
MAY 2013
VOLUME 20 NUMBER 05

REVISITING ANDROID +++ POSTMORTEM: HUNDREDS +++ INTRO TO USER ANALYTICS

T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E

G
A

M
E

 D
E

V
E

L
O

P
E

R
 M

A
G

A
Z

IN
E

 M
A

Y
 2

0
1

3

T
H

E
 L

E
A

D
IN

G
 G

A
M

E
 IN

D
U

S
T

R
Y

 M
A

G
A

Z
IN

E

V
O

L
U

M
E

 2
0

 N
U

M
B

E
R

 0
5

It’s where your game belongs.

Discover how you can create games
that keep them coming back for more.

G A M E D E S T I N A T I O N:

B L A C K B E R R Y 1 0

BlackBerry® 10 o� ers a powerful and easy platform
for game development. It’s integrated with major
development tools and leading game engines, including
Unity, Marmalade and Shiva 3D. Plus, the leading
BlackBerry 10 hardware produces a visually stunning
and incredibly immersive gaming experience that really
lets your masterpiece shine.

Get your game where
it needs to be. Fast.

Shadowgun image courtesy of SHADOWGUN, by MADFINGER. Alpha Zero images courtesy of Funkoi Ltd. Copyright 2013. All rights reserved.

© 2013 BlackBerry. All rights reserved. BlackBerry® and related trademarks, names and logos are the property of Research In Motion Limited and are registered
and/or used in the U.S. and countries around the world. All other trademarks are the property of their respective owners.

Users everywhere are hooked on the simplicity, elegance and blazing-fast
performance that BlackBerry 10 delivers. They are enthusiastically snapping
up amazing entertainment and apps to make their BlackBerry experience that
much richer. All of this demand means that there has never been a better time
for you to bring your game to BlackBerry.

It’s easy to get started

By o� ering both native development tools and integration with the major development
tools on the market, BlackBerry makes it simple for you to choose an option that
works best with your individual skills and preferences. So you can develop your game
faster and with the greatest fl exibility.

POSIX-based
OS, support
for openGL ES,
OpenAL

Development tools
using Microsoft
Visual Studio and
Eclipse EDT

Consistent form
factor makes it
easy for
developers

Leading game
engine and
middleware
support

Start mapping out your success
developer.blackberry.com/games

Visit the BlackBerry booth at the
Nordic Game Conference
Malmö, Sweden on May 22-24, 2013

http://developer.blackberry.com/games

Sign up for the Project Anarchy newsletter on
projectanarchy.com or join us on the interwebs
for updates!

FREE!
Full 3D Mobile Game Engine & Toolkit

Create anarchy with us.
Developer contest coming soon!

Project
Anarchy

by

Includes Havok Vision Engine together with access to Havok’s
indsustry-leading suite of Physics, Animation and AI tools as
used in cutting-edge franchises such as The Elder Scrolls®,
Halo®, Assassin’s Creed®, Uncharted™ and Skylanders™.

+ Extendible C++ plugin-based architecture

+ Comprehensive game samples and tutorials to get
started

+ Online community support with forums, Q&A and
videos

+ NO commercial restrictions on company size or
revenue

+ Upgrades for additional platforms, source and
support avaialble.

http://projectanarchy.com

0
0

3
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

003
C O N T E N T S _ M a y 2 0 1 3

V O L U M E 2 0 N U M B E R 0 5

Postmortem

34 HUNDREDS
Indie dev Adam Saltsman tells us what
went right and what went wrong in his
team’s efforts to design HUNDREDS as
a mobile game from the ground up. By
Adam Saltsman

Features

12 ANDROID, REVISITED
Are Android game devs still plagued by
issues of platform fragmentation and
poor sales? We interviewed several
Android game devs to take the market’s
pulse. By Patrick Miller

22 INTRO TO USER ANALYTICS
Tracking your players’ behavior can
be a powerful tool for making better
games—and making more money. But
what should you track, and how should
you act upon your fi ndings? By Anders
Drachen, Alessandro Canossa, and Magy
Seif El-Nasr

27 INTERNAL INDIES
Established game dev studios could
learn a thing or two from the indie
revolution. Here’s how one studio set up
their own internal “indie” group. By Steve
Stopps

31 BALDUR’S GATE: ENHANCED
 EDITION POSTMORTEM

Trent Oster walks Game Developer
through the ins and outs of bringing
BioWare’s classic RPG to the iPad. By
Trent Oster

Departments

004 Game Plan [Editorial]

006 Heads Up Display [News]

008 Educated Play [Education]

009 Good Job [Career]

011 GDC News [News]

040 Toolbox [Review]

045 Inner Product [Programming]

052 Pixel Pusher [Art]

055 The Business [Business]

056 Design of the Times [Design]

058 Aural Fixation [Sound]

060 Insert Credit [Editorial]

064 Arrested Development [Humor]

0
0

4

UBM LLC.
303 Second Street, Suite 900, South Tower
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

W W W. U B M . C O M

SUBSCRIPTION SERVICES

FOR INFORMATION, ORDER QUESTIONS, AND
ADDRESS CHANGES
t: 800.250.2429 f: 847.763.9606
gamedeveloper@halldata.com
www.gdmag.com/contactus

EDITORIAL

PUBLISHER
Simon Carless scarless@gdmag.com
EDITOR
Patrick Miller pmiller@gdmag.com
EDITOR EMERITUS
Brandon Sheffield bsheffield@gdmag.com
MANAGER, PRODUCTION
Dan Mallory dmallory@gdmag.com
ART DIRECTOR
Joseph Mitch jmitch@gdmag.com
CONTRIBUTING WRITERS
Alexandra Hall, Steve Stopps, Adam
Saltsman, Nate Ralph, Dean Ellis, Steve
Theodore, Soren Johnson, David Kanaga,
Kim Pallister, Brandon Sheffield, Matthew
Wasteland, Magnus Underland, Anders
Drachen, Alessandro Canossa, Magy Seif
El-Nasr
ADVISORY BOARD
Mick West Independent
Brad Bulkley Microsoft
Clinton Keith Independent
Bijan Forutanpour Qualcomm
Mark DeLoura Independent
Carey Chico Independent
Mike Acton Insomniac
Brenda Romero Loot Drop

ADVERTISING SALES

VICE PRESIDENT, SALES
Aaron Murawski aaron.murawski@ubm.com
t: 415.947.6227
MEDIA ACCOUNT MANAGER
Jennifer Sulik jennifer.sulik@ubm.com
t: 415.947.6227
GLOBAL ACCOUNT MANAGER, RECRUITMENT
Gina Gross gina.gross@ubm.com
t: 415.947.6241
GLOBAL ACCOUNT MANAGER, EDUCATION
Rafael Vallin rafael.vallin@ubm.com
t: 415.947.6223

ADVERTISING PRODUCTION

PRODUCTION MANAGER
Robert Steigleider robert.steigleider@ubm.com
t: 516-562-5134

REPRINTS

WRIGHT’S MEDIA
Jason Pampell jpampell@wrightsmedia.com
t: 877-562-5972

AUDIENCE DEVELOPMENT

AUDIENCE DEVELOPMENT MANAGER
Nancy Grant e: nancy.grant@ubm.com
LIST RENTAL
Peter Candito
Specialist Marketing Services
t: 631-787-3008 x 3020
petercan@SMS-Inc.com
ubm.sms-inc.com

G A M E D E V E LO P E R
M A G A Z I N E
W W W. G D M A G . C O M

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

004 gp
G A M E P L A N _ M a y 2 0 1 3

ASH HEAP OF HISTORY

Had I written this editorial two weeks earlier, I’d probably be writing about how
enthusiastic I am to introduce our fi rst-ever mobile-themed issue. In the past few
years, mobile games have grown into a part of the industry no developer can afford
to ignore, and the fact that Game Developer hasn’t ever devoted an entire issue to the
topic until now is rather shortsighted on our part.

Then I found out that Game Developer’s parent company UBM Tech was axing all
its print publications. That’s right—if you haven’t already heard, Game Developer’s last
offi cial issue is the next one (June-July). Stick around for it; it’s gonna be good.

Of course, the irony of announcing that we’re ceasing publication in the issue that
celebrates the new and exciting world of mobile game development is delicious, if
rather bittersweet.

To those of you worried about your future in triple-A dev due to last month’s salary
survey, and those of you who were laid off because whatever you were working on didn’t
have enough future-friendly buzzwords to satisfy your management, we understand.
We’ve got a support group going down by the bar, and we’ll save you a seat.

CLOSING TIME In a sense, both the publishing industry and the game industry have
experienced similar disruptive patterns from the rise of mobile computing platforms.
On one hand, the fact that practically everyone carries around some kind of handheld,
Internet-connected computer means that our potential audience has exploded. At any
given moment, someone with a few spare seconds could whip out their phone and
start playing your game or reading my articles. On the other hand, the design of these
devices drastically changes the way people want to play or read; we want games to
play in 30-second bursts and writing in 140-character chunks.

As creators, we know that there are truly great things you can do with short-
form (well, more like microform, really) games and writing. But that isn’t the work
that inspired us to join this industry ourselves, and it can be hard to embrace
wholeheartedly a new aspect of the medium knowing that the work we’re doing isn’t
necessarily the kind of work that personally engages us. We can dig our heels in and
resist the change as best we can, of course. It’s a matter of pride; we just got the
chance to make something good, and now it’s being supplanted by something else.

EVERY NEW BEGINNING… When news of LucasArts’s exit from game development hit
the wire, I had a chat with former Game Developer EIC Brandon Sheffi eld and former
Gamasutra news director Frank Cifaldi about why everyone was mourning the loss
of the studio’s legacy despite the fact that all the games we mourned hadn’t seen
any love for at least a decade. We don’t miss STAR WARS: THE FORCE UNLEASHED;
we miss MONKEY ISLAND and FULL THROTTLE and X-WING VS. TIE FIGHTER and GRIM
FANDANGO. And, weirdly enough, we miss them even if we haven’t played each of those
games through; I only played a few of those games myself, but I was just as down as
Frank was on that day, and he’s probably going to name his fi rstborn Guybrush Cifaldi
or something ridiculous like that. I think perhaps the best explanation comes from a
webcomic called Achewood, on the strip for the day that Michael Jackson died:

“He was your Elvis, and when your Elvis dies, so does the private lie that someday
you will be young once again, and feel at capricious intervals the weightlessness of a
joy that is unchecked by the injuries of experience and failure. In other words, you two
died a bit today. Welcome to the only game in town.”

…COMES FROM SOME OTHER BEGINNING’S END There is pride, and then there is
denial. The reality is that game developers who ignore mobile, or indies, or any other
major trend in games do so at the risk of their careers and their relevance to the
medium. (Same goes for editors.) So like Autobots, we transform and roll out, knowing
that the job ahead of us is not to remake the works that inspired us to enter this
industry in the fi rst place, but to learn new things so we can make new things—things
that might just be the Elvis for someone else.

Welcome to the only game in town.
-Patrick Miller

Editor, Game Developer
@patthefl ip

THE COST OF DISRUPTION

http://WWW.GDMAG.COM
mailto:gamedeveloper@halldata.com
http://www.gdmag.com/contactus
mailto:scarless@gdmag.com
mailto:pmiller@gdmag.com
mailto:bsheffield@gdmag.com
mailto:dmallory@gdmag.com
mailto:jmitch@gdmag.com
mailto:aaron.murawski@ubm.com
mailto:jennifer.sulik@ubm.com
mailto:gina.gross@ubm.com
mailto:rafael.vallin@ubm.com
mailto:robert.steigleider@ubm.com
mailto:jpampell@wrightsmedia.com
mailto:nancy.grant@ubm.com
mailto:petercan@SMS-Inc.com
http://ubm.sms-inc.com
http://WWW.UBM.COM

Unlocking Epic Games’ new Unreal Engine 4
Blueprint visual scripting system

Legions of developers rely upon Unreal Engine 3’s
Unreal Kismet, which is used to quickly build game-
play prototypes and level events. With Unreal Engine 4
Epic introduces Blueprints, a revolutionary new visual
scripting system that replaces Kismet and provides a
massive leap in functionality and productivity.

Blueprint visual scripting empowers artists and de-
signers like never before by providing access to low
level engine functions and the ability to rapidly proto-
type without having to write a single line of code.

Supported by built-in debugging tools and enhanced
by Unreal Engine 4’s brand new interface, Blueprints
deliver all the power of Kismet along with the ability to
visually script reusable components for gameplay, AI,
player controls, geometry creation and numerous other
features. These components can be used as pervasive
parts of the world, so when a Blueprint is updated, the
change affects all parts of the game where the Blue-
print is present.

Blueprints can be utilized for gameplay behavior,
animation blending, level building and design, and as
mentioned before, object construction. Epic is only
scratching the surface of what Blueprints can do so far.
The only limitation is one’s imagination, and it will be
exciting to see how Unreal Engine 4 licensees unleash
their creativity with the new toolset.

For additional info and the latest news about Unreal
Engine, please visit unrealengine.com.

Above: Epic recently presented the “Infiltrator” real-time demo to highlight Unreal
Engine 4’s latest features. The vehicle conveyor apparatus shown here is a
Blueprint. Center: Everything in this alien hovership game, which was created
by Epic’s principal artist Shane Caudle in his spare time, is made entirely with
Blueprints. This includes the HUD, input handling, animation, gameplay controls,

Come see Epic at upcoming industry events: Electronic Entertainment Expo (E3) (June 11-13, Los Angeles,
CA), Develop Conference (July 9-11, Brighton, UK), ChinaJoy (July 25-27, Shanghai, China).
Email licensing@epicgames.com for appointments and sign up for our newsletter at unrealengine.com.

© 2013, Epic Games, Inc. Epic, Epic Games, the Epic Games logo, Unreal, Unreal Engine, UE3 and UE4 are trademarks or registered trademarks of Epic Games, Inc. in the United States of America
and elsewhere. All other trademarks are the property of their respective owners. All rights reserved.

What’s in a
Blueprint?

enemy AI, character setup, weapons, projectiles, and effects. Bottom: Unreal
Engine 4’s new persona animation system provides state support and animation
blending. Blueprints enable quick adjustment of speed, transitioning between states,
fine-tuning a character’s pitch, yaw and much more.

http://unrealengine.com
mailto:licensing@epicgames.com
http://unrealengine.com

0
0

6

006 h
H E A D S - U P D I S P L AYH E A D S - U P D I S P L AY _ M a y 2 0 1 3

NEW PAY-WHAT-YOU-WANT STOREFRONT SERVICE
MAKES IT EASY FOR INDIE DEVS TO SELL DIRECTLY TO
PLAYERS

NEW PAY-WHAT-YOU-WANT STOREFRONT SERVICE NEW PAY-WHAT-YOU-WANT STOREFRONT SERVICE
MAKES IT EASY FOR INDIE DEVS TO SELL DIRECTLY TO MAKES IT EASY FOR INDIE DEVS TO SELL DIRECTLY TO
PLAYERSPLAYERS

 h

INDIE STORE FOR
INDIE DEVS

The pay-what-you-want
business model has attracted
plenty of interest across the
Internet over the last few years,
as creative types of all kinds
have struggled to fi nd ways
to turn their passion projects
into something that can also
pay the bills. But how is an
indie dev supposed to take the
time to build their own PWYW
storefront on top of actually
making a game? Independent
game dev Leaf Corcoran built
his own service called itch.io
(www.itch.io) in order to sell
a few games he made for the
Ludum Dare game jam, and
thought others might like to
use it too.

PATRICK MILLER: What was the
inspiration for itch.io?
LEAF CORCORAN: The idea came to me
fairly recently. I had completed a
few games for Ludum Dare and I
wanted to put up mini web sites for
each one with a download link and
some screenshots. Although I have
experience making web sites, doing
something like this is kind of a pain
because there is a good amount of
manual work. So I thought just a
simple game-page generator would
be nice.
I put the idea off, but a few weeks
later I was thinking about how I
keep on seeing Bandcamp music
pages everywhere, and from what I
could tell it seemed like they were
doing pretty well with a pay-what-
you-want model. So I took a week
off from my day job and did the
majority of the programming then,
though it took about fi ve more
weeks until I fi nally released it.

PATRICK MILLER: Why get behind pay-
what-you-want?

LEAF CORCORAN: I really can’t speak
from experience on whether pay-
what-you-want is a good model for
games—this whole thing is a big
experiment to me. I’m sure there
are a lot of indie game developers
out there who have made games
that just sit around, and they
probably never considered getting
money for them, but with a system
like this in a few clicks you can set
it up so if someone likes your game
they can give you some money.
I think that’s one of the most
profound things about the site.

PATRICK MILLER: How much work
does it take for an individual dev to
start their own storefront? What’s
your cut?
LEAF CORCORAN: It’s very easy to get
started; it doesn’t take long to
make a game page and you can do
it immediately after registering an
account. I think it’s really important
to have a fast and simple way to get
your game ready to be distributed.
The game pages are all about the
game. There are no logos or links
for itch.io (except for a tiny link on
the bottom). I think that’s pretty
important. When I looked around
for other similar marketplaces, they
were all plagued with a bunch of
crap that didn’t add to the game.

With each game you can also
upload fi les. The fi les can be of any
type, so you are free to give out
other goodies with your game like
soundtracks, art books, or whatever
you can think of.
By default, anyone can download
the fi les, but if you set a minimum
price you can restrict download
access. A minimum price of
0 means that the user will be
prompted to pay, but they can skip
to the downloads if they wish. The
download URLs are restricted

such that it’s not possible to
share a direct link to a fi le, so
everyone gets the opportunity to
pay before they download. There
is no DRM or download client;
the fi les are downloaded right
from a browser and they are kept
exactly as you upload them. This
means you can upload games for
any platform. Also, I try to give
the game developers insight to
their pages—view, download, and
purchase statistics, nice graphs,
and so on. Currently all payments
are handled by PayPal. I take a 10%
cut of all transactions as a fee for
the service.

PATRICK MILLER: How has reception
been so far?
LEAF CORCORAN: Pretty good. I’ve
posted it on a handful of game
developer message boards,
along with Facebook, Google+,
and Reddit. I’ve still got a lot of
marketing to do, though, before
I’m satisfi ed. I get a lot of feature
suggestions, which is pretty
cool—it’s one of the reasons why
I released it as early as possible.
About 80 people have signed up
so far, with 33 games created
and fi ve dollars and one cent of
transactions. Small beginnings, but
things are looking good so far.

PATRICK MILLER: What’s next in the
pipeline as far as new features?
LEAF CORCORAN: I’ve got a lot of ideas;
here are some of the major ones:
I only support downloadable games
right now, but I’m coming up with
ideas for hosting online games
(Flash, Unity, HTML5). Also, I
want to add other online payment
providers besides PayPal, and build
an “explore” page so people can
browse the games database.

—Patrick Miller

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
0

6

http://itch.io
http://www.itch.io

 h 007
H E A D S - U P D I S P L AY _ M a y 2 0 1 3

0
0

7
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

FAREWELL LUCASARTS
DEVS SAY GOOD-BYE TO A BELOVED STUDIO

In early April, the Walt Disney Company announced
it was shutting down all of LucasArts’s internal
game development and turning it into a licensing
house. Faced with this news, Game Developer sister
publication Gamasutra asked game devs to answer
the following question: What is it about the classic
LucasArts adventure games that makes them timeless?
Here is a selection of the answers we received.

“ They often broke the fourth wall and made you feel like
you were in on the joke. As if the joke was ‘Can you believe
we get to make these things?’ It was exhilarating and
inspiring. Even today, my fantasy of what game development
nirvana feels like stems from my experience playing those
games, and the insinuation that they were created in the
most liberating and creative environment on earth.”

—Mike Mika (Other Ocean Interactive)

“ What I love about the classic LucasArts adventures as
a game-industry person is that it seems like every single
person in the game industry has played them. So you
can use any of the games as shorthand when discussing
something (‘We need a Manny-like character for this’),
and more importantly, you can instantly learn a lot about
someone by what LucasArts adventures they like most (‘OK,
you’re a MONKEY ISLAND guy? Got it. Still focused on putting
the hamster in the microwave in MANIAC MANSION? Cool.
You like THE DIG?! Right on…’). Because everyone has played
them, they’re basically a Rorschach test for people in the
game industry at this point.”

—Chris Charla (Microsoft Studios)

“ LucasArts writers and designers like Ron Gilbert and
Tim Schafer brought to the table a wonderful knack for
character and dialogue, and I think the reason people still
talk about those early titles today is that we all have favorite
scenes that we still remember. They also achieved a kind of
unstudied greatness that comes from not taking yourself too
seriously. MONKEY ISLAND II actually ended gameplay with
a long list of things you could go out and do other than play
video games. Who does that now?”

—Peter McConnell (LucasArts alum)

“ They were built on a winning combination of low-stress
mechanics and propelled by genuinely good writing. Many of
the characters had heart and soul, the imagined worlds they
inhabited were crafted with an impressive attention to detail, and
in many cases the personalities and some aspect of the creators
came through. Each of the mid-’90s LucasArts adventure
video games is memorable on its own, but taken together they
represent a studio’s glorious golden age that, in a fate similar
to Atlantis (sorry), seemed to suddenly and cataclysmically sink
beneath the ocean waves in the late ’90s.”

—Craig “Superbrothers” Adams

“ Honestly, I don’t even know where to begin; they had
so many titles that stand out. Their adventure games
basically defi ned an era, with MANIAC MANSION, DAY OF THE
TENTACLE, ESCAPE FROM MONKEY ISLAND, FULL THROTTLE,
and GRIM FANDANGO. INDIANA JONES AND THE FATE OF
ATLANTIS is probably one of my favorite adventure games
of all time. Indiana Jones and the adventure game genre go
together… well, like fedoras and bullwhips. And for me, FATE
OF ATLANTIS delivered not only one my favorite adventure
stories but also one of the best Indiana Jones stories ever.
Certainly better than THE CRYSTAL SKULL. Sorry, George.”

—Mark Rubin (Infi nity Ward)

“ In adventure games, verbs are mechanics and writing
is gameplay. The two can live in harmony. LucasArts made
some of the best—by turns thrilling, funny, strangely
morbid—and I will always be grateful for that.”

—C.J. Kershner (Ubisoft Montreal)

“ Classic LucasArts adventures are timeless because their
infl uences are timeless. Frankenstein and fi lm noir and
buddy comedies and teen movies, classic pulpy sci-fi and
swashbuckling movie serials crossed with irreverent, real,
believable characters living in outrageous worlds. I loved
FULL THROTTLE’s neo-noir before I knew what fi lm noir was.
I loved DAY OF THE TENTACLE’s Bernard, Hoagie, and Laverne
archetypes before I’d ever seen the teen-movie source material.
But regardless of the specifi c references and inspirations,
classic LucasArts adventures are timeless because great, clever,
earnest, memorable, human writing is timeless, and that is the
foundation on which all those great games were built.”

—Steve Gaynor (The Fullbright Company)

“ We’d spend months thinking about our games…
brainstorming with the other brilliant designers, refi ning,
reworking, revamping, tossing out the parts that didn’t work (or
the entire concept) and starting again. One of our edicts was
‘don’t ship shit’ and we wanted to make sure we never did.”

—David Fox (LucasArts alum)

—Frank Cifaldi
This article is an excerpt of an article originally posted on Gamasutra.
You can fi nd the full-length version here: http://bit.ly/YXJG2L

DAY OF THE TENTACLE.

http://bit.ly/YXJG2L

0
0

8
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

FARSH, a Persian-themed
puzzle game with a
clever carpet-unfurling
mechanic, was a Student
Showcase Finalist in the
2013 Independent Games
Festival. It’s just the latest
game from Mahdi Bahrami,
a young Iranian developer
with a knack for concocting
original gameplay concepts,
who’s studying at the
NHTV Breda University of
Applied Sciences in the
Netherlands. We checked in
with Mahdi to discuss Farsh
and the ups and downs of
developing while Iranian.

ALEXANDRA HALL: What got you
started creating games?
MAHDI BAHRAMI: I started learning
programming about eight
years ago with QBasic and
then Visual Basic. After a few
years, I found XNA. Making a
game called PERSIAN TETRIS
was one of my fi rst steps to
become a game developer.
I’m not a longtime video game
player. What I remember from
childhood is sitting next to my
brother and watching him play
games. I think that helped me
have a better perspective on
video games.

ALEXANDRA HALL: It’s interesting
that you’re not a longtime
player. What drives you to want
to create games?

MAHDI BAHRAMI: Yeah, I’m not
a longtime player, but being
able to create my own games
was a dream for me. Learning
programming was the key to
achieving my dream.

ALEXANDRA HALL: Several of your
games (FARSH, NEGA KON!,
BO) seem simple at fi rst, but
get surprisingly complicated.
Where do you fi nd your ideas?
MAHDI BAHRAMI: When I’m going
to make a new game, before
I start to work on it, I think a
lot about the main idea behind
it. I don’t start working on a
game if I think it’s not different
enough.

ALEXANDRA HALL: So you are only
interested in making original
games?
MAHDI BAHRAMI: Yeah, even if
original games are not always

successful, I won’t stop trying
to design unique games.

ALEXANDRA HALL: Are there many
other Iranian/Persian game
makers?
MAHDI BAHRAMI: There are so
many talented artists in Iran
for any kind of art. I know
many game developers in Iran.
Farhoud Farmand, Dead Mage
Studio, and Sourena Game
Studio have potential to make
great games.

ALEXANDRA HALL: Would you want
to collaborate with other game
creators? I noticed Moslem
Rasouli created the excellent
music in FARSH.
MAHDI BAHRAMI: Yeah, collaborating
with Moslem made FARSH much
better than what it was in the
beginning; he is an example of
the young talented artists living
in Iran, and of course I [would]
like to collaborate with other
talented people.

ALEXANDRA HALL: What are the
positives and negatives of being
a game developer in Iran?
MAHDI BAHRAMI: I feel good
about being an Iranian
game developer. I have
the opportunity to become
familiar with many details of
Persian culture. My games
are somehow inspired by my
culture and it helps me to
make more original games.

On the other hand, I have
many problems just because
of my nationality. Just as an
example: FARSH is one of the
IGF fi nalists, but I was not able
to travel to the U.S. because
my visa application was
rejected. This is only one of the
diffi culties I have.

I’m not able to sell my
games offi cially as an Iranian
on the App Store, Xbox Live
Indie Games, etc. Also, as an
Iranian I’m not allowed to have
a PayPal account. And I’m not
allowed to submit my games to
some of the competitions.

ALEXANDRA HALL: Have you
considered emigrating
elsewhere?
MAHDI BAHRAMI: I’m currently
studying in the Netherlands
(it’s about seven months
since I came here) but those
diffi culties are still with me,
because I’m still Iranian. As I
said before my visa application
for the U.S. was rejected
recently, even though I am
living in the Netherlands.

ALEXANDRA HALL: Do you have
any message you’d like to share
with your game-making peers
around the world?
MAHDI BAHRAMI: I would like to
ask them to visit my blog and
contact me if they can help me
to overcome the diffi culties I
mentioned.

Developer: Mahdi Bahrami
and Moslem Rasouli
Release date: September
22, 2012
Development time: 2
months
Development budget: $0
of lines of code in the
game: About 2,000
A fun fact: After putting the
fi rst version of the game
on my blog, many people
uploaded gameplay videos
of their experience of
playing Farsh to YouTube.
For the fi nal version of
the game, I used those
videos for gathering design
feedback.

008
E D U C AT E D P L AY _ M a y 2 0 1 3

FARSH
HTTP://MARSIGAMES.BLOGSPOT.COM

P
H

O
TO

 C
R

ED
IT

 J
or

am
 W

al
te

rs
.

HTTP://MARSIGAMES.BLOGSPOT.COM

gj 009
G O O D J O B _ M a y 2 0 1 3

Ron Gilbert, creator of
classic LucasArts games
such as THE SECRET OF
MONKEY ISLAND, recently
left Double Fine after
completing The Cave.
Now independent, he’s
collaborating on an
iOS game with Clayton
Kauzlaric, SCURVY
SCALLYWAGS IN THE VOYAGE
TO DISCOVER THE ULTIMATE
SEA SHANTY: A MUSICAL
MATCH-3 PIRATE RPG.

ALEXANDRA HALL: Here you are
independent again, and making
funny games. Good feeling, or
best feeling?
RON GILBERT: I don’t know if I’d
say it is a good or bad feeling,
it’s just a different feeling. I
had a lot of fun working at
Double Fine on THE CAVE and
wouldn’t trade it for anything.
But I’ve always liked working
on very small teams as well,
and it will be fun to do that
again. I fi nd that 90% of my
gaming these days happens
on my iPhone and iPad, so I’m
looking forward to being able
to focus on those platforms.

ALEXANDRA HALL: How do you
stay afl oat in this economy?
RON GILBERT: Stay small and
keep focused and build stuff
that has a unique twist to it.
Grassroots PR/marketing is key

for small indie developers, and
the ones that do it well enjoy
some good success. “Build it
and they will come” is a lie. :-)

ALEXANDRA HALL: THE CAVE
has been percolating since
before Maniac Mansion. Did it
change much since that early
conception?
RON GILBERT: A lot changed.
The original idea was not an
adventure game and there
were only three characters.
When I started working on it
again a few years ago in what
became THE CAVE, I added the
seven characters because I
have always wanted to revisit
that from MANIAC MANSION.

AH: It’s nice to see prominent
game designers of the 1980s
and 1990s returning to the
spotlight. What’s fueling this?
Kickstarter, nostalgia…?
RON GILBERT: There is defi nitely
a maturing of the industry,
and by maturing I don’t
mean we’re all getting old.
The base of people playing
games has exploded in the
last fi ve or six years, due to
Facebook and the iPhone and
Android, and they aren’t all
looking to play the same type
of game and that’s creating
a lot more diversity. Some of
the older genres are seeing
a comeback. It’s all new to a

different generation of players.
I do think nostalgia plays a
role, and Kickstarter is great
for addressing that need.

ALEXANDRA HALL: Disney’s
control of the LucasArts IPs
is one of the major factors
stopping you from working
on your classic properties.
Is retaining IP one of the
most important things for
developers? Has your stance
on this evolved?
RON GILBERT: Controlling and
owning your IP is key. If you
can avoid it, never give up IP.
It’s a myth that publishers
will work harder to promote
the game if they own the IP.
Give publishers an exclusive
window and fi rst right of
refusal and all that, but don’t
give up your IP. I’ve been

making games for close to
30 years and from MANIAC
MANSION to MONKEY ISLAND
to PUTT-PUTT and PAJAMA
SAM to DEATHSPANK and on, I
don’t own any of it and that’s
been a huge regret.

ALEXANDRA HALL: LucasArts is
essentially no more. Can you
share some thoughts on this
end of an era?
RON GILBERT: When Disney
bought Lucasfi lm last year,
its being shut down was
inevitable. As much as I like
to think they paid $4 billion
to get the rights to Monkey
Island, the fact is Disney
bought Lucasfi lm for the
Star Wars movies and that’s
it. Everything else was just
an accounting rounding
error. My hope is that I can
get the rights to MONKEY
ISLAND back, and maybe
Gary [Winnick] and I can get
MANIAC MANSION back. That
would be fun. MONKEY ISLAND
KART RACING. You know you
want it. It’s very sad that they
are gone. I grew up there and
even though I hadn’t worked
there since 1992, it always felt
like home to me.

P.S. I was kidding about
MONKEY ISLAND KART
RACING…but it would probably
sell really well. Sad, but true.

0
0

9

Who Went Where
n Silvia Seibert has been appointed CFO of Slightly Mad Studios,

the creators of the NEED FOR SPEED SHIFT games.
n Rod Fergusson, the former GEARS OF WAR producer who

joined Irrational Games to help fi nish BIOSHOCK INFINITE, is
moving on now that Infi nite has shipped to wide acclaim. No
word yet on where he’ll end up.

n Giordano Contestabile, PopCap’s longtime franchise manager
for BEJEWELED, has left to join Tilting Point Media, where
he’ll work to fund both established indie teams and new IP for
mobile platforms.

New Studios
n Melbourne-based Loveshack Entertainment is the new

of home of three senior developers from EA’s Firemint
development studio. The team’s initial project, FRAMED, is
described as “an innovative narrative-based puzzle game in
which players must rewrite the story.”

n WB Games San Francisco is a new studio that will focus on
developing free-to-play mobile and browser-based games.

n Ovosonico, a new studio founded by SHADOWS OF THE DAMNED
director Massimo Guarini, is working on a new IP in partnership
with Sony Computer Entertainment Worldwide Studios Europe.

n Pascale Audette, former studio head of Disney Online Studios,
and Lance Priebe, cofounder of Disney’s CLUB PENGUIN virtual
world, recently founded Hyper Hippo Productions, which will
focus on creating children’s games for digital platforms. Their
fi rst title will be MECH MICE. ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

ONCE A PIRATE, ALWAYS A PIRATE
RON GILBERT RETURNS TO THE HIGH INDIE SEAS

http://GDCNEXT.COM

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

GAME DEVELOPERS CONFERENCE®

MARCH 25–29, 2013 MOSCONE CENTER SAN FRANCISCO, CA

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

THE 13TH ANNUAL GAME DEVELOPERS
CHOICE AWARDS
The 13th Annual Game Developers Choice Awards took place on Wednesday, March 27, 2013. In addition to the winners
of the standard categories, which were decided through the votes of game developers, the recipients of three special
honors were selected by the Game Developers Choice Awards advisory board.

 LIFETIME ACHIEVEMENT WINNER:
Dr. Ray Muzyka and Dr. Greg Zeschuk

The Lifetime Achievement Award
recognizes the career and achievements
of a developer who has made an
indelible impact on the craft of game
development and games as a whole.

PIONEER AWARD WINNER:
Steve Russell

The Pioneer Award celebrates
those individuals who developed a
breakthrough technology, game concept,
or gameplay design at a crucial juncture
in video game history, paving the way for
the myriads who followed them.

AMBASSADOR AWARD WINNER:
Chris Melissinos

The Ambassador Award honors an
individual or individuals who have
helped the game industry advance to a
better place, either through facilitating
a better game community from within,
or by reaching outside the industry to be
an advocate for video games and help
further our art.

AUDIENCE AWARD WINNER
DISHONORED (Arkane Studios/Bethesda
Softworks)

GAME OF THE YEAR
JOURNEY (Thatgamecompany/Sony
Computer Entertainment)

DISHONORED (Arkane Studios/Bethesda
Softworks)
THE WALKING DEAD (Telltale Games)
MASS EFFECT 3 (BioWare/Electronic
Arts)
XCOM: ENEMY UNKNOWN (Firaxis
Games/2K Games)

INNOVATION AWARD
JOURNEY (Thatgamecompany/Sony
Computer Entertainment)

MARK OF THE NINJA (Klei Entertainment/
Microsoft Studios)
FTL: FASTER THAN LIGHT (Subset
Games)
THE UNFINISHED SWAN (Giant Sparrow/
Sony Computer Entertainment)
ZOMBIU (Ubisoft Montpellier/Ubisoft)

BEST AUDIO
JOURNEY (Thatgamecompany/Sony
Computer Entertainment)

HOTLINE MIAMI (Dennaton Games/
Devolver Digital)
SOUND SHAPES (Queasy Games/Sony
Computer Entertainment)
ASSASSIN’S CREED III (Ubisoft Montreal/
Ubisoft)
HALO 4 (343 Industries/Microsoft
Studios)

BEST DEBUT
Subset Games (FTL: FASTER THAN LIGHT)

Humble Hearts (DUST: AN ELYSIAN TAIL)
Polytron Corporation (FEZ)
Giant Sparrow (THE UNFINISHED SWAN)
Fireproof Games (THE ROOM)

BEST DOWNLOADABLE GAME
JOURNEY (Thatgamecompany/Sony
Computer Entertainment)

THE WALKING DEAD (Telltale Games)
SPELUNKY (Derek Yu/Andy Hull)
TRIALS: EVOLUTION (RedLynx/Microsoft
Studios)
MARK OF THE NINJA (Klei Entertainment/
Microsoft Studios)

BEST GAME DESIGN
JOURNEY (Thatgamecompany/Sony
Computer Entertainment)

DISHONORED (Arkane Studios/Bethesda
Softworks)

MARK OF THE NINJA (Klei Entertainment/
Microsoft Studios)
SPELUNKY (Derek Yu/Andy Hull)
XCOM: ENEMY UNKNOWN (Firaxis
Games/2K Games)

BEST HANDHELD/MOBILE GAME
THE ROOM (Fireproof Games)

GRAVITY RUSH (SCE Japan Studio/Sony
Computer Entertainment)
HERO ACADEMY (Robot Entertainment)
SOUND SHAPES (Queasy Games/Sony
Computer Entertainment)
KID ICARUS: UPRISING (Sora/Nintendo)

BEST NARRATIVE
THE WALKING DEAD (Telltale Games)

SPEC OPS: THE LINE (Yager
Entertainment/2K Games)
MASS EFFECT 3 (BioWare/Electronic
Arts)
DISHONORED (Arkane Studios/Bethesda
Softworks)
VIRTUE’S LAST REWARD (Chunsoft/Aksys
Games)

BEST TECHNOLOGY
FAR CRY 3 (Ubisoft Montreal/Ubisoft)

PLANETSIDE 2 (Sony Online
Entertainment)
HALO 4 (343 Industries/Microsoft
Studios)
CALL OF DUTY: BLACK OPS II (Treyarch/
Activision)
ASSASSIN’S CREED III (Ubisoft Montreal/
Ubisoft)

BEST VISUAL ARTS
JOURNEY (Thatgamecompany/Sony
Computer Entertainment)

BORDERLANDS 2 (Gearbox Software/2K
Games)
FAR CRY 3 (Ubisoft Montreal/Ubisoft)
DISHONORED (Arkane Studios/Bethesda
Softworks)
HALO 4 (343 Industries/Microsoft Studios)

0
11

0
12

GREE

Ken Chiu (SVP of social games), Anil
Dharni (SVP of studio operations),
Andy Keidel (VP of engineering)
Prior dev background (platforms):
iOS, Android, Facebook
Shipped Android titles: CRIME CITY
ANDROID, MODERN WAR ANDROID,
JACKPOT SLOTS ANDROID
Preferred toolset: Open to all tools
depending on the needs of the game.
Important to have a strong awareness
of all technologies.

Is fragmentation still a major issue for you?
Which devices do you target?
Ken Chiu: It defi nitely is not a worry but is
absolutely a consideration. Android is a
huge mobile platform and it is important
for us to make sure we have a big presence
there and ensure we are always supporting
the users and their needs.
Andy Keidel: Our goal is to ensure
compatibility and high performance of our
titles with all Android devices, which means
we are constantly having to think about
different specs and make sure that our game

features and mechanics aren’t limited by
anything around the Android hardware. Our
biggest consideration is really making sure
that we have the right specs to best take
advantage of smartphone hardware and
separately the tablet hardware.

Do you have any tips for optimizing the
Android dev process?
Andy Keidel: We’ve come up with several
best practices to improve our Android
development workfl ow. To handle the many
variations in screen sizes, we specify UI
dimensions for the most common screen
specs, and then match and scale the UI
dynamically for all other screens. Another key
to effi cient development workfl ow is a solid
understanding of the lifecycles of the Android
application, activities, services, etc. While we
have found most Android-specifi c features
to be helpful in structuring our application
codebase, we developed a custom approach
to our in-memory game database to provide
easier support for live content updates, which
we perform several times per week.

How have your games sold on Android?
Ken Chiu: Our games have done really well
on Android platforms. All of the titles we
have released on Google Play—MODERN
WAR, CRIME CITY, JACKPOT SLOTS—have

been pretty consistently in the top-30
grossing since their launch (which for
something like MODERN WAR, means it’s
been almost a year). So we are seeing
tremendous success on Android devices.

Which app stores do you support? How do
your Android sales compare to your sales on
other platforms?
Ken Chiu: We support iTunes, Google Play,
and Amazon. We have seen tremendous
success on all of the stores.
Anil Dharni: We have always worked
exceptionally hard to create game
experiences that are exciting for gamers, and
as such have always seen strong retention
rates, strong support of the titles, and great
IAP revenues. Our users have been proven
to be extremely engaged on both iOS and
Android, showing us that there is a very even
divide, and we don’t see one OS showing
higher success than the others. We plan on
continuing to support them both and make
sure our games have long lifetimes.

Overall, have you found Android dev to be
worth the extra work? Are you looking into
other mobile platforms?
Ken Chiu: Absolutely. Android is one of
the biggest and fastest-growing markets
right now. Android phones and tablets are

REVISITING ANDROID
TAKING THE PULSE OF ANDROID GAME DEVELOPMENT

How’s Android doing these days? From the consumer standpoint, Android tablets and smartphones
appear to be gaining a little more ground on iOS every year. From the developer perspective, however,
early reports of widespread piracy, painful device fragmentation issues, and the perception of a rather
tightfi sted audience scared many devs away. Game Developer caught up with devs from industry giants,
indie powerhouses, small studios, and individual developers to see how the Android platform is treating
them in 2013.

012
R E V I S I T I N G A N D R O I D _ Pa t r i c k M i l l e r

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
13

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
14

014
R E V I S I T I N G A N D R O I D _ Pa t r i c k M i l l e r

breaking out all over the world and are
most defi nitely a power to keep an eye on.
That being said, I think the key for us has
been balance and making sure we always
support both iOS and Android. As for other
platforms, right now we really look to only
those two (Android and iOS), but we are
always keeping our eye on other markets.

SPRY FOX

David Edery (CEO), Ryan Williams
(director of danger)
Prior dev background (platforms):
Web, Steam, Android, iOS
Shipped Android titles:
STEAMBIRDS, TRIPLE TOWN

Preferred toolset: Unity

Is fragmentation still a major issue for you?
Which devices do you target?
David Edery: It is not a major worry for us.
Fragmentation is a fact of life. We deal with
it, and we’re a very small company with an
extremely small customer-support team.
TRIPLE TOWN was developed by a single
engineer for both iOS and Android. If we
can handle it, anyone can. Our QA library
is mainly comprised of Nexus devices, the
more popular Samsung devices, and a
couple of Kindle Fires.

Do you have any tips for optimizing the
Android dev process?
Ryan Williams: I’ve found the biggest boost
in development productivity comes from
reducing the time between writing code
and experiencing the results of the code
in-game.

For Unity, which is the engine we’ve
used for mobile development, this means
taking advantage of the hot code reloading
functionality. It’s not well-documented
or supported, but if you are playing your
game in the Unity Editor and you save a
change to the code, Unity will compile
the new code and start using it within a
few seconds. It’s awesome to use this to
work on procedural generation, because
you can simply set your generation to
repeatedly loop in one screen, and edit
your code in the other, and see the
changes in action right away. Bugs that
take a while to reproduce become much
faster to solve: Play the game until you get
to the point that the bug appears, and then
start hacking on the code.

This doesn’t come for free, though;
the process by which the editor does the
reloading involves a custom serialization
of every game object, and not every data
type is supported by this serialization.
Specifi cally, dictionaries and generic
user-defi ned classes do not work with hot
reloading, and once you go through a hot
reload cycle, they become null. The hot
reloading takes place entirely outside of

your code and control, and the only way
your code can detect that a hot reload has
happened is that all the unserializable
member variables are suddenly null. If you
want to use hot reloading as part of your
development process, you have to either
refrain from using unserializable types
entirely, or fi nd some workaround. I really
wanted to use dictionaries, so I wrote a
small class that copies the contents of
the dictionary to a pair of lists (which are
serializable), and restores the dictionary
from the lists when it’s found to be null.
This adds a fair bit of boilerplate to each
dictionary’s declaration, so I feel that it
could be improved further, but it defi nitely
works.

How have your games sold on Android?
David Edery: We’ve done very well
on Android. TRIPLE TOWN has been
downloaded over four million times, and
Google Play is the top-selling platform for
TRIPLE TOWN. I’m not sure off the top of
my head what exactly our conversion rate
is there relative to iTunes and Amazon’s
Appstore, but it is relatively healthy. Amazon
has been a bust for us, unfortunately.

Overall, have you found Android dev to be
worth the extra work? Are you looking into
other mobile platforms?
David Edery: Yes, it’s worth it. We’re always
considering other platforms, but we are not
developing for other mobile platforms.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
15

 015
R E V I S I T I N G A N D R O I D _ Pa t r i c k M i l l e r

ANIMOCA

David Kim (CEO)
Prior dev background (platforms):
iOS, Web, PC, consoles
Shipped Android titles: STAR GIRL,
PRETTY PET SALON, MY CAR SALON,
ROBO5, PRETTY PET SALON SEASONS,
LORD OF MAGIC, PRETTY PET TOY STORE,
PIG RUSH, MY CAR SALON 2, PET CAFÉ,
PRETTY PET TYCOON, TOP MODELS:
SPORTS EDITION, and dozens of others
Preferred toolset: Depends on the
app in question, but all the way from
Unity to Cocos2d-x, plus our own
proprietary tools

Is fragmentation still a major issue for you?
David Kim: Android fragmentation is an
exaggerated issue. It has never been
a worry for us, and we tend to test for
greater compatibility than most developers.
Different screen sizes are a manageable
issue as long as you support the basic
Android form factors and let the OS handle
scaling. Processor and graphics power
do limit which games can be played on a
device, but people who buy ultra-cheap
low-end phones are probably not expecting
to play too many games on them. That
said, PRETTY PET SALON will run on most
hardware, and it achieved substantial
success, so it is possible to work around
the limitations.

In terms of software fragmentation,
this varies hugely country by country. We
publish our fi ndings on our blog, and you
can see the radical differences between
high-end and low-end markets there
(http://www.animoca.com/en/2013/02/
animoca-data-high-end-hong-kong-and-
low-end-india-jan-feb-2013/).

We look at it as an opportunity—
managing compatibility became a

competitive differentiator for us. Really,
the fact that the market is fragmented into
various hardware and software just means
that consumers have choice, which is a
good thing. Anyone struggling with these
fragmentation issues simply needs to fi gure
out which devices and OS versions are most
popular among the consumers/regions they
want to target, and then tailor their apps to
those devices and Android versions. It can
require slightly more development time
and QA resources to address the Android
market, but not as much as you’d think if
you look at some of the alarmist reports on
the issue.

Do you target and test for specifi c devices?
David Kim: Yes. Although our general
principle is to target and test for a
multitude of devices in order to offer
everyone an experience that is as good
as possible, we still have to prioritize the
devices most used by players of Animoca
games, which vary by region and by country.
In India, most users are on lower-end,
more affordable phones, the top 10 phones
for Animoca users tend to be relatively
inexpensive Samsung devices, such as the
Galaxy Y, Galaxy Fit, and Galaxy Ace, while
the most common device in the higher-end
market of Hong Kong is the pricier Galaxy
Note 2, other high-end Galaxy products, and
a couple of high-end Sony devices.

Do you have any tips for optimizing the
Android dev process?
David Kim:
> Build a testing framework in your games
where the game plays itself. This is a great
aid for the QA team as it adjusts the speed
and moves through the levels faster.
> Minimize external calls to external
servers via effective use of caching as well
as batching multiple calls together.
> Test against high-latency networks.
Animoca has an internal tool that can traffi c
shape various network conditions.

> Catch your exceptions, including run-
time exceptions.
> Use a crash-reporting tool within
your codebase and your development
workfl ow. Examples include Bugsense and
Crittercism.
> When you have to do concurrent
programming, don’t roll your own
from lower-level constructs. Try to use
high-level facilities such as AsyncTask,
ThreadPoolExecutor, etc.

How have your games sold on Android?
David Kim: Our games have performed
well on Android, and many of them have
appeared in the Top 100 or even the Top 10
charts. Some of our apps, like PRETTY PET
SALON and STAR GIRL, have reached the
Top 10 of the Top-Grossing Apps list, so we
are pleased. In total, our apps have been
downloaded more than 120 million times.
We had high expectations for what Android
could deliver because we are big believers
in open systems, but when we entered
the market Android was defi nitely playing
second fi ddle to Apple’s iOS. I’d have to say
that changed dramatically in 2012: Last
year Android really came into its own.

Which app stores do you support? How do
your Android sales compare to your sales on
other platforms?
David Kim: Our Android games can be
found on Google Play, Amazon’s Appstore,
the NOOK Store, Samsung Apps, and
across many alternatives including carrier-
specifi c app stores. Some stores do drive
more installs than others, but in general
we’ve found it benefi cial to be in as many
as possible.

http://www.animoca.com/en/2013/02/animoca-data-high-end-hong-kong-and-low-end-india-jan-feb-2013/
http://www.animoca.com/en/2013/02/animoca-data-high-end-hong-kong-and-low-end-india-jan-feb-2013/
http://www.animoca.com/en/2013/02/animoca-data-high-end-hong-kong-and-low-end-india-jan-feb-2013/

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
16

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
16

016
R E V I S I T I N G A N D R O I D _ Pa t r i c k M i l l e r

Typically we have found that Android
apps monetize slightly lower on a per-user
basis than iOS, but this is a very complex
matter. The Apple product spectrum is
more expensive than Android, and most
studies have shown that Apple users tend
to be fi nancially better off than Android
users. That means that iOS users are
more likely to have greater disposable
income and as a result are more likely to
spend more on their devices, compared
with Android users. This is not surprising,
because Android offers a remarkable
number of “budget” hardware options
catering to the less wealthy, and the
platform is (after all) a few years behind
iOS in terms of in-app purchasing and the
associated culture. Android also tends to
be much more popular in poorer emerging
markets like India or China, where
several barriers to payment exist (culture,
comparatively lower purchasing power,
lack of easy payment options, etc.)

But all that is changing very fast: The
Android high end is becoming slicker and

fl ashier with every new phone released,
which drives up device cost and grants
Android developers access to a wealthier
user base. And the sheer number of
Android users today and projected over
the next couple of years will lead to
correspondingly huge opportunities. The
popular view that Android monetization
is automatically inferior to iOS is rather
myopic, especially in the medium- to long-
term when you factor in the scale of the
Android audience.

Overall, have you found Android dev to be
worth the extra work? Are you looking into
other mobile platforms?
David Kim: Yes, Android development
is absolutely worth the slight amount
of extra work it requires to manage
fragmentation, and we do recommend it
to other developers because right now this
is defi nitely a forward-looking platform.
Android is our primary focus right now,
but our DNA is very much cross-platform
and we wouldn’t want to tie ourselves

exclusively to one platform. Windows 8 is
a beautiful system that already has some
great hardware, and Blackberry is making
an interesting case for the BlackBerry 10.

VECTOR UNIT

Ralf Knoesel (CTO), Matt Small (CEO)
Prior dev background (platforms): PC,
N64, PS1, PS2, Xbox, Xbox360, PS3, Wii
Shipped Android titles: RIPTIDE GP,
SHINE RUNNER, BEACH BUGGY BLITZ

Preferred toolset: Our own game engine/
tools, plus Bullet Physics and FMOD

Is fragmentation still a major issue for you?
Ralf Knoesel: Fragmentation is a worry,
yes, but not a major worry anymore. We
design our games to support any aspect
ratio from 4:3 to 16:9 and beyond; lack of
Neon fl oating-point math is not a big deal
anymore with today’s clock speeds and
CPU performance; OS version support is
not such a big deal for us since we’re now
able to require 2.3 (Gingerbread) so that we
can use NativeActivity.

The biggest issue for us is the tendency
for the manufacturers to ship with subtle
shader compiler bugs in their OS fl avors. This
can be a bit of a nightmare because the same
device can have different bugs based on
which OS version the consumer is running.

Do you have any tips for optimizing the
Android dev process?
Ralf Knoesel: For dealing with texture
compression, we use ETC1 for non-alpha
textures, and DXT5 for textures containing
alpha. For devices that don’t support S3TC,
we decompress at load time (starting with
lower-level mips on RAM-limited devices).
This signifi cantly simplifi es asset packaging.
Matt Small: On the content side, the biggest
gotcha is UI. But designing the UI for

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
17

 017
R E V I S I T I N G A N D R O I D _ Pa t r i c k M i l l e r

multiple resolutions and aspect ratios does
not have to be a huge headache. The key
thing is to make it fl exible, with elements
that fl oat, stretch, or are locked to different
edges of the screen. Also don’t integrate
the front-facing UI elements (like buttons)
too tightly with the background, or make
your backgrounds aspect-ratio-dependent.

We design for a 3:2 default aspect
ratio, and make everything slide up/down
or left/right from there. The backgrounds
are made up of tiling/stretching graphic
elements or 3D scenes. That way you can
basically throw your UI against any aspect
ratio and you’re good to go.

Do you target and test for specifi c devices?
Ralf Knoesel: At this point we have a decent
selection of popular devices representing
the various GPU manufacturers, plus a few
quirky troublesome devices that are popular
enough to warrant support. Generally,
we have coverage for the top fi ve to 10
devices according to the developer console
statistics. When a hot new device comes out
that we know is going to be huge, we pick
one up and add it to our roster.
Matt Small: If we get a lot of support emails
on a device we don’t have, we have to
balance the popularity of the device with
the severity of the problem and the time
we think it’ll take to fi x it. If it’s a serious
problem on a popular device, we’ll buy one
and fi x it.

How have your games sold on Android?
Ralf Knoesel: Our games have been doing
well on Android, better than expected. Our
most recent free-to-play game BEACH

BUGGY BLITZ is about to hit 10 million
downloads on Google Play.
Matt Small: All of our games have been
profi table. Our fi rst game, RIPTIDE GP, has
over 250K installs, at an average MSRP
of $1.99, and we made it for about $100K,
so that’s pretty good. It’s not ANGRY BIRDS
money, but it’s more than enough to keep a
small company going.

How do your sales compare to your
experience with other platforms?
Ralf Knoesel: The main advantage of the
Android platform for a small developer is
the fact that the Google Play store ranking
system is more diffi cult to manipulate
by the big publishers with their user-
acquisition spends. Rankings are based
on more than simply number of installs in
a period of time. This means that quality
apps tend to creep to the top and have
some decent inertia once they get there.
Regarding the consumer, we fi nd that
Android consumers are less willing to pay
for apps/in-app purchases and piracy is
much more rampant. However, we’re able
to overcome this with volume.
Matt Small: Our experience has been the
opposite of what you generally hear: We
have done signifi cantly better on Android
than on iOS. We have noticed that in our
free-to-play game-conversion rates are
about two to three times better on iOS, but
the volume on Android more than makes
up for it. That said, oddly enough Android
players seem less concerned about price
on pay-to-play games. From time to time
we’ll put Riptide GP on sale from $1.99 to
$0.99—on iOS we see a big (temporary)
jump in sales that more than makes up for
the 50% discount. But on Android, it barely
moves the needle.

Which app stores do you support?
Ralf Knoesel: On Android, we have used
Google Play, Amazon, and B&N NOOK.
Google Play has by far been the most
successful. We have tried some other app
stores in the past (carrier-specifi c, prepaid
cards, etc.), but sales on those have been
insignifi cant. We are also partnering with
Incross to sell in Korea (SKT T-Store, etc.).
Matt Small: Our experience with carrier-
and hardware-specifi c app stores has been
pretty abysmal. We get royalty payments
of like $2.50 for a month’s worth of sales.
Amazon and NOOK have been pretty
good for us, but my feeling is that their
audiences lean more toward casual and
puzzle-type games, and the discovery
mechanisms in those stores are not as well
developed. Like Ralf said, the vast majority
of our revenue comes from the Play Store.

Overall, have you found Android dev to be
worth the extra work?
Matt Small: Android development is
absolutely worth the work, but you have
to plan to be cross-platform from the very

start of development. It’s a lot harder to
take a game that was specifi cally made for
iOS and then belatedly port the thing over.
Ralf Knoesel: Also, we are currently making
our games available on BB10 where we
are seeing moderate success (more than
expected) due to the “early to market” effect.

HIDDEN VARIABLE STUDIOS

Charley Price (CCO)
Prior dev background (platforms):
GBA, PC, Xbox 360, PS3, Flash, iOS,
Android
Shipped Android titles: BAG IT!
Preferred toolset: Unity

Is fragmentation still a major issue for you?
Which devices do you target?
Charley Price: It’s always a worry, but
in some ways the variety of devices is so
broad, it pretty much demands that you
defi ne your min spec criteria early in the
development process so you can make
sense of it all. Given that we simultaneously
develop for iOS as well, our min spec
decision hardware-wise on that platform
helped to implicitly inform the min spec
choices we made for Android.

Knowing the risks of different screen
sizes/aspect ratios, we’ve developed our
titles with fl oating UI elements that anchor
(or are positioned relative to) the edges of
the play space, and made sure that slight
variations in viewable space don’t impact
gameplay dramatically. As such, when new
devices and aspect ratios were released,
we’ve generally been able to support them
right out of the gate.

As for devices, a combination of App Store
data and Flurry analytics gives us a pretty
good sense of what types of devices are being
used to play our game. As such, we tend to
focus much of our attention on our fi rst-gen
NOOK Color and Kindle Fire (among our
most popular devices with narrow aspect
ratios) and our Nexus One (as a min spec).

Do you have any tips for optimizing the
Android dev process?
Charley Price: Most of our Android-specifi c
notes end up being directly related to
our experiences developing in Unity. For
example, many of the risks of creating
Android-specifi c plug-ins can be mitigated
using inexpensive, off-the-shelf solutions
from sites like Prime31.com.

Going into more detail, one of our
engineers, Clark Kromenaker, wrote
up some thoughts on his blog (http://
supersegfault.com/unity-on-android-save-
data-pitfall/) about some of the pitfalls
inherent in storing data on Android devices
(for example, local memory vs. SD card
memory), which would likely be a good read
for new Android devs.

http://Prime31.com
http://supersegfault.com/unity-on-android-save-data-pitfall/
http://supersegfault.com/unity-on-android-save-data-pitfall/
http://supersegfault.com/unity-on-android-save-data-pitfall/

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
18

018
R E V I S I T I N G A N D R O I D _ Pa t r i c k M i l l e r

How have your games sold on Android?
Charley Price: We first released Bag It!
back in late 2011 on both iOS and Android
simultaneously. Since then, we have
released it on almost a dozen different
Android app stores, both worldwide
and foreign territory-specific (including
Samsung, Mobiroo, and Fuhu to name a few
less-common examples), but the only ones
that have really generated a meaningful
financial return for us thus far have been
Google, Amazon, and B&N NOOK.

Overall, our iOS versions of Bag It! have
outperformed our Android SKUs in terms of
total downloads 7:1 (although if you remove
one big iOS promo event it’s closer to 3:1).
However, if you just count paid downloads,
iOS and Android as a whole are neck and
neck (with iOS slightly ahead). That said,
IAPs still favor iOS, with almost a 3:1
advantage over Android.

These numbers are generally pretty
surprising to fellow mobile devs, many
of whom have opted to eschew Android
as a platform for fear of lack of sales. In
particular, both Google Play and B&N NOOK
have been pretty equal in terms of sales,
both outperforming Amazon by a reasonable
margin. One of the reasons we suspect
we’ve been so successful on the B&N
NOOK store is the fact that it currently only
supports premium games (with free “trial”
versions available for full titles). As such, as
a premium title, you’re able to avoid the glut
of freemium games on other platforms.

Funny thing is, we originally didn’t have
any intention of launching the game on the
B&N NOOK. As it happens, we were showing
the game to some folks at an Android
Developer’s Conference, and one of the B&N
NOOK reps suggested we check out their
device. We loaded up the APK then and there,
and it worked like a charm. A few hours of
setup later and we were pretty much ready to
roll on their store—which ended up being one
of our most consistent revenue streams.

As another example, we were
approached about releasing Bag It! on the
Nabi Fuhu (a kid-centric Android tablet),
which required some custom content
and support for the hardware. Given the
uncertain return on investment, we were
skeptical of investing the time and energy
required. We were able to arrange a device
preload deal with our Lite SKU. If nothing
else, this helped to build awareness of our
game on the platform, and gave us some
experience with preloads that we hope to
leverage moving forward.

Overall, have you found Android dev to be
worth the extra work?
Charley Price: Absolutely. For us, releasing
on Android has been a critical aspect of
our success. After some mild success
on iOS at launch, we (like many others)
soon experienced a pretty precipitous
decline (with oscillations thereafter).
Meanwhile, our sales on Google Play

exploded out of the gate (courtesy of
a timely feature), and—even after the
feature ended—each of our Android SKUs
remained strong, consistent performers.
Beyond the revenue, we also continued
to accumulate heaps of great customer
reviews. This gave us confidence that the
issues we were experiencing on iOS were
primarily discoverability issues, as opposed
to concerns about the overall quality of
the product. So we continued to actively
support the game, and pursued other
promotional opportunities—eventually
leading to a temporary free promotion
(supported by Appoday) that netted us over
three million new downloads. Were it not
for our performance on Android, we may
have shifted our focus to other projects
earlier and missed out on our
iOS opportunity.

Are you looking into other mobile
platforms?
Charley Price: Currently, the time
required to get the game ported over
relative to the known ROI makes it a
risky proposition. Instead, we have spent
those resources focusing on our second
and third projects. However, alternative
platforms are definitely still on our radar!
We are constantly looking at trends; for
example, we’re eager to see how the OUYA
performs, and already have tentative plans
to bring Bag It! (and future titles) to that
platform as well.

Shiny Shoe

Mark Cooke (cofounder)
Prior dev background (platforms):
Xbox, Xbox 360, PS2, PS3, GameCube,
iOS, Android, Sifteo Cubes
Shipped Android titles: OFFWORLD
Preferred toolset: Unity

Is fragmentation still a major issue for
you?
Mark Cooke: Thanks to the great work
done by the engineers at Unity, it has been
easy for us to get our games running on a
wide variety of Android hardware. As a tiny
studio, Shiny Shoe has access to a limited
number of devices to test on, but every
device we’ve been able to get our hands on
runs our games.

What is frustrating and creates a
concrete support problem is that there
are so many devices out there that there
is literally no way we can support them
all. We receive a few support requests a
week where a particular part of the game
is nonfunctional on a specific device/
OS combination. I want to help these
customers, but we literally can’t; we don’t
have the time or money to get the hardware
we need to find and fix these bugs.

When we shipped OFFWORLD we decided
to launch on both Google Play and the Amazon
App Store, another form of dealing with
Android fragmentation. This necessitated
additional work in terms of IAP processing
and other store-specific changes. This work
wasn’t free in terms of engineering and QA
time, and in our case it wasn’t worth it; we
have somewhere on the order of 100 times
the number of downloads on Google in
comparison to Amazon. Overall, fragmentation
hasn’t been a huge issue for us.

Do you have any tips for optimizing the
Android dev process?
Mark Cooke: Make sure to design your
UI to support multiple resolutions and
aspect ratios from the start. We did this
on OFFWORLD and it made it easy to
launch on a ton of different devices with
minimal UI work. We took a fairly simple
route to achieve this that can work for
many games; basically, we resize an
orthographic camera dynamically based
on the vertical screen resolution and
the resolution that our UI was authored
at. In combination with that we used a
Unity plug-in called Multiplatform toolkit,
created by fellow indie Owlchemy Labs
out in Boston, which allowed us to
reposition UI widget containers based on
aspect ratio.

One thing I would recommend against
if you can avoid it is targeting multiple
texture-compression formats via different
APKs with manifest files that limit target
hardware by the <supports-gl-texture>
property. As I understand it, there is only
one texture-compression format universally
supported across all Android devices:
ETC1. That format doesn’t support an alpha
channel. OFFWORLD uses a large number
of textures and almost all of them have an
alpha channel, meaning if we wanted to
ship a single APK we’d have to switch over
to uncompressed 16- or 32-bit textures.
This was scary—we were really concerned
about either using too much runtime
memory or harming visual quality by
switching to uncompressed 16-bit color.

So with that in mind we tried to support
the three major hardware-supported
compressed texture formats—PVRTC, ATC,
and DXT—via separate APKs that included
texture data for each platform. This is a
nightmare and if you don’t have a good
build process set up you’re in for pain. We
eventually launched with this setup but
quickly ran into a huge issue—some models
of the Samsung Galaxy S2 (a very popular
Android device at the time we launched)
didn’t have hardware that supported any of
the aforementioned compression formats.
This means that the Google Play store
thought our game didn’t work on many
Galaxy S2s and thus people with that device
couldn’t download it.

After going through all of that we
decided to scrap our setup and switch

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
19

 019
r e v i s i t i n g a n d r o i d _ Pa t r i c k M i l l e r

to uncompressed textures. That took
additional work to reduce texture sizes
where we could get away with it, but
ultimately it has worked out much better
for us and allowed all models of the Galaxy
S2 to download and play our game.

How have your games sold on Android?
Mark Cooke: Contrary to conventional
wisdom, OFFWORLD has done significantly
better on Android than on iOS. We’re not
really sure why, though! We received minor
features by both platform holders that
helped drive early installs. After the initial
bump we dropped off in a major way on
iOS but have continued to find an audience
on Google Play. Our revenue on Google
Play is currently three times higher than
our revenue on iOS. Also, I know this is out
of the ordinary, but for us ARPU is fairly
similar between the platforms. Amazon has
been a total bust for us unfortunately.

Overall, have you found Android dev to be
worth the extra work? Are you looking into
other mobile platforms?
Mark Cooke: I always consider this
question on a case-by-case basis, but for
OFFWORLD, because we are using a cross-
platform development tool like Unity, I
think it was worth the extra work. Unity has
done the majority of the engineering work
for us, easing development significantly.
I’m interested in potentially releasing on
Windows Phone to test that market, but not
until Unity supports it.

The Game Bakers

Emeric Thoa (CEO)
Prior dev background (platforms):
iOS, Android, Xbox 360, PS3, Wii
Shipped Android titles: SquidS, SquidS
Wild WeSt

Preferred toolset: Cocos2D, Unity

Is fragmentation still a major issue for you?
Emeric Thoa: It’s not a worry as such, it’s
just additional work we need to plan for.
We know we will have to deal with several
versions: an HD and SD version to match
the different capabilities of the devices,
and a freemium and a premium version to
match the different stores’ requirements.
We are still learning what’s worth doing and
what’s not, but so far we want to believe
that reaching the widest audience possible
is the way to go.

How have your games sold on Android?
Emeric Thoa: We released SquidS on
Android as a freemium as part of our
sponsoring deal with Tapjoy, and made
probably around $700! That looks like
a disaster, obviously, but I wouldn’t
blame Android for that. SquidS was not

designed as a freemium game at all and
it’s only natural that it didn’t succeed as
a free-to-play game. The sequel, SquidS
Wild WeSt, is releasing March 8 and will
be a premium app this time.

Which app stores do you support? How do
your Android sales compare to your sales on
other platforms?
Emeric Thoa: SquidS was a success on
iOS, but as I said, it released as a premium,
so it’s hard to compare. But surprisingly
enough, the IAPs are also better on iOS.
The conversion rate is higher, and so is
the ARPPU. My bet is that Apple users are
more used to paying for digital content,
but I believe that this difference is going to
fade. We’ll be able to compare better with
our next game, Combo CreW, as it’ll be a
simultaneous launch on iOS and Android.

acTion BuTTon enTerTainmenT

Brent Porter (cofounder)
Prior dev background (platforms):
iOS, Android
Shipped Android titles: tNNS
Preferred toolset: Whatever best fits
the job

Is fragmentation still a major issue for you?
Brent Porter: I guess it only becomes a
problem when you already have something
built and suddenly realize, “Oh gosh, I have
to get this to work on 100 other devices
now.” If you do some planning from the
beginning there shouldn’t be too much
reason to worry.

Do you have any tips for optimizing the
Android dev process?

Brent Porter: Again, understanding from
the beginning that a lot of elements will
have to be flexible helps. I think this is why
you see a lot of games with resolution-
independent art styles. Some people get
grossed out by something that “looks like
a Flash game,” but when you are dealing
with different screen sizes and resolutions
it suddenly makes a lot of sense to go with
something flexible.

How do your Android sales compare to your
sales on other platforms?
Brent Porter: There exists a perception that
you aren’t going to see Android consumers
make purchases like you might elsewhere.
I guess it has to come from somewhere!
Maybe Android users are more likely to
invest in a certain type of game. This might
explain why you hear about vastly different
numbers from different developers and
their experience with Android vs. iOS.

Overall, have you found Android dev to be
worth the extra work?
Brent Porter: Of course Android dev is
worth it if you think you will be getting
some attention. And everyone wants their
game to get attention so I guess the answer
is always sort of yes? It’s difficult to see
beforehand if a particular project is going
to definitely require and make money with
an Android version. I mean, everyone wants
their game to sell like JetpaCk Joyride,
and Halfbrick Studios definitely benefits
from getting their game in front of more
people.

Maybe there’s an even more important
question. Do comments like “God, when
will we get an Android version!!??” and “I
cared until I realized it was only for iOS,
lol” put stress and fear into your heart? If
so, it’s time to start planning your future in
Android development!

http://ADCONF.COM

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

021
U S E R A N A LY T I C S _ M a y 2 0 1 3

0
2

1

Intro to User AnAlytics
How to turn your players’ sessions into valuable design feedback

B Y A n d e r s d r A c h e n , A l e s s A n d r o
c A n o s s A , A n d M A g Y s e i f e l - n A s r

The science of game analytics has gained a tremendous amount of attention in recent years. Introducing
analytics into the game development cycle was driven by a need for better knowledge about the players,
which benefits many divisions of a game company, including business, design, etc. Game analytics is,
therefore, becoming an increasingly important area of business intelligence for the industry. Quantitative
data obtained via telemetry, market reports, QA systems, benchmark tests, and numerous other sources
all feed into business intelligence management, informing decision-making.

Two of the most important questions when integrating analytics into the development process are
what to track, and how to analyze the data. The process of choosing what to collect is called feature
selection. Feature selection is a challenge, perhaps especially when it comes to user behavior.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
2

2

There is no single right answer or
standard model we can apply to decide
what behaviors to track; there are instead
several strategies that vary in goals:
e.g., improve the user experience or
increase monetization. In this article,
we will attempt to outline some of the
fundamental concerns in user-oriented
game analytics, with feature selection
as an overall theme. First, we’ll walk
through the types of trackable user data,
and then introduce the feature selection
process, where you select how and what
to measure. Importantly, this article is
not focused on F2P and online games—
analytics is useful for all games.

DATA FOR ANALYTICS

The three main sources of data for
game analytics are:

Performance data: These are related to
the performance of the technical- and
software-based infrastructure behind
a game, notably relevant for online or
persistent games. Common performance
metrics include the frame rate at which
a game executes on a client hardware
platform, or in the case of a game server,
its stability.

Process data: These are related to the
actual process of developing games. Game
development is to a smaller or greater
degree a creative process, but still requires
monitoring, e.g., via task-size estimation
and the use of burndown charts.

User data: By far the most common
source of data, these are derived from the
users who play our games. We view users
either as customers (sources of revenue)
or players, who behave in a particular
way when interacting with games. The
fi rst perspective is used when calculating
metrics related to revenue—average revenue
per user (ARPU), daily active users (DAU)—
or when performing analyses related to
revenue (churn analysis, customer support
performance analysis, or microtransaction
analysis). The second perspective is used for
investigating how people interact with the
actual game system and the components
of it and with other players, by focusing
on in-game behavior (average playtime,
damage dealt per session, and so forth).
This is the type of data we will focus on
here. These three categories do not cover
general business data, e.g., company value,
company revenue, etc. We do not consider
such data the specifi c domain of game
analytics, but rather as falling within the
general domain of business analytics.

DEVELOPING METRICS FROM
USER DATA

Many people have proposed different
methods of classifying user data

over the past few years. From a top-down
perspective, a development-oriented
classifi cation system is useful, as it serves
to funnel user metrics in the direction of
three different classes of stakeholders—for
example, as follows (see Figure 1):

Customer metrics: Covers all aspects of
the user as a customer—for example, cost
of customer acquisition and retention.
These types of metrics are notably
interesting to professionals working with
marketing and management of games and
game development.

Community metrics: Covers the
movements of the user community at all
levels of resolution, such as forum activity.
These types of metrics are useful to
community managers.

Gameplay metrics: Any variable related to
the actual behavior of the user as a player
inside the game (object interaction, object
trade, and navigation in the environment,
for example). Gameplay metrics are the
most important for evaluating game design
and user experience, but are furthest from
the traditional perspective of the revenue
chain in game development, and hence are
generally underprioritized. These metrics
are useful to professionals working with
design, user research, quality assurance,
or any other position where the actual
behavior of the users is of interest.

Customer metrics: As a customer, users
can download and install a game, purchase
any number of virtual items from in-game or
out-of-game stores and shops, spending real
or virtual currency, over shorter or longer
timespans. At the same time, customers
interact with customer service, submitting
bug reports, requests for help, complaints,
and so on. Users can also interact with
forums, offi cial or not, or other social-
interaction platforms, from which information
about these users, their play behavior, and
their satisfaction with the game can be
mined and analyzed. We can also collect
information on customers’ countries, IP
addresses, and sometimes even age, gender,
and email addresses. Combining this kind
of demographic information with behavioral
data can provide powerful insights into a
game’s customer base.

Community metrics: Users interact with
each other if they have the opportunity.
This interaction can be related to gameplay
(combat or collaboration through game
mechanics) or social (in-game chat).
Player-player interaction can occur

game
metrics

player

performance

gameplay

community

in-game

system

process/
pipeline

customer

interface

Figure 1: Hierarchical diagram
of sources of data for game
analytics emphasizing user
metrics.

022
U S E R A N A LY T I C S _ M a y 2 0 1 3

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
2

3

in-game or out-of-game, or some
combination thereof—for example, sending
messages bragging about a new piece
of equipment using a post-to-Facebook
function. In-game, users can interact with
each other via chat functions, out-of-game
via live conversation (TeamSpeak or Skype),
or via game forums.

These kinds of interactions between
players form an important source of
information, applicable in an array of
contexts. For example, a social-network
analysis of the user community in a F2P
game can reveal players with strong
social networks—who are the players
likely to help retain a big number of other
players in the game by creating a good
social environment (think guild leaders in
MMORPGs). Likewise, mining chat logs and
forum posts can provide information about
problems in a game’s design. For example,
data-mining datasets derived from chat
logs in an online game can reveal bugs or
other problems. Monitoring and analyzing
player-player interaction is important in all
situations where there are multiple players,
but especially in games that attempt to
create and support a persistent player
community, and which have adopted an
online business model, which includes
many social online games and F2P games.
These examples are just the tip of a very
deep iceberg, and the collection, analysis,
and reporting on game metrics derived
from player-player interaction is a topic
that could easily take up several volumes.

Gameplay metrics: This subcategory of
the user metrics is perhaps the most
widely logged and utilized type of game
telemetry currently in use. Gameplay
metrics are measures of player behavior:
navigation, item and ability use, jumping,
trading, running, and whatever else players
actually do inside the virtual environment
of a game (whether 2D or 3D). Four types
of information can be logged whenever
a player does something or something
happens to a player in a game: What is
happening? Where is it happening? At what
time is it happening? And: Who is involved?

Gameplay metrics are particularly useful
for informing game design. They provide
the opportunity to address key questions,
including whether any game world areas are
over- or underused, if players utilize game
features as intended, and whether there are
any barriers hindering player progression.
These kind of game metrics can be recorded
during all phases of game development, as
well as following launch.

Players can generate thousands of
behavioral measures over the course of a
single game session—every time a player
inputs something to the game system, it has
to react and respond. Accurate measures of
player activity can include dozens of actions
being measured per second. Consider,
for example, players in a typical fantasy

MMORPG like WORLD OF WARCRAFT:
Measuring user behavior could involve
logging the position of the player’s character,
its current health, mana, stamina, the time
of any buffs affecting it, the active action
(running, swinging an axe), the mode (in
combat, trading, traveling), the attitude of any
NPC enemies toward the player, the player
character name, race, level, equipment,
currency, and so on—all these bits of
information simply fl ow from the installed
game client to the collection servers.

From a practical perspective, you
may want to further subdivide gameplay
metrics into the following three categories
(in order to make your metrics more
searchable, for instance):

In-game: Covers all in-game actions and
behaviors of players, including navigation,
economic behavior, as well as interaction
with game assets such as objects and
entities. This category will in most cases
form the bulk of collected user telemetry.

Interface: Includes all interactions the
player performs with the game interface
and menus. This includes setting game
variables, such as mouse sensitivity and
monitor brightness.

System: System metrics cover the actions
game engines and their subsystems (AI
system, automated events, MOB/NPC
actions, and so on) initiate to respond
to player actions. For example, a MOB
attacking a player character if it moves
within aggro range, or progressing the
player to the next level upon satisfaction
of a predefi ned set of conditions.

To sum up, the array of potential measures
from the users of a game (or game service)
can be staggering, and generally we
should aim for logging and analyzing the
most essential information. This selection
process imposes a bias, but is often
necessary to avoid data overload and to
ensure a functional workfl ow in analytics.

INTEGRATING ANALYTICS

Bias is introduced in the dataset both
by the selection of the features to

be monitored and also by the measuring
strategies adopted, and that happens to
a large degree when analysts work in a
vacuum. If those responsible for analytics
cannot communicate with all relevant
stakeholders, critical information will
invariably end up missing and the full
value of analytics will not be realized.

Analytics groups are placed differently
across companies due to analytics
arriving to the industry from different
directions, notably user research,
marketing, and monetization, and this
can lead to a situation where the analytics
team only services or prioritizes their
parent department. Having a strong
lateral integration—making sure that the
analytics team communicates with all
the teams, for example—helps to avoid
this issue. This also helps alleviate the
common problem that the analytics teams,
without having suffi cient access to design
teams, are forced to self-select features
to track and analyze, without having the
proper grounding in the design of the
game and its monetization model.

Even for a small developer with a part-

WORLD OF WARCRAFT.

023
U S E R A N A LY T I C S _ M a y 2 0 1 3

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

024
U S E R A N A LY T I C S _ M a y 2 0 1 3

0
2

4

time analyst this can be a problem. Another
typical problem is that the decision about
which behaviors to track is made without
involving the analytics team. This can lead
to a lot of extra time spent later on trying
to work with data that are not exactly what
is needed, or needing to record additional
datasets. Good communication between
teams also helps alleviate friction between
analytics and design.

Importantly, analytics should be
integrated from the onset of a production—
all the way back in the early design phases.
Early on, devs should plan out which kinds
of behavior they want to track, and how
frequently they want to track it. This allows
for optimal planning of how to ensure value
from analytics to design, monetization,
marketing, etc. Analytics should never
be slapped on sometime after the beta.
In this way, analytics is similar to other
tools like user research, in that it ideally
is embedded throughout the development
processes, and after launch.

FEATURE SELECTION

Knowing that there is an array of things
we can measure about user behavior,

how do we then select among them? And
do we really have to make choices here?
Sadly, yes. In real life, we rarely have the
resources to track and analyze all possible
user behaviors, which means we have
to develop an approach to analytics that
considers cost-benefi t relationships between
the resources required for tracking, storing,
and analyzing user telemetry/metrics on one
hand, and the value of the insights obtained
on the other. It is also important to be aware
that the analyses needed during different
stages of production and post-launch varies.

For example, during the latter phases of
development, tuning design is vital, but many
metrics related to monetization cannot be
calculated because purchases have not been
made by the target audience yet.

We will discuss this in more detail
below, but in short, by following this line
of reasoning, the minimum set of user
attributes that should be tracked, stored,
and analyzed should include considerations
as to the following (see Figure 2):

1) General attributes: The attributes that
are shared for users (as customers and
players) across all games. These form the
core metrics that can always be collected,
for any computer game—for example, the
time at which a user starts or stops playing, a
user ID, user IP, entry point, and so on. These
form the core of any game analytics dataset.

2) Core mechanics/design attributes:
The essential attributes related to the core
of the gameplay and mechanics of the
game. (For example, attributes related to
time spent playing, virtual currency spent,
number of opponents killed, and so on.)
Defi ning the core design attributes should
be based directly on the key gameplay
mechanics of the game, and should provide
information that lets designers make
inferences about the user experience
(whether players are progressing as
planned, if fl ow is sustained, death ratios,
level completions, point scores).

3) Core business attributes: The
essential attributes related to the core
of the business model of the company,
for example, logging every time a user
purchases a virtual item (and what that
item is), establishes a friend connection
in-game, or recommends the game to a

Facebook friend—or any other attributes
related to revenue, retention, virality, and
churn. For a mobile game, geolocation
data can be very interesting to assist target
marketing. In a traditional retail situation,
none of these are of interest, of course.

4) Stakeholder requirements: In addition,
there can be an assortment of stakeholder
requirements that need to be considered.
For example, management or marketing
may place a high value on knowing the
number of Daily Active Users (DAU). Such
requirements may or may not align with the
categories mentioned above.

5) QA and user research: Finally, if there
is any interest in using telemetry data for
user research/user testing and quality
assurance (recording crashes and crash
causes, hardware confi guration of client
systems, and notable game settings), it
may be necessary to augment to attributes
on the list of features accordingly.

When building the initial attribute
set and planning the metrics that can be
derived from them, you need to make sure
that the selection process is as well-
informed as possible, and includes all the
involved stakeholders. This minimizes the
need to go back to the code and embed
additional hooks at a later time—which
is a waste that can be eliminated with
careful planning. That being said, as the
game evolves during production as well
as following launch (whether a persistent
game or through DLCs/patches), it will
typically be necessary to some degree to
embed new hooks in the code in order to
track new attributes and thus sustain an
evolving analytics practice. Sampling is
another key consideration. It may not be
necessary to track every time someone
fi res a gun, but only 1% of these. Sampling
is a big issue in its own right, and we will
therefore not delve further on this subject
here, apart from noting that sampling
can be an effi cient way to cut resource
requirements for game analytics.

PRESELECTING FEATURES

One important factor to consider
during the feature selection process

is the extent to which your attribute set
selection can be driven by pre-planning,
by defi ning the game metrics and analysis
results (and thereby the actionable
insights) we wish to obtain from user
telemetry and select attributes accordingly.

Reducing complexity is necessary,
but as you restrict the scope of the
data-gathering process, you run the risk
of missing important patterns in user
behavior that cannot be detected using
the preselected attributes. This problem
is exacerbated in situations where the
game metrics and analyses are also BATTLEFIELD 4.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
2

5

predefi ned—for example, relying on a set
of Key Performance Indicators (such as
DAU, MAU, ARPU, LTV, etc.) can eliminate
your chance of fi nding any patterns in
the behavioral data not detectable via
the predefi ned metrics and analyses. In
general, striking a balance between the two
situations is the best solution, depending
on available analytics resource. For
example, focusing exclusively on KPIs will
not tell you about in-game behavior, e.g.,
why 35% of the players drop out on level 8—
for that we need to look at metrics related
to design and performance.

It is worth noting that when it comes to
user analytics, we are working with human
behavior, which is notoriously unpredictable.
This means that predicting user analytics
requirements can be challenging. This
emphasizes the need for the use of both
explorative (we look at the user data to see
what patterns they contain) and hypothesis-
driven methods (we know what we want to
measure and know the possible results, not
just which one is correct).

STRATEGIES DRIVEN BY
DESIGNERS’ KNOWLEDGE

During gameplay, a user creates
a continual loop of actions and

responses that keep the game state
changing. This means that at any given
moment, there can be many features of
user behavior that change value. A fi rst

step toward isolating which features to
employ during the analytical process
could be a comprehensive and detailed
list of all possible interactions between
the game and its players. Designers
are extremely knowledgeable about all
possible interactions between the game
and players; it’s benefi cial to harness that
knowledge and involve designers from
the beginning by asking them to compile
such lists. Secondly, considering the sheer
number of variables involved even in the
simplest game, it is necessary to reduce
the complexity through a knowledge-driven
factor reduction: Designers can easily
identify isomorphic interactions. These are
groups of similar interactions, behaviors,
and state changes that are essentially
similar even if formally slightly different.
For example “restoring 5 HP with a
bandage” or “healing 50 HP with a potion”
are formally different but essentially similar
behaviors. The isomorphic interactions
are then grouped into larger domains.
Lastly, it’s required to identify measures
that capture all isomorphic interactions
belonging to each domain. For example, for
the domain “healing,” it’s not necessary to
track the number of potions and bandages
used, but just record every state change to
the variable “health.”

These domains have not been derived
through objective factor reduction; there is
a clear interpretive bias any time humans
are asked to group elements in categories,
even if designers have exhaustive expert

knowledge. These larger domains can
potentially contain all the possible behaviors
that players can express in a game and
at the same time help select which game
variables should be monitored, and how.

STRATEGIES DRIVEN BY MACHINE
LEARNING

Machine learning is a fi eld of study
that gives computers the ability to

learn without being explicitly programmed.
More than an alternative to designer-driven
strategies, automated feature selection is
a complementary approach to reducing the
complexity of the hundreds of state changes
generated by player-game interactions.
Traditionally, automated approaches are
applied to existing datasets, relational
databases, or data warehouses, meaning
that the process of analyzing game systems,
defi ning variables, and establishing
measures for such variables, falls outside of
the scope of automated strategies; humans
already have defi ned which variables to track
and how. Therefore, automated approaches
individuate only the most relevant and the
most discriminating features out of all the
variables monitored.

Automated feature selection relies
on algorithms to search the attribute
space and drop features that are highly
correlated to others; algorithms can
range from simple to complex. Methods
include approaches such as clustering,

attribute
defi nition

stakeholder
requirements

user research &
qualty assurance

design &
mechanics

general
attributes

business
model

025
U S E R A N A LY T I C S _ M a y 2 0 1 3

Figure 2: The drivers of attribute
selection for user behavior attributes.
Given the broad scope of application of

game analytics, a number of sources of
requirements exist.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

026
U S E R A N A LY T I C S _ M a y 2 0 1 3

0
2

6

classifi cation, prediction, and sequence
mining. These can be applied to fi nd the
most relevant features, since the presence
of features that are not relevant for the
defi nition of types affects the similarity
measure, degrading the quality of the
clusters found by the algorithm.

DIMINISHING RETURNS

In a situation with infi nite resources, it
is possible to track, store, and analyze

every user-initiated action—all the server-
side system information, every fraction
of a move of an avatar, every purchase,
every chat message, every button press,
even every keystroke. Doing so will likely
cause bandwidth issues, and will require
substantial resources to add the message
hooks into the game code, but in theory,
this brute-force approach to game analytics
is possible.

However, it leads to very large datasets,
which in turn leads to huge resource
requirements in order to transform and
analyze them. For example, tracking weapon
type, weapon modifi cations, range, damage,
target, kills, player and target positions,
bullet trajectory, and so on, will enable a
very in-depth analysis of weapon use in an
FPS. However, the key metrics to evaluate
weapon balancing could just be range,
damage done, and the frequency of use of
each weapon. Adding a number of additional
variables/features may not add any new
relevant insights, or may even add noise or
confusion to the analysis. Similarly, it may
not be necessary to log behavioral telemetry
from all players of a game, but only a
percentage (this is of course not the case
when it comes to sales records, because you
will need to track all revenue).

In general, if selected correctly, the
fi rst variables/features that are tracked,
collected, and analyzed will provide a lot
of insight into user behavior. As more and
more detailed aspects of user behavior are
tracked, costs of storage, processing, and
analysis increase, but the rate of added
value from the information contained in the
telemetry data diminishes.

What this means is that there is a cost-
benefi t relationship in game telemetry,
which basically describes a simplifi ed
theory of diminishing returns: Increasing the
amount of one source of data in an analysis
process will yield a lower per-unit return.

A classic example in economic
literature is adding fertilizer to a fi eld. In
an unbalanced system (underfertilized),
adding fertilizer will increase the crop
size, but after a certain point this increase
diminishes, stops, and may even reduce the
crop size. Adding fertilizer to an already-
balanced system does not increase crop
size, or may reduce it.

Fundamentally, game analytics follow
a similar principle. An analysis can be

optimized up to a specifi c point given a
particular set of input features/variables,
before additional (new) features are
necessary. Additionally, increasing the
amount of data into an analysis process
may reduce the return, or in extreme cases
lead to a situation of negative return due to
noise and confusion added by the additional
data. There can of course be exceptions—
for example, the cause of a problematic
behavioral pattern, which decreases
retention in a social online game, can rest
in a single small design fl aw, which can be
hard to identify if the specifi c behavioral
variables related to the fl aw are not tracked.

GOALS OF USER-ORIENTED
ANALYTICS

User-oriented game analytics typically
have a variety of purposes, but we can

broadly divide them into the following:

.
Strategic analytics, which target the
global view on how a game should evolve
based on analysis of user behavior and the
business model.

Tactical analytics, which aim to inform
game design at the short-term, for
example an A/B test of a new game
feature.

Operational analytics, which target
analysis and evaluation of the immediate,
current situation in the game. For
example, informing what changes you
should make to a persistent game to
match user behavior in real-time

To an extent, operational and tactical
analytics inform technical and
infrastructure issues, whereas strategic
analytics focuses on merging user
telemetry data with other user data and/or
market research.

When you’re plotting a strategy for
approaching your user telemetry, the fi rst
factors you should concern yourself with
are the existence of these three types of
user-oriented game analytics, the kinds
of input data they require, and what you
need to do to ensure that all three are
performed, and the resulting data reported
to the relevant stakeholder.

The second factor to consider is to
clarify how to satisfy both the needs of the
company and the needs of the users. The
fundamental goal of game design is to create
games that provide a good user experience.
However, the fundamental goal of running
a game development company is to make
money (at least from the perspective of
the investors). Ensuring that the analytics
process generates output supporting
decision-making toward both of these
goals is vital. Essentially, the underlying

drivers for game analytics are twofold: 1)
ensuring a quality user experience, in order
to acquire and retain customers; 2) ensuring
that the monetization cycle generates
revenue—irrespective of the business model
in question. User-oriented game analytics
should inform both design and monetization
at the same time. This approach is
exemplifi ed by companies that have been
successful in the F2P marketplace who use
analysis methods like A/B testing to evaluate
whether a specifi c design change increases
both user experience (retention is sometimes
used as a proxy) and monetization.

SUMMING UP

Up to this point, the discussion
about feature selection has been at

a somewhat abstract level, attempting
to generate categories guiding selection,
ensuring comprehensiveness in coverage
rather than generating lists of concrete
metrics (shots fi red/minute per weapon,
kill/death ratio, jump success ratio). This
because it is nigh-on impossible to develop
generic guidelines for metrics across
all types of games and usage situations.
This is not just because games do not fall
within neat design classes (games share
a vast design space and do not cluster at
specifi c areas of it), but also because the
rate of innovation in design is high, which
would rapidly render recommendations
invalid. Therefore, the best advice we
can give on user analytics is to develop
models from the top down, so you can
ensure comprehensive coverage in data
collection, and from the core out, starting
from the main mechanics driving the user
experience (for helping designers) and
monetization (for helping making sure
designers get paid). Additional detail can be
added as resources permit. Finally, try to
keep your decisions and process fl uent and
adaptable; it’s necessary in an industry as
competitive and exciting as ours.

Magy Seif El-Nasr, Anders Drachen, and Alessandro
Canossa are the editors of Game Analytics -
Maximizing the Value of Player Data, a recently
published compendium of insights from more
than 50 experts in industry and research. This
article is based on selected content from the
book. Dr. Anders Drachen, lead game analyst at
Game Analytics, is a veteran game analyst and
game researcher. He curates the GA development
blog (blogs.gameanalytics.com). Dr. Alessandro
Canossa is an associate professor at the PLAIT
lab at Northeastern University, working with the
interplay between in-game behavior and psychology
of personality and motivation. Dr. Magy Seif El-Nasr
is an associate professor at the PLAIT lab and
directs Game Educational Programs and Research
at Northeastern. Finally, Janus Rau Moeller
Soerensen (Crystal Dynamics) contributed to some
of the chapters this article draws material from.

http://blogs.gameanalytics.com

f 000
C O L U M N _ J a n u a r y 2 0 1 3

0
0

2
7

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

CHANGING THE CONTRACT
The fi rst step was a relatively
small but signifi cant change
to our contracts, so that
people could develop their
own projects in their own time
and retain the IP themselves—
that is, own their own game
designs. Our aim was to free
our staff to be more creative
and for both them and the

company to potentially profi t
from that. The reason many
companies seek to control
their developers’ IP is an
understandable fear that some
of them will go on to make
great games and leave the
studio to pursue their own
projects full time—and in fact,
this has already happened to
some degree to us.

Allow me to let you in on a
little secret: If you work for a
reasonably large-sized studio,
there will be people who
are working on cool stuff on
their own time whether their
contracts allow it or
not, because people who
make games are inherently
creative. They can’t stop
themselves. We just

formalized this and turned it
into a positive.

We found that this risk
is worth it; when developers
feel like they own their work,
they feel more creative and
more motivated to develop
new skills. For example, one
of the programmers on our
team learned new shader
techniques on his own time,

B Y S T E V E S T O P P S

Someone far more clever than me once said, “Creative endeavors are abandoned, not fi nished.” Anyone who has worked
on a large game knows that game development can often be fi lled with both confl ict and compromise. I’ve worked on
my share of commissioned games, and I know that these projects are tough. Big games are expensive to make, and that
raises the already-high stakes for everyone involved—which, in turn, makes everyone involved far more risk-averse. Were
the stakes substantially lower, most devs would want to take on more creatively ambitious projects, with no boundaries
or restrictions getting in the way of making what we want to make.

In other words, we’d want to be indies—but without the terrifying risk of failure. So, six months ago, I asked this
question: Are there lessons from indie development that can be utilized in a larger, established studio setting? In order to
answer this question, we set out a simple studio experiment. We changed our contracts of employment, invited fi ve of the
most senior developers to form a new team, and gave that team complete creative freedom.

0
2

8
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

028
I N T E R N A L I N D I E S _ S t e v e S t o p p

while another learned a lot
about Facebook integration
through developing their own
game. Our current game
directly benefi ted from the new
skills and knowledge gained
through outside-of-work
creativity, as will future games
developed by the team.

BUILDING A NEW TEAM By
chance, a small number of our
most senior developers had
fi nished their company projects
and had around eight weeks
before their next projects
began. As in many studios,
people between projects are
often asked to undertake
research into various areas,
and this group had been
tasked with learning more
about the mobile market.
They decided to do this in a
more practical, hands-on
sense than the company had
initially envisioned—that is,
they wanted to make a game
to prove out the issues about
which they were learning.
Because they were some of
our most senior devs and we
trusted their abilities, we gave
them free rein to make a game
in that eight weeks. They repaid
this trust with a completed
game, KUMO LUMO, which
has since been published by
Chillingo and received over one
million downloads just 10 days
after launch.

THE GOALS FOR KUMO
LUMO This team was very
commercially minded during
the whole process; they not
only wanted to make a game
that had its own voice and
personality, but also create
something that would help us
understand the mobile market
much better. They also wanted
to learn as many practical
lessons about the process
as possible.

Their research showed that
the majority of money spent on
iOS comes from men ages 25-
34 (70% more than any other
group). Having looked at the
games that were selling, they
quickly realized that this did
not necessarily mean the game
had to be traditionally hardcore.
Also, the rise of freemium
games over the past year was
clearly a key area our studio
needed to learn more about, so
they decided that monetization

should be part of the game
design from the outset.

Since the team had limited
time and resources, they
knew that the game had to be
simple in design and execution
to secure the best chance of
success. Their focus on this
simplicity ruled out many early
game concepts. For example,
they had a great puzzle-game
idea based on the paper toy
movement, but quickly realized
they had neither the time nor
expertise required for this
concept. To appeal to App
Store shoppers bombarded by
options, the visual direction of
the game was as important
as the gameplay. Put simply:
Screenshots sell your game, the
gameplay keeps people playing.

Finally, the team knew from
the studio’s previous experience

that a game lives or dies by PR
and marketing. Once you’ve
made a good game, people
need to know that it exists.
These days, that means fi nding
ways of engaging directly with
the audience. Consequently,
they decided to do their own
social marketing alongside
development, so that they
could learn about this process,
too.

DESIGNING KUMO LUMO
The design process was
simple. The design lead
presented several concepts,
all as one-sheet visual
designs. They were assessed
on suitability for the audience,
possibility for monetization,
scope for visual appeal, and
feasibility of delivery. In the

end, the team chose the
design shown below.

Once the team had decided
on a design, the art team
explored many potential
visual treatments before
choosing one that was both
appropriate for the audience,
felt suited to mobile, but also
had an individual identity. For
inspiration, they looked to
the sticker bomb/street art
movement. This process was
part research and part instinct.
The team started by identifying
a large addressable market
on iOS, then researched what
this audience liked and didn’t
like. In parallel they looked at
the art direction of many of the
best-selling mobile games.
Finally, they struck a careful
balance between what they
thought the audience would

like, what seemed to sell on
mobile, and something unique
that would stand out on the
App Store.

Some of the early concepts
skewed too young, or were too
niche, or looked too much like
something that had been done
before. It took lots of iteration
before the team settled on a
direction that felt right.

The result was KUMO
LUMO. By the end of the
fi rst week, the team had its
trademarks and copyright
checked, URLs secured,
T-shirts and mugs ordered.
Eight weeks later the team
had a fully formed game ready
for its fi rst submission to
Apple. In addition, during the
same period, they had created
and maintained a blog at

kumolumo.com, and engaged
with various forms of social
media to drive traffi c and
create interest.

DEVS ON MARKETING
Of course, part of being an
independent developer isn’t
just making what you want to
make—it’s being able to sell it,
too. Indie devs are responsible
for their own marketing
and PR, so we handed that
responsibility off to the team
as well. Here’s what they
learned:

Marketing is harder than it
looks. Developers frequently
make disparaging remarks
about the “dark arts” of
marketing, but having been
there and tried it ourselves, it
is really more diffi cult than we
initially thought.

Twitter is massively
useful—if you make it
personal. Remember that
social media really is all about
human interaction. Using
bots to add users to your
Twitter account isn’t useful;
it increases your followers
but does not necessarily help
your engagement with people.
Click-throughs count, and bots
won’t help you with that. The
team members who carefully
curated their followers and
built personal relationships
with people got much better
engagement. This certainly
takes time, but is well worth
it. But what do we mean when
we say it was worth it? I don’t
believe we generated many
direct sales from our work on
Twitter, but it did enable us
to create a real buzz around
the game, which was picked
up by many key players. This
sense of buzz added a lot of
credibility to our early press
outreach.

Analytics are important.
By using tools like Google
Analytics and link-tracking
services such as bit.ly, the
team could understand which
activity was generating the
most hits to our blog. Once you
fi nd that out, just do more of
it. For example, some forums
picked up on our “undercover
development” angle. There
was some real strength
of feeling, and this in turn
generated traffi c and interest
in our game. So we helped
stoke this controversy a little.

KUMO LUMO one-sheet design.

http://kumolumo.com

0
2

9
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

 029
I N T E R N A L I N D I E S _ S t e v e S t o p p

Facebook is massive. No,
really. It sounds obvious, but
the team was so excited by
Twitter and Pinterest that they
didn’t do anything to promote
the Facebook page. However,
Facebook still generated more
traffi c than pretty much all the
other activity put together, and
was still our second-biggest
driver of traffi c

Journalists need stories.
They have space to fi ll with
interesting and engaging
content. Therefore, if you make
your story interesting, you
are more likely to get their
attention. Think about their
readership, and what they
might fi nd interesting. For us,
we created our story around
our “undercover development.”
At the point of starting the
project, it was true: Our
bosses knew we were doing
something iOS related, but
had no idea what. So we
played on this to create a more
interesting story. A large studio
moving into iOS development
isn’t unique or interesting—a
rogue element within a studio
developing their own game has
much more of an edge.

Keep up the momentum.
Our team activity had to
stop for three months when
we moved into contract
negotiation with a publisher,
which ultimately undid much
of their hard work in building
an audience. I am sure there
are people out there who
believed for a while that KUMO
LUMO was vaporware.

LUCK, SKILL, AND TIMING
After about eight weeks, the
game was made and the
marketing was in progress.
The team unveiled the game
to the executives, who had not
been previously involved. The
team presented everything
they had learned, which was
warmly received.

This is when some luck,
good timing, and the team’s
excellent decisions paid off:
The game was fi nished just
before one of our regular
American business trips.
Our business development
executives set up a meeting
with Chillingo, and they agreed
that we would show them
KUMO LUMO. Chillingo really
liked it! They understood
the visual direction and the

style of game and felt it had
great commercial promise.
Of course, they had some
feedback on how to make the
game better, and this is what
the team has been working on
for the past few months.

We have often been asked
why we used a publisher when
we could have self-published.
For us the answer was simple.
We felt that we had met a
partner who was as passionate
about the game as we were
and who wanted to share with
us their vast knowledge and
experience; it just seemed too
good an opportunity to pass

up. It’s been a real joy working
with them.

MAKING A NOTE HERE:
HUGE SUCCESS We would
consider the results of
our indie experiment a
success; we learned that
giving people autonomy,
creative freedom, and trust
is motivating, and motivating
and trusting experienced and
knowledgeable developers
delivers great results. Also,
we learned that social media
marketing is worthwhile,
but only if you do it the
right way—no shortcuts!

And probably more than
anything, trust your vision.
Make the game you believe
in, and make it fun! If you
take nothing more from indie
games, take this: An original
idea and a purity of vision will
make your game feel fresh
and alive.

Steve Stopps is project director of
Team Lumo for Blitz Games Studios.
[Team Lumo is hard at work on our
next project, PAPER TITANS, and
we’ve been applying all the lessons
we learned from KUMO LUMO.]

St
ic

ke
r

bo
m

b
br

an
di

ng
 s

he
et

.

KUMO LUMO fi rst concept.

http://gamasutra.com

Baldur’s Gate
enhanced edition
p o s t m o r t e m

Baldur’s Gate: enhanced edition launched on PC on November 28 and on iPad on December 8
to great fan interest, rocketing to the #2 spot on iTunes in the U.S. and #1 on many other app stores
around the world. Our initial plan was to launch all platforms as close to each other as possible. In
retrospect, this was very naive given the size of our team and the volume of work required. We’re
working steadily now to build versions for the remaining platforms, and to roll out concurrent
versions so cross-platform multiplayer can be a reality. We’ve had great success on the PC and
iPad, with great sales and positive feedback from the fans. We’re very anxious to roll out versions for
the remaining platforms as fast as we can. From the trenches, the development of Baldur’s Gate:
enhanced edition was an interesting journey. We had early moments of exuberance as we played
the first tablet version and proved our theory that Baldur’s Gate did indeed kick ass on tablets.
We had great moments of insight when we brought in people from the modding community and
shared work-in-progress versions with them. We had moments of despair, such as lost source art
and subsequent sacrifices to salvage the publishing deal. Along the way we had the opportunity to
work with some great talents such as Mark Meer, John Gallagher, and Sam Hulick. Baldur’s Gate:
enhanced edition was a challenge, but we’ve all come out with some sanity remaining and a great
understanding of the game, the engine technology, and what makes Baldur’s Gate the legend it is. ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
3

1
 0

3
1

C
r

o
s

s
-p

l
a

t
f

o
r

m
_T

re
n

t
O

s
te

r

0
3

2

032
C r o s s - p l at f o r m _ Tr e n t O s t e r

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

WHAT WENT RIGHT

THE IPAd ANd THE ToucH INTERfAcE We
proved you could produce an epic, massive
RPG in the tablet space and that the
market was starving for such a project.
The success has been awesome, and the
feedback from the fine fellows at respected
media outlets like Touch Arcade and
Pocket Tactics has been a real positive.
Beamdog cofounder and veteran developer
Cameron Tofer went crazy on the tablet
interface early on—we had an iPad version
running and semifunctional almost a year
before we shipped.

Every new build brought radical
changes, as we explored the logical means
to perform actions in Baldur’s Gate
using a touch design paradigm. In the
end, Cameron’s approach broke down to
favoring common actions and giving them
the least-complex control mechanism. For
example, the most common player action
is to scroll the screen, so we used the
photo app UI standard of a touch-drag for
scrolling. The second most common action
is moving/interacting, which we mapped to
a single touch. We initially favored group
selection, but after a number of clumsy
iterations we realized the vast majority of
actions in BG are performed with either
a single character selected or the entire
group, and as such, group selection could
be moved to a modal button.

We’ve added to this level of polish
recently with a further enhancement we

call smart radius. Smart radius allows
the user to have the precision of a mouse
with the less-accurate nature of a touch
interface, making it easier to enter
buildings, pick up items from the ground,
and so on. We’ll continue to iterate as
we go, making the game better as we
move along. From an overall UI design,
we wanted to keep the original feel, but
base it around the new resolution of
1024x768. My priority in UI was to make
the user portraits as large as possible.
We listed all the required UI elements
and slowly reconstructed all the art and
panels around the new portrait sizes,
all while trying to embrace some UI
guidelines from Apple for the iPad, such
as keeping buttons over 44 pixels in
height (which we only failed to do in a few
spots, like class selection). The overall
process was challenging, as we tried
to balance rewriting the entire UI code
while keeping the existing complex (and
overly integrated—damn you, Scott Greig)
systems working.

BETA TEsTING We beta tested the game for
over six months, during which we received
tremendously helpful feedback on how to
improve it. We found and fixed bugs at a
rapid pace, in part because experienced
Baldur’s Gate modders in the beta
were able to suggest fixes that cut our
development time. In our mind, the beta
was a core element to the success of the
project. The feedback on our new content

was excellent, as we found bizarre edge
cases that caused the quests to break in
unexpected ways. Due to the complexity
of Baldur’s Gate, we needed a lot of
testing to find all the possible ways a
quest could be broken and act quickly to
fix the problem and retest. By sticking with
the original game structures and asset
formats, we were able to leverage the
knowledge of a community of developers
and not just the direct efforts of our team.
As I mentioned, this beta-testing group
was volunteers recruited from our forums.
We chose people with strong skills and a
good background with the original game,
so the feedback was fast and on target.
The beta team had access to our bug
database and beta bugs went straight into
the system.

We also hired an external testing
company named iBeta to help us final
the iPad versions and to ensure testing
coverage. They were able to run us through
a “precertification”-style test to catch the
differences between the different iPad
hardware devices.

ouR oWN dIGITAl dIsTRIBuTIoN sERvIcE
Beamdog has two parts: an online
digital distribution service, and our game
development team, which we call Overhaul
Games. We developed the Beamdog
Store with the goal of selling our games
directly to our users, no middlemen, no
confusion on support, just a developer and
a customer. The direct-sales option and

0
3

3
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

a preorder program allowed us to receive
payment many months in advance of a
typical royalty-advance deal, which was
a great benefit for a small, self-funded
developer.

The other great benefit was how our
digital-distribution service allowed us
to push out beta builds of the game six
months in advance and update testers
to new versions without a hitch. We were
able to push PC fixes to the game in
record time, doing four major updates
in under two weeks as we found issues
and corrected them. Sure, we had a few
hiccups with the client software and
out-of-date SSL root certificates on user
systems, but the system performed
exceptionally well. We were able to add
servers in Germany, Singapore, and on
the East and West coasts of the U.S.
without a hitch as we approached launch,
and we handled a huge surge in demand
as we pushed hundreds of terabytes of
data to our users. We use Beamdog daily
internally for all our build distribution, and
without it we couldn’t have been nearly as
agile in our response, effective at version
control, or as fast at build distribution.
We even use our service to send around
Mac OSX, iPad, and Android development
builds of the game. We’ve been very happy
with our service to date and we’ll be
expanding on what it can do going forward.

What Went Wrong

IntrIcate code-data dependency I have
a development joke I often drop: “When a
programmer believes they’re being clever
is when they create the greatest atrocities.”
BioWare’s Infinity Engine is chock-full of
clever. For example: To render a character
to the screen, the correct frame and
orientation of a character sprite is first
loaded out of a resource file using a very
heavy resource-management system.
The sprite is then color-mapped using a
256-color palette swap to enable player
colors. Following the remapping, any
number of further palette-manipulation

code (stoneskin, anyone?) can step in
and further change the actual data. Then
the sprite is rendered against whatever
potentially covering elements are nearby.
The final result is sent to the screen in
64x64 pixel tiles to be rendered.

The entire system runs under a
dynamic update system that flags 64x64
tiles as updated and renders them or,
with no change, leaves the tile from the
previous buffer. The volume of clever shifts
and tweaks along the way make it nearly
impossible to track down all the ways in
which a simple sprite can be manipulated.
In some cases, the data can reference
many different .2da data files on how it can
be manipulated, from equipment-changing
animation frames to a data redirection
to render a dwarf sprite instead of the
default human. Complexity is par for the
course in an RPG of this magnitude, but the
intricate linking of assets and code really
limited our ability to make the architectural
improvements we wanted to make.

the lost source art Originally, we had
planned to do a Baldur’s Gate: Hd. Our
plan was simple: Grab the original artwork,
clean it up, and rerender it at higher
resolutions and with better materials,
which would give us stunning versions
of the areas everyone remembers. We
planned to take the character models and

rerender them with many more frames of
animation and add new orientations to the
movement to make the game smoother. We
nailed down the core terms, got everyone
on the same page, and we got our first drop
of the assets from BioWare. A few days
later we noticed a large hole where the
source art should be—stuff like 3DS Max
files and texture images. “No problem,”
I said; I contacted Derek French over at
BioWare, and he dug further and sent us
more data. We again dug through and
failed to find the source art, so I made
arrangements to visit BioWare with a
removable drive and work with Derek and
the IS department to find the assets.

After two days of searching we came to the
horrible realization that the source artwork
was stored on a departmental drive and not a
project drive, and as such was not frequently
backed up. We dug through tape backups to
no avail. The source art was lost. At this point
we brought the information back to Atari and
the deal was dead in the water. Cameron and I
spent a few weeks rethinking the concept and
we repitched Atari with an “Enhanced Edition”
as opposed to an “HD” version. We discussed
the implications of a non-HD version and we
had to renegotiate royalty terms to get the deal
back on track. We basically had to completely
discard our plans and start anew after almost
a year of negotiation. The end result is a little
less graphical flash for launch than we had
initially planned, but we actually had a bit more
time to make more widespread improvements
as a result, so the project is different; in some
ways larger, but still pretty awesome. The key
learning here is: Don’t panic!

Ios6 Late in development, we started
testing on the upcoming iOS6 beta build.
We’re not 100% sure what was changed
in the core iOS graphics code, but we
took a massive hit in framerate on all
iPads. The iPad 1 and iPad 3 became
completely unplayable, less than a month
from our contractually amended ship
date. We quickly diverted most of our
key programming effort to fixing the
performance concerns. We fought a war
between hurting the visual upscaling
quality and improving the framerate. In
the end, we lost a lot of key developer time
to a completely unplanned task. The end
result was that a great deal of our bug-
fixing time was spent not fixing the bugs
we wanted, and the quality of the shipping
build suffered. The lesson learned here
is to build in some slack in terms of
performance for when you need it due
to an unplanned change, and to budget
some extra time for periodic performance
testing on current and beta OS releases.

In summary, BG:EE was defined
by the product it is built upon, and the
hard, respectful work of a small and
caring team. We could have done faster
development work, and we could have had
fewer bugs by making sweeping changes,
but early on we decided to adopt the
role of curator. We didn’t want to change
Baldur’s Gate just to show off our
development skills and leave our mark;
we wanted to make a great game even
better and in the process, bring it to new
platforms. With the great commercial and
critical success so far, we’re very anxious
to continue to improve the game even
more and bring our newly leveled-up
skills to bear on Baldur’s Gate 2:
enHanced edition.

Trent Oster is the president of Beamdog and
Overhaul Games.

 033
C r o s s - p l at f o r m _ Tr e n t O s t e r

0
0

3
4

034 pm
p o s t m o rt e m _ M a y 2 0 1 3

0
0

3
5

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

pm 035
p o s t m o rt e m _ M a y 2 0 1 3

Hundredš
B y A d A m S A l t S m A n

For those oF you who aren’t FaMiliar with it, hundreds is a successFul arcade-puzzle gaMe designed
priMarily For the ipad. eric Johnson (My partner here at seMi secret) and i were inspired by one
oF greg wohlwend’s Flash gaMes, so we started collaborating with hiM on a larger and Much-
iMproved version back in august or septeMber oF 2011, and we Finally shipped it on the itunes app
store in January 2013. in hundreds, players touch Moving, bouncing circles. touch a circle, and it
will physically expand and contribute points to the level total. reach 100 points, and advance to
the next puzzle. the catch: while inFlating, circles turn red. when a red circle touches another
circle, it’s gaMe over, Man. it May sound like a siMple Mechanic, but over the course oF 100 levels
we continuously introduce new touch-based Mechanics and obstacles. p

o
s

t
m

o
r

t
e

m
_M

a
y

2
0

13

036 pm
p o s t m o rt e m _ M a y 2 0 1 3

We opted for a modern, autodidactic approach to our puzzle design,
allowing us to introduce new elements without requiring or relying
on wordy tutorials. Players learn by experimenting and discovering
things on their own, through what are essentially series of
controlled experiments. We were very much inspired by games like
Braid, Portal, and SPacechem, though the barrier to entry for
Hundreds is much lower in some ways than these more “hardcore”
games, thanks to its simplified interface.

Our team of four—a designer/artist, a programmer, a level
designer, and a sound designer—took more than 15 months to
create hundredS. I am very, very proud of the work we did; making
inclusive and humanist games is my game design passion, and I am
completely satisfied with our efforts. We hadn’t shipped a profitable
iOS game since canaBalt back in 2009, so building hundredS
was a huge experiment and a learning experience. Hopefully, this
postmortem will let me clarify some of what we learned—both for
my own sake, but also to lend some assistance or assurance to
others in a similar situation.

Finally, I’m normally a bit opposed to the traditional what-went-
right/what-went-wrong approach to postmortems, but I promise I
have done my best to include real, unfiltered pros and cons here!

WHAT WENT RIGHT

 1/ HARDWARE-NATIVE DESIGN A few years ago, I was interviewing
my friend and game designer Miah Slaczka (lock’S QueSt,
ScriBBlenautS) for the now-defunct TIGRadio podcast, and we were
talking about his design approach to the Nintendo DS specifically. He
stressed the importance he personally placed on doing hardware-
native design. That is, designing games really specifically based
around the hardware interface and leveraging it, rather than simply
compromising for it. A game like ridiculouS FiShing or Bit Pilot
has really solid hardware-native controls and design, for example.
A classic example of extremely non-native design, especially for
touchscreens, is the virtual D-pad found in many ports and action
games. PixelJunk’s DSi games for Nintendo (especially trajectile)
are great examples of hardware-native design too.

Anyway, I was interviewing Miah just a few months after
releasing canaBalt, which was sort of miraculously interfaceless.
Anything with a touchscreen or a button can run canaBalt just
fine. For me, at least, that was a design fluke; I tried designing
more games with that much flexibility in their controls, and I
was really struggling. Talking with Miah about hardware-native
designs really changed my ideas about commercial game design,
and I began thinking about designing games very specifically for
touchscreens, rather than for multiple platforms.

I designed a few different prototypes, but we didn’t end up
building any of them. Getting into that headspace ended up being
a huge win for hundredS, though. With canaBalt, I’d been
mulling over one-button action game designs for a few years, and
I think that paid off in a big way. By the time the opportunity to
work on hundredS came along, I’d already been thinking about
touchscreen-centric game design for a few years, and was eager
to put that time to good use. hundredS, to my mind anyway, is
almost the perfect touchscreen game; it is very immediate and 1:1
in its interactions. There is no interface. We use multitouch in an
intuitive way. We avoided contrived and complicated gestures, and
focused on getting the basics just right.

 2/ MINIMALIST DESIGN The thing that stands out the most about
hundredS is the way it looks. Greg Wohlwend’s striking minimalist
graphic design permeates the entire game, with nearly everything
important communicated by subtly different shades of gray,
punctuated by bold, red user-interface elements.

The minimalist design of hundredS had two big benefits.
The first (and maybe most important) benefit is what I (somewhat
hyperbolically) refer to as the “#Sworcery Doctrine.” In this age of
app stores and the proliferation of indie studios and indie games,
it’s not enough to just make a pretty good game and release it. ga

m
e

de
ve

lo
pe

r m
ag

az
in

e
0

0
3

6

pm 037
p o s t m o rt e m _ M a y 2 0 1 3

You could probably argue that was never enough! Right now it
feels like creating something that stands out is an integral part
of making indie games commercially. There aren’t very many
games out there that look like Hundreds, and that made a very
big difference for us.

There are many different ways to make something that stands
out, of course. We knew from the start of this project that one of the
things we wanted to build was a game that wasn’t embarrassing to
play on your iPad in public. (That sounds snobby, and please keep
in mind that I love cartoony games, and I enjoy violent games, and
this is not a low-culture/high-culture thing.)

There is a stigma about games being “for kids,” and I do think
a lot of that has to do with their presentation, whether these
games are aping Dreamworks cartoons, comic books, or R-rated
action movies (which we all know are really marketed to kids).
How hard is it to convince people that How to Train Your Dragon
is totally amazing? We really wanted to make a game that didn’t
unnecessarily exclude anyone, and that definitely includes people
who are turned off by stuff that is obviously “for kids.” Games
researcher Ian Bogost went so far as describing the Hundreds
aesthetic as “haute couture” in an article for The Atlantic. The great
thing is that kids still love Hundreds; it turns out they don’t really
need cartoon birds in order to enjoy something.

The more pragmatic benefit we got from pursuing a minimalist
design is that we didn’t have to spend months or even years
drawing thousands of frames of animation, modeling backgrounds,
or whatever. Nearly everything in Hundreds is procedurally
generated, from the circles to the icons, and even the texture
atlases for the fonts. We didn’t even have an art pipeline; no retina-
resolution assets required.

 3/ LEGACY HARDWARE SUPPORT Another not-terribly-romantic
aspect of Hundreds that I’m pretty proud of is our robust support
for older iOS hardware. While there are some devices out there that
Hundreds can’t realistically support, we did push hard to get really
good performance out of devices as old as the iPhone 3GS and
especially the iPad 1. Even though the numbers indicate that these
are not the most popular devices by a long shot, it was enormously
satisfying to run at 60 frames per second even on these grouchy old
gadgets. It also meant that our performance on newer devices was
exceptional. Ironically, I’m not 100% sure I would recommend this
to other developers, but more on that later.

 4/ DISTRIBUTED DEVELOPMENT Like some other small indie
studios, Semi Secret is a completely distributed development
studio. We have no central office and we don’t even meet face
to face on a regular basis. Eric and I both live near Austin, but
Greg was working from Baltimore, Chicago, and New York, and
our incredible audio collaborator Scott Morgan worked from his
home studio in Vancouver, CA. The huge pro here is that in spite
of our lack of physical proximity, we got to work with exactly the
right people. Scott (aka Loscil) was our first choice for audio, and
Hundreds was all Greg’s idea in the first place. Without long-
distance collaboration, this project would not have been possible; it
never would have existed.

We relied on a lot of common tools to accomplish this; Google
Mail and Docs are basically invaluable. We rely exclusively on Git for
source control, but for the first time we made heavy use of Dropbox
to coordinate with Greg and Scott. Dropbox is great for folks who
don’t need Git’s versioning and (for many new users) frustrating
level of complexity.

 5/ SLOW DEVELOPMENT Hundreds took us a pretty long time to
make, by my standards anyway: 15 months at least; maybe a bit more.
The longest I ever worked on the same game before this was a few
months. Canabalt took five days. 15 months was a lot longer than
I expected, and this had some serious ramifications for the project
(more on this later). But it had a big positive effect on the project
too. As level designer, I had about 90% of the game’s mechanics
and levels designed by March 2012, roughly nine months before we
shipped the game. At the time I remember being frustrated that we
were still working on menus and technology. But those “delays”
ended up making the level designs much, much better.

On past projects, I was perfectly happy just sending game content
out the door as long as it felt pretty fun to me. This isn’t necessarily a
horrible idea, but our goal was to build a game that would be able to
teach itself to a very wide audience. We needed more than a few days
to put the game in front of strangers and see if the game worked for
them. I can’t remember if it was Kellee Santiago or Robin Hunicke
who originally told me about the idea of the Silver Rule. The Golden
Rule, as we all know, says something like “Do unto others as you
would like them to do to you.” The Silver Rule says “Do unto others
as they would do unto themselves.” This tiny change makes a crucial
and enormous difference in all manner of disciplines, but I really like
the way it applies to game design and playtesting.

I want to reiterate that when I write
“playtesting,” this is not at all the same as
“focus testing.” When we playtest our games,
we’re not making sure players never get
stuck. We’re making sure that most players
only get stuck on what we want them to get
stuck on. Maybe other folks have different
approaches, but for us, for our goal of building
what we hope are intelligent games for a
wide audience, we want people to get stuck
sometimes. We want people to have little
epiphanies and victories. What we don’t want
is for them to get stuck on a confusing menu
item or grossly misunderstand a critical part
of the game’s basic controls or something.
Over the course of the game’s longer-than-
expected development time, we were able to
put it in front of a lot of different players in a lot
of different settings, and we greatly benefitted
from these playtesting experiences.

The other thing the long dev time allowed
us to do was to mercilessly edit our designs.
A lot of designers are familiar with the idea
of “killing your darlings”—the necessity
of editing to create a good, cohesive work.
Sometimes there are elements of a design
that we love but that don’t fit in the design,

0
0

3
7

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

038 pm
p o s t m o rt e m _ M a y 2 0 1 3

or don’t make sense to our playtesters. For this project, it was very
important to us that we strip out anything that wasn’t functioning
properly.

The hardest darling to kill in Hundreds was one of the very
first ideas I contributed to the game: holes. This was a game about
circles, and holes seemed like a really interesting obstacle to put in
the mix. They would be circular, of course, but they could remove
objects from the level, which was interesting, and had a kind of
pinball vibe that I loved. In practice, though, holes were extremely
problematic. They introduced some interesting dynamics, but they
were shallow, and there was a huge downside: Puzzles could reach
unwinnable states, and we were adamantly opposed to having a reset
or retry button in the game. So, we killed the holes. Eventually.

The thing is, at least for me, it was (and is) really hard to muster
the discipline required to really kill off some darlings if they’re fresh
out of the oven. “Who knows, right? Maybe people just aren’t used
to this new design yet. Maybe people just don’t get it yet. They’ll
come around, they just need to get used to the way it—hang on.
They’re right! This idea sucks!”

This is how it goes in my head most of the time. I need some
time, some editorial distance, before I can objectively judge an idea.
There is some span of time, usually somewhere in between a week
and a month, where an idea seems to cease to be my own, and
starts to feel like someone else’s idea, even if that someone else
is just a past me that didn’t know any better. And as soon as that
idea isn’t “mine” anymore, I find it very easy to judge its worth,
especially when I’m trying to figure out why playtesters got stuck
so long on a level that used that idea.

While developing Hundreds, we threw out a lot of stuff—at
least half a dozen core mechanics or game objects, and dozens
of puzzle designs that were fundamentally flawed in some way or
other. We were throwing out level designs and replacing them with

improved concepts even during the last month of development.
This makes me even more certain that this long development
period was crucial for achieving the necessary editorial distance.

WHAT WENT WRONG

 1/ HARDWARE-NATIVE DESIGN (Oh ho, see what I did there? This is
a thing I’m doing in this postmortem about double-edged swords!
So now you’re in on it too.)

As I said before, hardware-native design was one of the best
things about the design of Hundreds. Unfortunately, from a
business perspective, it’s also been one of the most difficult
aspects. If you look at the most successful independent games of
the last few years, there is a bit of a pattern: Release game on
some interesting native hardware or platform, then sell it on PC/
Mac both directly and through Steam, then buy Teslas. The thing
is, we are absolutely, completely, and intentionally tethered to
touchscreens by the design of Hundreds. This is still a big market,
which is great, but it’s also a market where games have very, very
low prices. Even at over 100,000 copies sold in the first month, we
barely broke even, if that, on our year-plus development cycle. On
Steam, well, we wouldn’t have been buying Teslas, but we would
have at least joked about buying Teslas.

 2/ MINIMALIST DESIGN Minimalist game design is a passion of
mine, but it can put enormous pressure on weird or unexpected
parts of the design when you are trying to produce work that is
competitive with less minimalist offerings. A lot of the game-
buying audience has a sensitivity to polish. It’s not a requirement,
by any means, but it is part of a promise that we make as game
designers, to our audience. To me, polish says, “Look at this game;
look how much effort we put into it. Look how much we believed in ga

m
e

de
ve

lo
pe

r m
ag

az
in

e
0

3
8

pm 039
p o s t m o rt e m _ M a y 2 0 1 3

it! It’s worth taking a second look at this game.” It doesn’t mean the
game is good, of course, but it is one way of conveying a creator’s
confidence in the work. As an indie game studio with no marketing
budget, there aren’t a lot of ways for us to tell people this. So, we’re
pro-polish, as it were.

When your game is just circles, though, part of making the work
really shine means drawing really, really good circles. I don’t have
room to go into detail here about how we did it, but I can tell you
that drawing perfectly anti-aliased circles of any imaginable size,
under a full-screen vignette effect, at 60 frames per second, on
an iPad 1 or iPhone 4, is… difficult. The tech behind Hundreds
was rebuilt from scratch at least three times during development.
Which leads me to the next problem...

 3/ LEGACY HARDWARE SUPPORT As almost any iOS developer will
tell you, one of the great advantages of the platform is not having
to deal with the intimidating degree of fragmentation of PC or
Android. However, there is still a big difference between the low-
end and high-end hardware that’s out there. There are multiple
screen resolutions, huge differences in CPU power, and large
disparities in available memory to deal with. If we’d only targeted
the most powerful iOS hardware, I think it we could have saved
months of development time. For us, in retrospect, this was a
much less trivial decision than I thought it was.

 4/ DISTRIBUTED DEVELOPMENT Issues like technological delays
were exacerbated by our physical distance from each other. Email
can be a disastrous way of communicating about important issues,
and as development time runs over the targeted deadlines, it is
harder to stay focused and energized when you’re half a country
apart (or farther). Distance can hamper your ability to (I’m gonna
say it!) synergize, too. There is undeniably something really
powerful about being in a shared space with other creative people
with a shared goal, where your voice, and body language, and
outside interests create a kind of intoxicating creative soup that is
a very fertile environment for lateral thinking and solving problems
in counterintuitive ways.

But as someone more experienced and more intelligent than
me once said, I’d much rather clarify confusing emails to the
perfect person than have a crystal-clear face-to-face meeting
with the wrong person. In an ideal world, you get to work with the
perfect people in perfect physical proximity, but I don’t know of any
bootstrapped indie studios that can afford this luxury. We simply do
the best we can with what we have!

 5/ SLOW DEVELOPMENT This was brutal and almost destroyed the
company. One of the reasons that we decided to work on Hundreds
was because we thought we could get it to market in six months
or less, which was only slighter longer than our financial runway at
that moment. I thought we could do it in three months, so I doubled
it and thought we had a great schedule. I see now that I should have
quadrupled my estimate. Man, that was a bad estimate.

If Canabalt hadn’t been included in a Humble Android Bundle
back in early 2012, we would have had to face a very difficult choice:
Release Hundreds in an unstable and unfinished state, or put it
on hiatus until we could afford to finish it, by taking on other work
individually, or aiming the studio at contract jobs.

Development actually ran long enough that we faced exactly
that decision anyway, about six months later. I am very glad that we
were able to persevere and release it, and obviously I am thankful,
in hindsight, that we had this extra time, so that we could reflect on
and edit the game and get it into its current state. Time to reflect
has its own downsides: You end up with a lot of time to indulge in
crippling self-doubt about your design. Near the end of the project,
Greg and I panicked and started seriously considering reskinning
the game to prominently feature cartoon blowfish characters.
FishPop would save us all! We ended up staying the course, but
given enough time to overanalyze my work, I am often prone to
these sorts of concerns.

Why did it take so long to make a game about bouncing
circles? Legacy hardware support was part of it, as was, I think,
our distributed development arrangement. I think our skills were
not spread optimally; we ended up having maybe five times more
programming work than art or level design, which put a huge
strain on Eric. We also had a lot of feature creep, though I still don’t
view that as a mistake in the case of Hundreds specifically. Our
goal was to produce something that was competitive on the App
Store, and we only added what we felt was necessary to create a
full experience. We spent so long in development that our ideas
about what a “full experience” was ended up changing along with
the rising quality bar of other games and apps. It wasn’t a duke
nukem Forever arms race, but it is important to recognize this
tendency of markets to be moving targets, especially at the start
of a project. It’s not enough to have a thorough understanding of
what the market is like right now for our next game. What will the
market be like when we finish our next game? That’s the mark we
have to aim for.

Looking back, I see our long development time as a catch-22
that I just didn’t understand at the time. We couldn’t afford not to
spend that much time on Hundreds. I don’t think people would
have enjoyed it if we shipped it with fewer features or less polish. At
the same time, we literally couldn’t afford to spend that much time
making it. We didn’t have the runway, and we didn’t seek outside
investment in order to fix that. I think that was a big mistake.

LAUNCHING HUNDREDS

Hundreds launched January 2013 to a dozen or more perfect
scores from reviewers all over the world. The design appeals to
fans of all ages, genders, and ethnicities, and we sold over 100,000
copies in our first month on the App Store, with a modest (read:
nonexistent) marketing budget.

That’s not to say we didn’t do any marketing; we started talking
to Apple about Hundreds over a year before it launched. We were
profiled on major mobile gaming websites as far back as March
2012. We took Hundreds to IndieCade in September 2013, and did
a two-hour keynote talk about it at GameCity in October 2013. Greg
designed an achingly gorgeous website for the game, as well as a
teaser trailer, and we collaborated with indie game trailer guru Kert
Gartner to create our beautiful and mysterious launch trailer. All 50
of our App Store promo codes had been sent out to journalists weeks
before the game actually launched. Polygon was very generous in
their coverage. Kotaku (admittedly somewhat tongue-in-cheek)
named Hundreds their best game of 2013.

Looking back, I’m very glad that we took our marketing
very seriously. Marketing, for me, is just the way you choose
to communicate with the public. Thinking about how to talk to
your audience about your game can be an enormous challenge,
but forgetting to do it can be catastrophic. There is too much
competition. Not in the classical sense of industry titans vying for
the same wallet contents, but as we said earlier, the bar for indie
games is rising steadily. This is both inspiring and frustrating; it
gets harder and harder to get noticed, and when your game sells
for $4.99 or less, and takes over a year for a handful of people to
make, well, you need a lot of people to notice you if you are going to
be able to afford to make another game.

“Postmortem” is almost a misnomer. Hundreds is a mobile
game, which means it may never be truly done. We’ve been working
on updates and an Android port of the game since launch, which
will hopefully have been announced by the time this article goes
to print. But, by and large, the game is “out.” I’m more proud of
Hundreds than anything else I’ve ever worked on. We all learned
a lot, and I hope that I’ve been able to share at least some of that
with you here. pm

Adam “Atomic” Saltsman makes games in Austin, Texas, where he lives with
his family, and is best known for making Canabalt.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
3

9

040 t
t o o l b ox _ N a t e R a l p h

The
Tools of
GDC 2013
Tools anD miDDleware, sTraiGhT from
The show floor
The Game Developers Conference is a great opportunity
for tools and middleware developers to show off their
latest and greatest to dev studios large and small.
Here’s a taste of some of this year’s offerings.

Project Anarchy
Havok // www.havok.com

Havok’s middleware
technologies, particularly
Havok Physics, have been
a mainstay in video games
for years. The company
is determined to take its
technology further still, by
giving it away to smaller teams
interested in developing for
mobile platforms.

Havok’s calling its new
initiative “Project Anarchy”; It’s

a full-fledged
game engine
that will be
available for
download in
the spring. It’s

capable of deploying games
to iOS and Android devices,
completely free of any cost
or commercial restrictions.
The tool offers access to
Havok’s litany of middleware
applications, including physics,
animation, and AI tools.
Complete game samples
(and their source code) will
be included to give budding

developers a taste of the tool’s
capabilities, and tips on how to
get started.

Project Anarchy has a few
features meant to ease the
pain of cross-platform mobile
game development, including
viewports that mimic the size
and resolutions of a number of
different kinds of hardware, and
remote input so devs can push
their project to a mobile device
and test it with a real-time
debugger. Havok also plans
to launch a Project Anarchy
community site, complete with
Anarchy’s source code, and will
encourage the community to
develop extensions and share
their customizations with
other developers.

Gameware
 autodesk // autodesk.com

Autodesk’s Gameware
division (the middleware side
of the business) had a few
upgrades to announce at
GDC: AI middleware package
Kynapse has been rebranded
as “Gameware Navigation

2014” and promises devs full
source code access and some
neat visual debugging tools,
UI middleware Scaleform 4.3
has extended its ActionScript
3 API classes to help its
compatibility with Adobe AIR,
lighting middleware Beast 2014
adds support for physics-
based rendering and support
for Open Shading Language,
and animation middleware
HumanIK 2014 offers a few new
mobile-specific features.

Retargeter 4.0
Faceware // www.facewaretech.com

Great facial motion capture
can add life to a game, but
the added time and expense
involved can be daunting.
Faceware’s latest update to its
Retargeter application adds a
few features aimed at speeding
up an animator’s workflow.

The Faceware facial-capture
process starts with Analyzer,
the company’s tracking and
analyzing software. Load a
video into the application,
assign virtual tracking points

to key elements of the face—
spots like the eyes, eyebrows,
and mouth—and Analyzer
will create a file with motion-
capture data that you can use
in Retargeter to tweak your
character rig.

New to Retargeter 4.0
are the Expression Sets and
Autosolve features. Expression
Sets are “default” facial
animation poses—looking
left and right, or frowning, for
example. You’ll need to mimic
these default expressions
on the character rig you’ve
assembled in an animation
studio like Maya. Here’s
where the magic happens:
The new Autosolve feature
combines that data collected
from Analyzer and the
Expression Set you create,
and automatically creates an
animation that matches your
actor’s performance. From
this new “starting point,”
animators can make tweaks
or determine what needs to be
redone with minimal fuss and
loads of time saved—the entire
process should only take a
few minutes.

0
0

4
0

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

http://www.havok.com
http://www.facewaretech.com
http://autodesk.com

 t 041
t o o l b ox _ N a t e R a l p h

Faceware believes that its
tech will ease some of the pain
and expense of implementing
facial motion capture, by
requiring less effort than typical
rigging situations and allowing
for much faster iteration should
you need to make corrections.
The company also claims that
its software will work with
footage from any video capture
source, though it does sell
head-mounted cameras. It will
also work within your workflow:
Faceware’s Analyzer and
Retargeter can be downloaded
for free from the company’s
site, so you can take it for a
spin yourself.

modo 701
LuxoLogy // www.luxology.com

Luxology’s latest update
to modo 3D modeling and
animation suite is all about
speed. There’s less in the way
of raw new tools, but Luxology
is convinced that modo fans
and neophytes alike will be
smitten by performance
bumps, new, cleaner layouts,
and refined workflows.

Modo 701 does offer a few
new tricks. The revamped
dynamics simulation layer
allows animators to create
realistic animations with
accurate physics modeling.
At the show, an artist
emulated rubble masonry by
creating individual stones,
and “pouring” them into a
door frame by starting the
animation and letting gravity
do the work. Modo now also
offers the ability to sculpt and

direct particles at will, creating
some rather impressive effects
with little effort.

Performance has been
improved dramatically over
modo 601, from the selection
tools and animation playback
down to interacting with
schematics or firing up the
preview renderer window. It’s
all aimed at saving time; all of
those seconds spent waiting
for objects and scenes to load
add up, after all. Modo 701 also
serves up a revamped interface
focused on click reduction: The
hundreds of potential keybinds
users are already familiar
with have been bolstered with
new layout-selection tools,

pop-up menus that allow you
to collapse most of the UI for
increased viewport space, and
a few customizable workspace
options borrowed from
applications like Photoshop.

Simplygon 5.0
Donya Labs // www.simplygon.com

Donya Labs’s Simplygon aims to
take some of the grunt work out
of building level-of-detail (LOD)
models out of textured, detailed
assets. Its automated LOD-
building tools cut and simplify
polygons, creating entirely
new textured, low-resolution
meshes without requiring hours
of an artist’s valuable time. And
Simplygon 5.0 is all about speed
and accuracy, introducing new
tools that improve Simplygon’s
automation processes. For
example, the new Vertex
Reposition function adjusts an
LOD model’s vertices to get a
tighter silhouette and improved
texture reproduction, resulting in
less jarring differences between
LOD models and the original
assets. The new Smart Improve
feature compares original
assets to the LOD Simplygon
creates, and automatically
tweaks the geometry to reduce
visible differences between
the two. LOD models created
in Simplygon 5.0 can also take
advantage of symmetry-aware

polygon reduction, which aims to
maintain symmetry in a model
across a user-defined axis.

Simplygon’s LOD tools have
also been updated to offer
skinning support, preserving
animation and skinning data
from applications like Maya
and 3DS Studio Max when
creating low-poly LODs.
Donya Labs believes this
will be especially useful for
maintaining an animated
asset’s fidelity when optimizing
models for mobile devices, or
rendering large crowds.

Hansoft 7.0
Hansoft ab // www.hansoft.se

Hansoft has gone social.
The project management
system’s 7.0 update (released
in November 2012) is the
company’s biggest yet,
revamping the user interface
and adding a slew of features
that will seem familiar to
anyone who’s spent time on a
social networking site. These
social features are designed
to improve efficiency: As
teams grow, they lose the
ability to “get together” in a
single shared space. A lack
of effective communication
can lead to headaches, and
Hansoft hopes the new update
will make coordinating and
communicating more efficient,

0
0

4
1

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

http://www.simplygon.com
http://www.hansoft.se
http://www.luxology.com

0
0

4
2

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

without forcing large teams to
rely on a multitude of tools.

Collaboration is central to
Hansoft 7.0, and the application
now features a news feed (not
unlike Facebook’s). Teams
using Hansoft can keep track
of projects and one another
by “subscribing” to the users
and groups they’re interested
in, which essentially filters
updates. Here’s an example:
An executive producer might
subscribe to updates from all
of her team leaders, getting
a glance at and commenting
on their progress without
necessarily being inundated
with updates on every project
their teams are embroiled
in. The application has also
added chat functionality (with
optional conversation logging).
All of the application’s modules
can also be popped out of the
main interface and placed
anywhere on your PC’s desktop
should you prefer to have chat
conversations or just the news
feed visible at all times while
you work in other applications.

Up next for Hansoft are
Dashboards, which will offer
a bird’s-eye view for project
leads and the like. Dashboards

will be capable of monitoring
all the data that’s entered
into Hansoft, and should offer
an idea of a project’s total
progress and milestones in
simple, digestible chunks.
Also coming down the pipe
are Mac and Linux versions of
the software, so developers
who’d rather not use Windows
systems can also get on board.

Enlighten
Geomerics // [website?]

Geomerics might not be a
household name, but there’s
a chance you’re familiar
with its work; the company’s
dynamic lighting technology,
dubbed Enlighten, was used
in EA DICE’s Battlefield 3. At
this year’s Game Developers
Conference, Geomerics
announced that Enlighten
would be integrated into both
the Frostbite 3 engine (for
Battlefield 4) and Unreal Engine
4. As of the latest Enlighten
update, Geomerics has extended
runtime support to include just
about everything under the
sun, including the upcoming
Sony PlayStation 4, Windows,

Mac, and Linux PCs, current-
generation consoles, and both
iOS and Android mobile devices.

Also new is support for
a broader range of lighting
models. We were given a tour
through an artist’s rendition
of an ancient ruin to see the
effects firsthand: Light spilled
into rooms and caverns as
the sun rolled across the sky,
and crept back out casting
shadows all the while—an
ample demonstration of how
Enlighten tackles static and
dynamically lit environments.
As befitting a video game-
inspired ruin, brightly lit
torches burned seemingly
without purpose; knock them
about, and cobblestones
glowed from the reflected
light, bouncing indirectly off
cavern walls. This served
as a case study for the new
dynamic specular effects, a
computationally expensive
process that Geomerics claims
it’s been able to achieve in real
time on mobile devices. On the
production side of things, a new
plug-in for Maya adds real-time
previews of Enlighten’s lighting
tools into Maya’s viewport, so
designers can experiment and

get a feel for how their models
will appear in-game before
making any commitments.

Geomerics has also
expressed interest in working
with more mobile developers
to bring Enlighten-powered
lighting effects to small screens,
but remarked that it isn’t
ready to make its technology
and support staff available to
smaller independent developers
quite yet, as some training is
require to implement Enlighten
into a game developer’s tool
chain. We were told that the
first licensees creating content
for mobile devices are actually
developers already creating
content for consoles and PCs,
since they’re already familiar
with the tools.

Perceptual Computing
SDK
intel // www.intel.com

Intel’s Perceptual Computing
initiative went into beta in fall
2012, with an SDK release that
called on developers to create
applications and games that
made use of voice recognition,
close-range hand and finger

0
4

2
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

042 t
t o o l b ox _ N a t e R a l p h

http://www.intel.com

0
0

4
3

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

 t 043
t o o l b ox _ N a t e R a l p h

tracking, and facial analysis.
During this year’s Game
Developers Conference, Intel
announced the release of the
Perceptual Computing Software
Development 2013. The crux
of the update is that there’s no
longer a beta tag, and software
can now be developed for
commercial purposes.

The Perceptual Computing
SDK intends to change the way
we interact with our PCs, but
roadblocks abound: The SDK
only works with Intel CPUs
on Windows 7 and Windows
8 PCs, and the gesture-
tracking controls are currently
only supported by a $150
gesture-tracking camera (sold
separately). That said, the ability
to develop applications using
the SDK for commercial use
could prove promising. The SDK
provides a few sample-use case
scenarios and tools to develop
applications that are capable of
monitoring speech, or tracking
faces and hand gestures, and
can be downloaded for free.
The standalone camera will be
available to consumers in stores
later this year, and Intel plans to
implement the technology from
the standalone camera into

Ultrabooks at a later date. That
$150 could prove to be a sound
investment, should consumers
be quick to embrace Intel’s
vision of a finger- and face-
friendly future of computing.

Prime 17W
Optitrack // www.naturalpoint.com/optitrack/

Motion-capture specialist
OptiTrack’s latest offering, the
Prime 17W motion-capture
camera, offers a 70- by
51-degree field of view, with a
generous 50-foot camera-to-
marker range. It can capture
360 frames per second at a 1.7
megapixel resolution, but costs
$3,700. That’s a hefty sum, and
the costs will only continue
to climb as you add more
cameras for capturing useful
motion data in 3D spaces, or
if you opt to use OptiTrack’s
Motive:Body software.

Should you choose to
take the plunge, OptiTrack’s
powerful hardware and
software could potentially
streamline your mocap
workflow. Setup is simple:
Actors strap on their markers
and assume a neutral pose,

and the OptiTrack system
will create and calibrate a
trackable skeleton. On the
GDC show floor, the company
demonstrated the Prime
17W’s precision with a steady
stream of actors dancing for
the cameras, capturing precise
footwork and finger tracking
that uses a minimal number of
markers to approximate hand
gestures and the like.

Extreme Motion
ExtrEmE rEality // xtr3d.com

Extreme Reality aims to slash
the cost of developing and
releasing motion-friendly
games by eliminating one of the
most expensive components:
hardware. The company’s

Extreme Motion software
uses 2D cameras with as low
as 0.3-megapixel resolution
counts to create accurate
skeletal models of players,
and insert them into games
that utilize Extreme Reality’s
tech. At GDC, the company
gave demonstrations of the
software’s speed and accuracy—
even in a setting with subpar
lighting—on meager laptop
webcams. Assume a neutral
pose with your arms raised in
the air, and the software will
quickly recognize your skeleton
and map your movement data
to whatever developers see
fit—from games to adding
simple gesture controls to user
interfaces. Extreme Reality’s
software also works with the
front-facing camera of Apple’s
iPad, with plug-in support for
Unity3D on iOS. The software
currently supports Windows and
iOS devices; Android support
will be coming later this year.

Nate Ralph is an aspiring wordsmith
fascinated by games, hardware,
and most everything in between.
You can find more of his musings in
140-character chunks at @nateralph.

0
4

3
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

http://www.naturalpoint.com/optitrack/
http://xtr3d.com

http://GAMECAREERGUIDE.COM
http://GAMECAREERGUIDE.COM
http://GOCONF.COM
http://GAMASUTRA.COM/JOBS

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
4

5

WHAT IS MONOGAME? MonoGame’s project goal was initially
to allow XNA developers to publish their games on iPhone, but
the project has grown a lot since those humble beginnings. It
now supports a number of platforms including Mac OS X, Linux,
Windows 8, Windows Phone 8, Android, and iOS. For the most
part, it is free to use (though you’ll need to pay for a license for
the Xamarin iOS and Android frameworks) and modify, as all the
code is covered by the MS-PL (Microsoft Permissive License).
Now, MonoGame’s goal is fi rst to produce an XNA-compatible
cross-platform API, which can be extended to new platforms as
they appear. For example, because MonoGame already supported
Android, we were able to add Ouya support to MonoGame in a
matter of days.

Once the XNA API is stable, we’re planning to extend the API
with new features that people would have liked to see in XNA,
and extend the API to make it even easier to do certain tasks. For
most of the team involved, some of whom have been working on
MonoGame for a few years now, this is a long-term project.

GETTING STARTED WITH MONOGAME First off, head over to
www.monogame.net/downloads and grab the latest stable
release. At the moment, MonoGame supports Visual Studio and
MonoDevelop/Xamarin Studio.

If you want to use Visual Studio: The Windows installer will
install project templates for all editions of Visual Studio 2010 and

2012. Particular requirements for your target platform are
as follows:

• For Windows desktop, you can use VS 2010 Express or higher,
or VS 2012 Express for Desktop or higher on Windows 7 or 8.

• For Windows Store, you will need VS 2012 Express for Windows
8 or higher on Windows 8.

• For Windows Phone 8, you will need Windows 8 64-bit and the
Windows Phone 8 SDK. This will install VS 2012 Express for
Windows Phone, and can also work with VS 2012 Professional
or higher. To use the Windows Phone 8 emulator, your PC
needs to meet specifi c hardware requirements; see www.
microsoft.com/en-GB/download/details.aspx?id=35471 for
details.

• For Android and/or iOS, you will need VS 2010 or 2012
Professional or higher and Xamarin Business or higher on
Windows 7 or 8.

To build content to xnb format, you will also need XNA Game
Studio 4.0 or the Windows Phone 7.11 SDK installed. This is a
temporary measure until our content pipeline replacement is
completed. To install either of these SDKs on Windows 8, you
need to have the Windows Games Live client fi rst. A full list of
the prerequisites and download links can be found here: https://
github.com/mono/MonoGame/wiki/Required-SDKs

For a long time, the idea of making “real” games using managed languages
such as C# was considered lunacy. But things have changed, and managed
languages are now proving to be quite viable for making games, thanks
in large part to XNA and Unity 3D, with both using C# as their main
development language or scripting engine. Many new game devs learned to
use XNA in order to get their games on the Xbox 360 and Windows PCs, and
even though Microsoft recently announced that XNA will neither see any
more active development nor be supported in Microsoft’s Metro interface,
those devs don’t have to start over from scratch. Enter MonoGame, an
open-source implementation of the XNA 4 API.

TIPS FOR MIGRATING YOUR XNA SKILLSET
TO MONOGAME

FROM XNA TO MONOGAME

ip 045
I N N E R P R O D U C T _ D e a n E l l i s

http://www.monogame.net/downloads
http://github.com/mono/MonoGame/wiki/Required-SDKs
http://github.com/mono/MonoGame/wiki/Required-SDKs
http://www.microsoft.com/en-GB/download/details.aspx?id=35471
http://www.microsoft.com/en-GB/download/details.aspx?id=35471

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
4

6

If you want to use MonoDevelop/
Xamarin Studio: MonoDevelop is a free
open-source IDE that is available for
Windows, Linux, and Mac OS X (www.
monodevelop.org). MonoGame is available
as a package, which includes the runtime
for each platform. You can download this
from Codeplex as an .mpack file, and
install it via the AddIn Manager within
MonoDevelop. Recently, Xamarin has
released Xamarin Studio, which is an
updated version of MonoDevelop for people
wanting to use this IDE. There is also a
.mpack file available for that version.

Once you have installed the required
package into your chosen IDE, you will be
able to create a new MonoGame project.
There are a number to choose from, but to
get started, you should pick the one that
is native to your platform—for Windows,
create a new “MonoGame for Windows
GL” application; for Mac OS X, create a
“MonoGame for MacOS,” and so on. Once
you have a new project you will see the
familiar Game class that renders the
customary CornflowerBlue screen.

Before you start coding, there are a
few things you should watch out for. For
Windows, all of the templates will work
out of the box, but if you want to work
on an Android project, you will need
Xamarin.Android from Xamarin installed.
MonoDevelop/Xamarin Studio does include
templates for Mac OS X and iOS, but these
will currently work only on an Apple Mac
because of the underlying development
requirements. For iOS, you’ll need to
install Xamarin.iOS, and for Mac you’ll
need to grab MonoMac. Also, due to some
issues with the AddIn for MonoDevelop
and Xamarin Studio, you will need to
download the MonoGame source code and
add references to the required MonoGame
projects for MacOS, iOS, and Android. (The
team is working on getting this fixed.)

GettinG the Code If you want to get the
code for MonoGame, you will need to install
git. There are nice user interfaces for git,
but most of the team use the command
line. So here are a list of the commands
you need to get up and running:

git clone git://github.com/
mono/MonoGame.git MonoGame
cd MonoGame
git submodule update
init ThirdParty

These commands will checkout a read-only
copy of MonoGame and the required third-
party library to get you started. If you want
to make changes and contribute back, you
will need to fork the repository. Details can
be found here: https://github.com/mono/
MonoGame/wiki/GIT’ing-Started-With-Git

Content and assets MonoGame,
like XNA, can make use of .xnb compiled

content files. These .xnb files are
currently created by the XNA content
pipeline; as of this writing, the MonoGame
team is working on a cross-platform
implementation that will work on Windows,
Mac OS X, and Linux, but for now we’ll need
to use the XNA Content Pipeline. Also it is
possible to load some native assets through
the ContentManager, so if you have a .png
file you want to load directly you can use
the same code as you would normally:

texture = Content.
Load<Texture2D>
(“character”);

MonoGame will attempt to load an .xnb file
first, but if one does not exist, it will fall
back onto known native types for that type
of object. This feature was originally added
to help people developing for iOS and Mac
who might not have access to a Windows
machine to build their content. (See Figure
1 for a table of available formats for
class types.)

As you can see from Figure 1, on Android
you cannot make use of the .xnb files for
SoundEffect or Song types; you must use
the native type for that platform. This is
due to the limitations of the SoundPool and
MediaPlayer classes on Android. (Some of

046 f
i n n e r p r o d u c t _ D e a n E l l i s

Listing 1: Bloom extract.

// Pixel shader extracts the brighter areas of an image.
// This is the first step in applying a bloom
postprocess.
sampler TextureSampler : register(s0);
float BloomThreshold;

float4 PixelShaderFunction(
float2 texCoord : TEXCOORD0
) : COLOR0
{
// Look up the original image color.
float4 c = tex2D(TextureSampler, texCoord);
// Adjust it to keep only values brighter than the
specified threshold.
return saturate((c - BloomThreshold) / (1 -
BloomThreshold));
}

technique BloomExtract
{
pass Pass1
{
PixelShader = compile ps_2_0 PixelShaderFunction();
}
}

CLass WindoWs Linux MaCos ios android WindoWs 8

Texture2D .xnb .png
.jpg .tiff

.xnb .png

.jpg .tiff
.xnb .png
.jpg .tiff

.xnb* .png

.jpg .tiff
.xnb .png
.jpg .tiff

“.xnb,
.png, .jpg”

SoundEffect .xnb .wav .xnb .wav .xnb .xnb .wav .mp3
.ogg .xnb

Song .xnb .wav .xnb .wav .xnb .xnb .mp3 .xnb

Model .xnb .xnb .xnb .xnb .xnb .xnb

Effect .xnb** . .xnb** .xnb** .xnb** .xnb** .xnb**

SpriteFont .xnb .xnb .xnb .xnb** .xnb .xnb

* - PVRTC compressed only
** - Must be generated by the MonoGame Content Processor

Figure 1: available formats for class types.

http://www.monodevelop.org
https://github.com/mono/MonoGame/wiki/GIT%E2%80%99ing-Started-With-Git
http://www.monodevelop.org
https://github.com/mono/MonoGame/wiki/GIT%E2%80%99ing-Started-With-Git

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

these restrictions will be removed as time
goes on and the framework matures.) Also,
some of the platforms only support .xnb files
for certain types; this is because it is more
efficient to use the compiled and optimized
content for those types. For example, it’s
more efficient to pre-process a Model at
build time into an optimized format than it is
to load an .fbx file at run time and decode it
on a mobile device.

Fortunately, the MonoGame framework
comes with some tooling that we use to
extend the existing XNA content pipeline
to produce the content we need—though
since it relies on the XNA framework, this
will only work in Windows. You can create a
“MonoGame Content Project” within Visual
Studio 2010, which will create a normal
XNA Content project and an XNA project
that will in turn build the content project.
Both have all the required references and
MSBuild target imports to allow it to use
the MonoGame Processors.

Now, when you add a new asset to
the content project and select the type of
Processor you want to use, you will see a
number of MonoGame-related processors:
“MonoGame – Effect,” “MonoGame –
Texture,” and so on. These processors will
do some custom processing on the asset
to optimize it for the platform you are
targeting (see Figure 2).

The new Builder project has a number
of build configurations for each platform,
so if you are building for iPhone you
can choose the iOS configuration. If
you are building for the Windows Store
choose the Windows 8 configuration. The
resulting output files will be placed in

bin\<Configuration>\Release, so if you are
building for multiple platforms, you will
end up with a directory for each platform
you are targeting. The last step is to add
these files to the Content directory of
your project—you can do this easily by
using the “Add as Link” feature in Visual
Studio and MonoDevelop. This way, you
can just link to the file without copying
it to the project directory, which is great
because if you change your content and
compile it using the Content Builder, it
will be automatically picked up the next
time you compile your application. Note
that depending on the platform you are
targeting you need to set the BuildAction
correctly for your assets file to be included
in the final application package.

Using CUstom EFFECts If you want
to use Effect files from a previous XNA
project or an XNA sample, you’ll need
to process them with the MonoGame
Effect processor to compile them for
that specific platform. Some of these
use OpenGL rather than DirectX as their
graphics API, so the Effect file from XNA
will need to be converted to OpenGL
shader language for it to work.

Rather than have developers rewrite
their shaders to GLSL, MonoGame
installs some tooling to automatically
convert the HLSL in the Effect file to the
appropriate shader language for the
target platform. For the DirectX-based
platforms, MonoGame uses the DirectX
11 tool chain to compile your Effect into
a shader optimized for that platform. For
the OpenGL-based platforms, the Effect

is processed by a tool called MojoShader,
which does a low-level conversion from
HLSL to GLSL that allows the Effect to
work on that platform.

Of course, this conversion process
can occasionally introduce errors or
unsupported features that the target
platform does not support. For example,
with OpenGL Shader Model 3.0, you cannot
do a texture lookup in a Vertex Shader, so
if your Effect uses that feature it probably
won’t work. Let’s take a sample effect
from one of the XNA samples available
on the Xbox Creators Club website—the
Bloom Extract Effect is a good example
(http://xbox.create.msdn.com/en-US/
education/catalog/sample/bloom).
Although it is only a pixel shader, it will
give you a good idea of what kind of things
we need to look at.

If you look at the code for the effect in
Listing 1, one of the first things to note
is that this effect is using pixel shader
2.0 (ps_2_0). This is fine for DirectX 9,
but for OpenGL and DirectX 11 this needs
to change. Before we get into the code
changes, it is worth noting that you can
use conditional defines within effect files
to change the behavior depending on the
shader model you are targeting. If you
are targeting shader model 4, you can
use this:

#if SM4
// code
#endif

to handle that special case. These defines
are still valid when using the MonoGame

f 047
i n n e r p r o d u c t _ D e a n E l l i s

0
4

7

SkullS of the Shogun dev 17-Bit used
monogame to build a Windows 8 version
of the game.

http://xbox.create.msdn.com/en-US/education/catalog/sample/bloom
http://xbox.create.msdn.com/en-US/education/catalog/sample/bloom

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
4

8

Content processor, so in order to make
this shader support all the platforms we
want, we need to update the technique
section to handle all the platforms you
want to support. In this case, we need
to support Shader Model 4 for DirectX 11
and Shader Model 3 for OpenGL/GLES.
With that in mind, the Pass becomes:

pass Pass1
{
#if SM4
PixelShader = compile
ps_4_0_level_9_1
PixelShaderFunction();
#elif SM3
PixelShader =
compile ps_3_0
PixelShaderFunction();
#else
PixelShader =
compile ps_2_0
PixelShaderFunction();
#endif
}

For each type of Shader Model, we define
a different Pixel Shader; you can also do
this with Vertex Shaders, so a declaration
of vs_2_0 would become vs_3_0 for SM3
and vs_4_0_level_9_1 for SM4.

Next, let’s look at the parameters
passed into PixelShaderFunction. In
the sample effect, it only takes one
parameter—but in order for this effect to
work correctly with the SpriteBatch Effect
within MonoGame, we’ll need to add the
additional parameters. (This is a limitation
with MonoGame at the moment that will
probably be resolved in the future.) The
good news is that adding these extra
parameters does not break the effect in
normal XNA, so in this case, we can just
add the missing parameters like so:

void PixelShaderFunction(
float3 position: POSITION0,
float4 color : COLOR0,
float2 texCoord :
TEXCOORD0)

Watch out: In XNA 3.1, the PixelShader
and VertexShader functions were
called PixelShader and VertexShader.
This is no longer valid in XNA 4.0 or
MonoGame, which is why in Listing 1
we renamed the vertex and pixel shader
functions to VertexShaderFunction and
PixelShaderFunction. Of course, you can
call them anything you like.

If you apply this technique to all
of the effects that are included in the
Bloom sample, porting that project over
to Windows 8, Android, and iOS simply
becomes a matter of using the Content
Builder to produce the .xnb files for each
platform you are targeting, and then
linking to those files for your project.

Tweaking MonogaMe for MobiLe
So you have a great Xbox 360 or Windows
game that you want to port over to a mobile
platform. What kind of things do you need
to worry about? There are some obvious
ones that will come to mind first: screen
size, input, and performance. Here’s how to
handle those factors with MonoGame.

Screen resolution With certain platforms,
like Windows Phone 7 and iOS, you can
almost guarantee the screen sizes of the
devices you are going to be working on, but
with some devices and platforms it’s not so
easy. Windows Phone 7/8 support hardware
scaling, but with Android, Ouya, Windows 8,
and the Retina displays on iPad and Mac,
MonoGame developers need to take into
account the various resolutions they might
come up against. Sometimes you’ll find
yourself navigating a minefield of screen
resolutions ranging from 320x200 all the
way up to full HD.

One technique that has been used
quite well in the past is to use SpriteBatch
scaling. With this method, you can design
your game to run at a particular resolution,
then at run time figure out a scale matrix
that will resize your game to match the
actual screen size of the device you are
running on. This matrix can then be passed
to the SpriteBatch, which will scale your
graphics. In the following code, we can see
some sample code for calculating the scale
matrix; in this case our virtual resolution is

800x600.

var virtualWidth = 800;
var virtualHeight = 600;
var scale = Matrix.
CreateScale(
(float)GraphicsDevice.
Viewport.Width /
virtualWidth,
(float)GraphicsDevice.
Viewport.Height /
virtualHeight,
1f);

With that matrix calculated, we can now
call spriteBatch with the extra matrix
parameter like so:

spriteBatch.
Begin(SpriteSortMode.
Immediate, null, null,
null, null, null, scale);
// draw stuff
spriteBatch.End();

This will apply the scale matrix to the
items being drawn in that batch. There
are other considerations like aspect ratio
and letterboxing that you need to take into
account, but there are plenty of resources
out there, which were originally written for
XNA that can be reused in MonoGame and
applied to new platforms. (For more on
this topic, read this: www.david-amador.
com/2010/03/xna-2d-independent-

048 ip
i n n e r p r o d u c t _ D e a n E l l i s

Listing 2: optimizing update calls for mobile devices.

public class Player
{
 Vector2 position;
 Vector2 scale;
 Matrix matrix;
 public Vector2 Position {
 get { return position;}
 set {
 if (position != value) {
 position = value;
 UpdateMatrix();
 }
 }
 }
public Vector2 Scale {
 get { return scale;}
 set {
 if (scale != value) {
 scale = value;
 UpdateMatrix();
 }
 }
 }
 public void UpdateMatrix() {
 matrix = Matrix.CreateTransform(Position) * Matrix.
CreateScale(Scale);
 }
 public void Update(GameTime gameTime) { }
 public void Draw(GameTime gameTime) { }
}

http://www.david-amador.com/2010/03/xna-2d-independent-resolution-rendering/
http://www.david-amador.com/2010/03/xna-2d-independent-resolution-rendering/

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
4

9

resolution-rendering/)
At a certain point, however, scaling

won’t solve your problems. Scale down
too much and your graphics will become
pixelated; scale up too much and they
become blurry. At this point, you need to
start looking at the assets. One technique
you can use on iOS is have two sets of
assets—one for normal displays, and
one for Retina displays. You can do this
by adding a @2x suffix to the name of
the larger asset and including that asset
in your game package. The MonoGame
content pipeline has been coded to make
use of this trick on iOS, so if you have a raw
asset or .xnb file which has a @2x version
and you are running on a Retina display
device, that higher-resolution asset will
get loaded. All the developer needs to do
it include those assets in the application.
(This does make your app package larger,
unfortunately.)

The other option is to have two versions
of the game, one for normal and one for
HD, each with different scales of assets.
This way, people have the choice of
downloading a larger high-definition game
or the smaller normal one.

Handling Input Devices Moving between
platforms means you need to support
various input devices. On the desktop
platforms (Windows, Linux, and Mac),
MonoGame uses the Simple Direct Media
Library (SDL) to interface with the various
joysticks and gamepads that might be
available. The inputs from these devices
are routed through the GamePad class.
SDL does seem to have a problem reading
the USB description of some of the Xbox
360 controllers, so on occasion it will fail to
apply the correct configuration.

Mouse and touchpad input is one area
where MonoGame has diverged from the
normal XNA. On Windows Phone 7 and 8, if
you use the XNA implementation provided
by Microsoft, all of your touch events will
be routed through to the mouse as well.
This can make it very easy to port games
over from Windows and Xbox 360 to those
platforms. However, with the introduction
of Windows 8, you now have devices which
can have a mouse and a touch screen, and
it is possible that game devices will want
to use these separately. With this in mind,
if you have a Windows game that you are
porting to a Windows Store App, you will
need to add support for touchscreens as
your existing mouse code will not be used.

PusHIng Performance Both the iOS
and Android versions of MonoGame run
on top of the mono platform. Mono has
a great compiler, and these two mobile
platforms also include a linker, which
is used to reduce the package size of
your application by removing code that
is not needed. It also has a really good
garbage collector, but even though there

have been some major advances in the
mono GC in the last few years, you still
have to remember you are running on
mobile devices which vary dramatically
in terms of power (especially when it
comes to Android devices). Make sure to
look at your Update methods; you might
be making work for the GC by creating
lots of temporary objects that will just
be disposed of. You should also think
about whether you actually need to do a
particular calculation in a certain way—
after all, the fastest code is the code
that doesn’t get executed. Consider the
following class definition:

public class Player
{
 public Vector2 Position;
 public Vector2 Scale;
 public void
Update(GameTime gameTime)
{ }
 public void Draw(GameTime
gameTime) { }
}

In this segment, we are defining a player
that has a position and a scale. Now
suppose we are using the Matrix property
of the sprite batch to render this player
using the position and scale data, and also
we are using that information for collision
detection. One easy way to create the matrix
is to do it in the update method like so:

var matrix = Matrix.
CreateTransform(Position) *
Matrix.CreateScale(Scale);

On desktop machines, this would probably
work just fine, but on lower-powered
mobile devices it could be a problem. Even
though the Matrix class is a struct, and
cheap to create, we are still making this
calculation every call to Update. If your
game is running at 30 frames per second,
that alone is many matrix calculations that
you might not have had to do. Instead, you
could declare a field for the Matrix and just
update it in the Update method. Or, even
better, you could just update the Matrix
only when the Position or Scale properties

are changed (see Listing 2).
I know this is a simple example, but

if it gets you thinking about what tiny
improvements you can make, then it has
done its job. Those of you who know your
math will know that you can probably
remove the scale and position fields from
this class, and just store the matrix.

Another example is handling firing
bullets from a gun or ship. One way of
doing this would be to have a List<Bullet>
where we add new bullets as we need
them, and remove them as they go
offscreen or out of the playing area. When
you add items to a list that cause the list
to expand its capacity, you are creating
new instances of Bullet each time. A more
efficient system would be to have a cache
of Bullet instances that we can use to
populate an “active” list of bullets that are
in use. As bullets go out of play, we can just
put them back in the cache.

Of course, you probably don’t need an
infinite amount of bullets; most games tend
to limit the number of bullets or missiles
you can fire. In that case, you can keep your
cache small so as not to use up too much
memory, and you can set a capacity on the
active bullets list in advance so that the list
is not expanding during game play.

If you are having to create lots of
temporary variables while loading
levels or doing some other sort of
major processing, you can try to call
GC.Collect(0) as often as you can. This
will ensure that the Garbage Collector
collects those temporary items as soon as
possible, rather than waiting for the next
automatic collection. Also, you will want
to try to avoid calling any kind of collection
during game play; if the GC does have to
do a major collection during an update
loop you will no doubt see a definite pause
in your game. It might only be for a few
milliseconds, but it will be noticeable.
Note that unlike GC.Collect(0), GC.Collect()
does a full garbage collection across
your application’s heap. It can take up to
100-200 milliseconds (several frames)
so you will want to avoid making calls
to GC.Collect during actual gameplay,
otherwise it will introduce a definite pause
or lag to your game.

ip 049
i n n e r p r o d u c t _ D e a n E l l i s

TyPe WInDoWs LInux macos Ios anDroID WInDoWs 8

Texture2D DXT DXT DXT PVRTC DXT DXT

SpriteFont DXT DXT DXT PVRTC DXT DXT

Song MP3 MP3 MP3 MP3 N/A MP3

SoundEffect PCM PCM PCM PCM N/A PCM

figure 2: example of optimized internal .xnb formats

http://www.david-amador.com/2010/03/xna-2d-independent-resolution-rendering/

http://WWW.GDCEUROPE.COM

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
5

1

Lastly, don’t use too many instances of
SpriteBatch. Generally speaking, in XNA
games you will want to keep the number of
SpriteBatch instances to a minimum; this is
true for MonoGame as well. MonoGame’s
implementation has an internal cache of
SpriteBatchItems that we recycle to keep the
number of object allocations to a minimum.
By default, we create 1000 items in the cache,
so the more instances you have the less
system memory you will have to play with.

Android And ioS linker When
targeting Android and iOS using the
Xamarin tool chain, you will need to be
aware of the linker that is run against
your code during the build process. This
linker reduces the code size of your
packages by removing unused code
in both your code and the framework
depending on the linker settings. The
result is your final package will contain an
optimized mono framework, rather than
the entire framework, and any unused
code in your game will have been removed
as well.

If you are dynamically loading objects
through the content pipeline, you’ll
sometimes get into the situation where
the linker doesn’t know you need the

types you are using, and it removes
that code. This will usually result in a
MissingMethodException when trying to
construct or call methods on these linked
away types. The good news is that there
are ways in which you can inform the
linker that you wish to preserve certain
objects as they are and not remove them.
One method is to use PreserveAttribute,
which is provided in both iOS and Android:

#if ANDROID
 [Android.Runtime.
Preserve(AllMembers=true)]
#elif IOS
 [MonoTouch.Foundation.
Preserve(AllMembers=true)]
#endif
public class Example {
 public Example ()
 {
 }
}

This will make sure that on both Android
and iOS this entire class is not linked
away.

There are other ways to control the
linker behavior; if you are interested in
learning more the documentation for both

iOS and Android is available on Xamarin’s
docs site.

• http://docs.xamarin.com/guides/ios/
advanced_topics/linker

• http://docs.xamarin.com/guides/
android/advanced_topics/linking

Help uS out! This article has only
touched on the surface of MonoGame, but
hopefully it will motivate you to try it out—
and perhaps even make it better! We’ve got
a few things on the horizon that we want
people to help out with, like building a fully
cross-platform content pipeline, adding
new platforms like Windows Phone 8 and
Raspberry Pi, making use of DirectX 11,
and extending the XNA API even further. So
if you want to help out, head over to www.
monogame.net and join in. ip

Dean Ellis has been a software engineer for the
last 16 years. He currently works for Xamarin
on their Android platform. Prior to that, he was
working on cross-platform C#-based face-
recognition technologies using .Net/Mono WPF
and Moonlight. In his spare time. he is one of the
project coordinators and a contributor
to MonoGame.

ip 051
i n n e r p r o d u c t _ D e a n E l l i s

Supergiant Games used a fork of MonoGame code to port Bastion to ipad.

http://docs.xamarin.com/guides/ios/advanced_topics/linker
http://docs.xamarin.com/guides/android/advanced_topics/linking
http://www.monogame.net
http://docs.xamarin.com/guides/ios/advanced_topics/linker
http://docs.xamarin.com/guides/android/advanced_topics/linking
http://www.monogame.net

0
0

5
2

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

When we talked about stagnation in artist salaries in last month’s Pixel Pusher, we noted that one of the reasons that game
artists have been treading water economically is that the barriers to entry to our fi eld have fallen pretty dramatically. A
decade ago, it was hard to scare up a license for a professional 3D application plus the hardware needed to run it effi ciently.
There were few schools teaching skills like 3D modeling and animation. To much of the world, what we do for a living was a
high-tech mystery.

The democratization of 3D art over the
last decade is pretty remarkable: Free
tools like Source Filmmaker and Blender
have become the foundation of a vibrant
hobbyist generation. This hasn’t been great
for our paychecks, but it is certainly great
for our art form—the YouTube stars of
today are tomorrow’s great game artists.
Of course, there are still fairly signifi cant
hurdles to overcome if you’re an aspiring
outsider. Even free software needs a fairly
beefy computer and a big monitor—and
nowadays, many households don’t keep up
with the cutting edge of PC technology as
mobile and handheld devices take up more
and more of people’s time and attention.
There’s a marketing truism to the effect
that mobile devices are for consuming
information, not creating it. Does that mean
that today’s iPad kids will have a harder
time growing up to hatch the ANGRY BIRDS
of tomorrow?

Maybe not. Some of the most interesting
recent arrivals in the App Store suggest that
the idea that tablets, in particular, are only
good for watching content is outdated. So,
in honor of the mobile focus of this month’s
Game Developer, we’re going to take a look
at some of the new crop of apps for painting,
modeling, and animating using mobile

devices—and of course, we’ll round out
our survey with some pontifi cations on the
meaning of the new mobile art environment.

2D TOOLS There have been a variety of
painting apps for touch devices since the
earliest days of the iPhone. Few of them,
however, were useful for much beyond
casual sketching. The limited processing
power of earlier devices made it hard
to track subtle gestures and update the
screen at the same time, leading to apps
that lagged or drew obviously segmented
curves where they should have delivered
graceful strokes. Worse, the fi nger is a big,
clumsy tool for serious artwork, unless
you’re still in kindergarten.

Nowadays, though, it’s easy to fi nd a
conductive stylus that provides a pen- or
marker-like grip. Artists are of course
notoriously fi nicky about their brushes, but
the stylus market has grown very fast—you
can fi nd anything from a $2 plastic job that
you won’t worry about losing to a fancy
Wacom Bamboo stylus that doubles as
a real pen and costs around $25. There
are even paintbrush styluses such as
the Sensu Brush (www.sensubrush.com)
with conductive wires mixed in among
traditional bristles. These provide pleasant

feedback to the digital painter and offer a
kind of natural interface to the imprecision
of tablet painting. (Note that unlike the
hybrid pen-styluses, you really don’t want
to try using them with traditional paints in
between tablet sessions.)

If you’re expecting the stylus to
completely recreate the experience of a pen,
marker, or brush, you’ll be disappointed.
The smooth glass of a tablet screen provides
much less tactile feedback than paper or
canvas. Most styli also have pretty large
nibs—no needle points here—which makes
fi ne work somewhat tedious and results in a
lot of close zooming. Most importantly, tablet
touch screens are not pressure sensitive—it’s
up to the software to simulate the fi ne control
you’re accustomed to from using a Wacom
tablet. Despite these drawbacks, though,
using a stylus still beats fi nger-painting.

The biggest irritant for many artists who
attempt to sketch on a tablet is the fact that
a tablet can’t tell the difference between
a deliberate stroke of a fi nger and an
accidental brush with the heel of your hand.
It’s the inverse of the charcoal-smudged
pinkie that has been the traditional hallmark
of art students since the Renaissance:
Instead of getting your hand dirty, you end
up leaving lots of random splotches on your

0
5

2
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

TABLET APPS FOR GAME ART

http://www.sensubrush.com

0
0

5
3

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

 pp 053
P I X E L P U S H E R _ S t e v e Th e o d o r e

0
5

3
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

pristine digital canvas.
Human ingenuity marches on. “Palm

rejection gloves” that prevent accidental
touches can be had for about $25 from
Handglider (www.thehandglider.com). The
glove may look familiar to Wacom veterans:
It’s very similar to the Smudgeguard (www.
smudgeguard.com) that many Cintiq users
wear to prevent mis-touches or friction
on their big tablets. Some users swear
the regular Smudgeguard glove can block
accidental touches on iPads and Android
tablets, but others fi nd the material too thin
to stop the touch screen from reacting. In
any case, the makers of the Smudgeguard
promise an upcoming model dedicated to
mobile sketchers.

Of course, the biggest developments in
tablet art are driven by growing screens,
more powerful processors, and better
software. The enormous growth in the
tablet user base has encouraged the
growth of a number of successful painting
programs. Tablet painting apps include
many of the common features of their
PC cousins: layers, adjustable brushes,
and undo, to name a few. Generally these
features are somewhat simpler than the PC
versions—for example, few tablet programs
offer anything like Photoshop’s complex
blending modes or layer masks—but they
offer the intuitive immediacy of painting on
a Cintiq tablet at a fraction of the price.

The most venerable painting app is
Sketchbook Pro from Autodesk, which
is available on both iOS and Android.
Sketchbook is one of the oldest art apps,

dating all the way back to the hoary days
of 2009. Sketchbook offers much of what
you’d expect from a painting app on the
PC: layers, multiple brushes, and multistep
undo. The app is focused on sketching and
digital marker comps, rather than photo
editing, so it doesn’t offer Photoshop-
style fi lters or adjustments. Its paint and
splatter brushes offer some basic natural
media feel, but the strength of the package
is in industrial design, concept sketches,
and roughouts, rather than in painterly
rendering. Earlier versions of the program
could only create images of the same size
as the tablet screen; the current version
allows images up to 2500 by 2500 pixels,
although the number of available drawing
layers is reduced as the images scale up.
The interface will be fairly easy for any
professional artist to pick up, and most of
the time it’s just out of the way—which is
exactly what you want on a small screen.

The hot (iOS-only) alternative to
Sketchbook is Procreate from Savage
Interactive. Procreate offers a similar

feature set, but with a stronger emphasis on
painterly rendering. The selection of paint-
style brushes is wider, and the softening
effects like smudging or watercolor overlays
are more complex and controllable than
their equivalents in Sketchbook—though
they are still fairly simple compared to the
highly tweaked-out specialty brushes of
Corel Painter on the PC. Procreate layers
offer some Photoshop-style blending
modes, and the program also allows
users to rotate the canvas—which might
seem unnecessary on a device that can be
physically rotated, but is quite handy when
sketching with the tablet in one hand and
the stylus in the other. However, the most
appealing aspect of Procreate is its powerful
brushing engine, which makes effective use
of the iPad’s graphics hardware to keep the
brushing action silky smooth. To top it off,
Procreate can produce canvases as large as
4k, although that’s not very practical except
on high-res Retina displays. Unfortunately,
Procreate is not available on Android tablets
yet, but it’s a very capable app with a lot of
appeal to concept artists and sketchers.

There are a wide variety of other 2D
applications on tablets as well. There’s a
port of Photoshop called Photoshop Touch,
which does a fairly good job of porting
Photoshop to the tablet. It’s not a real
substitute for a big monitor and a Wacom
tablet, since fi ngers and styluses are still
too crude for really detailed pixel work, but
it can be a useful way to review an existing
fi le and—via Adobe’s cloud service—even
do a little bit of useful work on the bus.

TABLET APPS FOR GAME ART

Caption

http://www.thehandglider.com
http://www.smudgeguard.com
http://www.smudgeguard.com

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
5

4

054 pp
P I X E L P U S H E R _ S t e v e Th e o d o r e

Better suited to the tablet form factor is
the large group of sketching apps, such
as Paper By Fifty Three, which emphasize
quick sketching accessibility over the full
painting feature set—handy for capturing
an inspiration or recording an impression
on the go, but not really suited to what
we’d ordinarily call “content creation.” Of
course, the fact that most tablets come
with cameras makes for an interesting set
of options for the wandering artist: An app
like Paper Camera (www.jfdplabs.com/
papercamera/) can turn a chance photo op
into the start of a striking concept drawing.

3D ART ON THE GO In a way, drawing
on a tablet seems sort of obvious; it’s so
immediate and direct, and of course we’ve
all seen something similar on the Cintiq. It
seems a bit much, though, to expect tablet
artists to create fully realized 3D models. Or
at least, that’s what you might think.

Limited processing power and lack
of screen real estate are very signifi cant
challenges for creating 3D content on a
tablet. These diffi culties, however, can be
overcome. After all, an iPad 3 is as powerful
as the Silicon Graphics workstations that
created Jurassic Park and Terminator
2—and, amazingly, it pushes more pixels.
Moreover, they can be carried in one hand
instead of requiring a 50-pound, 24-inch
CRT display.

Verto Studio (http://VertoStudio.com/
ipad) shows both sides of the equation. It’s
a fairly complete 3D modeling program,
with primitives and basic mesh editing. Any
professional artist will spot the familiar
tropes of 3D modeling right away; just drop
a cube into the 3D view, grab some verts,
and start modeling. It’s true that you’ll
fi nd a lot of more advanced functionality
missing—asking an app with only 15
buttons to compete with Max and Maya is a
little much. However, if you’re long enough
in the tooth to remember 3DStudio R4 or
the early days of StrataVision, you’ll have
to admit that Verto Studio offers at least
as much power in a far more elegant and
accessible package.

The tablet works remarkably well for
displaying models—multitouch is a more
natural match for typical pan, zoom, and
orbit operations than a mouse. As with
drawing applications, however, fi ngers
are just too clumsy for really fi ne work
on a smallish screen. The app includes
a type-in window for precise control, but
it’s not a viable replacement for more
traditional tools when it comes to modeling
convenience and control. It’s still a pretty
impressive achievement, and a harbinger
of things to come. After all, it’s not hard to
imagine a larger tablet with a more precise
stylus being a real portable modeling
platform in a couple of years.

The looseness and informality of tablets
are a better match for a more expressive,
less precise medium like sculpting. ZBrush

and Mudbox users will instantly recognize
the workfl ow of Autodesk 123D Sculpt, which
is a remarkably competent, if somewhat
simple, implementation of brush-based
sculpting for iOS. You start with common
templates, ranging from geometric
primitives to a complete human, and then
sculpt with the tools we’ve all gotten used
to since the ZBrush revolution: push, pull,
infl ate, pinch, and smooth brushes with
adjustable size and strength. Notably
missing are alpha brushes, so it’s hard to
achieve effects like the classic rake-pull or
instant rock texture. However, it is possible,
particularly when working with a brush
stylus, to bang out a decent concept sculpt
or study quickly. The app even includes
integrated 3D paint, allowing for simple 3D
airbrushing and even texture projection.

The most pleasant aspect of using
Sculpt is that UI fl ows naturally for the
tasks. Any beginning ZBrush artist will
suffer through a lot more confusion
and frustration than a fi rst-time user
of 123D Sculpt, which is an impressive
achievement. Performance and level of
detail can’t compare with what you’d get
on beefi er machines with more memory,
but the results are still quite respectable.
As with painting apps, the lack of true
pressure sensitivity means the experience
is less precise; nonetheless it fl ows nicely.
They might not win many contests on
deviantART today, but even fi ve years ago
they would have been pretty cutting edge.
Here’s the real kicker, though: It’s free. You
do have to pony up $10 if you want to be
able to save the sculpts as OBJ fi les, but
it’s still a decent 3D sculpting tool you can
run for free while riding the bus.

123D Sculpt is part of a raft of new
Autodesk apps that seem to be designed
to push 3D modeling into the hobbyist
mainstream. The family also includes 123D
Creature, which extends 123D Sculpt’s
functionality with a skeleton reminiscent of
ZBrush’s ZSphere skeletons. This allows
for the quick roughout of articulated
creatures, followed by a sculp. [should that
say sculpt?] There’s also 123D Design, a
SketchUp-like modeler intended for people
who want to create designs for 3D printing.

The most intriguing member of the
123D family, however, is 123D Catch,
an app that uses the iPhone camera to
create 3D models by stitching together
lots of photographs. As you can see from,
the results are not what we’d consider
shippable art. An iPhone camera doesn’t
have a depth sensor, after all, so the 3D
models are based on image analysis and
can easily be fooled by strong colors or odd
lighting.

Nonetheless, 123D Catch is a real
indicator of what the future will bring. In
a few years, it should be possible to whip
out a mobile device, spend a few minutes
snapping views, and end up with a decent
3D model that can be beamed back to

the offi ce through the cloud and turned
into a real game asset. Art directors and
environment modelers everywhere will
have an incredible new tool—and modelers
will have another round of that sinking
feeling that accompanies every new
capture device, from motion capture to 3D
scanners. The blog at Makerbot, a popular
3D printing website, ran a piece on 123D
Catch under an image of a (3D-captured)
Donald Trump announcing “Professional
3D modelers: You’re fi red!”

Which brings us around to those
pontifi cations and prognostications
promised in the fi rst few paragraphs. As
you can see, tablet art tools are not—so
far—serious competition for the highly
evolved tools we use on our big powerful
desktops. None of us—except, maybe, for
a few globe-trotting concept artists—are
going to ditch our workstations for tablets
any time soon; the real nitty-gritty work
demands a level of precision and control
that is still beyond the abilities of small
screens and fat fi ngers. However the rise
of tablet apps is pretty startling: Three
years after the release of the fi rst iPad
there are a number of very useful, fl exible
semipro tools—and they’re incredibly,
unbelievably cheap by the standards we’re
used to: Every app mentioned in this
article, plus a brand-new iPad, costs less
than single copy of Photoshop.

On the plus side, this means that the
somewhat shopworn art tools market will
get a much-needed kick in the pants. The
interface conventions and toolsets we all
take for granted have hardly changed in
20 years; the tools are more polished and
powerful, but they work in more or less
the same way they did for the pioneers
who made Toy Story and The Abyss. As
tablet tools expand and democratize
the community of users, we can expect
to see some real innovations and fresh
approaches to old problems.

Of course, the downside is that our
already-fragile technical mystique is
further eroded. As hundreds of thousands
or even millions of new users get access
to the same kinds of tools we use, we’ll
face even more pressure to fi nd ways
to prove ourselves indispensable to our
masters. One way or another, these are
the tools that tomorrow’s artists will be
learning on. At least, that’s the lesson I
draw from trying to keep my kids away
from 123D Creatures on my iPad.
Dang kids. pp

Steve Theodore has been pushing pixels for
more than a dozen years. His credits include
MECH COMMANDER, HALF-LIFE, TEAM FORTRESS,
COUNTER-STRIKE, AND HALO 3. He’s been a
modeler, animator, and technical artist, as well as
a frequent speaker at industry conferences. He’s
currently the technical art director at Seattle’s
Undead Labs.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

http://www.jfdplabs.com/papercamera/
http://VertoStudio.com/ipad
http://www.jfdplabs.com/papercamera/
http://VertoStudio.com/ipad

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
5

5

b 055
B U S I N E S S _ K i m Pa l l i s t e r

BREAKING THE RULES
CHALLENGING THE GOSPEL OF SIM-SHIP IN A
MULTIPLATFORM WORLD

The 2013 DICE
conference was an
interesting one.
Normally, the show
is seen as catering
to the big developers
and publishers in
the triple-A console
and PC space, but
it has been trying to
adapt content and
speakers to begin to
encompass the broader
markets of mobile and
social, inviting some
smaller independent
developers to attend
and speak. One of
my favorite talks
came from this
“new” category of
developer: Amir Rao
of Supergiant Games,
developer of BASTION.
He spoke about
“multiplatformism”—
specifi cally,
Supergiant’s approach
to shipping BASTION
across a wide range
of platforms and
their experience
doing so. (You can
see the talk yourself
on YouTube: http://
www.youtube.com/
watch?v=NMlMIlX5-pc.)

Rao really got me
thinking when he
discussed how, during
his time at Electronic
Arts, it was a default
assumption that the
optimal launch strategy
was to simultaneously
launch all SKUs of
the game; this is done
to maximize the buzz
about the game, and to
amortize the cost of the
marketing blitz across
all SKUs.

Rao said that with
BASTION, Supergiant
serialized launches
of different versions
of the games. This
allowed them to do the
port themselves rather
than outsource it to a
studio that may care
less about the title. It
also allowed them to
do custom tuning for
each platform to make
the game shine, and
in doing so, capture
the attention of each
platform on which they
shipped. This let them
get better marketing
and promotional
assistance with each,
which in turn
helped sales.

SIM-SHIPPING
STRATEGY It was this
last item that provoked
some thought about the
idea of sim-shipping
as an assumed optimal
strategy. Because they
were doing the ports of
BASTION themselves,
Supergiant wasn’t able
to sim-ship all those
versions, but shouldn’t
they have preferred to?
Even small developers
have marketing costs
and work on building
a buzz about their
games. Shouldn’t they
also want to maximize
impact of that effort
with one big bang
at launch?

Not necessarily—
that call depends on
a few key differences
between EA and
Supergiant’s respective
situations. First,

consider the size of
the overall marketing
“budget” (in both dollars
and effort/attention—the
latter being perhaps
more relevant to
an indie developer)
especially in relation to
the overall game. For
a large console title, if
spinning up a second,
serialized, launch blitz
for a second platform
costs more than the
port itself did, then that
blitz will have a material
negative impact on
the P&L for that SKU.
However, for a small
title, if it’s a matter of
working relationships
and grassroots PR for
a particular platform
community, that effort
may serialize well, and
may need to anyway, as
the team has
limited manpower.

An even more
important difference
though, is in who is
footing the bill for
the marketing. If a
small title is counting
on promotional
opportunities on the
platform or service’s
digital storefront, then
effectively someone else
is picking up the bill
for that portion of the
marketing. If serializing
to tune games better to
a platform also allows
for someone else to foot
the bill for a portion of
your marketing, then
serialization makes
far more sense. (Note
that there’s room for
an entirely separate
discussion about how

putting all your eggs in
a basket of someone
who really doesn’t care
whose eggs he sells is a
risky strategy, but
I digress.)

DEVELOPING TO
AUDIENCE VS.
DEVELOPING TO
DEVICE A third reason
to question the sim-
ship “rule” is that the
amortization of those
marketing costs makes
the most sense when
you are marketing to
a single audience that
may choose to access
the game across any
choice of platform. With
the broad spectrum
of gamers we see
across phones, tablets,
consoles, and PCs, this
may make less sense
than, say, marketing
a football title to NFL
fans, who then can self-
select to the SKU for
their console.

So one could
imagine a spectrum of
marketing-cost sources
ranging from “entirely
self-funded” to “paid
for by platform owner,”
and another spectrum
of marketing budget
ranging from “very
small portion of total
development cost” to
“very large portion.”
Determining where your
game falls along these
spectra will help you
determine whether the
sim-ship rule applies.

SIMSHIPPER 2000
There are, of course,
other factors that play

into the decision to
sim-ship—whether
the dev team has the
time and bandwidth to
handle another port
without distracting
from other titles or
sequels, for example.
The point is that as the
market changes rapidly
around us, and as
new ways of reaching
market emerge, it
pays to question all
assumptions about how
things need to get done.

We all have lots of
“rules baggage”—sim-
shipping, price points,
business models,
demographics—and we
should question all of
them. With BASTION,
Supergiant showed
how by questioning
one assumption and
deciding that the
old rules no longer
applied, they were able
to defi ne an approach
for taking their game
to market in a more
effective and profi table
manner. Which other
rules of the game have
changed, and how have
you prepared to change
your approach along
with them? b

Kim Pallister works
at Intel doing game
industry forecasting and
requirements planning.
When not prepping the
world for super-cool
hardware, he blogs at www.
kimpallister.com. His views
in this column are his and
do not reflect those of
his employer.

http://www.youtube.com/watch?v=NMlMIlX5-pc
http://www.kimpallister.com
http://www.youtube.com/watch?v=NMlMIlX5-pc
http://www.youtube.com/watch?v=NMlMIlX5-pc
http://www.kimpallister.com

000 f
C O L U M N _ J a n u a r y 2 0 1 3

0
0

5
6

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

V

0
5

6
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

J a n u a r y 2 0 1 3J a n u a r y 2 0 1 3
000 f
C O L U M N _ J a n u a r y 2 0 1 3
056 d
D E S I G N O F T H E T I M E S _ S o r e n J o h n s o n

Nothing defi nes video games more
than player choice. Interactivity is
what separates games from static
entertainment forms like fi lm and
literature, and when critics accuse a
digital experience like DEAR ESTHER
of being “not really a game,” it’s
usually due to its lack of meaningful
player choice.

However, because game designers hold
choice as such an ideal—with phrases like
“enabling player agency” and “abdicating
authorship”—its downside is often ignored
during development, hiding in a designer’s
blind spot. In fact, every time a designer
adds more choices to a game, they make
a tradeoff.

With every new option added, your
game will gain a degree of player
engagement, but at the cost of something
else. These costs—too much time, too
much complexity, or too much repetition—
all can far outweigh the positive qualities
of the extra choice.

TOO TIME-CONSUMING If games can
be reduced to a simple equation, a
possible formula would be (total fun) =
(meaningful decisions) / (time played). In
other words, for two games with similar
levels of player choice, the one that takes
less time to play will be more fun. Of
course, usually the comparison will not
be so obvious; a new feature will add a
meaningful decision, but is it worth the
extra time added to the
play session?

As an example, DICE WARS and Risk
are similar games of territorial conquest
that answer this question differently. In
both games, players attack each other
by rolling dice, and victors are rewarded
with extra armies at the start of their next
turn. In RISK, the player decides where
to place these armies, which can be a
meaningful decision depending on the
situation. In DICE WARS, however, the
armies are placed randomly by the game,
and the result is a much faster game.

Which design is right? While the
answer is subjective, the relevant question
to ask is whether the combat decisions
become more meaningful if the player
takes the time to arrange their new
armies—or, as is likely, how much more
meaningful they become. After all, the
player can pursue a more intentional
strategy in Risk, but is that aspect worth
the not-insignifi cant extra time taken by
the army-placement phase?

The answer may depend on the
audience (DICE WARS is a casual Flash
game, while Risk is a traditional board
game), but designers should understand
the ramifi cations of their decisions.
Sometimes, army placement in Risk
can be a rote decision, and sometimes,
reacting to an unexpected arrangement
in DICE WARS can lead to a new, more
dynamic type of fun. Ultimately, the
aspects of Risk that lengthen the play
session must justify the time they cost to
the audience.

TOO COMPLICATED Besides its cost in
time, each choice presented to the player
also carries a cognitive load in added

complexity that must be weighed. More
options mean more indecision; deciding
between researching fi ve different
technologies feels much different than
choosing from 50. Players worry not just
about what they are choosing but also
about what they are not choosing, and the
more options they decline, the more they
have to worry about.

Each type of game has a sweet spot
for the number of options that keep play
manageable—you need enough options to
make each decision interesting, but not
so many that they overwhelm the player.
Blizzard RTS games have maintained a
constant number of units per race for
decades; STARCRAFT, WARCRAFT 3, and
STARCRAFT II all average 12 units per
faction. For the third game, the designers
explicitly stated that they removed old
units to make room for new ones.

Indeed, RTS games as a genre are
under assault from their more popular
upstart progeny, the MOBA genre, best
exemplifi ed by LEAGUE OF LEGENDS
and DOTA 2. The original MOBA was a
WARCRAFT 3 mod called Defense of the
Ancients, which played out like an RTS

WHEN CHOICE IS BAD
FINDING THE SWEET SPOT FOR PLAYER AGENCY

except that the player controlled a single
hero instead of an entire army.

This twist broadened the potential
audience by radically reducing the
complexity and, thus, the cognitive
demands placed on the player. Instead
of needing to manage a vast collection
of mines and barracks and peons and
soldiers as in a typical RTS, the player
needed to only worry about a single
character. Consider the UI simplifi cations
made possible by allowing the camera
to lock onto the player’s hero instead of
roaming freely across the map, which
forced the player to make stressful
decisions about managing their attention.

Of course, this change did take away
many of the meaningful choices found in
an RTS. Players no longer decide where
to place buildings or what technologies
to research or what units to train or even
where to send them; all these choices
were either abstracted away or managed
by the game instead. Again, the relevant
question is whether these lost decisions
were worth the massive amount of
complexity they added to a typical RTS.

The success of MOBAs demonstrate
that although players enjoy the thrill and
spectacle of the large-scale real-time
battles pioneered by RTS games, they do
not necessarily enjoy the intense demands
of trying to control every aspect of the
game. Designer Cliff Harris discussed a
similar point for his successful alt-RTS
GRATUITOUS SPACE BATTLES, which does
not allow the player any control of units
during combat: “GSB does not pretend
you can control 300 starships in a complex
battle. It admits you can’t, and thus
doesn’t make it an option. Some people
hate it. Over 100,000 enjoyed it enough to
buy it, so I can’t be the only person with
this point of view.”

TOO REPETITIVE The fi nal way that too
much player choice can negatively affect
the game experience is perhaps a bit
surprising: Games with too much freedom
can suffer from becoming repetitive. A
typical example is when a game presents
the player with an extensive but ultimately
static menu of choices session after
session; players often develop a set of
favorite choices and get stuck in that
small corner of the game space.

Sometimes, a fi xed set of options
can work if the player needs to react to a
variety of environments; the random maps
in a CIVILIZATION game can prod the player
down different parts of the technology
tree. However, almost all games could
probably benefi t from reducing some
player choice to increase overall variety.

Consider ATOM ZOMBIE SMASHER, a
game in which players use up to three
special weapons (such as snipers or
mortars or blockades) to help rescue

civilians from a city overrun by zombies.
However, these three weapons are
randomly chosen before each mission
from a set of eight, which means the
player reacts as much to the current
selection of weapons as to the city layout
or zombie behavior. Instead of relying
on a particular favorite combination,
the player must learn to make unusual
combinations work, which means the
gameplay is constantly shifting.

Similarly, in FTL, the crew members
and weapons and upgrades available
change from game to game, depending
on what the randomly generated shops
provide. Thus, the game is not about
discovering and perfecting a single
strategy but about fi nding the best path
based on the tools available. Put simply,
the variety of gameplay in ATOM ZOMBIE
SMASHER and FTL emerges because the
designers limited player choice.

At the opposite end of the spectrum,
games with hefty customization systems
usually devolve into a few ideal choices,
robbing the fl exible systems of their
relevance. In ALPHA CENTAURI, players
used the Unit Workshop to create units
with different values and abilities.
However, the most effective combinations
soon became obvious, marginalizing
this feature.

Thus, giving the player too much
control—by offering too many options
and too much agency—can reduce a
game’s replayability. The game would
certainly feel different as the loss of
intentional progression would turn off
many veterans, but the new variety might
attract others looking for a more dynamic
experience. Randomly distributed skills
might force players to explore sections
of the tree they would have never
experienced otherwise. The important
fact is that this loss of meaningful
player choice would not necessarily hurt
the game.

Ultimately, game design is a series
of tradeoffs, and designers should
recognize that choice itself is just one
more factor that must be balanced with
everything else. Even though player
control is core to the power of games, it
does not necessarily trump all the other
factors, such as brevity, elegance,
and variety. d

Soren Johnson was the co-designer of
CIVILIZATION III and the lead designer of
CIVILIZATION IV. He is a member of the GDC
Advisory Board, and his thoughts on game design
can be found at www.designer-notes.com.

0
5

7
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

“Indeed, would DIABLO be
more or less fun if players

couldn’t actually choose
their skills?”

UNCERTAINTY IN GAMES

Greg Costikyan

How uncertainty in games—from
Super Mario Bros. to Rock/Paper/Scissors
—engages players and shapes play
experiences.

Playful Thinking series • 136 pp., $19.95 cloth

PLAYING WITH SOUND

A Theory of Interacting with Sound
and Music in Video Games
Karen Collins

An examination of the player’s experi-
ence of sound in video games and the
many ways that players interact with
the sonic elements in games.

200 pp., 27 illus., $30 cloth

THE ART OF FAILURE

An Essay on the Pain of Playing
Video Games
Jesper Juul

“I can think of no other medium that
so constantly forces its participant to
contemplate their own demise. The
act of playing games is one dotted
with near-endless failure. Yet we plow
on. Jesper Juul’s new book is exactly
the sharp examination of failure I need
to keep myself from stabbing my eyes
out when I get frustrated.”
— Jamin Warren, Founder, Kill Screen

Playful Thinking series • 168 pp., 54 illus., $19.95 cloth

The MIT Press mitpress.mit.edu

http://www.designer-notes.com
http://mitpress.mit.edu

058 af
A u r A l F i x At i o n _ D a v i d Ka n a g a

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
0

5
8

Il
lu

st
ra

ti
on

 b
y

B
re

nt
 P

or
te

r

0
5

9
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

af 059
A u r A l F i x At i o n _ D a v i d Ka n a g a

An “isomorphism” is a 1:1
structural relationship
between different forms.
As a simple example,
we could say that the
equations “2x - 2 = 0” and
“3y - 3 = 0” are isomorphic,
because they both define
a variable with equivalent
solutions, x = y. Douglas
Hofstadter famously
hypothesized a relationship
between perception of
isomorphisms and our
experience of meaning
(see Gödel, Escher, Bach).
There has been loads of
recent interest, of course,
in what it might mean
to make games more
meaningful.

As events and processes in
time, musical structures
and game structures can be
described isomorphically. That
is to say: games are musics,
musics are games.

I have a theory that the
vague concept of “musical
meaning” is relevant to finding
a new kind of played meaning
in games. Designing games
as music spaces (“music
designing” any game), we can
tap into existing structural
relationships (isomorphisms,
harmonics) in the system/
unit operations—and by
“hugging”/”skinning” these
structures with composed
sound materials variably
manipulated in ways true to the
space and the time-structures
of play, we can make their
presence sensuously felt. It is
in this presence that gameplay
becomes musical.

Naturally, we ask: “Is it really
true that games are music?”

How do we begin to explore
the possibility that they are, or
might be?

The following is a practice/
method/game/process I’ve
been experimenting with to
test the idea that games are
music—in two parts, looped:

1/ Reading games as
scoRes When designing
(composing) music for
games—any game—try to
“read” the game mechanics
and structures and feels as a
score to be realized sonically,
a compositional map. The
musical movement exists
ready-made in the game’s
structure, its rhythms, all of
its motion. Be true to these
time-structures. Video games
are dense with mechanical
variation. This is musical
variation.

For every process or change
of state in a game, there
should be a corresponding
process or change of state in
its soundtrack. So, don’t think
in terms of background music
and sound effects, but rather
events, states, processes,
textures, rhythms, and forms.
There is no sound design or
composition, only improvisation
and music design—
improvisation plays, and music
design builds.

Now, if you embrace this
method, you will have to
compose spaces that tend
toward fluidity and disorder
(because they’re being played),
built of modules and processes
as opposed to full “pieces.”
Depending on the game, many
modules could be required,
perhaps as many as there are
sprites or 3D models in the
visual design, and producing all
of these might be a lot of work.
To make this tolerable, play all of
it! Improvise the music, don’t get
caught up in how things sound.
It doesn’t matter, everything
is music. Music doesn’t need
sound, only movement.

Algorithmic techniques are
useful, but don’t lose track
of the touch of musical play
(we’ll touch on this in the next
section). It might be helpful
to practice compositional
techniques on video footage.
For example, take the “Mickey
Mousing” technique (the
process of scoring music
events to coincide with
motion-image events); while
it’s perceived humorously in
movies, the fact is that games
are music, and as played
music, they are effectively
musical instruments. In other
words, we can think of Mickey
Mousing in games as the
process of designing a musical
instrument such that it can
produce sound.

Think of your music-design
process as adding vibrational
effects (real perceptual
experience) to informational
architectures (music spaces as
virtual compositions/scores).
Graphics (lights, images) do
this too; they are information
sensualizers—but graphics are
only seen in front of us while
music surrounds us.

2/ Playing music When
you’re playing music outside of
video games, try to find spaces
that you love independently
of video games. Continue to
explore new territories (play
spaces): Improvise, “de-
quantize” (an aesthetic-ethical
tactic of turning constants into
variables described in Adam
Harper’s excellent book of
music space theory, Infinite
Music), find music in all things.
We don’t know what kinds of
play spaces are possible, so
finding new spaces in play is
essential research.

We can too easily grow
accustomed to all sorts of
value-qualifiers as to what
music “should be.” If we are

unable to push past these
boundaries, to feel the infinite
potential and presence of
music in all situations (project
of John Cage’s 4’33”), we
will be hesitant to read a
game structure as musical
(it might be arrhythmic, for
instance). Find new music,
new movements—we cannot
consider motion to be separate
from music.

/\/ Music design is quantitative
manipulation of qualitative
affect—experience becoming
numerical value, becoming
variable, becoming experience.
Numbers, harmonics,
vibrations. Our conception of
systemic design should not be
opposed to sensuousness or
irrationality. On the contrary,
music design will need to be
totally irrational in its pursuit
of real subjective experience,
while at the same time highly
disciplined in its engagement
with quantity.

Imagine game music
design as a similar process
to following music notation or
data visualization’s leads in
making raw quantitative data
intuitively knowable, tangible,
playable. It is in transforming
material presence that we
experience the nonrational,
qualitative time flows of
differences, repetitions,
harmonies, textures—these
qualities that describe the lived
space of musical playing. af

David Kanaga is an improviser and
music designer. He has produced
award-winning dynamic scores for
the indie titles DyaD and Proteus.
He is currently researching smooth
and shifting dimensionality in
improvised music spaces with
Ilinx Group and working on music
designs for morphing landscapes in
Panoramical.

Music > GaMes > Music
findinG Music in GaMes and GaMes in Music

il
lu

st
ra

ti
on

 b
y

B
re

nt
 P

or
te

r

0
0

6
0

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

For those who haven’t played,
Letterpress is a turn-based
word game about claiming
territory. You have a grid of
letters, and you’re supposed to
make the longest words you can
with them. The letters needn’t
connect—you can use any on
the grid, and gain a point for
each letter you use. But when
your opponent uses your letters
in their words, they steal the
points back (and vice versa). Any
letters you’ve surrounded with
other letters you’ve captured
become “saved.” Your opponent
can still use these letters,
but they won’t get a point for
them. They can use the letters
surrounding your “saved” letters
though, and thereby make them
available for capture next round,
if you don’t save them again.

The game fixes one of the
problems I’ve had with word
games in the past, because it
encourages you to make the
largest, most impressive word
at any given time. Rarely can
you find an impressive word
and not be rewarded for its use,
unless strategy suggests you
wait. Now let’s get into these UI
and design lessons a bit more.

Learning from
Letterpress
Start the game = play the
game. When you start the
game, you see an option for
“new game,” and one for
“about,” which has information
about how to play and who
made it. That’s all there is.
This initial area becomes
your game screen—all the
games you’ve ever played (or
are playing) are stored here.
Importantly, your current
games are on top, and “new

game” is relegated to the very
bottom, because you often
rematch from the win or lose
screen. It’s very cohesive, and
makes a lot of sense!

Many console games still
have a “start game” splash
screen, when you really
only need to use that once.
Letterpress is more efficient;
the starting screen launches
games, and is never useless.

Show, don’t tell. The game
board is quite spare in its
design, but everything is
utilitarian, and nothing leaves

you guessing. There’s a grid of
letters, and two icons. One icon
represents you and your Game
Center ID, one represents your
opponent’s. An arrow under
the icon shows whose turn it
is. Captured letters are a light
colored shade, saved letters are
a darker shade of that same
color (and your opponent has
a different color). You instantly
know how well you’re doing by
looking at the game board, even
if you don’t look at the score.

Even better, this is
represented by chunky pixels,
“zoomed out,” in the main game

screen, where you can see all
your games. A micro version
of your board is displayed
there, which gives you an idea
of what’s happening in games
you’re playing before you even
enter them. Everything is subtly
and clearly laid out, and obvious.

meet logical expectations.
Spare though it may be,
everything in the game does
something, and trial and error
is rewarded. Touch an avatar
icon, and see the word that
you or your opponent played
last. Touch an empty space
in the game board, and see
where that letter is in the
current word you’re spelling
(which is helpful when
strategizing), and you can
easily rearrange your letters in
the playfield. It even tells you
if a word you’re trying to play
would be acceptable if you
hit the submit button when
it’s not your turn. If you hold
the “clear” button, you can
save the current word you’ve
spelled, even if it’s not your
turn. Anything you might try to
do has been anticipated and
integrated into the UI design.

Teach through interactivity.
On the main game screen,
you can move the whole
screen around if you choose
to, because nearly everything
moves when you touch it. This
made me wonder whether
touching and dragging one
game from my game list
would do something, and
indeed, moving it all the way
to the right reveals a prompt
to remove the game from
your list. It was something I
thought would be nice to do, I

Atebits’s Letterpress was one of the more popular iOS apps of late 2012, with 60,000 downloads on its first
day alone. It was one of those games that everybody suddenly seemed to be playing, and it’s been in constant
play on my iPad since release. This success is warranted—on top of being a fun, competitive word game, it has
a fair amount to teach us about intuitive UI and game design on touch devices.

Simple beauty
leSSonS from letterpreSS’S intuitive ui
and game deSign

060 ic
i n s e rt c r e d i t s _ B r a n d o n S h e f f i e l d

0
6

0
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

Tongue Tail beef ribs meaTball Turkey
Bacon ipsum dolor sit amet prosciutto flank pork loin t-bone
bresaola sausage leberkas rump. Filet mignon kielbasa swine,
ribeye boudin turkey bresaola jowl shoulder. Strip steak frankfurter
brisket tenderloin pork salami kielbasa turkey ground round
sausage filet mignon chuck. Shankle hamburger venison turkey
tenderloin pastrami ribeye doner ham hock bacon ham meatball
strip steak. Bresaola sirloin turducken pork loin bacon leberkas
sausage filet mignon shank tri-tip ground round corned beef
tongue spare ribs. Pork chop bacon boudin meatball frankfurter
venison bresaola.

Short ribs flank frankfurter chuck pancetta. Brisket shank
sausage corned beef cow shankle shoulder kielbasa hamburger
rump filet mignon short loin turducken jowl frankfurter. Beef ribs
venison chicken, rump sirloin doner ham jowl. Doner pancetta
capicola meatball strip steak. Bresaola sirloin turducken
frankfurter ham hock. Pancetta ham chuck spare ribs cow turkey
sausage ball tip. Meatloaf capicola ball tip hamburger strip steak,
turducken pork bresaola.

Venison cow bacon meatloaf kielbasa. Meatloaf doner pancetta
corned beef pastrami filet mignon flank. Bresaola doner tri-tip,
pig tenderloin rump tail boudin ground round. Andouille shankle
turkey boudin. Brisket ribeye tenderloin pork belly fatback beef
drumstick spare ribs leberkas frankfurter shoulder turducken
boudin sausage.

Capicola prosciutto venison ham, meatball brisket ham hock
turducken chicken spare ribs turkey. Meatball ham hock flank beef
ribs. Meatball drumstick corned beef pastrami pork loin venison.
Swine rump flank hamburger jowl andouille chuck ribeye filet
mignon. Tail ball tip ribeye, salami hamburger chuck tongue bacon
capicola. Leberkas pig hamburger chicken.

Prosciutto pork flank kielbasa meatloaf short ribs doner
biltong. Hamburger chuck pig kielbasa. Capicola boudin flank
ball tip short ribs, ground round hamburger pig pancetta pork
chop pork shoulder chicken short loin. Pig kielbasa tail, ham hock
tenderloin ball tip beef drumstick strip steak meatloaf spare ribs
sirloin flank. Brisket jowl meatball ham, kielbasa venison strip
steak hamburger shoulder swine pork chop bacon tail biltong.

Pastrami bacon jowl frankfurter meatball salami, ribeye
shoulder pork loin doner pig chicken. Kielbasa turkey doner ball
tip boudin strip steak fatback pork meatloaf ham hock flank. Ball
tip pork loin doner, bresaola short loin turducken boudin swine
cow leberkas chicken. Cow drumstick sirloin, ball tip salami
boudin leberkas ham filet mignon beef ribs. Turducken pancetta
tail pastrami. Sirloin shoulder turkey chicken corned beef meatball
strip steak. Bresaola sirloin turducken.

Pork brisket cow pork chop. Swine pork belly ham hock doner
capicola, ribeye strip steak pastrami biltong shoulder filet mignon
bresaola salami tri-tip chicken. Leberkas pancetta sausage
prosciutto drumstick pork chop salami, ground round tenderloin
beef venison flank sirloin capicola. Ball tip beef kielbasa tri-tip.
Ham shankle prosciutto bacon, leberkas andouille jowl shank.

Bresaola meatball doner biltong, salami short loin spare ribs
venison sirloin tri-tip chicken turkey pork belly shank tail. Boudin

pastrami andouille, hamburger t-bone turducken turkey meatloaf
short ribs pancetta chuck. Salami strip steak flank capicola
leberkas, pork belly tri-tip ribeye jowl meatloaf t-bone pancetta
turkey beef ribs. Brisket short ribs shoulder, sirloin swine tri-tip
shankle. Jowl pig beef biltong prosciutto, rump andouille sausage
flank jerky drumstick boudin spare ribs.

Ground round corned beef meatball pancetta pork chop tri-tip
spare ribs bacon strip steak jerky kielbasa rump pork belly. Cow
pork belly turkey, sirloin pancetta tenderloin prosciutto andouille
t-bone jerky chicken doner. Ribeye bacon ham drumstick rump.
Filet mignon hamburger turducken ball tip pork chuck spare ribs,
venison pork loin leberkas meatball. Bacon ipsum dolor sit amet
prosciutto flank pork loin t-bone bresaola sausage leberkas rump.
Filet mignon kielbasa swine, ribeye boudin turkey bresaola jowl
shoulder. Strip steak frankfurter brisket tenderloin pork salami
kielbasa turkey ground round sausage filet mignon chuck. Shankle
hamburger venison turkey tenderloin pastrami ribeye doner ham
hock bacon ham meatball strip steak. Bresaola sirloin turducken
pork loin bacon leberkas sausage filet mignon shank tri-tip ground
round corned beef tongue spare ribs. Pork chop bacon boudin
meatball frankfurter venison bresaola.

Short ribs flank frankfurter chuck pancetta. Brisket shank
sausage corned beef cow shankle shoulder kielbasa hamburger
rump filet mignon short loin turducken jowl frankfurter. Beef ribs
venison chicken, rump sirloin doner ham jowl. Doner pancetta
capicola meatball strip steak. Bresaola sirloin turducken
frankfurter ham hock. Pancetta ham chuck spare ribs cow turkey
sausage ball tip. Meatloaf capicola ball tip hamburger strip steak,
turducken pork bresaola.

Venison cow bacon meatloaf kielbasa. Meatloaf doner pancetta
corned beef pastrami filet mignon flank. Bresaola doner tri-tip,
pig tenderloin rump tail boudin ground round. Andouille shankle
turkey boudin. Brisket ribeye tenderloin pork belly fatback beef
drumstick spare ribs leberkas frankfurter shoulder turducken
boudin sausage.

Capicola prosciutto venison ham, meatball brisket ham hock
turducken chicken spare ribs turkey. Meatball ham hock flank beef
ribs. Meatball drumstick corned beef pastrami pork loin venison.
Swine rump flank hamburger jowl andouille chuck ribeye filet
mignon. Tail ball tip ribeye, salami hamburger chuck tongue bacon
capicola. Leberkas pig hamburger chicken.

Prosciutto pork flank kielbasa meatloaf short ribs doner
biltong. Hamburger chuck pig kielbasa. Capicola boudin flank
ball tip short ribs, ground round hamburger pig pancetta pork
chop pork shoulder chicken short loin. Pig kielbasa tail, ham hock
tenderloin ball tip beef drumstick strip steak meatloaf spare ribs
sirloin flank. Brisket jowl meatball ham, kielbasa venison strip
steak hamburger shoulder swine pork chop bacon tail biltong.

Pastrami bacon jowl frankfurter meatball salami, ribeye
shoulder pork loin doner pig chicken. Kielbasa turkey doner ball
tip boudin strip steak fatback pork meatloaf ham hock flank. Ball
tip pork loin doner, bresaola short loin turducken boudin swine
cow leberkas chicken. Cow drumstick sirloin, ball tip salami
boudin leberkas ham filet mignon beef ribs. Turducken pancetta

Venison filet mignon corned beef
tongue tail beef ribs meatball turkey

000 f
C O L U M N _ J a n u a r y 2 0 1 3

0
0

6
1

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

 ic 061
i N s e rt C r e d i t _ B r a n d o n S h e f f i e l d

0
6

1
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

tried it, and there it was. That
kind of movement happens
throughout the game—you
can slide around any pop-ups
or notifications, or toss them
off the screen. That’s intuitive
design! This didn’t need to be
explained to me—I was able to
figure out everything I needed
to know by simply touching
and sliding things, as is
natural on a touch platform.

Details matter. Letterpress
is very simple, but it has a few
excellent little design flourishes.
If you pick up a letter, it jiggles
with life, and tends to tilt in the
direction you’re swiping. As
you bring it up to the live area
where you build words, the
player avatars jump pleasantly
out of the way, using a classic
animation bounce. It makes
just interacting with letters feel
good, which is important, since
that’s all you really do in the
game!

Monetize intelligently.
Letterpress is free, but the
monetization scheme is smart.
If you pay 99 cents, you get more
color themes for your board, the
ability to start more than two
games at a time, and the ability
to see all prior words played.
None of these things grant a real
advantage over a free player, but
they do make things a bit more
convenient, without making the
free game any less convenient,
or feeling like something truly
valuable was hidden.

Letterpress basically asks
you “How much do you want to
play this game?” If the answer
is “a lot,” you’ll spend those 99
cents. Nothing forces you to
buy anything, nothing compels
you to tweet—the game’s
success was natural, simply
because it was good. And the
social networking elements of
this game are all hidden in the
“about” section (surprisingly
subdued, considering
Letterpress was made by
Loren Brichter, the same dev
who made the Tweetie iPad
app which got snapped up by
Twitter itself).

Make it whole The lessons
Letterpress teaches are
obvious, yet somewhat subtle.
It has a holistic design, and
everything you expect to be
able to do can be done. With
such a simple game, it is
very possible to meet players’
expectations, and yet we so
rarely see this kind of well-
thought-out design. The extra
touches to the menus, the way

you can instantly get a grip
on how your game is going,
and the seamless integration
of everything into the core
experience all show that the UI
is an actual part of the game—
it’s not a skin, it’s not a barrier,
it is the game.

UI should not be a
gatekeeper of content or an
afterthought. It should be an
integrated part of the game’s
experiential design. UI should
be part of the game’s core.
While Letterpress may not
explicitly teach you how to do
this, it’s a great example of
thinking about your game as a
holistic product. Try the game
for yourself and see if you
don’t agree! ic

Brandon Sheffield is director of
Oakland, California–based Necrosoft
Games, and editor emeritus of
Game Developer magazine. He has
worked on over a dozen titles, and is
currently developing two small-team
games for PlayStation Mobile. Follow
him on Twitter via @necrosofty.

0
6

1
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

http://GDCVAULT.COM
mailto:GILLIAN.CROWLEY@UBM.COM

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

CONTRACTOR CORNER

Complete Art Development and Production!

CENTURION
Art Development

• USA Based Sales & Customer Support

• 3 Production Studios in China - (North) Beijing & (South)
 Ningbo

• Professional Project Managment & Production
 Communication

• Competitive Rates based on Overseas Production

• 3D - High Quality• 3D - High Quality Assets for Game Dev & CG Animation

• 2D - Concept, Design & Illustration - Production Concepts

• Keyframe Animation - 2D and 3D, Layout, Rigging &
 Weighting

 1-888-411-9336 or contact@centurionartdev.com www.CenturionArtDev.com - Online Portfolio -

S T U D I O S

www.forgestudios .comTai lored to your needs
Creat iv i ty & Innovat ionwww.supergenius-studio.com

To Art Outsourcing

A Genius Alternative

Specializing in the 5 disciplines of video game art production

0
7

0

the art and business of making gamesthe art and business of making games
gamasutra.com

http://www.supergenius-studio.com
mailto:contact@centurionartdev.com
http://www.CenturionArtDev.com
http://www.forgestudios.com
http://gamasutra.com
http://www.sharpshadowstudio.com
http://ARTBULLYPRODUCTIONS.COM
mailto:sales@smartboxent.com
http://www.smartboxent.com
http://www.technicolor.com/GameServices

gd Game Developer (ISSN 1073-922X) is published monthly by UBM LLC, 303 Second Street, Suite 900 South, South Tower, San Francisco, CA 94107, (415)
947-6000. Please direct advertising and editorial inquiries to this address. Canadian Registered for GST as UBM LLC, GST No. R13288078, Customer No.
2116057, Agreement No. 40011901. SubScription rateS: Subscription rate for the U.S. is $49.95 for twelve issues. Countries outside the U.S. must be
prepaid in U.S. funds drawn on a U.S. bank or via credit card. Canada/Mexico: $59.95; all other countries: $69.95 (issues shipped via air delivery). Periodical
postage paid at San Francisco, CA and additional mailing offices. poStmaSter: Send address changes to Game Developer, P.O. Box 1274, Skokie, IL 60076-
8274. cuStomer Service: For subscription orders and changes of address, call toll-free in the U.S. (800) 250-2429 or fax (847) 647-5972. All other countries
call (1) (847) 647-5928 or fax (1) (847) 647-5972. Send payments to gd Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. Call toll-free in the U.S./
Canada (800) 444-4881 or fax (785) 838-7566. All other countries call (1) (785) 841-1631 or fax (1) (785) 841-2624. Please remember to indicate gd Game
Developer on any correspondence. All content, copyright gd Game Developer magazine/UBM LLC, unless otherwise indicated. Don’t steal any of it. Or else.

0
6

3
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

COMPANY NAME  PAGE #

ART BULLY PRODUCTIONS 62
CENTURION ART DEVELOPMENT 62
COSTA IMC C5
EPIC GAMES 05
HAVOC 02
THE MIT PRESS 57
REASEARCH IN MOTION CORPORATION C2,C3,C4,001
RAD GAME TOOLS C6
SHARP SHADOW STUDIO 62
SUPERGENIUS 62
TECHNICOLOR DIGITAL PRODUCTION 62

In assocIatIon wIth ubm tech  PAGE #

APP DEVELOPERS CONFERENCE 20
GAMASUTRA 30
GAMASUTRA JOBS 63
GAME CAREER NETWORK 44
GDC EUROPE 50
GDC NEXT 10
GDC VAULT 61

ADveRTISeR INDeX

For more information visit www.jointhegamenetwork.com

 063
A d i n d e x _ M a y 2 0 1 3

GAMA13_GDmaghalf_F.indd 1 3/12/13 10:41 AM

http://www.jointhegamenetwork.com
http://gamasutra.com/jobs

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
6

4

* fixed localization text-wrap bug (nice try,
Jeff)

* locking repo for final launch deploy!!!

* fixed polling ping-time bug in matching
players across regions that might have
caused small delays before game
launches. There might have been
a hiccup on launch day if we hadn’t
caught that… good job, QA

* finally the work we’ve been doing for the
last three years is gonna pay off!

* relocking repo for final, final, final
deploy

* come at me, bros!!

* emergency fix to address “Unable to Join”
error

okay, this should address most of the launch
volume issues that players have been
experiencing:

* more error checking added to “Region
Unavailable” crashes

* another fix for “Unable to Join” error
seen by players in Pacific time zone due
to a floating-point error reporting that
the game doesn’t actually unlock for
277 years (Jeff, I am looking at you very
sternly right now)

* dynamically switch a region’s hosted
server if the ping is too long

* set available servers to the actual

number of servers we have available
(whoops, that’s mine, haha)

rolling back change #2416

* removed rendering of all citizens’ pants
to decrease server sync load

* re-added pants. something about
ESRB? whatever

* removed rendering trees instead

* disable high-level spells that use
too many server-side particles (can’t
believe I just used the phrase “server-
side particles”...JEFF!!!!)

* boost power of low-level spells to take
the place of the spells we just removed

* add free spells for players so they aren’t
mad that we took away the high-level
spells

* I did something else with spells that I
forgot

* I would really like to go home
* Jeff is a smelly doofus

* HEY, did you know that APPARENTLY,
to cast a spell in our game you have
to query the player authentication
database, query the player database,
query the spell database, AND query

the player action table?
* and did you know that if you’re a mage,

it does all those EVERY TIME you press
the attack button?

* I am laughing and crying right now
* I don’t know how to fix this
* I’m actually just crying

* reduced queue size and added ghost
entries to buffer queuing more

* I’m not sure that’s a thing. well, it’s a
thing now

* more queues, less syncs, god I don’t
even know

* come make games, they said. lots of
fun, they said

* I have two degrees in computer science
and am imagining the utter shame on
my professor’s face right now

* drifting, I’m just drifting through infinite
black space

* I just wanted to make something fun
that people would enjoy… did I ruin kids’
childhoods? like, is this going to be a
terrible memory that haunts them for
the rest of their lives?

* it appears that I am out of whisky
* not sure what this commit is

 ad

Matthew Wasteland writes about games and game
development on his blog, Magical Wasteland
(www.magicalwasteland.com). Email him at
mwasteland@gdmag.com. Magnus Underland
writes about games and other topics at www.
above49.ca. Email him at magnus.underland@
gmail.com.

IL
LU

ST
R

AT
IO

N
: J

U
A

N
 R

A
M

IR
EZ

064 ad
a r r e s t e d d e v e l o p m e n t _
M . WA S T E L A N D & M . U N D E r L A N D

http://www.magicalwasteland.com
mailto:mwasteland@gdmag.com
http://www.above49.ca
mailto:magnus.underland@gmail.com
http://www.above49.ca
mailto:magnus.underland@gmail.com

http://www.proexport.com.co/eng/ITservices
http://WWW.PROEXPORT.COM.CO
http://WWW.PROEXPORT.COM.CO
http://WWW.PROEXPORT.COM.CO

IT’S HERE

2
Bink 2 Video has up to 6 times the quality than Bink 1
at the same bandwidth. It's also up to 3x faster due to it's SIMD
design (70% of all instructions are SIMD in a frame decode)
and perfect two CPU scaling. Available for Windows, Mac,
Linux, (or any x86 or x64 system), Xbox 360,
Playstation 3, PS Vita, iOS and Android.
www.radgametools.com 425-893-4300

http://www.radgametools.com

	Contents
	Postmortem
	HUNDREDS

	Features
	ANDROID, REVISITED
	INTRO TO USER ANALYTICS
	INTERNAL INDIES
	BALDUR’S GATE: ENHANCED EDITION POSTMORTEM

	Departments
	Editorial - Game Plan
	News - Heads Up Display
	Education - Educated Play
	Career - Good Job
	News - GDC News
	Review - Toolbox
	Programming - Inner Product
	Art - Pixel Pusher
	Business - The Business
	Design - Design of the Times
	Sound - Aural Fixation
	Editorial - Insert Credit
	Humor - Arrested Development

