
NOVEMBER 1997

G A M E D E V E L O P E R M A G A Z I N E

L ike authors, composers, and
other creators of intellectual
property, software develop-
ers derive their living directly

as a result of what they put down on
“paper.” The registration of ideas. And
as such, it is the responsibility of soft-
ware developers to understand the
legal basis which protects their work —
and which can potentially rob them of
their work.

Recently, Dave Perry, president of
Shiny Entertainment (creators of
EARTHWORM JIM and MDK) found himself
the target of possibly unwanted atten-
tion. He caused a minor firestorm after a
recent interview with Robin Ward was
posted on the Video Game Design web
site (http://www.videogamedesign.com/
design/davep2.htm). In the interview,
Dave stated that he intended to patent
the engine technology behind Shiny’s
upcoming MESSIAH title. In his words,
“It is actually the first demonstration of
perfect real-time 3D tessellation/defor-
mation/skin/interpolation/volumetric
lighting running at full speed all at the
same time in just software.” I say the
attention is “possibly” unwanted,
because it’s conceivable that his prima-
ry goal was to stir up some publicity for
himself, his company, and MESSIAH. In
any case, I’ll bite. The situation
reminds us that our code is subject to
intellectual property laws that many
feel work improperly. As such, it’s a
good time to review the conditions
under which software may be patented.

First and foremost, if you have ques-
tions about this subject, run down to
the nearest bookstore and pick up
Stephen Fishman’s Software
Development: A Legal Guide (Nolo Press,
1993). (There’s a second edition that’s
about to come out that I’m definitely
going to buy.) This subject is complicat-
ed and open to much interpretation,
and the more you educate yourself, the
better position you’ll be in to spar with
other developers about the merits (and
otherwise) of the system.

In contrast to software copyrights,
which protect the expression of an idea,
system, or process (but not the idea,
system or process itself), patents go
much further. Patents keep others from

using the idea, system, or process itself,
and this is where the confusion begins.
Many people compare code to words,
and wonder where the government gets
off awarding patents for a sequence of
instructions when it would never do so
for the sequence of words that make up
a book, article, or poem. The difference
comes from the way the instructions
affect hardware and related devices.
Because software is used to control
hardware, it is a method or process, and
therefore subject to patent laws.

Back in the ‘50s, the PTO routinely
rejected patent applications that were
based on algorithms, based on the fact
that they are immutable — they are
“laws of nature.” Now however, soft-
ware patents are issued for techniques
based on algorithms when the software
uses the algorithm to control hardware
in specific, limited ways. In other
words, the algorithm may not be
patentable, but the application that
uses it may be. It’s a fine line the PTO
walks, but that’s the system we have in
place today.

Whether Perry has a patentable tech-
nology is certainly not clear from his
statement above, and it’s unwise for
anyone to dismiss the technology out
of hand without understanding it thor-
oughly. If Shiny’s engine is that differ-
ent and eligible for a patent, and the
company is awarded one, so be it. C’est
la vie, that’s their right.

However, I for one am no proponent
of software patents. I’ve heard my
share of software patent nightmare
stories, and I don’t think it helps the
growth of the industry to spend more
time and money on legal fees. The
more patents are issued, the more
everyone will tiptoe into development,
making sure that their software doesn’t
inadvertently tread on someone’s
patent.

Let’s hope that Perry is not serious
about the patent, and simply desires
more prerelease attention for MESSIAH.
You know the old saying, “there’s no
such thing as bad publicity….” ■

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7

2

P L A NG A M E

A Pox Upon Patents
EDITOR IN CHIEF

MANAGING EDITOR

EDITOR-AT-LARGE

CONTRIBUTING EDITORS

ART DIRECTOR

ADVISORY BOARD

COVER IMAGE

PUBLISHER

ASSOCIATE PUBLISHER

REGIONAL SALES
MANAGER

MARKETING MANAGER

MARKETING GRAPHIC DESIGNER

AD. PRODUCTION COORDINATOR

DIRECTOR OF PRODUCTION

VICE PRESIDENT/CIRCULATION

GROUP CIRCULATION MANAGER

SUBS. MARKETING MANAGER

NEWSSTAND MANAGER

REPRINTS

CEO - MILLER FREEMAN GLOBAL

CHAIRMAN - MILLER FREEMAN INC.

PRESIDENT

SENIOR VICE PRESIDENT/CFO

SENIOR VICE PRESIDENTS

VICE PRESIDENT/PRODUCTION

VICE PRESIDENT/CIRCULATION

SENIOR VICE PRESIDENT/
SYSTEMS AND SOFTWARE

DIVISION

Alex Dunne
adunne@compuserve.com

Tor Berg
tdberg@sirius.com

Chris Hecker
checker@bix.com

Brian Hook
bwh@wksoftware.com

Josh White
josh@vectorg.com

Azriel Hayes
ahayes@mfi.com

Hal Barwood

Noah Falstein

Susan Lee-Merrow

Mark Miller

Real 3D

KoAnn Vikören

Cynthia A. Blair
(415) 905-2210
cblair@mfi.com

Tony Andrade
(415) 905-2156
tandrade@mfi.com

Susan McDonald

Azriel Hayes

Denise Temple

Andrew A. Mickus

Jerry M. Okabe

Mike Poplardo

Claudia Curcio

Eric Alekman

Stella Valdez
(916) 983-6971

Tony Tillin

Marshall W. Freeman

Donald A. Pazour

Warren “Andy” Ambrose

H. Ted Bahr,

Darrell Denny,

David Nussbaum,

Galen A. Poss,

Wini D. Ragus,

Regina Starr Ridley

Andrew A. Mickus

Jerry M. Okabe

Regina Starr Ridley

Miller Freeman
A United News & Media publication

www.gdmag.com

Wal-Mart: Right or Wrong?

T hat was a great editorial in the
September issue. Wal-Mart has

already changed several game titles,
both in terms of packaging and in
terms of content. Monolith's latest
game, BLOOD, had its packaging — as
well as the game itself — altered for
Wal-Mart (to be less bloody), although
the customer could
download a
patch from
Monolith's
site to
bring
back the
full gore.
CARMAGEDDEN

was treated in the
same manner. The "gay-
pride" Easter Egg in SIM

COPTER was also followed by a replace-
ment offer from Maxis.

I recommend subscribing to both
VGA: Video Game Advisor and Computer
Retail Week, as both are written by and
for retailers and distributors. Both give
a very different outlook on the indus-
try from their side. They’ve been hav-
ing similar Wal-Mart/censorship arti-
cles in their coverage, but with the
retail perspective. Frankly, I‘m very
worried for the industry.

Part of this backlash is caused by the
industry's own success. We’re finally
getting computers and games into the
hands of more than 15% of the popula-
tion, and as a result, into the hands of
people who are not all college-educated
white males between the ages of 25-35
who make $30-60k a year. While this is
a good thing, the current distribution
model means that instead of a greater
diversity of products, the more we try
to get a larger piece of the pie, the
more homogeneous our products
become, until we all look like Mario —
or worse, Hollywood — and the only
creative ideas come out of underfunded
"art house" game studios. And "internet
distribution" is not a magic pill to solve
all our problems hitting those niche
markets.

I was most pleased to see that for the
first time ever in this debate, you didn’t
call what Wal-Mart does "censorship."
Most people in the entertainment
industry wave that word like a flag.

J o h n W i l l i a m s o n

W ell, I actually hope that the
integrity of video games is

never sacrificed for shelf space. I don't
know what percentage of the video

game sales market
is controlled

by Wal-
Mart
now,
but I

think
that it’s a

different
market than music. It

would certainly play a strong role
in the development of a game title

if a major game retailer such as Toy's
'R' Us were to start carrying only titles
that it morally approved of. This
industry isn't only about making a
quality game, but also about making
money. Once you sacrifice design and
quality, the buyer suffers.

We as consumers need to support
the little man and deviate from saving
a buck at retail giants such as Wal-
Mart. One person isn't going to make a
difference, of course, but if enough
people say, "To hell with them!" then
they might get the hint that consumers
want more.

D a v i d K r u e g e r

Iread your article on the "Wal-Mart
Effect" and it was right on. Let me

tell you about our personal experience
with this during the development of
SHADOW WARRIOR. It's amazing how
many different content restrictions
exist now, and not just with Wal-Mart
either. It seems that there is always
someone new that has to be pleased if
you expect to see your product on their
shelves, and more are popping up
every day.

Before releasing SHADOW WARRIOR, I
had to maintain three separate versions
of the game. The regular "uncensored"
version, the Wal-Mart version, and the
UK version — this includes those ver-
sions for the shareware release as well!

SHADOW WARRIOR has a parental lock
option that allows parents to simply
toggle a button to remove all the
blood, bad language, and any nudity
or partial nudity that is in the game.
The parents can also password protect
it so that the kids can't turn the option
off without the password. This we did
pre-preemptively and voluntarily as a
standard game feature, and guess

what? It still wasn't good enough for
some people.

For Wal-Mart, I actually had to hard
code the parental lock option to be
permanently stuck on and compiled
into the final executable in order for
the game to be acceptable to them.
There isn't even a parental lock menu
option in the Wal-Mart version since
that is the only version of the game
you can purchase there. If you want
the uncensored version of the game
that you buy at Wal-Mart, you’ll have
to download a special patch from the
3D Realms web site.

O.K. fine, now we have the Wal-Mart
version. Now comes the international
market. We came to find out that there
is a ban on owning, using, or otherwise
depicting shurikens in any media in
the UK. I guess people back in the ‘70s
got a little carried away after watching
the latest Bruce Lee flick, and this is
their answer to the problem. So now,
on top of Wal-Mart, we also have the
UK version where we actually had to
add special code to the game which
replaces any and all shurikens in the
game with throwing darts at run time.
This also required new code and a lot
of new art — as if a dart isn't going to
hurt just as much as a shuriken. So
now, instead of shurikens you'll just
have incidents of people nailing each
other with darts at every local pub in
the UK.

While the executives at Wal-Mart
claim that they are not twisting our
arms, they actually are, just in a passive
way. Everyone knows that in order for
your game to be a successful seller, you
have to reach the largest market distri-
bution possible. Wal-Mart knows that

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

5

S A Y S Y O U

The article, “Implementing Mixed
Rendering”in the September 1997 issue
of Game Developer contained a number
of errors. On pages 36 and 38, Figures 2A
and 2B have been transposed. Thus, the
figure labeled 2A is actually 2B and vice
versa. Furthermore, the title for figure 2b
(that is, the true figure 2B) is incorrect, as
it should have been "Texture mapping
composite and double buffer in SW
thread."
Not only that, but we omitted co-author
Herb Marselas's byline and bio from the
article. We deeply regret this omission
and any confusion caused by the misla-
beling of the aforementioned figures.

Correction

Salut, mes amis! Drop us a line at
gdmag@mfi.com. Or write to Game

Developer, 600 Harrison, San
Francisco, CA 94107.

B

they are 10% of our market and that
our publishers are going to want that
part of the market as much as the other
90% in order to reach as many cus-
tomers as possible. Well, what's easier?
Coercing each game developer and
musician separately to produce the
content that they want, or simply
telling the publishers that they won't
carry a product in their 10% of the
market unless they develop a product
that fits their family values plan? Sure,
it's our option to blow off 10%+ of our
potential audience. What an option;
and surely the Wal-Mart executives
know all this.

It may be unfair, but it's not much
more than an annoyance if you simply
plan far enough ahead. I do expect that
this will get worse for each game and
music album over time though. We
simply viewed this as just another
phase of the project before the final
release of the game, but it does take up
some of your precious development
time in both implementation and thor-
ough testing of that version to make
sure that there aren't any forgotten
booby prizes waiting to spring up and
cause you trouble with the Wal-Mart
Gestapo.

As Wal-Mart and other chain stores
gain a larger percentage of the retail
market, I expect the requirements to
become progressively worse as their
power increases. Who will regulate
them on our behalf? And when can we
expect retail marketing geeks to arrive
on our door steps telling us how we
must design our games or write our
songs?

J i m N o r w o o d

W ith regards to your editorial
"The Wal-Mart Effect," I believe

that you’re worrying over nothing. No
game developer has a right to be on a
store's shelves; remember, the store has
to buy the game to sell it. If a developer
would prefer to change their product to
sell more units, that is their prerogative
and it illustrates their priorities. You
ask, "Who knows what consumers will
do if a major retailer stops stocking a
certain popular game?" Would the
world come to an end if a consumer
couldn’t buy a copy of DOOM, MYST, or
BARBIE FASHION DESIGNER at their local
retail store? A chain showing integrity
and sticking to its values is a good
thing, even if you don’t agree with

them. Not everyone will do anything
for the "almighty dollar." Developers
have the same chance to show their
integrity and values; they can change
their product to make more sales (and
those sales are to stores, not con-
sumers) or they can stick with their
vision. When Wal-Mart chooses not to
sell a popular CD, that’s money they’re
forfeiting for their corporate values.
When John Mellencamp changes his
lyrics, he is forfeiting his artistic vision
for his value$.

J o h n R . N y q u i s t

Ihave several thoughts on your edito-
rial in the September 1997 issue of

Game Developer on the problems of
censorship.

First some facts: Censorship is every-
where. It’s usually pragmatic. Budgets
constrain libraries and librarians get a
feel for the needs and wants of their
community. Retailers stop carrying
items that don't sell and add items that
they hear are selling well across the
street or in the next town. You will
choose which replies are worthy or not
of being reprinted in the magazine.
Each of us restrict our own choices in
many ways.

Here is an amusing and true story.
When I was young, I fell in love with
the Tarzan books — not the movies,
which bore no relationship to the
books. I couldn't get them anywhere.
They weren't in print. I had discovered
the books in my grandmother's home
in a back room that had belonged to
my uncle when he was a kid.

Then the head librarian at the
Kansas City library removed the few
Tarzan books the library had from the
shelves because "Tarzan is living in sin
with Jane in the jungle." (A person who
obviously got her literature from the
movies and not from books!) Two
months later, my mother presented me
with all 24 Tarzan books freshly pub-
lished by Doubleday! Nothing like a lit-
tle censorship and notoriety to make
something popular. I wonder how
many people bought the books for a
little titillation, only to discover how
prim and proper Edgar Rice Burroughs
really was!

Yes, there is a big danger of foolish
censorship. A marketer may decide to
avoid a product because of sensibilities
that are at odds with its customers.
That is a foolish marketer. He is invit-

ing competition. With the spread of
online and catalog sales, the buying
public will simply go elsewhere.

On the other hand, the marketer also
doesn't want to go against the mores of
the community surrounding it, either.
The marketer is out to maximize
income, and to do nothing that can
jeopardize that goal. And I think we
should admire marketers who limit
their income because of personal or
corporate moral or ethical considera-
tions, even if we disagree strongly with
their beliefs. These people are willing
to lose sales to local, online, or mail-
order competitors.

What does that mean for those of us
who design and produce products for
the benefit or enjoyment of others?
Simple. Know your market. If you are
designing a risque game, know that the
sales will have to be targeted different-
ly than one clearly targeted at children
or people with more "traditional" fami-
ly values. And vice versa.

Remember that only the government
is banned from censorship (except
pragmatically, when it is the actual
purchaser of information, such as with
libraries.) Everyone else is free to do as
they please. I don't think any of us
would want it any other way.

As Alan Toffler first stated, the future
has more choices and options, never
fewer. Wal-Mart already has lost mar-
ket share to catalog sales. I think the
Internet will eventually be their great-
est competitor and not the store down
the street. While I don't believe the
Internet, or any technology for that
matter, will replace the smell and feel
of a good book, I suspect there will
come a time when purchasing or rent-
ing visual or multimedia entertain-
ment (which includes computer
games) in a store will be a (fond?)
memory.

A l B a k e r

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

6

Y O US A Y S

Speaking of the September editorial, Alex
Dunne misidentified the musician who
changed the cover of his Christmas album
in order to gain Wal-Mart shelf space. In
fact, it was Kenny G, not Yanni, who was
pictured with a naked infant. We offer our
humble apologies to Yanni, whom we
have long considered kinda cool, in a
strange, mustachioed way.

Public Apology

MAGELLAN Studio 1.0
LOGITECH has unveiled MAGELLAN
Studio 1.0, a smart software/hardware
solution for the professional multime-
dia authoring market. MAGELLAN
Studio 1.0 allows interactive motion

control of three-dimensional objects in
Kinetix’s 3D Studio MAX. The product
includes a MAGELLAN 3D Controller
as well as dedicated software for inter-
facing with 3D Studio MAX 1.2. At
present, support for 3D Studio MAX
2.0 is in the beta stage and will be
available upon the release of MAX 2.0.
The MAGELLAN 3D Controller
(known as the “Space Mouse” in
Europe) is an input device that allows
users to intuitively and precisely
manipulate 3D objects with six degrees
of freedom in CAD/CAM and visual
simulation applications.

Key features of MAGELLAN Studio
1.0 include dynamic control of 3D
objects, cameras, or lights simultane-
ously in up to six axes; “roll-up”
menus for axes constraints, recording
control, Move/Scale function, and
node position; automatic animation
recording, providing real-time motion
capture, along with features such as
slow motion, clipping, and pause
recording; four static buttons for sen-
sitivity control and reset of transfor-
mation matrix; four dynamic pro-

grammable buttons for direct fingertip
access to more than 20 edit and dis-
play functions in 3D StudioMAX
(default and user-specific button set-
ting are available).

MAGELLAN Studio 1.0 supports
Windows NT 3.51, Windows NT 4.0
and Windows 95 and has a suggested
retail price of $495.
■ Logitech

Fremont, CA

(510) 795-8500

http://www.logitech.com

Acoustics Modeler
SONIC FOUNDRY has just released its
Acoustics Modeler Plug-In, a digital sig-
nal processing tool that adds the
acoustical coloration of real environ-
ments and sound altering devices to
existing recordings.

Acoustics Modeler was developed for
use with any editor that supports
DirectX plug-ins, including Sonic
Foundry’s Sound Forge 4.0. Rather
than simply adding reverb to a sound
file to simulate an audio environment,
Acoustics Modeler actually incorpo-
rates the acoustical responses of a given
environment into a sound file. The

program features a library of dozens of
these features, including recording stu-
dios, concert halls, warehouses, tun-
nels, bridges, and woods. In addition,
recorded material can be filtered
through numerous sound-altering

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

8

BIT BBBB LLLL
N E W S F R O M T H E W O R L D

F R O M T H E U L T I M A O N L I N E news front,
Electronic Arts announced that during the
beta test, the game established the world
record for "the largest number of people
concurrently playing in the same virtual
world" — 2,850 players. What is interesting,
is that the size of the game space (189 mil-
lion square feet, or about 6.7 square miles
according to my calculations) would
require 38,000 17" monitors to view it all —
almost enough to blanket a football field.
I N (O T H E R) N E W S F R O M T H E

W O R L D O F P A T E N T S , Aureal
Semiconductor received a patent for its
head-related transfer function (HRTF) filter
technology, which is used in the company's
A3D 3D audio technology. The patented
technology, developed by the company's
Crystal River Engineering subsidiary, cov-
ers the compression techniques used to
process 3D positioning data. Aureal consid-
ers the patent to be a big obstacle to any
competitors trying to achieve the same 3D
audio at similar price points.
A C T I V I S I O N A N N O U N C E D that it will
publish the first three titles from Redline
Games, a new company started up by
James Anhalt and Ronal Millar. Millar was
the senior game designer at Blizzard
(worked on DIABLO, WARCRAFT II, and the
upcoming STARCRAFT), while Anhalt was a
consultant to Activision (programmed on
projects MECHWARRIOR II and PITFALL: THE

MAYAN ADVENTURE). Redline's first title out
of the gate will be an RPG/strategy game.
L E T ' S D O T H E T I M E W A R P . Activision
announced that it acquired the rights from
Atari/JTS Corporation to develop titles
based on the classic games ASTEROIDS and
BATTLEZONE. These two games will join
PITFALL and ZORK as spruced up and
relaunched old favorites under the
Activision moniker. It's just a jump to the
left…
T O M R Y A N , T H E C E O O F S C I T E C H

S O F T W A R E , testified before the House

I N D U S T R Y
W A T C H
I N D U S T R Y
W A T C H

b y A l e x D u n n e

In 1993, Magellan was chosen to con-

trol a robot in space during a space

shuttle mission for NASA.

The Acoustics Modeler Plug-In.

devices such as classic microphones
and instrument amplifiers. Users can
also record and access their own
acoustical environments with the
Impulse Recovery Function.

The Acoustic Modeler Plug-In has a
suggested retail price of $249.
■ Sonic Foundry

Madison, WI

(608) 256-3133

http://www.sonicfoundry.com

StoryBoard Quick 3.0
POWERPRODUCTION SOFTWARE
has released the new version of its
storyboarding software, StoryBoard
Quick 3.0.

StoryBoard Quick features dragable
characters, props, and locations, allow-
ing you to previsualize your project.
This new version has a number of
additional locations, props, and char-
acters. New libraries, new printing for-
mats, and new aspect ratios comple-
ment a revised and updated user
interface. StoryBoard Quick imports
scripts from Final Draft, as well as .GIF,
Mac PICT, Windows Metafiles, and
bitmap files allowing you to scout
locations on the Web.

Storyboard Quick 3.0 is available for
Mac or Windows 95. The latest version

costs $249, and an upgrade from previ-
ous versions costs $69. You can down-
load the demo from the company’s
web site.
■ PowerProduction Software

Los Gatos, CA

(800) 457-0383

(408) 358-2358

sales@powerproduction.com

http://www.powerproduction.com

New DVD Standard
THE DVD FORUM has proposed the
format of a DVD-RAM disc (rewritable
DVD), which has a storage capacity of
2.6GB on a single side, to the European
Computer Manufacturers’ Association
(ECMA). The DVD Forum will also pro-
pose the DVD-RAM format to other
international standardization organiza-
tions. The DVD-RAM format version
1.0 was agreed to by the Forum at the
end of July, and the Forum started issu-
ing the Format Book in early August.
Following the announcement of the
format version 0.9 in April, the DVD-
RAM working group evaluated the com-
patibility of the DVD-RAM disc with
other DVD disc formats.

The standard states that:
• Playback of DVD-RAM discs on exist-

ing DVD-ROM drives is possible sim-
ply by modifying the LSIs.

