term aliasing originat-
ed. To prevent aliasing from occurring, either the signal
being sampled must be bandlimited to less than 2fs or the
sampling frequency must be set to be higher than 2fmax.

MIP-Mapping Basics

L et’s look at how MIP-mapping helps to reduce aliasing
artifacts in our texture-mapped image. Remember that

texture mapping is designed to increase the realism and
detail in scenes. However, all of the fine details in the tex-
ture maps are effectively-high frequency components and
they are the cause of our aliasing problems. Since we can’t
really modify our sampling frequency (1/∆U and 1/∆V in the
texture-mapping portion of our renderer), we have to filter
the textures to remove the high-frequency details.

Although it would be possible to filter each individual
texel at run time, this would require a significant amount
of effort. To get around this problem, we can use MIP-
maps, which are made up of a series of prefiltered and
prescaled textures. The filtering of the textures either can
be carried out during the startup of your game, or you can

h t s t
T

H
f n
Ts s

() () ⊃ −

∑1

h t t t h u t t u du h t t() −() = () − −() = −()
−∞

∞

∫* δ δ0 0 0

f x g x f u g x u du() () = () −()
−∞

∞

∫*

h t s t H f S f() () ⊃ () ()*

δ δt nT
T

f n
Ts

sn s

−() ⊃ −

=−∞

∞

∑ ∑1

i = −1

H f h t e dti ft() = () −

−∞

∞

∫ 2π

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

37

-1

1

1 2 3 4 5

A.

-1

1

1 2 3 4 5

-1

1

1 2 3 4 5

B.

C.

F I G U R E 3 . Sampling a sine wave with varying sampling

intervals.

prefilter all of your textures during development. Another
alternative with some graphics cards, such as those using
the Nvidia RIVA 128 accelerator, is to have the card auto-
matically generate MIP-maps for you when textures are
uploaded into video memory. Figure 5 illustrates the pyra-
mid-like structure formed by the MIP-map for a 64×64
pixel texture. As you can see in the figure, the level of
detail (LOD) decreases as the MIP-map level increases.
Once textures have been filtered, all you have to do at run
time to achieve basic per-polygon MIP-mapping is to select
the correct MIP-map level (or LOD) for the desired texture
and pass this to the renderer.

Generating MIP-Maps

There are a number of ways to generate MIP-maps. One
option is simply to prebuild them using a graphics process-

ing tool such as Photoshop. The alternative is to generate your
MIP-maps on the fly. Prebuilding MIP-maps requires about 30
percent more storage space for your textures when you ship

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

38

M I P - M A P P I N G

F I G U R E 5 . A MIP-map pyramid.

h (t)

1

-1 1 2-2

s (t)
A.

Ts
h (t) s (t)

h (t) s (t)

B.

C.

D.

H (f)

f
max

H (f) * S (f)

Ts

1

H (f) * S (f)

S (f)

F I G U R E 4 . Fourier analysis of sampling.

your game, but it gives you finer control over their generation
and it lets you add effects and details to different MIP levels.
Regardless of which method you choose, MIP-maps require 30
percent more storage space at run-time than the original tex-
tures, so they can have a significant effect on your game’s
memory requirements.

Let’s begin by generating a MIP-map for an 8-bit texture.
Generating a MIP-map is a fairly simple process and
although there are many possible filtering techniques that
could be applied during MIP-map generation, a standard box
filter usually suffices. The first level of the MIP-map is gener-
ated by taking the raw input texture and copying it directly
into the MIP-map data structure shown in Listing 1. [In the
interest of conserving editorial space, code listings are avail-
able for download from Game Developer’s web site. -Ed.]

Creating the rest of the MIP levels of a texture is an itera-
tive process. Each successive level of the MIP-map is generat-
ed using the preceding, larger, MIP-map level. As each level
of the MIP-map is created, it’s stored consecutively in mem-
ory, and a pointer to the starting memory address of the MIP
level is stored as well, so that the game engine can quickly
access the correct LOD during rendering.

The first step in generating a new pixel value is to calculate
the average color value from the four corresponding pixels in
the preceding level, as shown in Listing 2. As there is a palette
associated with the texture in this example, once the new
color value has been calculated, we need to search the palette

associated with this texture to find the entry that most closely
matches the desired color. This process is shown in Listing 3.
The color search process is quite simple, but it can be time-
consuming, as we need to search the palette for a color match
for every pixel in each level of the MIP-map. Thankfully, this
step is only required during the initialization of the MIP-map,
so it’s not much of a problem. However, if you want to per-
form other effects during rendering (such as bilinear or trilin-
ear filtering), the search process will be too slow.

In this case, we’ll need to use 16- or 24-bit textures. Because
most graphics cards currently support 16-bit screen depths,
we’ll use 16-bit textures here. The process of building MIP-maps
for 16-bit textures is very similar to that used for 8-bit textures,
as you can see in Listing 4. Because 16-bit textures don’t require
a palette, averaging the color values from the four correspond-
ing pixels in the preceding level directly gives each new pixel
value. One problem that can occur as a result of repeatedly
averaging the color values for each LOD is that the texture map
will become darker at each successive LOD. You can compen-
sate for this effect by adding a small amount to each color com-
ponent at each LOD, but this compensation usually isn’t neces-
sary, as the loss of color during the entire process is very small.

Applying MIP-maps at Run Time

F igure 6 shows some of the problems you can encounter
when selecting which LOD to apply at run time. In the fig-

ure, the rectangular texture that’s mapped onto the triangle in
texture space is transformed into a quadrilateral in screen
space, and the perspective projection of the texture causes the

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

39

V

U

Y

X

Texture Space
Screen space

F I G U R E 6 . Texture distortion after perspective projection.

F I G U R E 7. Texture mapping with incorrect LOD. F I G U R E 8 . Road rendered with per-polygon MIP-mapping.

individual texels to become quadrilaterals of varying sizes. In a
case such as this, where the orientation of a polygon is skewed
in screen space, determining the best LOD to apply to a poly-
gon is especially crucial if you want to produce good visual
results. If the chosen LOD is too high (the texture dimensions
are too large), aliasing will occur in the texture. If the LOD is
too low (the dimensions of the texture are too small), then the
image will appear blurred. For example, the LOD chosen for
the texture in Figure 7 is much too low, as can be seen by the
large texels visible in the inset zoomed image. Many different
methods can be used for LOD selection, all of which have
advantages and disadvantages. The two well-known methods
that we’ll examine here are the selection of the LOD based on
the area of the texture in screen space, and the selection of the
LOD using the projected u and v vectors.

One further point to consider here is that it’s possible that a
different number of texels map to each pixel in screen space.
As a result, correct LOD selection requires calulating the LOD
for each pixel. Calculating which LOD to use can be quite
slow; consequently most software renderers (and quite a few
older hardware accelerators) calculate the LOD on a per-poly-
gon or per-triangle basis. An added advantage of per-polygon
MIP-map selection, especially for software-based renderers, is
that you can use smaller versions of textures for distant (small-
er) polygons, helping to reduce the amount of processor cache
that’s required during texturing operations. However, per-pixel
LOD selection lets you do a number of other things with MIP-
mapping, including point sampling, bilinear filtering within a
single LOD, or trilinear filtering between the two closest LODs.

Per-Polygon MIP-Mapping

P er-polygon MIP-map selection is the least expensive
method from a computational standpoint, becuse you

only do MIP-map selection once per polygon. There are,
however, a couple of drawbacks to this approach. One prob-
lem is that adjacent polygons that share a texture may be
drawn using differing LODs; this will be appear as a disconti-
nuity in the texture when displayed on the screen (this is
called MIP-banding). Figure 8 shows a small amount of MIP-
banding that is occurring due to the use of per-triangle MIP-

mapping. Another problem is that visible popping may
occur as a texture’s LOD is changed due to movement of the
viewpoint (or the polygon).
AREA-BASED LOD SELECTION. Area-based LOD selection comple-
ments per-polygon MIP-mapping techniques. In this
method, you select the LOD by determining the amount of
texture compression that will be applied to the texture in
screen space. To determine the proper texture compression,
you calculate the area of the polygon in screen space and the
area, in texture space, of texture that is mapped onto the
polygon. As shown in Listing 5, you can determine the ratio
of texels to pixels and then determine which LOD to use. The
u and v dimensions of each successive LOD are one-half the
size of the preceding LOD, so each successive LOD has one-
quarter the area of the preceding level. During LOD selection,
we step up one level in the MIP-map pyramid for each multi-
ple of four that the texel area is greater than the pixel area.
For example, if the texel-to-pixel ratio is 3:1, we would select
MIP-map level zero, or, if the texel-to-pixel ratio is 7:1, we
would select MIP-map level one. Once the LOD has been
selected, we can pass a pointer to the correct LOD, along with
the LOD’s dimensions, to our normal texture-mapping rou-
tines. One problem with any approach that uses the project-
ed area of the polygon and the texture area as the basis for
LOD selection is that aliasing will tend to occur whenever a
projected polygon is very thin, due to the anisotropic nature
of the texture compression (that is, the texture is compressed
more in one dimension than the other).

Per-Pixel MIP-Mapping

P er-pixel MIP-mapping offers far better control of LOD
selection than per-polygon MIP-mapping, and it also

permits additional texture filtering — but at some additional
cost. All of the per-pixel methods require storage of the
entire MIP-mapped texture in memory, and adding LOD
selection to the inner loop of a renderer’s texture-mapping
routine can significantly reduce rendering performance.
Fortunately, most of today’s 3D chips support per-pixel MIP-
mapping with bilinear filtering (a few of the latest devices
even support trilinear filtering), so we’ll look at what it takes

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

40

M I P - M A P P I N G

ux = ∂u

∂x

vx = ∂v

∂x

vy = ∂v
∂y

uy = ∂u

∂y

P0 = x,y() P1 = x+1,y()

P2 = x,y +1()

'P u,v()

'P 1

2

ux
2 + vx

2

u
y

2
+ v

y
2

1 Pixel

Screen Space Texture Space

P '

0 =

F I G U R E 9 . A single pixel back-projected into texture space.

to implement sophisticated per-pixel MIP-mapping.
Although we could use area-based LOD selection here also
(we’d need to calculate the texture area underneath each
pixel rather than for the entire polygon), we’ll look at an all-
together more accurate method.
EDGE COMPRESSION-BASED LOD SELECTION. In 1983, Paul Heckbert
probably examined more LOD calculation techniques than
he’d care to remember before he decided that techniques
based on the compression that a texture suffers along the edge
of a pixel seem to work best. Figure 9 shows a single pixel in
screen space and the corresponding parallelogram in texture
space. To prevent aliasing from occurring, we want to select
the LOD based on the maximum compression of an edge in
texture space. This corresponds to the maximum length of a
side in texture space, which is given by Equation 7.

Eq. 7
The values of ux, uy, vx, and vy are given by four partial deriv-

atives. Because we already know how to calculate the u and v
values for any pixel on the screen, we can use this knowledge
to determine the partial derivatives. We know that, given the
u/z, v/z, and 1/z gradients in x and y, and the starting u/z, v/z,
and 1/z values at the screen origin, the u and v values for the
texture at any pixel can be found using Equations 8 and 9.
The notation in Equations 8 through 19 is derived from Chris
Hecker’s series on perspective texture mapping, which can be
found on his web site (see “Acknowledgements” for the URL).

Eq. 8

Eq. 9
We can use these results to find the partial derivatives, as

shown in Equations 10 through 13.

Eq. 10

Eq. 11

Eq. 12

Eq. 13

Where a, b, c, d, e, and f are given by Equations 14
through 19.

Eq. 14

Eq. 15

Eq. 16

Eq. 17

Eq. 18

Eq. 19
An important point to note here is that the numerators of

the partial derivatives ux and vx are functions of y only, and
the numerators of the partial derivatives uy and vy are func-
tions of x only. The values of a, b, c, d, e, and f are calculated
once per polygon, along with the usual texture gradients, as
shown in Listing 6. Finally, the formula for finding the max-
imum edge compression is given by Equation 20.

where

Eq. 20
At first glance, it would seem that we would need to carry

out a square-root function at each pixel. However, if you look
closely, you’ll see that we only need to compute yl once for
the polygon’s range of x values. Furthermore, we only need to
compute xl once per scan line. Listing 7 shows how we pre-
compute the yl values for a polygon’s range of x values during
the normal set-up for texture mapping, and also that we only
calculate xl once per scan line. We also don’t have to worry

x c ay d by

y e ax f bx

l

l

= =() + +()

= =() −()

2 2

2 2

Compression =
1
Z

max x2 l l,y()

f = ∗ ∗dVOverZdY OneOverZ -dOneOverZdY VOverZ0 0

e = ∗ ∗dUOverZdY OneOverZ -dOneOverZdY UOverZ0 0

d = ∗ ∗dVOverZdX OneOverZ -dOneOverZdX VOverZ0 0

c = ∗ ∗dUOverZdX OneOverZ -dOneOverZdX UOverZ0 0

b = ∗ ∗dVOverZdX dOneOverZdY -dOneOverZdX dVOverZdY

a = ∗ ∗dUOverZdX dOneOverZdY -dOneOverZdX dUOverZdY

v
f by

y = ∗ − ∗ =Z dVOverZdY VOverZ dOneOverZdY
Z

+
Z2 2

u
e ay

y = ∗ − ∗ =Z dUOverZdY UOverZ dOneOverZdY
Z

+
Z2 2

v
d by

x = ∗ − ∗ =Z dVOverZdX VOverZ dOneOverZdX
Z

+
Z2 2

u
c ay

x = ∗ − ∗ =Z dUOverZdX UOverZ dOneOverZdX
Z

+
Z2 2

v
x y

x y
= ∗ + ∗ +

∗ + ∗ +

=

dVOverZdX dVOverZdY VOverZ
dOneOverZdX dOneOverZdY OneOverZ

VOverZ

Z

0

0

u
x y

x y
= ∗ + ∗ +

∗ + ∗ +

=

dUOverZdX dUOverZdY UOverZ
dOneOverZdX dOneOverZdY OneOverZ

UOverZ

Z

0

0

max ,u v u vx x y y
2 2 2 2+ +

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

41

F I G U R E 1 0 . Road rendered with per-pixel MIP-mapping

and point sampling.

about the divide required for the denominator, because it’s
already required for standard texture lookup. So the overhead
for the compression calculation within the texture-mapping
inner loop is just two multiplies and a compare. Now that we
know how to calculate the edge compression, let’s apply per-
pixel LOD selection to our texture-mapping routines using
point sampling, bilinear filtering, and trilinear filtering.
POINT-SAMPLED PER-PIXEL MIP-MAPPING. Point sampling is the
simplest form of per-pixel MIP-mapping, and as you can see
in Listing 8, there isn’t much difference between our normal
texture-mapping loop and one that uses point sampling.
Once we’ve found the amount of edge compression for the
current pixel, we need to determine the correct LOD. The raw
compression value ranges from a zero to one, but we need to
scale it by the texture dimensions to get a meaningful height
in our MIP-map pyramid. Once we have the height, we deter-
mine the correct LOD by stepping up one level in the pyra-
mid for each power of two that the height is greater than
one. We then use our fast LOD lookup table to get a pointer
to our texture and access the correct texel as usual. Figure 10
shows the same object that we used to generate Figure 8, but
this time we’re applying point-sampled MIP-mapping. As you
can see in the figure, the main problem with point-sampled
MIP-mapping is that MIP-banding is clearly visible at the
points where transitions between different LODs occur. This
is because adjacent pixels can have different LODs, so a dis-
continuity appears as we switch between LODs.
BILINEARLY FILTERED PER-PIXEL MIP-MAPPING. Bilinear filtering
attempts to further reduce any aliasing errors present in a
scene by averaging the values of the four pixels that are clos-
est to the real u and v texture values for each pixel. As you
can see in Figure 11 and Listing 9, bilinear interpolation can

be implemented using three linear interpolations. We calcu-
late the correct LOD and retrieve the pointer to our texture
in exactly the same way that we did with point sampling.
However, we then retrieve four texture values and apply
bilinear interpolation to each color component to generate
the new pixel value. Figure 12 shows our road after MIP-
mapping and bilinear filtering. Although Figure 12 is an
improvement over Figure 10, you can still make out the
MIP-banding. Nothing has been done to remove the discon-
tinuities that occur when we switch between LODs.
TRILINEARLY FILTERED PER-PIXEL MIP-MAPPING. The current state-of-
the-art for 3D hardware-accelerated MIP-mapping is trilinear
filtering. Trilinear filtering attempts to remove the problems
associated with MIP-banding by smoothly blending between
differing LODs. As you can see in Listing 10, we once again
calculate the correct LOD in exactly the same way that we did
it for point sampling, then retrieve pointers to the calculated
LOD and the next lower LOD (the next level up in the pyra-
mid). Trilinear interpolation is implemented using eight lin-
ear interpolations. We begin by carrying out bilinear interpo-
lation separately for each of the selected LODs, then finish off
by linearly interpolating between the two LODs. As you can
seen in Figure 13, trilinear interpolation does result in a
smooth transition between LODs (though the overall scene
appears somewhat blurred). Unfortunately, this feature comes
at a considerable cost: the straightforward implementation of
trilinearly filtered MIP-mapping presented here requires eight
texture accesses for each pixel and a considerable amount of
computation. Although it’s possible to cut down on the num-
ber of texture look-ups by saving texel values between loop

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

42

M I P - M A P P I N G

T00 T01

T10 T11

U

V

ru

rv

T0 =T00+ ru T10- T00()

T1 =T01 + ru T11- T01()

Tb =T0 + rv T1 - T0()

Tb

T0

T1

F I G U R E 1 1 . Bilinear filtering calculation.

F I G U R E 1 2 . Road rendered with per-pixel MIP-mapping

and bilinear filtering.

F I G U R E 1 3 . Road rendered with per-pixel MIP-mapping

and trilinear filtering.

iterations, the interpolations themselves need to be per-
formed for each loop, so achieving acceptable frame rates
with software-based trilinear filtering is very difficult.

Closing Remarks

W e’ve covered a lot of ground for one article, and
although the output of our renderer using trilinear

MIP-mapping is significantly better than plain old texture
mapping, it still isn’t perfect. The biggest defect remaining
in our filtering is that, as I mentioned earlier, we’ve ignored
the fact that the texture compression is anisotropic. We’re
selecting LODs using the maximum compression along one
edge, but what if there’s a significant difference in the
amount of compression between each edge? In this case, the
LOD selected will be too low for the least compressed edge,

and our scene will appear blurred. You can clearly see this
effect in Figure 14, which is a screen shot from the CHAOSVR
demo that was rendered using a card based on 3Dfx’s
Voodoo2 chipset. This problem will occur with any 3D
accelerator that uses methods similar to the ones that we’ve
developed here for calculating the LOD — not just the
Voodoo2 card that I’m using. Clearly, the next step to
improve rendering accuracy will be to adopt some form of
anisotropic filtering. I’m sure that it won’t be long before
this capability appears on high-end accelerators. ■

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

43

Bracewell, R. N., The Fourier Transform and its applications,

McGraw-Hill Book Co., New York, 1986.

Williams, L., “Pyramidal Parametrics,” Computer Graphics,

vol. 17, no. 3, (Proc. SIGGRAPH 1983).

Heckbert, P., “Texture Mapping Polygons in Perspective,”

NYIT Tech. Memo No. 13, 1983

FF OO RR FF UU RR TT HH EE RR II NN FF OO

Thanks go out to Chris Hecker who kindly allowed me to plug
my MIP-mapping into his texture mapping routines, saving me
a lot of time. Check out Chris’s home page, http://www.d6.com/
users/checker, for more information on texture mapping and
his old columns from Game Developer.

I’d also like to thank Paul Heckbert for taking the trouble to
send me one of the first publications to ever discuss MIP-map-
ping. You can also find a lot of information about texture map-
ping and myriad other graphics techniques on Paul’s home page
http://www.cs.cmu.edu/afs/cs/user/ph/www/index.html.
Finally, I’d like to thank Peter Laufenberg for allowing me to use
a screen shot from Virtually Unlimited’s CHAOSVR demo. You
can find out more about the demo at http://www.virtually3d.com.

Acknowledgements

F I G U R E 1 4 . Screen shot of CHAOSVR rendered using trilinear filtering on a Voodoo2.

objective of a polygon reduction algorithm is to take a high-
detail model with many polygons and generate a version
using fewer polygons that looks reasonably similar to the
original. In addition to talking about what polygon reduc-
tion is and why it is useful, this article explains one method
for achieving it. Before going any further, I suggest you
download my application, BUNNYLOD.EXE, which demon-
strates the technique that I’ll explain. You can find it on the
Game Developer web site.

Motivation

B efore diving into a sexy 3D algorithm, you may be ask-
ing yourself if you really care. After all, there are com-

mercial plug-ins and tools that reduce polygons for you.
Nonetheless, there may be reasons why you want to imple-
ment your own reduction algorithm.
• The results of your polygon-reduction tool may not meet

your specific needs, and you would like to build your own.
• Your current polygon-reduction tool may not produce the

morph information that you require for smooth transi-
tions between different levels of detail.

• You want to automate your production pipeline so that
the artist has to create only one reasonably detailed model,
and the game engine does the rest.

• You’re creating a VRML browser, and you want to provide
a menu option for reducing those huge VRML files placed
on the Web by supercomputer users who didn’t realize the
frame rate would be slower on a home PC.

• Special effects in your game modify the geometry of
objects, bumping up your polygon count and requiring a
method by which your engine can quickly reduce polygon
counts at run time.

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

44

R E D U C T I O NP O L Y G O N

A Simple, Fast,
and Effective
Polygon
Reduction
Algorithm

f you’re a game developer, there’s a good

chance that 3D polygonal models are part

of your daily life and that you’re familiar

with concepts such as polygons per sec-

ond, low-polygon modeling, and levels of

detail. You probably also know that the II
b y S t a n M e l a x

Stan Melax is researching interactive 3D techniques and algo-
rithms for his Ph.D. in computer science at the University of
Alberta. He is also the Director of Technology at Bioware,
where he had worked on SHATTERED STEEL and is now imple-
menting cool stuff for their next 3D titles. He can be contacted
via e-mail at melax@cs.ualberta.ca.

Still not convinced? Figure 1 shows a concrete example of
an instance in which a game engine requires polygon reduc-
tion capabilities.

At Bioware, I implemented real-time Boolean operations
and used them in a game prototype that we developed to
impress our publisher. Players could shoot and blast arbi-
trary chunks out of a solid object wherever they decided to
point the gun. Modifying the game environment where the
bullets impact produces much more stunning results than
the typical “place pipe bomb here” technique, in which the
game world only changes in a predetermined manner.
Unfortunately, repeated use of Boolean operations per-
formed on polygonal objects generates lots of additional tri-
angles, as you can see in Figure 1. Many of these additional
faces are small or splinter triangles that don’t contribute to
the visual quality of the game — they just slow it down. The
situation demanded run-time polygon reduction, so I began
my quest to find an algorithm that would do this efficiently.

Collapsing Edges

R ather than attacking this problem
all by myself, I studied polygon

reduction with some other people at the
University of Alberta Graphics Lab. (It
helps to work with a team in order to fig-
ure out how the different algorithms
work and which technology is appropri-
ate for which task.) A lot of research has
gone into this subject recently, and most
of the better techniques are variations of
the progressive meshes algorithm by H.
Hoppe (see “For Further Info”). These
techniques reduce a model’s complexity
by repeated use of the simple edge col-
lapse operation, shown in Figure 2.

In this operation, two vertices u and v
(the edge uv) are selected and one of

them (u) is “moved” or “collapsed” onto the
other (in this case, v). The following steps
implement this operation:
1. Remove any triangles that have both u and
v as vertices (that is, remove triangles on the
edge uv).
2. Update the remaining triangles that use u as
a vertex to use v instead.
3. Remove vertex u.

This process is repeated until the desired polygon count is
reached. At each step, one vertex, two faces, and three edges
are usually removed. Figure 3 shows a simple example.

Selecting the Next Edge to Collapse

T he trick to producing good low-polygon models is to
select the edge that, when collapsed, will cause the

smallest visual change to the model. Researchers have pro-
posed various methods of determining the “minimal cost”
edge to collapse at each step. Unfortunately, the best meth-
ods are very elaborate (as in, difficult to implement) and
take too long to compute. Motivated to find a way to reduce
polygons during run time in a game, I performed many
experiments and eventually developed a simple and blazing-
ly fast approach for this selection process that generates rea-
sonably good low-polygon models.

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

45F I G U R E 1 . Effect of Boolean operations on polygon count.

Before After

vv
u

F I G U R E 2 . Edge collapse.

Original Final

F I G U R E 3 . Polygon reduction via a sequence of edge collapses.

where Tu is the set of triangles that contain u and Tuv is the set of triangles that contain

both u and v.

cost
n

u,v u v f normal n normal
f Tu Tuv

() = − × − •() ÷{ }{ }∈ ∈
max min . .1 2

E Q U AT I O N 1 . The edge cost formula.

Obviously, it makes sense to get rid
of small details first. Note also that
fewer polygons are needed to represent
nearly coplanar surfaces while areas of
high curvature need more polygons.
Based on these heuristics, we define the
cost of collapsing an edge as the length
of the edge multiplied by a curvature
term. The curvature term for collapsing
an edge uv is determined by comparing
dot products of face normals in order
to find the triangle adjacent to u that
faces furthest away from the other tri-
angles that are along uv. Equation 1
shows the edge cost formula in more
formal notation. The specific details
can also be found in the source code
(which you can dowlnoad from Game
Developer’s web site).

You can see that this algorithm bal-
ances curvature and size when deter-

mining which edge to collapse. Note
that the cost of collapsing vertex u to v
may be different than the cost of col-
lapsing v to u. Furthermore, the formula
is effective for collapsing edges along a
ridge. Although the ridge may be a
sharp angle, it won’t matter if it’s run-
ning orthogonal to the edge. Figure 4
illustrates this concept. Clearly, vertex
B, sitting in the middle of a flat region,
can be collapsed to A or C. Corner ver-
tex C should be left alone. It would be
bad to move vertex A, sitting along the
top ridge, onto interior vertex B.
However, A could be moved (along the
ridge) onto C without affecting the
overall shape of the model.

If you’re implementing your own
reduction algorithm, you may wish to
experiment with this equation in order
to meet your needs. For example, in the

case of an animating mesh, you might
want to develop a formula that will look
at more than just one keyframe when
computing the cost of a potential edge
collapse. If quality is more important to
you than the reduction algorithm’s exe-
cution time, then you should consider
using Hoppe’s energy function. We’ve
added our own extensions to deal with
texture coordinates, vertex normals,
border edges, and surface discontinu-
ities such as texture seams.

Results

T he effectiveness of a polygon
reduction algorithm is best demon-

strated by showing a model before and
after it has been simplified. Most
research papers demonstrate their
results using highly tessellated models
in the neighborhood of 100,000 poly-
gons, reducing them to 10,000 poly-
gons. For 3D games, a more appropri-
ate (and challenging) test of an
algorithm is how it demonstrates its
prowess by generating models that use
only a few hundred polygons.

For instance, Figure 5 shows a bunny
model taken from a VRML file created
by Viewpoint Datalabs. The initial ver-
sion (left) of the model contains 453
vertices and 902 polygons. Reductions
to 200 (center) and 100 (right) vertices
are shown. Hopefully, you’ll agree that
the models look reasonably good given
the number of polygons used in each
image. Figure 6 shows the conse-
quences of not selecting the right edge
to collapse at each step. In this case,
edges were chosen randomly.

After completing animal testing, we
began human clinical trials for the algo-
rithm. Figure 7 shows three versions —
at 4,858; 1,000; and 200 vertices — of a

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

46

P O L Y G O N R E D U C T I O N

B to A

A

AA
A

AAA

B

BB
B

B
BB

C

CCC

CCC

A to B

B to C

Original

C to A

A to C

C to B

F I G U R E 4 . Good and bad edge collapses.

F I G U R E 5 . Bunny model at (left to right) 453, 200, and 100 vertices.

F I G U R E 6 . Random edge selection

(200 vertex version).

female human model made by Bioware.
(From Euler’s formula, we know that the
polygon counts are roughly double these
numbers.) Once again, these images are
shown with flat shading so you can see
the difference in the meshes. When
smooth shading and textures are
applied, the differences are less apparent.

Practical Application

O ur initial goal was modest: we
wanted to find a way to get rid of

a few excess polygons caused by too
many Boolean operation effects.
However, after developing the reduc-
tion algorithm and noticing better-
than-expected results on actual models,
we decided that the technique was
good enough to generate the level of
detail (LOD) models for the game
engine. An improved version of this
basic algorithm has since been incorpo-
rated into Bioware’s 3D graphics
engine, Omen. Now, for many game
objects, our artists only have to create
one detailed model. A preprocessing
step does the polygon reduction. Then,
when the frame rate falls below a prede-
fined threshold or an object is to be
rendered in the distance, a lower poly-
gon version is used instead. Being able
to make these choices at run time
increases the scalability of a game. The
game adapts itself to the horsepower of
the system on which it’s running.

Implementation Details

This algorithm only works with trian-
gles. Nothing is lost by this limita-

tion; polygons with more sides are easily
triangulated if necessary. In fact, many
applications use triangles exclusively.

Most data structures for storing polyg-
onal objects use a list of vertices and a

list of triangles that contain indices into
the vertex list. For example,
VVeeccttoorr vveerrttiicceess[[]];;

ccllaassss TTrriiaannggllee {{

iinntt vv[[33]];; //// iinnddiicceess iinnttoo vveerrtteexx lliisstt

}} ttrriiaanngglleess[[]];;

The IInnddeexxeedd FFaaccee SSeett node data type
used in VRML is another example of
this type of data structure. When two

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

47

F I G U R E 7. Female human model showing 100 percent of the original polygons (left), 20 percent of the original polygons (cen-

ter), and 4 percent of the original polygons (right).

ccllaassss TTrriiaannggllee {{

ppuubblliicc::

VVeerrtteexx ** vveerrtteexx[[33]];; //// tthhee 33 ppooiinnttss tthhaatt mmaakkee tthhiiss ttrrii

VVeeccttoorr nnoorrmmaall;; //// oorrtthhooggoonnaall uunniitt vveeccttoorr

TTrriiaannggllee((VVeerrtteexx **vv00,,VVeerrtteexx **vv11,,VVeerrtteexx **vv22));;

~~TTrriiaannggllee(());;

vvooiidd CCoommppuutteeNNoorrmmaall(());;

vvooiidd RReeppllaacceeVVeerrtteexx((VVeerrtteexx **vvoolldd,,VVeerrtteexx **vvnneeww));;

iinntt HHaassVVeerrtteexx((VVeerrtteexx **vv));;

}};;

ccllaassss VVeerrtteexx {{

ppuubblliicc::

VVeeccttoorr ppoossiittiioonn;; //// llooccaattiioonn ooff tthhiiss ppooiinntt

iinntt iidd;; //// ppllaaccee ooff vveerrtteexx iinn oorriiggiinnaall lliisstt

LLiisstt<<VVeerrtteexx **>> nneeiigghhbboorr;; //// aaddjjaacceenntt vveerrttiicceess

LLiisstt<<TTrriiaannggllee **>> ffaaccee;; //// aaddjjaacceenntt ttrriiaanngglleess

ffllooaatt ccoosstt;; //// ccaacchheedd ccoosstt ooff ccoollllaappssiinngg eeddggee

VVeerrtteexx ** ccoollllaappssee;; //// ccaannddiiddaattee vveerrtteexx ffoorr ccoollllaappssee

VVeerrtteexx((VVeeccttoorr vv,,iinntt __iidd));;

~~VVeerrtteexx(());;

vvooiidd RReemmoovveeIIffNNoonnNNeeiigghhbboorr((VVeerrtteexx **nn));;

}};;

LLiisstt<<VVeerrtteexx **>> vveerrttiicceess;;

LLiisstt<<TTrriiaannggllee **>> ttrriiaanngglleess;;

L I S T I N G 1 . The enhanced data structure.

triangles on an object meet at the
same vertex, they’ll have the same
index (so they share the same entry in
the vertex list).

We’ve enhanced this data structure
as required by our polygon reduction
algorithm. One major improvement is
that we now have access to more infor-
mation than just which vertices each
triangle uses — we also know which tri-
angles each vertex bounds. Further-
more, for each vertex, we have direct
access to its neighboring vertices
(which gives us the edges). Listing 1
shows the enhanced data structure.

Member functions such as
RReeppllaacceeVVeerrtteexx(()) have been added to per-
form edge collapses during polygon
reduction. Consistency of this data must

be maintained as vertices and triangles
are added, deleted, or replaced. The con-
structors, destructors, and member func-
tions contain code to keep things in
order. We cache face normals because
they are frequently used by the edge
selection formula. In order to save us the
effort of recalculating these costs, the
best edge and its cost is cached for each
vertex. The implementation of the
member functions is fairly straightfor-
ward, so I haven’t included it in this arti-
cle. If you’re interested, simply examine
this algorithm’s source code on the
Game Developer web site. Listing 2 con-
tains the code for determining edge costs
and doing the edge collapse operation.

Performing polygon reduction is
easy given these functions. Simply ini-

tialize the vertex and triangle lists with
the object’s geometry, and then do
something like this:
wwhhiillee((vveerrttiicceess..nnuumm >> ddeessiirreedd)) {{

VVeerrtteexx **mmnn == MMiinniimmuummCCoossttEEddggee(());;

CCoollllaappssee((mmnn,,mmnn-->>ccoollllaappssee));;

}}

The demo, BUNNYLOD.EXE, doesn’t
use this simple loop. Instead it creates
an additional data structure for the
animation.

Making Better Use of the Data

R ather than throwing away infor-
mation about triangles and ver-

tices that have been removed, this
information can be preserved so that a

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

48

P O L Y G O N R E D U C T I O N

ffllooaatt CCoommppuutteeEEddggeeCCoollllaappsseeCCoosstt((VVeerrtteexx **uu,,VVeerrtteexx **vv)) {{

//// iiff wwee ccoollllaappssee eeddggee uuvv bbyy mmoovviinngg uu ttoo vv tthheenn hhooww

//// mmuucchh ddiiffffeerreenntt wwiillll tthhee mmooddeell cchhaannggee,, ii..ee.. tthhee ““eerrrroorr””..

ffllooaatt eeddggeelleennggtthh == mmaaggnniittuuddee((vv-->>ppoossiittiioonn -- uu-->>ppoossiittiioonn));;

ffllooaatt ccuurrvvaattuurree==00;;

//// ffiinndd tthhee ““ssiiddeess”” ttrriiaanngglleess tthhaatt aarree oonn tthhee eeddggee uuvv

LLiisstt<<TTrriiaannggllee **>> ssiiddeess;;

ffoorr((ii==00;;ii<<uu-->>ffaaccee..nnuumm;;ii++++)) {{

iiff((uu-->>ffaaccee[[ii]]-->>HHaassVVeerrtteexx((vv)))){{

ssiiddeess..AAdddd((uu-->>ffaaccee[[ii]]));;

}}

}}

//// uussee tthhee ttrriiaannggllee ffaacciinngg mmoosstt aawwaayy ffrroomm tthhee ssiiddeess

//// ttoo ddeetteerrmmiinnee oouurr ccuurrvvaattuurree tteerrmm

ffoorr((ii==00;;ii<<uu-->>ffaaccee..nnuumm;;ii++++)) {{

ffllooaatt mmiinnccuurrvv==11;;

ffoorr((iinntt jj==00;;jj << ssiiddeess..nnuumm;;jj++++)) {{

//// uussee ddoott pprroodduucctt ooff ffaaccee nnoorrmmaallss..

ffllooaatt ddoottpprroodd ==

uu-->>ffaaccee[[ii]]-->>nnoorrmmaall ^̂ ssiiddeess[[jj]]-->>nnoorrmmaall;;

mmiinnccuurrvv == mmiinn((mmiinnccuurrvv,,((11--ddoottpprroodd))//22..00ff));;

}}

ccuurrvvaattuurree == mmaaxx((ccuurrvvaattuurree,,mmiinnccuurrvv));;

}}

rreettuurrnn eeddggeelleennggtthh ** ccuurrvvaattuurree;;

}}

vvooiidd CCoommppuutteeEEddggeeCCoossttAAttVVeerrtteexx((VVeerrtteexx **vv)) {{

iiff((vv-->>nneeiigghhbboorr..nnuumm====00)) {{

vv-->>ccoollllaappssee==NNUULLLL;;

vv-->>ccoosstt==--00..0011ff;;

rreettuurrnn;;

}}

vv-->>ccoosstt == 11000000000000;;

vv-->>ccoollllaappssee==NNUULLLL;;

//// sseeaarrcchh aallll nneeiigghhbboorriinngg eeddggeess ffoorr ““lleeaasstt ccoosstt”” eeddggee

ffoorr((iinntt ii==00;;ii << vv-->>nneeiigghhbboorr..nnuumm;;ii++++)) {{

ffllooaatt cc;;

cc == CCoommppuutteeEEddggeeCCoollllaappsseeCCoosstt((vv,,vv-->>nneeiigghhbboorr[[ii]]));;

iiff((cc << vv-->>ccoosstt)) {{

vv-->>ccoollllaappssee==vv--nneeiigghhbboorr[[ii]];;

vv-->>ccoosstt==cc;;

}}

}}

}}

vvooiidd CCoollllaappssee((VVeerrtteexx **uu,,VVeerrtteexx **vv)){{

//// CCoollllaappssee tthhee eeddggee uuvv bbyy mmoovviinngg vveerrtteexx uu oonnttoo vv

iiff((!!vv)) {{

//// uu iiss aa vveerrtteexx aallll bbyy iittsseellff ssoo jjuusstt ddeelleettee iitt

ddeelleettee uu;;

rreettuurrnn;;

}}

iinntt ii;;

LLiisstt<<VVeerrtteexx **>>ttmmpp;;

//// mmaakkee ttmmpp aa lliisstt ooff aallll tthhee nneeiigghhbboorrss ooff uu

ffoorr((ii==00;;ii<<uu-->>nneeiigghhbboorr..nnuumm;;ii++++)) {{

ttmmpp..AAdddd((uu-->>nneeiigghhbboorr[[ii]]));;

}}

//// ddeelleettee ttrriiaanngglleess oonn eeddggee uuvv::

ffoorr((ii==uu-->>ffaaccee..nnuumm--11;;ii>>==00;;ii——)) {{

iiff((uu-->>ffaaccee[[ii]]-->>HHaassVVeerrtteexx((vv)))) {{

ddeelleettee((uu-->>ffaaccee[[ii]]));;

}}

}}

//// uuppddaattee rreemmaaiinniinngg ttrriiaanngglleess ttoo hhaavvee vv iinnsstteeaadd ooff uu

ffoorr((ii==uu-->>ffaaccee..nnuumm--11;;ii>>==00;;ii——)) {{

uu-->>ffaaccee[[ii]]-->>RReeppllaacceeVVeerrtteexx((uu,,vv));;

}}

ddeelleettee uu;;

//// rreeccoommppuuttee tthhee eeddggee ccoollllaappssee ccoossttss iinn nneeiigghhbboorrhhoooodd

ffoorr((ii==00;;ii<<ttmmpp..nnuumm;;ii++++)) {{

CCoommppuutteeEEddggeeCCoossttAAttVVeerrtteexx((ttmmpp[[ii]]));;

}}

}}

L I S T I N G 2 . Determining the edge costs and performing the edge collapse operation.

model at any specified number of ver-
tices can be retrieved on demand with-
out having to recompute the polygon
reductions. This feature is easily imple-
mented by storing the vertex to which
each vertex is collapsed and sorting the
vertices by the order in which they
were collapsed.

The BUNNYLOD.EXE demo uses this
method. Initially, the bunny is reduced
from 450 to 0 vertices in approximately
one second. Then, as the slider on the
left animates the bunny, the model is
rendered in increasing detail using the
specified number of polygons. Another
way to think of this animation is as a
sequence of models for every number
of vertices between 0 and the number
in original model.

The edge collapse sequence could
also be used for progressive transmis-
sion. Just as interlaced .GIF and .JPG
pictures come over the Web in increas-
ing detail, the vertices of an object can
be broadcast in the reverse order from
which they were collapsed. The receiv-
ing computer can display the model
while it is reconstructed from the
incoming data stream. This is a nice
idea, but it’s probably not relevant for
game developers just yet.

An important component in many
games is the LOD of models. A handful
of models can be selected from the
sequence generated by our algorithm
to represent the object at various LODs.
One problem with swapping models is
that players often notice when this
occurs (the phenomenon known as
“popping”). A solution to the popping
effect is to morph smoothly between
the models. In order to morph between
two models, the vertices of one model
must be mapped onto the other.
Fortunately, this information can be
extracted from the edge collapse
sequence. The BUNNYLOD.EXE demo
also shows an example of morphing.

Alternatives to Edge Collapse
Techniques

P olygon reduction algorithms
aren’t the only way to create a

model with fewer faces. Artists will
always be able to do a better job of rep-
resenting a model using fewer polygons
than any reduction algorithm. One rea-
son is that algorithms have little or no
higher-level understanding of the

model. An artist, on the other hand,
knows the object that he or she is creat-
ing (be it a rabbit, a chair, and so on)
and can make careful aesthetic deci-
sions as he or she manually reduces the
face count. The human visual system is
biased towards certain details, such as
the eyes and mouth, and pays less
attention to other details such as the
collarbone or kneecaps. On the other
hand, our simple algorithm merely
compares a few dot products and edge
lengths, and obviously doesn’t have the
intelligence to place automatically
varying amounts of importance on dif-
ferent pieces to optimize for human
perception. The advantage to using a
polygon reduction algorithm is that it
automates the process.

Another technique for doing LODs
in a game is to represent an object’s
geometry using parametric surface
patches, which are tessellated on the
fly to the desired detail. Shiny’s
MESSIAH engine uses a similar
approach. Certainly, these surface-
based methods are preferable (and
probably optimal too). Figure 8 illus-
trates the advantage using a 2D analo-
gy. An octagon reduced by one edge is
regenerated as a regular heptagon by
the parametric approach. Collapsing an
edge on the octagon produces non-reg-
ular results.

Unfortunately, using curved para-
metric surfaces isn’t always appropri-
ate. Some of the challenges include get-
ting the object into this sort of
representation and being able to gener-
ate polygons at render time so that
adjacent surfaces fit together properly
(without gaps or T-intersections).
Furthermore, jagged objects aren’t
good candidates for use with curved
surface patches because the number of
surfaces would be no less than the
number of polygons required. Polygon-

based reduction methods are more gen-
erally useful, and work with typical
models used these days.

While I hope that this information
and the accompanying demonstration
application that I’ve provided are use-
ful, this article has not touched on
issues such as dealing with texture
coordinates, vertex normals, border
edges, nonmanifold topology, texture
seams, and so on. These subjects have
been left as an exercise for the reader.
Furthermore, many other variations
and enhancements to this algorithm
are worth exploring. One exciting topic
is adaptive simplification, in which dif-
ferent parts of the same mesh are ren-
dered at different levels of detail
according to run-time parameters. This
is especially useful for open terrain
environments so that more detail can
be used near the current viewpoint. ■

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

49

Original Octagon Regenerated from circle
equation using 7 edges

Edge Collapse

F I G U R E 8 . Comparison of techniques.

Polygon reduction has been a hot

research topic lately, and most of the

literature about it can be found in pro-

ceedings from academic computer

graphics conferences. Some more

places you can look:

• Cohen, J., M. Olano, and D.

Manocha. “Appearance-Preserving

Simplification”, SIGGRAPH ‘98.

• Hoppe, H. “Progressive Meshes,”

SIGGRAPH ‘96, pp. 99-108.

• Luebke, D. and C. Erikson. “View-

Dependent Simplification of Arbitrary

Polygonal Environments”, SIGGRAPH

‘97, pp. 199-207.

• I have a demo on my university web

site at http://www.cs.ualberta.ca/

~melax/ polychop

• H. Hoppe, the Guru of polygon

reduction, maintains a web site at

http://research.microsoft.com/~hoppe/

FF OO RR FF UU RR TT HH EE RR II NN FF OO

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

51

F A C I A L A N I M A T I O N

my lumps, I’m in a good position to help you understand
your options and teach you a bit about the process itself.

First, let me say that you’d have to be crazy to try to ani-
mate a face to match a voice. Entire regions of the human
brain are dedicated to recognizing facial patterns and body
language. Hundreds of muscles in a human face move, con-
tract, and slide in and out of one another, mocking our
attempts to duplicate their deceptively simple duties. One
simple mistake can transform your life-like character into an
evil pile of face parts and prompt reactions such as, “Ooh,
that’s disturbing,” from passersby.

It didn’t take much for me to realize why I’d never seen a
convincing realistic 3D head model talking, especially one
composed of only a few hundred polygons. After being
briefly exposed to the technology and noting the queer ges-
tures and difficult timing problems of facial animation, I felt
that the technology simply wasn’t ready.

But if you have to make it work, and we had to make it
work, what can you do? We had a very large script with
many medium and close-up shots, and I had to come up
with a way to animate pages of script spoken and acted out
by low-polygon characters.

Approaches

Y ou can approach facial animation in any one of several
ways; you’ll need to decide early on which way you’d

like to go. Probably the most flexible and powerful of these is
the approach used by Pacific Data Images in the upcoming
DreamWorks film Antz. This solution involves researching all
the muscles of the face and using a huge team of artists and
programmers for a couple of years to develop an animation
system based on the way human facial muscles move and
slide on the skull. You probably don’t want to approach the
problem in this way, however. A more reasonable approach is

Animating
Facial
Expressions

he challenge of capturing the sub-

tleties of facial movement is what

brought me back to motion capture

after a brief but scarring first experience

and, consequently, what compelled me to

write about my trials. Now that I’ve taken

b y J a k e R o d g e r s

Jake Rodgers has earned the prestigious title of “One of many” at
Digital Anvil, and his dream is to art direct the Second Coming.
His first game experience was WING COMMANDER II, VENGEANCE

OF THE KILRATHI, and he has a feeling his career is “about to real-
ly take off.” He can be reached at jake@digitalanvil.com

Im
a

g
e

 c
o

u
rt

e
s

y
 o

f
P

y
ro

s
 P

ic
tu

re
s

.

TT

to use either some form of phoneme tar-
get blending, 2D or 3D motion capture,
or a combination of these. I will explain
each of these methods briefly just in
case you aren’t familiar with them.

Phoneme Blending

W ebster defines phoneme as,
“Any of the abstract units of the

phonetic system of a language that cor-
respond to a set of similar speech
sounds (as the velar \k\ of cool and
the palatal \k\ of keel) which are per-
ceived to be a single distinctive sound
in the language.”

There are many different ways to
blend phonemes in an animated charac-
ter, but the vast majority of software
tools share the same process. The
process involves creating a template of
phonemes, or gestures, then assigning
each of them to specific MIDI channels,
which are in turn controlled by slider
controls. The position of each slider
determines the percentage of that
phoneme’s contribution to the overall

gesture. A channel updates only the ver-
tices of the polygon in the face used
with a particular phoneme’s gesture,
allowing you to mix a frown with a
yawn, or a wink with a smile, and so on.
Plug-ins such as Lambsoft’s Smirk and
Platinum Pictures’ MorphMagic work in
this way. Kaydara’s FiLMBOX has a fea-
ture called Voice Reality that can recog-
nize phonemes from a voice track and
lip-sync the animation for you.

Phoneme blending is a way to make
sure your gestures look correct (assum-
ing that you have a good template of
phonemes) because it allows you to
interactively see the results. You can
then say, for example, “Hmm, it needs
more frown” or “More ‘ooooohh’
please.” Unfortunately, this process
leaves the burden of timing on your
shoulders. Animators may be reading
this and saying to themselves, “No
problem. I’m an animator, after all.”
However, remember that my project
involved a large script that would have
driven even the purest animator nuts
trying to keyframe every sequence
using these kinds of tools.

Phoneme blending is a good solution
if you want the ability to change the
timing of the voice after you’ve ani-
mated the face, if you have quick ani-
mations, if you’re working under a
tight budget, or if you really enjoy
phoneme blending.

2D Facial Capture

Two-dimensional facial capture is a
widely used, efficient way to apply

motion to a character’s face. The hard-
ware typically used for 2D facial cap-
ture is Adaptive Optics Associates’
FaceTrax, Motion Analysis’s Face-
Tracker, and Vierte Art’s Xist. These
products use head-mounted devices
that track markers applied to an actor’s
face, usually using one camera. Two-
dimensional facial capture is a good
method for performance animation
and near-real-time animation.

Another method uses a regular video
camera and a tool such as Techimage’s
Artiface. This tool uses a sophisticated
edge-detection program to track the
movement of the lips (and only the lips)
of a filmed actor. The user then imports
a 3D object, applies some simple muscle
structure to the object to control the
way the mesh is deformed, and then
applies the captured animation.

If your character is going to be look-
ing directly at the camera, and not gen-
erally seen at different angles, 2D cap-
ture might be suitable for your project.
However, this method is limited in that
it really can’t capture subtleties on the
face, and it can’t accurately reproduce
what’s happening in the z axis (which
is very important for smiles).

The other problem with 2D facial cap-
ture is that the head-mounted cameras
can hamper the actor’s natural motion,
and you want him or her to be comfort-
able (especially during lengthy capture
sessions). I’m sure there are lighter units
coming out on the market, but consid-
ering the aforementioned cons and the
particulars of our project, 2D facial cap-
ture was not a good solution for us.

3D Facial Capture

T hree-dimensional facial capture
gives you the most movement

information, including head move-
ment and almost any facial gesture

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

52

F A C I A L A N I M A T I O N

F I G U R E 1 . Lambsoft’s ProMotion lets the user actually draw over the function

curves for markers. This made cleaning up spikes in the data fairly easy.

ProMotion also lets the user apply global filters such as median and average, as

well as a Fix Eulers filter that takes away unwanted flips in rotation data for body

motion capture. ProMotion is very good at taking motion capture data and putting

it on characters whose proportions don’t match the actor. The screenshot is from

a beta release of ProMotion.

your talent can muster. It also gives
you the ability to match up, with rela-
tive ease, any actor’s face with a com-
puter generated character (I’ll explain
this process shortly). Although this
approach also poses the most potential
problems, at least you’re capturing a
great deal of data. With the right mix
of accurate captures and good clean-up
software, you’ll be able to use this data
once you’re back in your office.

One of the known problems of 3D
facial capture is that it’s difficult to
manipulate the geometry of a face once
you’ve applied the motion to it. One
process I’m currently trying to develop
is a hybrid of 3D capture and phoneme
blending. During the capture session,
the face actor is asked to go through the
typical phonemes — frowns, smiles,
and so on — from which we would
construct a base phoneme library. Each
gesture would have a keyframe for each
marker, which could be layered upon
the capture data. Just as with phoneme
blending, we would assign each marker
to a MIDI channel. Now, if we need the
character’s mouth to shut more, we
simply adjust the appropriate sliders,
which in turn moves the markers a cer-
tain percentage of the way towards the
keys we had previously set.

Tools

S everal tools are available to game
developers trying to achieve good

facial animation results. And even
though it might not be a good idea for
someone to stick their neck out and
rant about tools, I did a modest
amount of research on every major
solution I could find.

Right now, I would argue that the
combination of Kinetix’s 3D Studio
MAX, Character Studio, and Lambsoft’s
ProMotion (Figure 1) makes the most
sense on several levels. The most obvi-
ous advantage is cost. Most comparable
packages (such as Alias|Wavefront’s
PowerAnimator or Maya in its impres-
sive, but young form) would have cre-
ated a budget problem for us, especially
considering that our desired result was
a real-time animated object with a low-
polygon count. To us, the tool(s) in
question had bend to the specific needs
of our game engine, yet still have suffi-
cient power and a relatively short
learning curve. MAX had the benefit of

a few years of real customer feedback
and some very useable plug-ins, which
made it the winner for us.

Another noteworthy tool is Sven
Technology’s SurfaceSuite Pro. It’s per-
fect for creating head textures, using
multiple projections on one object
(top, sides, front, back), and masking
projection layers so that you can blend
several photographs (for example, a
front view, a side view, and so on)
seamlessly onto a head (Figure 2).
SurfaceSuite then uses its own renderer
to create a single, seamless cylindrical
texture for real-time export, asking
only that you define the resolution.

Process

T he preproduction stage is critical to
a project, particularly if you’re

going to employ a nascent technology
such as facial motion capture. Figure 3
illustrates our development process
workflow for everything relating to
facial animation, from concept to game
engine. Note that everything sprouted
from the script and storyboards. A little
inspirational art before that stage is
helpful, but in our company, no true
production is allowed until the produc-

er signs off on concepts, scripts, and
storyboards. (Of course, in practice,
we’ve never strictly adhered to this
rule. But you must agree it is a wonder-
ful model to which to aspire.)

Getting Started

O nce you have a good script and
your characters have been fleshed

out visually, the next step is to get
voice talent. For a number of reasons,
it’s likely that the voice actor and the
face model won’t be the same person.
In this case, it’s best to get the audio
recording out of the way first, and let
the facial actor synchronize his or her
gestures to the prerecorded voices dur-
ing the motion capture session — in
other words, lip sync. If possible, find
someone who’s done facial motion
capture before, and knows exactly
what’s expected. Directing the talent to
over-exaggerate all motions, including
eyebrow activity, worked well for us.
Overacted movements are much easier
to remove, modify, or subdue than try-
ing to exaggerate a subtle performance.

Because one group of people will
produce the audio and another team
will work on the motion capture data,

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

53

F I G U R E 2 . This head was created to get a low polygon count (about 700) and to

limit anomalies when animating. Kelcey Privett created the texture using three

photos and SurfaceSuite. There are few things more frustrating than a face that

almost works.

make sure you chop up the script into
small pieces. The captures should be
short enough that the talent can easily
perform sections in one or two takes,
but not so short that you have millions
of individual captures (note that some
motion capture studios charge by the
capture). One or two sentences per cap-
ture seems to be a good rule of thumb.

A good optical motion capture sys-
tem — such as Motion Analysis’s sys-
tem — lets you trigger a capture from a
.WAV file. For example, after we break
up the script into separate audio files,
we add three audible beeps one second
apart before the voice recording. The
third beep is at 500Hz, which activates
the motion capture. Another 500Hz
beep is played after the actor stops talk-
ing, automatically stopping the capture
session. These beeps help the actor
practice ahead of time, and once you
get the data back, the audio is already
matched up to your capture. This

method saves huge amounts of time
later on trying to synchronize the
audio with the motion capture data.

I recommend that you send your face
actor the script and audio tracks as early
as possible. It really helps to have some
kind of description of the characters you
want them to portray. One of our actors
wanted to know a lot about the charac-
ters beforehand. Initially, I felt that this
person was just being diffi-
cult. I thought that giving the
actor the voice track would
suffice. Now that I’ve had a
chance to look at the motion
capture data, I understand a
little more about the sub-
tleties that can make a gesture
either look believable or total-
ly disturbing. In fact, now I’d
even recommend videotaping
the voice actor’s recording
sessions so the face actor can
review them.

Make Your Face

A dding detail where it’s most need-
ed is essential for animating.

Before you create the face mesh, con-
sider how your character will animate.
This advice may sound completely
obvious, but it’s important to add
nonetheless. The fundamental thing to
remember is to check all the
phonemes, emotions, and proper
blinking against your model (Figure 4).
One good way to do this is have a face
calibration motion capture file, which
consists of your face actor going
through a series of phonemes and
extreme facial positions, so you can see
where your face needs editing. Ideally,
in the near future we’ll be using patch-
es to animate faces smoothly and to do
automatic levels of detail. Don’t count
on your first low-detail head to work
with the captures you get; the initial
calibration is more of a test-and-see-
what-works kind of process.

Put the Motion on Your Skeleton

I t would be nice if there were a very
simple way to deform your low-reso-

lution mesh, but there isn’t. Many tools
out there help the process, but complica-
tions always arise. We faced a number of
challenges when we tried to apply our
motion capture data to our geometry.

First, it became obvious to us was
that no matter how hard the actor
tried, the starting position for each
capture was not constant. Luckily, I
was working closely with Jeff
Thingvold, chief scientist at Lambsoft,
and he came up with a way to create a
basis file that allowed us to base a series
of animations on a given start frame.
As long as the markers start in pretty
much the same spot, they will work.

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

54

F A C I A L A N I M A T I O N

F I G U R E 4 . Checking the phonemes to make sure

the face will hold up.

Script/
Storyboards

Voice talent
Final Audio

Body Mocap

Face Mocap

Character
Concept
Sketches

Character Bodies
Ready to deform

Character Heads
Ready to deform

Generic
Conversation

Fidgets

Generic Room
Fidgets

Game/Scripting
Engine

TWEAK
DEPT.

Cleanup

Cleanup

Cleanup

Supervisor
Audio Director
Choreographer/Director
Mocap Studio
Modelers/Texturers

Key

F I G U R E 3 . Sample workflow.

The flip side to having complete 3D
data from a capture is that you need a
way to separate out the whole head’s
motion from the just facial expres-
sions. ProMotion can compare the
positions of the markers and subtract
the motion that all markers have in
common so that only the relative face
motion remains. Later, you can take
this whole head motion and apply it to
your neck bone separately.

We had a problem with head shapes.
The game characters had differently
shaped heads, and none of them resem-
bled the shape of our face actor’s head.
To remedy this discrepancy, we came up
with a bone structure that matched our
actor’s face and linked it to the markers,
rather than using the markers them-
selves to deform the mesh (Figure 5).
Thus, for each head, we just moved the
bones to match the face, regardless of
the polygon count. As a side benefit, we
were able to assign to the markers vary-
ing amounts of influence over the
bones. For example, some of the motion
capture files had a little too much eye-
brow motion. To fix this, I wrote expres-
sions for the eyebrow bones that scaled
back their movement to a percentage of
their respective markers’ motions. Here
are some other problems that we faced:
EYES. Obviously, we couldn’t place any
markers on the face actor’s eyelids or
eyes. Nonetheless, we found that creat-
ing eye blinks was straightforward once
we got the timing right. Later in devel-
opment, we arrayed and moved blink
keys to more natural positions.

The eyes themselves can be difficult
to create at first. Try creating a half
sphere, set the pivot point just a little in
front of the center, then assign a “look
at” (how appropriate) controller to the
eyes. Another trick that’s helpful is to
create an invisible target object in the
scene a few feet in front of the head,
and force the character’s eyes to track it.
Once you take the creepiness out of
your character’s look, it’s extremely easy
to adjust where the character looks by
simply moving the target object around.
JAW. The jaw is easily deformed by
defining bones that are the length of
the jaw bone. Their pivot points
should be where a jaw’s joint actually
is (directly below the ears), with expres-
sions or controllers that point them
towards the chin.
MOUTH. We had problems moving the
mouth; the face model would tear in

between the bones.
We solved the prob-
lem by creating
longer bones and
setting their pivot
points close to the
corners of the
mouth. Next, we
assigned a “look at”
expression to the
the next closest
bone to the center
of the lip. This struc-
ture assured a
smooth continuity
between the bones and prevented the
geometry of the mouth from tearing —
even in extreme circumstances.

It’s Not in the Game Yet

W e spent most of our time clean-
ing up the motion capture data

and applying it to the geometry. At this
stage, you’ll find out how well you
planned. The clean-up and application
of data requires a few people (affection-
ately called the Tweak Department in
Figure 3), who are typically animators.
These individuals need a very high
threshold for pain. Tweaking anima-
tion data isn’t the most glorious job,
but it is a very necessary production
step that requires hard work.

If you’ve never worked with facial
motion capture before, I suggest con-
ducting the following test. First, go to a
motion capture studio and spend a day
capturing facial animations. Have your
team clean up the data and apply it to
your skeleton. See how well the data
deforms the face, and then put it all
into your game engine. Document how
long each step takes and how much it
costs. This practice will give you
(and/or your boss) an idea of how the
process works and what it involves.

This Is Not a Postmortem

I t’s difficult to figure out a reason-
able solution for facial motion cap-

ture. After attending several SIGGRAPH
talks earlier this year on the subject, I
suspect that many left more confused
than when they arrived. Furthermore,
as you research the pros and cons of
motion capture, almost invariably the
bulk of your information comes from

someone attempting to sell you some
very expensive hardware or software.
The hardware people will try to con-
vince you that you need to spend big
bucks on a new optical system, when
all you need are some generic motions
that you could buy from House of
Moves. On the other hand, motion
capture studios aren’t always clear
about their pricing schemes.

The bottom line is that regardless of
the amazing hardware and software
you use, everything rides on your
actor’s abilities. The acting is what the
audience sees. You don’t want to spend
any time covering up bad acting —
make sure the moves are right before
the reflectors leave the face. Today, of
course, the tools affect the outcome of
a motion capture shoot, and I look for-
ward to the day when the actors are in
charge and the motion capture tools
are an afterthought. ■

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

55

F I G U R E 5 . The markers on the face, the bone structure at

a neutral pose, and the combination of the bones and

markers.

Lambsoft
http://www.lambsoft.com

Platinum Pictures
http://www.platinumpictures.com

Kaydara
http://www.kaydara.com

Adaptive Optics Associates
http://www.aoainc.com

Motion Analysis
http://www.motionanalysis.com

Vierte Art
http://www.vierte-art.com

Techimage
http://www.techimage.co.il

Sven Technology
http://www.sven-tech.com

FF OO RR FF UU RR TT HH EE RR II NN FF OO

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

56
ANITARIUM is an original adventure game filled

with madness, delusion, and personal anguish. The

same can be said for the development cycle.

SANITARIUM was developed by DreamForge

Intertainment Inc., set in the heart of

Greensburg, Pennsylvania. DreamForge employs about

45 people working on three to four projects at a time. We had

previously developed an adventure game entitled CHRONOMASTER, and

our staff has a strong background in the development of computer

RPGs. SANITARIUM was a landmark game for us, primarily because the

project originated in-house,

and we had so much of our-

selves invested in it.

b y C h r i s P a s e t t o

SS
DreamForgeÕs
SANITARIUM

P O S T M O R T E M

Chris Pasetto is the co-writer of SANITARIUM. He can be found at your neighborhood bar, wearing a kimono
made out of a Dukes of Hazzard bedsheet and repeatedly screaming, “These are not my pants!” He can nei-
ther walk nor chew gum. He can be reached via e-mail at chrisp@dreamforge.com.

57

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

The Designers’ Tale

S ANITARIUM was born of a simple desire to create some-
thing special, something different. About two years ago,

a few of us at DreamForge were feeling burnt out. We were
tired of bandwagon games, eager for a fresh concept that we
could dig into with enthusiasm. Most important, we wanted
to make a fun game with substance and soul.

So, over some lukewarm cheeseburgers, Chris Straka
(Director of Creative Development) asked Chad Freeman
(Lead Programmer), Jason Johnson (3D Art Coordinator),
Mike Nicholson (Lead Art and Design), Eric Rice (Art
Director), and Tracy Smith (Post-Production Art
Coordinator) what games they liked and why. Ideas were
offered, counter-ideas brought forth, cheeseburgers grew
cold and at times were nibbled upon. We discussed other
forms of entertainment that would pertain to the game we
wanted to make. Movies such as Jacob’s Ladder, Seven, and 12
Monkeys were mentioned repeatedly, television shows such
as The Outer Limits and the original Twilight Zone episodes
were discussed. At a certain point in the discussion, it
became clear that we wanted to make an adventure game.

However, predictably, each of us had his own ideas of
what the game should be about. Once the sound of human
heads cracking together reached a deafening pitch, Chris
Straka suggested that we make a game incorporating all of
the ideas. He drew a crude wheel on a piece of paper, with a
central hub and spokes radiating outward. The spokes would
eventually become the diverse worlds within the game. The
hub, that all-important plot framework that linked those
worlds, had yet to be decided upon. Soon we realized that
those separate ideas could be played out as psychotic
episodes seen through the eyes of a mentally disturbed char-
acter. From that point on, the project was code-named
Asylum. This would have been the game title, but we later
discovered that the name was in use elsewhere. Hence the
game was called SANITARIUM.

Once the design process started in earnest, we had
SANITARIUM on the brain twenty-four hours a day. Each of us
put a lot of fist-clenching, heart-soaring, spleen-churning
effort into the project. It was a rewarding process for us,
because most members of the team were new to the design
experience. Sometimes at the end of the day, loose ends
remained — questions regarding some story element or
problems with the configuration of a certain puzzle. Many a
wide-eyed game designer went to bed with visions of gar-
goyles and deformed children dancing around his head.
When morning came, new angles and twists would reveal
themselves like spirited flashers in the dawning sun.

We knew that we were on to something good. Though the
core story was an afterthought in those original design meet-
ings, we were determined to create a main plot line that held
the game together and evoked strong emotions in the play-
er. Working from disparate design notes, Mike Nicholson,
the art and design lead, assumed the monumental task of
scripting the game dialogue and creating the dialogue trees.
As if he’d been suddenly transplanted into a Roger Corman
movie, Mike quickly found himself neck deep in awkward
lines and weak characters. After several days of confusion, he
realized that the problem resided in the game worlds them-
selves. They had no true history, thus making it impossible

to create detailed, realistic dialogues for the worlds’ inhabi-
tants. He went back to the design document and wrote back-
ground stories for each of the worlds, fleshing out the under-
lying themes and character motives, and smoothing over
any inconsistencies. Mike also pushed the Sarah/Max con-
nection and drafted the infamous “death scene.” When he
read his proposal to the design team, three of them nearly
cried. With a concrete story in place, the characters all had
rich backgrounds from which to draw and the same refer-
ence points to which they could refer. Scripting from that
point on became relatively easy.

After Mike put together a rough draft of the script,
DreamForge hired Chris Pasetto as the project’s writer. His
primary responsibility was to refine all character and cine-
matic scripts. As the development process went on, the
scripts became more complex (as we noticed things we’d
missed) then simple (as we tried to streamline the dia-
logues). Eventually, the script files looked like a slaughter-
house — tatters of butchered text casually strewn about like
soggy meat by-products.

To maintain a consistent flow of game play and story,
Chris had to balance the amount of dialogue that occurred

The original SANITARIUM design team: (left to right) Eric

Rice, Jason Johnson, Mike Nicholson, Tracy Smith, Chad

Freeman, Chris Straka, and Scot Noel. (The author is off to

the side, chasing squirrels.)

DreamForge Intertainment Inc.
Greensburg, Penn.
(724) 853-0200
http://www.dreamforge.com

Team Size: 37 men and women who no longer feel any pain
Release date: March 1998
Time in Development: 16 months
Critical tools: 3D Studio MAX, Adobe After Effects, Adobe

Photoshop, Adobe Premiere, Cool Edit Pro, DeBabelizer Pro,
FileMaker Pro, Inprise’s Delphi, Inprise’s Paradox, Microsoft
Project, Microsoft Word, Smacker video codec, Sound Forge,
Strata MediaPaint, Visual C++, Visual SourceSafe.

Target platforms: Windows 95

SANITARIUM

during any one non-player character
interaction with how NPCs were dis-
tributed throughout the levels. During
beta testing, testers complained that
many of the dialogue interactions were
too long and that the keyword-based
interaction trees were sometimes too
complex. In addition, characters could
end up talking about subjects that
seemed strangely out of order, jumping
between disparate topics like a bad
news segment. Since a lot of us here
tend to work that way anyway, we
didn’t find it too confusing.

Travis Williams, our executive pro-
ducer, insisted that we trim some of
the encounters and link many key-
words together to prevent confusion. A
lot of the original dialogue was purely
atmospheric and time-consuming for
the player to wade through in search of
real answers. The final version had an
improved narrative flow and better
pacing through a balance of dialogue
and action.

We were constantly concerned that
the emotional content of the game
would be lost in the medium. Our goal
was to give the player the creeps. We
took the time to think out what we
wanted the player to feel on each level,
what message and mood we wanted to
get across. Our efforts in creating a
cohesive atmosphere included not just
a good storyline, but an immersive
audio experience as well.

SANITARIUM was DreamForge’s first
product to utilize stereo sound. The
point-sourced sound system made for
very natural-sounding effects within
each level. But technology alone
couldn’t make the sound great without
the right people to take advantage of

it. Steve Bennet,
our music and
sound effects
composer for the
project, did some
awesome work
with the sound-
track. Working
from lists gener-
ated by the
design team,
Steve searched a
huge sound CD
library for the
necessary effects.
Then he
processed the

sounds using Cool
Edit Pro and Sound Forge, sometimes
working over a sound effect multiple
times to match the atmosphere of the
level. The moody music he added,
entirely original compositions created
on a Kurzweil keyboard, brought a def-
inite style to the levels that enhanced
the creepy atmosphere.

Nonetheless, the voice acting
should have been better. It’s difficult
to compete with other developers who
have access to name
actors and meet every-
one’s expectations. This
isn’t an excuse, but a sim-
ple matter of economics.
Would we have liked to
have, say, James Earl
Jones for the voice of
Morgan? Of course. But
with 80 NPCs and a limit-
ed budget for voice act-
ing, big-name actors were
an impossibility.

The final hurdle in the
design process came from
our publisher. Late in the
project, during beta test-
ing, ASC Games
approached us with a sig-
nificant design change.
Dave Klein, the president
of ASC Games, was whole-
heartedly behind the pro-
ject and loved our game.
But… “Could you make it
easier to play?” He
explained that ASC
Games wanted SANITARIUM

to have mass-market
appeal and to be accessi-
ble to everyone, not just
adventure game players.

Our faces turned Barney-purple with
indignation. We felt that such a move
would both compromise the game’s
sophistication and seriously jeopar-
dize our completion of the project.
We were a few weeks away from the
final ship date and being asked to
undergo a major revision of our basic
approach to the game design. Also, we
were stubborn.

Travis Williams came out to discuss
what could be done and what couldn’t
be done in a reasonable amount of
time. Our original approach to game
play could be summed up as, “You’re
an adventure gamer. Figure it out.”
This new way of thinking forced us to
ask hard questions, such as, “Where in
the game is this information conveyed
to the player?” In many cases, it sim-
ply wasn’t. This led to a lot of easy
fixes — having the main character
utter a strategically placed bit of dia-
logue or even altering existing dia-
logue to help the player make puzzle
connections. When this couldn’t be
done without a metric ton of con-
trivance, we adjusted the puzzles to be
more user-friendly.

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

58

P O S T M O R T E M

Admittedly, the changes made
SANITARIUM focus more on entertain-
ment than frustration. Players aren’t
perpetually stuck on difficult puzzles,
so they participate in the story at a
consistent pace and are able to enjoy it.
Even the hardcore adventure game
players that we initially targeted were
satisfied by the balance of puzzle diffi-
culty and richness of story.

The Artists’ Tale

F or all the designers’ concentration
on SANITARIUM’s story, many of the

game elements were conceived in artis-
tic terms. We knew that the visual
atmosphere of the game would be
extremely important to the game play.
The art conveyed the emotions that
the player would feel, as well as the
player character’s state of mind.
Because it’s all about emotions and
states of mind, SANITARIUM is a very art-
intensive game. Thus, early in the
process, the design team spent a lot of
time determining the correct look for
each part of the game.

One of the first things that we did
was to gather reference material. We
went on field trips to cemeteries, took
pictures of St. Vincent’s Cathedral,
and raided local libraries. Eric Rice
even captured a picture of a haunted
gravestone on one of our cemetery
photo shoots.

Back in the office, the heavy-duty
work was getting underway. From con-
cept sketches to full 3D models to
touched-up game art, we strove to

maintain that
disturbing, realis-
tic visual style as
much as possible.

One of the first
hurdles was an
accurate isomet-
ric camera view.
Finding a way to
render six by
four screen
widths of land-
scape from twen-
ty-four view-
points and seam
the shots togeth-
er without any
perspective warp-
ing was daunting. Tracy Smith worked
out the bugs on this one. The final
solution was to pull the cameras back
to what would be the equivalent of
viewing a city block with the Hubble
telescope.

The biggest bottleneck that occurred
during SANITARIUM’s development
came during the post-production of
the art. We call the post-production
department “5D,” not because they
exist on some H.P. Lovecraft penta-
dimensional plane, but because they
work on a combination of 3D and 2D
art. Once materials such as screens,
characters, and animations poured
smoothly out of 3D like good scotch,
they had to go through the 5D twelve-
step program before they would be
ready for programming.

For the game art, Jason Johnson
coordinated DreamForge’s art staff as
they used 3D Studio MAX to make the

designers’ vision a reali-
ty. The artists retouched
the 3D background in
Photoshop, then gener-
ated a temporary
palette. Still barriers
were clipped in true
color, then squeezed
into the temporary
palette; coordinates
were determined. 3D
animations underwent
alterations, retouches,
and special effects as
necessary. The artists
then composited the
animations into the
retouched background.
A final palette was gen-
erated and applied to all

artwork for any given level. It was
tough to create a palette that could
support the massive environments
and all the NPCs. The enormous num-
ber of colors used in the game was a
nightmare for our post-production
team. Using DeBabelizer Pro, these
guys had to reduce entire levels of
true-color renders to less than 230 col-
ors. At that point, the original artists
would walk over and ask, “Hey, what
did you do to my level?” or manage-
ment would say, “Is it gonna look like
that when it’s done?”

The steps continued. Still barriers
in the temporary palette were refor-
matted into the new palette.
Animations were then clipped and
coordinates determined. Free-walking
NPCs were retouched and clipped.
Cursors, icons, and inventory were
retouched and clipped. The player
characters were put into a 24-color
palette, retouched, and clipped. This
was mind-numbing work at times.
Even as brains turned to protein-rich
pudding and limbs lost all feeling, the
game art was taking shape.

All of this took anywhere from 50 to
350 man-hours per level. It was a
demanding set of tasks requiring not
only technical skill but the experience
of having worked on games before and
knowing how to deliver game art to a
programming team in a perfectly
usable form. Problems arose mainly
due to inexperience.

The final look and quality of the lev-
els and animations in SANITARIUM is a
testament to some very determined
artists who stayed late, worked week-
ends, and apologized when they were
too sick to crawl to their desks.

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

59

The Programmers’ Tale

A t first, we planned to convert an
existing adventure game engine.

Initial prototyping showed that this
was about as likely as an Oscar nomi-
nation for Jackie Chan. So, we set out
to create a new engine, re-using exist-
ing source code wherever possible. By
using source code from earlier finished
products, we avoided absolutely all
bug-hunting hassles. Ha ha. That’s a
bald-faced lie. But using proven code
did give us less to worry about — we
knew it had worked at some point.

The basic engine was completed
early in the project cycle, leaving us
plenty of time during the rest of the

project to sprawl in great big chaise
lounges and sip tequila from fishbowls.
Actually, that’s not true either. Once
the basic engine was complete, most of
our time was spent on level building. A
level scripting system based only on
actions, flags, and flow control simpli-
fied the work. The rest of our time
(those hours normally reserved for
basic human functions such as sleep)
was devoted to interaction scripting
and special case programming, includ-
ing blow-up puzzles and action areas.
We had originally planned to create a
blow-up puzzle editor, but time did not
allow it. Reaching into the wiry guts of
the beast, we hand-coded each blow-up
puzzle instead.

Deciding on a
codec for cut scenes
was like clipping a
lion’s toenails. The
first codec we looked
at, True Motion, pro-
vided better visual
quality but lacked
support and ease of
implementation.
The second codec,
Smacker, had just
the opposite traits.
We couldn’t wait
around for some-
body to achieve the
balance of properties
that we needed
because: first, we
didn’t have time;
and second, we did-
n’t know if anyone
would get it right
any time soon. The
final decision came
late in the develop-
ment process: sup-
port and ease of
implementation
won out over visual
quality.

For SANITARIUM’s bug testing, we
entirely divorced ourselves from track-
ing bug reports on paper. Both our in-
house testers and the test team at ASC
Games used FileMaker Pro 4.0 to gener-
ate, sort, and track the status of all
bugs. Because we were both using the
same software, we were able to trade
databases with ease, do proper triage,
compare priorities, and eliminate
duplication. SANITARIUM was
DreamForge’s most thoroughly tested
product to date.

But even with this extensive testing
regimen, the game still shipped with
the infamous “lockout bug” on Level 2.
If the player wandered around the
town long enough and fulfilled certain
conditions, it became impossible to
enter any of the buildings. This was a
big disappointment. In the countless
man-hours of testing between ASC
Games and DreamForge, no one
encountered this bug. Herein lies a
valuable lesson, grasshopper. There is
simply no test group more likely to
find a crash bug than those tens of
thousands of initial buyers.

The Sweet

S ANITARIUM represented a signifi-
cant success for DreamForge in

several areas. Many of these have to do
with our personal sense of accomplish-
ment in making this game, but others
are things we learned along the way.

1.BRING IT ON HOME. As a game that
was designed in-house, an enor-

mous amount of energy and personal
pride went into SANITARIUM. Remember
that this project began as a few guys
hanging out after work saying,
“Wouldn’t it be cool if we made the
game that we would enjoy playing?”
Even after months of work, we weren’t
sure if the game would ever reach the
shelves. As the team’s hard labor began

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

60

P O S T M O R T E M

to bear fruit, the whole company’s
energy and enthusiasm grew, sustain-
ing us through the crunch periods.
That sense of personal ownership in a
product cannot be underestimated. It
defined the experience of SANITARIUM

for us as developers.
Not only that, but our staff offered

us an inexpensive focus group. Fairly
early on in the project, the ideas we
designers had been bouncing off one
another seemed like stale old super-
balls. We needed more outside opin-
ions to give the project perspective.
We invited small clusters of Dream-
Forge employees to join us in the
design room. Like a nightmare ride at
Disney World, we took these groups
through the game puzzle by puzzle,
plot twist by plot twist. Questions and
comments gave us valuable informa-
tion — what looked interesting and
what seemed confusing.

As a result of those walkthroughs, it
became painfully clear that Level 6 of
our design just wasn’t cutting it. It was
as though Al Gore had walked into the
room. People’s eyes glazed over at that
point in the walkthrough; yawns were
abundant. We looked at each other
and said, “This is not good.” So we
asked people, What would be clever,
interesting, and creepy? Bugs seemed
to be the answer. Based on staff input,
the resulting Level 6 of SANITARIUM is
much stronger and enjoyable than our
original design.

2.HOME MOVIES. From the very
beginning of the development

cycle, we wanted to give SANITARIUM a
dark, cinematic feel. In most games,
the cut scenes are treated like a neces-
sary evil or worse — a pageant of plug-
ins du jour meant to dazzle viewers and
draw their attention away from the
game play. We were determined to
establish a style for the cinematic cut
scenes, to make them an integral part
of the game. We especially wanted the

flashback cut scenes to deliver an emo-
tional impact to the viewer, because
they dealt directly with Max’s life, love,
and suffering. To support that idea, we
shot the scenes to mimic the letterbox
look of movies. Our cinematic coordi-
nator, Marty Stoltz, drew upon his
filmmaking background to guide us in
precise cinematic screen direction. Joe
Skivolocke also lent his post-produc-
tion expertise to the effects for all
memory cinematics. A lot of work went
into ensuring correct camera usage and
post-production of cinematic scenes —
especially for the flashback sequences,
which were meant really to touch the
player emotionally.

All cinematics came into the world
as storyboards —
carefully laid out in
Adobe Premiere and
passed on to the
artists. The 3D staff
worked from story-
boards to create raw
.AVIs. Our post-pro-
duction team worked
with these .AVIs,
touching up the
rough edges and
applying special
effects using Adobe
Photoshop, Adobe
After Effects, and
Strata MediaPaint.
Some of the raw .AVI
material had to be
thrown out in the
end (because it didn’t
work, because some-
thing looked wrong,
because one of the
lighting crew mem-
bers was eating a
sandwich in the
background). Still,
our shooting ratio
was about 3:1 (for
every second of cine-

matic material that we used, 3 more
seconds were tossed out) — that’s pret-
ty good when you consider that the
average movie has a 20:1 shooting
ratio. The polished cut scenes that
went into the game were the best
DreamForge had ever produced,
anchored thematically by a unique and
consistent vision.

3.MODULAR FURNITURE. We had all
worked on other games and were

familiar with the potential threat of
cutting levels, puzzles, and whatever
else seemed expendable when the
crunch was on and no amount of
Mountain Dew could keep us going.
From the beginning of the design, we
prepared for such eventualities by

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

61

structuring the game in a modular
fashion. We constructed the game in
portions that would add to game play
and advance the story, but wouldn’t
detract from the game overall if they
were taken out. In the end, we were
able to keep the amputations to a min-
imum. A big combat zone and some
blow-up puzzles took a trip through
the plumbing, but otherwise the cuts
were fairly minor. Modular design at
the start of the project ensured that
the final game would remain true to its
initial vision.

4.HEY, NICE ASSETS. As an experi-
ment, lead programmer Chad

Freeman implemented an asset man-
agement system utilizing a Paradox
database, which centralized all of the
game assets in one place. Tools devel-
oped in Delphi and Visual C++
accessed the assets from this database.
This solution provided several bene-
fits. For one thing, we could easily
analyze the asset data and take appro-
priate actions when total asset size
broke the budget for a level. We could
also view filenames and descriptions
of individual assets. The database sys-
tem let us group assets by levels or by
other criteria. A single game level had
hundreds of art and sound files.
Searching for a particular asset by the
filename alone would have been the
equivalent of finding the fat guy wear-
ing the Star Trek shirt at a sci-fi con-
vention. Naturally, the ability to sort
through assets quickly saved time and
energy.

Because this process was experimen-
tal, we weren’t able to fully exploit the
database system. For example, the pro-
grammers were the only ones who uti-
lized the system during the level-cre-
ation process. However, Chad Freeman
would eventually expand the system so
that artists and sound technicians
could add assets to the database and
level creators could access them direct-
ly from there, eliminating redundant
file storage. In addition, the system
could also store level information,
allowing these same types of reporting,
sorting, and other benefits to be
extended to the levels themselves.
Overall, the development of
SANITARIUM never made full use of
these database management tools. As
game content grows larger and larger
(DVD and beyond), using database
tools for data storage will help develop-
ers more and more.

We also utilized Visual SourceSafe
for the first time during SANITARIUM’s
development. Historically, program-
mers have been beset with the
extremely time-consuming and
tedious job of hand-merging code.
Never again. Like a divine beam of
light shining into our otherwise dank
and shadowy cubicles, SourceSafe
made code merging far easier and
more reliable. SourceSafe also has
other benefits, including the ability to
keep a precise revision history of your
code, so that you can painlessly
retreat from the inevitable “bad
move” programming-wise.

We chose SourceSafe
specifically because it
allowed multiple check-outs;
the structure of our C files
prior to adopting SourceSafe
was such that it was com-
mon for more than one per-
son to be working on a single
file at the same time. Source-
Safe also allows a project to
be branched off, letting one
person work on a demo
while another continues
development of the game.
The projects can later be re-
merged, so that fixes in the
demo can be integrated into
the main source.

5.PROJECT MANAGEMENT FOR

THE INSANE. Using
Microsoft Project and his

own devious tracking tables
prepared in Microsoft Word, project
manager Scot Noel would recalculate
our progress every week to two weeks.
This method accounted for the
progress of every single game element,
from blow-up puzzles to art fixes to
code implementations. GANTT charts
demonstrated the flow of work
between departments and individuals.
These enabled us to respond promptly
to the most critical problems by show-
ing how the late delivery of a particular
asset might throw off the final ship
date by days or weeks.

Critical paths were plotted using
PERT charts in Microsoft Project. Upon
seeing these Daedalean webs of near-
infinite complexity, many of us felt
that Scot had gone, finally and irrevo-
cably, insane. But once we penetrated
the mysteries of the PERT chart, we saw
the value of tracking the sensitive
interdependencies of tasks through
critical paths. As different departments,
or even particular individuals, caught
up with one another or moved ahead
of expected schedules, the critical path
would change. Armed with this knowl-
edge, Scot could walk up to any given
programmer and say, “The critical path
for this game is going right through
you at the moment.”

Such monitoring helped direct the
pressure and motivate the right people,
letting others go home and get a good
night’s sleep. As are all systems, the
PERT charts were imperfect. Some peo-
ple always seemed to be on the critical
path, most notably Chad Freeman, the

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

62

P O S T M O R T E M

game’s lead programmer. All of us here
at DreamForge hope that Chad will be
able to leave the hospital soon. We
already have a respirator set up along-
side his desk.

6.PUBLISHER BUY-IN. Our publisher,
ASC Games, believed in what we

were trying to accomplish and provid-
ed valuable input throughout devel-
opment. They behaved as if they were
buying into our vision rather than just
purchasing it. For the most part, they
took a hands-off approach, and only
required changes that they were con-
vinced would significantly improve
the quality and salability of the game.
Travis Williams, SANITARIUM’s execu-
tive producer, put a lot of heart into
the project — not to mention all the
cool prerelease games and toys he sent
us. We were so grateful, we put his
head in the game.

We were very pleased with ASC
Games’ strong commitment to market-
ing SANITARIUM. The box is a work of
art in itself, and the rule book has
received praise for its strength and sim-
plicity. The magazine ads are impres-
sive and true to the spirit of our game.
One simple act for which the team is
eternally grateful: ASC Games’ market-
ing department didn’t give away the
game plot on the box or in the manual.
It’s always a relief when you don’t see
the central mystery of your game print-
ed in big red letters across the back of
the game box.

The Sour

W hile SANITARIUM represents a
phenomenal success for us here

at DreamForge (both professionally
and personally), there were some
unfortunate stumbling blocks along
the way. We keep telling ourselves:
that which did not kill us has made us
stronger. Never mind the scar tissue.

1.ANIMATIONS. Due to the size of the
game, each character had a limit-

ed number of animation frames. In
many cases, this caused the movement
to look stiff and unnatural. Looking
back on it, we would have preferred
smoother animations with more
angles — especially for the main char-
acter, Max. If we had taken this into
account earlier in the project, we
might have had an opportunity to fix
it. By the time we realized that eight

angles looked a little stiff, it was too
late. The limited angles also caused
problems for players trying to navigate
Max through the levels. He’d often get
stuck on corners, then either walk in
place like some demented mime or
frustrate the player with a litany of,
“Can’t go that way.”

Getting consistent lighting between
the characters’ standard animations
(status quo, walk, use, and so on) and
the specific animations requiring inter-
action with the environment (such as
kicking in the school door) was anoth-
er nightmare. Different artists did these
animations months apart, and this was
a constant battle from beginning to
end. A huge amount of time was spent
fixing things as opposed to advancing
the project.

2.COMBAT ZONES. The action
sequences needed more atten-

tion. They were important for guiding
the pace of the story, but didn’t have
the feel that we were after in the end
product. The original idea behind these
areas was based on one of
DreamForge’s earlier titles, VEIL OF

DARKNESS. It had wonderful combat
areas that helped break up the pacing
between the puzzles. However, in
SANITARIUM, multiple factors forced us
to water down the combat zones or in
some cases cut them altogether. We
had originally planned a large combat
zone for the Hive level of the game.

We’d hoped to make “Grimwall vs. the
Hive” one of the most fun and integral
combat areas, but it was cut from the
game for various reasons.

3.STURM UND DRANG. When you have
a company of forty to fifty peo-

ple, it’s impossible to do anything
without rubbing someone the wrong
way. SANITARIUM was put together by a
design team that in part came together
naturally and in part was hand-picked
by Chris Straka, our head of creative
development. Individual employees
(usually Chris) designed our previous
titles. But we decided that team design
would be the way to go. While team
design has the potential to fracture the
unified vision of a game, the various
team members ultimately complement
each other’s interests and goals, lend-
ing more depth to the game. This is a
nice way of saying, “The team argued a
lot, but came up with better solutions
as a group.”

Difficulties didn’t end there. Once
SANITARIUM became a full-time project,
many staff members complained, “Why
didn’t I get a chance to be on the
design team?” Quite a bit of friction
was generated because people felt as
though they’d been snubbed.
Unfortunately, a design team reaches
critical mass once it has more than six
members. Design teams work in much
the same way as clown cars. Too many
people cramming themselves into the

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

63

design would have certainly brought an
already volatile process to a grinding
halt. At the same time, SANITARIUM’s
personnel power structure created
inequalities between staff members that
were never meant to happen.

DreamForge learned much about
design teams from SANITARIUM, and
we’re having great success with the
design team setup in our current pro-
jects. We’ve taken steps to recognize
people’s desire and initiative, and have
parceled out responsibilities to those
individuals willing to take up leader-

ship positions. Now, rather than say-
ing, “Why wasn’t I included?” every-
one moans, “Why did I get into this?”
It’s great fun.

4.LOAD TIMES.While long level load-
ing times were an accepted

design limitation from the beginning
of the project, a system that could bet-
ter manage memory and allow for
streaming of more data from the CD
could have benefited the game. The
tight schedule left such a system
impossible to pursue. A more sophisti-
cated memory-management scheme

could have allowed for shorter initial
loading times, larger levels, and so on.

5.NEW KIDS IN THE CUBE. SANITARIUM is
a huge game. A lot of people

worked on it, meaning additional
efforts had to be taken to coordinate
and organize everyone’s labor.
Familiarizing people with the vision
of the game from an artistic and
design point of view was a real chal-
lenge. Sometimes, keeping everyone
on the same page seemed to be a
chore, especially as new people came
onto the project.

A lot of time was spent getting peo-
ple to understand the status of the
project and the direction in which it
was headed. A new artist would ask,
“Why am I making this one-eyed
guy?” and we’d say, “Didn’t anyone
tell you?” We made the mistake of
projecting time schedules as if new
hires, following a brief training peri-
od, would be as competent as our
most experienced people. Some of
those experienced people were per-
forming administrative and training
tasks, and thus weren’t producing
much art. Art delivered by our new
people often had problems when it
went to the programmers. This meant
doing things twice, sometimes three
times. Projections and flow charts slid
downhill, taking into account the
flow of asset delivery, identification of
problems, correction of problems, and
re-implementation of assets. Since art
delays were slowing down program-
ming, we tried to use temporary art.
This didn’t work out because creating
useful temporary art for the program-
mers proved to be nearly as time-con-
suming as the real thing. And just to
throw a little cherry on top of the
three-layered cake of delays, we lost
two artists during production.

Even though SANITARIUM had a
longer production time than any pre-
vious DreamForge project, there were
still some things that we would have
liked to tweak or add to make it bet-
ter. As it was, we went through a lot
of crunch periods in order to get
things done on time. The sheer
amount of artwork required for the
game nearly overwhelmed us.
Unfortunately, due to the nature of
the game, delays in artwork had a
snowball effect because the level
implementers needed the actual art-
work in order to set up their levels. ■

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

64

P O S T M O R T E M

NT Workstation may cohabitate with
either Windows 95 or Windows 98, but
have you tried getting Windows 95 and
Windows 98 to live together? Don’t
bother trying — it’s not going to
happen.

So, how can a meager game
developer have access to lots of
operating systems and multiple
test beds on a limited budget?
The answer is: images! There
are several products now
available that will give
you the ability to make a
sector-by-sector image of
a hard drive and/or hard
drive partition. Here are
the two with which I am
most familiar:
•ImageBlaster. A module in

Rapid Deploy by Keylabs’
new spin-off software company,
Altiris (Preferred Product mention in
the 1997 FLA Awards). http://www.
keylabs.com/software/rdeploy/
index.htm.

•Ghost. (Which we recently purchased).
By Symantec. http://www.
symantec.com/sabu/ghost/index.html.
Pricing for these products is based on

a sliding scale that takes into account
their usage, so it’s best to contact the
publisher’s sales team for pricing. These
manufacturers gear their products more
towards the hardware builder who
builds several computers with the exact
same components. However, these
products are a dream-come-true for
quality assurance test labs who need to
maximize their budget dollars in order

to test a wide variety of operating sys-
tems and installation scenarios.

Let’s take the typical game develop-
ment test lab as an example. If they’re
lucky, they have 15 to 20 test
machines. (Hey, I said “lucky.”) They’ve
done their best to amass the widest
variety of hardware components possi-
ble within these 15 to 20 machines. But
with such a relatively small number of
machines, it’s impossible to have every
potential configuration.

In terms of operating systems, a test
lab needs Windows 95, Windows 98,
and Windows NT 4.0. But rebuilding
each system every single time those
operating systems need testing con-
sumes hours and hours of labor time,
and completely obliterates productivi-
ty. (The preceeding list of operating sys-
tems doesn’t even take into account the

imminent release Windows NT 5.0, and
that all games currently in testing
should be tested on the version of that
system as well.)

The biggest obstacle to adopting an
Imaging QA Test Bed System

(IQATBS) that
I’ve heard is “We can’t

afford it.” My answer to that
is “You can’t afford not to!” Take a

look at Tables 1 and 2 (see page 71).
With these estimates, there is one

image for each machine, and room to
add several more images for each
machine at the cost of approximately
$45-$49 per image (including labor,
image licenses, and materials). Now,
where are the savings?

Compare those costs to the testing
time lost by constantly rebuilding sys-
tems to recreate usable test beds with-
out stored images, or the costs of buy-
ing enough hardware to have a separate
machine for each scenario. And don’t
forget that those systems would need to
be rebuilt every time the test bed is
altered by the installation of a new
build. Let’s look at a testing scenario as
an example. It takes place in the same
ten-computer lab, and involves testing
one station with eight operating sys-
tems over the course of one week. We’ll
compare the costs and productivity of
working with rebuilds vs.

Continued on page 71.

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

72

b y J e a n n e C o l l i n sS O A P B O X

Turbo-Charge your Test Lab

L et’s face it, Microsoft may have a corner on the

operating system business, but that doesn’t

mean we have any fewer operating systems or

software configurations to support.

Jeanne Collins is a quality assurance manager at GTE Internetworking. She is some-
times referred to as a “self-proclaimed evangelist for quality assurance in the gaming
industry.” Send her feedback at jeanne@im.gte.com.

S O A P B O X

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

Continued from page 72.

working with images. This scenario is
represented in Table 3.

By comparing the figures in Table 3,
you can see that the cost difference
between rebuilds and images amounts
to a total savings of $306.68 for just
one machine in one single week. If all
machines could be tested with eight
operating systems, the savings would
be $3,066.80 in labor alone for one
week. Using the CD-ROM method
with existing CD-ROM mastering
equipment, just two workstations
nearly pay for the setup expense in a
week. Not to mention the savings
gained by not purchasing duplicate

hardware that will become obsolete in
another month.

These are elementary figures based
on sequential work. When a system is
rebuilt manually, the employee must
sit in front of the machine to be avail-
able to answer installation questions.
With images, employees can start a re-
build and move to the next machine,
and the next, and the next. Also con-
sider the flexibility of building test
beds for each scenario when testing dif-
ferent drivers for the same video card.
The possibilities are endless. Put your
own scenario in here and see if using
the IQATBS method wouldn’t save you
time and money in your labs. ■

Task Unit Cost Total Cost
Network cards for each system $50 each $500

Imaging software license per machine $30 $300

Boot floppies $1 $10

Labor to setup and image ten systems $40 $400

CD-ROM Media $5 $50

Total Setup Cost $1,260

TA B L E 2 . The cost of setting up a CD-based imaging system useing existing CD-

ROM mastering equipment and temporary space on existing network.

OS Tested Time for Cost of Time for Cost of
rebuilds rebuilds images images

Windows 95 Gold 4:00 $40 0:10 $1.67

Windows 95 SR2 4:00 $40 0:10 $1.67

Windows 95 Plus 4:00 $40 0:10 $1.67

Windows 95 SR2 Plus 4:00 $40 0:10 $1.67

Windows 98 Gold 4:00 $40 0:10 $1.67

Windows 98 Plus 4:00 $40 0:10 $1.67

Windows NT 4 4:00 $40 0:10 $1.67

Windows NT 5 BETA 4:00 $40 0:10 $1.67

System Total 32:00 $320 1:20 $13.32

TA B L E 3 . Testing one station with eight operating systems in a week from the

ten-computer lab. A comparison of costs and productivity.

Task Unit Cost Total Cost
9GB+ hard disk space on the LAN $1,000 each $1,000

Network cards for each system $50 each $500

Imaging software license per machine $30 $300

Boot floppies $1 $10

Labor to setup and image ten systems $40 $400

Total Setup Cost $2,210

TA B L E 1 . The cost of setting up a network-based imaging system with ten exist-

ing test machines [labor at $10/hour, imaging software at $300 for ten station

licenses, and all system builds at 4 hours].

	back:

