

http://perforce.com/try20

www.gdmag.com 1

P o S T m o R T E m

24 indiana jones adventure world
How do you make a social game that can bring elements from The
Legend of ZeLda: ocarina of Time or Tomb raider to a relatively casual
audience? Answer: lots of testing, lots of iterating, and lots of
Indiana Jones. Zynga Boston lead designer Seth Sivak shows
us what went right and wrong with Zynga’s casual-core-bridging
indiana Jones advenTure WorLd. By Seth Sivak

F E aT U R E S

7 2012 social/Mobile technology survey
Our big technology survey for 2012 focuses on the engines, tools,
middleware, platforms, and services that mobile and social game
developers are working with—as well as the tech they wish they
were working with. By Mark Deloura

16 tera: evolving MMorpg coMbat
If your MMORPG’s players are spending more time staring at
cooldown meters than the monsters they’re fighting, you’re doing
it wrong. Bluehole Studios’s Seungmo Koo explains how they pulled
off Tera’s truly real-time “free-targeting” combat system without
breaking their servers. By Seungmo Koo

32 what would Molydeux? gaMe jaM postMorteM
During a single weekend, over 900 developers across 30-plus
cities worldwide made more than 300 games as part of the “What
Would Molydeux?” game jam. Read about what went right and
what went wrong with organizing a massively popular game jam in
just under three weeks. By Brandon Sheffield

coNTENTS.0512
VoLUmE 19 NUmBER 5

d E Pa R T m E N T S

2 gaMe plan By Brandon Sheffield [e d i t o r i a l]

 Make Games for Yourself

4 heads up display By Staff [n e w s]

Old fan-favorite franchises get revived on Kickstarter,
and Game Developer staff changes

35 tool box By Matt Link [r e v i e w]

Pixologic’s ZBrush 4R3

39 the inner product By Slawomir Nikiel [p r o g r a M M i n g]

Cells for Cell Phones

44 design oF the tiMes By Jason VandenBerghe [d e s i g n]

The Five Domains of Play

47 gdc news By Staff [n e w s]

GDC Vault debuts classic videos, GDC 2012 lectures

48 pixel pusher By Steve Theodore [a r t]

Tech Tao for Tiny Teams

50 good job By Patrick Miller [c a r e e r]

Q&A with Matt Sughrue, who went where, and new studios

51 the business By David Edery [b u s i n e s s]

The Magic of Free-to-Play

52 aural Fixation By Damian Kastbauer [s o u n d]

Vroom Vroom

53 educated play By Patrick Miller [e d u c a t i o n]

one and one sTory

56 arrested developMent By Matthew Wasteland [h u M o r

 Secret Info Inside Here

http://www.gdmag.com

GAME PLAN // BRANDON SHEFFIELD

game developer | may 20122

game plaN // BraNdoN SHeFFIeld

A lot of people say that if you want
to make a popular game, you need
to listen to focus groups, carefully
monitor metrics, and focus on the
mainstream. I say: bullshit. Scaling
small and being true to yourself
can win you free marketing and
make you rich, if you do it right.
Even better, your games will be
way more interesting!

Personal Power
» Let’s look at some examples.
SuperbrotherS: Sword & Sworcery
ep for iOS is single-player, has a
singular aesthetic, and launched
at $4.99, which is expensive for
the App Store. It was a recipe
for commercial failure in a world
where the birds are angry, and
the top games are free. Still, the
game wound up selling 300,000
units in the first 6 months,
because the game was absolutely
true to its creators’ vision. They
made it for themselves.

Minecraft is another easy one.
Notch made the game that he
wanted to play. Granted, he knew
he was making a sandbox for
other people to fool around in, but
he didn’t do any market research
first. In making Minecraft for
himself, Notch created a massive
self-perpetuating hype machine,
because when people like your
game, with the proliferation of
social media, they can’t help but
talk about it.

Something that resonates with a
small group of people will expand to
their friends, and then their friends,
and eventually to their parents and
grandparents, who would never
have otherwise thought of playing
one of these games.

The reason this works so well
is because people want to identify
with cool things, and they want
other people to think that they’re
cool for thinking that this “cool
thing” is cool. This little corner of
the world they’ve discovered is
something they now identify with,
and they’ll want their friends to like
it too. When they share it around,

they’ve already put the weight of
their appreciation behind it.

okay, let’s do it
» How do you emulate these
successes? Contrary to popular
belief, you shouldn’t emulate the
actual products. Instead, pay
attention to the thought process
that goes into making them,
beginning with the initial idea.

There is something that you
like more than anyone else you
know does. Maybe it’s Apple II-era
platformers. Maybe it’s fractals.
Maybe it’s dubstep, god forbid.
Find it, and dive right into it.

What qualifies as a niche, then?
“Sports” is too vague. The Olympics
gets a bit closer, but if you take, say,
the Hurdle event in isolation, you’re
starting to get somewhere. Now you
need to find a visual or gameplay
hook that really appeals to you (and
hasn’t been done to death).

A good example of this is qwop,
which was a massively popular
Hurdling game for browsers. It had
stupidly difficult controls, but was
hilarious to watch in action, so
people played and talked about it
religiously. The game has since gone
on to App Store success, and is a
great example of a good niche game.

Once you’ve established
your niche and tone of gameplay,
determine the targets you want to
hit, and never deviate from them. If
the mandate is “everything blows
up,” then make everything blow
up, even your UI. Rules like this
can help you scale small. Throw
out everything that doesn’t fit
your vision.

You may worry that people
won’t latch on to your idea. But
none of us is unique, as much as
we might like to think so. There’s
almost certainly someone else
out there that likes the things
you do. If you make a game for
yourself, you’re also making it
for them. Nobody expects you to
make a game that targets their
weird special interest, so if yours
matches theirs, they will sing your

praises to the ends of the earth.
Nathan Vella, president of

Sword & Sworcery developer Capy
Games said this quite well. He
said, “I believe that when you’re
targeting everyone, you’re really
targeting no-one. You’re not
making it for anyone specific, so
your target group is no-one.”

People can feel when a product
is genuine, and there’s nothing
more genuine than something
you’ve made for yourself. That
feeling of “I can’t believe someone
made this” is what gets you
instant success on aggregator
communities like Reddit, which
are huge drivers of content.

Your method of delivery is
important too, though. If your
game is hard to find, none of
what I just said applies. Consider
bloodycheckerS, which is an Xbox
Live Indie Game. Players explore
a massive first person dungeon,
with loot, items, and experience
points, as they battle the denizens
of a haunted castle—all by playing
a bizarre version of checkers. If
this game were on Steam, the
creator would be a millionaire. You
have to go where the people are.

If you’re developing a game for
yourself, you can make something
smaller for less money and only
take a minimal risk. But the payoff
can be huge. You might think this
doesn’t apply to you if you’re
working on a big team, and you
might be partially right. But the
principle of digging deep can be
applied to one or two features just
as nicely. If your open world game
has a really deep crafting system,
for example, someone out there
will play it just for that.

And who says you should be
anonymously toiling away on that
big, bloated team anyway? If you
have an idea, just get out there and
make it. So find your passion, see it
through, and don’t let the bastards
get you down. I’m taking my own
advice, and I’ll live or die by it.

—Brandon Sheffield
twitter: @necrosofty

Make GaMes For yoUrselF
UBM LLC.
303 Second Street, Suite 900, South Tower
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

w w w . U B M . C o M

game developer
magazINe
www.gdmag.com

...AND NOBODY ELSE

sUBsCriPtion serViCes

For inForMation, order QUestions, and
address CHanGes
t: 800.250.2429 f: 847.763.9606
e: gamedeveloper@halldata.com
www.gdmag.com/contactus

editorial

PUBlisHer
Simon Carless e: scarless@gdmag.com

editor-in-CHieF
Brandon Sheffield e: bsheffield@gdmag.com

editor
Patrick Miller e: pmiller@gdmag.com

ManaGer, ProdUCtion
Dan Mallory e: dmallory@gdmag.com

art direCtor
Joseph Mitch e: jmitch@gdmag.com

ContriBUtinG writers
Seungmo Koo, Mark Deloura, Seth Sivak, Matt
Link, Slawomir Nikiel, Steve Theodore, Jason
Vandenberghe, Damian Kastbauer, David Edery,
Matthew Burns

adVisory Board
Mick West Independent
Brad Bulkley Microsoft
Clinton Keith Independent
Brenda Brathwaite Loot Drop
Bijan Forutanpour Sony Online Entertainment
Mark DeLoura THQ
Carey Chico Globex Studios
Mike Acton Insomniac

adVertisinG sales

GloBal sales direCtor
Aaron Murawski e: amurawski@ubm.com
t: 415.947.6227

Media aCCoUnt ManaGer
Jennifer Sulik e: jennifer.sulik@ubm.com
t: 415.947.6227

GloBal aCCoUnt ManaGer, reCrUitMent
Gina Gross e: ggross@ubm.com
t: 415.947.6241

GloBal aCCoUnt ManaGer, edUCation
Rafael Vallin e: rvallin@ubm.com
t: 415.947.6223

adVertisinG ProdUCtion

ProdUCtion ManaGer
Pete C. Scibilia e: peter.scibilia@ubm.com
t: 516-562-5134

rePrints

WRIGHT'S MEDIA
Jason Pampell e: jpampell@wrightsmedia.com
t: 877-652-5295

aUdienCe deVeloPMent

aUdienCe deVeloPMent ManaGer
Nancy Grant e: nancy.grant@ubm.com

list rental
Peter Candito
Specialist Marketing Services
t: 631-787-3008 x 3020
e: petercan@SMS-Inc.com
ubm.sms-inc.com

http://www.gdmag.com
mailto:gamedeveloper@halldata.com
http://www.gdmag.com/contactus
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:pmiller@gdmag.com
mailto:dmallory@gdmag.com
mailto:jmitch@gdmag.com
mailto:wski@ubm.com
mailto:jennifer.sulik@ubm.com
mailto:ggross@ubm.com
mailto:rvallin@ubm.com
mailto:peter.scibilia@ubm.com
mailto:jpampell@wrightsmedia.com
mailto:nancy.grant@ubm.com
mailto:petercan@SMS-Inc.com
http://ubm.sms-inc.com
http://WWW.UBM.COM

©2012 MAGIC PIXEL GAMES, ALL RIGHTS RESERVED

Located in Los Angeles, CA
VISIT US AT WWW.MAGICPIXELGAMES.COM

ENGINEERS and ARTISTS

WE’RE HIRING!

We craft original games.

We love what we do and we want your help.

http://www.magicpixelgames.com

heads-up display

game developer | maY 20124

OLD IS NEW AGAIN
DEVELOPERS USE CROWDFUNDING TO FUND FAN-FAVORITE FRANCHISE REVIVALS

Leisure suit Larry
in the Land of the
Lounge Lizards:
25th anniversary
edition

www.kickstarter.com/
projects/1451923705/
make-leisure-suit-larry-
come-again

Who is making it:
Replay Games, plus
several members of the
original Leisure Suit Larry
team, including series
creator Al Lowe, Josh
Mandel, Sabine Duvall, and
Leslie Balfour.

top reWard:
For $50,000+, you can
choose either to have
your name replace Sierra
Entertainment founder

Ken William’s name for the
in-game password “Ken
Sent Me” or hang out with
Al Lowe and writer Josh
Mandel for a VIP weekend
in Las Vegas.

sherLock hoLmes:
consuLting
detective

www.kickstarter.com/
projects/1920171553/
sherlock-holmes-
consulting-detective-
adventure-mys

Who is making it:
Zojoi, a mobile game dev

studio headed by David
Marsh (former Sherlock
holmeS: conSulting
Detective developer).

top reWard:
For $600, you can write
an article (in your best
Victorian prose) for the
in-game newspaper, and
you’ll receive a credit as
a game character and
writer. You’ll also receive
an original Sherlock
holmeS: conSulting Detective
board game and WeSt enD
ADventureS expansion game,
as well as the conSulting
Detective board game.

shadoWrun
returns

www.kickstarter.com/
projects/1613260297/

shadowrun-returns

Who is making it:
Harebrained Schemes
LLC: Jordan Weisman
(ShADoWrun creator),
FASA Shadowrun
tabletop developers
Mitch Gitelman and Mike
Mulvihill, and several
former ShADoWrun authors
and developers (Michael
Stackpole, Mike Mulvihill,
Tom Dowd, Malik Toms,
Mel Odom, Jason Hardy,
Stephen Kenson).

top reWard:
For $10,000+, you will get
your own personalized
Doc-Wagon card, a custom
in-game player character
built in your image,
and Mike Mulvihill will
come to your town and

run a tabletop game of
ShADoWrun for you and five
friends (with snacks).

WasteLand 2

www.kickstarter.
com/projects/inxile/
wasteland-2

Who is making it:
Brian Fargo (executive
producer for WAStelAnD
and FAllout), original
WAStelAnD designers Alan
Pavlish, Michael Stackpole,
and Ken St. Andre, music
by Mark Morgan (FAllout
1+2 composer), story by
Jason Anderson (FAllout
cocreator), and concept art
by Andree Wallin.

top reWard:
Donate $10,000+, and
you’ll get an invite to an
exclusive private party with
the WAStelAnD 2 team, an in-
game shrine in your honor,
and 50 copies of the game,
among other things.

For many players and developers, the biggest news to come out of the industry over the last few months hasn’t been
about a new studio or a major triple-A title, but about a series of plucky developers hoping to bring back some of their
favorite long-forgotten IPs. After Double Fine Productions pulled in $3,336,471 from Kickstarter supporters for a new
adventure game, several other developers decided to try their hands at getting the crowd to fund their favorite pet
projects. Here are some of the properties that might be revived.

Leisure suit Larry

http://www.kickstarter.com/projects/1451923705/make-leisure-suit-larry-come-again
http://www.kickstarter.com/projects/1451923705/make-leisure-suit-larry-come-again
http://www.kickstarter.com/projects/1451923705/make-leisure-suit-larry-come-again
http://www.kickstarter.com/projects/1451923705/make-leisure-suit-larry-come-again
http://www.kickstarter.com/projects/1920171553/sherlock-holmes-consulting-detective-adventure-mys
http://www.kickstarter.com/projects/1920171553/sherlock-holmes-consulting-detective-adventure-mys
http://www.kickstarter.com/projects/1920171553/sherlock-holmes-consulting-detective-adventure-mys
http://www.kickstarter.com/projects/1920171553/sherlock-holmes-consulting-detective-adventure-mys
http://www.kickstarter.com/projects/1920171553/sherlock-holmes-consulting-detective-adventure-mys
http://www.kickstarter.com/projects/1613260297/shadowrun-returns
http://www.kickstarter.com/projects/1613260297/shadowrun-returns
http://www.kickstarter.com/projects/1613260297/shadowrun-returns
http://www.kickstarter.com/projects/inxile/wasteland-2
http://www.kickstarter.com/projects/inxile/wasteland-2
http://www.kickstarter.com/projects/inxile/wasteland-2

heads-up display

www.gdmag.com 5

changing of the guard

Miller (left) and Mallory.
Game Developer magazine is going
through some changes. While the vision
will remain largely the same, the staff is
shifting rather dramatically.

Brandon Sheffield, editor-in-chief of the magazine,
will be moving to part-time, after over seven years
with Game Developer. He will remain editor-in-chief
for the next several months to guide the vision of
the magazine, but is departing in a larger sense to
spend more time on game development and writing
projects of his own through his new company
Necrosoft Games (www.necrosoftgames.com),
among other vehicles.

“I’ve been working on games on the side for the
last six years or so,” Sheffield said, “but after a large
project got canceled, I figured it was time for me to
try to tackle this on my own, full time. I don’t have a
huge safety net, but I needed more creative space,
and to tackle a wider variety of projects, not just in
games. At the same time, I couldn’t just leave the
magazine outright, so I will be helping everyone
during the transition.”

To keep the magazine running smoothly,
Game Developer has hired new editor Patrick
Miller, who was previously an associate editor for
PCWorld magazine. “I hired Patrick because he’s
got a love for the game industry and a fire in his
belly!” said Sheffield. “The fact that he came from
the tech side of journalism and not the consumer
side was another big plus, and having also worked
with him as an editor on my personal game site,
Insert Credit, I’m confident that he can move the
magazine in a good direction.”

Lastly, production editor Jade Kraus has
moved on to new things in Austin, Texas. Her
shoes will be filled by Dan Mallory, former senior
production coordinator for publications like PC
Gamer, Maximum PC, Official Xbox Magazine, and
PlayStation: The Official Magazine. Mallory will be
Game Developer’s new manager of production.

“I knew Dan was the right guy for the job pretty
quickly,” Sheffield said, “He’s got an extensive magazine
background and has worked on a number of game
publications. We knew he could hit the ground running
and fit into our pipeline without missing a beat.”

“Game Developer recently revamped its
subscription model, has a new site, and an iPad
app,” Sheffield adds. “I feel confident that I can
slowly exit the magazine on a high note. I hope
everyone will continue to support it!”

All the editors can still be contacted collectively
at editors@gdmag.com. game Developer eDitor-in-chief BranDon SheffielD

announceS graDual Departure, new hireS

http://www.gdmag.com
mailto:editors@gdmag.com
http://www.necrosoftgames.com

ADVERTISEMENT

Nearly two decades after the original XCOM captivated
PC gamers around the world, publisher 2K Games
and developer Firaxis plan to introduce the critically
acclaimed franchise to an entirely new generation.
According to Jake Solomon, lead designer on the new
title, game industry legend Sid Meier is working closely
with the team to bring this unique blend of tactical
strategy and action to life, which marks the � rst time
Meier’s studio is leveraging Epic Games’ Unreal Engine
3 technology.

“Honestly, it was a thrill to work with Unreal Engine 3,”
said Solomon. “In-house, we’ve always used our own
tech because of the games we’ve made before. This was
the � rst game where it made sense to look at a licensed
engine. Once we explored the tech and saw what it was
capable of, it has just been such a blessing.”

Set in a retro-future 1960s Earth, XCOM: Enemy
Unknown is a turn-based strategy game that pits the
player and their troops against an alien invasion of
Sectoids. Every decision a player makes is crucial during
gameplay, as once a soldier dies they cannot be revived.
In addition, the player’s research undertaken during
the course of the game has a direct impact on repelling
the aliens—and there is a real possibility of the aliens
succeeding at the game’s end. To achieve a sense of
life-or-death consequences, Firaxis designed a series
of cinematics to add another layer of storytelling to
the game.

“We used Matinee pretty heavily in XCOM,” said Solo-
mon. “That’s our foundation for all of the cinematics
you see in the game. UE3 was essential in allowing
our artists to create content in a mature tool chain like

that. Our programmers were also able to tap into this
tech; it certainly helped with the development of three
SKUs across PC, PS3 and 360. The ability to build o� of a
mature engine like UE3 has made it pretty easy.”

Solomon said that due to the gameplay style, his team
wasn’t able to prototype in a day like many shooter
teams, but the process was still faster than if they had
grown their own tech. Firaxis was also able to seek
guidance from other internal game studios.

“So many of the people within our publishing label
have UE3 experience, so we have resources within our
label that we can reach out to,” said Solomon. “Industry-
wide, you can’t throw a rock without hitting somebody
who has UE3 experience. We also used the Unreal
Developers Network, which has been a huge help.”

From a visual standpoint, the new game taps into the
full capabilities of Unreal Engine 3. To achieve the look
and feel they wanted, Firaxis created a global landscape
for players to engage in, complete with recognizable
landmarks. Solomon said that all of the maps were
hand-built, including the more regionalized maps,
and these encompass both outdoor and indoor maps.
Additionally, the player can play in urban areas as well
as wilderness areas, where they shoot down UFOs.

“From a technical standpoint, I’m most proud of our
destructible environments,” said Solomon. “That’s
something that you still don’t see a lot of. But it’s really
fun to use in our game, since it’s a tactile experience.
For example, blowing out a wall completely changes
the tactics involved in a level and this creates a dynamic
battle� eld to play in.”

Also � guring into this gameplay experience are new
aliens conjured by the Unreal Engine 3 toolset from the
imagination of Firaxis. Solomon said enemies like the
Berserker can literally run through walls. This opens
up interesting immersion gameplay, coupling varying

Sectoids with weapons that can change the playing
� eld in an instant. Solomon said UE3 enabled his team
to create complex levels and craft intelligent enemies
that � uidly run on AI that constantly adjusts to the
dynamic surroundings.

“I’m extremely happy with the new 3D base that we’ve
created in this game,” said Solomon. “Being able to
show all that level of detail when you’re zooming in
to see the di� erent soldiers and all the units, that’s
something that my team just did an awesome job with,
technically.”

And that level of detail, and deep gameplay experience,
was brought to life using Unreal Engine 3. Soldiers new
and old will be able to engage in battle against a chal-
lenging alien invasion in this new take on squad-based
tactical action in XCOM: Enemy Unknown.

© 2012, Epic Games Inc., Epic, Epic Games , Gears of War, Gears of War 3, Unreal, Unreal Development Kit, UDK, Unreal Engine, UE3, and Unreal Tournament are trademarks or registered trade-
marks of Epic Games, Inc. in the United States of America and elsewhere. All other trademarks are the property of their respective owners.

W W W . U N R E A L . C O M

Canadian-born Mark Rein is vice
president and co-founder of Epic Games
based in Cary, NC. Epic’s Unreal Engine
3 has won Game Developer magazine’s
Best Engine Front Line Award � ve times
along with entry into the Hall of Fame.
UE3 has won three consecutive Develop
Industry Excellence Awards. Epic is

the creator of the mega-hit “Unreal” series of games and the
blockbuster “Gears of War” franchise.
Follow @MarkRein on Twitter.

2K GAMES BREATHES
NEW LIFE INTO XCOM
WITH UNREAL ENGINE 3
TECHNOLOGY

UPCOMING EPIC ATTENDED EVENTS

Please email licensing@epicgames.com for appointments

E3 Expo
Los Angeles, CA
June 5-7, 2012

gamescom
Cologne, Germany
August 15-19, 2012

GDC Europe
Cologne, Germany
August 13-15, 2012

http://WWW.UNREAL.COM
mailto:licensing@epicgames.com

WWW.GDMAG.COM 7

B Y M A R K D E L O U R A

Around this time of each of the past few years,
we’ve conducted technology surveys asking
game developers about their preferences and use
of game engines and licensed middleware. We’ve
concentrated largely on traditional core game
developers, but the market has changed a lot
since those earlier surveys. Increasingly, we’ve
found ourselves wondering: What are mobile and
social-game developers using? What are they
looking for? What does the marketplace look
like for licensed technology for mobile and social
games? This year we decided to specifically focus
on the needs of these developers. >>>

http://WWW.GDMAG.COM

who took the survey?

$ For the purposes of this analysis, we’re
breaking responders into two groups:

mobile developers and social developers. In
many cases there’s an overlap, but for most
topics, breaking down the replies into these
two groups gives us useful insights. We classify
mobile developers as those working on a mobile
smartphone platform (not traditional handhelds
such as Sony’s PSP or the Nintendo 3DS). Of our
mobile-game survey responders, 94.6% of them
are working on Apple iOS titles, 70.7% for Google
Android, and a smaller number for other devices:

top platforms for mobile
game developers

94.6% > Apple iOS

70.7% > Google Android

8.8% > MS Windows Phone 7

2.7% > RIM Blackberry OS

2.0%

> Symbian

1.4% > Samsung Bada

top platforms for social game
developers

83.5% > Facebook

16.8% > Google+

47.0% > Dedicated
website

Clearly, iOS is the primary platform for mobile
developers. We found that nearly all mobile
developers targeting alternate mobile phone
platforms are also targeting iOS (93.7%). The
majority of our social game responders are working
on Facebook apps. In fact, the variety of platforms
social-game developers report developing for
is rather small—just Facebook, Google+, or a
dedicated website. Of those working on games

intended for a dedicated website, 66.7% are also
targeting Facebook with this game, while 100% of
developers targeting Google+ are also targeting
Facebook. Just 19% of Facebook developers are
targeting Google+.

We should note that this survey doesn’t cover
PC-native free-to-play games, another interesting
sector of the game industry with a different set of
technology requirements. The technology used for
the game client on these titles is more similar to
triple-A PC-based titles than mobile or social games,
although the server backend is similar to what is
used for networked mobile and social games.

OS versions and platforms

$ One of the first challenges when considering
making a mobile game is deciding which

devices to support. For iOS, the number of choices is
relatively small, but each tier of devices represents
a large audience, so choosing how far back your OS
support goes is very important. We found that the
most popular shelf for support tends toward the
introduction of Apple’s Game Center, in OS 4.1.

supported iOS versions

13.4% > 3.0+

16.5% > 4.0+

39.4% > 4.1+

30.7% > 5.0+

supported iPhone devices

16.4% > iPhone 3G
2nd gen

66.4% > iPhone 3GS
3rd gen

93.0% > iPhone 4
4th gen

91.4%

> iPhone 4S
5th gen

retina display

Choosing which hardware to support is similarly
difficult. We found that many developers are still
supporting devices back to the iPhone 3GS (third
generation) and iPad 1, but the support for each

of these is gradually softening. Relatively few
developers are still supporting the iPhone 3G
(second generation). One developer justified
supporting the 3GS with “We’ll still release things
that work on the 3GS, but the iPhone 4 and up
means we’re dealing with people who likely
spend more money on mobile apps.”

supported iPad devices

71.1% > iPad 1

93.0% > iPad 2

83.6%

> iPad 3
[new iPad]

retina display

android display support

9.8% > Small/ldpi

13.4% > Small/hdpi

35.4% > Normal/ldpi

53.7% > Normal/mdpi

61.0% > Normal/hdpi

43.9% > Normal/xhdpi

45.1% > Large/ldpi

58.5% > Large/mdpi

36.6% > Xlarge/mdpi

For Android devices, the preferences for OS
support were less clear from our survey, but a
deeper concern was the diversity of display
devices. The Android developer web site contains
relatively current information about the
distribution of display devices accessing the
Google Play market (see http://developer.
android.com/resources/dashboard/screens.
html). At the time of this article, it shows 66.3%

game developer | may 20128

http://developer.android.com/resources/dashboard/screens.html
http://developer.android.com/resources/dashboard/screens.html
http://developer.android.com/resources/dashboard/screens.html

www.gdmag.com 9

Zooworld 2.

Ziggurat.

Beat Sneak Bandit.

http://www.gdmag.com

game developer | may 201210

of devices being actively used have a “normal”
size screen with “high” display density (indicated
as normal/hdpi); 18.5% of devices have a
“normal” screen with “medium” density (normal/
mdpi), and each other display formats fall below
5%. Yet, the distribution of support from our
survey responders is substantially wider.

Several responders indicated, “In practice,
there are almost no ‘small’ screens any more,”
and another noted that due to the variety of
Android devices, but large installed base for
relatively few, there’s “really only interest
in supporting the Kindle.” A few developers
commented that they are “using Unity3D to
manage this.”

Given the challenges from the variety
of display sizes and densities available for
both iOS and Android, we wondered whether
developers were rendering to a default size
and scaling in some way to fit the particular
device: 29.6% of iOS developers and 33.3%
of Android developers indicated that they
are. However, developers noted that it varies
depending on the type of game: “Some of our
games scale, some use native resolution.”Said
one developer. Another said, “We try to start at
iPhone 4 retina resolution and then scale down
for other iPhones.” Yet a third noted “We do 25%
reduction in some low performance situations.”
Several people mentioned that they plan to use
multiple sizes of assets, though the current app
store size limitations can bite them one said,
“We will eventually use two sets of assets with
appropriate resolution, but will start by scaling
up.” And once again a few people said, “We use
Unity to manage this.”

mobile game technology

$ The meat of our survey centered on the
game engines and libraries developers are

using for mobile games. What was most apparent
in the results was incredible enthusiasm for
Unity3D. 53.1% of developers commented that
they are using Unity in some way, even higher
than the number developing a completely
custom game engine.

As for the technologies developers are looking
at for future projects, once again over 50% of the
responses pointed to using Unity or moving to it.
Unreal garnered second place for future use with
14% of developers, and Cocos2D was also popular,
with 10% of developers suggesting they’d like to
use it. Moai, Game Salad, Game Maker, Corona, and
Shiva3D also made multiple appearances in the list
of potential future technologies.

We were curious about the value of
cross-platform engines to mobile developers:
Would mobile game developers be interested
in working with technologies that also ran
on other nonmobile devices? As it turns out,

interest in compatibility with devices other than
smartphones falls off rapidly.

top mobile game engines/
platforms

53.1%
> Unity

39.8% > Custom engine

17.7% > Cocos2D

5.3% > Marmalade

5.3% > Corona

cross-platform value (out of 5)

4.38 > Mobile

3.08 > Web
2.14 > Consoles
1.88

> Traditional

Handhelds

When it comes to determining which engine
features are most important for a developer, it’s no
surprise that the most valuable feature is rapid
development time (4.45/5). “A big decider for me is
whether or not the engine can ‘get out of my way’
by enabling me to accomplish my ideas without
feeling like I have to jump through hoops to do it.”,
said one developer.

Of course, more and more mobile games
are hooking into the player’s social networks
as well. While Apple has Game Center, there
hasn’t been much uptake of any Google+ related
social networking for Android games. We found
that 72% of mobile developers choose to use
Facebook connectivity for their games. 65% point
to integration with Game Center, and 44% use a
player’s Twitter network if they so choose. The most
prominent independent game-focused network,
GREE’s OpenFeint, came in at a respectable 29%.

Middleware library developers are increasingly
targeting mobile game devs, but by and large,

developers seem most interested in physics
solutions—the top four middleware packages are
all physics-related.

Several developers commented on their use of
middleware libraries that are integrated with Unity,
such as Beast, Umbra, FMOD, and Allegorithmic
Substance. When asked what other libraries
developers would like, there was a mix of ideas, but
the two most common replies were an “Easy-to-
use, small footprint, cross platform UI layout tool” to
help with the various screen layouts (Scaleform GFX
for Unity was asked for), and a “server-side scalable
and customizable solution for mobile and social
games” (we’ll talk more about this later).

top engine features (out of 5)

4.45 > Rapid
development

time

4.32 > Flexibility and
easy extendability

4.20
> Engine

performance
(speed, efficiency)

4.14 > Support and
documentation

3.69 > Prior successful
use by other team

top middleware libraries

35.4%
> Box2D

25.0%
> Nvidia PhysX

14.6%
> Bullet

8.3%
> Havok Physics

8.3% > Autodesk Scaleform

social game technology

$ When it comes to technologies used for
social games, it seems that the client-side

technology options for social games are relatively
few, but the distribution is certainly interesting:

www.gdmag.com 11

59.2% of developers pointed to use of Flash, 51.0%
to Unity3D, and 46.9% to HTML5/Javascript. Of
course there is some substantial overlap, and one
has to assume that the majority of social games are
using HTML5/Javascript in some form. What really
stands out is the impressive support for Unity by
the social-game responders. We haven’t seen many
Unity-based social games yet, but it seems like we
may soon. As for libraries, Box2DJS and as3isolib
were noted. One thing that was remarkably curious
was the small uptake of Flash Stage3D; only 6.1%
of developers claimed that they are working with
Stage3D for 3D graphics in the browser. The Stage3D
technology is interesting and powerful, but it may
be that without a strong toolset like Unity’s, game
developers won’t make much use of it.

Next, we wanted to know which browsers and
art tools are being used by social game developers.
Chrome and Photoshop came out on top.

top browsers for social game
development

89.8% > Google Chrome

71.4% > Mozilla Firefox

53.1% > Apple Safari

Lastly, we wondered if social-game developers
were looking for any libraries or frameworks that
are not yet available. As the complexity of social
games grows, middleware and engine providers
will certainly gain in popularity. But are client-side

libraries really what developers are interested in
most? No. “Backend networks, payment systems,
wrappers for platform APIs are where most of our
tech emphasis is at. An ‘engine’ is a commodity,”
said one developer. A handful of folks commented
that they really hope for server-side scalable and
customizable tech for social and mobile games,” or
something like “FarmVille in a box, in the cloud. We
could use it to prototype stuff quicker.”

top art packages for social
game development

85.7% > Adobe Photoshop

36.7% > Autodesk Maya

30.6% > Autodesk 3dsmax

20.4% > Gimp

6.1% > Blender

server technology

$ In previous sections developers commented
on a desire for improved server

technologies. We asked survey responders
to detail their experiences on their games.
Impressively, Amazon Web Services, and EC2,
are used by over 50% of all developers who

responded to the survey.
But what technologies are people using on

those servers? Particular Amazon technologies
(such as DynamoDB) did not rise to the top on this
question, strangely. Amazon’s server scalability is
quite popular, but it seems that game developers
are more comfortable with traditional web services
such as MySQL and Apache HTTP Server.

server location

54.7% > Amazon AWS/EC2

24.0% > Owned dedicated
servers

14.7%
> Rented dedicated

servers

8.0% > Owned cloud
VM servers

8.0% > Rackspace Cloud

5.3% > Windows Azure

5.3% > Google App
Engine

The server technology comments emphasized the
difficulty of building a scalable game service in the
cloud: “I just want to write game logic on the
server—I don’t want to be concerned with scaling

CityVille.

http://www.gdmag.com

http://www.gdconf.com

www.gdmag.com 13

databases, figuring out how many servers I need,
etc.” Said one developer, “This is by far the hardest
part of development right now. There seriously
needs to be an entirely new category of commodity
Internet infrastructure designed for scaling games”,
said another. Fortunately, there are a growing
number of potential solutions, such as
MuchDifferent’s UnityPark Suite for those using
Unity, PlayerScale’s Player.IO for Flash titles, and
Electrotank’s EUP. This is also an opportunity for
publishers, who can help developers with these
tricky areas. Recently announced Kerosene Games
has plans to assist developers with technology,
including analytics, social plumbing, and
cross-promotion capabilities.

top server technologies

51.5% > MySQL

30.9% > Apache HTTP
Server

25.0% >memcached

16.2% > nginx

13.2% > node.js

11.8% > MongoDB

10.3% > Nagios

10.3% > MS SQL Server

7.4% > Apache Hadoop

5.9% > Microsoft IIS
web server

One survey responder was aggravated about the
potential costs associated with cloud computing: “...
it’s very difficult to estimate costs ahead of time. If
my game goes viral and I end up with a few million
daily active users who each send a tiny packet of
data once an hour to some cloud backend, what will
I be charged?” This is a tricky problem, especially
for those new to cloud computing. There’s a clear
need for more accurate estimates and real-time
reporting. Raveld is an example of one service that

is seeking to help address this problem.

open source

$ For traditional core games, using open-source
technologies can be challenging. Some

open source licenses require release of all related
source code, which is a problem for big retail games,
and even more generous open source licenses
leave developers wondering if they’re exposing
themselves to potential patent problems. Typically,
there is more leniency around using open source
technology for a game’s tools than for the game
code itself, but the policy varies from company to
company. In the social and mobile spaces, which
are moving at such a rapid pace and tend toward
use of web services, is open source looked upon
any more generously?

is open source ok?

4.11 > Game tools

3.74 > Game server
backend

3.69 > Game engine/
libraries

In general, our survey responders approve of use
of open-source technologies, although there’s
still a strong preference toward using open
source in the tools versus in the game itself.
Developers generally commented favorably on
open source, although some expressed concern

that “open source tools are not that good in most
situations at least in games. There are great
databases and web development tools.” Typically
developers favored “open source platform
solutions, such as ad-serving, web CMS, and so
on,” but were more cautious about game code.

Many developers expressed concern about
particular open source license agreements. The
GPL and LGPL require release of associated source
code in many instances, so they can be difficult
to work with for a commercial game. “I like the
liberal licenses and try to stay away from the GPL
and its ilk. If I can’t at least link to something in my
proprietary binary, it’s of practically no value to
me.” Preferred license agreements include the MIT
license, BSD, and zlib.

mobile game technology

$ Although not necessarily technology focused,
we had a few other questions for our

survey responders as well.

Analytics
Most of the survey responders have rolled
their own analytics solutions: 57.4% of
social developers have and 47.5% of mobile
developers. For social game developers,
Kontagent (20.4%) was the most popular
licensed solution, and although there were
frustrations about Kontagent’s price tag,
“Kontagent has what we need,” said one
responder. Mobile game developers flocked
toward Flurry (29.3%), and no other analytics
solution garnered more than a 10% share. A
variety of other solutions were mentioned
including Mixpanel, Apsalar, Kissmetrics,
Claritics, Localytics, Swrve, and simply using
Google Analytics.

Madden 2012.

http://www.gdmag.com

game developer | may 201214

Monetization
We were curious to find out the popular
methods for making money, and how it differs
between platforms. As we suspected, in-app
payments turned out the most popular,
among 81.8% of all responders. Among mobile
developers, having a paid app was the next
most popular monetization solution (52.3%),
while using in-game ads was the most popular
among social game developers (58.2%). As
noted by one developer, “We tried different
schemes on different platforms (free with
in-app payments on Android, paid on iOS) and
made dramatically more with free and in-app
payments. So now we are free everywhere.”

Stores
There are a number of alternate app stores
available. Are game developers finding them
useful? Understandably, we found that the
most popular app stores were the Apple
App Store (94.4%) and Google Play (58.3%),
with the percentages largely reflecting the
distribution of developers working on iOS and
Android games. But what other app stores are
developers using? 32.4% reported putting their
games up on the Amazon AppStore, but apart
from that, very few developers are utilizing
alternate stores. Common comments included
sentiments such as “Honestly, only Apple and
Amazon are worthwhile from our research and
tests,” and “Fragmentation of app stores is a
very bad thing for developers, particularly indie
developers.” And yet, some see opportunity:
“The Android Market is still in a growing stage,
but surely developers that take the opportunity
to get fame there will get good results in
the future as there aren’t that many apps
compared to the App Store.” In general, though,
most developers’ opinions were summed up

by this comment: “So far, they have almost no
value to us. We’ve flirted with a few in the past
but they cannot bring a significant number of
users to make them worthwhile (yet).”

Publishers
We asked mobile and social developers
about their thoughts on using a publisher
or distributor. As competition increases in
these spaces and the costs for development
and marketing increase, it may become more
common for developers to partner up. Are they
doing so already? Responders said no, by and
large. Only 17.7% of survey responders claim
to be working with a publisher or distributor
currently. “We’re hoping to self-publish and
test the waters,” said one. “We do contracts to

earn money for our main project,” said another.
Yet, 57.4% of the responders indicated they
may look to work with a publisher/distributor
in the future. “A publisher could be very well
worth the cost in terms of aiding us with
publicity and distribution reach,” one developer
noted. Some encourage caution: “It comes
down to the contract detail. Keeping my IP and
creative rights would be number one.” It will be
interesting to see how the funding landscape
evolves for mobile and social games over the
next few years.

parting thoughts

$ There are some clear winners in our
analysis of the social and mobile

technology scene. iOS and Facebook are
the dominant platforms. A majority of game
developers are using Amazon’s cloud services
to manage the scalability of their servers,
and developers prefer MySQL for the backend
database. Unity is the clear favorite for game
engines—developers who aren’t using Unity
now are looking at it seriously. Social game
developers are using Google Chrome a lot
during development—admittedly, developers of
browser-based games are using all the browsers
a lot, though Chrome is the clear favorite. Server
technology is challenging for game developers,
and many developers wish more solutions were
available, so they can focus on creating their
game.

Yet, as one of our survey responders
points out, “It’s an amazing time to be a mobile
developer. Creating games is more accessible
than ever, and we hope to continue to learn,
grow, and most importantly have fun while
we develop.” Another commented, “I would
only like to say that there has never been
a time when game developing has been as
accessible as now. I’m not a programmer, but
when I discovered all the tools that are available
now, I realized I had no excuse not to try to
make a game.” On the flip side, one developer
responded, “I’m sick of this overhyped bullshit–
I’m throwing away my life on this and still not
making any money.”

The wisest response and best summary
for our survey was perhaps this: “The mobile
landscape changes every six months. Ask me
all this stuff again in August, and I’ll probably
give you different answers.” Of this we can be
certain.

Mark DeLoura is a video game industry technologist, and

creator of the Game Programming Gems series of technical

books. He has worked in technology, strategic, and

business leadership positions at Sony, Nintendo, Google,

THQ, and Ubisoft. Follow Mark on Twitter: @markdeloura.

Angry Birds.

Triple Town.

http://e3expo.com
http://www.e3expo.com

GAME DEVELOPER | XXXXX XXXX 16

S E U N G M O K O O

BY NOW, M MOR P GS A S W E K NOW T H E M A R E W E LL OV E R T E N Y E A R S OLD. A
T Y PI C A L M MOR P G PL AY E R S PE N DS OV E R H A LF T H E IR GA M E PL AY TIM E IN COM -
BAT. T H AT M E A NS T H AT OF T H E TIM E OU R T Y PI C A L M MO PL AY E R H A S S PE N T
OV E R T H E L A S T T E N- PLUS Y E A R S, OV E R H A LF OF T H AT H A S BE E N PL AYING IN A
R AT H E R BORING COM BAT MODE L — TA BBING F ROM TA RGE T TO TA RGE T A N D BU T-
TON- M A S HING T H E IR VA RIOUS AT TACK S. T H AT SIM PLY ISN’ T V E RY E NGAGING.
T H AT ’ S W H Y W H E N W E S TA RT E D DE V E LOPING T E R A , W E S E T OU T TO M A K E M MO
COM BAT E X CITING. H E R E ’ S HOW W E IM PLE M E N T E D T E R A’ S “ F R E E-TA RGE TING ”
S YS T E M IN A WAY T H AT DIDN’ T R EQUIR E A GIGA N TI C FA R M OF S E R V E R S.

GAME DEVELOPER | MAY 201216

www.gdmag.com 17

How blueHole studio built
a better combat system
for tera

www.gdmag.com 17

http://www.gdmag.com

GAME DEVELOPER | MAY 201218

WHY WE MADE AN
ACTION-HEAVY MMORPG

 We incorporated action-
heavy fi ghts in TERA

because we wanted to differentiate
our game from the conventional
MMORPG’s tedious combat. TERA
players don’t just trigger skills in
a serial order with a set target.
Instead, they have to dodge and
block enemy attacks by moving
their character away while taking
the enemy’s movement into
account, and position themselves
just right to aim their attacks
while adjusting for their direction
and distance. We don’t even
need to calculate dodging or

parrying statistics, as other MMOs
do, because these factors are
determined by the player’s real-
time reaction to enemy attacks.
This kind of “free-targeting combat”
is natural in console and single-
player PC games because it’s an
effective way to support action-
heavy battles, but early MMOs
couldn’t pull it off because they had
too many latency-related problems.

Our free-targeting combat
system uses area-of-effect
attacks that have continuous
timing information, so we assess
multiple times whether each attack
hits or misses, not just once per
attack. Many MMORPGs already

incorporate partial elements of a
free-targeting combat system—
such as special attacks with
cooldowns—but have not extended
free targeting throughout their
combat.

We also extended the concept
of free targeting to include other
interactions, most notably healing.
When players have to direct and
aim their heals and buffs, they’re
more excited and feel like the
game itself is more skill-based.
Our understanding is that Western
gamers in particular gravitate
toward gameplay that rewards
player skill and feels less repetitive
than existing offerings.

MANAGING THE LOAD
In a conventional
MMORPG combat-

targeting system, each attack
calculates the distance and
direction to a single target. It is a
one-on-one attack and a low-impact
calculation for server load.

The process for free-targeting
combat, on the other hand, involves
determining weapon range and
the corresponding target data for
each time frame, then resolving
the attack using the collected data.
If we went about the same way

as conventional free-targeting
combat, the processing load for the
servers would become severe. The
calculations necessary to assess
whether each attack hits or misses
would drastically increase CPU
usage. Instead, we imitate a physics
engine on the server by searching
spaces for weapon range and
checking collisions. Any MMORPG
desiring to implement free-
targeting combat mechanics should
make those calculations server-
side for security and combatant
(player and monster) handling.
If calculations are performed on
the client-side, you run the risk of
your clients being hacked to alter
the calculations, and it could be
nearly impossible to synchronize
combatant information from every
client in real-time.

In other words, for free-targeting
combat to work, the server will need
to process the battle calculations
very rapidly. If the server has even
a slight processing delay during a
free-targeting battle, the resulting
latency will frustrate players. To
implement free-targeting battles in
an MMORPG, we had to address the
technical challenges of dealing with
increased latency from server-side
CPU load.

FIGURE 1: Every creature in TERA is made of
cylinders that you can attack.

<Skill id=”10101” name=”figure 2 skill sample”>
••• •••

<TargetingSequence>
 <Targeting time=”500” collisionVolume=”value, value, •••”
target=”enemyMonster” >
 <SkillEffect damage=”200” aggro=”value” heal=”0” ••• >
 ••• •••
 </SkillEffect>
 </Targeting>
<Targeting time=”650” collisionVolume=”value, value, •••”
target=”enemyMonster” >
 <SkillEffect damage=”150” aggro=”value” heal=”0” ••• >
 ••• •••
 </SkillEffect>
 </Targeting>
</TargetingSequence>
••• •••
</Skill>

SAMPLE ATTACK
SKILL DATASHEET

TABLE 1

FIGURE: 2.2

FIGURE: 2.1

www.gdmag.com 19

Defining the Data
Structure for free-
targeting combat

The server has no physics
engine, because we felt

it would be too CPU-intensive to
compute physics. Instead, the
world of Tera is geared toward
space calculations and collision
checks. Every creature (PC,
monster, stationary object, and so
on) is made up of cylinders that
you can attack as shown in Figure
1. Each attack contains a timed
collision volume (the collision
volume expressed over time).

Figures 2.1 and 2.2 show the
range of time-marked collisions as
they change over time. By checking
the collision between the target’s
cylinders and this timed collision
volume, we determine whether the
attack hits.

The XML datasheet example
shown in Table 1 is the attack
corresponding to Figures 2.1
and 2.2. The attribute time is the
timing (in milliseconds) for the
attack landing, and consequently
the time to check the collision.
The collision volume in Figure 2.1
and Figure 2.2 is used at 500ms
and 650ms after the attack starts.
The attribute collisionVolume
treats the range with considerable
detail. [For convenience, these
attributes are generated by our
skill-authoring tool.]

two-Stage ProceSSing
for free-targeting
attackS

Each free-targeting
attack has several

targeting times to determine the
collision volume hits (We’re using
an attack as the example here, but
it’s worth remembering that heals
and buffs work the same way).
Depending on the type of attack,
there may be anywhere from two
to more than a dozen targeting
times. Each targeting time is
composed of a two-stage process;
the front end and the back end.
The front-end stage gathers targets
that collide with the collision
volume of the attacker’s skill by
searching the specific area of the
world. The back-end stage applies
effects such as damage to the
gathered targets.

Figure 3.1 and 3.2 show an
example of this two-stage process.
This figure is a simplified top-view
diagram corresponding to the
attack skill in Table 1 and Figures
2.1 and 2.2. This attack skill has
two targeting times: 500ms and
650ms. At the first targeting time
(500ms), an attacker collects one
target whose cylinders intersect
with the collision volume (front-
end stage), then causes 200
damage to the target (back-end

stage). After that, the attacker
deals 150 damage to another
target in the same way at the next
targeting time (650ms). The front-
end stage corresponds closely to
reading the targets’ properties,
while the back-end stage updates
those properties.

While processing, the
front-end stage makes frequent
space searches to gather targets
for a collision check, and the
back-end stage requires targets

to update their properties
frequently. If these operations
use locks (our synchronization
mechanism which enforces
limits on access to a resource in
a multithread environment), the
lock-contention—which drastically
increases blocking or CPU usage
(up to 100%) on the server—would
become severe, and we wouldn’t
be able to use our free-targeting
combat throughout the game.
Therefore, we use lock-free

Damage
-200

back-enD Stage
(500 ms)

front-enD Stage
(500 ms)

500 ms

650 ms

3D colliSion volume
(weaPon trail over time)

Damage
-150

back-enD Stage
(650 ms)

front-enD Stage
(500 ms)

500 ms

650 ms

 attacker targets

figure 3.2 : the two-stage
attack process shown in
figure 2.2

figure 3.1: the two-stage
attack process shown in

figure 2.1

http://www.gdmag.com

GAME DEVELOPER | MAY 2012 20

methods in our programming to
reduce the lock-contention.

LOCK-FREE
IMPLEMENTATION FOR
TWO-STAGE PROCESSING

First, we adopt the
symmetric worker

thread pattern [1] to remove
locks effectively in two-stage
processing. This pattern has one
single thread-pool that consists of
as many symmetric worker threads
as the number of CPU cores; no
thread exclusively handles a
particular content or area. Any
worker thread can perform any kind
of task. Worker threads process all
tasks using nonblocking methods;
there are no blocks among
worker threads utilizing lock-free
implementation [2]. This makes
worker threads fully utilized; that is
to say, it is not necessary that we
create more worker threads than
the number of cores. This pattern
gives us direct benefi ts because
the number and speed of the CPU

cores has a big infl uence: More
cores mean more threads, and
faster cores mean faster threads.

Let’s look at our worker thread
loop as follows:

void WorkerThreadRun()

{

 while (1)

 {

 IoCompletionPortTask() ;

// A

 TimerTask() ; // B

 ClusterTask() ; // C

 }

}

The worker thread is an infi nite
loop throughout server uptime.
The number of worker thread
loops is the same as the number
of CPU cores. Because we input
all requests through Windows
I/O Completion Port (IOCP) on
the server, packet handling
from clients is processed in
IoCompletionPortTask(), which
calls GetQueuedCompletionStatus()

(Windows API) with a timeout value
from 0ms to 16ms according to the
turnaround time (processing time
for A to C) of the thread loop. In our
worker thread loop, TimerTask()
performs scheduled tasks in
time by checking the current
system time via GetTickCount64()
(Windows API). The ClusterTask()
exists for the effective area search
due to the nature of free-targeting
combat. We will explain this in
detail in the next section.

If there is a lock that blocks
two-stage processing within the
worker thread loop functions, it
will postpone packet handling and
scheduled tasks. That’s why we
designed a lock-free mechanism
for the two-stage processing so the
worker thread loop never stalls.

FRONT-END STAGE
IMPLEMENTATION

 We divide TERA’s seamless
world into squares called

clusters. In any circumstance,
every creature must be attached
to a specifi c cluster; each cluster
is a container that holds pointers
for creatures. Figure 4 displays
creatures on the clusters in a
diagram form. When a creature
moves from cluster 32 to cluster
33 (C à C’), for example, cluster
32 removes the creature while
cluster 33 adds it. In a similar
way, a creature can be added to
or removed from a cluster when it
spawns or dies.

It’s worth noting that each
worker thread has its own
thread-local storage (also called
thread-specifi c storage [3]),
which maintains information
about clusters. In other words, the
cluster information is replicated
entirely to each thread-local
storage (the number of worker
threads determines the copy
count of the cluster information).
Figure 5 represents an example of
this structure.

The cluster update queue,
shown in Figure 5, serves as
a task dispatcher for updating
cluster information in consecutive
order. The cluster update queue
is a global variable shared by all
worker threads. Listing 1 shows
its implementation in the form of
a lock-free circular queue for best
performance.

When an action requires
updating clusters (such as, when
a monster moves from one cluster
to another), a worker thread adds
a task (see Listing 2) at the back
of the ClusterUpdateTask queue.
All worker threads will eventually
process this task independently
so that their private thread-local
storage information is updated.
Because all worker threads process
the same queue using the same
algorithm, the per-thread cluster
information stored in thread-local
storage should be identical.

 The cluster update tasks that
are posted to the queue provide
delta information, so a task might
say “remove object 28 from cluster
32 and add to cluster 33.” Since
these tasks must be processed
by all of the worker threads to
ensure the thread-local storage
information stays synchronized,
the tasks each have a reference
count. If there are eight worker
threads, the reference count will
be eight. As each thread completes
the task, it decrements the count,
and the last worker thread will
then delete the update task. As you
can imagine, we use a lock-free
function (in this case, the Windows
function InterlockedDecrement) to
ensure that multiple threads can
safely decrement the reference
count at the same time.

When each worker thread
invokes ClusterTask(), it performs
all queued tasks in the cluster
update queue to update its
replicated cluster information (see
“Pop and Execute Cluster Task” in
Figure 5). All worker threads have
an index that points to the position
of the most recent executed task
on the cluster update queue. It is a
global variable, local to a thread. The
code below shows how to declare
the index, (“Current Index” in Figure
5) in the form of the thread-local
variable on the Windows system.

__declspec(thread) __int64

TLS_CurrentTaskIndex ;

Whenever one cluster update task
is executed in ClusterTask(), each
worker thread increases its own
TLS_CurrentTaskIndex by one. When
this cluster update task fi nishes
throughout all worker threads, the
last-performed worker thread—the

LI S T I N G 1 : CLU S T E R U P DAT E QU EU E (C + + P S EU DO
CODE W I T H W IN DO W S A P I)

struct ClusterUpdateQueue
{
ClusterUpdateTask* m_TaskQueue[MAX_TASK] ; // Circular queue
__int64 m_PushedCount ; // Total pushed task count

void PushBack(ClusterUpdateTask* task)
{
 __int64 index = InterlockedIncrement64(&m_PushedCount) Ð 1
;
 // (#)
 InterlockedExchangePointer((void**)&m_TaskQueue[index &
MAX_TASK], (void*) task) ;

// In case of blocking at (#), calling GetTask() will return
NULL (It’s OK)
// this makes the loop in ClusterTask() escape.
}

void RemoveTask(__int64 index)
{
 ClusterUpdateTask* prevTask = (ClusterUpdateTask*)
InterlockedExchangePointer(
 (void**)&m_TaskQueue[index & MAX_TASK], (void*)NULL) ;
 delete prevTask ;
}

ClusterUpdateTask* GetTask(__int64 index)
{
 if (index < m_PushedCount)
 return m_TaskQueue[index & (MAX_TASK-1)] ;
 else
 return NULL ;
}

// performs tasks in m_TaskQueue
void ClusterTask() ; // called in the worker thread loop.
(implementation in Listing 3)
} ;

www.gdmag.com 21

thread getting a return value of true
when called by ClusterUpdateTask::
UpdateCluster()—removes it from the
cluster update queue. Listing 3 shows
the program code for this process.

When searching for creatures in
some target clusters, it is possible
to get their pointers directly from
the thread-local storage without
locking the clusters, because each

thread has its own copy of the
cluster data. On the other hand, if a
creature moves from one cluster to
another cluster, all worker threads
update the cluster information
in their thread-local storage. In
other words, the advantage of this
mechanism is that it takes more
work to read the cluster information
than to update it because of the

nature of free-targeting combat.
Overall, the cluster mechanism

is very effective for the front-end
stage because so many queries will
find creatures in a particular space.

Back-End StagE
ImplEmEntatIon

The back-end stage is the
process that modifies

creatures gathered in the front-end
stage. This process makes frequent
update operations.

To reduce the HitPoints (HP)
value of a target creature by
200, for example, two possible
implementations to deliver damage
to an enemy are shown in this
code:

lI S t I n g 2 : CLus T e r u P daT e Ta s k (C + + P s eu dO COde
W I T H W In dO W s a P I)

class ClusterUpdateTask
{
public:
ClusterUpdateTask (): m_RefCount(0) { }

bool UpdateCluster()
{
 [••• •••] // Code for Updating Cluster Information

 // Is this final worker thread?
 long refCount = InterlockedDecrement((&m_RefCount) ;
 if (0 == refCount)
 return true ;
 else
 return false ;
}
void AddRef(long refCount)
{
 InterlockedAdd(&m_RefCount, refCount) ;
}

private:
volatile long m_RefCount ;
[... ...] // Members for delta-information for cluster update
}

lI S t I n g 3 : P e r fOr mIng Ta s k s fOr u P daT e CLus T e r
In fO (C + + P s eu dO COde W I T H W In dO W s a P I)

void ClusterUpdateQueue::ClusterTask()
{
 while (1)
 {
 ClusterUpdateTask* task = GetTask(TLS_CurrentTaskIndex)
;
 if (NULL == task)
 break ;

 bool final = task->UpdateCluster() ; // execute!

 // remove the task when all worker threads carried out
this task
 if (final)
 RemoveTask(TLS_CurrentTaskIndex) ;

 ++TLS_CurrentTaskIndex ;
 }
}

lI S t I n g 4 : Ta s k W r a P P e r fOr LO Ck- f r e e e x eC u TOr
(C + + P s eu dO COde W I T H W In dO W s a P I)

template <typename Arguments>
struct Task
{
 typedef void (Creature::*MemberFunction)(Arguments) ;
// return type: “void” only

 Creature* m_Creature ; // creature
 MemberFunction m_Func ; // function pointer to invoke
 Arguments m_Args ; // function argument

31 32 33

21 22 23

11 12 13

updatE
(movE)

crEaturE

cluStErS

rEplIcatEd cluStEr Info

workEr thrEad #1
currEnt IndEx: 1

workEr thrEad #2
currEnt IndEx: 1

workEr thrEad #n
currEnt IndEx: 1

0

1

2

3

n

...

cluStEr updatE
quEuE

(1) puSh cluStEr u
pdatE taSk

u

(2) pop & ExEcutE cluStEr taSk

SEquEncE of taSk
ExEcutIonS fIgurE 5 : replicating cluster information to

thread-local storage.

fIgurE 4 : movement from one cluster to another.

E 5 : replicating cluster information to thread-local storage.

http://www.gdmag.com

GAME DEVELOPER | MAY 201222

Case of using a critical section

enemy->EnterCriticalSection()

;

enemy->DoDamage(200) ;

enemy->LeaveCriticalSection()

;

Case of using a spin lock

enemy->EnterSpinLock() ;

enemy->DoDamage(200) ;

enemy->LeaveSpinLock() ;

In this way, whenever we change
a property (i.e., HitPoints) of
another object (i.e., enemy) in a
multi-thread environment, we must
use a lock (such as critical section
and spin lock) for thread safety.
If there are a large number of
updates to the shared data—in this
case, enemy—at the same time
(we call this phenomenon “lock-
contention”), it either increases
blocking (in case of using a critical
section) or increases CPU usage
drastically (in case of using a spin
lock). This situation causes latency.

For this reason, we built a task
dispatcher called Lock-Free Executor
to update them locklessly. Every
creature has a Lock-Free Executor to
guarantee the execution order of its
member functions. In this example,
the function pointer changing
HitPoints with an argument (i.e.,
200) is wrapped as a task, and
then the Lock-Free Executor of
that creature registers this task for
subsequent execution. This code is
the case of using Lock-Free Executor
for higher concurrency:
enemy->LockFreeExecutor.

DoTask(&Creature::DoDamage, 200) ;

The member function pointer,
&Creature::DoDamage, with the
argument 200 is passed into
enemy’s Lock-Free Executor by
calling DoTask(). In fact, this call is
wrapped as a Task shown in Listing
4 (m_CreatureÐenemy, m_ArgsÐ200,
m_FuncÐ&Creature::DoDamage),
and then this Task is registered to
enemy’s Lock-Free Executor, which
performs its tasks in sequence.

Listing 4 shows something
peculiar; it allows the member
function to wrap only a void
return type. Because the task
execution in Lock-Free Executor
is asynchronous, we cannot get
a return value immediately. To

LI S T I N G 5 : LO CK- F R E E E X EC U TOR (C + + P S EU DO CODE W I T H W IN DO W S A P I)

// list of LockFreeExecutor registered in this worker-thread
__declspec(thread) deque<Lfe*>* TLS_LfeList ;

// indicates the LFE which occupies this worker-thread at this moment
__declspec(thread) Lfe* TLS_CurrentLfeOccupyingThisThread ;

// Lock-Free Executor (LFE)
struct LockFreeExecutor
{
// Task Queue (we built this queue by modifying the reference [5]) struct LockFreeTaskQueue
 {
 void Push(Task* newValue) { ... }
 vector<Task*> Pop() { ... }
 ...
 } ;

// member variables
 LockFreeTaskQueue m_TaskQueue ;
 __int64 m_RemainTaskCount ;

 LockFreeExecutor () : m_RemainTaskCount(0) {}

 // Push a task into TaskQueue, and then Execute tasks if possible void DoTask(Task* task)
 {
 if (InterlockedIncrement64(&m_RemainTaskCount) != 1)
 {
 // register the task in this LFE
 m_TaskQueue.Push(task) ;
 }
 else
 {
 // register the task in this LFE
 m_TaskQueue.Push(task) ;

 // Does any LFE exist occupying this worker-thread at this moment?
 if (TLS_CurrentLfeOccupyingThisThread != NULL)
 {
 // just register this LFE in this worker-thread
 TLS_LfeList->push_back(this) ;
 }
 else
 {
 // acquire
 TLS_CurrentLfeOccupyingThisThread = this ;

 // invokes all tasks of this LFE
 Flush() ;

 // invokes all tasks of other LFEs registered in this thread
 while (!TLS_LfeList->empty())
 {
 Lfe* lfe = TLS_LfeList->front() ;
 TLS_LfeList->pop_front() ;
 lfe->Flush() ;
 }

 // release
 TLS_CurrentLfeOccupyingThisThread = NULL ;
 }
 }
 }

 // Execute all tasks registered in TaskQueue of this LFE
 void Flush()
 {
 int count = 0 ;
 do {
 vector<Task*> taskList = m_TaskQueue.Pop() ;
 count = taskList.size() ;

 for (int i=0 ; i<count ; ++i)
 {
 Task* currentTask = taskList[i] ;
 currentTask->OnExecute() ;
 delete currentTask ;
 }
 } while (InterlockedExchangeAdd64(&m_RemainTaskCount, -count) != count) ;
 }

www.gdmag.com 23

receive the return value, we should
build the programming pattern
similar to Active Object [4].

For example, if the monster
instance deals 200 damage to
player instance and gets a return
value (HitPoints) from calling
Player::DoDamageAndGetHitPoin
ts(), we need a member function
to receive the return value—
Monster::ReceiveHitPoints(int
returnVal) in this example.

Look at this. The execution
sequence is (1) to (3).

This way, we get the return
value asynchronously.

Listing 5 shows Lock-Free
Executor code. Every creature has
a Lock-Free Executor for updating
its states (properties such as
HitPoints and ManaPoints) from
other objects. If some other objects
want to call a member function
that modifies another object’s
properties, they must call the
member function through using
LockFreeExecutor::DoTask(). It
guarantees the execution order
of function calls on a creature by
utilizing a lock-free queue,

LockFreeExecutor::LockFreeTa
skQueue, based on nonblocking
concurrent queue [5].

Besides using Lock-Free
Executor in the back-end stage, we
could use it anywhere to guarantee
an execution order in performing
tasks without a lock—such as
changing other objects’ properties
in IoCompletionPortTask() for
handling packets and TimerTask()
for processing scheduled tasks.

These two-stage processes
make free-targeting combat
possible in Tera by decreasing
the servers’ CPU usage to one-
twentieth of what it was previously.
Before the two-stage processing
was implemented, we first tested
the lock-based algorithm to verify
the CPU load and server response.
The test showed that the algorithm
consumed high CPU loads (up
to 100 percent CPU usage with
fewer than 3,000 players), which
resulted in slow server response
times. The lock-based algorithm
made free-targeting combat nearly
impossible. However, the two-stage
processing based on the lock-free

paradigm dramatically decreased
our server loads, thereby opening
the possibility to free-targeting
combat with minimal affect from
latency. In live service, the average
CPU usage of Tera’s world server
(Intel Xeon E5630) is 1 percent to 6
percent with anywhere from one to
6,000 real players.

The evoluTion of
AcTion combAT

We dramatically enhanced
the combat of Tera by

adopting free-targeting combat. It
was complicated to implement and
required much more time to code,
but we think the player experience
is much more fun than other MMO
combat systems. We hope that
many online game companies follow
our lead and utilize free-targeting
combat for action-intensive
MMORPGs in the future.

The payoff is obvious as
soon as core gameplay begins.
The player aims, dodges, and
repositions from moment to
moment, rather than managing a
set sequence of attacks. The player

watches the character and the
monster, not cooldown timers or
other U.I. elements. This sense of
immersion—that sense of freedom,
really—is what will make free-
targeting combat an evolutionary
leap for MMORPGs.

Seungmo Koo was server architect for

Tera and is currently co-director at Bluehole

Studio. Twitter: @sm9krvt

V
F
S
 S

T
U

D
E
N

T W
O

R
K

 B
Y

 B
R

E
N

D
A

N
 B

O
Y

D

THE ONLY ONE-YEAR PROGRAM
IN PRINCETON REVIEW’S 2012
TOP GAME DESIGN PROGRAMS

ZB
R
U
SH ®

 r e s o u rc e s

1 Pattern-Oriented Software Architecture:
Patterns for Concurrent and Networked
Object

 Douglas Schmidt et al. John Wiley & Sons,
2000.

2 The Art of Multiprocessor Programming
 Maurice Herlihy et al. Morgan Kaufmann,

2008.
3 Thread-Specific Storage for C/C++ Douglas

Schmidt et al.
 C++ Report, 1997.
4 Active Object: An object behavioral pattern

for concurrent programming R. Greg
Lavender et al.

 Pattern languages of program design, 1996.
5 Simple, Fast, and Practical Non-Blocking and

Blocking Concurrent Queue Algorithms
 Maged M. Michal et al.
 ACM symposium on Principles of distributed

computing, 1996.

http://www.gdmag.com
http://vfs.com/enemies

PUBLISHER
Zynga Inc.

DEVELOPER
Zynga Boston

RELEASE DATE
September 9, 2011

PLATFORMS
Web (Facebook)

TOTAL WHIPS PURCHASED
14

TOTAL "ACCIDENTS"
INVOLVING WHIPS
2

G A M E D A T A

GAME DEVELOPER | MAY 2012 24

S E T H S I V A K

Zynga Boston is made
up of industry veterans
from Harmonix, Turbine,
Insomniac, as well as people
from the web and tech
industries. The studio was
formed from the acquisition
of Conduit Labs in August
2010, and when we came on
board we were encouraged
to pitch a project we were
enthusiastic about–a game
we could deliver with a
high level of polish and
innovation. As happens with
most teams that strive to
build something new, we
nailed some elements, but
missed on others.

INDIANA JONES ADVENTURE
WORLD launched on September

9th, 2011. Over the last
seven months, close to 28
million players from over 200
countries have played the
game. Since launch, we have
released more than 20 new
story lines, and our players
have whipped over 750
million snakes and recovered
1.8 billion artifacts. We like
to think even Dr. Jones would
be impressed with such
numbers.

W H A T W E N T R I G H T

1 / Prototyping
Our goal for INDIANA JONES
ADVENTURE WORLD was to
evolve social games by
introducing players to the

types of games that we love
to play. We wanted to take
action-adventure games
like Legend of ZELDA: OCARINA
OF TIME and TOMB RAIDER and
fi nd a way to deliver that
experience to an audience
that expects to use a single
mouse button.

We wanted to introduce
social gamers to a casual
(but exciting) form of
combat. That wouldn’t be
easy, because one of our
core design values was
“never punish the player.” The
very first “beasties” in the
game were simply animated
obstacles that didn’t fight
back. We knew we needed to
make this interaction more

IN THE SUMMER OF 2010, THE SOCIAL GAMES SPACE WAS
STARTING TO REALLY PUSH THE BOUNDARIES OF GAMEPLAY,
STORY, AND PRODUCTION VALUE. THE NEWLY-MINTED
ZYNGA BOSTON STUDIO WANTED TO KEEP THAT INNOVATIVE
MOMENTUM GOING WITH INDIANA JONES ADVENTURE
WORLD (IJAW). THE PROMISE OF IJAW, INTERNALLY KNOWN
AS “QUEST”, WAS TO DELIVER A SOCIAL ADVENTURE THAT
DISTILLED TRADITIONAL ACTION-ADVENTURE GAMEPLAY INTO
SOMETHING APPROACHABLE FOR EVERYONE.

WWW.GDMAG.COM 25

http://WWW.GDMAG.COM

game developer | may 2012 26

meaningful and interesting, and
that meant we had to start building
prototypes.

The design team spent weeks
toying with mechanics like stealth,
avoidance, and timing-based skill.
We built prototypes that used real-
time movement and others that
were turn-based. We tried dozens
of different movement rules and an
even larger variety of user interface
treatments that attempted to
explain them all. Eventually, we
went broad and tried puzzle-based
combat and a few other disparate
ideas to see if there was anything
that stuck. One good example of
this is the “tank beastie.”

IJAW is a turn-based game;
each tile that the player crosses
counts as a turn. We designed a
beastie that would move, rotate,
and attack at different rates based
on the number of turns taken
by the player(the “tank beastie”
would turn really slowly but attack
for a lot of damage). This meant
we needed to create a “tell” that
could explain to the player that the
beastie was about to move, turn, or
attack. We also had a threat range
that the player could back out of,
which would make the beastie

stop. This was just way too much
information, and even when players
understood all of it, the gameplay
was not terribly fun.

Every prototype was put in
front of people in the office and
playtested side-by-side. We judged
the designs primarily on their
ease of use and how easy they
were to understand, but also in
terms of depth and overall fun.
We hoped that combat would be
a cornerstone of the game for all
our players—even those who had
never experienced combat in a
game before. We went with a very
simple final design that had a
handful of basic mechanics, which
included critical hits that caused
stuns, weapon upgrades that dealt
more damage, and dodges. When
the player is damaged, he loses
a unit of energy (which is used
every action in the game). While
this went against our core design
value of never punishing our
players, it allowed us to give them
a feeling of judgment and mastery
that we couldn’t get otherwise.
We like to think that IJAW was
one of the first Zynga games with
consequences. To our surprise,
players never found the damage

confusing, and they embraced it
as part of the game.

Lesson Learned:
Innovation is not created

on paper, so make as many
prototypes as possible. Every
paper design (even core values)
can benefit from the momentum
of a good prototype.

2 / Constant Focus Testing
Designers have a love-hate
relationship with focus testing. It’s
not fun to watch players struggle
with the game you have been
putting your heart and soul into and
then hear them list all the things
they hate about it. We decided to
take advantage of Zynga’s Player
Insights group and run playtests
every four to six weeks. These tests
were broken down into two specific
groups: intensive first-time-user
experience testing (FTUE), and
unassisted progression testing.

The FTUE focus testing had
players try the first few maps of the
game with help, and take a survey.
A person from the team sat in the
room with them to observe body
language, and we would screencast
their playthrough for the rest of the

design team to watch from outside.
We recruited playtesters that fit our
target audience, which represented
a wide range of players inside of
our demographic. For each round of
testing, we had fifteen testers come
in Monday, Wednesday, and Friday,
and we made sure we had designers
and engineers on the hook to fix
usability issues and confusing bugs
found during the test.

Our second set of focus testing
was done with large groups who
would play unassisted for an hour
and then fill out a survey. We used
this to get a read on the overall
feel, what players remembered
about the FTUE, and what they liked
most and least. We asked specific
questions to gauge where players
wanted more gameplay and how
they felt about story elements and
characters. This data helped us
build out more compelling features
and tune the difficulty ramp for the
combat and puzzles.

This process forced us to
reevaluate some assumptions we
made as longtime developers and
gamers. IJAW was the first Zynga
game to include height, and we
didn’t realize that we’d have to
teach our players about height in an

isometric game, or how to click and
drag to move the camera.

LESSON LEARNED: Watch
focus testers struggle

through the game and try to
feel what they feel. Test early
and test often, even if you think
the game is not ready. Act on
the feedback quickly while it is
still fresh. You can always use
another focus test.

3 / Design through Iteration
We knew we were not going to
design a perfect social adventure
game on our first try. With that in
mind, we structured the team and
features around weekly sprints
that let us rapidly iterate the core
gameplay and content around the
feedback we were getting from
focus testing. When we started
work on the FTUE, we knew it would
become the most important aspect
of the game, but we were still
trying to find the fun and figure out
our core focus. We spent months
iterating on the first map and went
through several reboots (some
bigger than others). During that
time we questioned many of our
own core design values and ended

up with a FTUE that not only could
teach players how to play a social
adventure but also made a promise
about the innovative story and
gameplay to follow.

The first map of the game,
known as the Upper Jungle, was
changed close to 600 times during
the course of development. Many of
these changes came from watching
the focus testing, but others came
from the design team trying to
figure out how to create a map that
was easy to understand, and which
had good flow. Sometimes these
changes meant going back to the
basics—for example, we changed
the level design from a large open
map to a series of rooms (which is
how dungeons have been built in
games for a long time).

LESSON LEARNED:
Structure the team to

rapidly iterate and understand
things will never be right on the
first try. The best designers are
not born that way—they learn
through iteration.

4 / Technology
Social games have come a long
way since the Facebook platform

launched in 2007. The platform and
the technology available to early
social games had serious limits on
graphical quality and performance.
We wanted to ensure that our game
would move the visual quality bar
for social games and maintain a
gameplay level that traditional
game players have come to expect
from a triple-A console title. We
also wanted to build a set of tools
to make the creation of assets and
content quick for content designers
and artists.

We chose to build an entirely
new engine that could support
the kind of large-scale levels and
gameplay we hoped to deliver.
We wanted the quality of the
experience to be paramount to
almost everything else, so it
became a massive priority that
drove both engineering and design
decisions. This focus really paid off,
as we were able to deliver some of
the best frame rates and load times
of any social game. The engine,
affectionally called “BRO” (Boston
Rendering Optimization) has made
appearances in other Zynga games
like CITYVILLE and CASTLEVILLE.

The game was designed to
be content-driven, which meant

WWW.GDMAG.COM 27

http://WWW.GDMAG.COM

GAME DEVELOPER | MAY 2012 28

we needed to have tools that
could empower designers to
work quickly and autonomously,
which is commonplace in MMO
development, but not as much in
social game development. Toward
that end, we built a world editor that
allowed designers to build maps
without the help of engineers and
a suite of art tools that allowed our
characters to have a wide range
of animation. The time we spent
making these tools easily paid off
in the speed and iteration available
to a designer when constructing a

new map.
IJAW was built around the

idea of consistently delivering
content to players, and it would
have been almost impossible to
do that without a dedicated set of
tools so that designers could build
their maps freely while engineers
focused on feature development.

LESSON LEARNED: Invest
in technology and tools.

Social games are casual and
light, but the technology needed
to run them is serious.

 we needed to have tools that
could empower designers to
work quickly and autonomously,
which is commonplace in MMO
development, but not as much in
social game development. Toward
that end, we built a world editor that
allowed designers to build maps
without the help of engineers and
a suite of art tools that allowed our
characters to have a wide range
of animation. The time we spent
making these tools easily paid off
in the speed and iteration available
to a designer when constructing a
new map.

IJAW was built around the
idea of consistently delivering
content to players, and it would
have been almost impossible to
do that without a dedicated set of
tools so that designers could build
their maps freely while engineers
focused on feature development.

LESSON LEARNED: Invest
in technology and tools.

Social games are casual and
light, but the technology needed
to run them is serious.

5 / INDIANA JONES
We initially launched our game as
ADVENTURE WORLD, but immediately
we were given the chance to bring
Indiana Jones to life inside the
game. This was a great opportunity
for us, but it was also a shift in the
core narrative and a big design
challenge. Once we were over the
initial hump, the license became
a big boon for the game and the
development team. We were
able to quickly get the hang of
the new process and start using
the characters and canon in new
content for our players.

Licenses are tricky, but they
can pay off. One thing we noticed
almost immediately was that our
brand recognition went up. Players
were trying the game who might
not have been interested before.
In the social-games space, where
finding and connecting with an
audience is competitive, having
that brand recognition is a huge
advantage.

The Indiana Jones license was
a particularly good fit because the
characters and story are deep, and
it has a hardcore following of fans
who are hungry for more content

all the time. We built this game
to deliver episodic stories to our
players each week so that they can
go on a quick adventure with their
friends. There are very few licenses
that would have been a better fi t
for us.

Licenses are tricky, but they
can pay off. One thing we noticed
almost immediately was that our
brand recognition went up. Players
were trying the game who might
not have been interested before.
In the social-games space, where
finding and connecting with an
audience is competitive, having
that brand recognition is a huge
advantage.

The Indiana Jones license was
a particularly good fit because the
characters and story are deep, and
it has a hardcore following of fans
who are hungry for more content
all the time. We built this game
to deliver episodic stories to our
players each week so that they can
go on a quick adventure with their
friends. There are very few licenses
out there that would have been a
better fit for us.

As fans of Indiana Jones, we
really enjoy using the characters
to tell stories and putting in easter
eggs that later end up on the
Indiana Jones wiki. Interacting
with hardcore Indy fans is really
satisfying.

LESSON LEARNED: A good
license can give a social

game instant brand recognition
and increased player loyalty.

W H A T W E N T W R O N G

1 / Innovate Everywhere
The goal for IJAW was to innovate
with new gameplay and establish
a new genre of social adventure
games. As it turns out, that is really
hard. We tried to innovate with every
mechanic, user interface, and idea
in the game with the intention of
building something new. This became
dangerous because social game
players have come to expect a set of

features that they believe should be
part of every game and should work
consistently across games.

Our collection system fell victim
to this particular problem. For the
readers new to social games: A
collection system provides a player
with a slot machine feel for every
action in the game. Each object
the player interacts with has a
chance of dropping an item from a
specific collection, and when the
player completes the collection,
they receive a reward. We went
through several iterations for a
collections system that included
many different additions to the core
feature. Our first try, which was
called “Discoveries,” was a standard
collection system. Ideally, a player
would make a Discovery, give it a
unique name, and then have the
option to share that discovery with
friends. That additional functionality
increased the Discoveries system’s
scope, so several of the more
interesting parts were put into
a secondary tier. Without those
additional features, however,
the system did not feel very
rewarding, and the relationship
between the Discoveries and
the objects that provided them

were not clear to the player. In
the end, we decided to keep the
traditional collection mechanic
and scrap the Discoveries system
completely. Cutting a feature your
designers have been working hard
on is nothing new to the game
development process, but we did
this everywhere—even places
where we had no reason to do it
(quest structure, for example).
We ran into issues later on with
features like Mastery, where we
should have innovated but did not
have enough time left to do so.

Lesson Learned: Focus
on a few key areas to

innovate and invest heavily in
them. Resist the urge to make
everything a little bit better and
instead make a few things a giant
leap better.

2 / Single Session Focus
Our focus on gameplay iteration
meant we used only a single
session to measure how fun the
game was. This is a real challenge
for social games that need to run
for months, or even years. We did
not play through a fully working
version of the game until we were

almost into the Beta, and this
meant most of our multisession
features were not tested until it
was far too late.

The game was built to be fun
for a session, but social games are
designed and played like a traditional
MMO, so there needs to be a reason
to come back tomorrow. In social
games this is commonly known as
“retention” and it is a notoriously
difficult value to move after launching
a game. (Some games solve this
with an appointment mechanic.) In
IJAW we thought we could incentivize
players by putting time limits on
the adventures.

We never wanted players to
feel bogged down or overwhelmed
by the number of adventures. We
hoped to give players a way to
leave an adventure unfinished
and have it just wash away like a
withered crop would in FarmVille.
The problem was that we always
played through maps in a single
session, with infinite energy, to see
how fun they were, but we rarely
played them for real. This meant we
never felt the pinch of an adventure
expiring and we continued to
design around the assumption that
timers were good for the player.

When we actually started to play

www.gdmag.com 29

http://www.gdmag.com

GAME DEVELOPER | MAY 201230

them “at pace” we realize that is
was pretty punishing to have these
timers on the adventures, but we
had always counted on them as a
part of the core loop and left them in.

LESSON LEARNED: If a
game is supposed to run

for several months, playtest it
appropriately—or at least find a
way to approximate that length of
time and judge the impact.

3 / Not Enough Beta
The Beta in IJAW proved to be too
short and too early in development.
We were still building core features
when we entered into Beta, and it
only ran for a short period of time.
Also, we did not give ourselves
enough time after the Beta to really
catch our breath and fi x any issues
we had noticed before we launched.
When your deadlines are creeping
up, it is easy to say you can cut a
week of Beta. Don’t do that.

The goals of the Beta test were to
see how the game felt when played
over a longer period of time, and how
the impact of different players’ social
graphs would change the player
experience. The Beta was open to all
Zynga employees and we watched
the numbers daily to see how players
with many friends and neighbors
were progressing compared to those
who only had a few. We looked at how
often people were playing and how
long their sessions were to determine
if we were delivering enough
gameplay for a satisfying experience,
and we set up a forum for players

to give feedback and report issues
they were having. The Beta was an
awesome resource and experience,
but it was just not enough.

LESSON LEARNED: Allow
players to progress through

as much of your game as possible
in the Beta. Make sure all core
systems are in place before the
Beta. Schedule a good buffer
between the Beta and launch.

4 / Content Structure
The game content was initially
designed to be similar to a
traditional MMO where one new
content pack was released every
month or two. However, we learned
that social gamers wanted to see
something new every few days
instead of every few weeks, and
they prefer light experiences that
they know will start at a specifi c
time and last for a known length
of time. In IJAW, players wanted
bite-sized content, but our game
content and story lines were
structured more like entrees.

Before launch, we assumed we
would release a big new map each
week and a new area (composed
of another five to ten maps) every
six to eight weeks, but that was not
enough—our players wanted to get
new content each week that they
could complete more quickly. So
we shifted our pipeline to deliver
more maps each week, and spread
each new storyline over a few
maps. Unfortunately, several user
interfaces and flows in the game

were designed around the large-
scale content structure, especially
the World Map, which is the central
hub for all the adventures in the
game. It took weeks of iteration and
work to get the World Map to match
the way players liked to experience
content, and it was very difficult to
make changes to the launch content
to reflect the new structure.

LESSON LEARNED: Content
for short-session games

should reflect the playstyle of
the players. Episodic content
should be satisfying in as few
sessions as possible.

5 / The Base Camp
For months we designed the
game to take place completely
on maps, similar to a traditional
linear game. This was a challenge
for players because they would
return for a session and need to be
re-acclimated to the game and the
story they were playing. We wrestled
with this idea for a while and ended
up deciding we needed a place for
the player to call home. This is when
we decided to create the Base Camp.

Since the Base Camp was
developed late in the design
process, it never really managed
to feel totally integrated into the
game. It was a very different style
of gameplay from the maps that the
players were used to, which was a
turn off for them. The Base Camp’s
main problem was the “Kitchen
Sink” problem; our designers
pushed too many things into a

single feature to try and solve as
many problems as possible.

We wanted the Base Camp to
be a consistent starting point for
players, a place where they could
decorate, a place where they could
show off their trophies, where we
could implement an appointment
mechanic, and provide a place for
friends to visit. We ended up solving
a few of these but missed the mark
on many others. It took months of
iteration after the launch to fully
deliver on the Base Camp, but we
managed to make it a meaningful
piece of gameplay for players.

LESSON LEARNED: Give
added focus to any feature

that is trying too much. Spend extra
time mending the seams between
different styles of gameplay. Notice
red flags early and be willing to
correct your course.

A N E W A D V E N T U R E

With INDIANA JONES ADVENTURE
WORLD, we delivered a game
that established a new genre
in social games, and we are
thankful for the fans who love
playing the game every day, the
opportunity to deliver content for a
beloved license, and the industry
recognition IJAW has received. I
would make this game again if I had
the chance, and I expect there to
be an expanding market for social
adventure games in the future. The
reason this game worked at all was
because of the commitment of the
team at Zynga Boston and their
unwillingness to give up. We went
through some very diffi cult times
on this game and the team pushed
through together with the goal of
creating something that everyone
could be proud of. I was lucky
enough to be a part of that and I
can’t thank this team enough.

SETH SIVAK was lead designer on INDIANA

JONES ADVENTURE WORLD and was named

one of the Game Developer 50 in 2011.

Seth joined Conduit Labs (which became

Zynga Boston) straight out of the

Carnegie Mellon University Entertainment

Technology Center as a gameplay

engineer. While in graduate school he

was part of the team that made WINDS OF

ORBIS: AN ACTIVE-ADVENTURE, which was a

2009 IGF student fi nalist.

http://www.siggraph.org/s2012

GAME DEVELOPER | MAY 201232

W H A T W E N T R I G H T

1 /// Organized like a jam
Everything came together
organically, just like in a game
jam itself. The initial four of us
started out with no concrete idea
of what the end result would be,
but others stepped up when they
needed to. Jake Rodkin of Telltale

Games came up with great T-shirt
designs, as well as the “What Would
Molydeux?” jam name. Zane Pickett
stepped up and created our web
site (www.whatwouldmolydeux.
com), and organized our game
submission form. Justin Ignacio
of Justin.tv came in to help with
our livestreams. When something
was needed, someone magically

appeared to help.
We also had a number of

generous sponsors. Unity,
GameMaker, GameSalad, and
Construct 2 offered temp licenses
of their engines during the jam.
Individual cities got sponsors for food,
locations, and more. People stepped
up to make sure this event happened.

One of the smarter things we
did was set a date early on. Not
only did April Fools’ Day fi t with our
Molydeux theme, it was a Sunday,
so we had the entire weekend to
jam. From the start, we had a hard
deadline, which helped us get
everything ready.

Everyone in our jam was full of
goodwill and positivity, especially
the organizers who sacrifi ced
their time and energy for the
greater cause. Our jam felt like a
crackling ball of positive energy!
Takeaway: If you’re running a jam
yourself, make sure you have a
good network, and that people have
bought in to your idea.

2 /// Clear vision
“Peter Molydeux” signed on to the
project immediately, which lent the
jam legitimacy. The jam was based
on his tweets, so the participants
were able to refl ect on the theme
and what they’d like to do in
advance. Molydeux curated some of

his best tweets for those who didn’t
want to sift through everything, and
we also got a Google doc of all his
original tweets.

We had a solid vision from
start to fi nish, which helped us
get things set up. There was no
confusion about goals, no back and
forth about theme, and no dissent
—the reason new cities joined up
was because they had already
bought in!

The day of the jam, Molydeux
made us an introductory video,
with closing words from Molyneux
himself. Molyneux even showed up
at the London jam, gave an opening
speech, and participated in the
fi rst day.

The Molyjam encapsulates
everything Molyneux himself has
actually tried to accomplish over
the years. Every event seemed in
keeping with the spirit of whimsy
and emotional game making. The
takeaway here is that you should
get buy-in from the organizers,
whether it’s your company or a
group of friends, right away. Make
sure everyone’s committed, knows
the vision, and is prepared to follow
it through

3 /// Popularity
We got a lot of press. People were
astounded that it was happening.

B R A N D O N S H E F F I E L D

Game jams are not a new occurrence. They’ve been helping teams of developers meet each other and make games together
(usually in under 48 hours) for years. But given the ease with which we’re all connected now, in under three weeks a few
people were recently able to create a global game jam, with more than 900 participants across almost 35 cities making
more than 300 games. This is the story of how we did it.

Game jams are inspirational. They get people working together in new ways, and give you the creative push you get from
a crunch without the fear of losing your job. You can (and you should) participate in or organize these sorts of jams yourself.
This is the story of how we did it.

THE MOLYJAM
Our jam, called What Would Molydeux?, took place on March 31
and April 1, 2012, and it was a surprise success. It began with an
offhand question on Twitter from Double Fine gameplay programmer
Anna Kipnis, who wondered why there hadn’t been a game jam

based on the tweets of Peter
Molyneux (FABLE, POPULOUS,
BLACK & WHITE) parody Twitter
account @petermolydeux. Four
of us (Kipnis, Chris Remo of
Idle Thumbs, Patrick Klepek
of Giant Bomb, and I) took up
the banner, and in a short time
the jam expanded beyond the
original California Bay Area site
to the U.K., to Israel, to Mexico, to

Finland, to Australia, and more. Noncentralized developers jammed
on their own in solidarity from their homes.

How the heck did this happen? Why was it so successful? What
can we do better next time? This abridged postmortem of our event
may be helpful for you when planning your own jams, whether they
are global or local.

http://Justin.tv
http://www.whatwouldmolydeux.com
http://www.whatwouldmolydeux.com

WWW.GDMAG.COM 33

It was its own hype machine.
Almost every day the core team of
organizers would hear from a new
city that wanted to join in.

We fi elded dozens of press
requests—some from outside the
industry. While you may not be able
to get this level of press support (we
didn’t expect it), make sure to let
other people know you’re jamming.
It gives you a sense that you really
should fi nish your project, because
you’re going to show the end results
to an excited audience.

4 /// Livestream
The major success in the San
Francisco location was the
livestream. The teams provided
updates on their progress, which
kept the audience engaged—
somewhat unusual for a jam. That
caught on to other locations. “The
internet was very supportive of
the game developers as they were
working,” said Kipnis. “That I did not
expect at all.”

Folks watching the San
Francisco stream noticed a guy
with an orange hat in the jam. He
was a musician named Bill Kiley
who became a mini-celebrity to
the stream, with folks sharing
his soundcloud in the chat. The
team also interviewed some of the
more famous folks in the crowd,
and really created a sense of
community. Getting people involved
in the process is clearly a boon.

5 /// Diversity
I organized the Oakland/East
Bay jam, and I felt it was unique
because of its diversity. We had
straight folks and gay folks. Black
people, White people, Asian people,
and Hispanic people. We had a
very healthy distribution of men
and women, including transgender
folks. The ages ranged from under
20 to over 40. Not bad for a group
of 40 people. The diversity of the
crowd was astounding to me, and if
the Oakland jam were a microcosm
of the industry, problems with
gender, race, and orientation in
games would be far fewer and
further between.

What was it about this event

that brought so many people
together? Oakland is a very
diverse place, of course. But more
than that, we all cared about
making games, and the content of
those games. The theme of our jam
attracted a diverse crowd, and I’d
encourage jam organizers to invite
folks who would not normally
come to your studio or jam to join
in. Diverse backgrounds yield
diverse ideas.

W H A T W E N T W R O N G

1 /// Organized like a jam
Not one of the main organizers
had ever organized a jam. None of
us had even been to one (though
Kipnis had participated in Double
Fine’s internal jams). So the fact
that we were suddenly at the helm
of an international event was a bit
of a surprise. We did the best we
could, but it was confusing. People
asked questions we didn’t know
how to answer.

Also, we all had our own jobs to
do on top of organizing this event.
Kipnis in particular put in long
hours, and at one point became
ill. As the event exploded, I was
driving to Phoenix, and could only
communicate via smartphone.
Since we couldn’t anticipate the
event’s popularity, we couldn’t
plan for it, and had to scramble to
put things together. San Francisco
didn’t have a venue until three days
before the event, for instance. The
lesson here is simple—plan your
jam well in advance if you can, and
talk to people who have organized
jams in the past. They will have a lot
of excellent advice!

2 /// Fragmented information
We started out asking folks to
join on Twitter, then we switched
to a Google doc, but that grew
unwieldy. We moved the event to
Facebook, but not everyone has a
Facebook account, so we also had
an Eventbrite sign-up. Once sign-ups
ballooned to 225, San Francisco and
Oakland had to split. Oakland was
originally the home of the whole jam,
as we had gotten The MADE to agree
to host us, but they can reasonably

hold only 50 people. And since San
Francisco needed names in advance
for security, Eventbrite became the
only sign-up that mattered. This
happened late in the game, it was
hard to let everyone know about
the shift, so many folks from the
East Bay went to San Francisco, and
many folks from San Francisco had
to come to the East Bay because
they had RSVPed on Facebook but
not Eventbrite.

Frankly, the fact that we got
venues with projectors, good
internet, public transportation
access, and late-night access in
under three weeks is amazing. This
should not be a problem for jams
that are planned in advance.

3 /// Internet connectivity
Some locations had spotty
internet connections that couldn’t
consistently stream, which
hindered their ability to feel like
part of the community. Make
sure your connection can support
all your game-serving needs as
well as livestreaming, and all the
programs and assets you may need
to download.

4 /// Upload system
It took us a while to solve
the problem of how to get so
many games out to the public.
Molyjammers made hundreds of
games, and some were simply too
large for our uploader, which broke
very early on in the process.

On top of that, it was getting
fl ooded with requests, since
people wanted to play the games.
Popularity is a great problem
to have, but it killed our web
volunteers, and in the end, many
games missed out on the initial
wave of popularity. The takeaway:
Just make sure your deployment
plan is clear, if you want to make
your games public (which I highly
encourage).

5 /// Not really 48 hours
Not many venues let us use their
space for the whole 48 hours, which
is an important part of some jams—
you’re supposed to be stuck in one
space until you fi nish your game.
That could be good or bad depending
on your vision for your event, but if
you tell people they have 48 hours
to fi nish, or a week to fi nish, you
need to give them that amount of
time. In our case, we were limited by
the requirements of our space, as
well as our ability to feed people—
both of which should have been
easy to plan for.

J A M M I N G I N T H E N A M E
O F T H E B U L L F R O G

/// The Molyjam experience was
diffi cult but rewarding, and I
encourage others to try to make
their own jams, regardless of their
scale. Even if nobody knows your
jam is happening, going through it
can really help you prototype an
idea, get a feature together, or meet
new developer friends. So get to it!
Happy jamming!

BRANDON SHEFFIELD is editor-in-chief

of Game Developer magazine, and owner/

creative director of game developer and

consultancy group Necrosoft Games (www.

necrosoftgames.com).

The day of the
jam, Molydeux made
us an introductory
video, with closing
words from Molyneux
himself. Molyneux
even showed up at
the London jam, gave
an opening speech,
and participated in
the fi rst day.

PH
OT

O
CO

UR
TE

SY
 O

F
GA

M
E

DE
VE

LO
PE

RS
 C

ON
FE

RE
NC

E

Peter Molyneux

http://www.necrosoftgames.com
http://WWW.GDMAG.COM
http://www.necrosoftgames.com

34 GAME DEVELOPER | MAY 2012

http://www.gamecareerguide.com
http://www.gamecareerguide.com
http://www.gamecareerguide.com
http://www.gdcvault.com

www.gdmag.com 35

toolbox

R E V I E W B Y M A T T L I N K

PIXOLOGIC

ZBRUSH 4R3
MAKING MOuNTAINs INTO
MOLEhILLs
» ZBrush has a steep (though
relatively short) learning curve, in
part because its roots as a 2.5D
program means it still carries
several idiosyncrasies in its
core—none of which are changed
in ZBrush 4R3. For example,
most 3D applications give you a
standard 3D viewport, but ZBrush’s
viewport is a resolution-dependent
document. It may look like you
are zooming in to your model, but
you are actually scaling the model
within the document. To save or
export something in ZBrush, unlike
other programs, you must make
sure you save or export the “Tool”
and not the “Document.” This
“Tool” concept alone is likely to

be the most painful lesson new
ZBrush users will learn firsthand—
most likely the hard way, when
they open a saved “Document” and
find it empty. You’ll eventually get
used to these little oddities, but it’s
not a pleasant process.

One thing that helps is
Pixologic’s community support
forum, where users can share
their art, as well as tips and tricks.
Pixologic also supplies invaluable
learning material on it’s ZClassroom
site (www.pixologic.com/
classroom). ZClassroom contains
in-depth tutorials, walkthroughs
on new features, and other
instructional videos.

It’s a lot of work at first, but it’s
worth it. Once you can navigate the
viewport and quickly wade through

dozens of menus, you will be
creating more detailed work faster
and more efficiently than you could
ever imagine with standard 3D
applications. ZBrush is that good.

ThE INTERfACE
» ZBrush’s interface is completely
customizable and comes with
a handful of preset modes. A
properly customized interface can
really speed up your workflow,
so it’s worth spending the time to
tweak it. You can remove buttons
for features you rarely use and
replace them with those you use
more frequently, create your own
hotkeys and menus for items you
often switch between like brushes
or materials, and create useful
macros and place their shortcut in

a convenient location. If there is a
tool in the interface you would like
to know more about, just hold the
Control key and mouse over the
button, and a pop-up explains what
the tool is and how to use it.

With the R3 update, you can
now collapse subpalettes in the
menus, which was a popular
request from previous versions.
This helps keep certain absurdly
long palettes under control, since
you can pick which sections are
expanded. It’s not perfect, though—
since the subtool palette is limited
to displaying only eight subtools
at a time, you’ll usually need to Alt-
click the subtool you want to use.

Pixologic also changed the way
you assign your own hotkey from
a Control-click to a Control-Alt-click

Drawing masks with shadowBox to
block in a new subtool.

It’s no secret that ZBrush stands at the forefront when it comes to making high-poly models and 3D illustrations. But
competing tools like Autodesk’s Mudbox are making significant improvements with every release, so I thought I’d take a look at what
Pixologic's ZBrush 4R3 does to stay at the front of the pack.

http://www.gdmag.com
http://www.pixologic.com/classroom
http://www.pixologic.com/classroom

toolbox

game developer | may 2012 36

with not so much as a mention
of the change, which was kind of
annoying at first. Unfortunately,
this just comes with the territory of
a full-featured program.

NEW IN 4R3
» One of the most notable additions
to ZBrush 4R3 is the DynaMesh
tool. With DynaMesh activated, you
can push and pull the mesh to the
point of seeing its polys stretch and
distort, and when you Control-click-
and-drag in empty viewport space,
your mesh will adapt to allow even
poly coverage to the entire mesh,
giving you a new surface optimized
for sculpting. Combine this with the
clay brushes and you can iterate
very quickly while you explore your
sculpting possibilities. This way,
your creations evolve as you go. I’ve
seen artists create entire characters,
creatures, and trees starting from a
simple sphere and DynaMesh. This
helps keep you in a creative state
rather than feeling limited by your
initial base mesh.

ShadowBox is another new tool
that allows you to draw out masks on

PRICE

› $699

SYSTEM REQUIREMENTS

> Windows Vista/Windows 7 32-bit/64-bit
(ZBrush 4R3 is a 32-bit application,
and may use up to 4 GB of RAM).

> Core 2 Duo or newer (or equivalent
such as AMD Athlon 64 X2 or newer)
with optional multithreading or
hyperthreading capabilities

> 1 GB RAM minimum, 6 GB
recommended

> 1280x1024 monitor resolution or
higher

PROS

1. One of the most powerful, feature-
packed, polished 3D sculpting
applications on the market.

2. Excellent technical and community
support with countless tutorials to
learn from.

3. Competitive price, no charge for
upgrading to new versions.

CONS

1. Only 32-bit so it can’t take advantage
of all the RAM workstation computers
might have.

2. Occasional stability issues which can
lead to crashes and lost work.

3. Fairly steep learning curve which can
be intimidating to new users.

PIxOlOgIC ZBRUSh 4R3
www.pixologic.com

Creating a mustache with a Curve Surface brush.
(pictured and below)

Using DynaMesh on the Curve Surface
geometry to allow even polyflow and
consistent sculpting.

http://www.pixologic.com

www.gdmag.com 37

toolbox

any of the three sides of the “shadow
box” and create 3D geometry from
the intersecting shapes you’ve
drawn. This is a useful way to rough
out a shape to begin sculpting on or
create complex hard surface models
that would be more difficult through
traditional modeling.

Pixologic has also added
several new brushes in ZBrush
4R3, and it’s worth your time to try
them out and get a feel for what
each of them do—you might find
some new favorites. They have even
added the clip and trim brushes,
which are geared more toward hard
surface sculpting. The new stroke
type, curve, allows you to draw out
a spline to control your stroke. As
you draw it out, every time you tap
the Alt key, a new point appears on
the spline allowing you to change
direction and continue to make it
more intricate. Using the Slice Curve
brush, you use the curve stroke
type to draw out shapes that will
separate your mesh at the desired
spots into different polygroups.

GoZ is another new feature that
sends your model to your chosen
3D package, where you can add or
edit topology and make desired
changes to your mesh, then send
it back to ZBrush and continue
sculpting on your new improved
mesh. GoZ also supports the
extended version of Photoshop CS4
or CS5, so you can paint it on your
texture and model in Photoshop
and then send your model back to
ZBrush. Unfortunately, when we
tested GoZ, Photoshop ran far too
slowly to get any usable work out of
it. For reference, we tested ZBrush
4R3 on a PC with an Intel Core i5
CPU, 8GB of RAM, an Nvidia GTX 560
graphics card, and a Western Digital
Raptor 15,000 rpm hard drive. When
we brought this up to the ZBrush
developers, they maintained that the
sluggish performance was due to
Photoshop’s poor handling of 3D.

Would-be Mudbox converts
should appreciate the vector
displacement tool, which lets you
displace a surface in any direction
(including undercuts). It’s not
quite groundbreaking—vector
displacement has been in Mudbox
for several years now—but if you
have been tempted to switch
to Mudbox for this sole reason,

there’s no need. ZBrush has finally
implemented a layer system that
supports sculpting and polypainting.
After sculpting in a layer, you can
drag the slider down to lessen the
extent of your changes. I find this
very useful, as I can oversculpt an
area and then pull it back to where I
want it. You can also toggle the layer
visibility on and off to get a quick
before-and-after comparison. Once
you have created a layer, you can
no longer edit that subtool unless
you are recording in another layer.
This can become irritating if you
are frequently switching between
subtools that contain layers and you
just want to make quick changes.

Last up is the new FiberMesh,
which lets you add fibers to your
model and adjust them with sliders.
You can then use the new groom
brushes to get them into the exact
shape and style you want. When you
create new fibers, the base will be
masked by default so you don’t move
it off your model while grooming.
Use this with the new MicroMesh
best preview rendering feature and
the fibers can act as a placeholder

for a specified mesh until it’s time
to render. FiberMesh is much more
fluid and responsive than I expected
it to be, and I’m looking forward to
new creative uses for fibers that will
hopefully be available for download
on Pixologic’s ZBrush Central forums
(www.ZBrushcentral.com).

Tools for The Job
» Thanks to the clever way ZBrush
displays polygons, you won’t need
a high-end video card to use the
program. You will probably want
a pen tablet (a Wacom tablet,
for example), but it isn’t strictly
necessary, though the tablet does
let you control ZBrush better (and
honestly, without the pressure
sensitivity, you might as well be
painting a wall with a rock).

Up AgAinsT The CompeTiTion
» There’s no doubt that ZBrush is
very powerful, but it’s not necessarily
for everyone. Autodesk’s Mudbox
($745) is easier to use for someone
new to sculpting applications, and
it shares certain user interface
elements with Maya (the viewport

navigation is the same, which is
nice). Mudbox’s layer system far and
away beats ZBrush’s. There’s also
3D Coat ($349), a slightly cheaper
competitor that is built around voxel-
based sculpting. It has very powerful
retopology tools, excellent texturing
tools, and a good layer system, but
the voxel sculpting still feels a bit
clunky and unrefined in comparison
to Mudbox and ZBrush.

Ultimately, neither Mudbox nor
3DCoat can hang with ZBrush’s
community, support, efficiency, fluid
interface, or ability to handle millions
of more polygons at a time.

Also, once you purchase a
ZBrush license, all subsequent
updates are free.

In my opinion, ZBrush is
absolutely worth the price, bugs
and quirks aside. It’s an industry
standard for a good reason.

mATT link works at Gearbox Software and

has been involved in creating characters

for several next-gen games. He is currently

working as a character artist on Borderlands

2 and aliens: Colonial Marines. email him at

matt.link@gearboxsoftware.com.

Using Dynamesh to evenly
distribute the geometry subtool

created with shadowbox.

http://www.ZBrushcentral.com
mailto:matt.link@gearboxsoftware.com
http://www.gdmag.com

http://bi.ly/gdmag_ios
http://gdmag.com/subscribe

www.gdmag.com 39

INNER PRodUcT // slawomIR NIkIEl

cells for cell phones
USING CELLULAR AUTOMATA TO SIMULATE CROWDS FOR MOBILE GAMES

Plenty of action films feature scenes that simulate interactions of hundreds or thousands of creatures—a
horde of zombies, for instance, or an enemy army massing on the horizon—and when it comes to video games, we want
similar experiences. But simulating crowds isn’t easy, (especially on low spec-devices) if we want each individual actor
in a crowd to look and behave slightly differently from his neighbors. However, with the Cellular Automata model (CA) and
a few grouping rules, we can model a crowd of hundreds of locally acting bots that can organize themselves in groups
and attack the player—and we can do it on a simple cell phone. We’ll show you how we designed a prototype Cellular
Automata AI, and see how well it runs on both an Android tablet and an older cell phone.

cellular automata and
flocking
» Cellular Automata methods
were developed to simulate and
analyze complex interactions
through relatively simple rules
of intercell interactions. They
are discrete dynamic systems
that specify behavior completely
in terms of local relations. The
CA space is represented with
a uniform grid that contains a
limited amount of information
in each cell. Time advances in
the simulation in discrete steps,
and the transformation rules are
usually expressed with a simple

recipe. Given the right recipe, we
can model a whole hierarchy of
structures and phenomena.

Our simulation procedure
is based on a limited region of
space that forms a mesh of cells.
A number of objects is placed
either randomly (with a given
distribution) or manually. Each cell
is empty or occupied by an object.
In the simplest case, the cell is
emptied or filled with a selected
object with some probability. The
final structure is obtained after
several iterations, where each
cell of the mesh is checked. When
we permit interactions between

cells, we can obtain simulations of
ecological models.

Cellular Automata can simulate
large numbers of entities, but the
interaction is always a matter of
neighboring cells. Groups existing
in nature (such as a flock of birds
or a school of fish), however, can
be simulated with an elaboration of
a particle system that shows each
individual member of the group as
a particle and uses an augmented
behavioral model to simulate each
particle’s motion.

Essentially, each simulated
element of a flock is designed as
an independent entity that moves

according to its local perception of
the surrounding environment, the
laws of simulated physics, and a set
of preprogrammed behaviors. The
composite motion of the simulated
flock of NPCs is the result of the
cross-interaction of the relatively
simple behaviors of an individual
simulated NPC. In our case, we used
our crowd simulation to build a
simple game about zombies.

deriving the ca and
flocking algorithms
» We start building our CA-based
game logic by grouping cells of the
same characteristics augmented

http://www.gdmag.com

Headline
subhead

game developer | may 201240

INNer prodUCT // slawomIr NIkIel

with the “infection” capability. The
result of this iteration is processed
by another cellular automaton
equipped with rules that can trigger
large groups of NPCs to attack. We
use three general rules to govern
the simulation:

¬ The grouping rule, which is
based on the Moore neighborhood
(a cell’s eight neighboring cells).

¬ The infection rule: If there
are two zombies in the Moore
neighborhood of a human, they
infect him and turn him into
another zombie.

¬ The attack rule: When the
group of zombies is sufficiently
large, it can attack the player’s
avatar. In the counting process,
a neighborhood similar to the
Margolus neighborhood is used.

GroupinG and infection
processes
» Cellular Automata operates on
a two-dimensional grid size n x
m (to simplify n = m). Cells can
have any number of states s. The
border conditions are described as
periodical, and we use the Moore
neighborhood (excluding the
central cell).

The following is our automaton
rule. One iteration consists of
repeated n2 following steps:

1. Randomly pick cell c, with less
than s neighbors with similar
states.

2. In the vicinity of c, randomly
choose neighboring cell n.

3. If C’s cell state is equal to n’s cell
state then go to step 6.

4. If cell n is empty (state = 0),
determine the growth factor (g): The
number of neighboring cells with cell
c’s state on location n, minus the
number of neighboring cells with cell
c’s state on location c. If g >= 0; then
c is “moved” to n (change c’s cell
state to 0, and n’s cell state to c’s cell
state) and go to step 6.

5. Count the growth factor g
by taking the number of cells
neighboring c on location n
and subtracting the number of
neighboring cells to n on location c.
If g ≠ 0, then swap cells n and c.

6. If C is “human” and N has G
neighbors, then cell C changes its
state to N. In other words, C has
changed into a zombie. The value
of G determines how easy or hard it
is to infect a human.

performinG zombie attacks
» Zombie “attacks” are performed
by moving the group of infected
NPCs toward the player’s avatar. If
the player touches a given number
of zombies (growth factor G), the
player is infected. In order to trigger
a zombie attack, the group of
zombies should be large enough to
successfully perform the assault.

The automaton working
on the output of the grouping
algorithm from the previous
section estimates the zombie
group count. First, it defines
a neighborhood similar to the
Margolus neighborhood, though the
number of cells (9) is larger than
the original (4) version. The size
of zombie groups can be changed
according to a given game level
(with the parameter S discussed in
the next section). The automaton
can set the preferred direction of

movement for group cells.
We tested this algorithm in

a prototype test application to
experiment with an appropriate s
value. s determines the minimum
number of neighboring cells counted
in the grouping process. The most
interesting results were obtained
for s=3 (after 500 iterations), as
illustrated in FIGure 2.

The grouping procedure works
when the number of active cells is
larger than 40. A smaller number
of cells results in chaotic behavior
(FIG. 2A). For the larger number of
cells, the influence of s on grouping
process is clearly visible. Smaller
values of S result in numerous but
smaller flocks of cells (FIG. 2D),
while larger values of s (6 or 7) end
up in two big groups of each type of
cell (FIG. 2B and 2C).

buildinG tHe Game
prototype
» Next, we created a set of rules for
a prototype game.

¬ The main task of the player
is to save a given number of
humans from infection within a
time limit.

¬ Zombies can attack the player
and his fellow humans and form
“flocks” to increase their strength.

¬ Individual zombies try to
group and only attack when
the player shows no apparent
activity.

¬ When the player’s avatar
contacts a zombie, the player
loses life. Run out of life, and it’s
game over for the player. When a
given number of zombies contact
humans, the humans turn into
new zombies.

¬ The player can refill his life by
picking up the “med-aid” items
that appear in various places.

¬ The avatar has two weapons.
The first weapon can be used
to destroy other game actors,
but has limited ammunition
scattered across the game area.
The second weapon can turn
zombies back into humans, and
has unlimited ammo.

fiGure 1 classical cellular automata Game of life

fiGure 2 experimental results obtained for the grouping simulation (after 500
iterations): a) 20 active cells, s = 3; b) 70 cells, s = 7; c) 90 cells, s = 6; d) 90 cells, s = 3.

a

b

c

d

www.gdmag.com 41

INNER PRodUcT // slawomIR NIkIEl

Figure 4: The game prototype built for an Android tablet.

http://www.gdmag.com

¬ When a human is destroyed, the
number of humans the player is
required to save increases.

¬ There is a teleporter in the game
area, which teleports the player to
a random game spot.

Running the simulation
» We built our prototype application
in Java and ran it on a Sony-Ericsson
K300i cell phone, with CLDC1.1 and
MIDP2.0, a 30MHz Java processor
(equivalent to Intel Pentium III
540MHz), 512KB stack RAM, and a
128x128 pixel display.

The prototype application
managed to sustain very good
frame rates during the simulation.
It’s worth noting that there were no
visible differences for different RAM
sizes (128KB and 512KB).

game logic
» The game logic based on our
straightforward implementation
of CA has a few inefficiencies.
First, randomly choosing a cell on
the CA grid with a large number
of empty cells is a waste of
processing power. This can be
fixed by choosing a cell from a
list of non-empty cells instead of
choosing from the entire grid. Also,
there is a chance that the same
cell could be chosen several times
during a single iteration (the “Lévy
flight”), which could be fixed by
attaching an information index with
movement-limitation rules to active
cells for each iteration.

Another drawback of the
prototype implementation is the
discreet movement of NPCs on the
game arena, which is caused by the
straightforward implementation of
the CA grid to the game space, which
could be fixed by handling action
calculations offscreen and animating
the moving NPC fluidly onscreen, as
it is performed in the Android version
(described in the following section).

andRoid veRsion
» The Android OS core limits the
screen’s refresh rate to a maximum
of 56 to 60 frames per second
(depending on the software version).
In order to keep the animation smooth,
the CA logic-simulation algorithm
needs to be run as a separate thread.
Another way to handle this problem is
to bind steps of the CA algorithm to the
rate of iterations per second. At each
game loop cycle, the number of steps
is estimated according to the length
of time that has passed since the last
loop. One second is then split into
n² iterations.

Jakub Grzesik performed a
sample simulation on the Archos G9
Android tablet (http://www.youtube.
com/watch?v=aQqQ0MM8aqI),
shown in FiguRe 4 and on YouTube.
The test app was designed with
libGDX graphics library, (http://code.
google.com/p/libgdx/.)

Here, we can see the grouping
formations and pathfinding
processes at work. The cellular
automaton sets the target position,
and then the A* algorithm is used to

find the shortest path. (The colors are
used for the debugging process.)

We can clearly observe zombies
gathering behind obstacles.
Sometimes, individual zombies will
leave the original group, wander
around the area, and eventually join
the other group. From the player’s
point of view, this kind of behavior
appears to be an “intelligent” action,
such as scouting out the map or
deserting a group to improve its
odds of survival. This behavior
is controlled by the s parameter
(described in earlier sections).
As the s value increases, more
individuals will leave their groups.
This behavior is also influenced
by the individual’s proximity to
obstacles (walls), which appears to
a player as though some individuals
try to use the walls for shelter.

eFFiciency analysis
» The CA algorithm is able to
simulate large number of cells on
the grid. We tested the algorithm’s
performance by measuring our
prototype Java application on the
Sony Ericsson K300i mobile phone
with several different map sizes
and unit compositions. The results
can be seen in Table 1. The Android
version, meanwhile, runs at the
maximum speed of 56—60 fps,
though the Archos G9’s memory
restrictions won’t let us build a map
larger than 150x150. With large,
crowded levels, the Android version’s
performance drops down to 8 fps on
a 100x100 map with 2000 NPCs and

0.25 fps on a 150x150 map
with 3000 NPCs.

cell you lateR
» By building bots that interact on
a local level, we can create massive
hordes of “intelligent” bots. Our
method lets players interact with
hundreds of NPCs, extending the
programming possibilities for
action, role-playing, and survival
games. We plan to further develop
this method in order to enrich a
player’s experience—for example,
by using this implementation to
make more demanding first-person
shooter games.

notes Test results are part of M.Sc. diploma

theses by Michal Jackowski, “Implementation

of CA model to game logic in mobile systems,

and by Jakub Grzesik titled “Cellular

automaton implementation in 3D game logic,”

University of Zielona Góra, Poland.

REFERENCES moore neighborhood:

(mathworld.wolfram.com/

MooreNeighborhood.html) margolus

neighborhood: (psoup.math.wisc.edu/

mcell/rullex_marg.html) levy Flight:

(www.maths.qmul.ac.uk/~klages/bee_

wshop/bbees_chechkin.pdf)

slaWomiR niKiel is currently the

professor at the Institute of Control and

Computation Engineering, Department of

Electrical Technology, Computer Science

and Telecommunication, University Of

Zielona Góra, Poland. His research interests

include virtual reality systems, game

programming, and multimedia.

No zom bie s a nd
hu ma ns

Map 3 0 x 3 0 60 x 60

No. F P S F P S

1 5 6 .70 54. 60

2 5 6 . 34 55 . 09

3 55 . 27 55 . 03

4 57. 0 0 55 .10

5 55 . 90 55 .15

AV G. 5 6 . 24 54. 9 9

4 0 zom bie s a nd
10 hu ma ns

Map 3 0 x 3 0 60 x 60

No. F P S F P S

1 34. 67 34. 8 6

2 34. 55 34. 87

3 34.70 34. 57

4 34. 23 34. 01

5 34.17 34.17

AV G. 34.4 6 34. 50

8 0 zom bie s a nd
20 hu ma ns

Map 3 0 x 3 0 60 x 60

No. F P S F P S

1 24. 9 6 24. 39

2 25 . 01 24.45

3 23 . 91 24. 58

4 24.78 24.10

5 24. 59 24.17

AV G. 24. 65 24. 34

20 zom bie s a nd
5 hu ma ns

Map 3 0 x 3 0 60 x 60

No. F P S F P S

1 45 . 01 4 4. 9 9

2 45 .13 45 . 54

3 45 . 90 45 . 01

4 45 . 67 45 .49

5 45 .78 45 . 37

AV G. 45 . 50 45 . 28

INNER PRODUCT // slawOmIR NIkIEl

gamE DEvElOPER | may 201242

http://code.google.com/p/libgdx/
http://mathworld.wolfram.com/MooreNeighborhood.html
http://mathworld.wolfram.com/MooreNeighborhood.html
http://psoup.math.wisc.edu/mcell/rullex_marg.html
http://psoup.math.wisc.edu/mcell/rullex_marg.html
http://www.maths.qmul.ac.uk/ffklages/bee_wshop/bbees_chechkin.pdf
http://www.youtube.com/watch?v=aQqQ0MM8aqI
http://www.youtube.com/watch?v=aQqQ0MM8aqI
http://code.google.com/p/libgdx/
http://www.maths.qmul.ac.uk/ffklages/bee_wshop/bbees_chechkin.pdf

http://www.gdceurope.com

game developer | may 2012 44

design of the times // jason vandenberghe

OPEN SOURCE PSYCHOLOGY
» Before we get our hands dirty, I want to
mention a few things about why the Big 5 system
is different from other systems.

For starters, the Big 5 system doesn’t come
from a single person—it is an international
collaboration between dozens (hundreds?)
of researchers. Instead of keeping the data
driving the discoveries copyrighted and secret,
or preventing correlative studies with other
systems, the data behind the Big 5 system was
subjected to every imaginable cross-analysis—
which is ongoing, and will be into the foreseeable
future. And while the contributors could have
owned the discoveries and charged for their use,
they decided to release the entire thing into the
public domain. In other words, the Big 5 system
is the Linux of motivation psychology.

BELLS AND CURVES
» When you take the Big 5 test (the best free
one I’ve found:

(www.personal.psu.edu/~j5j/IPIP/), you get
a report that shows where you fall in five
personality “domains,” as well as in the individual
character “facets” that make up those domains.
Each of these domains is defined as having a
standard distribution (read: bell-shaped curve)
when applied across humanity. A low score or a
high score means that for that particular facet
your motivation is a rarity, and a score in the
middle means that for that facet your motivation
is similar to a majority of the population.

This means we have a statistical baseline
for any analysis we’d like to do, which is a Very
Good Thing—as we apply this system to game
development, we can swap out vague assertions
like “most gamers want X” for factual statements
like “half the human population has a preference
for X, and the other half for Y.” Even better, we
can begin to accurately measure different player
populations. Have you ever wondered whether
the “core gaming” population is statistically
different in it’s preferences than the rest of the

world? Well, now we’re one detailed study of
players away from having an answer.

TWO SIDES TO EVERY STORY
» Each domain, or “factor,” is a two-sided
spectrum with a positive motivation on each end.

This may seem obvious at first: Some people
are open to new experiences, and others less
so, for example. Well, compare that two-sided
structure to the commonly-held-in-the-game-biz
archetype of the Achievement Player. What is the
positive opposite of an Achievement Player?

The developers I have worked with tend to talk
about Achievers like this: If your game satisfies
Achievers, you’ll probably get those players to
play your game. If your game doesn’t satisfy
Achievers, you’ll fail to attract those players, and
by implication you make less money.

I have started calling this way of looking
at players as the “thermometer model” of
motivation—you stick a thermometer in the
game and you measure its “Achievement-ness.”

THE FIVE
DOmAINS
OF PLAY
Mapping the Five-
Factor Model in
psychology to
gaMe design
over the last twenty months, i’ve been trying to draw
correlations between the Big 5 motivational factors
and game design elements that cater to those factors
by interviewing any game player willing to take a
test about their play behavior. In essence, I wanted
to translate the work of motivation psychologists
into game design—and I managed to draw a few
correlations sooner than I had expected.

LittLeBigPLanet appeals to
players that value harmony.

http://www.personal.psu.edu/~j5j/IPIP/

www.gdmag.com 45

design of the times // jason vandenberghe

High is good, low is bad. But from what I have
learned so far, that view is completely wrong.

The opposite of an “Achievement player” is a
“contentment player:” someone who is perfectly
happy to ignore your target goals, difficulty
challenges, and medals, and just hang out.
Someone who is motivated to be content with
their current state and who will buy games that
let them act on that motivation.

Remember the bell-shaped curve discussion
above? We’re talking about 50 percent of
humanity being on the “contentment” side of
the curve. That’s an awful lot of players who are
not being discussed in most design meetings,
thanks to a simple misunderstanding of how
player archetypes work.

SWIMMING IN THE O.C.E.A.N.
» Let’s get down to business. The Big 5 are:
Openness to Experience, Conscientiousness,
Extraversion, Agreeableness, and
Neuroticism— “O.C.E.A.N.”

Openness to Experience distinguishes
creative, intellectual folk from down-to-earth,
pragmatic ones. A high scorer would be Alice In
Wonderland, who is happy to drink whatever
she comes across and follow rabbits into the
unknown. Alice finds Wonderland a delight. A
low scorer would be Samwise Gamgee, who just
wants to go home, have a predictable life, and not
bother about with wizards quite so much.

Conscientiousness deals with our ability
to control our impulses and order our world
the way we want it. A high scorer would be
Hermione Granger, who is the best in her class
at almost everything, and who is the one you
go to when you need to get something difficult
accomplished. A low scorer would be Jeff “The
Dude” Lebowski, whose primary ambition in life
is to bowl, and who can turn nearly any simple
outing into a near-complete disaster.

Extraversion deals with the desire for
external stimulation, both social and otherwise.
A high scorer would be Austin Powers, who
is always ready to party, much prefers the
company of others to solitude, and is the leader
of the pack. A low scorer would be Edward
Scissorhands, who is happy to do whatever you
want, please, just leave him alone, in the dark.

Agreeableness deals with cooperation and
social harmony. A high scorer would be Charles
Xavier, who puts the needs of others ahead of
his own, believes in the good in people, and who
understands how you’re feeling better than you
do. A low scorer would be Snake Plissken, who, if
you want him to care about another human being
(like the president), you have to inject explosives
into his neck that will detonate if that person dies.

Neuroticism reflects how strongly one
experiences negative (and only negative)
emotions. A high scorer in Neuroticism would be
Woody Allen (the character, not the man), for

whom the world is a panoply of fears, anxieties,
angers, and frustrations. A low scorer would
be Obi-Wan Kenobi, for whom fear, anger, and
jealousy lead to the dark side of the Force, and
who met his death with a polite salute.

FACETS WITHIN FACTORS
» Your score in each domain in the Big 5 is
actually something like a weighted average
of your score in six “facets” that describe
specific preferences within that domain. For
example, Openness to Experience is composed
of Imagination, Artistic Interest, Emotionality,
Adventurousness, Intellect, and Liberalism;
Conscientiousness includes Self-Efficacy,
Organization, Dutifulness, Achievement-Seeking,
Self-Control, and Cautiousness; and so on. I won’t
list them all exhaustively—take the test yourself,
read the Wikipedia page (http://en.wikipedia.org/
wiki/Big_Five_personality_traits), or just Google
“Big 5 facets” to see them all.

As you will see, many of these facets
describe polarities that game designers already
use. These facets are where the proverbial rubber
meets the road for game design.

THE FIvE DOMAINS OF PLAY
» With the psychology described, we can go
looking for game elements that will satisfy these
motivations. In order to do this, I have been
interviewing gamer players after they take the
Big 5 test, with the idea that people with a similar
score in specific facets should theoretically
prefer similar games or game elements (such as
PvP, achievements, grouping, and so on).

My database isn’t complete, but I have
uncovered strong evidence for many direct
associations between the Big 5 facets and game

elements. The notable exception is Neuroticism,
which refuses to produce predictable correlations
so far. That said, based on the data so far,
translating the Big 5 into game elements gives us
these five domains of play: Novelty, Challenge,
Stimulation, Harmony, and Threat.

Novelty (which maps to Openness to
Experience) is the presence or lack of new,
interesting, dramatic, or beautiful things in the
game. A high Novelty game would be Minecraft,
and a low Novelty game would be flight SiMulator.

Challenge (which maps to
Conscientiousness) is the part of the game
that requires the player to use self-discipline:
overcoming obstacles, work, avoiding danger,
and (literally) collecting achievements. A high
Challenge game would be Splinter cell, and a low
Challenge game would be lego Star WarS.

Stimulation (which maps to Extraversion) is
the part of the game that excites, be that through
direct thrill-rides or through social interactions. A
high Stimulation game would be JuSt Dance, and a
low Stimulation game would be floWer.

Harmony (which maps to Agreeableness) is
the part of the game where the player behaves

in a particular way toward other people or
characters. Do you shoot them? Or help them? A
high Harmony game would be little Big planet,
and a low Harmony game would be Street fighter.

Threat (which maps to Neuroticism) is the
negative tone of the game that can evoke negative
emotions in the player, such as addiction, anxiety,
anger, or sadness. As I mentioned, Threat is the
domain that has so far resisted my efforts to find
games that I can predict players will like, so I will
save further discussion for when solid data exists
for this domain.

LEGO Star WarS is good for players that
prefer less challenging games.

http://en.wikipedia.org/wiki/Big_Five_personality_traits
http://www.gdmag.com
http://en.wikipedia.org/wiki/Big_Five_personality_traits

game developer | may 2012 46

design of the times // jason vandenberghe

MAPPING FACETS TO GAME DESIGN
» Now we’re ready to correlate the individual
facets in the Big 5 factors to a game’s capability
to satisfy different types of player preferences.
Remember; above we’re measuring the player,
but here we are measuring the game. The idea
is that by correlating play preferences to game
elements, we can predict what kind of player will
enjoy, play, and buy games with those elements.

Let’s start with a simple example: just one
facet of the Openness to Experience factor,
which we’ve described in game terms as
Novelty. In the Big 5, the facet of “Imagination”
reflects a person’s preference for their inner,
imaginative world over the “real world.” I find
(so far) that a player’s Imagination score often
directly maps to their interest in fantastic/
imaginative settings (such as Skyrim or maSS
EffEct) over realistic ones (such as call of
Duty or maDDEn). So, I call this facet of a game
“World,” and describe it as the game’s “offer of
fantastic or realistic settings.”

World is the first of six facets in Novelty. The
other five are Predictability (offer of exploration
and discovery mechanics over repetitive or
“base-building” game mechanics), Melodrama
(offer of emotionally evocative narratives),
Artistry (offer of compelling visuals/audio),
Puzzle (offer of puzzle-solving play), and
Message (offer of socially progressive themes).

The Conscientiousness factor is described
in game terms as Challenge. Our game facets
are Difficulty (offer of difficult-to-accomplish
goals), Achievement (offer of accomplishment
recognition, such as Achievements), Order
(offer of set-completion mechanics, as well as
grid-based play over free-board-play), Obligation
(offer of guilds and other social obligation
structures), Work (offer of labor-intensive tasks

or “grinding”), and Cautiousness (offer of—
precise, calculated play over run-and-gun—said
another way, the silenced pistol over the rocket
launcher).

The third Big 5 domain is Extraversion, which
for games we map to Stimulation. The game facets
are Expression (offer of positive socialization
opportunities—chat, emotes, and so on), Crowd
(offer of play with large groups of people), Role
(offer of leadership roles versus follower roles),
Pace (offer of a high volume of activities), Thrill
(offer of high-intensity/exciting action), and Joy
(offer of strong positive emotions in the player—
happiness and delight, for example).

Agreeableness is the fourth domain of the
FFM, mapped to Harmony for a game. The game
facets are Trust (offer of play that includes or
does not include the capacity to be betrayed,
especially in a way that feels “outside the rules”),
Integrity (offer of, or the lack of, the ability to
do the above to other players), Help (offer of
support roles), Cooperativeness (offer of direct
confrontation with other players—note that
while pure PvP is a low Cooperativeness score,
team-based PvP is a high one), Glory (offer of
publicly viewable medals, scores, character
customizations, etc.), and Compassion (offer of
contexts that trigger and/or require an emotional
comprehension of characters).

Neuroticism is the last domain, and while I call
this domain of play Threat, the correlations are
less clear. Currently, the facets I have are these:
Tension (the capacity to instill fear in the player),
Provocation (the capacity to make a player
angry), Despair (the presence of “hopeless”
in-game contexts), Humiliation (the capacity to
make the player feel self-conscious), Compulsion
(the presence of “addictive” game mechanics),
and Danger (the capacity to hurt the player’s

feelings). The issue here is that so far none of
these facets have proven to be predictive–I
have examples of players with very high and
very low Anxiety scores (which maps to Tension,
above) who both list rESiDEnt Evil 4 among their
favorite games of all time. For now, Threat is still
in “preproduction.” Now for some homework. If
you have read this far, you’re clearly interested.
Point your browser to http://www.personal.psu.
edu/~j5j/IPIP/ and take the 300-question version
of the Big 5 test. Then, with the mappings above,
use those results to deconstruct what your
motivations of play might be.

A note of caution: In giving the interviews,
I have learned to strongly emphasize that
we are trying to map preferences of play to
game elements that are satisfying—not which
elements players like. The idea of “liking” a game
element includes the player’s opinion on a lot of
nongame things (how much time in the day they
have for play, indie vs. triple-A, and so on)—and
those are things that models like the Big 5
cannot predict.

HOW YOU CAN USE THIS
» The domains of play are a map to conclusions
about how satisfying our games are, what
motivations our games are not satisfying, what
kind’s of players are enjoying our games, and
what kind’s of players could be enjoying our
games if we were to make specific changes.

Imagine that for each motivation facet, every
game has a “band” of that facet that it “offers.”
For example, Skyrim will offer a high-to-medium
Fantasy facet, which means that players with
a high, average-to-high, or average score in
Imagination will find Skyrim satisfying. Players
with a low Imagination score will find the setting
too exotic for their tastes (specifically, the
existence and use of magic, in my experience).
With this approach, we can map out how
much “coverage” our games have for all of the
motivations in the Big 5.

During game development, I am often
confronted with this statement: “Players want
(x),” where (x) is the speaker’s opinion on what
everyone wants. These are usually inaccurate
statements, and we often intuitively know this.
But how do you respond?

Now, I can answer in this way: “True! Half
of them do. The other half want (y),” where (y)
is the motivation on the other side of whatever
facet the speaker has referred to. That has
changed my approach to many of my team’s
design efforts. If the Big 5 system gave me only
that, it would be worth it to me. But from what I
can tell, that’s just the beginning.

JASON VANDENBERGHE is a creative director at Ubisoft

Montreal, which is a pretty good gig, actually. Comments,

concerns, criticisms, and offers to help out can be aimed at

jason.vandenberghe@ubisoft.com

The MAddEN series is a good example of
a game with a realistic, not fantastic,
setting.

http://www.personal.psu.edu/ffj5j/IPIP/
mailto:jason.vandenberghe@ubisoft.com
http://www.personal.psu.edu/ffj5j/IPIP/

Ne w s aNd iNformatioN about the Game de velopers CoNfereNCe® serie s of e veNts www.GdCoNf.Com

www.gdmag.com 47

GDC VAULT
DEBUTS CLASSIC
VIDEOS, GDC 2012
LECTURES
The GDC Vault service
(www.gdcvault.com) has released
both free and members-only
video, audio, and slides from the
Game Developers Conference in
San Francisco, including free
postmortem videos for games
like Fallout and Harvest Moon.

Following the conclusion
of the record-breaking
22,500-person conference, these
Classic Postmortem sessions,
along with many other notable
talks, are now available from GDC
2012’s “Free Content” section
(www.gdcvault.com/free/gdc-12)
on GDC Vault.

Now in their second year,
the Classic Postmortem lectures
stood out as a particular highlight
from this year’s show, offering
unique insight from some of the
industry’s seminal game creators.

The series includes notable
talks from Frederick Raynal on the
making of alone in tHe Dark, Ed
Logg on crafting the classic arcade
game Gauntlet, Yasuhiro Wada on
the quirky and successful Harvest
Moon, and Tim Cain on the original
Fallout, which spawned one of
the industry’s most popular RPG
franchises of all time.

Also available for free is an
intimate chat with MinecraFt cre-
ator Markus “Notch” Persson,
hosted by spyparty developer
Chris Hecker. This session delves
into Persson’s creative process
and provides a look into the mind
of the indie game juggernaut.

In addition, GDC Vault has
debuted a panel featuring Persson
alongside industry figures
Jordan Mechner, Tim Sweeney,
Adam Saltsman, John Romero,
and Jane Pinckard, on the
budding indie renaissance. Other
feature-content on the GDC Vault
includes a lecture from plants vs.
ZoMbies creator George Fan on the
best ways to teach players via
game design.

Other free Main Conference
talks include a look at the art
of Diablo iii, an audio session
on Supergiant Games’ indie hit
bastion, and production tips from
Bungie’s Brian Sharp. These
lectures represent just a few of
the free videos currently available
on GDC Vault.

Outside these track highlights,
GDC Vault also offers 25
free company-sponsored
lectures from Intel, Nvidia, Google,
and more. These free videos
include high-quality panels on
HTML5, Android, cloth simulation,
and more, and are available
after registering for a GDC Vault
account. GDC organizers have
also released hundreds of slide
collections from the GDC 2012
presenters, offering a glimpse into
many more of the show’s most
influential talks.

This new free content debuts
alongside more than 300 additional
lecture videos from GDC 2012 for
GDC Vault subscribers. GDC 2012
All Access pass holders have full

access to GDC Vault, and current
subscribers with access issues
can contact GDC Vault admins.

To purchase a standalone
GDC Vault subscription, send an
email to help@gdcvault.com.
Group subscriptions are also
available; game-related schools
and development studios who
sign up for GDC Vault Studio
Subscriptions can receive access
for their entire office or company.
More information on this
option is available via an online
demonstration, and interested
parties can contact Gillian Crowley
at gcrowley@techweb.com.

Now that the GDC 2012
content is online, be sure

to keep an eye on GDC Vault
for even more content in the
months ahead. Show organizers
will also archive videos, audio,
and slides from upcoming
events like GDC Europe, GDC
Online, and GDC China, so
there’s plenty more content
to come. To stay abreast of
all the latest updates to GDC
Vault, be sure to check out the
news feed on the official GDC
website (www.gdconf.com), or
subscribe to updates via Twitter
(@Official_GDC), Facebook
(www.facebook.com/
gamedevelopersconference),
or RSS (feeds.feedburner.com/
gdcnews).

Ed Logg presents his
classic postmortem for
Gauntlet.

Minecraft.

http://WWW.GDCONF.COM
http://www.gdcvault.com
mailto:help@gdcvault.com
mailto:gcrowley@techweb.com
http://www.gdconf.com
http://www.facebook.com/gamedevelopersconference
http://feeds.feedburner.com/gdcnews
http://www.gdmag.com
http://www.facebook.com/gamedevelopersconference
http://feeds.feedburner.com/gdcnews
http://www.gdcvault.com/free/gdc-12

pixel pusher // steve theodore

game developer | may 201248

Tech Tao For Tiny Teams
How tecHnical artists can fit into low-budget dev teams

Nowadays, the big-studio
ecosystem in which tech art
evolved has taken a few significant
knocks. The rise of casual, social,
and mobile gaming has put some
brakes on team bloat. Sure, there
are still 300-person megastudios
toiling away on megaprojects,
but a lot of the growth (and new
investment) in the industry is
coming from smaller groups who
can take more creative risks
and gamble on new platforms or

audiences. The crowd at any GDC
lecture or IGDA meetup today is
less grizzled, more diverse-and
often less lavishly funded than
in years past. Which raises the
question: What place is there for a
tech artist on a tiny team? Is the
tech-art field only a luxury for the
heavy-iron houses, like rolling your
own engine?

The answer to the question
depends a lot on exactly how you
ask it. If you’re trying to figure

out whether a five-person art
team needs a dedicated Motion
Builder integration whiz, the
answer is probably no. It takes
a large organization to make
productive use of people with
deep but very narrow skills. On
the other hand, if you phrase the
question as, “We can afford only
five artists. Shouldn’t our art team
have somebody who can put
together some lightweight tools
and do automation in addition to

production work?” the answer is
obviously “Hell, yeah.”

GiT ‘er Done
» Tech art is a multifaceted (read:
“schizophrenic”) discipline. It
melds technical concerns with art,
and mixes spit-and-bailing-wire
inventiveness with sober, serious
process engineering. Tech artists
are characterized by self-reliance,
a bent for problem solving, and a
grudging refusal to be stymied by
technology—all things you need to
ship a game without the money, time,
and manpower of a megastudio.

Tech art is about getting things
done with the tools at hand, which
is important in an environment
with limited time and scarce
resources. Events that would be
minor bureaucratic speed bumps
for a 300-person team—say,
a buggy 3ds Max hotfix that
corrupts important files, a random
publisher decree that all the green
monsters have to become brown,
or a last-minute push to crank
out microtransaction-friendly
tchotchkes—can be deadly for a
smaller project on a budget.

In lean times, the left half of
the tech-art brain—the one that
comes up with the crazy, quick-
and-dirty fixes at the pit of a
crisis—is priceless. When a small
team discovers that every texture
in the game has to be converted
from DXT1 to DXT5 in time for next
week’s demo, they don’t have a
pool of interns or contractors who
can open and resave five thousand
Photoshop files. The entire art staff
is going to waste precious polish

to me, the rise of technical art as an independent discipline has been one of the most interesting stories of the last
decade in the video game business. The last console generation, born in titanic competition over graphics and production
values, inflated many triple-A teams (and their budgets) to ungainly proportions. As the numbers grew bigger, developers
learned to value those mysterious artists who specialized in making other artists more productive. The hobbyist riggers
and hard-to-pigeonhole scripters of a decade ago have evolved into high-tech specialists in everything from shader
programming, to SQL databases, to shuffling data over the web. At any given GDC you can find tech artists (more prolix
than their pure-art brethren) arguing about the subtleties of Python syntax, the right way to manage a shader pipeline, or
the hassles of getting data from a mocap studio on the other side of the Pacific. Tech art has gone big time.

ph
oT

o
co

ur
Te

sT
 o

F
Ga

m
e

De
ve

lo
pe

rs
 c

on
Fe

re
nc

e

pixel pusher // steve theodore

www.gdmag.com 49

time staring at file dialogs—unless,
of course, one of those artists is
the kind of person who can string
together a command line file
converter, a .bat file, and a copy of
AutoHotKey into a temporary file
conversion pipeline.

Clean and Sober
» Of course, this kind of Rube
Goldberg technology doesn’t sit too
well with the other side of the tech-
art brain—the part that believes
in building and maintaining solid,
well-engineered tools. Scripting
starts off as an intoxicating rush of
new power, but as Spider-Man has
taught us, “with great power comes
great responsibility.” Far too many
technical artists get their education
in computer science by hobbling
an entire studio with an innocent
mistake born of eagerness and
ambition. As they have become
integral to the functioning of big
teams, they’ve received a collective
crash course in responsible
software engineering.

This sense of responsibility
is why so many GDC talks
for technical artists focus on
things like software patterns,
error handling, and test-driven
development. Improvisation
is great for emergencies, but
it’s not how you run things day
in and day out. In a big team,
there’s an infinite amount of
work for the right-brained TA who
dreads downtime and disorder.
Every system can be made more
bulletproof. Every U.I. can be
streamlined. Even the biggest
teams seem unable to keep their
wikis and tutorials up-to-date.

Small teams tend to look
on the industrial-strength side
of tech art as an unaffordable
luxury. With quick turnarounds
and creative chaos, it can be
difficult to budget time for
under-the-hood improvements.
Nonetheless, small teams also
need to practice safe technical
art. Even tiny teams need
working tools to ship a game;
indeed, they are even more
threatened by downtime than the
big kids. When you’re shipping in
six months instead of four years,
busted tools hurt a lot more.

PraCtiCing Safe teCh (art)
» In practical terms, this means
that small-team tech art needs to
be tightly focused and minimalist,
with few bells and whistles.
Small teams can rarely afford
a slick custom GUI, elaborate
procedural rigging systems,
or supersophisticated engine
integration. On the other hand,
small teams should not skimp
on the basics: A fast, reliable
export pipeline, no-nonsense
tools distribution, and efficient
asset management are even more
important for tiny teams than they
are for the behemoths.

The single most important
skill for a small-team tech artist—
more important even than Maya
savvy or Max-Fu—is the ability to
distinguish between the tools that
ship games and the kind that serve
mostly to wow your friends on Tech-
Artists.org. Though your technical
conscience may cry out for a cool,
object-oriented and data-driven
menuing system, you should settle
for ugly old-school mel scripts if
they can do the job. You may loathe
P4Python and dream of replacing
it with a cleaner API, but you’ll
have more important things to do
than satisfy your need for order.
Huge triple-A franchises can afford
that kind of thing, but a $750,000
project cannot.

This is not to say that small
team TAs can ignore infrastructure—
quite the contrary. Chaos is the
natural order for small projects, and
the only way to stay sane when
things get crazy is to work from
solid foundations. For example: An
efficient, low-maintenance way of
getting tools into your users’ hands
pays big dividends when crunch
time looms. If you have to push a
new fix out quickly, or get a bunch
of contractors set up for a sudden
content push, you can’t rely on
email attachments or sneaker-net.
Any time you save by skimping
on the distribution system will be
paid many times over in debugging
problems that come from botched
installations, version mismatches,
and oversights by busy artists.

Small teams also need to
provide a high level of reliability,
which in practice means some kind
of automated testing and validation

for new scripts. Monster teams can
afford to have a real human being
show up at 6:30 every morning to
run through the tools and make
sure everything is working. The
poor dev’s alternative is some form
of automated testing. Developers
in other chaotic, fast turn-around
businesses (for example, web
development) make heavy use
of automatic software testing to
guarantee uptime, but this is still
a novelty in the tech art world.
It can be hard to convince your
teamates that writing tests instead
of tools is a good use of precious
time. That said, a system that can
vet every check-in to make sure
it won’t bring down the studio due
to a missing file or a syntax error
is an essential survival tool for
the small team TA. (If the phrase
“test driven development” doesn’t

ring any bells for you, check out
a TDD website like http://onlamp.
com/pub/a/python/2004/12/02/
tdd_pyunit.html, The Foundations
of Agile Python Development by
Jeff Younker, or Head First Sofware
Development by Dan Pilone and
Russ Miles. You’ll be glad you did.)

The most critical element of
small-team tech art is flexibility.
This is true for tech, but even
more true of people. Casual, social,
and mobile games attract a lot
of veteran developers precisely
because small teams need
generalists. If you hate being
pigeonholed, small teams offer
the opportunity to spread your
wings. Tiny projects demand the
kind of artists who can do effects
on Monday, shaders on Tuesday,
and update 300 buggy collision
volumes on Wednesday—perfect

for the curious, DIY type. And for
the tech artists who don’t want to
lose touch with their roots in actual
artistry, small teams also offer
(or more likely, demand) content
creation as well as tools and
troubleshooting.

Of course, the jack-of-all-
trades lifestyle doesn’t appeal to
everyone. Some tech artists prefer
the master-of-one route, which
suits them far better for the kind
of big projects that need them to
find a specialization and refine it.
The choice between the extremes
is eminently personal, but it’s
important for every TA to have
some idea where they are most
comfortable on the spectrum from
generalist to specialist.

So, does tech art have a place
on smaller-scale projects? The
answer is an unqualified yes!

As young companies and new
genres push the boundaries of
the industry, they can benefit
from both the technical agility and
the hard-won production wisdom
of technical artists. Many TAs,
meanwhile, will find a great arena
for their skills and all-rounder
habits on the wide-open frontiers.
(It isn’t often we get to end these
columns without a hedged bet or
qualification somewhere. Enjoy it
while it lasts!)

Steve theodore has been pushing

pixels for more than a dozen years. His

credits include Mech coMMander, half-life,

TeaM forTress, counTer-sTrike, and halo

3. He’s been a modeler, animator, and

technical artist, as well as a frequent

speaker at industry conferences. He’s

currently the technical art director at

Seattle’s Undead Labs.

Ph
ot

o
Co

ur
te

St
 o

f
ga

m
e

de
ve

lo
Pe

rS
 C

on
fe

re
nC

e

http://Tech-Artists.org
http://onlamp.com/pub/a/python/2004/12/02/tdd_pyunit.html
http://www.gdmag.com
http://onlamp.com/pub/a/python/2004/12/02/tdd_pyunit.html
http://onlamp.com/pub/a/python/2004/12/02/tdd_pyunit.html
http://Tech-Artists.org

good job
hiring news and interviews

Hired someone interesting? Let us know at editors@gdmag.com!

game developer | may 201250

Matt Sughrue leaveS Seven45 StudioS for MetaverSal StudioS

Moving to Mobile
these days, it seems like everyone has their eyes on in mobile game development.
Matt Sughrue rells us about his transition from Seven45 Studios (Power GiG: rise of the
sixstrinG) to Metaversal Studios’s (UPdraft Jack) relatively tiny team.

whowentwhere
sonic the hedGehoG co-creator hirokazu Yasuhara
has left namco Bandai for an undisclosed role
with nintendo Software technology, a north
american nintendo subsidiary in redmond, Wa.
Yasuhara got his start at Sega in 1988, serving
as director, game planner, and designer for
many of the original sonic the hedGehoG titles. he
has also worked on naughty dog’s Jak & daxter
and Uncharted franchises, and more recently,
namco Bandai’s Pac-Man Party.

thatgamecompany saw several recent
departures after releasing JoUrney. executive
producer robin hunicke has left to join
Katamari damacy creator Keita takahashi
at tiny Speck; way designer Chris Bell, “feel
engineer” John nesky, and way programmer
Walt destler have left to remake way as a new
studio called the Wilderness; and co-founder
and president Kellee Santiago has left simply to
“seek new challenges.”

worMs franchise creator andy davidson has
returned to team17 fourteen years after he
originally left. davidson came back to team17 to
work on the upcoming worMs revolUtion, due out
for Windows PCs and consoles later this year.

infinity Ward’s call of dUty creative strategist
robert Bowling has stepped down from his
position and left activision entirely. as of
this writing, Bowling is working on a yet-
undisclosed project.

Patrick Miller: What made you decide to
leave console development for iOS?
Matt Sughrue: the project my team was
working on (a band game) hit the streets at
the exact time when the music game genre
was crashing and burning. that was enough for
the owners of the company to want to move
on to other kinds of consumer products. the
team was dismantled and i found myself on
the job market for the first time in a very long

time. after that experience, i wasn’t keen on
getting back into large-scale development
again. i had some breathing room thanks to a
decent severance package, so i decided to take
my time and find a gig that had the potential to
rekindle my passion for making games.

i’d been an avid iPhone gamer since
the app Store first opened, and the idea of
making smaller games for that platform
was very appealing. i got in touch with a
recruiter colleague of mine and found the
opportunity at Metaversal Studios not long
after that. Metaversal at that time was a ten-
person team made up mostly of current and
former college students from northeastern
university. there wasn’t a lot of formal “game
company” structure like source control or
schedules—the team just decided what
game they would make and made it. they had
released a number of games this way, but none
of them had been a commercial success. i
came on as vP of product development and
brought some of the best practices tools,
like consistent documentation, formal bug
reporting, and milestone deliverables, that i had
been using over the years to the table. the end
result is that the raw talent and creativity of the

team has been channeled into a development
process that is manageable and delivers great
games on time.

PM: Did you just wake up one morning and
say to yourself, “Man, I really want to go
make some mobile games!”
MS: not really. i’ve been making games for
the past twenty years and the progression of
my career had always been to take on more
challenges at bigger companies. in 2010 i
was running a console studio with seventy
developers that i had built from the ground up.
Mobile games seemed like a backward step at
that point.

PM: What’s it like working with a small team?
MS: it’s a big adjustment to go from many
departments who are building out chunks of a
single game over the course of two years that
will be sold through retailers, to individuals
who are working and collaborating closely
over three or four months to make a game
that’s sold digitally. What i love most about
this market is that it’s still possible for a small
team to make original games that sell well.
that’s very difficult on the console side, where
the cost of developing and marketing your
own games is much higher and the developer
is up against publishers with big brands and
big marketing budgets. While i do miss the
challenges of pulling a big console team and
title together, i love the collaborative aspects
of working with a small team to make a game
and the challenge of getting that game up the
charts. We’ve been fortunate to have some
success with our titles, and that’s given us the
ability to continue to make the games we want
to make. that’s rare in this industry, and i’m
grateful for that opportunity every day.

PM: Do you find that the hyper-competitive
App Store is significantly affecting the way
you make games?
MS: Competition makes us work harder, get
more creative, and make our games better. We
are driven by our own desire to make great
games and by the people who play them. our
players tell us without restraint what they
think of our work in the app Store, through
tweets, and on our facebook page, and we
pay attention and do our best to improve the
experience with every new release.

new studios
gabriel Knight creator Jane Jensen and
composer robert holmes have founded a
new studio dedicated to adventure games
called Pinkerton road Studio. Pinkerton road
Studio aims to focus on storylines that are
“deep and compelling,” and has launched
a Kickstarter project to fund its first year
of development. Kickstarter backers will
be able to influence game development
decisions and participate in beta tests.

gael giraudeau and nicolas godement-
Berline have started a new Paris-based
mobile studio named Majaka, which has
just launched its debut ioS title ski chaMPion.
giraudeau previously worked for arkane
Studios, and godement-Berline worked on
several PlayStation 3 titles for outsourcing
house virtuos. Majaka plans to release
three to five games by the end of 2012.

mailto:editors@gdmag.com

www.gdmag.com 51

the business // david edery

How I stopped worryIng and learned to love tHe free-to-play busIness model

The Magic Of free-TO-Play
The first successful free-to-
play (F2P) games—defined
as “games whose primary
revenue source are in-game
purchases”—hit the market
over a decade ago. Now
they’re everywhere. They
account for eight of the top
ten grossing games on iOS as
I write this. Rumor has it that
all the major consoles will
support F2P games in the next
generation. Even our industry’s
most prominent, respected
developers (PopCap and Valve,
for example) have begun to
embrace the model.

Let me tell you what F2P represents
to me: an opportunity to bring
entertainment to billions of people
without relying on advertising
revenue or government subsidies. An
opportunity to embrace players who
want to play our games but can’t (or
won’t) pay, instead of forcing them
to become pirates. An opportunity
to stop making disposable
entertainment experiences and
instead create games that live
forever, supported by devoted fans
who happily spend money to keep
their favorite hobby alive.

For the first time in the
history of mass media, we can
entertain huge audiences without
first bombarding them with
advertisements for sugar water and
corn flakes and without making
them pirates. It’s a beautiful thing.
I’m not personally opposed to
advertising in games, but I find it
puzzling that so many developers
accept advertising, which is
essentially a form of psychological
manipulation, while decrying in-app
payments.

any gOOd TOOl can be
used fOr evil
» Yes, you can build F2P games
that resemble slot machines and
are designed to prey on people with
addictive personalities. This is also

true of card games (i.e., Blackjack),
but you don’t hear people protesting
against all card games (i.e.; Dominion
or Solitaire) So please, stop confusing
the bad things you could do via F2P
with everything that can be done
via F2P!

Here’s a challenge for every
curmudgeon that hates F2P games:
Start thinking about them as a form
of progressive taxation, and allow
your mind to expand from there.
That’s right: F2P is a system that
subsidizes the poor with payments
from the relatively wealthy.

Think it can’t be done? Check
out Triple Town and realm of
The mad God. Both heavily favor
skilled play over “purchased”
advantages; unskilled, wealthy
players absolutely cannot purchase
their way above skilled players on
the leaderboard. Neither contains
systems that encourage insane
levels of spending, though large
monthly expenditures are possible.
Those large monthly expenditures
are nothing beyond the level of
what an enthusiast might spend
on a favorite real-world hobby such
as remote-control cars, golf, or
gardening.

rOTMg as PrOgressive
TaxaTiOn
» realm of The mad God generates
revenue primarily via the sale of
“character slots,” which allow you
to play more than one character at
a time, and “vaults,” which allow
your characters to squirrel away
more loot. Neither of these things
are required to play the game, and
both can essentially be acquired
for free by creating additional free
accounts, though that’s obviously
not as convenient. A large
additional source of revenue comes
from the sale of “keys,” which are
instant portals to dungeons that
must otherwise be sought out in
the game. Again, buying keys isn’t a
precondition to playing the game or
even gaining access to dungeons;

they are simply a convenience.
What’s particularly interesting

about the dungeon keys in realm
of The mad God is that they are, in
many ways, the purest incarnation
of the idea of F2P as a progressive
tax or social good. Players want to
plunder dungeons because they
contain good loot. But buying a key
just gets you a chance to earn that

loot; you still need skill to actually
earn it. And because the most
lucrative dungeons are also the
most deadly, wealthy players who
buy keys have an explicit incentive
to invite along other players, lest
they die alone and lootless in their
own private dungeon.

rOse-TinTed glasses
» It always amuses me when
people pine for the “good old
days” of game development, when
designers weren’t concerned with
base financial considerations. The
arcade games that many of us
grew up playing were explicitly and
painstakingly designed to munch
quarters every few minutes! But
many of us still fell in love with
pac-man, donkey konG, and STreeT
fiGhTer, and were inspired by those
games to become the developers we
are today.

Even modern games on
consoles and PCs have seen
their business model change.

Whether it’s DRM in PC games or
unnecessary “online only” features
in console games intended to
deter their resale, developers
are constantly struggling with
business challenges imposed by
consumer desire for a cheaper
(or free) product. There’s also the
common player desire for online
games to live forever, even when

those games require servers and
other expensive infrastructure. So
why not embrace those desires?

signing Off
» I’m not suggesting that F2P is for
everyone. There are many amazing
games that would be difficult and
perhaps impossible to make as F2P
games. So yes, if you love those
games, keep making them. Just
understand why the rest of us have
chosen a different path. We’ve chosen
the opportunity to entertain millions
of people, for free, often without any
forced advertising or government
support, for years and years to
come. It’s an amazing thing, when
you stop to really think about it.

david edery is the CEO of Spry Fox and

has worked on games such as Realm of

the mad God, SteambiRdS, and tRiple town.

Prior to founding Spry Fox, David was the

worldwide games portfolio manager for

Xbox Live Arcade.

re
al

m
 o

f t
h

e m
ad

 g
od

http://www.gdmag.com

AURAL FIXATION // DAMIAN KASTBAUER

gAME DEvELOpER | MAy 201252

A study of sound in rAcing gAmes
vRoom vRoom

START YoUR ENGINES
» Sound has a unique ability to communicate
directly to the player in a way that is impossible
to represent visually—all the power and fury
of an engine revving, for example, can be
transferred directly from the speakers to the
player’s brain in a pure expression and feeling of
speed. Racing games lose a feeling of immersion
without sound. The sound of the engine is
positioned front and center, and it gives the

player a constant indication of speed in a way
that the speedometer can’t.

The engine is also there to remind you that
“the car is the star,” as Mike Caviezel recently
said in the racing game-focused Game Audio
Podcast 18. The three main sound components of
the engine are the exhaust system, air induction,
and the internal mechanics of the engine, which
can be implemented using a loop-based system,
granular synthesis, physical modeling, or a
hybrid of the three. Once the basic sounds for
each component are in place, each sound is then
tied to the same vehicle simulation used for
every other aspect of the game using parameters
to drive the change and modification of content.

The earliest racing game engine sounds used
the simulated vehicle RPM parameter to drive
the pitch of a square wave. Increasing the RPM
increased the pitch of the engine note, which
communicated to the player their current speed.

Racing game sound has made tremendous
leaps, even within the current generation. For
example, the quality of a vehicle’s engine sound
design is currently measured by how naturally
the RPM progression is handled during acceleration

and deceleration; an engine noise can quickly
sound unrealistic when it is taken from its natural
recorded state and modified parametrically using
DSP without the proper technical design. It’s easy
to pick out the early racing titles from the current
console life cycle that use a loop-based engine
sound because the engine sounds are dramatically
pitched, which makes them sound synthetic.

GETTING TIRED
» “Where the rubber meets the road” is a common
idiom used to describe the point where things
start to get serious. It’s the same thing for a racing
game: The sound of the tires serves to make
the player feel “at one with the road”— if it’s done

well. When the player’s tire loosens its grip, the
player will hear a screeching mayhem of kinetic
friction and know that their car is no longer driving
at optimum speed. This sound element has been
around since the beginning of racing games.

The current generation of racing games
takes the sound of tires and brings an additional
level of communication to help players better
understand their connection to the road. From
the driver’s perspective, the sounds a tire makes
as it approaches its grip limit helps to identify
how soon they will exceed the force of static
friction and lose traction. The approach of this
limit is reflected in a howling or hum present in
the sound of each tire. The current crop of racing
games represents this sound using multiple
loops of sound that are transitioned between
and pitched using a parameter from the tire
simulation for each individual tire.

The telemetry view in Turn 10’s Forza Motorsport
series allows you to see the dynamic compression
of a tire and helps to frame the change in sound.

RoLL oUT
» A good vehicle sound design needs to be heavily
integrated into the vehicle and tire simulations—
and we hope that these informal sound studies
can help you tease out exactly how the sound
designers did it. The remainder of the racing game
sound study covers the use of sound for surface
materials, camera perspectives, physical damage,
NPC vehicles, and user-interface design—and,
of course, the subtle and extreme differences
in technique between each game and audio
team. You can find the rest of our study at
Track Time Audio (www.tracktimeaudio.com)
and Lost Chocolate Lab (www.lostchocolatelab.
com), and Game Audio Podcast #18 (www.
gameaudiopodcast.com) as well.

“Let the good times roll”—The Cars

DAmIAN K ASTbAUER is a technical sound design

rat fink who can be found hot-rodding game audio at

LostChocolateLab.com and on Twitter @LostLab.

sometimes, the best way to learn about a game’s sound design is just to listen. While reading
about technology and techniques exposes us to their existence, I believe that as much can be
learned about the technical and aesthetic aspects of game audio by starting from the player’s
perspective. Recently, I joined forces with audio enthusiast and motorhead David Nichols (Track
Time Audio) to dissect the sounds of racing games. We picked apart twelve different games to
expose the current generation’s state-of-the-art in vehicle simulation sound just by listening
deeply on the player side of the magic screen. Here are a few highlights from our study.

Night RaceR.

FoRza MotoRspoRt.

http://www.tracktimeaudio.com
http://gameaudiopodcast.com
http://LostChocolateLab.com
http://www.lostchocolatelab.com
http://www.lostchocolatelab.com

www.gdmag.com 53

educated play!
STUDENT gamE PROFILES

www.mattiatraverso.com/games

One and One StOry

Patrick Miller: Tell me about the
team behind One and One StOry.
Who worked on it, and how did
you all meet?
Mattia Traverso: I made the core
of the game, (with very rough
graphics) in about a month, and
then I started looking for artists
and musicians. david was easy
to find because he was very well
known in the Flash game scene,
but before finding Gabriele I
wasted two months with various
artists around the web who
couldn’t get the mood of the game
in their drawings and mock-ups.

I realized a few days ago—
maybe seven months after the
development of the game—that
I have never talked directly with
them! We used Skype to text, but
we’ve never heard each other’s
voices. Strange, huh?

PM: How did you come up with
the design for One and One StOry?
Did you draw upon any life
experiences or memories?

MT: I think the best way to
describe the game is that I had
a relationship, but it was full of
crates and spikes, so we had to
break up!

Joking apart, the design
phase worked in a similar way to
Jenova Chen’s design process,
but I’m not saying I’m that good,
of course! His design philosophy
is different from the common one:
normally, you take a mechanic
and make sure it is fun. But
Jenova does not start with a
mechanic; he starts from an
emotion, from a feeling that he
wants to transmit to the player.

and that’s how we worked on
One and One StOry, exploiting the
game mechanics to work toward
the narration and therefore the
emotions of the player.

PM: Did you decide to do One
and One StOry in Flash from the
beginning, or did you start with
something else?
MT: Sadly, I was forced to use

Flash because I’m just starting
my developer career and that’s
the only tech I know. Since then,
I have come to know a lot of
programmers. But back then,
nobody would have listened to a
boy with such a simple idea. We
are now remaking the game for iOS
devices thanks to a very good C++
programmer, tommaso Checchi.

PM: Recently, you found an
unauthorized copy of your game
on the iOS App Store. How did you
respond to that? Were you able
to find anyone who could help
you deal with the legal matters
and get the copy pulled off the
store?
MT: When I discovered the copy,
I shouted some not-so-polite
words on twitter. Surprisingly,
that helped a lot: I was retweeted
by around 100 indie developers,
and my problem got spread
around the web very quickly. I
got a lot of contacts willing to
help me, to name a few: adam

atomic (Canabalt creator) sent
me the dMCa module to take the
app down, IGda and the Vlambeer
guys (Super Crate bOx) contacted
apple. I got a fantastic wave of
support from the community. a
few lawyers also contacted me
even though I never intended to
sue the “thieves.” after two weeks
or so, the app was removed from
the store, though I haven’t heard
anything else from apple!

PM: Now you’re working on your
own iOS port. Is it hard to make
One and One StOry work well on a
phone and tablet?
MT: yes! Since it’s a platformer,
the controls are a major issue. I
personally don’t like games with
a lot of buttons on the screen,
because that’s just a way to adapt
a game that was not originally
designed for iOS. I’m trying to
rethink the control scheme to
work without a single button on-
screen. the system is up: now we
just need to playtest it!

another problem is that the
game is too short to be in a paid
form: We need to add content, but
without ruining the atmosphere
and the mood, which is tough.
 Besides that, I should thank
apple: the art now needs to be
redone twice as large for the
new iPad!

Release Date: 10/10/2011
length of Development: 3 months.
90% of the game was finished in a
month, but we spent two months
polishing the final 10%.
BuDget: One half-eaten lollipop.
that’s it.
lines of coDe: 4,000+
fun fact: an early build of the game
had an ugly brown background, and one
playtester said “those five minutes were
the worst of my life, I was just wandering
around a brown nothing,” which
prompted Gabriele to make the great
art we used in the final build. Guess we
should thank that tester today.

Plenty of new game develoPers choose to start out with a simPle 2d Platformer, but few would think to make a 2d Platformer based on a romantic game me-

chanic like igf student showcase finalist one and one story. we talked with one and one story designer and Programmer mattia traverso about the develoPment

Process and the transition to ios.

http://WWW.MATTIATRAVERSO.COM/GAMES
http://www.gdmag.com

©
 2

01
2

Fu
ll

Sa
il,

 L
LC

3300 University Boulevard • Winter Park, FL

Game Art

Game Design

DEGREE PROGRAMS IN:

800.226.7625

fullsail.edu

Game Development

Financial aid available for those who qualify • Career development assistance • Accredited University, ACCSC

To view detailed information regarding tuition, student outcomes, and related statistics,
please visit fullsail.edu/outcomes-and-statistics.

http://fullsail.edu/outcomes-and-statistics
http://fullsail.edu

E3 EXPO . 15

EPIC GAMES . 6

FULL SAIL REAL WORLD EDUCATION 54

HAVOK .C3

LOS ANGELES FILM SCHOOL .55

MAGIC PIXEL GAMES . 3

PERFORCE SOFTWARE .C2

RAD GAME TOOLS .C4

SIGGRAPH .31

VANCOUVER FILM SCHOOL . 23

COMPANY NAME PAGE COMPANY NAME PAGE

ADVERTISER INDEX

gd Game Developer (ISSN 1073-922X) is published monthly by UBM LLC, 303 Second Street, Suite 900 South, South Tower, San Francisco,
CA 94107, (415) 947-6000. Please direct advertising and editorial inquiries to this address. Canadian Registered for GST as UBM LLC, GST No.
R13288078, Customer No. 2116057, Agreement No. 40011901. SUBSCRIPTION RATES: Subscription rate for the U.S. is $49.95 for twelve issues. Coun-
tries outside the U.S. must be prepaid in U.S. funds drawn on a U.S. bank or via credit card. Canada/Mexico: $59.95; all other countries: $69.95
(issues shipped via air delivery). Periodical postage paid at San Francisco, CA and additional mailing offices. POSTMASTER: Send address changes
to Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. CUSTOMER SERVICE: For subscription orders and changes of address, call toll-free in
the U.S. (800) 250-2429 or fax (847) 647-5972. All other countries call (1) (847) 647-5928 or fax (1) (847) 647-5972. Send payments to gd Game
Developer, P.O. Box 1274, Skokie, IL 60076-8274. Call toll-free in the U.S./Canada (800) 444-4881 or fax (785) 838-7566. All other countries call (1)
(785) 841-1631 or fax (1) (785) 841-2624. Please remember to indicate gd Game Developer on any correspondence. All content, copyright gd Game
Developer magazine/UBM LLC, unless otherwise indicated. Don’t steal any of it.

>> GET EDUCATED

55W W W . G D M A G . C O M

http://WWW.GDMAG.COM
http://designlafilm.com

ARRESTED DEVELOPMENT // MATTHEW WASTELAND

Hot rumors!
Secret inSide info here

game developer | may 201256

Hey. You’ve probably heard of me. Yeah—I’m pretty much the guy with all the super top-secret rumors and mind-blowing insider
stories about the game business. That’s right, I’ve got my finger on the hidden pulse of what’s really happening underneath those
superficial press releases, official statements, and stooge journalists. I’m really well connected, and I know everyone that matters.
My vast network of highly placed sources at the upper echelons of every single game company in the world ensures that I’m updated
with top-secret information 24 hours a day. I get all the best game industry rumors even before the guy at GameStop does.

Don’t believe me? I’ll give you some scuttlebutt right now—on the down low, of course. Promise what I tell you stays between you
and me. Okay?

tHe New CoNsoles
» No doubt you’ve heard about the
next generation of consoles under
development at Microsoft, Sony,
and the secret Google/Samsung/
Mattel partnership (you did know
about that, didn’t you?). And you’ve
probably already heard that the
next Xbox is codenamed “the 2012
Hyundai Azera,” which multiple
sources have already confirmed will
get better gas mileage and feature
more passenger room than any
other four-door vehicle in its class.
But that’s all the amateur level
stuff—I knew about all that literally
five years ago. Have you heard
about Sony, though? Do you know
about the new technologies that
their crack team’s been cooking up
in their secret undersea laboratory?

Well, I’ll tell you, if you keep it
to yourself: I have it on really good

authority that the PlayStation 4 will
include a chip with a radical new
design that will blow everything
else—the PS3’s Cell included—
completely out of the water. The
details are sketchy at this point, but
the tantalizing hints I was able to
coax from my sources suggest that
the new silicon die will include as
many as 27 “Empathic Processing
Units,” which will vibrate in harmony
with the feelings of the central
processor. That will make it by far
the most powerful video game
hardware conceived by humankind!
Don’t tell anyone I said that!

Big upComiNg games
» That reminds me. I was
hanging out in a bar in Redmond,
Washington when some members
of the Wii U development team
came in and sat right next to me.
Naturally, my ears were on super-
alert for interesting new tidbits.
The Nintendo guys were muttering
something about “margaritas could
be stronger” and “pass me those
tortilla chips”–both of which sound
like code names for new Nintendo
projects. New Metroid, anyone?

Speaking of games in
development, did you know that all
kinds of stuff gets worked on and
then cancelled? Totally true story: A
few years back there was an actual,
playable Halo game for the Nintendo
DS! I’m not kidding! It was called
“Halods.” Guess who nixed that one...
wrong! It was nixed by Sony, actually,
during a session of the Console High
Council—a regularly held symposium
at a highly secret location where the
reigning lords of Nintendo, Sony, and

Microsoft gather and discuss matters
of mutual importance (I’ve heard it’s
near a volcano, but come on—that
just sounds crazy and made up!).
The Sony PlayStation Grand Priest,
resplendent in his traditional dark
purple and black robes, argued that
Halods might “upset the balance”
of the industry if it were to come to
pass, and instead he suggested that
each of them spend a lot of money
developing a console-based MMO that
they would then cancel several years
into the future. They all agreed.

tHe wiNds of CHaNge
» But the word on the street is
that the era of stability brought
about by the all-powerful High
Council is drawing to a close.
The winds of change will soon
blow across the industry again,
upending established order. For
just one example, I had the chance
to catch up with a friend of mine
who just recently caught up with
an acquaintance of Yu Suzuki.
“Oh? And what is Suzuki-san up to
these days?” I asked (the “-san”
indicating that I’m all hip and with
it vis-à-vis Japanese culture!).
“Oh, not a whole lot,” he said. “I
heard he’s currently in negotiations

with Valve to fund and publish a
new three-game sHenMue series
as an exclusive for the upcoming
Steambox console.” Bam. Megaton.
You heard it here first, folks.

There are other signs that the
landscape is changing. A very well-
known and well-connected game
industry analyst who spoke to me
on the condition of anonymity—
let’s just call him Michael, uh,
Bachter—mentioned an interesting
fact that underscores the shift.
Rovio, the maker of angry Birds, is
in talks to buy Sega. How exciting!
Imagine what they’d do with those
franchises! And that’s nothing to
say of the rumor that a whole mess
of Zynga executives were spotted
looking really happy and relaxed
in the Konami headquarters office
recently. Oh, and let’s not forget
my good buddy was at a secret
invite-only party at GDC earlier this
year, and personally witnessed
Notch make Yoichi Wada an all-cash
tender offer to buy Square Enix—
right there on the spot!

ultimate rumor master
» So what’s the theme that
emerges from all this talk? Well, I
think it’s obvious: For inside scoops,
nobody’s got me beat! Keep reading
this column and paying attention
to me for more amazing secret
information the big boys don’t want
you to know!

mattHew wastelaNd writes about

games and game development at

his blog, Magical Wasteland (www.

magicalwasteland.com). email him at

mwasteland@gdmag.com.

my eyes!

Huh?

http://www.magicalwasteland.com
mailto:mwasteland@gdmag.com
http://www.magicalwasteland.com

See where we’re taking
Physics next...

Technology for the Future

www.havok.com/sales

Contact Havok sales today to learn more about
the future of Havok technology.

Thank you to all our customers and fans who voted for Havok Physics for the 2011 Game Developer Front Line Awards!

Havok™ Technologies Include:
Havok Physics • Havok AI • Havok Animation • Havok Behavior • Havok Cloth • Havok Destruction • Havok Script • Havok Vision Engine

Physics

Havok has always been at the forefront of innovation.

We have been building an arsenal of tools and technology for where the
industry is heading next, pushing every element of Havok to new heights.

http://www.havok.com/sales

http://www.radgametools.com

	Contents
	POSTMORTEM��
	INDIANA JONES ADVENTURE WORLD���

	FEATURES��
	2012 SOCIAL/MOBILE TECHNOLOGY SURVEY��
	TERA: EVOLVING MMORPG COMBAT��
	WHAT WOULD MOLYDEUX? GAME JAM POSTMORTEM��

	DEPARTMENTS
	EDITORIAL- Game Plan
	NEWS- Heads Up Display
	REVIEW- Tool Box
	PROGRAMMING- The Inner Product
	DESIGN- Design of the Times
	News- GDC News
	ART- Pixel Pusher
	Career- Good Job
	BUSINESS- The Business
	SOUND- Aural Fixation
	EDUCATION- Educated Play
	HUMOR- Arrested Development