• Data reliability is ensured due to the
use of a dedicated cartridge and, for
compatibility with DVD-ROM drives,
it is also possible to take the disc out
of the cartridge.
The DVD Forum consists of Hitachi

Ltd., Matsushita Electric Industrial Co.
Ltd., Mitsubishi Electric Corp., Victor
Company of Japan, Pioneer
Electronics Corp., Sony Corp., Toshiba
Corp., Philips Electronics N.V.,
THOMSON Multimedia, and Time
Warner Inc.
■ The DVD Digital Domain

http://www.dvddigital.com

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

9

AAAA SSSS TTTT SSSS
O F G A M E D E V E L O P M E N T

Judiciary Subcommittee on Courts and
Intellectual Property, speaking on behalf of
the WIPO Copyright Treaty Implementation
Act. Ryan testified that SciTech, maker of
the MGL graphics library, had been threat-
ened by an extortionist who warned that
unless the company paid him $20,000, he
would post instructions on the Internet
explaining how to disable the countdown
timer on the trial version of SciTech's
Display Doctor. The CTIA would provide
copyright owners with more legal means
with which to fight unauthorized circum-
vention of technological protection of copy-
righted software, such as the ability to act
against web sites that post serial numbers
so that pirated software can be installed.
S E G A A N D M I C R O S O F T are working
towards an agreement whereby the next
generation Sega console system would be
based upon Windows CE. Sega's machine
will reportedly be based on a 128-bit micro-
processor from Hitachi. By basing the con-
sole on Windows CE, the companies hope
to make it easier for game developers to
build titles for Windows-based PCs and the
next generation console using a similar
code base.
" O V E R 1 , 0 0 0 , 0 0 0 S E R V E D . " No, that's
not a McDonald's slogan from the '60s; it's
the number of unique users Blizzard claims
to have logged into Battle.net. The service
hit that number just eight months after its
launch, and is a testament to the success of
DIABLO. According to PC Data's numbers,
DIABLO has sold around a million copies to
date. Hey, wait, that means every person
who bought it…
I T ' S A N O D D W O R L D O V E R A T G T

I N T E R A C T I V E , which announced a $10
million global marketing campaign for
ODDWORLD: ABE’S ODDYSEE. The announce-
ment is notable in that GTI has already
sketched out four sequels to ABE'S ODDYSEE

before the first has made it out the door.
These games, GTI explains, form a new
genre called "Aware Life forms in Virtual
Entertainment (ALIVE)". Earth to GTI market-
ing department: Put down the rubber
cement and come out with your hands up.
Let's see if the first title is a hit before we
get carried away with the sequels.

Storyboard Quick 3.0 gives you one,

two, four, six, nine, twelve, sixteen

frames per page, vertical or horizon-

tal, with or without captions, in four

aspect ratios.

b y B r i a n H o o k G R A P H I C C O N T E N T

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

11

Transparent Textures

A major topic in game development
these days is support for transpar-

ent textures. Transparent textures have
been inconsistently supported by both
hardware accelerators and even graph-
ics APIs – Direct3D has a very strong
bias for one type of texture transparen-
cy (chromakey), and OpenGL supports
texture transparency only through
alpha testing.

Transparent textures have countless
uses, including bitmapped sprites, win-
dows, grates, and any other complex
object that is easier to represent with a
sprite than actual geometry. Figures 1
and 2 are examples of these, a fan and
grate from DESCENT by Parallax
Software. The green portions of the
bitmaps represent transparency, allow-
ing the background image to show
through.

Transparency in textures can be
implemented as varying levels of
translucency or simply as full
opaque/full-transparency “punch
outs.” The former can only properly be
implemented through alpha blending
and alpha testing; however, punch
outs can be implemented through
either chromakey or alpha testing.
CHROMAKEY. Chromakeying is a tech-
nique commonly used in the video
production world for merging two
images. A key color in the first image is
replaced by the contents of the second
image. This concept is the foundation
upon which “blue screening” is based.
Transparent texture maps implement
chromakey by allowing the game to
designate the key color. With 8-bit
paletted textures, this is trivial since it
only requires a single palette entry to be
designated as transparent. When ren-
dering the texture map, any texel that
is equivalent to the key color is ignored

and not rendered. Again, Figures 1 and
2 are examples of this, where the green
color represents the key color value,
and thus won’t be rendered.

Things became more complicated
with RGB texture maps and hardware
acceleration, since MIP-mapping and
bilinear filtering can screw up your
chromakey color test. For example, you
could designate the key color as

0x808080, but with bilinear filtering
enabled, the odds of a texel coming
through the filtering stage unmodified
is very unlikely. And the simple box fil-
ter that most MIP-map generators use
will mangle a unique color when found
in smaller MIP-map levels.

For these reasons, bilinear filtering
and MIP-mapping are typically mutually
exclusive with chromakey. Some hard-
ware architectures have added support
for a key color range instead of just a sin-
gle key color, but this isn’t a particularly
elegant solution
since it’s prone
to accidentally
removing other
texels as the
result of blend-
ing and MIP
mapping. In
some extreme
cases, it won’t
even correctly
handle a trans-
parent texel that
ends up being
filtered to an out
of range value.

Alpha testing and alpha blending are
often more appropriate than using
chromakey when implementing tex-
tures with transparency.
ALPHA BLENDING AND ALPHA TESTING. I’ve
already discussed the theory of alpha
blending in previous columns
“Multipass Rendering and the Magic of
Alpha Blending,” pp. 12-19, Game
Developer, August 1997), so this month

I’m going to show you how to use blend-
ing and alpha testing for antialiased
transparent textures. Instead of designat-
ing a single color as transparent, alpha
testing allows you to specify certain bits
to represent transparency. A texture map
with more bits dedicated to alpha will
have the ability to represent increasing
levels of translucency. The two most
common formats for alpha textures are
4444 ARGB, and 1555 ARGB. The former
sacrifices color depth in order to allow
sixteen levels of transparency. The latter

Texture Transparency and

Texture Compression

T his month marks the first time that I’ve had a chance to sit down and write about

some various odds and ends that I’ve been meaning to discuss.

F I G U R E 2 . Chromakey tex-

tured grate from Parallax’s

DESCENT.

F I G U R E 1 . Chromakey tex-

tured fan from Parallax’s

DESCENT.

Ever since RAM costs plummeted lower than
Ray Liotta’s career, texture compression
hasn’t been as high a priority for most 3D
accelerator manufacturers.

maintains higher color resolution, but
only has the ability to indicate absolute
transparency and opacity.
ALPHA TESTS AND OPENGL. With OpenGL,
you enable and configure alpha testing
with
ggllEEnnaabbllee((GGLL__AALLPPHHAA__TTEESSTT));;

ggllAAllpphhaaFFuunncc((GGLL__GGRREEAATTEERR,, 00..00FF));;

The alpha function defines what type
of relationship must exist between
incoming alpha and the alpha reference
value to render an incoming fragment.
For the preceding bit of OpenGL code,
all fragments with an alpha greater
than zero will be rendered. Such a func-
tion would be used with 1555 ARGB
textures, where a texel alpha bit of 1
indicates opacity and 0 indicates trans-
parency. If bilinear blending is enabled,
then you can achieve a reasonable form
of antialiasing, however, bilinear blend-
ing can have odd effects with alpha
testing, so you need to be very diligent
when rendering textures with alpha
blending, bilinear blending, and alpha
testing enabled.
ALPHA TESTING AND THE Z-BUFFER. Another
caveat is that alpha testing and alpha
blending don’t necessarily coexist very
well with Z-buffering. Take, for exam-
ple, a case where you have a 4444
ARGB texture. Assume the texture has
gradually increasing amounts of trans-
parency as you get closer to the center
of the texture, with full transparency at
the center (as in, a cutout) and full
opacity at the edges.

The intuitive way to render this
would be with standard alpha blending.
ggllEEnnaabbllee((GGLL__BBLLEENNDD));;

ggllBBlleennddFFuunncc((GGLL__SSRRCC__AALLPPHHAA,,

GGLL__OONNEE__MMIINNUUSS__SSRRCC__AALLPPHHAA));;

The problem occurs when you try to
write values to the Z-buffer condition-
ally based on alpha. The fully opaque
parts of the texture need to have depth
values written. However, any transpar-
ent portions must not have depth val-
ues written to the Z-buffer. Alpha test-
ing doesn’t solve this problem
adequately, since a pixel that fails
alpha test won’t be rendered at all,
when in fact you still may want a par-
tially translucent fragment to be ren-
dered but with depth buffer updates
inhibited. Unfortunately a mechanism
that describes this doesn’t exist in
Direct3D, nor in OpenGL.

For this reason, textures with varying
levels of translucency may be prone to
visual anomalies, and this is definitely

something that you need to be aware
of when working with textures con-
taining alpha.
SOURCE OF THE ALPHA. This is a quick note
– be aware of your texture environ-
ment and incoming iterated alpha
value when working with textures con-
taining alpha. The source of your frag-
ment alpha may not be particularly
intuitive and will depend on your tex-
ture blend/environment, your texture
map format, and the value of iterated
alpha. With OpenGL, this is clearly
defined. But with Direct3D, however,
you’ll probably have to experiment
with different drivers, because no clear
specification exists on this topic.
ANTIALIASING WITH ALPHA. A cool side effect
of using alpha bits to represent trans-
parency is that you can get antialiasing
effectively for free. Even with a 1555
ARGB texture, you can get antialiasing;
bilinear filtering will blend the binary
alpha values into intermediates values,
depending on texel coverage. This
means that textures with “punch outs”
won’t necessarily have harsh edge alias-
ing artifacts along the borders between
opaque and transparent regions.

Compressed Textures

T exture compression was a really
hot topic a couple years ago when

RAM prices were phenomenally high.
Ever since RAM costs plummeted lower
than Ray Liotta’s career, texture com-
pression hasn’t been as high a priority
for most 3D accelerator manufacturers.
Some work is still going on in this area;
however, I fear that some hardware
manufacturers might be going in the
wrong direction on this one.

Textures are expected to be com-
pressed either by the game developer as
part of a preprocessing step or by the
hardware and/or its driver during run
time. Both of these methods have some
pretty significant drawbacks.

Precomputed texture compression
has some obvious benefits — slow but
high-quality compression algorithms
can be used, and there’s very little run-
time overhead for using compressed
textures. But this assumes that you
know what your texture data will look
like before your program is even start-
ed, and it also assumes that you’re
using some type of industry standard
texture compression algorithm with

available tools. Aside from palettized
textures, a standard for precompressed
texture data doesn’t exist. In all like-
lihood, any compressed texture solu-
tions will be proprietary (such as the
3Dfx Voodoo’s proprietary 8-bit com-
pressed texture format).

QUAKE2 needs to dynamically com-
pute texture data through surface
caching (in the software-rendering sub-
system) and dynamic light map genera-
tion (in the OpenGL-rendering subsys-
tem), so the usefulness of precomputed
compressed texture data will be limited
to games that don’t modify their tex-
tures on the fly. Also, QUAKE2 is designed
to be portable across many platforms,
and supporting many different propri-
etary compressed texture formats isn’t
particularly desirable or even feasible.

Run-time texture compression, on the
other hand, allows the incoming texture
to be a lot more dynamic in nature,
since the compression doesn’t occur
until the texture is uploaded to the hard-
ware. The downside to this approach is
that there will likely be a significant and
noticeable hit on performance every
time a texture is compressed and down-
loaded, discouraging the use of lots of
dynamically changing textures. Once
again, QUAKE2 relies heavily on texture
downloads for effects such as dynamical-
ly updated light maps.

Neither of these solutions is perfect,
and both have significant pros and
cons. Until hardware accelerators that
support texture compression hit the
market, we won’t really know which
direction things are heading. So until
then, we won’t know how to compen-
sate for the various idiosyncratic tex-
ture compression implementations
that will be heaped upon us.

This month’s column has covered a
lot of the odds and ends that I’ve been
meaning to address over the past few
months. I’d like to thank Matt
Toschlog and Parallax Software for
allowing me to use their bitmaps. For
my January 1998 column, I plan on
talking about my experiences with
QUAKE2 and the development method-
ology that id uses. ■

Brian Hook recently had a nightmare in
which real-time 3D graphics programming
was totally irrelevant to life in general.
Fortunately, when he woke up he was still
coding QUAKE2 at id Software. Send hot
milk and soothing reassurances to
bwh@wksoftware.com.

G R A P H I C C O N T E N T

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

13

b y J o s h W h i t e A R T I S T ’ S V I E W

exactly how it’s supposed to be.
Height, weight, sex, clothing style —
they’re all at our fingertips. Scary, huh?

Let’s walk through the birthing
process of a human character. We’ll do
this in two parts: design and construc-
tion. This month, we’ll start with real-
time 3D character design, working
toward a solid pencil sketch and a basic
construction plan, including face and
texture budgets. In January, we’ll
explore how to actually build a 500-
face character based on this design.

Character Design

O bviously, character design is a
really broad topic, and there are

endless approaches to this topic. In
fact, for someone starting out, therein
lies the problem: too many options.
With that in mind, I’m laying out
some specific techniques from the
sea of possibilities — but if you do it
differently, don’t feel neglected.

WHERE TO START? The blank-page block can
be very strong when an artist is facing a
character design job. Not only are the
starting options overwhelming, but char-
acter design is more than visual, so we’ll
have to do some nongraphic creation.

For example, look at Lara Croft from
TOMB RAIDER. For a full character
design, we’d want to know much more
about her than her appearance: Her
walking style, her interests, her natural
abilities, what kind of people she likes,
her accent, her choice of words… all

kinds of nonvisual detail should be
(and probably was) defined.

We design characters in two steps.
• First, we collect all kinds of detail,

even if it’s not directly relevant to
drawing the character.

• Second, we develop graphic represen-
tations: pencil sketches, 3D models
with textures, and animations.

A DAB OF THEORY. There’s a whole lot of
theory that can be invoked for charac-
ter design. Here’s a tiny taste (see the
sidebar, “Homework: Character Design
Research,” for more sources).

The first lesson for artists-turned-
designers is, perfection is boring. Think
about any cool character you know.
Most of their interest comes from flaws
and weird quirks. These flaws can be in
many forms: physical, mental, emo-
tional, societal, and so on.

For example, take a look at the comic
book character Archie, the blandest,
most basic good character we can imag-
ine. On one hand, he seems plain and
basic; but actually, he’s far from perfect.
He has a crappy old car, is ridiculously

indecisive about girls, and seems to
have serious issues with school (Mrs.
Grundy). These imperfections make
him “real,” and even normal.

But Archie is nothing compared to
the twisted psyche of his best friend.
Jughead’s strange, ugly appearance,
suppressed or retarded sexuality, freak-
ish obsession with eating, and all-
around spaciness are exaggerated flaws
that real people possess — and they
make for all kinds of rich storytelling.
FINDING CHARACTERS. So where do you find
a library of character traits? Every-
where. People-watching, with a critical
eye toward unique personalities, is a
great way to get a whole pile of inter-
esting, fresh elements for character
design. Spend an hour at an outdoor
café with a notebook and see what you
can find. Here are some suggestions to
keep the experiences fresh:
• Write, don’t draw. Instead of desper-

ately trying to sketch out characters

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

15

Birthing Low-Polygon Characters

eah, I know. My own patience for metaphors in computing is quite

short, too; but you have to admit that “birthing” for character creation

makes sense. Character design is a control-freak parents’ ultimate dream;

there are no vagaries of chance here. We artists build a human character Y

For those of you who have avoided the
term so far, an “avatar” is a represen-
tation of a player in any computer-sim-
ulated environment. They’re often low-
polygon 3D models of people in
multi-user 3D worlds, but the term
also applies to 2D-only “sprite”
images of the player. The term isn’t
usually applied to games, but if it
were, the player’s character is an
avatar. For example, Mario is an
avatar.

Definition

F I G U R E 1 . Pencil sketch character.

Creating compelling, interesting characters is
a well-documented topic, so go scam some
knowledge from experts.

A R T I S T ’ S V I E W

16

as they whiz by, try jotting down
one unique detail about each inter-
esting person: “fringe leather
bracelet,” “dyed-black hair, crispy-
looking,” “stumpy militant gait,”
“greasy icky overalls,” “thrashed
novel, bent-back cover.” Later, you
can use these reminders to sketch
composite characters.

• Pick a theme. Maybe have a “shoe
day”; only look at the shoes and try
to identify what shoes reveal about a
character. Other themes could
include hair, accessories (books, glass-
es, purses), clothes, and motions
(walking gaits or unique movements).

• If possible, save images. Obviously,
it’s handy to have a still reference
from which to work, but pointing
cameras at random strangers is
mighty awkward (and not always
appreciated). One quick and easy way
to do this is get a camcorder (only
$350 these days!) and rest it on the
table, aimed at a public space. When

someone interesting walks by, record
a little snippet. You can then peek in
the viewfinder and sketch right there
or review it later.
Of course, first-person observation

isn’t the only source for character
design.
COMMUNICATING YOUR DESIGN. So you know
what character you want to build; now
you have to show other people. Once
you have an idea for a character design,
it’s helpful to get it out where people
can see it. But when you’re designing
someone else’s character, you have to
know exactly what they want or
they’re going to be disappointed.

At a minimum, a character design
needs to cover the basics. Human or
non-human (such as an alien)? He or
she? What size? What culture? What
style within that culture? Of course, we
also need lots of physical appearance
details. What skin color? What clothes?
(What style of pants? Faded denim or
new? Flared leg? And so on.)

Obviously, the head (especially the
face) is important for character person-
ality. For example, in the comic strip
Peanuts, compare Lucy to Sally. The
visual differences are all in the face
and hair; the bodies are practically
identical.

Facial detail is really noticeable when
it’s missing — witness the spooky lack
of facial detail on the Power Rangers’
suits. Is it just me, or are those charac-
ters really bland because of the missing
face? Another proof by negation can be
seen in mannequins. They’re designed
to have no character, and most don’t
have any facial detail at all. Coinci-
dence? I don’t think so.

That’s all well and fine, but what if
we’re building a character that some-
one else has designed? In that case, our
next task is to communicate — to learn
what design we’re supposed to build.
VERBAL SKETCH. Most people can express a
basic character design in a “verbal
sketch.” This is often the point at which

we artists first encounter the character.
For example, I asked my flaky char-

acter designer, Jake, to tell me about
any old character he could imagine:
“OK, um, there’s this old guy, Jim, see,
and he hates dogs ‘cause his wife was
killed by a big black Doberman back in
‘82, and um, his pants are always
creased, and he wears this old golfing
hat all the time and ummm… sus-
penders. Yeah, and his shirts are
always… they’re really clean, like he’s
super-careful about being clean. He’s
worried people will think he’s a bum
because he spends a lot of time at the
park, looking for people to talk to
‘cause his family all moved to Detroit
five years ago, but he didn’t want to
leave New York.”

Verbal sketches are interesting and
help give a sense of the character, but
do we know enough to build Jim? Not
really; we need to know more, so we
ask some questions (Table 1).

These questions help a lot. The only

answer that we didn’t really get was the
style — not surprising since poor Jake
is being put on the spot. Still, we’ve
revealed that his design hasn’t been
fully developed yet. That’s O.K.; with
his specific breakdown of clothes in the
verbal sketch, we have enough to work
from here.

SKETCH. Next, we sketch the character
on paper. The sketch forces us to define
the character’s race, culture, age, style,
size, and a lot of other details that the
verbal sketch doesn’t cover. It’s a very
important point of reference for team-
work — it’s used as a goal for the 3D
modeling tasks.

Figure 1 shows a sketch of our char-
acter Jim. Now we have all kinds of
detail, and the issue quickly changes
from the vague, murky, “What does
Jim look like?” to the daunting, but
attackable, “How do we get all the
detail of this sketch into a low-polygon
3D model?” The answer: Understand
our limitations, then revise the design
to work with what we have.
GATHER INFO (AND MAKE DECISIONS). We’re
now at the rubber-meets-road spot, so
we need to find out what the road is.
This is usually done through an awk-
ward, difficult series of communica-
tions that I outlined in the August
1997 Game Developer article, “The Artist
Synapse.”

At the end of that communication
process, we’ll know what our game
engine can and can’t do (or at least
we’ll know what decisions need to be
made). Here’s an example scenario:

Our communications efforts pay off,
and we now know that the graphics
engine is basically a QUAKE clone — it
renders a first-person view of a texture-
mapped 3D environment with no
dynamic lighting (lights are built into
the textures), and it can do per-vertex
“skinned” animation for character ani-
mation as well as normal hierarchy-
based animation.

We also encountered our budgets:
We have 500 faces and 100k of texture
memory to spend on Jim. That doesn’t

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

18

A R T I S T ’ S V I E W

O K, let’s say we admit that

we need help with this char-

acter design stuff. Well, hit

the books! Creating com-

pelling, interesting characters is a well-

documented topic, so go scam some

knowledge from experts. You can find

books about character design in any

major bookstore or library.

HHiissttoorriiccaall:: Character design is one

of the oldest and most prevalent themes in

art. Storytelling, painting, sculpture, and

theater all depend on rich characters.

These traditional media have a lot to offer

an interactive entertainment character

designer. One good way to get a nicely

packaged summary of this information is

by taking a class from a local school — you

might find a class that is devoted to the

idea of characters throughout art history.

FFiillmm:: For game characters, start with

character design techniques used in com-

mercial film industry. Just watch some

“character study” movies and try to iden-

tify what, exactly, makes the characters

cool and unique. Of course, you can also

find books, articles, and lectures that are

aimed at developing characters for films.

For example, the director Frederico Fellini

specializes in bizarre faces; ask any film

buff and they’ll point you to an endless

stream of relevant video evenings.

NNoovveellss:: Fiction contains arguably the

most deep character design practiced

today, so I’d recommend reading about

how novelists do it as well. Again, you can

just read some excellent books that focus

on character development (as most do) and

pay attention to what makes the character

unique, or you can seek out resources

designed for authors. For example, brows-

ing at Borders Bookstore turns up entire

books devoted to crime details for authors.

These books are shelved in “writing”;

they’re written to help authors craft realis-

tic behavior for desperate criminals.

GGaammee ddeessiiggnneerrss:: And, of course,

game designers know this stuff. Check out

conference notes from lectures on game

design, articles for designers, and the

like. Better yet, if you know any first-rate

game designers in the industry, play new-

bie and ask them how to do it in person.

Again, character design is a huge area;

don’t be disappointed if your first design

attempts aren’t pro quality. Don’t forget

that there are lots of resources to help

you, including professional game design-

ers; they often have a really good grasp

of character design.

Homework: Character Design Research

AArrttiisstt aasskkss:: DDeessiiggnneerr rreessppoonnddss::
How old is Jim? “He’s, uh, 72.”

What is Jim’s culture? “He’s a Jewish guy who came to the U.S. from

Poland when he was seven.”

What’s his style? “Uhhmm… he’s, uh, normal old guy… not crazy…

hell, I don’t know!”

What color is his skin? “White, Polish features; his bushy hair is grey

and he’s all wrinkly.”

What’s his build like? “Thin, but healthy, 5’6” and 120 lbs. He used to

be good in track.”

How high is the waist of his pants? “Pretty high, in that old man way.”

How long is his hair? “About 3 inches, curly.”

Does he have any props? “He has a cane, but no glasses.”

TA B L E 1 . Artist/character designer interaction.

sound like much texture memory, but
we also learned that Jim isn’t the lead
character, so 100k is enough texture
memory for such a secondary charac-
ter. Also, we found out that we can use
8-bit textures, each with its own
palette; that means a 256×128 texture
only uses 32k of memory.Here’s some
more important decisions that were
made for Jim:
• Range of motion: A talk with the

game designer tells us that Jim
doesn’t need any complex animation.
He’s going to limp around and wave
his arms a bit, but won’t do anything
that requires too much detail in the
hands or head. This means that we
don’t have to design the character to
be capable of cartwheels; this detail
simplifies the joint design, but it also
affects texture mapping. Why textur-
ing? For example, if Jim were to bend
deeply at the knee, we would have to
design textures on the knee that
looked good at full bend and at nor-
mal straight-leg positions. Knowing
that he’s only going to bend 90
degrees (for sitting), we will create
textures that look good from those
angles.

• Speech: The difficult decision about
facial animation was made early on
— we’re using cartoon bubbles for
dialog, so we won’t animate speech.
This will save lots of hard work doing
lip-synch (obviously at the expense of
realism).

• Skinned joints: Even though we
could do “skinned” vertex animation,
we’ll be using intersecting joints.
“This character is a minor role, and
its movement is relatively small, so
intersecting joints probably won’t
look too bad,” our art director reas-
sures us. After some questioning, we

find out that it’s really a performance
tradeoff: Animating all 500 vertices
can easily mean a frame rate penalty
once the math gets to be a heavy
load. For the lead characters, it’s
worth the performance hit, but not
for a minor character like Jim.

FINAL DESIGN SKETCH. Based on the infor-
mation we’ve just gathered, we can
now sketch a more do-able version of
Jim. We’ll strip out some of the detail
that isn’t very achievable — for exam-
ple, the frizzy hair on the sides of the
head would have been difficult repre-
sent satisfactorily, and it’s not critical
to conveying Jim’s personality, so we
could just change the design rather
than fight the limit. For other prob-
lems, we may choose to fight for a cer-
tain important detail, but in this case,
it’s probably not worth it.
FINAL APPROVAL. Next, we show our final
sketch to the art director for approval.
As usual, the director is wildly excited
by its innate beauty and our rare
genius implied, so the sketch is
approved instantly, and we get our
usual huge bonus, utter worship, and
tearful hugs aplenty.

O.K., perhaps that’s a tad unrealistic.
More likely, the art director expresses
some appreciation, but also wants
some changes. After these revisions,
eventually, you’ll get a stamp of
approval.

Once the approval festivities are
over, our final step is organization. We
gather the sketch and the face and tex-
ture budgets into one spot — a folder
in the appropriate directory, or a single
sheet of paper — so we can quickly and
easily find them. This folder is the sym-
bolic end of the design phase — we’ve
completed Step One. From here, we get
into production and take this pencil

sketch to 3D. That’s covered in
January’s column.

Modeling: Basics

W here to start? Let’s start with an
overall approach. In practice,

we’ll usually start with an existing real-
time 3D human model and edit it to
match our sketch. Depending on how
similar our characters are (and how
carefully we can edit the geometry
without disturbing mapping), we don’t
have to remap or rebuild large parts of
the model. But don’t worry, I’m not
going to pull that kind of shortcut here
— we have to start from ground zero.

So we’re going to build our character
from scratch, aiming for our face-count
budget for each part: head, torso, arm,
and leg. For texturing and mapping,
we’re using only Adobe Photoshop and
3D Studio MAX, so we can’t do any 3D
painting. We’ll just use standard pro-
jection mapping techniques.

We’re going to use cylindrical tex-
ture mapping for the head, because we
really want the ears and sides of the
face to have full detail, but we’ll do pla-
nar projection mapping for the other
parts. This is a trade-off, because planar
projection will lose detail on parts of
the body. Still, we’ve decided that the
loss of detail on the sides of the arms
and legs is tolerable. (Besides, painting
planar-projected textures is a lot faster
and less error-prone than cylindrical
texture mapping).

Let’s Divide Our Budgets!

O h boy! Now we get to divide up
our allotted budgets: 500 faces

and 100k of texture memory. Let’s start
with face count.

In general, the head and torso are
more able to “flex” their face counts,
and since people are generally looking
at the upper body and head most, we’ll
use a disproportionately large number
of faces in this area. By contrast, the
arms and legs will be modeled as sim-
ply as possible, while still implying
plenty of detail. Another obvious rea-
son we want to keep arms and legs sim-
ple is that there are two of each of
these. Any face we add to the design of
one arm means double faces in the
final model. Let’s divide the body into

A R T I S T ’ S V I E W

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

20

S ome will argue that character

design isn’t really the artist’s

job — that’s what game

designers are for, they say —

but it’s frequently assigned to artists

anyway. And, yes, you have to admit it’s

just plain fun, so we fun-loving artists

naturally want to be involved in it.

How do artists end up designing? In

large projects, ignorant producers and

publishers tend to assume that any

professional artist could whip out a

really cool character from blank screen,

especially for demos, “B” games, and

other non-mainstream projects.

In smaller projects, the job roles

aren’t usually so strict, so artists do

some design, designers can create

some art, and together they cover all

the bases.

Whose Job Is This, Anyway?

a few parts and assign face counts:
• Head - 148 (includes neck stump)
• Torso - 102 (chest, pelvis, stumps for

joints)
• Arm - 66 (includes hand, elbow joint,

shoulder stump)
• Leg - 68 (includes foot, knee joint,

hip stump)
So we’re using 250 faces for the head

and torso, plus two arms (132) and two
legs (136) equals 518 faces. That’s close
enough to our budget for a first pass.

What kind of arm can we model
with 66 faces? Nothing fancy — it’ll
have a closed-fist or mitten-style hand,
and no real wrist joint modeled. Same
for the other geometry — basic model-
ing will have to do.

For texture memory, let’s start by
deciding what we’d like. If our charac-
ter is only 100-pixels tall, we don’t
really need very large textures. With
100k, we can have an ample 256×128
cylindrical map texture for the face,
leaving 64k for the body. Let’s assume
left and right arms and legs are identi-
cal, so we’ll use a pair of 64×128 tex-

tures for the front and back of the
arm, and another pair for the leg, and
a pair of 128×128 textures for the
front and back of the torso. Table 2
shows the numbers. We’re using
seven textures that add to 96k of
memory.

The End.... Not.

W e’ve covered a lot of ground this
month. Out of thin air, we

extracted a do-able real-time 3D charac-
ter design. We defined our basic
approach — decided on our mapping
methods, broke the model down on a
per-part basis, picked important areas,
and divided up our budgets accordingly.

In January’s column, our task is
clear: Build a textured 3D model from
our sketch and within our budgets.
Here’s vaguely how we’ll do it:
• We’ll create the textures and geome-

try for each part.
• We’ll assemble the parts into a hierar-

chy, adjust joints, test a few anima-
tions, and test in the 3D environment.

• Finally, do revisions until the model
is approved. ■
Josh White runs Vector Graphics, a

real-time 3D art production company. He
wrote Designing 3D Graphics (Wiley
Computer Publishing, 1996), he has spo-
ken at the CGDC and cofounded the
CGA, an open association of computer
game artists. You can reach him at
josh@vectorg.com.

A R T I S T ’ S V I E W

22

NNuummbbeerr SSiizzee RR AA MM WWhheerree uusseedd
1 256x128 32k Head (cylinder map)

2 64x128 16k Arm (front and back)

2 64x128 16k Leg (front and back)

2 128x128 32k Torso (front and back)

TA B L E 2 . Budget numbers for Jim, the character from Poland.

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

24

F E E D B A C KF O R C E

Cop a FeelCop a Feel....with

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

25

A r t i c l e b y C h u c k W a l t e r s

Haptic Peripherals!!!

hap.tic (adj.)(1890)

{<haptesthai > to touch}

1: relating to or based on the sense of touch

2: characterized by a predilection for the

sense of touch <a haptic person>

3: to be out of haptic with reality

Direct X has stepped in to standardize
the API used to control these devices.
This article will give you a general
overview of the tools and techniques
used to implement force feedback in
your games. It will focus on generic
design issues and DirectX 5 implemen-
tation. Before diving into the nitty-grit-
ty code work, however, we will review
the hardware.

Two force-feedback joysticks and
three force-feedback wheels are expect-
ed to be in retail outlets by Christmas
1997. At least six more force-feedback
devices are planned for next year.
CyberNet, Immersion, and Exos
(acquired by Microsoft) have been offer-
ing products for high-end simulations
and research for years, but CH Products
was the first consumer product to make
it to the retail market. The companies
in Table 1 have at least a working pro-
totype slated for home PC use.

Some of the companies listed in Table
1 also distribute force-feedback devices
for game consoles and arcade machines.
Companies such as Happ Controls (the
largest manufacturer of arcade force-feed-
back devices) use technologies similar to
those being discussed, but they won’t be
the focus of this article. For a more com-
plete view of the market, take some time
to browse the research sites listed at the
end of this article. The Intel site has the
specifications for the Open Arcade
Architecture Coin-op Reference Platform
also known as the Arcade PC standard
(which includes force feedback).

Mechanics

N ot all force feedback devices are
created equal. The more expen-

sive devices are able to produce high-
frequency sensations at a cost of a few

thousand dollars, compared to a few
hundred for the home versions. A hefty
portion of the cost difference is spent
reducing the compliance (play)
between the actuators (motors) and the
stick. The following sections discuss
the interface between the actuators and
the stick.
COMPONENTS. The play and durability of a
force-feedback device depends, in part,
on the material and tolerance of the
machining. Cheaper materials, such as
plastic, are pliable, do not hold up to
high-tolerance machining, and wear
faster. Here, the material limits the per-
formance. More expensive alternatives,
such as composites, aluminum, and
alloys, can hold higher-tolerance
machining. Still, just because quality
material is present doesn’t mean that it
has undergone the costly high-toler-
ance machining. Quality material has
the added benefit of holding up better

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

26

F O R C E F E E D B A C K

even peripheral manufacturers are prototyping and/or

shipping more than nine force-feedback game devices

for home use, at or under $200. Three companies are sup-

plying the force-feedback technology: CyberNet,

Immersion, and Microsoft. With force feedback

ramping up and three implementations available,SS
MFG FFB Engine Product Name Interface SRP ETA
Act Labs Immersion Racing System GP $99 9/97

CH Products Immersion Force FX SP & GP $150 Retail

Racing Wheel FX SP & GP $150 11/97

Interactive I/O Immersion Virtual Vehicle Tdi SP or USB $995 Direct

Logitech Inc. Immersion WingMan Force SP or USB ? ?/98

SC&T International Immersion Ultimate PER4MER SP & GP $170 11/97

Thrust Master Immersion MotorSports GT ? $200 11/97

Cybernet Cybernet Real Feel Wheel SP & GP $200 Direct

Real Feel Yolk SP & GP $200 Direct

Microsoft Microsoft SideWinder FFB Pro GP $150 9/97

Interface Legend: SP = Serial Port GP = Game Port USB = Universal Serial Bus

TA B L E 1 . Availability of force feedback devices.

to general wear and tear. Let’s open a
force-feedback input device and exam-
ine the inner workings.
GIMBAL. The gimbal connects the stick to
the transmission. Force-feedback joy-
sticks generally have more play than
steering wheels because of their dual-
axis motion. The biggest contributor to
gimbal play are the slots of a slotted
bale. Double-slotted bales (Figure 1) are
the loosest. Immersion has patented a
slotless gimbal, shown in Figure 2. Keep
an eye out for this design in retail sticks
over the next year. Currently, it’s only
available in research-quality devices.
TRANSMISSION. Actuators are connected
to the gimbal by the transmission.
Geared transmissions must have play
or the gears will bind. Tight gears
require precise machining. Therefore,
cost becomes reliant on the material
and machining commodities. A
cable/belt drive is a higher-quality
method of transmission. Since there
are no gears that can bind, this method
has the potential for a very tight force
response and much less noise (gears are

quite noisy). The counter rotational
requirements of force-feedback trans-
missions are demanding, so either the
cable/belt will need to be extremely
strong or devices will need easily acces-
sible adjustment screws for keeping the
cable/belt tight.
ACTUATORS. Force-feedback joysticks use
two motors, which are similar to those
found in fax machines and printers.
They exert about 1 lb. of sustainable
force per motor, peaking at around 1.5
lbs. Force-feedback wheels have one
motor that can sustain 3-4 lbs., peaking
at around 5 lbs. Cheaper motors nor-
mally exhibit higher friction, so they
dampen out subtle forces, causing poor
or unperceivable response.

Circuitry

D evice manufacturers are scram-
bling to produce high-quality feel

at a low cost. Currently, circuitry
improvements are on the back burner
because they don’t satisfy the manufac-

turers’ immediate goals — what they
have works well. When the competi-
tion heats up, however, circuitry will
be upgraded in the following areas.
PROCESSOR. Most force-feedback devices
have a microcontroller to control the
motors and handle effect computa-
tions. Motor control is cut and dry,
whereas effect-handling can be
improved in many ways. Future proces-
sors will handle new types of effects
and be able to play more of them simul-
taneously. There will also be improve-
ments in dynamic effect transitions.
MEMORY. The amount of RAM deter-
mines the number of effects that can
reside on the device. Different effects
require varying amounts of RAM, so
tying the number of one to the other
isn’t well-defined. To illustrate this
point, current devices have on-board
memory ranging from a few hundred
bytes to a few thousand bytes. A single
effect takes anywhere from several
bytes to several hundred bytes.
Therefore, there is RAM for potentially
hundreds of effects, but many devices

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

27

partition this space to simplify the
microcode, thus artificially reducing
the total count. There are at least two
benefits of increasing the on-board
RAM:
• More RAM allows more effects to be

stored locally, reducing playback
latency.

• More resident effects means that
effects can be played simultaneously
(added together), creating new
effects.

SENSORS. These are the stick position
tracking mechanisms. Many devices
use potentiometers to track the stick or
wheel’s position, which is the main
reason devices need calibration.
Potentiometers are variable resistors
that lose resistance as they age, which
causes a positional drift in the joystick.
Microsoft’s Sidewinder uses an innova-
tive digital optical tracking system that
is self-calibrating. Digital optical track-
ing is also faster at position acquisition
then potentiometers, which means less
time is spent polling the joystick,
thereby freeing CPU cycles for other
game needs. In addition, fast acquisi-
tion time is important for condition
effects (explained later), which are
dependant upon positional data.
Effects such as those that simulate iner-
tia will perform more smoothly and
feel more realistic with a faster digital
optical tracking type of system.
INTERFACE. Most of the initial force-feed-
back devices attach to either the serial
port or the game port, and some
devices require both (Table 1). Next
year’s devices will likely migrate to the

Universal Serial Bus (USB) available on
the next-generation PC motherboards
and supported in Windows 98. (USB is
similar to SCSI in that devices can be
chained off of one port. USB is also
faster than the serial port.) The change
to USB should reduce feedback latency
and the problem with port availability.

Designing Force Effects

T he force-feedback element of a
game requires aspects of physics

and collision detection that should
already be implemented and used by
the audio engine. When you get down
to the code level, force response is
very similar to 3D audio. In my expe-
rience, piggybacking the audio code
helps determine what effects to add,
where to add them, and saves both
CPU and developers’ time by reusing
computations. Exceptions to this are
effects such as “wheel stiffness,” that
do not have an associated sound
effect, but remain active throughout
the simulation.

While Microsoft’s DirectX 5 docu-
mentation doesn’t go into the artistic
part of force feedback, the three force-
feedback engine manufacturers have a
lot to say in their development docu-
mentation. I won’t cover the design
elements in the same manner, so I rec-
ommend examining the commercial
web sites listed at the end of this article
and the books in the “Books On Force-
Feedback Technology” sidebar.

The initialization of a force-feedback

device is faster with DirectX 5 (if the
device is powered), because the device
must exist in the game controller’s
property sheet. Proprietary APIs that
don’t use this information will search
for a force-feedback device on each
port and wait for either a confirmation
or a timeout before moving on to the
next. This can take up to five seconds,
which makes automatic detection of a
force-feedback device at game start-up
less appealing.

Once the force-feedback device is ini-
tialized, the user should be able to cus-
tomize the force settings for the device.
At a minimum, users should be able to
set the gain, since force-feedback
devices tend to vary in the amount of
foot-pounds they can exert. (There is a
proposal to have this gain setting
incorporated into the device’s property
sheet in Windows, but you’ll need to
implement this yourself in your game,
at least until DirectX 6.) Various types
of devices exert different amounts of
force (for example, wheels typically
exert more force than sticks), but even
the forces applied by different brands
of joysticks can vary. Gain adjustment
may seem like a simple task at first, and
it can be depending on how far you
take this setting. Gain can easily be
applied to Springs and Jolts for exam-
ple, but Vibrations and custom forces
are commonly very temperamental,
and adjusting their gain can ruin the
desired effect. So, if some effects can be
ruined by differences in gain, and
force-feedback devices have different
force ratings, there’s a problem.

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

28

F O R C E F E E D B A C K

F I G U R E 1 . Double-slotted bale. F I G U R E 2 . Five-bar linkage.

Basically, each force-feedback device
requires some special tuning considera-
tion to get the desired effects just right.

Carefully consider how you allow
players to map (or customize) their
input controls. When input mappings
are altered by the game player, the new
mapping should also change the imple-
mentation of force-feedback effects. If
you don’t give adequate thought to
how your input device will behave
once the player modifies the standard
configuration, the player could be in
for an unpleasant experience. For
instance, imagine that a player is using
a joystick in a car racing game. The
default mappings have the y axis act as
a combination gas/brake pedal, increas-
ing the vehicle’s speed when the stick
is moved forward and braking the car
when the stick is moved back toward
the player. If the player remaps the y
axis so that pushing forward on the
stick up-shifts the car’s gears and
pulling back down-shifts the car, then
a y-axis jolt can cause a problem. A col-
lision to the car from behind would
cause a forward jolt effect on the stick,
and inadvertently cause the car to shift
up a gear.

Allowing the player to turn on or off
certain force effects is a nice feature
(for example, engine vibration trans-
mitted to the joystick may be annoying
in a long race). You could even go so
far as to let players customize certain
effects. While this may be going over-
board, remember that game extensibili-
ty is valued by most players. If effects
are created with a sensation editor and
saved to a file loaded by the game,
players may be able to customize these
effects with the same editor, and share
their customized effects with other
players on the Internet.

Switching between various frames of

reference in your game is risky. A frame
of reference (FOR) is the “who” or
“what” to which the force response
attaches. You generally only need to
consider two FORs, the player’s body
and their machine (one inside the
other, but not rigidly attached).
Switching between FORs may confuse
the player, making forces appear
buggy. For example, forces on a car
don’t have the same vectors as those
on the driver, and switching between
the two hurts the realism of the game.
Choosing the object that directly
interacts with the simulated
environment usually pro-
vides the best experi-
ence. Switching FORs
or choosing a bad
FOR also complicates
development by
making it difficult
for the engineer to
identify and correct
undesired feedback
loops.

Be careful of feedback
loops in your force effects.
Feedback loops occur when a force is
attractive. A simple example of this is
when a car hits a barrier and the frame
of reference is attached to the driver of
the car, but the collision detection/cor-
rection is attached to the car itself
(Figure 3).

The force response is in the general
direction of the barrier, which makes
the player hit the barrier again —
hence the feedback loop. A feedback
loop was not appropriate for the exam-
ple barrier collision (caused by the poor
FOR choice), but in some cases it works
out great. Gravity wells, rubber-band-
ing, and tractor beams could all benefit
from a feedback loop, which, by the
way, can be pulled out of with a little

effort on the gamers part.

Types of Feedback Effects

T he terms “texture” and “effect” are
often used interchangeably to

define the force-response data sent to
the device. In haptics, “textures” are
literally textures (such as sandpaper,
wood grain, and so on), so I will refrain
from confusing the distinction. Effects
can be two-dimensional on joysticks

and are one-dimensional on
wheels. Many effects are

additive, meaning they
can be played with

other effects simulta-
neously. Effect addi-
tion is nice to a
point, but too much
can take away from
the experience (and

wear out the user).
The following sections

discuss ways of thinking
about effects.

STATIC AND DYNAMIC EFFECTS. After
creating an effect, it can remain
unchanged or undergo continuous
modification. Static effects (also known
as “canned” effects) don’t require run-
time modification, which makes them
simple and well-suited for trigger
effects. A gun shot is a good example
of a static effect because it always pro-
duces the same kick in the same direc-
tion. Static effects can be downloaded
and remain on the device (as long as
there is enough device RAM), which
gives them very low response latency.
Static effects are also easier to design
because testing doesn’t need to be
done on numerous variations of the
effect, as is the case with dynamic
effects. They can also be easily created

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

29

F I G U R E 4 . Microsoft’s Visual Force

Factory

F I G U R E 5 . Immersion’s I-FORCE

Studio

F I G U R E 3 . The forces involved in a

car crash.

Reflection

Incidence

Response

with the sensation editors (which I will
discuss later). Some devices have ROM
effects that don’t use any RAM (beyond
the space allocated for parameter modi-
fication); such effects can be used as
either static or dynamic effects at a
very reduced space cost.

Most effects can be
modified during play-
back, producing a
dynamic effect. A joy-
stick vibration that
varies with engine
RPM is an example of
a dynamic effect.
Dynamic effects are
where force-feedback
technology really shines,
as they let the player experi-
ence the best motion within the
game world. Unfortunately, good
dynamic effects can also be time con-
suming to create. One pitfall is that
some devices don’t work well at the
extent of their range; sometimes sim-
ply incrementing a variable can drasti-
cally change a force effect. For exam-
ple, some force-feedback devices have
too much play and/or motor friction to
adequately represent the full spectrum
of frequencies for which the engine
vibration effect may have been coded.
To address this problem, you should
critique individual devices to find a
general minimum and maximum
across the range of force feedback hard-
ware.
OPEN-ENDED AND ONE-SHOT EFFECTS. There
are two ways to manage effect play-
back, and both will probably show up
in any given game. One-shot effects are
those with a finite duration. They are
simple to manage because you play the
effect and forget about it. A single jolt
to a joystick as a result of pulling the
joystick trigger to shoot a gun is an
example of a one-shot effect. The effect
is executed and stops on its own.

On the other hand, open-ended
effects require the game to monitor
state information in order to stop the
effect at the proper time. Consider, for
example, a car (a fast, exotic, red one)
driving over a wood-plank bridge.
There is no finite duration for the car’s
time on the bridge, so the effect will
need to be monitored by the game to
regulate the vibration in accordance
with speed, and stopped whenever the
car stops or leaves the bridge.
INTERACTIVE AND TIME-BASED EFFECTS. Effects

can be divided into interactive and
time-based events. Time-based effects
are played regardless of where the
force-feedback device is positioned.
Jolts and vibrations are time-based

effects. Interactive effects are
based on the state of the

stick (position, velocity,
and/or acceleration).

Springs and friction
are some examples of
interactive effects.
DirectInput catego-
rizes interactive
effects as “condi-

tions.” All other
effects are time-based

and fall under the cate-
gories of “periodic,”

“ramp,” or “constant” (Table 2).

Force-Feedback APIs

T he DirectInput API in DirectX 5 is
definitely the force-feedback API of

choice in the long run. All three force-
feedback engine manufacturers
(Immersion, Microsoft, and Cybernet)
currently or will soon support
DirectInput. That is reason enough to
use it, but there are other redeeming
qualities. The API is designed to be very
flexible and is easily extensible. The
problem with DirectInput is that it can
be a bit convoluted at first glance.

DirectInput wrappers (whether you
make your own or use someone else’s)
are necessary to restrict the generality
and redundancy of the API, which is a
result of DirectInput’s basis on
Microsoft’s Component Object Model
(COM). Effect management should also
be addressed by a wrapper because
DirectInput doesn’t do this for you.
DirectInput didn’t hide the RAM limi-
tations of the devices by providing
software mixing, which creates a
download/offload dilemma that you,
the developer, have to address.

Other issues that DirectInput wrap-
pers can simplify are the notation and
numeric ranges of the DDIIEEFFFFEECCTT structure
variables. For example, the ddwwGGaaiinn ele-
ment in the DDIIEEFFFFEECCTT structure has a
range of 0-10,000. Gain is analogous to
a volume setting for the device, which
is easier to manage as a percentage (0-
100) of effect strength. A wrapper
could also simplify DirectInput’s han-
dling of periods. DirectInput uses

microsecond notation, which a wrap-
per could convert to the conceptually
easier frequency notation. Finally, get
this: direction can be expressed in
polar, spherical, or Cartesian coordi-
nates. Decent error handling and
recovery can get out of control unless
this measurement system is simplified
by a wrapper.

Although I recommend using
DirectInput as your force-feedback API,
it’s not your only option. Here’s a short
description of proprietary APIs and
DirectInput wrapper APIs:
I-FORCE 1. This is Immersion’s propri-
etary stand-alone API. I used this sim-
ple, easily implemented API in THE

NEED FOR SPEED – SPECIAL EDITION. I-
FORCE 1 only works with the
Immersion engines, but it works in
both Windows and DOS. Future effort
will likely lean on DirectInput device
driver support, rather than improving
I-FORCE 1.
CYBERNET 2. The latest Cybernet API sup-
ports DirectInput and I-FORCE com-
patible drivers. It’s a stand-alone API
that falls between I-FORCE 1 and
DirectInput in terms of complexity and
features.
WRAPPERS. Using a wrapper will make
initial implementation easier because it
will hide many of the gotchas. But
before you simply jump into using one
of these premade wrappers, realize that
they are focused around their creators’
devices and will exhibit some problems
running on their competitors’ devices.
Immersion and Microsoft both provide
source code of their wrappers, and it’s
an excellent way to determine the dif-
ferences between the two companies’
interpretations of the DirectInput

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

30

F O R C E F E E D B A C K

Group Category Type

Interactive Condition Spring

Damper

Inertia

Friction

Time-Based Periodic Square

Sine

Sawtooth Up

Sawtooth Down

Constant Constant

Raw

Ramp Ramp

TA B L E 2 . Types of force-feedback

effects.

force-feedback specification. It’s also a
good starting point if you want to cre-
ate your own universal wrapper. If I
decide to use a prefabricated wrapper, I
expect it will be for effect file loading
only.
I-FORCE 2. This is a misleading name
because I-FORCE 2 is not a stand-alone
API upgrade to I-FORCE 1. I-FORCE 2
only loads effect files created by
Immersion’s sensation editor (I-FORCE
Studio), and wraps the DirectInput
effect create and release interfaces. The
I-FORCE 2 documentation has sample
code for a more complete wrapper, but
this code isn’t present in I-FORCE 2.
SIDEWINDER FORCE. This is Microsoft’s
fully functional DirectInput wrapper.
SideWinder Force has functions to
work with Microsoft’s sensation editor
(Visual Force Factory) and wraps effect
modification and playback.
SideWinder Force also wraps device
setup tasks. The source code to the
SideWinder Force library is provided
with Microsoft’s SDK.

Tools

S ensation editors pro-
vide a means to

visually edit forces.
The visual environ-
ment helps clarify
the purpose of all the
variables in a given
effect and modify
those variables on a
picture or graph. After
creating an effect, it can
be played back, allowing for
a fast edit/play development
cycle. Once the effect(s) are finalized,
they can be saved to a file for the game
to load at run time. A force-feedback
emulator, on the other hand, creates a
virtual device that visually represents
force-feedback effects on a monitor.
SENSATION EDITORS. Currently, two sensa-
tion editors are available: Microsoft’s
Visual Force Factory (Figure 4) and
Immersion’s I-FORCE Studio (Figure 5).
Both of these editors output
DirectInput-compatible files that can
be statically linked to the game or
loaded at run time. The benefit of load-
ing the effects at run time is that con-
sumers can modify the effect in the
sensation editor themselves. Both edi-
tors are capable of single and com-
pound (concatenated) effect creation.

They will both support playback within
the editor on all DirectInput-compati-
ble force-feedback devices, but the first
revisions may not work flawlessly with
competing devices due to the infancy
of DirectInput force-feedback device
drivers. I recommend playing with the
editors even if you don’t plan on using
them extensively. This will help you
understand the parameters for various
effects.
FORCE-FEEDBACK EMULATOR. Immersion has
a serial-based emulator that runs in a
DOS window on a second machine.
This expedites trouble shooting if you
don’t have a force-feedback device
handy. In some instances, the emulator
is better than a device because you can
watch the state of a virtual device on
your monitor; however, it only works
with I-FORCE 1 drivers. This emulator
was created when prototype devices
were scarce. However, since force-feed-
back devices are now readily available,
both Microsoft and Immersion believe
that emulators are non-essential for
DirectInput.

Sample
DirectInput Code

T he sample code
on the Game

Developer web site is
straight DirectInput
code. I refrained from

using wrapper APIs in
order to remain flexi-

ble. The mouse and key-
board are referenced in the

sample code because they were
closely tied to the device setup in my
test suite. I removed most of this code
to minimize the distraction from the
joystick and force-feedback code rele-
vant to this discussion.
DEVICE SETUP. The following is an
ordered list of essentials to get up and
running:
1. Retrieve a pointer to the DirectInput

interface (LLPPDDIIRREECCTTIINNPPUUTT).
2. Using the LLPPDDIIRREECCTTIINNPPUUTT, enumerate

the joysticks.
3. Your enumeration callback function

can either save the LLPPDDIIDDEEVVIICCEEIINNSSTTAANNCCEE
passed to it for each joystick for later
device creation, or create the device
within the callback function (as the
sample code does).

4. Using the LLPPDDIIDDEEVVIICCEEIINNSSTTAANNCCEE for a

given device, get a pointer to the
LLPPDDIIRREECCTTIINNPPUUTTDDEEVVIICCEE interface for that
device.

5. Using the LLPPDDIIRREECCTTIINNPPUUTTDDEEVVIICCEE, set the
data format (the sample code uses
the default format explained in the
DirectX 5 documentation).

6. Again using the LLPPDDIIRREECCTTIINNPPUUTTDDEEVVIICCEE
(DDIIDD), call QQuueerryyIInntteerrffaaccee(()) to upgrade
to an LLPPDDIIRREECCTTIINNPPUUTTDDEEVVIICCEE22 (DDIIDD22). The
DDIIDD22 inherits all the functionality of a
DDIIDD, so you can even use DDIIDD22 for game
controls without force-feedback sup-
port. The standard DDIIDD doesn’t sup-
port force feedback.

7. Using the DDIIDD22, set the co-op level. It
must be DDIISSCCLL__EEXXCCLLUUSSIIVVEE and either
DDIISSCCLL__FFOORREEGGRROOUUNNDD or DDIISSCCLL__BBAACCKKGGRROOUUNNDD.

8. Release the DDIIDD because you now
have a DDIIDD22 that takes its place. This is
the last thing I do in my callback
function because I have the DDIIDD22 that
is used to acquire the device and
query its capabilities.

9. Repeat steps 4-8 for each device you
want to use.

10. Using the DDIIDD22, acquire access to the
device. This call is made initially
and again whenever you lose and
regain window focus.

11. Using the DDIIDD22, get the device’s
capabilities. This will tell you if the
device supports force feedback, as
well as how many axes, buttons,
and so on, are on the device.

EFFECT SETUP. Ideally, you want the
effects that you create and the effects
played back in your game to have a
one-to-one correspondence. Even
though DirectInput makes no attempt
to hide the RAM limitations of the
force-feedback device, and even
though some devices can only have
one type of resident effect, it’s still pos-
sible to get accurate effect playback.
You just need to prioritize the playback
of effects of the same type.

The basic steps of effect creation are:
1. Determine if the effect is supported

by the device.
2. Create the effect using the DDIIDD22 of the

device for which you want the effect
created (the same effect must be cre-
ated on each device separately) and
passing in a filled in DDIIEEFFFFEECCTT struc-
ture.

3. Unload the effect to make room for
the next effect.
Effects are automatically down-

loaded to the device when created. If
the device is full, however, the

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

32

F O R C E F E E D B A C K

CCrreeaatteeEEffffeecctt(()) interface will produce an
error. To prevent this error from occur-
ring, you can set a flag to prevent the
automatic download of effects during
the effect creation stage, and then turn
it back on so that the effects automati-
cally download when you play them.
PLAYBACK. To play a trigger effect, you
must download the effect (make sure
the trigger button variable is set appro-
priately in the DDIIEEFFFFEECCTT structure).
Unloading the effect will stop the
effect. When the effect is unloaded,
pressing the trigger no longer plays the
effect. Unfortunately, Immersion and
Microsoft have interpreted the DirectX
5 specification for this process slightly
differently, and as of this writing they
haven’t arrived at a common solution.

In Immersion’s implementation,
starting a trigger effect won’t play it
immediately. Rather, it will acti-
vate the effect to be played
when you press the
assigned trigger. The
benefit of this approach
is that multiple effects
can be mapped to a
trigger and remain res-
ident on the device.
This means switching
trigger effects is a low-
latency process.

In Microsoft’s implemen-
tation, the trigger effect is
ready to use once it is downloaded.
If you start the effect, it will play back
immediately, even if it’s mapped to a
trigger and the trigger hasn’t been
pressed. The benefit to this implemen-
tation is that the effect can be used for

both trigger and non-trigger effects,
but in order to unlink the effect from
the trigger, the effect must be modified
(requiring download) to detach it from
the trigger.
PROCESS LISTS. A process list allows you
to concatenate effects so that one plays
after the previous is completed. Process
lists are being proposed for inclusion in
DirectX 6. This feature is currently
available through use of the DDIICCUUSSTTOOMM--
FFOORRCCEE effect, which can be created man-
ually (with a fair amount of effort) or
with the sensation editors. There is no
standard way to concatenate effects,
however, so these emulated process
lists don’t port well between the differ-
ent force-feedback engines.
MODIFYING EFFECTS. Many effects can be
modified during playback, depending
on which device you are targeting.

While tuning dynamic effects,
be aware of their impact

on latency and proces-
sor load — you’ll run

into trouble if you’re
not making a con-
scious effort to
avoid both. There
are several ways to
modify effects. You

could release the old
effect, create a new

one, and play it — prob-
ably the worst method. The

best way is to modify an existing
effect with the SSeettPPaarraammeetteerrss(()) interface.
With this function, you can specify
changes in single parameters, and only
those parameters will be
downloaded,thereby reducing latency.

Another method is to modify an effect
and then play or update the effect in
the same call to SSeettPPaarraammeetteerrss(()), which
reduces the amount of communication
required with the device, since the play
command piggybacks on the modify
command.
MIXING EFFECTS. An effect must be on the
device in order to play it. Yet most
force-feedback devices limit the num-
ber of effects that reside in the device’s
RAM at any given time, and software
mixing isn’t supported in DirectInput.
The result is that you may be limited to
playing only two DDIICCOONNSSTTAANNTTFFOORRCCEE effects
at once. Until effect management is
improved, you’ll probably experience
some difficulties with mixing configu-
rations on low-RAM devices.
GAIN ADJUSTMENT. The gain can be adjust-
ed in one of three ways. Most effects
have a magnitude parameter for each
axis — some go as far as one parameter
for each direction of each axis. The sec-
ond method is to set the gain on the
entire effect, which will be applied to
all sub-elements, including envelops.
The third method works on a device
level. All effects are attenuated by the
setting passed to SSeettPPrrooppeerrttyy(()) (not to be
confused with SSeettPPaarraammeetteerrss(()), which
works at an effect level).

Shake It Up

F orce-feedback devices are now
readily available to consumers

looking for good force response in their
games. DirectInput force feedback is a
little detailed, but programming with it
will increase the chances that all
devices will work with your game.
Remember that DirectInput force feed-
back is a “version 1” API, as are the
accompanying device drivers. Effect
management/emulation is bound to
improve in the next revision. Inserting
force feedback into the game near the
accompanying sound effects will make
implementation easier. Competition
between the contenders in the force-
feedback market is bound to bring out
improved force-feedback technologies
in the coming years. If all this stops
being fun, take a vacation. ■

Chuck Walters is a software engineer at
Electronic Arts in Seattle, Wash., and
received his BSCS degree from the
University of Washington, Seattle. He can
be reached at cwalters@ea.com.

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

33

T here are two books on force-

feedback technology and pro-

gramming that you should

investigate if you want further

information on the subject. The first

book, Grigore Burdea's

Force and Touch

Feedback for Virtual

Reality (John Wiley &

Sons, 1996) is a good

book about the design

and theory of force-feed-

back hardware.

The second book, Louis Rosenberg's

A Force Feedback

Programming Primer,

(Immersion Corp., 1997)

is targeted more specifi-

cally at the game devel-

oper. Rosenberg is the

president of Immersion

Corp., and his book

focuses on the I-FORCE 2 and DirectX 5

methods of implementing force effects. The

177-page book is free and is available an

Adobe Acrobat file from the Immersion web

site (http://www.force-feedback.com/

pages/ book_request.html).

Books on Force-Feedback Technology

specific structure that it was originally conceived to describe.
That word is “voxel,” and the context is voxel engines.
Voxel engines have come to mean anything that renders ter-
rain-like imagery; whether or not the engine is based on real
voxels is immaterial as long as it looks good.

Figure 1 is a screen shot of the voxel engine created in this
article compared to a screen shot from the quintessential
voxel-based game COMANCHE 3 from NovaLogic. I don’t
know exactly what technique they’re using, but as long as
ours looks the same, why ask why? Anyway, in this article,
we’re going to hold fast with the tradition of using the term
voxel loosely to describe a technique used to render data
that has volumetric information in it rather than polygonal
data. However, before we take off into mathematical hell,
let’s take a look at real voxel graphics and their data repre-
sentations.

Real Voxels

V oxel graphics originated in medical imaging. Voxel
means “volumetric pixel” and is essentially a cube in

3D space. Each cube has a volume dependent on the length
of one of its sides. However, most representations use voxels
that are 1 × 1 × 1, so each voxel has a volume of 1 × 1 × 1 =

1.0 voxels. At this point, you may be wonder-
ing, “How do I represent voxel data in a com-
puter?” There is no correct answer, but most
of the time, voxels are represented by either a
3D array or a more abstract data structure
such as a tree. Figure 2 illustrates a voxel geo-
metrically, along with the two most common
representations. Voxel data is usually
obtained from medical imaging systems such
as MRI and CT scanners.

Voxel rendering can be accomplished in a
number of ways, such as ray tracing or even

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

34

T U T O R I A LP R O G R A M M I N G

Real-Time
Voxel Terrain
Generation

or the past few years, game program-

mers have been steadily adding

terms to their 3D vocabulary — terms

such as binary space partition, rasteriza-

tion, perspective-correct textures, MIP-

mapping, and so on. One of these terms

has become a catch-all describing a gener-

al means to an end rather than the

FF

F I G U R E 1 . The author’s voxel engine is on the left; COMANCHE 3 is on the right.

with polygon graphics. In the case of ray tracing, imagine
that each voxel is a tiny little cube, and a ray tracer traces
out the voxel data by computing ray intersections from the
viewpoint through the view plane into the voxel data. Of
course, this approach would be extremely slow because there
are zillions of voxels in even the simplest voxel data set. For

example, say that you’re scanning your head and you have a
scan resolution of 100 dots per inch; that means that there
are 100 × 100 × 100 voxels in each cubic inch or 1,000,000
voxels! Now image that your head is about 6 × 6 × 10 (I don’t
have a ruler) inches for a total of 360 cubic inches — 360 *
1,000,000 = 360,000,000 voxels! At eight bits per voxel,
you’ve got 360 megabytes. Call it half a gigabyte for people
with large foreheads, and you’ve got a real problem. There
must be a better way to store and display voxel data. And, of
course, there is.

Voxel data can be compressed, take advantage of spatial
partitioning techniques, and so on. However, the real prob-
lem isn’t in the storage, but in the rendering. Processing
hundreds of megabytes of data per frame would be a bit
slow, to say the least. Therefore, algorithms have been
devised that take advantage of the cubic and regular struc-
ture of a voxel data set to render the data quickly and in

almost photorealistic quality. One such algorithm is the
“Marching Cubes” technique, which is based on rendering
slices of voxel data. Fortunately, we’re not going to learn the
marching cubes algorithm, because we don’t need to render
full voxel data. Rather, we’re concerned with data that is
partially volumetric, such as height data.

Unreal Voxels

S ince we’re interested in simply drawing 3D terrain (in
real time of course), we don’t need full 3D voxel data. A

mountain range is basically a 2D grid with a height (and
color) at each position, or in another words, a height map
(Figure 3). The trick is to figure out a way to render height
map data in such a way that it looks 3D and has some
resemblance to the data set being rendered. Because we
don’t want to write a polygon engine that renders little
cubes, or more precisely, vertical parallelepipeds, we’re stuck
with using some form of ray tracing to create our display.

This isn’t as bad as it seems. Just as ray casting (the tech-
nique used for WOLFENSTEIN and RISE OF THE TRIAD) works for
worlds made of rectangular solids, we can use ray casting to
render worlds that are composed of rectangular solids that

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

35

SOME OF THE MOST REALISTIC TERRAINS
IN TODAY’S GAMES USE VOXEL TECHNOLOGY.

THIS TUTORIAL EXPLAINS VOXELS
IN THE CONTEXT OF BUILDING A RUDIMENTARY

FLIGHT SIMULATOR b y A n d r é L a M o t h e

Geometric representation Abstract matrix representation Abstract graph or tree representation

+y

dz= 1.0

dy = 1.0

dx = 1.0
+x

Single
voxel

r

n

m

(x,y,z)

+z

Voxel with volume 1.0
at position (x,y,z)

Voxel _Data [m] [n] [r] Voxel _Data_node
{
Data
*Links
}

F I G U R E 2 . Three representations of a voxel.

just happen to be about a pixel or two in thickness. All we
need to do is change the scale of our thinking and use the
same idea. In addition, because we’re going to use height
map data, we don’t need a ton of 3D voxels to describe our
data set. We simply need a 2D array that contains a height
in each cell. Therefore, we’ve already killed at least one full
dimension of storage — and that is a good thing.

There is once catch to our representation/compression tech-

nique; the minimum altitude of all
heights is the same (that is, sea level), and
each column must have the same color
along its vertical extent. Of course, we
could add another 2D array that contains
the starting altitude, allowing us to ren-
der caves, but we’ll keep it simple this
time around. The real bummer is that
each voxel column in the height map
must be the same color. However, if you
think about it, this doesn’t matter,
because when you’re looking at a moun-
tain range, you only see the top of each
vertical column. The color of the material
at various depths is irrelevant unless you
have x-ray vision and can see through the
mountain material. So the bottom line is

that all we need is one 2D map to represent the height data,
and maybe another 2D map, similar to a texture map, that
represents the color for each voxel column. So if the world is
1,000 × 1,000, then we need a total of 1MB × 2 or 2MB of stor-
age, assuming a byte for each height and color. That’s a pretty
good savings from our original 500 Mb of full 3D voxel data!

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

36

P R O G R A M M I N G T U T O R I A L

m x n Height Field Data 3D Representation of Data set

Each cell contains height
data for voxel column.

m

n

2 5 22 19 7 6 5 3

9 12 8 100 56 64 31 26

3 9 47 54 36 22 15 9

F I G U R E 3 . Height map data.

Top view x-z

+z

-x +x

+x

+y +z

α = Field of view
3D view

Viewing
Frustum

Hither clipping
planeView direction (θ,φ,β)

Clipping
planes

View plane

View plane

Viewing distance

View point (xc,yc,zc)

View point
Yon
clipping
plane

F I G U R E 4 . The 3D viewing system.

A Ray Casting Terrain Algorithm

B efore we write the terrain generator, we’re going to
look at how to do it the slow way and then we’ll make

a number of optimizations to make it about 100 to 1,000
times faster. The key here is to understand the geometry and
what is happening in the terrain generator. Don’t worry,
we’re not going to plunge into gradients and vector calculus.
We’ll use nothing more than basic geometry with a little bit
of trigonometry.

Let’s begin with some terminology — refer to Figure 4 as
we go. The position that we’re going to view the scene from
is called the “view point,” or “camera.” It has a position
(xc,yc,zc) and orientation (θ, φ, β). The position is in “world
coordinates,” and the orientation coordinates are angles
analogous to the pitch, yaw, and roll of the camera. The
direction that the camera is pointing is called the “view
direction.” The object we’re looking at is called the “view
plane,” which is a surface representing the window onto
which we’re mapping the 2D information to generate the
illusion of 3D. The view plane is usually the screen, but
doesn’t necessarily have to be. Also, the perpendicular dis-
tance from the view plane to the camera is called the “view
distance.” Finally, the camera has a “viewing volume,” or
“frustum.” This is the area that is visible to the camera. For
example, most people have about a 140-degree horizontal
field of view (FOV) and a 90- to 120-degree vertical FOV. So
we should make our computer models within the same order

of magnitude if they are to look at all real. For example,
DOOM and QUAKE use a 90-degree FOV. A game with a 60-
degree FOV would show less, and a 180-degree FOV would be
like looking out of a wide-angle lens — that is, lots of distor-
tion.

Imagine that the camera is flying above the terrain at
some height, and we want to see what the resulting image
would be on the computer screen. This can be accomplished
by brute force ray tracing. For every pixel on the screen,
we’ll construct a ray that originates from the camera, pierces
the screen (at the pixel), and continues on until it hits the
terrain. Figure 5 illustrates this using multiple views. Listing
1 shows the pseudo-code.

That’s all there is to it. Because of the algorithm’s design
and its close analogy to the physics of photons and real

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

37

+z

+x

View distance

Top view x-z

View plane
(screen)

Voxel Data
(each cell represents
height)

View point
(xc,yc,zc)

+z

+y

View distance

One "slice" of the data

Side view y-z

View plane (screen)
Each screen row

View point
(xc,yc,zc)

F I G U R E 5 . Ray tracing voxel data.

FFoorr ((eeaacchh ppiixxeell oonn tthhee ssccrreeeenn))

{{

11.. CCoommppuuttee rraayy oorriiggiinnaattiinngg ffrroomm ccaammeerraa tthhrruu ppiixxeell..

22.. PPrroojjeecctt tthhee rraayy..

33.. IIff ((PPrroojjeecctteedd rraayy iinntteerrsseeccttss tteerrrraaiinn))

{{

CCoolloorr ssccrreeeenn ppiixxeell ccoolloorr ooff iinntteerrsseecctteedd tteerrrraaiinn ddaattaa..

}} //// eenndd iiff

}} //// eenndd lloooopp

L I S T I N G 1 . Pseudo-code for brute force ray tracing.

light, the scene will be rendered almost perfectly (of course,
there won’t be shadows or reflections). The only problem is
that Steps 1, 2, and 3 take a lot of computer cycles. For
example, if you want to render a screen image that is 320 ×
200, you’ll have 64,000 pixels. Hence, we must compute
64,000 rays or parametric lines, project these until they
intersect with the terrain data, compute the points of inter-
section, and then plot the pixels on the screen in the correct
color. That’s a lot of computing. We need a way of doing the
same thing with less math and fewer computations. This can
be accomplished by taking advantage of the regularity of the
data and the behavior of perspective transforms.

Optimizing the Algorithm

W e’re now going to derive an algorithm and associated
optimizations so that voxel terrain data can be ren-

dered at faster rates. However, the algorithm is so simple,
you really need pay attention to all the subtle details. Let’s
begin by taking a look at the derivation of the perspective
transform and what it does for us.

When drawing 3D computer graphics on a 2D computer
screen, we only have two dimensions. Therefore, to convey
the data that is lost in the translation of 3D to 2D, various
projection techniques have been created. One such tech-
nique, perspective projection, is based on the premise that as
an object moves away from the view plane and camera, it
should get smaller. Similarly, as the same object gets closer
to the view plane and camera, it should get larger. Therefore,
we can deduce the projection from the z coordinate of each
vertex making up a 3D object.

Figure 6 represents a perspective transformation as well as
a nonperspective, or orthographic, projection. As you can
see, the perspective projection looks a lot better — it looks
3D. The key to generating a perspective projection is using
the z component of each vertex to scale the position of each
(x,y) to arrive at a new (x,y). It might be easier to understand
this relationship by looking at how real light works. Take a

look at Figure 7a. Here we see a line segment at some posi-
tion on the left side of the view plane. To generate the per-
spective projection of the line on the view plane, all we need
to do is draw rays from the view point through the view
plane to each end of the line segment. The point where each
of these lines intersects the view plane is the perspective-cor-
rect line that we would see if we were viewing the scene at
the given viewing distance through a window.

Figure 7b shows the derivation of the perspective trans-
form. The figure shown is a side view of the z-y plane, so
there isn’t any x information; a similar derivation can be
done for the z-x plane. Anyway, the view point lies on the z
axis at a distance Vd from the view plane, and the point P =
(Px,Py,Pz) is at some distance Pz and at some height Py from
the view point. Finally, P’ = (Px’,Py’,Pz’) is the point of inter-
section on the view plane. Using similar triangles, we extract
the relationship

or,

.
Thus, it looks like the perspective transform of a point

(x,y,z) at a viewing distance of Vd is

.
This tells us a couple things: First, the height or size of a

line decreases as it gets farther away from the view plane.
We therefore know that the scale of an object is also propor-
tional to the z distance that it is from the view plane. We’re
going to base our entire algorithm on this important fact.

Now it’s time to get down to the details. We have all the
tools that we need to really analyze the situation and come
up with a better algorithm than the brute force method of
computing a ray for each pixel on the screen. What we’re

x_perspective V Px Pz

y_perspective V Py Pz

d

d

= ∗()
= ∗()

Py V
Py
Pzd′ = ∗

Py
Py

Pz
Vd′

=

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

38

P R O G R A M M I N G T U T O R I A L

Perspective projection

x' = D * x
z

Orthographic projection

y' = D *

z coordinates are used to complete (x',y').

y
z

x' = x

y' = y

z coordinates are thrown away.
Projection is totally parallel.

F I G U R E 6 . Screen projections.

going to do is trace out, or contour
map, each vertical scanline of the
screen by first casting out a single ray
for each column on the screen. Based
on the first voxel column that the ray
hits, we’ll then follow the contour of
the terrain from that point on without
any further rays being cast out in that
particular column (Figure 8).

But before you do that, let me offer
you a warning. The following figures
are a bit cavalier in their labeling of the
axes. This is due to the fact that we’re
trying to mix world coordinates, polar
coordinates, and screen coordinates.
The bottom line is that when we finally
get to writing the engine, the x-y axis
will be the ground plane, and the z axis
will vertical. However, for a number of
the figures, I used z to go into the
screen and y for vertical just to make
things easier to understand.

It’s possible to find the first intersec-
tion of a ray cast from the view point
through the bottom of the view plane
into the terrain, and then follow the
rest of the terrain’s contour and render
it based on the math and consistency
of the perspective transform. How?
Well, we need to make a few observa-
tions before we can construct the algo-
rithm. Figure 9 shows the view point
with a number of rays being cast
through each pixel in the same screen
column. This figure contains a lot of
information, so let’s review it slowly.

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

39

View plane (screen)

3D vertex
a.

P = (x,y,z)

P' = (x',y') projected point in
	 	 screen coordinates

View point
(xc,yc,zc)

+y

+z

View plane (screen)

b . (Px,Py,Pz)
P

Py
Py'

(0,0,0)View distance
Place view point at
origin (0,0,0) to simplify

Use similar triangles

(z-Vd) (Vd)

+y

+x

Py'

Py' = Py * , similarly Px' = Px * , • •
•

Py
=

+z

Vd

Pz

Vd

Pz

Px' = Vd *
Px

Pz

Py' = Vd *
Py

Pz

Vd

Pz

F I G U R E 7. The derivation of the perspective transform.

+z

+y

Vd

Height/
altitude

Seed ray

Dashed rays represent
rays synthesized by algorithm.

Voxel Data

Side view

View plane (screen)

Single column

Row 0

Row 1

Row 239 (Mode X)

View point
(xc,yc,zc)

•
•
•
•

F I G U R E 8 . Contour ray casting.

The first thing I want to bring to your attention is the slope
of the lines. The first line has a slope m1. Remember that

.
And remember, slopes don’t always have to be in terms of

x and y — they can be in terms of anything. A slope is the
rate of change of one variable in relation to another. In our
case, we’re interested in the rate of change of z with respect
to x or dz/dx. In Figure 9, the first line with slope m1 has dz
= 1 and dx = Vd. Therefore, the slope must be

.
That’s interesting. The slope of a line that originates at a

distance Vd from the view plane and pierces the first pixel
below (or above) has a slope of 1/Vd (the reciprocal). If
you’re with me, then hold onto your hat, because here’s the
clincher; in addition to m1 having slope 1/dz, m2 has a slope
of 2/Vd. Hence,

.
Or, in terms of m1,

.
What this means is that the change in slope per vertical

screen pixel, or per dy, is constant and equal to 1/Vd, which
we’ll call ds. Referring again to Figure 9, we see that the lines
with slope m1,m2,…m5 each intersect lines parallel to the
view plane at constant intervals. In other words,

,
and

.
So the points of intersection of a ray along any vertical

line at a given distance from the view point are also at con-
stant intervals. Moreover, this constant increases at a rate of
(ds*z), where z is just the distance between the line and the
view point along the z axis.

That’s all there is to the algorithm. We can now create an
incremental ray caster that casts a single ray for each column
of the screen and then generates a vertical column of pixels
that represent what the display would have looked like if we
had cast a ray for each pixel in the column. Let me repeat,
the algorithm we’re going to come up with only casts a sin-
gle ray from the view point through the bottom of the view
plane (the screen) for each column. The ray’s intersection is
then computed, and from that point on, the rest of the con-
tour for that column is generated incrementally using the
math that we’ve derived.

That sounds great, but how? Our plan of attack is as fol-
lows: First, we’ll need to generate a ray that has a dx,dy, and
dz for each column of the screen. We’ve talked about the dz
part, but what about dx and dy? The dx and dy components
are computed by finding the endpoints of a unit vector that

lies in the ground plane and is perpen-
dicular. For each column of the screen,
we want to cast a ray. So for a screen that
is 320 pixels wide, such as Mode X, we
need to cast 320 rays, each at a slightly
different angle. To do this, we first need
to decide on our horizontal FOV.
Assuming that we want a 60-degree FOV
and that our screen is 320-pixels wide,
we’ll need to break 360 degrees up into
smaller subangles so that from any view-
ing direction (that is, heading), we can
cast out 320 rays: 160 to the left and 160
to the right. So we create virtual degrees,
based on the FOV and the screen width.
The formula is

.

In our case, this is equal to
320*(360/60) = 1,920 virtual degrees.
With that computation out of the way,
let’s generate the dx,dy part of the ray

Number of Virtual Degrees =

 Screen Width
360

Field of View
∗

y b 1 ds V z

y b 2 ds V z

y b 3 ds V z

dy ds V z ds constant

d b

d b

d b

b d b b

1

2

3

= ∗ ∗ +()
= ∗ ∗ +()
= ∗ ∗ +()

= ∗ +() = ∗
M

y a 1 ds V z

y a 2 ds V z

y a 3 ds V z

dy ds vd z ds constant

1 d a

2 d a

3 d a

a a a

= ∗ ∗ +()
= ∗ ∗ +()
= ∗ ∗ +()

= ∗ +() = ∗
M

m 1 m

m 2 m

m 3 m

1 1

2 1

3 1

= ∗
= ∗
= ∗

M

m 1 V

m 2 V

m 3 V

1 d

2 d

3 d

=
=
=

M

m
dz
V

1
V1

d d

= =

Slope
Rise
Run

=

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

40

P R O G R A M M I N G T U T O R I A L

Voxel Line "B"+z

+y

Voxel Line "A"

Vd

zb

za

Row 239

m1 = dsm1
m2

m3

m4
.
.
.

.

.

.

y1b
y1a

∆B
∆A

ds

ds

ds

ds

∆A

∆A

∆A

∆B

∆B

∆B

m2 = 2 * ds

m3 = 3 * ds

Row 0

These represent voxel columns of data.

Row 1

y2b

y3b

y4b

y2a

y3a

y4a

F I G U R E 9 . The geometry of height mapping.

trajectory. From basic trigonometry, we know that any point
on a circle with radius r is equal to

where θ is the angle made with the positive x axis.
Since our camera is always flying above the terrain at an

altitude of z, we can use this equation to generate our dx,dy
deltas. However, instead of using the standard sine and
cosine, we must use versions of them that can take angles
from 0 to (1920 - 1). That’s why we’ll need to make look up
tables. The pseudo-code for our outer loop is in Listing 2.

Now back to the computation of dz. You’ll recall that dz is
the slope of the downward ray that we are casting to com-
pute the very first intersection (Figure 10). Referring to the
figure, the downward pitch of the camera relates to the start-
ing position of the ray cast. This means that if the camera is
pointing down to row 100 of the screen, then the slope of
the ray is 100*ds. Therefore,

.
Of course, since the screen’s y coordinate gets more positive

on the way down, we’ll need to alter this equation a bit; in
fact, we’ll need to do a lot of little tweaks to make things work.

Now that we know how to compute dx,dy, and dz, we’re
finally ready to complete the algorithm. Once we compute
these values, we enter a loop to render the current column.
The loop will project the ray from the camera’s view point
(xc,yc,zc) at a rate of dx,dy,dz. However, we must track one
other variable — the “current projected scale.” Recall that
we derived that the deltas between ray intersections piercing
adjacent pixels in a single column will intersect any vertical
column beyond the view plane at constant intervals. These
intervals are equal to the current distance from the view
point multiplied by the change in slope between adjacent
pixels on the screen in a single column, which is always the

same and is called ds in our derivation. This means that if
you’re some distance d from the view plane and you’re try-
ing to draw a voxel column, then you need to scale the col-
umn by this amount to take into consideration the perspec-
tive scaling that exists at the given distance from the view
plane. And the amount of scaling or difference between
adjacent intersections in a vertical column gets larger as we
move farther away from the view plane.

Now that we know that we need to track this “scaling” vari-
able, how do we use it? When the main rendering loop is
entered, the position of the ray is updated with the deltas
dx,dy,dz, and then the current z position of the ray is com-
pared to the height data located in the height map at the cur-
rent ray’s downward projected (x,y). If the height in the
height map is higher than the ray, we enter a second inner
loop. In this inner loop, the goal is to draw pixels in the col-
umn until we have drawn enough pixels so that the perspec-

dz screen row ds= ∗

x = r cos

y = r sin

∗ ()
∗ ()

θ

θ

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

41

//// ssttaarrtt rraayy ooffff aatt ffaarr lleefftt ccoolluummnn

ccuurrrr__aannggllee == ccuurrrr__hheeaaddiinngg ++ 116600

ffoorr ((iinntt ccoolluummnn == 00;; ccoolluummnn << 332200 ccoolluummnn++++))

{{

ddxx == CCOOSS__LLOOOOKK[[ccuurrrr__aannggllee]];;

ddyy == SSIINN__LLOOOOKK[[ccuurrrr__aannggllee]];;

ddzz == ??

//// ddrraaww tthhee ccoolluummnn

//// aaddjjuusstt tthhee ttrraajjeeccttoorryy aannggllee,, rroottaattee rraayy ttoo rriigghhtt

ccuurrrr__aannggllee——;;

}} //// eenndd ffoorr

L I S T I N G 2 . The outer projector loop.

(x,y)

+z

View plane (screen)

View point

Downward
pitch

Row 0

Row i

∴ dz = ds * i
 = downward slope of ray
 along trajectory of current
 column (dx,dv)

Row 239

θ

F I G U R E 1 0 . Computing dz.

tive projection of the voxel column looks correct on the dis-
play. This is accomplished by having an exit strategy based on
the current projected scale. At each iteration, we add the cur-
rent projected scale to the z of the ray, which has the effect of
“climbing” up the voxel column. At the same time, we adjust
the slope of the ray, because each pixel we draw means that
the new ray would have a slope change of ds. Therefore, dz is
incremented by ds. Finally, when z is above the voxel column
(or when we’ve hit the top edge of the screen), we bail out of
the loop and continue tracing the contour. The tracing
process must be done for a number of steps from “hither” to
“yon” in Figure 4 to cast far enough to see reasonable detail.

Putting It All Together

N ow to write a program that uses our algorithm and gen-
erates the 3D voxel display. Here is where all the details

come into play. Before we dive into the voxel display gener-
ator and the main control module, let’s cover a quick check
list of what our code needs to do. First, we need to generate
height data and a color map, and we need to encode them in
some common format such as .BMP or .PCX. The height
data can be generated algorithmically, or you can download
satellite height data — or if you have an extra $100.00, you
can get a copy of VistaPro 4.0 (http://www.callamer.com/
vrli/vp.html), which is what I did. VistaPro is a fractal terrain
generator that creates height data and 3D views with full
texturing of the height data. Thus, you can create any fractal
landscape you wish. The program allows you to export the
terrain height data as a 256-color gradient contour map
(Figure 11a). We can read in this file and use the color index
as the height of each voxel column.

Getting the texture information is a little tricky, but basical-
ly what you do is place the camera at a (x,y) position in the
center of your world with a z altitude of 10,000 units or so.
From this altitude, the 3D terrain looks like a 2D texture map.
You can export it from VistaPro and then you can use this tex-
ture data as the texture color information for your rendering
(Figure 11b). So what size should we make the height and
color maps? I started off with 1,000 × 1,000-pixel height maps
and then realized these files would be too big to download —
about 2MB for everything. So I decided to go with 512 × 512
height and texture maps. This works out fine, looks good, and

all the data for two worlds is less than 400k after compression.
Now that we know the how and what of the data, let’s talk

about the program. I’ve written two versions of the voxel
terrain generator program; one with DirectX for Windows
95 (VOXELWIN.*) and the other in DOS 32 protected mode
(VOXELD32.*). They’re both way too long to list in their
entirety here, so we’ll only cover the main voxel rendering
module and the main control module. Let’s begin with the
terrain-rendering function RReennddeerr__TTeerrrraaiinn((......)).

The function implements our algorithm almost verbatim.
The only difference is that everything is in fixed-point math
with a 20.12 format — this, of course, is for speed. While the
floating-point processor may be faster than the integer
processor for multiplication, when you convert floating-
point values back to integers you’re looking at 40-60 cycles
per float. That’s horrible. The key to rasterization algorithms
is to convert the input into integers or fixed-point and, for
the entire algorithm, perform all pixel rasterization with
integers — don’t mix integers and floats. You can use both,
but keep them separate, or the implicit conversions and
casts will kill your performance. Anyway, let’s briefly cover
the function and see what it does.

First, you must send the function the (x,y,z) world coordi-
nates of the view point along with the pitch, yaw, and roll of
the camera. Actually, the roll isn’t used at all, and the pitch is
really more the horizon than an angle. The last parameter is
the destination buffer into which the scene frame is rendered.
The scene frame is defined in the main program’s define sec-
tion to be 320 × 240. Once the function is entered, the first

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

42

P R O G R A M M I N G T U T O R I A L

vvooiidd RReennddeerr__TTeerrrraaiinn((iinntt vvpp__xx,,
iinntt vvpp__yy,,
iinntt vvpp__zz,,
iinntt vvpp__aanngg__xx,,
iinntt vvpp__aanngg__yy,,
iinntt vvpp__aanngg__zz,,
UUCCHHAARR **ddeesstt__bbuuffffeerr))

{{
//// tthhiiss ffuunnccttiioonn rreennddeerrss tthhee tteerrrraaiinn aatt tthhee ggiivveenn ppoossiittiioonn aanndd
//// oorriieennttaattiioonn

iinntt xxrr,, //// uusseedd ttoo ccoommppuuttee tthhee ppooiinntt tthhee rraayy
yyrr,, //// iinntteerrsseeccttss tthhee hheeiigghhtt ddaattaa
ccuurrrr__ccoolluummnn,, //// ccuurrrreenntt ssccrreeeenn ccoolluummnn bbeeiinngg pprroocceesssseedd
ccuurrrr__sstteepp,, //// ccuurrrreenntt sstteepp rraayy iiss aatt
rraayyccaasstt__aanngg,, //// ccuurrrreenntt aannggllee ooff rraayy bbeeiinngg ccaasstt
ddxx,,ddyy,,ddzz,, //// ggeenneerraall ddeellttaass ffoorr rraayy ttoo mmoovvee ffrroomm

//// pptt ttoo pptt
ccuurrrr__vvooxxeell__ssccaallee,, //// ccuurrrreenntt ssccaalliinngg ffaaccttoorr ttoo ddrraaww eeaacchh

//// vvooxxeell lliinnee
ccoolluummnn__hheeiigghhtt,, //// hheeiigghhtt ooff tthhee ccoolluummnn iinntteerrsseecctteedd aanndd

//// bbeeiinngg rreennddeerreedd
ccuurrrr__rrooww,, //// nnuummbbeerr ooff rroowwss pprroocceesssseedd iinn ccuurrrreenntt

//// ccoolluummnn
xx__rraayy,,yy__rraayy,,zz__rraayy,, //// tthhee ppoossiittiioonn ooff tthhee ttiipp ooff tthhee rraayy
mmaapp__aaddddrr;; //// tteemmpp vvaarr uusseedd ttoo hhoolldd tthhee aaddddrr ooff ddaattaa

//// bbyytteess

UUCCHHAARR ccoolloorr,, //// ccoolloorr ooff ppiixxeell bbeeiinngg rreennddeerreedd
**ddeesstt__ccoolluummnn__ppttrr;; //// aaddddrreessss ssccrreeeenn ppiixxeell bbeeiinngg rreennddeerreedd

L I S T I N G 3 . 0 . The Terrain Rendering Algorithm.

F I G U R E 1 1 . Using VistraPro 4.0 to render terrain. 11a (left)

is the terrain height data exported as a 256-color gradient

contour map. 11b (right) is the rendered terrain based on

that contour map.

thing we do is to convert everything to fixed point and com-
pute the starting video address and ray casting angle.

Now that the starting position of the ray is computed,
along with the deltas, the main stepping loop is entered,
which will step out on each ray trajectory about 200 times.
This procedure is also controlled by a ##ddeeffiinnee in the main pro-
gram. Now, for each iteration of the main stepping loop, the
height of the voxel under the ray being cast is tested to see if
it is higher than the current ray’s z value or height. If so, the
voxel column segment wwhhiillee((......)) loop is entered, and the
voxel column is drawn until its projection is as large as its
height. Then the wwhhiillee((......)) is exited, and the ray’s position,
along with the current voxel scale, is updated with the appro-
priate deltas. The function can literally be ripped out and
used in any program as long as you include the ##ddeeffiinnees and
the main global data access pointers hheeiigghhtt__mmaapp__ppttrr and
ccoolloorr__mmaapp__ppttrr, which point to the data for the height field and
texture map respectively. Let’s see the function in action
with a complete application (a really simple flight simulator).

The Killer App: A 1,000-Line Flight Sim

M y original goal was to create a demo that allowed you
to fly around the terrain data and change the viewing

parameters. However, I got tired of controlling the flight, so I
decided to write a little bit of AI to control an autopilot that
would fly over the terrain when we left the controls alone for
a couple of minutes. I originally wrote the demo in DirectX
and Windows 95 (using Visual C++ 4.0), then I decided to
port it to protected mode DOS (using Watcom 10.6), because
half of the programmers that I know still don’t have DirectX
on their computers, let alone the SDK. (I never thought I
would be porting Windows programs back to DOS.) All of
this software is on the Game Developer web site.

To run to the DirectX version, you’ll need the DirectX 3 or
better run-time DLLs, and to run the DOS version, you’ll
only need the DOS extender, which is included in the files.
Both demos will load the height and color data by default,
so all you need to do is execute either application. If you
want to supply your own height and color data, then the
command line parameters are
• VVOOXXEELL((WWNN11||WWNN22||DD3322))..EEXXEE hheeiigghhtt__ddaattaa__ffiillee..bbmmpp ccoolloorr__ddaattaa__ffiillee..bbmmpp
• Both files must be on the command line.
• Both file names must be in 8.3 format.
• Files must be in 512 × 512 in 256 colors.
• Files must be .BMP format with no compression.

The main control module of the voxel engine is called
GGaammee__MMaaiinn((......)). GGaammee__MMaaiinn((......)) isn’t too complex, but I want to
peruse briefly its operation. The function is called once per
frame and is responsible for taking the input, altering the
flight model (or lack thereof), and rendering the terrain. You
have control of the view point, its orientation, and the speed
of motion. Also, the autopilot that I mentioned earlier will
engage in about one minute if you don’t touch any keys; to
regain control, turn left or right. The autopilot selects random
speeds, turns, and follows the height of the terrain, so it’s a
cool screen saver. The DirectX version of the code (also on the
Game Developer web site), has a couple of Windows calls, such
as the frame synchronization and the keyboard access.
Otherwise, its no different from the DOS version.

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

43

//// ccoonnvveerrtt nneeeeddeedd vvaarrss ttoo ffiixxeedd ppooiinntt
vvpp__xx == ((vvpp__xx <<<< FFIIXXPP__SSHHIIFFTT));;
vvpp__yy == ((vvpp__yy <<<< FFIIXXPP__SSHHIIFFTT));;
vvpp__zz == ((vvpp__zz <<<< FFIIXXPP__SSHHIIFFTT));;

//// ppuusshh ddoowwnn ddeessttiinnaattiioonn bbuuffffeerr ttoo bboottttoomm ooff ssccrreeeenn
ddeesstt__bbuuffffeerr ++== ((SSCCRREEEENN__WWIIDDTTHH ** ((SSCCRREEEENN__HHEEIIGGHHTT--11))));;

//// ccoommppuuttee ssttaarrttiinngg aannggllee
rraayyccaasstt__aanngg == vvpp__aanngg__yy ++ AANNGGLLEE__3300;;

//// ccaasstt aa rraayy ffoorr eeaacchh ccoolluummnn ooff tthhee ssccrreeeenn
ffoorr ((ccuurrrr__ccoolluummnn==00;; ccuurrrr__ccoolluummnn << SSCCRREEEENN__WWIIDDTTHH--11;; ccuurrrr__ccoolluummnn++++))
{{
//// sseeeedd ssttaarrttiinngg ppooiinntt ffoorr ccaasstt
xx__rraayy == vvpp__xx;;
yy__rraayy == vvpp__yy;;
zz__rraayy == vvpp__zz;;

//// ccoommppuuttee ddeellttaass ttoo pprroojjeecctt rraayy aatt,, nnoottee tthhee sspphheerriiccaall ccaanncceellaattiioonn
//// ffaaccttoorr
ddxx == CCOOSS__LLOOOOKK((rraayyccaasstt__aanngg)) <<<< 11;;
ddyy == SSIINN__LLOOOOKK((rraayyccaasstt__aanngg)) <<<< 11;;

//// ddzz iiss aa bbiitt ccoommpplleexx,, rreemmeemmbbeerr ddzz iiss tthhee ssllooppee ooff tthhee rraayy wwee aarree
//// ccaassttiinngg,, tthheerreeffoorree,, wwee nneeeedd ttoo ttaakkee iinnttoo ccoonnssiiddeerraattiioonn tthhee
//// ddoowwnn aannggllee,, oorr xx aaxxiiss aannggllee,, tthhee mmoorree wwee aarree llooookkiinngg ddoowwnn tthhee
//// llaarrggeerr tthhee iinnttiiaall ddzz mmuusstt bbee
ddzz == ddssllooppee ** ((vvpp__aanngg__xx -- SSCCRREEEENN__HHEEIIGGHHTT));;

//// rreesseett ccuurrrreenntt vvooxxeell ssccaallee
ccuurrrr__vvooxxeell__ssccaallee == 00;;

//// rreesseett rrooww
ccuurrrr__rrooww == 00;;

//// ggeett ssttaarrttiinngg aaddddrreessss ooff bboottttoomm ooff ccuurrrreenntt vviiddeeoo ccoolluummnn
ddeesstt__ccoolluummnn__ppttrr == ddeesstt__bbuuffffeerr;;

//// eenntteerr iinnttoo ccaassttiinngg lloooopp
ffoorr ((ccuurrrr__sstteepp == 00;; ccuurrrr__sstteepp << MMAAXX__SSTTEEPPSS;; ccuurrrr__sstteepp++++))

{{
//// ccoommppuuttee ppiixxeell iinn hheeiigghhtt mmaapp ttoo pprroocceessss
//// nnoottee tthhaatt tthhee rraayy iiss ccoonnvveerrtteedd bbaacckk ttoo aann iinntt
//// aanndd iitt iiss cclliippppeedd ttoo ttoo ssttaayy ppoossiittiivvee aanndd iinn rraannggee
xxrr == ((xx__rraayy >>>> FFIIXXPP__SSHHIIFFTT));;
yyrr == ((yy__rraayy >>>> FFIIXXPP__SSHHIIFFTT));;

xxrr == ((xxrr && ((HHFFIIEELLDD__WWIIDDTTHH--11))));;
yyrr == ((yyrr && ((HHFFIIEELLDD__HHEEIIGGHHTT--11))));;

mmaapp__aaddddrr == ((xxrr ++ ((yyrr <<<< HHFFIIEELLDD__BBIITT__SSHHIIFFTT))));;

//// ggeett ccuurrrreenntt hheeiigghhtt iinn hheeiigghhtt mmaapp,, nnoottee tthhee ccoonnvveerrssiioonn ttoo
//// ffiixxeedd ppooiinntt aanndd tthhee aaddddeedd mmuullttiipplliiccaattiioonn ffaaccttoorr uusseedd ttoo
//// ssccaallee tthhee mmoouunnttaaiinnss
ccoolluummnn__hheeiigghhtt == ((hheeiigghhtt__mmaapp__ppttrr[[mmaapp__aaddddrr]]

<<<<((FFIIXXPP__SSHHIIFFTT++TTEERRRRAAIINN__SSCCAALLEE__XX22))));;

//// tteesstt iiff ccoolluummnn hheeiigghhtt iiss ggrreeaatteerr tthhaann ccuurrrreenntt vvooxxeell hheeiigghhtt
//// ffoorr ccuurrrreenntt sstteepp ffrroomm iinnttiiaall pprroojjeeccttiioonn ppooiinntt
iiff ((ccoolluummnn__hheeiigghhtt >> zz__rraayy))
{{

L I S T I N G 3 . 0 (C O N T .) . The Terrain Rendering Algorithm.

What Now?

W ell you have a fast terrain generator with which
you can alter terrain and texture data at will. I

suggest that you try animating the height data, and/or
the texture data. For example, you could create a tiled
texture and height map and play animations on the data.
You could animate real waves on the water, or little peo-
ple running around the terrain. In addition, we’ve said
nothing of lighting. You could create a light lookup table
with 256 shades of each color by using a least-squares
method. Then you could have another 2D light map that
would describe the light intensity for each pixel in the
texture map data. Then, as you’re rendering, you could
simply do one more look up per pixel to do lighting in
real time. This would allow you to do lighting effects such
as local spot lights just by painting into the light map
each frame. Finally, there’s no reason why you couldn’t
use a 3D polygon engine to place objects above the ter-
rain. This way, you could make a poor man’s FURY III.
Have fun. ■

André LaMothe has written three best-selling game pro-
gramming books and is currently CEO of Xtreme Games. He
completed his latest project, REX BLADE, a DOOM-style game,
in less than six months.There’s not much left of him after
that! You can reach him at necron@inow.com or
http://www.rexblade.com.

44

P R O G R A M M I N G T U T O R I A L

//// wwee kknnooww tthhaatt wwee hhaavvee iinntteerrsseecctteedd aa vvooxxeell ccoolluummnn,, tthheerreeffoorree
//// wwee mmuusstt rreennddeerr iitt uunnttiill wwee hhaavvee ddrraawwnn eennoouugghh ppiixxeellss oonn tthhee
//// ddiissppllaayy ssuucchh tthhaatt tthheeiirr pprroojjeeccttiioonn wwoouulldd bbee ccoorrrreecctt ffoorr tthhee
//// hheeiigghhtt ooff tthhiiss vvooxxeell ccoolluummnn oorr uunnttiill wwee hhaavvee rreeaacchheedd tthhee ttoopp
//// ooff tthhee ssccrreeeenn

//// ggeett tthhee ccoolloorr ffoorr tthhee vvooxxeell
ccoolloorr == ccoolloorr__mmaapp__ppttrr[[mmaapp__aaddddrr]];;

//// ddrraaww vveerrttiiccaall ccoolluummnn vvooxxeell
wwhhiillee((11))
{{
//// ddrraaww aa ppiixxeell
**ddeesstt__ccoolluummnn__ppttrr == ccoolloorr;;

//// nnooww wwee nneeeedd ttoo ppuusshh tthhee rraayy uuppwwaarrdd oonn zz aaxxiiss
//// ssoo iinnccrreemmeenntt tthhee ssllooppee
ddzz++==ddssllooppee;;

//// nnooww ttrraannssllaattee tthhee ccuurrrreenntt zz ppoossiittiioonn ooff tthhee rraayy bbyy
//// tthhee ccuurrrreenntt vvooxxeell ssccaallee ppeerr uunniitt
zz__rraayy++==ccuurrrr__vvooxxeell__ssccaallee;;

//// mmoovvee uupp oonnee vviiddeeoo lliinnee
ddeesstt__ccoolluummnn__ppttrr--==SSCCRREEEENN__WWIIDDTTHH;;

//// tteesstt iiff wwee aarree ddoonnee wwiitthh ccoolluummnn
iiff ((++++ccuurrrr__rrooww >>== SSCCRREEEENN__HHEEIIGGHHTT))

{{
//// ffoorrccee eexxiitt ooff oouutteerr sstteeppppiinngg lloooopp
//// cchheeeezzyy,, bbuutt bbeetttteerr tthhaann GGOOTTOO!!
ccuurrrr__sstteepp == MMAAXX__SSTTEEPPSS;;
bbrreeaakk;;
}} //// eenndd iiff

//// tteesstt iiff wwee ccaann bbrreeaakk oouutt ooff tthhee lloooopp
iiff ((zz__rraayy >> ccoolluummnn__hheeiigghhtt)) bbrreeaakk;;

}} //// eenndd wwhhiillee

}} //// eenndd iiff

//// uuppddaattee tthhee ppoossiittiioonn ooff tthhee rraayy
xx__rraayy++==ddxx;;
yy__rraayy++==ddyy;;
zz__rraayy++==ddzz;;

//// uuppddaattee tthhee ccuurrrreenntt vvooxxeell ssccaallee,, rreemmeemmbbeerr eeaacchh sstteepp oouutt
//// mmeeaannss tthhee ssccaallee iinnccrreeaasseess bbyy tthhee ddeellttaa ssccaallee
ccuurrrr__vvooxxeell__ssccaallee++==ddssllooppee;;

}} //// eenndd ffoorr ccuurrrr__sstteepp

//// aaddvvaannccee vviiddeeoo ppooiinntteerr ttoo bboottttoomm ooff nneexxtt ccoolluummnn
ddeesstt__bbuuffffeerr++++;;

//// aaddvvaannccee ttoo nneexxtt aannggllee
rraayyccaasstt__aanngg——;;

}} //// eenndd ffoorr ccuurrrr__ccooll

}} //// eenndd RReennddeerr__TTeerrrraaiinn

L I S T I N G 3 (C O N T .) . The Terrain Rendering Algorithm.

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

46

recently moved from the Lincoln Park neighborhood in Chicago, to

Bucktown, another neighborhood within the city. Actually, the

Salvation Army moved most of my furniture for me, so moving the bal-

ance of my possessions seemed, at first, like an easy task. I didn’t bother

calling a full roster of friends/movers for this move; I only called my

friend Paul and his fiancée Sarah. The three of us moved all of my stuff,

plus some of my own fiancée’s stuff, in just under four hours. Even if it

hadn’t been one of the hottest days of the summer, there was just no

way to make this process fun.

The moving process got me thinking. If I ever get a shot at a job in a

video game publisher’s marketing department, I’m sure I’ll suggest game

ideas constantly. I imagine myself sitting behind a big desk with brand

B Y S C O T T C O R L E Y

A N I M A T I O NC H A R A C T E R

II
LINEAR VELOCITY
E X T R A C T I O N
FOR CHARACTER ANIMATION

new business cards and plenty of time
on my hands. I’ll have a big develop-
ment staff somewhere close by, and I’ll
be sure to dismiss all of their ideas as
unmarketable. Then, one day, when I
have a particularly open schedule, I’ll
drop the big one. I’ll insist we develop
a “moving day” game in 3D. I’ll call it
MOVING DAY 2000 X-3D.

Using my MOVING DAY 2000 X-3D
game as an example, I’ll explain a con-
cept called linear velocity extraction
(LVE), a technique for managing the
animation of walking creatures. The
techniques that I describe could be
used to create a homespun develop-
ment tool for modifying and managing
these animations. The August 1997
issue of Game Developer contained an
article called “Using a Base-Root
System for Animated Characters,”
which is heavily related to this topic.
I’ll re-address some of the concepts
introduced in that article to provide
some context, but if anything seems
brushed over or confusing here, refer
back to that article and read it.

How to Play MOVING DAY 2000 X-3D

T he object of MOVING DAY 2000 X-
3D is to move all of the furniture,

boxes, and junk from one dwelling to
another in four hours or less. If you
succeed in moving everything in the
allotted time without excessive break-
age, your buddy buys you lunch. If you
exceed the time limit, U-Haul charges
you double for the moving van and
hassles you about refunding your $120
deposit. If you damage too many of his
belongings during the move, your
buddy smacks you.

When the game starts, you get to
choose one of four characters with
which to move your friend’s boxes. All
of the selectable characters have two
arms and two legs, and they all use their
legs to get around. Once you select a
character, your buddy tells you which
boxes need to be moved, which boxes
are particularly fragile, and how much
time is left. For easy reference, we’ll call
your in-game character “Sucker.”

Sucker is a bipedal creature in a real-
world environment with gravity, so
most of his movement will be confined
to a 2D plane. Aside from jumps and
special moves, the motions we capture

will fall into the categories of standing,
walking, jogging, lifting, carrying,
dropping, throwing, and setting down
nicely. Within these categories, we
may have a wide variety of inter-
changeable animations to mix things
up a bit. For lifting, carrying, throwing,
and setting down, we’ll choose an ani-
mation based on the weight of the box
involved. The final motion capture list
will have around 150 moves on it.

We would like to maintain appropri-
ate velocities for each animation. Back
in the days of sprite animation, it was
important to use an appropriate veloci-
ty for a moving animation so that the
sprite’s feet would not “slip” on the
ground. In 3D, using an appropriate
velocity is still important, and in some
cases close-up camera views make foot
slippage even easier to detect.

Fortunately, the translation involved in
a 3D animation is already stored as pure
numbers, so determining the velocity
of an animation is easy. It’s certainly
easy compared with determining the
velocity of a sprite animation.

Allow me to insert some standards
here. I follow the same concepts used in
my August article, so if you read that,
you might want to skip this paragraph.
Our floor (the plane that Sucker walks
on) is the plane z=0. The world is a
right-handed coordinate system where
the positive z axis is “up.” Sucker has a
root node that is at the top of his skele-
ton hierarchy; move the root and
Sucker moves in the world. This root is
positioned at Sucker’s center of gravity
(the joint between the torso and the
hips). This root node is the only part of
the animation that will have changing

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

47

D uring the course of this arti-

cle, I mention this mysteri-

ous “tool” that you’ll need

to write. Most of you have

tools to deal with 3D characters and ani-

mation data already, and can modify

them to implement new features. If you

don’t have any tools to work with the files

spit out by your animation package, you

need to write some, so read on.

The tools that you write should accom-

plish a number of important things for you.

First, most commercial 3D packages have

fairly complex file formats that store a ton

of information that you don’t need during

your game. Your tool should extract only

the information of interest to you. Second,

there may be a native format that you need

your data in; for example, a fixed-point for-

mat. Your tool should handle that as well.

Getting information about converting

3D file formats varies from easy (look in

the back of the instruction manual) to

almost impossible and expensive. Before

considering a 3D animation tool, you may

want to investigate how easy it is to

extract data from the file formats. I won’t

say specifically which vendor I’ve had the

most problems with, as that would be

très gauche, monsieur. I will remain soft,

so as not to spoil anyone’s image.

Most 3D tool vendors supply linkable

libraries to extract the data from their

files. This is convenient because if the file

format changes, all you need to do is link

new libraries, and you’re ready to go. I’d

be wary of this approach for a few rea-

sons. First, the libraries may not give you

some bits of information that you need,

and since you can’t modify the libraries,

you might be out of luck from the start.

Second, the libraries may be provided in

a form that isn’t compatible with your

linker or your CPU. Third, that bit about

linking with updated libraries when new

file versions come out is a bit flawed.

Many 3D tool vendors are slow to get new

developer tools released, so if a small

change in the file format makes the

libraries useless, you have no recourse

except to wait for new libraries. If you

write your own tools to parse through the

files yourself, you can at least attempt to

handle new file formats before all the

information becomes available to you

(and usually this is very easy to do).

So go write a behemoth tool that can

read in 3D hierarchical animated charac-

ters, process them to the point that they

are useful to you, and spit them out in a

format that is convenient for your purpos-

es. You’ll be glad you did.

Crafting a Tool to Process Character
Animation Data

translations in x, y, and z, in addition
to rotations. Other segments will have
translations from their parent, but the
translations will stay constant for all
animation frames. You may be wonder-
ing why I use z=0 as the floor instead of
the popular y=0 floor. Some profession-
al 3D tools use z=0 (notably,
MultiGen’s tools), while others use y=0.
I prefer z=0 because it puts all move-
ments on the floor in terms of x and y.
If all graphics tools agreed on one stan-
dard, I’d use it. As long as the tools you
write provide a means of rotating the
axes to a common orientation, the
standard you use doesn’t matter.

Sucker’s root will always be animated
so that his feet align properly with the
z=0 floor. We’d like to control Sucker by
using a base coordinate system project-
ed onto the floor. On the programming
end of things, it’s easy to create this base
coordinate system, because everything
in our animation is relative to the ori-
gin. As long as the base coordinate sys-
tem is located at the origin, everything
Sucker does will be relative to that base,
and we can move Sucker relative to the
world by changing the base’s transla-
tion. The only rotation we’ll apply to
the base will be around the base’s z axis,
so you can envision the base as being an
imaginary disc that is always parallel to
the floor. In addition, the base’s z trans-
lation will always be zero, so that imagi-
nary disc will actually be incident with
the floor plane.

The Rule of Base

So far, we’ve covered the basics from
the original base-root system article

— we can now get into a discussion of
LVE. If you followed the preceding
quick overview of the base coordinate

system, you should now be interested in
the details of what to do when Sucker
translates away from the origin. We
know that the base coordinate system is
always located at the origin of the space
that Sucker was modeled in, but we also
know that Sucker can walk away from
the origin in that space, as in Figure 1.

If Sucker’s root isn’t moving a signifi-
cant distance from the origin, we don’t
need to do anything. If Sucker is just
standing around, or juggling while
standing, or even doing jumping jacks
to warm up, no adjustments need to be
made. During any of these animations,
the root may move around quite a bit,
but at the last frame of the animation,
the root won’t be very far from the base.
The “rule of base” says that the base can
always be considered an approximate
projection of the root onto the floor. As
long as this remains true, we’re fine.

When Sucker walks or runs, the root
can be a few feet from the origin at the
end of the animation. This violates the
rule of base, so an adjustment needs to
be made. That adjustment can be deter-
mined using LVE.

The idea behind LVE is very simple.
Our animated character moves a cer-

tain distance d over a certain time t.
We can calculate d simply by taking
the final position of the root and sub-
tracting the initial position of the root,
as shown in Figure 2. Determining t is
simply a matter of reading the total
number of frames or the total anima-
tion time from our animation file. Note
that I gratuitously use the word “sim-
ply” here. If you don’t have the tools to
read and process your model and ani-
mation data directly, you’ll have to
write those tools before you can do any
of these calculations. That may or may
not be a simple job. Once you have
those tools running, though, you can
reread this paragraph and truly enjoy
the word “simply.”

Now that you have d and t, you can
calculate v, the linear velocity, as d/t.
Actually, d has three potential values:
dx, dy, and dz. For now, we’ll leave
everything in z untouched, so forget
about dz. Calculate dx (final x position
minus initial x position) and dy (final y
position minus initial y position). Then
calculate vx and vy, the x and y linear
velocity components, by dividing dx

and dy by t. The final units you end up
with might be feet per second, feet per
frame, meters per second, or undefined
distance units per unknown time unit.
The units don’t matter, just make sure
you know what they are. You and the
animators giving you this data need to
know what 1 equals. You can get pretty
far without ever knowing this, but
eventually you’ll need to know.

Once we have the linear velocity, we
can put the rule of base back into
effect. Before we do that, however, I’d
like to explain the overuse of the word
“linear” in this article. The word is
used to emphasize the fact that we’re
interested in linear distance change

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

48

C H A R A C T E R A N I M A T I O N

Frame 1 Frame 2 Frame 3 Frame 4

X

Y

Z

Root Travels Distance d

Time t=4 frames

F I G U R E 2 . Calculate velocity of animation using distance traveled and the over-

all time of the animation.

Frame 1 Frame 2 Frame 3 Frame 4

X

Y

Z

F I G U R E 1 . As animation progresses, the root moves away from the origin.

over time, not angular velocity or any-
thing else. It’s also used to emphasize
that the actual movement of the root
of an animated character is very erratic.
The root is translating through all sorts
of arcs, shaking around, and at times,
may even be moving backwards rela-
tive to the ground when the animation
as a whole has a forward velocity. The
velocity that we’re extracting is a sim-
ple distance over time. The rest of the
wacky movement is left in the anima-
tion. When we add the two back
together, we reconstruct the original
motion. We’re almost there.

To put the rule of base back into
effect, we have to adjust each frame of
the animation by subtracting a certain
distance from the x and y translation
from each frame. Use Equation 1 to cal-
culate that distance for a particular
frame. In Equation 1, we’ll use the two
linear velocity components vx and vy,
the time stamp f of the frame, the orig-
inal components of the frame’s root
translation x and y, and the frame’s
new root translation components x′
and y′.

x′=x-f*vx

y′=y-f*vy (Eq. 1)
The time and distance units in

Equation 1 are up to you. Again,
whether you’re using feet per frame or
meters per millisecond, you need to
define your units and remain consis-
tent. Check out Listing 1 for an exam-
ple of how this is done in code.

So what have we done? Equation 1
is simple, but it was difficult to
explain, so it must have some signifi-
cance. For each frame in the anima-
tion, Equation 1 subtracts the distance
that the root has traveled up to that
frame. If you play back a run anima-
tion after doing this LVE processing,
the animation will appear to run in
place. We have put the rule of base
back in effect. When saving out the
processed animation, store vx and vy

with it, as we’ll be using that extracted
velocity very shortly.

Books Are Heavy

W e can now play back an anima-
tion of Sucker carrying a large

box full of books. If you just play back
the LVE-processed animation, you
know that the animation won’t move
away from the base (the rule of base is
still in effect). To get this animation
moving without violating the rule of
base, you have to move the base. You
stored the extracted linear velocity
with the motion, so you know exactly
how fast to move the base.

The animation system that you write
for MOVING DAY 2000 X-3D should
automatically read the velocity for
each animation and apply it for you, so
you never have to adjust any of the
velocities by hand. In addition, any
funky root movement from the origi-
nal animation has been retained. The
extracted linear velocity can handle
any forward or backward movements
along the x axis (we assume Sucker is
animated facing down the positive x
axis) as well as any sideways strafing

movements along the y axis. In fact, it
can handle any movement in the x-y
plane.

Recall that at the beginning of this
article, we decided to leave the z move-
ment intact in the animation. This
turns out to be a good decision in light
of the “linear” emphasis. Sucker lives
in a world with the acceleration of
gravity, so motion in the z direction
certainly isn’t going to be linear. For
this reason, we don’t do any extracting
in the z axis.

If you refer back to the juggling and
jumping jacks paragraph, you’ll recall
that there will be animations in
which the rule of base is followed
without any processing. For these ani-
mations, we don’t want to extract a
velocity at all because it will make
Sucker drift when he’s supposed to be
standing still. There will almost
always be a difference in translation
between the first and last frames of an
animation, but if that distance is
small, we would like to leave the ani-
mation alone and store a velocity of
zero. The question then becomes,
“What’s a small distance?”

What you consider a small distance
is up to you and can be handled many
different ways. A perfectly reasonable
method of determining “small” is pass-
ing in a distance on the command line
of your tool. Another method to con-
sider is examining the animated model
and using some measurement from

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

49

T he Rule of Base states that the base coordinate system may always be con-

sidered an approximate projection of the root coordinate system onto the

floor. Whenever this rule is violated, you must take special action. In almost

all cases, LVE is the best way to restore the Rule of Base.

The Rule of Base

//// NNoottee:: TThhiiss ccooddee ssnniippppeett ddooeessnn’’tt ccoovveerr tthhee ddeeffiinniittiioonn ooff tthhee ccllaasssseess

//// iitt uusseess,, ssuucchh aass AAnniimmaattiioonn aanndd MMooddeell.. II wwiillll eexxpplliicciittllyy uussee tthhee ““tthhiiss””

//// ttoo rreeffeerreennccee ccllaassss aattttrriibbuutteess,, ffoorr ccllaarriittyy.. AAllssoo,, yyoouu

//// ccaann aassssuummee tthhaatt nnoo gglloobbaall vvaarriiaabblleess aarree bbeeiinngg rreeffeerreenncceedd iinn tthhiiss ccooddee..

vvooiidd AAnniimmaattiioonn::::TTaakkeeLLiinneeaarrVVeelloocciittyy((MMooddeell **tthheeMMooddeell,, ddoouubbllee &&xxvvOOuutt,, ddoouubbllee &&yyvvOOuutt,, ddoouubbllee

&&zzvvOOuutt,, bbooooll FFoorrcceeVVeelloocciittyy))

{{

ddoouubbllee mmooddeellSSiizzee[[33]];;

ddoouubbllee vveelloocciittyy[[33]];;

ddoouubbllee ssttaarrtt[[33]],,eenndd[[33]];;

ddoouubbllee ccuurrPPooss[[33]],, ddiisstt[[33]];;

iinntt ii,,jj;;

tthheeMMooddeell-->>GGeettMMaaxxiimmuummDDiimmeennssiioonnss((mmooddeellSSiizzee[[00]],,mmooddeellSSiizzee[[11]],,mmooddeellSSiizzee[[22]]));;

//// ddeetteerrmmiinnee wwhhaatt ““ssmmaallll”” iiss

mmooddeellSSiizzee[[00]]//==44;; //// IIff aanniimmaattiioonn mmoovveess tthhee rroooott aa ddiissttaannccee ggrreeaatteerr tthhaann

mmooddeellSSiizzee[[11]]//==44;; //// 11//44 ooff tthhee llaarrggeesstt ddiimmeennssiioonn ooff tthhee mmooddeell,,

mmooddeellSSiizzee[[22]]//==44;; //// wwee wwiillll eexxttrraacctt aa vveelloocciittyy..

L I S T I N G 1 .

Conitnued on page 51.

that to determine “small.” For exam-
ple, if you have a segmented model,
you might find the largest dimension
of the largest segment and declare that
to be “small.” This would mean that no
velocity would be extracted unless the
root moved a distance that was large
relative to the model itself.

Once you have a value for “small,”
compare your dx and dy values to it. If a
distance in a particular direction is
greater than “small,” extract a velocity
in that direction. If not, set the velocity
for that direction to zero and leave the
translation in that direction alone.

By this time, you should understand
the importance of deciding what your
units are and keeping them consistent.
There’s another sticky consistency prob-
lem that you might not notice, which
can make your animation loops look
horrible. You and your animators need
to define where the first and last frames
of your animation are, and how they
will be handled. Also, verify that this
definition of the first and last frames
works with the animator’s software.

Handling Looped Animations

T he first frame of a looped anima-
tion is obviously where the anima-

tion starts. It’s time zero. While frame
one is obviously time zero, it very well
may be considered frame one by the
animation software (only programmers
count from zero). This shouldn’t cause
a problem, but is something to keep in
mind.

The last frame of a looped animation
is, of course, where the animation
ends. You can insist that the animator
make the first and last frames of the

animation identical, in which case the
first and last frames may be considered
identical in time (at the loop point, the
last frame is the first frame and occurs
at time zero). In other words, there
would be no time between the last
frame and the first frame, as in Figure
3. When you play the animation back
in MOVING DAY 2000 X-3D, you’ll play
through the animation and loop back
to the first frame, skipping the last
frame, because it’s identical to the first
frame in appearance and in time.

There are a few problems with the
above situation. If your tools aren’t
written carefully, they may include the
first and last frame in your data. Since
these frames are identical, and we’re
really skipping the last frame, includ-
ing both frames would be wasteful. The
second problem is that your animation
tools may not work this way.

The straightforward way of dealing
with the last frame of a looping anima-
tion is to assume that there is one
implied frame of time between the last

frame and the first frame, as in Figure
4. In other words, the last frame should
be the frame that comes just before the
first frame, so when you loop the ani-
mation, everything looks smooth.
There’s no need for your tools to leave
off a frame, because there’s no redun-
dant frame at the end of the anima-
tion. The problem with this method is
that again your animation tools may
not work this way. Either of the loop
methods that I just presented is accept-
able, and if you reread those sections
you’ll see that the methods are essen-
tially identical.

Speed Shifts

N ow that Sucker has his automati-
cally ripped-out linear velocities

to propel him, you may want to adjust
the velocities at game time. When the
end of the day nears and Sucker gets
tired, you may want him to move more
slowly than usual.

When you adjust a velocity, start out
with the original velocity vector for the
animation that you’re adjusting. (Up
until this point, I’ve referred to the
velocity by its components vx and vy.
The velocity vector that I refer to here is
made up of these components.) Multiply
the x and y components of that velocity
vector by a scale value. For example, you
could multiply by 0.8 to slow Sucker
down 20%. The only other thing you
need to do is multiply the playback
frame rate of that animation by 0.8 as
well so that Sucker’s feet won’t slide.
While this is easy, when creating anima-
tion system tools you may not initially
think to provide a way to override an

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

50

C H A R A C T E R A N I M A T I O N

Frame 1 Frame 2 Frame 3

Implied Time

F I G U R E 4 . Animation assumes that there is time between the last frame and the

first frame.

Frame 1 Frame 2 Frame 3 Frame 1

F I G U R E 3 . Animation assumes last frame is identical, in time and position, to the

first frame

animation’s velocity and frame rate.
If Sucker seems too responsive to the

joystick for some reason, you may have
to give Sucker a slight acceleration,
from zero velocity up to the velocity of
a walk or run animation. This is
achieved in the same way as adjusting
an animation’s velocity, except in this
case the velocity is changing every
frame, so the playback frame rate must
be adjusted every frame as well, until
Sucker accelerates up to his target
velocity.

Tips for Tuning Animations

H ere are some tips to polish up your
animation tool. Add command

line options to your tool that will sup-
press LVE completely (in both the x
and y axes), or partially (either x or y
only). When deciding your value for
“small,” you’ll probably find that no
value is perfect. You may get an anima-
tion that has just enough root move-
ment to get a velocity extracted, and it
may cause your character to drift when
you want it to stay still. In addition,
you may find that some animations get
a y velocity extracted when they should
really only have a x velocity.

Strive to adjust your “small” value so
that the vast majority of animations
convert automatically with no special
intervention. This will reduce your
workload and data maintenance prob-
lems. When certain animations give
you trouble, just make sure that they’re
converted with the appropriate LVE
suppression flags.

A particularly good candidate for LVE
suppression is any animation in which
a character pivots on one foot. In these
cases, your root is going to swing 180
degrees and, in the process, travel a sig-
nificant distance. However, this special
case requires a solution using some
method other than LVE. You definitely
don’t want a velocity extracted from an
animation such as this, so use those
LVE suppression flags.

Provide a way within your anima-
tion tool to force the extraction of a
specified velocity from an animation.
Normally, your tool will determine
the velocity of each individual anima-
tion and extract that velocity. There
will be cases where you want to over-
ride the velocity that your tool calcu-
lates with a specific velocity from else-

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

51

//// IIff FFoorrcceeVVeelloocciittyy====ttrruuee,, wwee wwiillll eexxttrraacctt aa vveelloocciittyy nnoo mmaatttteerr hhooww

//// ssmmaallll tthhee oovveerraallll rroooott ttrraannssllaattiioonn iiss.. AA ggoooodd wwaayy ttoo ffoorrccee tthhiiss iiss

//// bbyy sseettttiinngg oouurr ““ssmmaallll ddiissttaannccee”” vvaalluuee ttoo 00..

iiff ((FFoorrcceeVVeelloocciittyy))

mmooddeellSSiizzee[[00]]==mmooddeellSSiizzee[[11]]==mmooddeellSSiizzee[[22]]==00;;

//// WWhheenn aann AAnniimmaattiioonn iiss ccoonnssttrruucctteedd,, iittss vveelloocciittyy iiss iinniittiiaalliizzeedd ttoo zzeerroo..

//// IIff wwee ddeetteecctt tthhaatt tthhee vveelloocciittyy iiss nnoott zzeerroo,, iitt mmeeaannss wwee hhaavvee aallrreeaaddyy

//// eexxttrraacctteedd aa vveelloocciittyy.. RReeppeeaattiinngg tthhiiss sstteepp aaggaaiinn wwoouulldd bbee ddiissaassttrroouuss,,

//// ssoo hheerree wwee ddoo aa ssaaffeettyy cchheecckk..

iiff ((((tthhiiss-->>xxVVeelloocciittyy!!==00..00))||||((tthhiiss-->>yyVVeelloocciittyy!!==00..00))||||((tthhiiss-->>zzVVeelloocciittyy!!==00..00))))

{{

xxvvOOuutt==tthhiiss-->>xxVVeelloocciittyy;; yyvvOOuutt==tthhiiss-->>yyVVeelloocciittyy;; zzvvOOuutt==tthhiiss-->>zzVVeelloocciittyy;;

rreettuurrnn;; //// VVeelloocciittyy wwaass aallrreeaaddyy eexxttrraacctteedd.. DDoonn’’tt rreeppeeaatt!!

}}

vveelloocciittyy[[00]]==vveelloocciittyy[[11]]==vveelloocciittyy[[22]]==00..00;; //// GGeett rreeaaddyy ttoo ffiinndd tthhee vveelloocciittyy

iiff ((FFoorrcceeVVeelloocciittyy))

{{

//// IInn tthhee ccaassee ooff aa ffoorrcceedd vveelloocciittyy,, tthhee vveelloocciittyy bbeeiinngg ffoorrcceedd iiss ppaasssseedd iinn

//// vviiaa xxvvOOuutt,, yyvvOOuutt,, zzvvOOuutt

vveelloocciittyy[[00]]==xxvvOOuutt;; vveelloocciittyy[[11]]==yyvvOOuutt;; vveelloocciittyy[[22]]==zzvvOOuutt;;

}}

tthhiiss-->>GGeettFFiirrssttRRoooottTTrraannssllaattiioonnFFrraammee(())-->>GGeettPPoossiittiioonn((ssttaarrtt[[00]],,ssttaarrtt[[11]],,ssttaarrtt[[22]]));;

tthhiiss-->>GGeettLLaassttRRoooottTTrraannssllaattiioonnFFrraammee(())-->>GGeettPPoossiittiioonn((eenndd[[00]],,eenndd[[11]],,eenndd[[22]]));;

//// DDeetteerrmmiinnee lliinneeaarr vveelloocciittyy aanndd ssuubbttrraacctt iitt ffrroomm eeaacchh kkeeyyffrraammee

ffoorr ((ii==00;; ii<<22;; ii++++))

{{

iiff ((aabbss((eenndd[[ii]]--ssttaarrtt[[ii]]))>>==mmooddeellSSiizzee[[ii]]))

{{

ddiisstt[[ii]]==eenndd[[ii]]--ssttaarrtt[[ii]];;

iiff ((!!FFoorrcceeVVeelloocciittyy))

vveelloocciittyy[[ii]]==ddiisstt[[ii]]//((tthhiiss-->>LLaassttFFrraammeeNNuummbbeerr -- tthhiiss-->>FFiirrssttFFrraammeeNNuummbbeerr));;

//// TThhiiss ddiivviissoorr rreepprreesseennttss tthhee nnuummbbeerr ooff >>ssppaacceess<< ((ooff ttiimmee)) bbeettwweeeenn kkeeyyffrraammeess

ffoorr ((jj==00;; jj<<==((tthhiiss-->>LLaassttFFrraammeeNNuummbbeerr -- tthhiiss-->>FFiirrssttFFrraammeeNNuummbbeerr));; jj++++))

{{

tthhiiss-->>GGeettFFrraammee((tthhiiss-->>FFiirrssttFFrraammeeNNuummbbeerr ++ jj))-->>GGeettTTrraannssllaattiioonn((ccuurrPPooss[[00]],, ccuurrPPooss[[11]],,

ccuurrPPooss[[22]]));;

ccuurrPPooss[[ii]]--==vveelloocciittyy[[ii]]**jj;;

//// SSuubbttrraacctt tthhee ddiissttaannccee tthhaatt tthhee vveelloocciittyy hhaass ttaakkeenn uuss oonn ffrraammee jj

tthhiiss-->>GGeettFFrraammee((tthhiiss-->>FFiirrssttFFrraammeeNNuummbbeerr ++ jj))-->>SSeettTTrraannssllaattiioonn((ccuurrPPooss[[00]],, ccuurrPPooss[[11]],,

ccuurrPPooss[[22]]));;

}}

}}

}}

xxVVeelloocciittyy==vveelloocciittyy[[00]];;

yyVVeelloocciittyy==vveelloocciittyy[[11]];;

zzVVeelloocciittyy==vveelloocciittyy[[22]];;

xxvvOOuutt==xxVVeelloocciittyy;;

yyvvOOuutt==yyVVeelloocciittyy;;

zzvvOOuutt==zzVVeelloocciittyy;;

}}

L I S T I N G 1 (C O N T.) .

where. Sucker provides a perfect
example of when we might want to do
this. There are objects in Sucker’s
environment that he interacts with,
and we will have animations associat-
ed with those objects that match up
with Sucker’s animations. For exam-
ple, Sucker will at times pick up boxes,
carry boxes, throw boxes, and set
down boxes. The motion of the boxes
in these cases has to be animated and
synchronized, since we don’t want to
simulate the box as a rigid body rest-
ing on Sucker’s arms.

During the animation of Sucker and
the boxes, you’ll have to make sure
that all of the animations are of the
same length and that they look correct
when played together (that much is
obvious). What isn’t clear right away is
that when you process the animations
separately, you’ll get slightly different
velocities for Sucker and the box due to
slight differences in the starting and
ending positions of the roots. If you
then play back the animation with
Sucker and the box synchronized per-

fectly, the box and Sucker will eventu-
ally drift apart. We must therefore
come up with a way to match their
velocities.

For all animations involving Sucker
and a box, we’ll convert the two ani-
mations as a pair and use Sucker’s
velocity for both. First, we convert
Sucker and make a note of the veloci-
ty vector that we extracted. Then, we
use our tool’s velocity override fea-
ture and force the box animation to
have the same velocity as Sucker.
Now, we can play the two animations
in sync and not worry about them
drifting apart.

The last point I’ll make about syn-
chronized animations is that if they are
animated together and then separated
later, their base coordinate systems will
match exactly. When playing the ani-
mations back in the game, the bases
should start out in the same place with
the same facing. If the paired anima-
tions’ velocities match correctly, the
bases will stay matched up, which is
handy.

Go Forth and LVE

T hat wraps up our discussion on
LVE. Depending on your experi-

ence creating and managing anima-
tions, this may seem like a lot of work.
If it seems like a lot of work to create a
home-grown tool to manage LVE, be
aware that for many games on the mar-
ket today, approximately half of the
coding effort was spent on creating
tools alone. From that perspective,
implementing LVE should be a fairly
insignificant blip on your workload.

If this doesn’t seem like a lot of work,
try it out. It’s fun to have tools that do
everything automatically for you. By
the way, after this investigation of
MOVING DAY 2000 X-3D, I have decided
to scrap the project and reallocate the
resources elsewhere. See ya, Sucker. ■

Scott Corley is vice president of software
development at High Voltage Software.
His new wife actually thinks game pro-
gramming is cool. For tips on where to find
such enlightened women, e-mail
scottcy@ripco.com.

52

C H A R A C T E R A N I M A T I O N

hen our team at

Crystal Dynamics

began the develop-

ment of PANDEMONIUM 2

for the PlayStation and PC

CD-ROM, our goals were

probably similar to those of other teams

creating sequels. We wanted to build a

game based on the original game’s 3D

engine and characters, yet add dramati-

cally new game play mechanics and

graphical enhancements. For financial

reasons, we wanted to reuse code and

elements from the first game, but we

wanted the look, feel, and play to be

dramatically different.

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

54

P O S T M O R T E M

Pandemonium 2

WW

The PANDEMONIUM experience was
built to mimic a fast-moving roller coast-
er. The engine in the original game,
which shipped in October of 1996 for
the PlayStation, supported a very active
camera that delivered cinematic angles
and a wild sense of motion. We wanted
to build on that foundation and design
an even bolder camera scheme. We also
wanted to communicate the sense that
the game was “hand-crafted,” because
our development team feared that origi-
nality was being lost in the character-
action genre, and that publishers were
continuing to reuse a significant amount
of tile sets and backgrounds to the detri-
ment of creativity. Fooling the consumer
with empty claims of large numbers of

levels, when the number of unique levels remained some-
what modest, grated on our gaming sensibilities. Our inter-
ests were immediately focused on building originality and
creativity throughout the entire product.

With regards to graphics, we wanted to push into a new
art frontier with a thematic look that was radically different
from one level to the next. We also wanted to aggressively
augment the dynamic roller-coaster camera and kinetic hori-
zontal game play, while at the same time build the same spa-
tial drama with vertical game play.

Before we could start development, however, our team
had to be relocated from our studio in Novato, California, to
our main office in Menlo Park, where the majority of Crystal
Dynamics’ staff is located. While only two hours away by
car, the new location was a significant change in the team’s
working environment and caused some friction between
team members, as I will explain shortly.

The Genetic Core

O ne of the core strengths of the PANDEMONIUM develop-
ment team stemmed from the empowerment of indi-

vidual designers to dream up and execute graphics or game
play ideas without hindrance from the other development
disciplines. Our development environments were custom-
built with powerful tools to allow designers, artists, and pro-
grammers to experiment, innovate, test, and build new fea-
tures before they were hard-coded into the game. These tools
took about three to six months for a person to learn. Every
team member had a Pentium 166MHz with a 3D accelerator

card and Kinetix’s 3D Studio 4.0 — essentially all worksta-
tions purchased off the shelf without much further tweak-
ing. Our commitment to individual creativity and flexibility
during the development of the original product allowed the
team to quickly transition to the sequel without our having
to retrain them or invest heavily in new development
resources. In addition, by strange coincidence, several mem-
bers of the design team were high-school friends who were
unknowingly hired together, which helped fuse the group.

Another one of our goals was to surpass the graphical stan-
dards set by previous games. From the outset, there was little
interest in repeating the original PANDEMONIUM’s fantasy
environments. Instead, our team decided to push in a direc-
tion reminiscent of Salvador Dali and Timothy Leary, which
sets PANDEMONIUM 2 apart as a visual wonderland. This aes-
thetic goal was balanced by a core game play directive: to
build a layered and integrated entertainment experience
based on technical — as well as exploratory — game play.

The sound design of PANDEMONIUM 2 was a subtle but
extremely important feature to the development effort. From
the beginning, the music designers adopted a direction radi-
cally different from the rest of the industry. Character action
games from the U.S. and Japan historically have used fantasy-
oriented music. With the capabilities of the CD at their fin-
gertips, the designers chose a new genre for inspiration: the
San Francisco club scene. Their influences came from a host
of esoteric musical sources such as Freaky Chakra, Tipsy,
Steroid Maximus, Sukiya, and Bill Laswell. Exploring various
clubs in the city, the sound team crafted a sophisticated and
incredibly energetic musical skeleton. This musical direction
excited our international distribution partners, as it was

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

55

…and Nikki’s updated look for

PANDEMONIUM 2.

Nikki, Fargus, and Sid in the original

PANDEMONIUM…

PA N D E M O N I U M D O E S N ’ T J U S T D E S C R I B E
T H E F R E N E T I C PA C E O F D E V E L O P M E N T AT

C R Y S TA L DY N A M I C S , I T A L S O R E P R E S E N T S
T H E C O M PA N Y ’ S B R E A D A N D B UT T E R

T H I S C H R I S T M A S b y S c o t t S t e i n b e r g

extremely relevant to their con-
sumers and offered multiple market-
ing opportunities and partnerships.

Character Design

The most significant change planned
for the sequel involved retooling

the two main characters to give them a
more mature look and attitude. Nikki,
the heroine, was completely
redesigned. Fargus, the goofball jester,
was given enhanced mechanics and a
more demented look and behavior.
Multiple looks for the characters were
presented to focus groups to gauge con-
sumer appeal. In turn, we ran these
models by our distribution partners in
Europe for review and buy-in. This level
of involvement from our UK, French,
and German distributors was key to
maintaining European consumer
appeal with this sequel. The process was
iterative; it took multiple meetings and
character sketches before a satisfactory
look and feel was achieved. While some
people might have built a sexy charac-
ter à la TOMB RAIDER’s Lara Croft, thank-
fully nobody in the company was inter-
ested in cloning Croft. Instead, we went
after a more elegant look, somewhat
reminiscent of Elle MacPherson.
Agreeing on this artistic target helped
galvanize the relationship between the
development team and the marketing
team. Both groups made constructive

contributions to the creative process
and to the final result.

Once the rough designs were final-
ized, the characters went into their 3D
modeling phase. Lead artist Leon
Cannon and lead designer Zak Krefting
bore much of the pressure to complete
this task in time to preview the game at
1997’s E3 in Atlanta, and to meet mar-
keting deadlines for advertising and
packaging. While Nikki’s character was
somewhat challenging to complete,
Fargus was extremely time-consuming
to finish. His costume went through
many iterations, many of which made
him look like a psychotic harlequin
jester. While it was an interesting and

funny look, it wasn’t quite the
treatment we had all envi-
sioned. Eventually, his appear-
ance evolved to meet the tastes
of the team. Fargus’ partner
Sid, a puppet on a stick, was
designed to be his alter-ego
throughout the sequel. Sid’s
role in the game was greatly
expanded as a range weapon,
as well as game play mechanic.

The Quest for Beta

A chieving a feature-com-
plete beta proved to be a

challenge. Our release date was
moved up by almost a month
for marketing reasons — we
viewed November and
December as a crowded time
for game releases. As a result,
our development schedule was
compressed The team had a
hard target date in August 1997

that forced everyone to work concur-
rent days without sleep. CDs were
burned and distributed for game play
feedback and testing. Compressing the
schedule meant that certain key ele-
ments of the game weren’t completed
until the last phase of development.

Shortening a product development
schedule by nearly a month is unprece-
dented in our industry. It requires a
massive amount of work, planning,

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

56

P O S T M O R T E M

Fargus and his sidekick Sid were

given a more demented look

Nikki, the heroine, was completely

redesigned for PANDEMONIUM 2.

and coordination. In order to achieve
our new ship date, some of the original
PANDEMONIUM team members, who had
been working on another project, had
to be brought in to help complete the
sequel. These four “volunteers” signed
on for a five-week tour that made a
huge difference in our ability to make
the early ship date. Once their tour of
duty was over, our team was left to fin-
ish up the schedule and ship in
October. Although we will meet our
October ship date for the PlayStation
game, the PC version will be delayed
until later in the year.

Four weeks before our golden master
date, the team struggled to update glue
screens, complete the introduction’s
sound mix, and stabilize numerous
crash bugs. Two weeks before the gold-
en master date, the bug list was still sig-

nificant, and many felt that the game
was much too difficult to play. The
marketing department sent reports to
our team noting where consumers were
encountering difficulties, and we fre-
quently turned around new versions of
the game that reflected this real-time
feedback.

Compounding our technical chal-
lenges, we had to overcome some
internal misconceptions about the
project. Since PANDEMONIUM 2 had
been positioned internally as a sequel,
many people assumed that the game
represented nothing more than a mod-
est technical challenge. On the con-
trary, the project was quite challeng-
ing. The functionality of the new
characters’ features and behaviors,
along with enhanced enemy intelli-
gence, made the product quite a tech-
nical undertaking.

The Gauntlet

T he approval cycle for a
PlayStation product is

very stressful. With in-store
commitments and market-
ing activities timed to coin-
cide with the retail avail-
ability of a product, all eyes
focus on the testing cycle.
Costly delays can arise if the
tenacious staff within
Sony’s quality assurance
department reject a product
due to bugs in the software.
Our team felt that our
biggest potential bug risks

stemmed from PANDEMONIUM 2’s new
character features. These fears proved
to be well founded, as early on in the
testing process the testing team dis-
covered a disproportionate number
of glitches associated with the new
character features.

Communication between testers
and the development team was espe-
cially challenging. In order to pro-
vide useful and constructive feedback
to the development team, the
PANDEMONIUM 2 testers required spe-
cial training from the test depart-
ment. For instance, the PANDEMONIUM

2 camera movements have their own
lexicon, which required the design
and testing staffs to identify, itemize,
and diagnose camera and design bugs
using a very technical and specialized
vocabulary. Thankfully, many of the
original PANDEMONIUM testers were
available to test the sequel, which

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

57

Lead artist Leon Cannon.Lead designer Zak Krefting.

The talented yet ethereal PANDEMONIUM 2 development team, hard at work fostering a creative work environment.

helped minimize the department’s
learning curve.

What Went Right

1. From the outset, the team was dri-
ven to design and create a large
number of very diverse levels. This
goal was partially met on the
design side and truly met on the
graphics side. When the decision
was made to shorten the develop-
ment schedule and ship the prod-
uct in October, design features that
we had planned to include beyond
the core mechanics were aban-
doned. However, the product was
graphically rich and diverse from
the outset, so the shortened sched-
ule didn’t have the same impact on
art that it did on the game design.

2. From the beginning, our develop-
ment group established an uncon-
ventional management, art, and
design philosophy. Given so much
individual autonomy, our group
had a magical feeling to it, a sense
that both art and design could fuse
together and integrate like never
before. This integration allowed us
to blur the traditional lines of team
hierarchy and development special-
ties. On a more subtle level, our
structure also allowed individual
personality traits to shine through
in the game play and level layout.
Core team members exhibited a
wide spectrum of game play styles
and wove their personalities into
the fabric of the game.

3. There was an almost religious fer-
vor within our team, riding the
power of the development environ-
ment, the game’s engine, and the
group’s creative cadence. Team

connectivity, integration, and
involvement in the creative process
was felt by all to be the key to suc-
cess. The more new technology
tricks and the more brains con-
tributing to the game design, the
better the product stood to be.

4. A by-product of the design team’s
remote location during develop-
ment of the original PANDEMONIUM

was the team’s general distrust of
upper management and the mar-
keting group. Without personal
contact on a daily basis with these
groups, the design team had demo-
nized marketing and management.
The situation improved significant-
ly during development of the
sequel, when everyone worked in
our Menlo Park offices. There was a
collective sense of involvement
shared by the executive staff, mar-
keting, and the development
groups, and much of the tension
(particularly between the develop-
ment team and the marketing
team) quickly evaporated. Some of
the techniques used to facilitate
this spirit were fairly straightfor-
ward and occurred organically.
They centered on getting people to
work together at consumer focus
groups, reviewing character sketch-
es and designs, encouraging
involvement, and valuing each
others’ opinions based on our vari-
ous areas of expertise.

There were two specific situations
where both the marketing and
development teams came together
for a common goal. The first was
when the marketing team orches-
trated a media tour that yielded a
potential magazine cover in a lead-
ing video game magazine. To
secure our spot on the cover, mar-

keting needed to create stunning
artwork that would impress the
magazine’s editorial decision mak-
ers. With this challenge in hand,
the marketing and art teams
worked together over the course of
several days to create and polish a
suitable scene. The result was that
the magazine’s editor was ecstatic
about the treatment, and we land-
ed the cover.

The other instance that tested
our teamwork occurred when pack-
aging artwork arrived from an out-
of-house design team. The charac-
ter models in the artwork were
deemed unacceptable, so with time
in short supply, the marketing
team again solicited the artists to
enhance the artwork. Again we met
marketing’s schedule and quality
expectations.

5. We created “micro teams,” built
around designers and artists with a
similar vision. This reengineering
of the traditional team brought
along with it a renaissance of cre-
ative freedom and efficiency. The
micro teams were built to guide the
creation of each “game zone,” or
chapter of the game. Decisions on
game play, specific mechanics, and
the graphical style were made with-
in these micro teams. Of course,
overall continuity was still
extremely important, and was man-
aged by the lead designer and the
lead artist. To reinforce the overall
leadership of the project, collective
team meetings were frequently
held to communicate each micro
team’s zone specifications. This
helped minimize areas of redun-
dant game play and let us share
innovative ideas with the rest of
the product team.

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

58

P O S T M O R T E M

PANDEMONIUM 2 features a dynamic, roller-coaster camera and kinetic horizontal game play.

What Went Wrong
1. One of our initial goals was to

address a major criticism of the orig-
inal product: that the game play was
too linear. Achieving this lofty goal
remained elusive. Programming
resources proved scarce during the
start-up phase of the project, and
during early diagnostic meetings, we
realized the complexity of this goal
and decided that our technical team
was not big enough to reach this
goal in time. Instead, we settled
upon a more achievable target: to
develop a system of multiple paths
in various levels that branched off
and let the player explore more of
the game’s environments.

2. Looking back at the team’s dynam-
ics, one of the loftier goals that we
narrowly missed was our attempt to
maintain the organizational free-
dom that the team enjoyed during
development of the original
PANDEMONIUM. That atmosphere fos-
tered a spirit that bound the group
together. Once the team consolidat-
ed in Menlo Park with the rest of the
company, some of the designers felt
that their frontier spirit would
inevitably be lost. Little actions were
spontaneously taken to revitalize
that attitude, such when some team
members set up a bright purple tent
around a central work area. Yet
some corporate organizational ele-
ments crept into their work lives,
including endless demonstrations to
distributor candidates and countless
marketing meetings.

3. The team had planned to use in-
game character models in animated
sequences, rather than large, fully-
animated sequences. Using charac-
ter models would have been more
affordable, easier to implement, and
less time consuming than the fully
animated sequences. Unfortunately,
implementing character models
wasn’t as easy or as fast as we had
originally thought. Since it wasn’t

on the critical path to shipping the
game it was pushed back in the
schedule. When our schedule
adjustment was made, those ani-
mated sequences didn’t have the
programming or art support to be
implemented.

4. In general, working on a sequel can
be somewhat stifling and difficult to
get excited about. As I explained
earlier, one of the goals was to aug-
ment the linear game play of the
original PANDEMONIUM, which
brought with it many interesting
creative challenges. In the early part
of 1997, it became clear that the
team would realize only a partial
victory. This design augmentation
was the primary motivation for
many members of the team, so
when we retreated from this target,
the creative energy and morale of
the team dropped. Managing expec-
tations and creative energies turned
out to be critical in keeping up
enthusiasm and passion.

5. There was some controversy over
whether to do a computer-rendered
3D introduction to the game. The
marketing department was interest-
ed in developing a high-quality,
multiscene introduction to help
relaunch the characters and enhance
the product’s publicity efforts. The
team was suspect of the value of the
sequence when measured against the
cost and time requirements to com-
plete it. The art group didn’t have
the time, nor the inclination, to
work on it, and it was farmed out to
a freelance contractor. There were
problems from the outset, causing
major budget overruns and delays.
Specifically, character motions and
aesthetic integrity were continually
problematic, to the degree that the
project barely made it into the game
by the beta testing stage. This late
completion precluded taking advan-
tage of prelaunch marketing and
sales opportunities that arose after
our alpha version was completed.

The Legacy

T aking into account all that’s been
said thus far, everyone associated

with PANDEMONIUM 2 was quite proud
of how it turned out. In this age of
beefy product development schedules
and budgets, the game did what few
have ever done: It shipped early. The
single most important lesson we
learned was how important the human
component is in development.
Whether the term is “intellectual capi-
tal” or “talent,” products succeed or
fail depending on the quality of the
team members. Managing and inspir-
ing these people has evolved away
from some of the harsher, old-school
techniques. Instead, companies will
continue to grow based on how well
they treat and support their key cre-
ative talent. Those companies that
show a real understanding of this shift
and effectively connect with their
teams will wind up developing the best
products. ■

Scott Steinberg, vice president of market-
ing at Crystal Dynamics, has been respon-
sible for managing and marketing GEX, the
company’s fast talking, top-selling, gecko
lizard that has been the company’s top rev-
enue-generating product. Prior to joining
Crystal Dynamics, Scott was in marketing
management at Sega of America, where he
was responsible for marketing and promot-
ing Sega Genesis, Game Gear, and Sega
CD software products.

60

P O S T M O R T E M

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

Game platforms: PlayStation and PC
CD-ROM

Development time (from conception thru
shipping): Approx. 1 year

Size of development team (excluding QA):
22 people

Ship date: October 1997

Publisher: Crystal Dynamics

Distributor: Midway

PANDEMONIUM 2

PANDEMONIUM 2’s whimsical graphics were designed to be reminiscent of Salvador Dali and Timothy Leary

whether there is a business here, but
when this business will take off?
Gamers have voted with their purchas-
es and given clear, direct feedback to
publishers of packaged goods titles: “If
you don’t have a network component

for online play, the chances of your
game being a hit plummet.” The reac-
tion among publishers right now is
quite pragmatic: enable games for
online play and make online play as
widely available as possible to drive

retail sales. Some publishers are
putting up their own servers for

matchmaking, such as
Blizzard’s Battle.net, while oth-
ers are making their games
available everywhere, as with
GT Interactive’s BLOOD.

The risk with these
strategies in the long

term is that free online
play will become a

commodity feature
that all games

include by default. But
where’s the real value

coming back to developers
and publishers? With every-

one providing online play
freely, I’m hard-pressed to understand
how we as an industry are growing
the business and making the market
more vital. Delivering the best
online game experience for the
growing communities around games
isn’t an easy or inexpensive exercise.
Unfortunately, the free online gam-
ing networks are providing subpar
experiences. Consumers obtaining
their first experience in suboptimal

settings such as these will be unlike-
ly to come back to online gaming

anytime soon, and will likely balk
at paying for the privilege. In
addition, the more broadly a
title is distributed to various
online gaming solutions, the
harder it is for a community to

put down roots.
We’re all learning a lot. It’s time for

us as an industry to get together and
determine a business model that makes
sense for the consumer, the developer,
the publisher, and everyone else
involved. It’s time for us as an industry
to share learning; for distribution of
that learning. The time for smoke and
mirrors and the circulation of misinfor-
mation is over. In that spirit, the fol-
lowing is offered.

Priority One: Creating a Market

W e don’t have a true market yet,
either in terms of the consumer

audience or in terms of a broadly rec-
ognized business model. The business
model must be in place before the
audience really begins to arrive, or the
current confusion in this market will
persist. Ultimately, the two broad mod-
els up for consideration are advertising-
based and the “consumer-pay” model.
In the latter, any and all types of
hourly, daily, weekly, monthly, or
yearly “pay-to-play” formats are
included. There will be many different
types of these pay-to-play formats for
some time, and that’s okay. With
regard to the ad-based business model,
it’s not here yet.

Ad revenue will not create any mean-
ingful value to developers and publish-
ers for at least three years. If there is
one publisher who has gotten a royalty
check from advertising of even
$10,000, please stand up and show us
the money. Meanwhile, many of TEN’s
content partners have already seen six-
figure royalty payments, thanks to our
subscription revenue stream.

The lowest barrier to entry for suc-
cess today is to be a developer and/or
publisher of online-only content. The
big guys aren’t focussing in on it. They
can’t afford to take their best talent off
of predictable retail franchises and

G A M E D E V E L O P E R N O V E M B E R 1 9 9 7 h t t p : / / w w w . g d m a g . c o m

64

b y J a c k H e i s t a n dS O A P B O X

Nature vs. Nurture:

Growing up Online

Continued on page 63.

TT he entertainment software industry is poised

for great expansion thanks to the potential

that online multiplayer gaming represents.

The question on many people’s minds is not

send them on fishing expeditions. The
best and breakthrough content will
come from smaller companies like ICE
Online, VR1, Multitude, and others.

Priority Two: Games and Gamers

T o truly grow the online gaming
market segment, developers must

do a better job of addressing the needs
of the audience through the games
themselves.
• Communities are loyal to games first,

genre second, and nothing else.
• Consumers want to compete. They

want tournaments, they want nation-
al game play, and they want to
understand their personal rankings
relative to the other competitors.

• The best games are organic. They
evolve and grow over time to reflect
the needs of the community. This
isn’t limited to role-playing games;
witness QUAKE and DUKE NUKEM 3D.
Wherever possible, this organic
metaphor should be extended to
include and involve the user: provid-
ing a game’s community with the
tools to extend the game is far easier
than doing it “in house” and adds a
sense of involvement that sophisti-
cated gamers appreciate.

• The technical hurdle of latency must
be further overcome in order to truly
grow the online gaming business.
Only then will online games rise to
mass market proportions with the
advent of new genres such as sports
simulations and fighting games.
Game design should address latency
where possible — either in the opti-
mization of data transmission or by
creating “cheats” and workarounds
that make latency less of an issue. But
equally important and often over-
looked is the need to reach true con-
sumerization of online gaming
through better ease of use and instal-
lation. There is huge room for
improvement in this area.

Priority Three: The Need for
Standards

F or most industries, to grow far
beyond the “start-up” phase, some

standards are a must. Microsoft and
AOL are not serious about the busi-

ness. The former needs to win as a
publisher first; they’ve struggled for
over five years to build only a 5% mar-
ket share in gaming. Their first goal
will be to try to topple EA. I’d rather be
locked in a jail cell with a hungry Mike
Tyson than take on EA. The business is
just too unpredictable and Microsoft
lacks the leverage that it typically
enjoys. At the same time, AOL needs
applications that drive usage for as
many of their 8-10 million subscribers
as possible. INN’s hearts and cribbage
are the focus for now. We as an indus-
try cannot, and should not, rely on
these mainstream industry leaders to
dictate the evolution of the online
gaming business.

The consoles are coming. The PC has
had the opportunity to distinguish
itself as the sole Internet access
provider and make serious inroads on
the console dominance in electronic
entertainment. That window will soon
begin to close. With the console com-
panies, it seems highly unlikely that
the publishers will have much say in
the online business model. While con-
soles suffer from the finite lifespans of
their audiences, which are not portable
from one platform to another, the big
winners — Nintendo and Sony — have
enough critical mass if they build the
communities at initial ship. What hurt
the Sega Channel was its launch at the
peak of the 16-bit market. By the time
they had amassed 200,000 online
users, there was little new content
coming. Not to mention that in Sega’s
business model, publishers received
only a few cents on the dollar. Ouch.
Instituting some standards will help
ensure that when the console compa-
nies enter the online gaming market in
a significant way, there will already be
in place established and accepted para-
meters and guidelines.

Database and billing administration
is a nightmare. It took TEN three
months after commercial launch to
iron out most of the kinks. As of this
writing, we’ve sent 16 consecutive bills
out. I don’t think there’s an off-the-
shelf application that will work here.
We probably would be better served as
an industry to agree on one application
and embrace that.

There are wild figures being bandied
about regarding the numbers of users
on systems. To the extent that advertis-
ing is, or eventually can be, a signifi-

cant revenue source for online gaming
companies and their content partners,
some official, independent auditing
mechanism is necessary. While TV has
the Nielsen ratings, radio has Arbitron,
and magazines have the BPA, the
Internet, and online gaming in particu-
lar, has no such means of validation.
For the free sites out there, the num-
bers cited seem to reflect unique visi-
tors who have come to the sites at least
once. A better approximation of a site’s
“active member base” is a must if
advertisers are ever to begin taking this
market seriously. Currently, the best
approximation of a site or service’s
active member base can be obtained by
tracking peak simultaneous usage —
the number of users a service attracts at
its busiest times of day. As a rule of
thumb, peak usage runs about 4% of
the total active member base. This
equation yields that most of the free
services are overstating their active
base by a factor of four or five. In total,
there are about 150,000 PC games
enthusiasts who have signed up to
TEN, Mpath, and the Internet Gaming
Zone combined; the rest are either
duplicate accounts or one-time, “tire-
kicking” curiosity-seekers. These esti-
mates are reinforced by a recent IDSA
study that found that 4% of the 3.5
million PC game enthusiasts have sub-
scribed to an online gaming service.

So what does all this mean? It means
that online gaming has a lot of grow-
ing up to do. Where do we begin? We
must come to some agreement on the
direction this market segment will take
and work with some level of coopera-
tion to move in that direction. Let’s
face it: Online gaming can be as signifi-
cant to the entertainment software
industry as the video rental business is
to Hollywood. Or we can continue to
muddy our own waters and watch a
potentially lucrative market remain a
niche play. ■

Jack Heistand is the president and CEO
of Total Entertainment Network, a com-
mercial online gaming service with three
distinct revenue streams: subscriptions,
advertising, and technology/brand licens-
ing. Heistand previously served as senior
vice president of corporate business devel-
opment at Electronic Arts, and also held
senior management positions with Hearst
Magazines, where he was the founding
publisher of SmartMoney and The Wall
Street Journal Magazine.

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 7 G A M E D E V E L O P E R

63

Continued from page 64.

	back:

