
t h e l e a d i n g g a m e i n d u s t r y m a g a z i n e

B O N U S ! ORIGIN A L MON K E Y IS L A N D DE SIGN R E TROS P EC T I V E
vol17 no5may2010

C

M

Y

CM

MY

CY

CMY

K

sf_gd_may10.pdf 1 4/7/2010 6:33:44 PM

http://www.scaleform.com/3di

www.gdmag.com 1

coNTENTS.0510
VoLUmE 17 NUmBER 5

d E Pa R T m E N T S

	 2		 GAME	PLAN			By Brandon Sheffield [E D I T O R I A L]

Adapt To Survive

	 4		 HEADS	UP	DISPLAY	 [N E w S]

The chipsounds soft synth, the 8th annual Scene.org Awards, and
Ralph Baer joins the Inventors Hall of Fame.

	
31		 TOOL	BOX			By Jeffrey Fleming [R E V I E w]

Game Developers Conference 2010 show floor report.

35		 THE	INNER	PRODUCT			By David Tuft 	 [P R O G R A M M I N G]

Plane-Based Depth Bias For Percentage Closer Filtering

40		 DESIGNER'S	NOTEBOOk			By Jordan Mechner	 [D E S I G N]

 Prince of Persia: May 3, 1987

41		 PIXEL	PUSHER			By Steve Theodore	 [A R T]

 Blind Alleys

	44		 DESIGN	OF	THE	TIMES			By Damion Schubert	 [D E S I G N]

Win Expectancy

47		 AURAL	FIXATION		By Jesse Harlin	 [S O U N D]

The Global Asset List

48		 GOOD	jOB!				 [C A R E E R]

Akira Yamaoka interview and new studios.

52		 EDUCATED	PLAY				 [E D U C A T I O N]

Joshua Nuernberger’s Boryokudan rue

56		 ARRESTED	DEVELOPMENT			By Matthew Wasteland	 [H U M O R]

Phone Tag With The Art Contractor From Hell

P o S T m o R T E m

20		 TELLTALE	GAMES'	Tales of Monkey Island
As a studio founded by LucasArts veterans, episodic gaming pioneer
Telltale Games went back to its roots with Tales of Monkey island.
Telling a story over five chapters allowed the team to fill out the
game's narrative but presented unique challenges to the art and
production pipeline.
By Emily Morganti

F E aT U R E S

7	 	 TALES	FROM	THE	CRUNCH
The Horror! Crunch time is a fact of life in the game industry;
everybody hates it but no one seems to know how to avoid it. Here
we gather round the campfire to share some hilarious and horrifying
crunch tales to chill your bones.
By Brandon Sheffield

13		 TRUE	PHYSICS
One of the vital components of a physics engine is the code that
integrates Newton's laws of motion. There are several techniques
that employ approximations of calculus in order to numerically solve
this problem. In this article Eric Brown proposes a scheme which can
solve this problem without approximation.
By Eric Brown

27		 AN	ISLAND	OF	DETAILS
Twenty years after its release The secreT of Monkey island continues
to charm players. Here Monkey island creator Ron Gilbert walks you
through some of the design decisions behind its classic gameplay.
By Ron Gilbert

COVER	ART:	STEVE	PURCELL

http://WWW.GDMAG.COM
http://Scene.org

GAME PLAN // BRANDON SHEFFIELD

DEK

Think Services, 600 Harrison St., 6th Fl.,
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

 www.gdmag.com

W W W . U B M . C O MGAME DEVELOPER | MAY 20102

ADAPT TO SURVIVE
GAMES ADAPTED FROM OTHER MEDIA TEND TO BE SUB-PAR.
THEY DON'T HAVE TO BE.

SOME TIME AGO I HAD THE OPPORTUNITY TO INTERVIEW FAMED MOVIE PRODUCER JERRY BRUCKHEIMER
(Beverly Hills Cop, Pirates of the Caribbean, CSI) regarding the production of the Prince of Persia movie. The movie
was put together in typical Bruckheimer style, with the aim more toward blockbuster spectacle and anonymous
style than showing an auteur's touch in the direction or editing. He mentioned that he goes through several
writers to get every aspect of the screenplay correct, and has each task on the production clearly delineated. It
seems as though nothing is simply controlled by one person.

DEVELOPERS ANONYMOUS
» The way Bruckheimer organizes his film productions is similar to what most game studios do nowadays, with
each area of production receiving a lot of iteration, input, and polish. You could hardly point to the art style of a given
triple-A title and say “Oh, that’s a Steve Theodore game.” Auteurism is left to the more independent ventures—you
can certainly identify a Dan Paladin game, for instance (CASTLE CRASHERS, ALIEN HOMINID). Bruckheimer has also put
together a game studio, with the help of some game execs, so you can expect that production style to be reinforced.

 The thing that struck me about the interview was that someone of his level had the understanding that when
you adapt a film to a game, you need to give it the time required to make it good.

 “Here’s the problem,” Bruckheimer began. “To really make a good game, it really takes a long time. By the time
you green light a movie, it’s a year to a year-and-a-half until it’s out. That’s too short a period for a video game to
be made. It’s a three-year process to get a really good game made, and that’s where they fail.”

"What the studios do is have this business model
where they know they’ll sell X amount of games
on that opening couple of weeks, and a lot of them
do that, rather than take their time and create a
wonderful game.”

Then there are the constraints imposed by the
film itself—does it follow the same narrative? What
assets can you use? How much access do you
have? I know one writer working on an adaptation
of a film story into games, who was only allowed
one look at the script—he could read it through in
a room, one time, but couldn’t have a copy, or even
take notes or pictures.

 To me all of this calls for games that are released based on the theme of the property, rather than some
attempt to replicate an experience from another media. BATMAN: ARKHAM ASYLUM does this. People love Batman,
and they don’t care if it’s based on a movie. Ditto GHOSTBUSTERS. Likewise PRINCE OF PERSIA. The story from
that game is based on the ancient One Thousand and One Nights text. It’s not a literal adaptation, but takes a
compelling concept and makes it work in a game world. In the case of THE CHRONICLES OF RIDDICK: ASSAULT ON DARK
ATHENA, I don’t think audiences even care that much about the license—but the universe is compelling, and the
game plays well, so people buy it.

GIMME THE CASH
» Certainly studios will continue to capitalize on the release of their films—but perhaps Facebook, the iPhone,
or the downloadable console space are better suited to that. Triple-A titles should be given space to breathe and
become their own entities. If you want to make an IRON MAN game, base it on the comics, and release it at some
point between two movies when people are hungry for content. Crossovers like the newly announced MARVEL VS.
CAPCOM 3 offer opportunities to do interesting things with licenses without catering to a certain timeframe.

 Perhaps the takeaway is obvious: games need more development time to be good experiences. My hope is
that hearing someone like Bruckheimer say it will convince some executives of its truth. Unfortunately, as long as
the newest grindhouse-style game production of a popular cartoon continues to sell, people won’t stop. But even
Pixar is taking greater control of games based on its properties now, and companies like THQ are looking to get
out of the direct film license business.

 Licenses are compelling to a lot of people, but you have to treat them right and do them justice. That means
giving them time, and I would submit not necessarily tying them to a specific release in another media.

—Brandon Sheffield

SUBSCRIPTION SERVICES

FOR INFORMATION, ORDER QUESTIONS, AND
ADDRESS CHANGES
t: 800.250.2429 f: 847.763.9606
e: gamedeveloper@halldata.com

EDITORIAL

PUBLISHER
Simon Carless l scarless@gdmag.com
EDITOR-IN-CHIEF
Brandon Sheffield l bsheffield@gdmag.com
PRODUCTION EDITOR
Jeffrey Fleming l jfleming@gdmag.com
ART DIRECTOR
Joseph Mitch l jmitch@gdmag.com
CONTRIBUTING EDITORS
Jesse Harlin
Steve Theodore
Daniel Nelson
Soren Johnson
Damion Schubert
ADVISORY BOARD
Hal Barwood Designer-at-Large
Mick West Independent
Brad Bulkley Neversoft
Clinton Keith Independent
Bijan Forutanpour Sony Online Entertainment
Mark DeLoura Independent
Carey Chico Pandemic Studios

ADVERTISING SALES

GLOBAL SALES DIRECTOR
Aaron Murawski e: amurawski@think-services.com
t: 415.947.6227
MEDIA ACCOUNT MANAGER
John Malik Watson e: jmwatson@think-services.com
t: 415.947.6224
GLOBAL ACCOUNT MANAGER, RECRUITMENT
Gina Gross e: ggross@think-services.com
t: 415.947.6241
GLOBAL ACCOUNT MANAGER, EDUCATION
Rafael Vallin e: rvallin@think-services.com
t: 415.947.6223

ADVERTISING PRODUCTION

PRODUCTION MANAGER
Pete C. Scibilia e: peter.scibilia@ubm.com
t: 516-562-5134

REPRINTS

WRIGHT'S REPRINTS
Ryan Pratt e: rpratt@wrightsreprints.com
t: 877.652.5295

THINK SERVICES

CEO UBM THINK SERVICES Philip Chapnick
GROUP DIRECTOR Kathy Schoback
CREATIVE DIRECTOR Cliff Scorso
CHIEF INFORMATION OFFICER Anthony Adams

AUDIENCE DEVELOPMENT

TYSON ASSOCIATES Elaine Tyson
e: tysonassoc@aol.com
LIST RENTAL Merit Direct LLC t: 914.368.1000

MARKETING

MARKETING SPECIALIST Mellisa Andrade
e: mandrade@think-services.com

UBM TECHNOLOGY MANAGEMENT

CHIEF EXECUTIVE OFFICER David Levin
CHIEF OPERATING OFFICER Scott Mozarsky
CHIEF FINANCIAL OFFICER David Wein
CORPORATE SENIOR VP SALES Anne Marie Miller
SENIOR VP, STRATEGIC DEV. AND BUSINESS ADMIN. Pat Nohilly
SENIOR VP, MANUFACTURING Marie Myers

PRINCE OF PERSIA

http://www.gdmag.com
mailto:gamedeveloper@halldata.com
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:jfleming@gdmag.com
mailto:jmitch@gdmag.com
mailto:amurawski@think-services.com
mailto:jmwatson@think-services.com
mailto:ggross@think-services.com
mailto:rvallin@think-services.com
mailto:peter.scibilia@ubm.com
mailto:rpratt@wrightsreprints.com
mailto:tysonassoc@aol.com
mailto:mandrade@think-services.com
http://WWW.UBM.COM

LEO BURNETT U.S.A.
A DIVISION OF LEO BURNETT COMPANY, INC.

 Ad/ID No. XNJD9297 – Job No. 610-NNWDYAP0001 – Nintendo Wario Ware “DIY” Magazine Ad – 4C – FP – (T 7.75" x 10.5") – 2010

132009d_9297_NIN_DIYAd_a06.indd

Printed in the U.S.A.

Nintendo • Wario Ware “DIY” Magazine Ad • Full-Page • 4C • Game Pro/GameDeveloper • #XNJD9297

132009d_9297_NIN_DIYAd_a08.indd

LeoBurnett/Nintendo/132009

Nintendo Wario Ware DIY Ads

PM: Sabbe

Operator: EZ 03/03/10_4:30pm STUDIONEDIGITAL

The Wario™ Award celebrates your creativity. Create your own games, compete

with others and have the chance to win a trip to the exclusive Nintendo E3 Media

Briefi ng in L.A. You can enter by creating and submitting a microgame with the new

WarioWare™: D.I.Y. game, or by submitting a microgame design concept via the website.

Challenge your creativity and learn more at www.WarioWareDIY.com

YOU CAN WIN THE WARIO™ AWARD!

©
 2
0
0
9
-2
0
1
0
 N
in
te
n
d
o
 C
o
-d
e
ve
lo
p
e
d
 b
y
IN
T
E
L
L
IG
E
N
T
 S
Y
S
T
E
M
S
.
W
a
rio
W
a
re
 a
n
d
 N
in
te
n
d
o
 D
S
 a
re
 t
ra
d
e
m
a
rk
s
 o
f
N
in
te
n
d
o
.
©
 2
0
1
0
 N
in
te
n
d
o
.

™

NO PURCHASE NECESSARY. PURCHASE WILL NOT INCREASE YOUR CHANCES OF WINNING. Open to legal residents of the 50 U.S., D.C. and Canada (except Quebec). Must be legally
able to travel to Los Angeles, CA. VOID WHERE PROHIBITED. Entry deadline: 5/16/10. Grand Prize includes airfare, two-night hotel stay and admission to 2010 Nintendo Media Briefi ng at E3
on June 15, 2010, for two persons (ARV: U.S. $2,500). Odds of winning depend on the number and quality of entries received. Only one entry per person is permitted. Restrictions apply. For
complete details (including judging criteria and how to submit a microgame design instead of a microgame to enter), see Offi cial Rules at www.WarioWareDIY.com/TheWarios. Sponsor: Nintendo
of America Inc., 4820 150th Ave NE, Redmond, WA 98052.

1
0
.5

"
T
ri

m

7.75" Trim

1
0
.7

5
"

B
le

e
d

8.25" Bleed

9
.5

"
L
iv

e

6.75" Live

Scale: 1" = 1"

http://WWW.WARIOWAREDIY.COM
http://www.WarioWareDIY.com
http://www.WarioWareDIY.com/TheWarios

HEADS-UP DISPLAY

gAmE DEvELoPEr | mAY 20104

infinite bleep
Musicians who yearn for
the electric buzz of genuine chip
music but don’t want to compose
in machine code on antique
hardware have a new creative option
with Plogue Art et Technologie’s
chipsounds software synthesizer
(www.plogue.com). The result of four
years of research, chipsounds aims
to accurately reproduce the unique
sonic character of classic console and
computer audio within a musician-
friendly interface that runs as a
standalone application or as a VST/AU/
RTAS compatible plug-in.

The chipsounds software
emulates a number of venerable chips
including the TIA from Atari’s 2600
and 7800 console, the Ricoh 2A03 as
used in the Nintendo Entertainment
System and its custom variant that

powered the original Game Boy, the
POKEY chip from Atari’s 400/800
series of computers, and the SID
chip behind the Commodore 64’s
instantly recognizable sound. The
software also delves into esoterica
with a variety of additional chips
rescued from the technological tar
pits including emulations of the
Odyssey 2’s P824X chip, the D1867G
from Casio’s VL-1 mini keyboard, and
the AY-3-8910 that provided sound
for the Intellivision console and
Atari ST computer.

We spoke with Plogue’s David
Viens to find out more about this
ongoing project.

Jeffrey fleming: Why do
think chip music has such an
enduring appeal?
David Viens: Well that is one of the
most difficult questions to answer
considering how personal it is. Some
people feel a nostalgic attachment
to the sounds and minimal
arrangements, but it’s important
to realize that many current chip
music fans were kids in the N64 and
PS1 era. For those people, these
sounds are new and raw, and are
often compared to the new punk.
I personally love old school tracks
but also believe in the modern chip
music incarnation in which chip
sounds, textures and tricks are
treated as another palette of sounds
to be mixed into other styles of
modern music.

Jf: To what extent are the sounds
in Plogue chipsounds being
synthesized versus sampled?
DV: In version 1.0 of chipsounds it is
roughly a 90 percent synthesis to 10
percent sampling ratio, but we are
targeting 99 percent synthesis in
the next iterations, leaving the really
un-emulatable stuff in sample form
like the digital noise interference
from neighboring chips that bleeds
into the analog signal.

Jf: A number of projects have
attempted to emulate the unique
SiD chip sound. i spoke to game
composer Charles Deenen and

he described the chip as having
analog warmth that was hard to
reproduce. What was your approach
to the recreating the SiD sound?
DV: Well it is part analog. While the
bare waveform generation and
envelope calculations are derived
from digital parts of the SID circuit,
their multiplication is done in analog
land, and so is the filter. So it really
is a hybrid beast. Not to mention
that no two chips sound exactly the
same, as proven by many research
teams, including us. It’s still an
ongoing research for me, and for
others in this field.

Bob Yannes, the creator of the
chip has given plenty of clues on
how the digital part works, but it’s
the subtleties of the analog side that
still give people like us headaches.
There is really nothing like the SID
anywhere, past or present.

Jf: What were some of the
techniques you used to analyze
and reverse engineer the original
chips in creating your emulation?
DV: First, because a console is noisy,
we extracted each chip from its
source environment on to separate
breadboards so we could capture
test waveforms with the lowest
possible level of noise, and with
as little filtering as possible. We
recorded everything using pro audio
cards at a 192Khz/24bit-sampling
rate, and then cross-checked
everything with a digital oscilloscope
for things like DC behavior, which is
notoriously hard to monitor with AC
coupled sound cards.

The second step was to be able
to feed commands to each and
every chip and to make lists of such
commands to generate all possible
waveforms at all possible pitches
and all possible amplitudes. From
there we were able to take that raw
data and make a software model for
the generation.

The last step was feeding the
model with CPU write dumps of known

games to compare the sound against
the real thing. This last part was the
most demanding, especially in the
case of chip exploits, which have been
used and abused in the demo scene.

Jf: Have you considered creating a
Plogue chipsounds integration for
some of the game audio engines
such as Wwise or fmod?
DV: Knowing that our stuff is both
portable and modular, I’m just
waiting for a call! Actually, if I
understand correctly, the issue with
contemporary game engines is that
there is not much CPU headroom
for audio code, whereas in pro audio
land, everything goes to the DSP,
and then if there are a few cycles left
we will refresh the UI. So a different
approach would need to be taken in
the configuration of our synthesizer
scheduling and rendering.

Jf: Chipsound files can be edited
by users to create new emulations.
How does that work?
DV: Our engine, ARIA, is based on the
open SFZ text format, so all sound
generators and samples can be
reconfigured. So you could write a SFZ
setup file that would emulate similar
chips that I’ve not yet analyzed
myself given that the input clock to
the chip, its internal dividers, and
exact bit patterns that produce the
waveforms are known. Since most
chips are already defined this way
in plain text in chipsounds, they can
serve as template for more.

Jf: Do you have plans to include
other chip simulations in future
versions of chipsounds?
DV: I’m still knee deep in research
for future versions (see http://
ploguechipsounds.blogspot.com).
There is just so much stuff that
needs unearthing, sound gems and
long lost sound tricks that still need
to be made easily available to the
contemporary musician.

—Jeffrey Fleming

Plogue's ChiPsounds soft synth resureCts ChiP musiC

http://www.plogue.com
http://ploguechipsounds.blogspot.com
http://ploguechipsounds.blogspot.com

www.gdmag.com 5

On April 3rd, A lArge grOup
of demosceners gathered
in a small sports hall in
Germany. Celebrating the
best of the 2009 demoscene,
the legendary Breakpoint
demoparty witnessed the
prize-giving ceremony of the
annual Scene.org Awards.
Many more demosceners
around the globe huddled over
their computers at home to
watch the event online via a
live video stream.

Now in their eighth year,
the Scene.org Awards aim
to recognize and reward the
best the demoscene has to
offer. If demos were films
then these awards would
be the Oscars—complete
with a ceremony fronted by
demoscene celebrities and a
raft of emotional acceptance
speeches. Each year a panel
of expert judges takes a look
back over the demoscene
releases for the previous 12
months and draws up a short
list of what they consider
to be the best of the best.
The nominations are made
in categories of Best Demo,
Best Demo on an Oldschool
Platform, Best 64k, Best
4k, Best Animation, Best
Effects, Best Direction, Best

Soundtrack, Best Graphics,
Most Original Concept, Best
Technical Achievement and
Breakthrough Performance.
There is also a Public Choice
category that is voted for by
the international demoscene
at large.

Most of these categories
will sound familiar but let me
explain the others: The Best
Demo on an Oldschool Platform
category is intended to honor
the roots of the demoscene
by looking only at those
released on platforms that
were commercially available
before the mid-90s—this
includes platforms such as
the Commodore 64 and the
ZX Spectrum. The 64k and 4k
categories recognize small
demos (often referred to as
“intros” rather than demos) that
are written to incredibly tight
size limits—64k intros must fit
all of their code and data into
just 65,536 bytes, while the 4k
category gives you only 4,096
bytes to play with. Whilst many
of the more impressive looking
nominations at these awards
consume tens of megabytes of
space to store their code and
data, for many people these
tiny intros are still what the
demoscene is all about.

As expected, the quality
of the nominations this year
was high. The winning demos
are stunning examples of what
can be done with a computer
(even twenty five year old
ones!) if you have the talent
and the inclination.

The best way to experience
any good demo is by running
it in a darkened room with
your speakers turned up loud.
Back in the old days of DOS and
proprietary graphics cards,
running demos was something
of a black art.

These days, thanks mainly
to DirectX and OpenGL, things
are much easier—though you
will still need some serious
hardware to fully appreciate
some of these demos. It’s lucky
for the rest of us mortals that
high quality captures of most
modern demos usually make
it onto YouTube or one of the
dedicated demoscene online
video sites (such as capped.tv
or demoscene.tv) very quickly.
This makes it easy for anyone
with a passing interest in the
scene to dip in and see what
the fuss is all about.

There are many ways to
catch up with the winners
and runners-up of the Scene.
org Awards, but probably
the best place to start is at
Scene.org's < http://awards.
scene.org/awards.php> own
site. You can also easily find
links to this and all previous
years’ awards nominees at
http://pouet.net/sceneorg.
php. My personal viewing
recommendations would go
to Frameranger and Rupture,
two incredible examples of
large format demos, and also
to Elevated and Puls, two great
lessons to all of us in what can
be achieved if you only have 4k
(or just 256 bytes in the latter
case) to play with.

—Paul Grenfell

scene.org awards

Here is a rundown of the Scene.org Award winners:

Best demO: Rupture by Andromeda Software Development
Best demO On An OldschOOl plAtfOrm: Andropolis by Instinct &
Booze Design
Best 64k intrO: Approximate by Ephemera
Best 4k intrO: Elevated by Rgba & TBC

Best AnimAtiOn: The Death Grind by
Endre Barath
Best effects: Frameranger by CNCD,
Fairlight & Orange
Best directiOn: Rupture by Andromeda
Software Development

Best sOundtrAck: Blunderbuss by Fairlight
Best grAphics: Frameranger by CNCD, Fairlight & Orange
mOst OriginAl cOncept: Ballad of a Cluster Bomb - Director’s Cut
by Kooma
Best technicAl Achievement: Puls by Rrrola
BreAkthrOugh perfOrmAnce: Extatique by Adinpsz
puBlic chOice: Rupture by Andromeda Software Development

Rupture.

the nAtiOnAl inventOrs hAll Of fAme
has inducted Ralph Baer, the video game
console pioneer who in the 1960s and 70s
led development of the technology that would
become the Magnavox Odyssey. He’s credited
with ushering in a new period of home
television entertainment.

“People thought I was wasting my time
and the company’s money for that matter,”
Baer said. “There’s no way anybody could
have predicted how fast this industry would
take off.”

This year, the Akron, Ohio-based Hall
of Fame is recognizing him along with 15
other industrious figures whose inventions
include GPS, electrothermal hydrazine
thrusters for space propulsion, glass
ceramics and Post-It notes.

Baer’s inventions also include the music
and color-based electronic memory game
Simon, the interactive stuffed bear TV Teddy,
and the “Chat-Mat,” which plays a recorded
message when stepped on. He was also
directly involved with the development of the
first light-gun video games.

Baer was born in 1922 and is still running
a consulting business.

—Kris Graft

ralph baer joins
inventors hall
of fame

The March 2010 Toolbox review of Audiokinetic's
Wwise 2009.3 contained a layout error. The correct
Pros and Cons for the tool should be:

¤ prOs
1 Fully integrated audio pipeline solution from low

level engine to toolset integration.
2 Robust toolset features, functionality, and

prototyping capability.
3 Elegantly solved multi-platform authoring.

¤ cOns
1 UI is deep, complex, excessively gray, and can be

confusing during extended authoring sessions.
2 Can’t copy/paste Real-Time Parameter Control

(RTPC) curves or RTPC values between containers.
3 Blend container workflow can be clunky.

cOrrectiOn

http://capped.tv
http://demoscene.tv
http://Scene.org
http://awards.scene.org/awards.php
http://pouet.net/sceneorg.php
http://WWW.GDMAG.COM
http://scene.org
http://awards.scene.org/awards.php
http://Scene.org
http://Scene.org
http://Scene.org
http://Scene.org
http://pouet.net/sceneorg.php

Download a free copy of Perforce, no questions

asked, from www.perforce.com. Free technical support is

available throughout your evaluation.

The Perforce Plug-in for Graphical Tools, P4GT, makes version control

painless by seamlessly integrating Perforce with leading graphical tools.

Drop-down menus allow access to Perforce from within 3ds Max, Maya,

Softimage XSI, and Adobe Photoshop.

Art and development teams can standardize on Perforce to version and

manage both source code and digital assets. Enhanced collaboration

during the design process helps teams to work together in real time to

release small patches or create whole new worlds.

P4GT is just one of the many productivity tools that comes with the

Perforce SCM System.

Introducing P4GT,
a productivity feature of Perforce SCM.

P4GT

Perforce Fast Software Configuration Management

All trademarks and registered trademarks are property of their respective owners. Adobe screen shot reprinted with permission from Adobe Systems Incorporated.

Perforce_SpaceS_GameDev_HI

http://www.perforce.com

elcome children, to my chamber of truths!
“Crunch.” Does this word scare you? It
tends to have negative connotations, but it’s
not always the worst thing that can happen

to a project. Quite often it is! But not always.
In all creative media, you tend to have a period

during which everyone is pulling together and going
that extra mile to make the project great. Planned
crunch can be vital to getting a game polished, or
getting in that crucial feature that a small group of
developers really believe in. But crunch shouldn’t be
necessary just to get a game shipped at a basic level
of quality, and it shouldn’t go without pay.

It’s all about how it’s used, how it’s planned,
and how you’re paid. Here, we present anonymous
stories from the trenches of development—tales
of woe and wonder both, outlining the lives of
developers living for (and at) work. Like wayward
soldiers, these people band together in the face
of insurmountable odds and ship a game. Most of
these stories are tales of what not to do. But a little
creative crunch is sometimes a good thing—so
long as you can plan for it!

The sentiment is summed up well by a
submission from a developer who calls himself
Kawika. “Our crunches were tough but fun,” he says.
“We had great group dinners, group movies on Friday
night, and group gaming sessions. You can have
as much fun as you want, but the lack of sleep and
downtime takes its toll. I’ve seen many nervous
breakdowns of different types at every company.”

So gather round, dear readers, as we weave
yarns of terror and titillation. And don’t blink—
because the next crunch ... could be yours!

—Brandon Sheffield

ILLUSTRATIONS BY VINCENT PEREA

WWW.GDMAG.COM 7

http://WWW.GDMAG.COM

GAME DEVELOPER | MAY 2010 8

WWW.GDMAG.COM 9

L E T S L E E P I N G D E V S L I E
» In a now-defunct European studio, a programmer’s slumber
was interrupted by one of the studio’s owners. The night before, a
meeting room had been designated a sleeping area for the crunching
development team. Most of the team members had laid their heads to
rest anywhere from 5 to 7 a.m. that same morning, and were hoping to
catch whatever Zs they could.

The owner, however, needed the room to woo visiting investors, and
was embarrassed to walk in on his sleeping employees, camped out
on various levels of bedding. Later on, he let the developers know what
an awkward situation he had been put in, and that they shouldn’t let it
happen again. At this, the programmer spoke up.

“You don’t really seem to appreciate that we’ve been working all
night for you.”

The owner quelled this insubordination swiftly. “Well YOU don’t seem
to appreciate that we brought in mattresses!”

S N A K E S O N A C O D E B A S E
» I had a coder who I needed to stay late, but he refused. Very weirdly.
Refused to say why, just kept saying he couldn’t stay. So finally I asked,
“Why can’t you stay late? We really need your feature in...”

He answered, “The pet store closes at six, and I need to buy a rat for
my snake.”

So I said, “Oh, no problem. I’ll run over when I’m picking up dinner!”
But once inside the store, I was like, “OMFG, that’s sorta gross.” I went
and bought a rat that was condemned to die.

They put it in a Chinese food container and (of course) I was picking
up Chinese food for dinner at Hunan Garden! Naturally, all sorts of fun
ideas and prank scenarios ran through my head, but in the end, I just
put the rat bag next to the food bags when I got back and told everyone,
“No one touch the bag that’s moving. It’s XXX’s.” He was happy, the
feature went in, his snake ate, and I added a new item to the list of crazy
shit I’d do during crunch time to keep everyone happy and productive!

J U S T O N E M O R E Y E A R !
C R U N C H D U R A T I O N : T H R E E Y E A R S

» We started working on our project in late 1999. We announced the
project in September of 2001. Our first crunch was in preparation for E3
2002. This was a nominal crunch, one month in duration with 12-hour
work days. The project lead came up with the idea that if we crunched
early, on and off, we could avoid the nasty crunch in the end.

We started with month on, month off of two days per week of crunch,
which lasted for one year. Most of us only worked until 10 p.m. or so,
and everyone was entitled to a dinner break from 7 to 8 p.m. When
we announced the game in 2001, we thought we only had one year of
development left, so the thought of doing a mild crunch a year from
finishing wasn’t that big of a deal. After the first year came and went, we
realized that we still had a year of development left (or so we thought at
the time). The next year we continued the month on, month off crunch,
but progressed to every day of the week. I remember my girlfriend (soon-
to-be-spouse) commenting that at least we didn’t have to work weekends!

As the second year of crunch came and went, we realized we still
had a year of development left. At this time, they moved the crunch
to every day until launch—still only to 10 p.m. In March of 2004,
management announced to the dev team that a ship date had been set
for November, and that we would have to start working 15-hour days.
A group of artists met one night and decided that they'd had enough
crunching and that they would rather the game slip into 2005 rather
than crunch. That group of artists all went home at 6 p.m. that night

after putting in eight hours of work. The next day, they got chewed out
by management. The artists held their ground and management went to
the execs, who within one week put together a ship bonus if everyone
crunched. In order to receive the bonus, the game had to hit a certain
number of unit sales within a set amount of time.

The hardest part about the crunch was watching the other
development team come in late and go home early. Those guys took long
lunches to see new movie releases and the majority of their day was
spent “alpha testing” our game (their project still hasn’t shipped and is
seven years in the making). Management’s solution to our low morale was
to have an executive sit at a computer station in the hallway each night.
One night, it was the president; another night, the CFO. They were usually
just playing the game, but showed their support by crunching one night
a month with us. This was actually more harmful than beneficial, but we
didn’t care because at least we had our ship bonus.

Even though this was the hardest ship I have ever endured, it
was a fun time. Dinner was provided every night and the bonds that
were formed during those long hours will never be forgotten. The only
repercussions suffered by the company were having to settle a class
action lawsuit akin to the famous “EA_Spouse” case, and losing a large
chunk of their core development team within a year of launch, which
pushed the first expansion out an additional year.

I N S I C K N E S S A N D I N H E A L T H
» As studios go, the one I work for is fairly decent. But there was one
year in which two mandatory overtime crunches ran for over a month,
one of which involved 10 hours a day, seven days a week “or you lose
your job” crunch. This meant between 28 and 40 days without a day off,
depending on which team you were on. It was during this time that the
flu hit, and I had to take time off. Because of the stress of the crunches,
I had used up all my sick days. So after some 120+ hours of unpaid
overtime, the company docked me three days of pay for going over the
allotted amount of sick time. Outrageous!

S P A C E M A D N E S S
C R U N C H D U R A T I O N : T W O W E E K S

» It wasn’t the longest crunch on record by any means, but we were a
small start-up and it was our launch title. All our chips were on the table,
and we had already pulled several all-nighters to bring the project to
gold master.

The founder and CEO was in final code review with the rest of us.
It was his 20th hour in the office, and he was looking for a particular
function that he had just scrolled past on-screen. Rather than use a
search function, he scrolled back to look for it. However, the function had
“mysteriously disappeared.”

The rest of us rushed into his office after we heard his screams and
the sound of the keyboard repeatedly being slammed into the desk.
“I’ve lost the f***ing function!!!” he shouted, flailing wildly.

Our producer urged him to calm down, sat him back down in front of
his machine, and asked him to walk through what happened. Our CEO
pointed at the screen and said he couldn’t find the function.

The producer looked at the screen. The function was right there in
the middle. “It’s right there, Jim...” he said as he pointed to the screen.

“Where?!” screamed Jim.
“Right there, Jim. Right in the middle of the screen.”
“I don’t see it! Dammit, I don’t see it!”
The producer pointed again. “Follow my finger... it’s right there.”
It took our CEO a good 10 seconds, but he finally saw the line with

the function next to the producer’s finger. Even with it being in the

http://WWW.GDMAG.COM

GAME DEVELOPER | MAY 2010 10

middle of his screen the whole time, and the project producer pointing to
it, the function just wouldn’t resolve in his field of view.

“You should go home, Jim.”
“I should go home!!”
Our CEO stood up, apologized, told everyone he was going to leave,

and urged us to do the same. The next day, over a pot of coffee, he blessed
us with this pearl of wisdom: “You know you’ve been in the office too long
when you can’t see five inches in front of your face anymore.”

T H E D I S A P P E A R E D
» At our studio we were crunching on a real-time strategy game.
The managers wanted to speed up production and control it at the
same time, so their solution was to have us fill out progress reports
every night and have art meetings every morning (going over all new
generated assets), then sometimes again at midday. We’d then have
our work checked off by the art director before we left at night. On top
of that we would have random “all-company meetings” that took hours.
During one of these long company meetings, our producer began the
meeting by blurting out angrily, “We are going to keep having meetings
until we figure out why there isn’t enough daily progress!” But of course
we felt this was exactly the reason progress had slowed: too many
meetings! We barely got to spend time in our offices long enough to
complete anything significant; we only made adjustments to existing
assets so we had something to show.

I have seen star employees fired for taking their Christmas break
instead of canceling travel plans to see family. A cinematic coordinator
who came to the studio from the film industry tried to start a union and
basically disappeared from work without a trace. One day he was there
and everything was fine, the next he was gone with no “goodbye” or
email or knowledge from anyone about what had happened to him.

T H E P E R I L S O F S U C C E S S
C R U N C H D U R A T I O N : O V E R T W O Y E A R S

» Hot on the tails of a game, which came to be labeled by Next
Generation magazine as “the most reviled game of all time,” our crew
got cracking on a new project with a new publisher. Like any small
developer looking not only to prove itself but also to simply stay afloat,
we 12 members of the team did everything we could to keep things
pleasant with our publisher.

At first, we made a big push to get a bunch of new technology together.
We were riding the bleeding edge of technology at that time in some ways,
with massive streaming worlds and deformed skeletal meshes. It was a lot
of work, but of course simply having the technology wasn’t enough.

After a year or so of work on the our new title, we were perpetually
convinced that what we were doing wasn’t good enough for the
publisher and started operating in a mode driven in part by fear of
getting our project canceled and in part by the pride we had in what we
were doing. We wanted to make it even better.

The office layout was such that outside of three managers, the rest of
us were in one big room without walls and without cubicles. We could look
around and see what others on the team were working on, and many of
us were jazzed and motivated to do even better because of what we saw
other people doing.

That last year was a pretty solid crunch. Most weeks were seven
days of work and it was haphazard in many ways, but we were driven to
ship a great game, and that is what we did. After so many deliveries of
take out food, we got to know the drivers pretty well.

Once our game was out, the publisher wanted a sequel quickly, and
we figured since we’d just made a game, how hard could it be to make

the sequel? Pretty fast though, the feature list started growing. Beyond
the scripting system, a multiplayer mode, and new rendering modes for
special effects, we were also going to ship more levels that were bigger
and would render far more cinematics. The original game shipped on
one CD, but the sequel was barely going to fit on two. Not to mention
that nearly everything had to be better—more polygons and more shine
everywhere we could.

This one was the hard crunch. We had about eight months of
development because they wanted the sequel within a year. We staffed up
to 15 or maybe even 18. We overflowed the large room that we had. There
were folks working in the conference room and a couple of people took over
the reception area. Many nights, the whole team pushed through the night
into daytime hours, and kept going until it was night again. I remember
realizing in one specific instance that I’d worked thirty consecutive days.
Where did that time go? It was easy to lose track of the passing days, and it
was tough to fit in time to do laundry, but at the end of it all, we finished the
project and it became another huge hit.

“ W E ’ R E I N T H E F I N A L S T R E T C H ! ”
» I work at a well-known developer in the UK which has been in constant
crunch for the last several years. A small group of us began documenting
our crunch mandate emails, in the event we should need them in the
future, and our first request was that we work through the 2008 Easter
weekend. It seemed innocuous enough at the time, and a genuine
request. But the emails kept coming. We noticed that our schedule never
seemed to gel with the reality of what we had to accomplish, and we
were always missing milestones in spite of near-constant crunch. To
us, this seemed like a management problem, and not so much an issue
of us not working hard enough. Still, the emails kept coming, each one
promising that the light was at the end of the tunnel—soon we would stop
crunching! And so said the next email, and the next, and the next.

The “final crunch,” in which we were (for the umpteenth time) to
bang out a build for the Wii submission date, lasted until the point where
we were not allowed to leave the office without checking with someone.
We also had to maintain phone contact in the event that someone
needed to ask questions of us. No one believes the emails that tell
us crunch is almost over anymore. We always miss the last possible
submission date for the Wii on every project, yet it comes out on time
due to very skilled workers fueled by coffee and full fat cans of Coke.

It’s slowly getting better here, though. We’ve had a number of good
producers that have come in, attempt to share some sort of scheduling
and production skill, and then get fired, or resign out of frustration. At
the very least, we do get paid for overtime!

R E D L I G H T M E A N S G O
» After a big crunch, a big milestone was in. Now it was time for a break ...
a quick weekend ferry trip to Amsterdam! Sadly, the U.S.-based producer
didn’t see the need for the U.K. team to take a break from crunch, and he
warned the local producer in no uncertain terms, “You do not take that
team to Amsterdam.” They’d been crunching for months, and he wanted
them to keep grinding until they were done. The team had other ideas, and
thanks to one volunteer who had to stay behind for some family function
(parents’ anniversary dinner or something), everything worked out.

While the team relaxed and recharged in Holland, the volunteer
stayed at the office, went around to everyone’s machines and sent
pre-written emails and IMs, and uploaded broken (and then fixed)
builds that had been carefully stockpiled in advance of the trip. The U.S.
producer was none the wiser, other than being impressed by how hard
the team crunched in the following weeks!

WWW.GDMAG.COM 11

http://WWW.GDMAG.COM

Get More Change Management
with Seapine Integrated SCCM
TestTrack Pro + Surround SCM = infi nite SCCM possibilities. Seapine’s integrated software change and
confi guration management (SCCM) tools do much more than competing tools, and at a much lower price
point. Start with TestTrack Pro for change management and add Surround SCM for confi guration management—
two award-winning tools that together give you the best integrated SCCM solution on the market.

 • Link issues, change requests, and other work items with source code changes.

 • Manage simple or complex change processes with fl exible branching and labeling.

 • Coordinate distributed development with RSS feeds, email conversation tracking, caching proxy
 servers, change notifi cations, 3-way diff/merge, and other collaboration features.

 • Enforce and automate processes with incredibly fl exible work item and fi le-level workfl ows.

Built on industry-standard RDBMSs, Seapine’s SCCM tools are more scalable, give you more workfl ow options,
and provide more security and traceability than competing solutions.

Get more, do more with Seapine tools. Visit www.seapine.com/gamescm.

www.seapine.com/gamescm
Satisfy your quality obsession.[[

© 2009 Seapine Software, Inc. All rights reserved.

Te
st

Tr
ac

k®
 P

ro

Te
st

Tr
ac

k®
 T

CM

Te
st

Tr
ac

k®
 S

tu
di

o
Su

rr
ou

nd
 S

CM
®

Se
ap

in
e

CM
®

Q
A

W
iz

ar
d®

 P
ro

Iss
ue

 M
an

ag
em

en
t

Te
st

 C
as

e
M

an
ag

em
en

t
Te

st
 P

la
nn

in
g

&
Tr

ac
ki

ng

Co
nfi

 g
ur

at
io

n
M

an
ag

em
en

t
Ch

an
ge

 M
an

ag
em

en
t

Au
to

m
at

ed
 Te

st
in

g

Q
A

W
iz

ar
d

Iss
ue

 M
an

ag
em

en
t

Te
st

 C
as

e
M

an
ag

em
en

t
Te

st
 P

la
nn

in
g

&
Tr

ac
ki

ng

Co
nfi

 g
ur

at
io

n
M

an
ag

em
en

t
Ch

an
ge

 M
an

ag
em

en
t

Au
to

m
at

ed
 Te

st
in

g
Iss

ue
 M

an
ag

em
en

t
Te

st
 C

as
e

M
an

ag
em

en
t

Te
st

 P
la

nn
in

g
&

Tr
ac

ki
ng

Co

nfi
 g

ur
at

io
n

M
an

ag
em

en
t

Ch
an

ge
 M

an
ag

em
en

t
Au

to
m

at
ed

 Te
st

in
g

St
ud

io

Su
rr

ou
nd

 S
CM

Iss
ue

 M
an

ag
em

en
t

Te
st

 C
as

e
M

an
ag

em
en

t
Te

st
 P

la
nn

in
g

&
Tr

ac
ki

ng

Co
nfi

 g
ur

at
io

n
M

an
ag

em
en

t
Ch

an
ge

 M
an

ag
em

en
t

Au
to

m
at

ed
 Te

st
in

g
TC

M

Te
st

Tr
ac

k
Iss

ue
 M

an
ag

em
en

t
Te

st
 C

as
e

M
an

ag
em

en
t

Te
st

 P
la

nn
in

g
&

Tr
ac

ki
ng

Co

nfi
 g

ur
at

io
n

M
an

ag
em

en
t

Ch
an

ge
 M

an
ag

em
en

t
Au

to
m

at
ed

 Te
st

in
g

Iss
ue

 M
an

ag
em

en
t

Te
st

 C
as

e
M

an
ag

em
en

t
Te

st
 P

la
nn

in
g

&
Tr

ac
ki

ng

Co
nfi

 g
ur

at
io

n
M

an
ag

em
en

t
Ch

an
ge

 M
an

ag
em

en
t

Au
to

m
at

ed
 Te

st
in

g

http://www.seapine.com/gamescm
http://www.seapine.com/gamescm

www.gdmag.com 13

If you are Involved In makIng physIcs, you do It
either because it is your job, your interest, or your
fantasy. Game physics is hard, and that's part of the
reason why it's so fulfilling when you get it right. One
rather tricky part of getting it right is the integration of
the dynamical equations of motion.

On the surface, it would seem that integration
shouldn’t be too hard—it usually only occupies a few
lines of code. However, the way you integrate the
dynamic state of your objects seems to impact just
about everything else you do, such as when to check for
collisions, how to resolve collisions and constraints, how
to apply forces to your objects and so forth.

It is usually very obvious when the integration isn’t
working; stuff is jittering, popping, or exploding. When it
is working, usually, the only person who notices is the
person who soothed and tamed the wild physics beast
into submission—no one else cares, since everything is
just acting the way they would expect it to. If you’ve ever
had to debug an integration-related problem, you know
exactly what I mean.

e X I s t I n g t e c h n I Q u e s
» When it comes to integration techniques, there are
several options to choose from. Probably the most
universally used and reviled method is the explicit Euler
technique. Experienced developers may have heard of,
or even prefer, the 4th order Runge-Kutte technique, or
RK4. Game physics veterans often prefer a variant of the
Euler technique known as the semi-implicit, symplectic, e r I c B r o w n

http://WWW.GDMAG.COM

GAME DEVELOPER | MAY 2010 14

modified Euler technique. I have messed
around with the Verlet and Leapfrog techniques
as well. Other Euler-related techniques are
the midpoint, implicit, and reverse Euler
techniques. There is also the class of predictor-
corrector techniques.

There is a lot of outstanding literature on
the strengths and weaknesses of each of these
methods. I’ve included a list of references at
the conclusion of this article that can give you
a general overview of this broad topic.

One thing that all integration techniques
have in common is that they seek to derive

the position and velocity of an object from its
acceleration. All the techniques I have listed
obtain information about the acceleration
by querying the value of acceleration at
a very small number of points within the
time step interval. Usually, the more points
of acceleration you query, the better the
method does.

What if you know the acceleration is
constant over the course of the time step?
Would you need to query the acceleration
at more than one point within the time step
interval? You would know that the result of the
acceleration at any sub-interval time will be the
same. In fact, if you know the acceleration will
be constant over the course of the time step,
you may say to yourself “Why should I mess
around with a numerical method to solve this
problem? It’s possible to solve this problem
exactly.” The equations of motion for a constant
acceleration can be exactly solved to give the
equations below.

These are called the kinematic equations
for uniform acceleration. Can we use this
set of equations to step the state of our
system forward in time? Certainly! I have
seen the term “ballistic integrator” applied
to this technique. Technically, however, this
isn’t an integrator in the sense of numerical
integration. The equations do contain the
results of integrating the acceleration over
the time step, but the integration was done on
paper, using calculus, and the results of this

“offline” integration were encoded into the
equations. It may be more accurate to refer to
this set of equations as “stepping equations,”
since they step the system forward by a
single time step.

One feature that these stepping equations
have is that you will always get the correct
answer no matter how large the time step is.
This is not so with the numerical integration
techniques. Often, the first step to reducing error
when using a numerical technique is to shrink
the time step. Shrinking the time step requires
more iterations for completion, and thus

increases the expense of the method. Having a
set of stepping equations that is independent
from the time step is a very good thing.

If we have a time step-invariant method,
why do we ever mess around with numerical
integration methods? The answer, of course,
is that this method requires all forces to be
constant, and we usually can’t be certain that
the acceleration is really going to be constant
over the course of the time step when it comes
to arbitrary forces. Although the “ballistic
integrator” gives you the correct answer
for constant acceleration scenarios, it gives
absolutely the wrong answer if the acceleration
changes by any significant amount. Thus, its
use is limited to situations where you know
that all forces acting in your game are truly
constant over the course of the time step.

T H E K I N E M A T I C I N T E G R A T O R
» What if we consider another acceleration
scenario where the acceleration is known and
solvable? What if the acceleration comes as
an infinitesimally short pulse at the beginning
of the time step? This acceleration function is
solvable and produces the following stepping
equations:

The value of Ðv is the instantaneous change
in velocity caused by the short pulse. These
equations are called the kinematic equations
for a pulse. If you feel so inclined, you may
refer to this as a “pulse integrator,” but the
term is misleading since all of the integration

has already been done offline through the use
of calculus.

You may have noticed that most of the
terms in these equations are identical to their
counterparts in the kinematic equations for
uniform motion. Indeed, the general form
of the stepping equations for any arbitrary
acceleration function looks like this:

I call this set of equations the “kinematic
integrator.”

If you know the functional form of the
acceleration, you can perform a little calculus
to find out the results of the integrals. I have
given the name “integral contribution” to the
terms in the position and velocity equations
which actually involve integration. For the
sake of notational convenience, I usually label
these integral contributions “dv” and “dx.” I
am capable of applying vague mathematical
reasoning behind this choice of notation, but
ultimately, it’s much easier to make a variable
called “dv” in my code, rather than one called
“integral_of_a_from_0_to_deltaT.”

We can use the integral contributions—dv
and dx—to classify acceleration functions. For
instance, a constant acceleration would have
the integral contributions of the form:

And a pulse would have the integral contribu-
tions of the form:

We can see, just by inspecting their form,
that if you add two different constant forces
together, the integral contributions of the
resulting force can be obtained by adding the
integral contributions of the two input forces.
Likewise, if you add two pulse forces together,
you would add the integral contributions of
the two forces to get the contributions for the
resulting force.

What if there were a constant acceleration
and a pulse acting on the same object?
Integration is a linear operation, so the integral

contributions of such a combination of forces can be obtained by
summing the integral contributions of each individual force, as below.

Again, we just add the integral contributions together.
We may now conceive of a physics engine in which an arbitrary

number of constant forces and pulses can be applied to an object,
and the stepping equations will always give us the correct answer no
matter how large the time step is! We merely add together the integral
contributions of each of the individual forces to find the overall integral
contributions that we feed into the kinematic integrator.

You can get a lot of leverage out of constant forces and pulses,
but we might like to increase the repertoire of available forces in our
physics engine. No physics engine can live without a spring force, for
instance. The spring force is ubiquitous in most discussions of numerical
integration, and is often used as a benchmark of performance since the
acceleration of a spring-loaded object is constantly changing throughout
the duration of the time step.

Like the constant and pulse forces, the spring force is solvable.
However, you cannot solve the equations of a spring force by forward
integration as with the other two. Since the acceleration of the spring is
related to the position of the object, there is a feedback effect to take into
account. You must use the mathematics of differential equations to solve
the spring problem.

Consider a spring with one end attached to a mass, and the other
end attached rigidly to the origin. Our spring is an idealized spring; it’s
frictionless, and doesn’t have any self-interaction. In effect, the ideal
spring does not exist as a physical entity, but just as a force acting on
an object, pulling it constantly toward the origin. Solving the equations of
motion for this spring, we can get the stepping equations:

These stepping equations will perfectly step the spring forward in time.
You should always get the right answer, regardless of how large the time
step is. The form of these stepping equations is slightly different than
the form of the kinematic integrator due to the feedback mechanism
of the spring. We can, however, do a little algebra work to recast these
equations into the form of the kinematic integrator in order to identify the
integral contributions.

Now, we may shudder at the thought of inserting trig functions into our
integration process. Luckily, the coefficients of the state variables xn and
vn are functions of variables that should not change, so we really only
need to calculate them once.

WWW.GDMAG.COM 15

FIGURE 2 The error is once again plotted for three methods with a two-spring
scenario. The dotted lines indicate the results of the one-spring scenario.

FIGURE 1 The error as a percentage of the maximum amplitude of oscillation is plotted
for three integration methods.

We may now have constant forces, pulse forces, and spring forces
in our physics engine. Any number or combination of these forces can
act on an object. We merely calculate the integral contributions of each,
sum them together, and insert the resulting totals into the kinematic
integrator. If we want to add more forces, we merely need to do a little
offline calculus to find the functional form of the integral contributions.
Hopefully, you can catch the vision of a full-featured physics engine
using this idea.

A F E W T E S T S
» For the sake of comparison, let’s contemplate a single un-dampened
spring system. Our spring will have a spring strength of k = 100, and
our mass will be m = 10. We will use a fixed time step of 1/30, since of
course our game doesn’t drop below 30 fps!

We will compare three different methods: RK4, Symplectic Euler, and
the Kinematic Integrator. We will integrate the system for 100 time steps,
which is equivalent to about 3 seconds. For our initial conditions, we will
start the mass at rest 5 units away from the origin.

Error is calculated as the difference between the integrated position,
and the analytically calculated position of the mass, normalized by

http://WWW.GDMAG.COM

dividing by the amplitude of the oscillation, which in this case is 5 units.
The error of each of the three methods is plotted in Figure 1.

We see that RK4 starts off much better than Symplectic Euler, but
due to the fact that it is an explicit method, and that there’s no friction or
damping to hold it back, the RK4 method begins to diverge. When plotted
on the same plot with RK4 and Symplectic Euler, the Kinematic Integrator
appears to have zero error. It does in fact accumulate non-zero error
due to finite precision arithmetic. Still, the maximum error accumulated
by the Kinematic Integrator in this scenario is more than 7,500 times
smaller than the maximum error of the Symplectic Euler method.

Now, I previously stated that because integration was linear, we
could safely add the integral contributions together. Strictly speaking,
this is true, but when discussing the practical implementation details,
it might not be. To see why, you need to remember that some forces,
like the spring force, have a feedback mechanism. Practically speaking,
when we calculate the integral contributions of individual forces, we
don’t take into account the feedback effect of other forces that might be
simultaneously acting. If we tried to take all of this into account, it would
make our integrator impractical for use with diverse systems.

I have made an approximation to solve this dilemma. The
approximation is this: Let’s assume that this feedback effect is not big—
we just calculate the integral contributions of each force, assuming each
time that there is only one force acting.

To get a picture of how this feedback mechanism might introduce
a non-trivial error into a system, consider a scenario similar to
our first example, except now we have two springs instead of just

one. The integral contribution of one spring is calculated with a
knowledge of how the force will affect the intermediate position and
velocity at all times during the time interval. If there is another force
present to muck up these intermediate positions and velocities, the
integral contribution becomes incorrect. In other words, the integral
contributions of the spring were calculated taking into account only
the feedback due to its own action—not taking into account the action
of another spring.

Let’s run our comparison scenario once more, but this time add
a second spring to the system with the same spring strength of k =
100. Such a system is identical to a single-spring system with k = 200;
however, we will allow the system to step forward, letting the two springs
act independently. The results are shown in Figure 2.

In this plot, we can see that the Kinematic Integrator has a visible
departure from the zero line, so it is starting to accumulate some non-
trivial error. The question is now, is the error bounded? The error may be
small when integrating over 3 seconds, but what about 30 minutes?
Unfortunately, we don’t even have to go 30 minutes, as Figure 3 shows
that the error for the Kinematic Integrator eventually surpasses the error
of the Symplectic Euler method and starts to diverge. This plot goes
out to 16 minutes and does not include the RK4 method, which we can
already see is diverging after only 3 seconds.

This seems to spell doom for the Kinematic Integrator, especially
if you want your system to run for more than 6 minutes. Of course, we
could try to rescue things by introducing some damping, like we might
do for the RK4 method, but the entire reason I began contemplating the

GAME DEVELOPERS
CONFERENCE™
CANADA
Vancouver Convention Centre,
Vancouver, BC

www.gdc-canada.com

AUGUST 16–18, 2010

GAME DEVELOPERS
CONFERENCE™
EUROPE
Cologne Congress Center East,
Cologne, Germany

www.gdceurope.com

OCTOBER 5–8, 2010

GAME DEVELOPERS
CONFERENCE®
ONLINE
Austin Convention Center,
Austin, TX

www.gdcaustin.com

DECEMBER 5–7, 2010

GAME DEVELOPERS
CONFERENCE™
CHINA
Shanghai International
Convention Center,
Shanghai, China

www.gdcchina.com

FEBRUARY 28–MARCH 4, 2011

GAME DEVELOPERS
CONFERENCE® 2011
Moscone Center,
San Francisco, CA

www.gdconf.com

MAY 6–7, 2010

For updates and more information on our events visit www.jointhegamenetwork.com

http://www.gdcaustin.com
http://www.gdc-canada.com
http://www.gdcchina.com
http://www.gdceurope.com
http://www.gdconf.com
http://www.jointhegamenetwork.com

Kinematic Integrator was to get super accurate simulations which would
be applicable in low-friction environments.

The solution I discovered was the use of an approximation. Since the
springs have a feedback mechanism, the error keeps getting fed back
into the system. What if I approximated the springs as a force that did
not have a feedback? So far, the only other forces we have discussed in
this article are the constant and pulse forces, neither of which have a
feedback mechanism.

To approximate the springs as a pulse, I must accumulate all the
acceleration produced by the spring during the time step and deliver
it all at the beginning in a single pulse. This approach does not cause
divergence, but it does allow energy to leak out of the system, forcing the
spring motion to entirely dampen out within only a couple of minutes.

To approximate the spring as a constant force, I must find the average
value of the acceleration during the time step, then use this average as
the value of the constant acceleration. This method also has an energy
leak like the pulse method, but the leak is much smaller. In fact, using
this method, it takes about 1 million time steps, or a little over 9 hours,
for the spring to dampen out entirely. The Average Acceleration method
is easy to introduce. Simply use the integral contributions given by the
below equation.

In other words, dv is calculated however it was previously being
calculated, and dx is always equal to dv scaled by the time step divided
by 2. Thus, the Average Acceleration method does not introduce error into
the velocity equation, but does introduce a slight amount of error into the
position equation.

In Figure 4, we can see the actual oscillations of the systems after
about 10,000 time steps, or about 5 minutes. The Symplectic Euler
method maintains the correct amplitude due to its energy preserving
properties, while the Kinematic Integrator using the Average Acceleration
method has a slightly diminished amplitude but is in a correct alignment
with the phase of the oscillation.

As stated previously, the system takes about 9 hours to dampen
out entirely when using the Kinematic Integrator with Average
Acceleration. The plot comparing the errors of the Symplectic Euler
method with the Kinematic Integrator with Average Acceleration
method is given in Figure 5. The Symplectic Euler method has an
error that maxes out at 2.0, which represents an oscillation that
is completely out of phase. The Kinematic Integrator with Average
Acceleration method has an error that maxes out at 1.0, representing
an oscillation that has entirely dampened out.

The types of errors introduced by the two different methods (phase
vs. amplitude) are not necessarily comparable later in the simulation, but
near the beginning there are moments where the error of the Symplectic
Euler method is more than 200,000 times greater than the error
introduced by the Kinematic Integrator with Average Acceleration.

Although the Kinematic Integrator with Average Acceleration loses
energy, I have found the rate of energy loss acceptable for the simulation of
real springs. In fact, it is far smaller than the rate that any real spring might
lose energy. Any real spring would dampen out long before the 9-hour mark.

The error present in the Kinematic Integrator was originally due to the
fact that we were not properly accounting for the feedback mechanism of
other forces when calculating the integral contributions. With the Average

WWW.GDMAG.COM 17

FIGURE 4 The oscillation of the system is plotted for the Symplectic Euler method
and the Kinematic Integrator with Average Acceleration method and compared
with the exact solution. This snapshot takes place at 10,000 iterations, or about 5
minutes into the simulation.

FIGURE 5 The Error of the Symplectic Euler method as well as the Kinematic Integrator
with Average Acceleration method are plotted for 9 hours' worth of simulation time.

FIGURE 3 Error plot for a simulation that lasts 16 minutes. After about 6 minutes, we
can see that the Kinematic Integrator has diverging error.

http://WWW.GDMAG.COM

GAME DEVELOPER | MAY 201018

Acceleration method, the error is now due
to the representation of forces as constant.
This mechanism is entirely different than
other numerical techniques, in which error is
introduced by approximating the calculus. Error
induced by approximating the calculus leads
to an established relationship between the
size of the error and the size of the time step,
leading to the classification of techniques as
first order, second order, and so forth. When
the error comes instead from approximating
the forces, the relationship between error and
time step is determined by the force itself, not
by the method. Thus the error of the Kinematic
Integrator with Average Acceleration cannot
be related to the time step, without knowing
what forces you are trying to simulate. For the
specific example of a system with two springs, it
appears to behave like a third order method—if
the time step becomes half of what it was, the
error becomes an eighth of what it was.

For those who want to see a vision of
how you might use a Kinematic Integrator to
simulate a dynamical range of forces, I have
provided sample implementation code.

E X T R A P O L A T I O N O F U S E
» In this article, we have discussed three
forces: constant forces, pulse forces, and a
frictionless spring attached at the origin. Here
is a list of other possible forces that we can
solve analytically offline and plug into the
Kinematic Integrator:

» A damped spring connecting two
objects.

» A network of springs connecting
multiple objects.

» Air friction.
» A rigid distance constraint, using

pulses to enforce a constant
distance between objects.

» A collision constraint, using
pulses to resolve the position of
the object as well as pulses to
introduce restitution and surface
friction.

» Joint constraints can be
represented by pulses, generally.

» Driving forces, such as sinusoidal
driving forces.

» Velocity fields, as long as the
functions used to describe the
fields are integrable.

So, what happens if we want to simulate a force
that is non-integrable? Or perhaps we don’t
know how to find the analytical solution to a
given force, regardless of whether it exists.

What do we do? The Kinematic Integrator
actually allows for the simulation of other
numerical techniques, which can handle a
more general class of forces. For instance,
the Kinematic Integrator can emulate the
Symplectic Euler method if you use the
following integral contributions:

where an is the acceleration evaluated at
the beginning of the time step. We can, thus,
simulate any force using the Kinematic
Integrator, whether it is solvable or not.

The Kinematic Integrator represents an

integration solution that has the flexibility to
simulate arbitrary forces with the option to
leverage the exact solutions to forces, if we
know them, to obtain dramatic performance
increase. This performance increase is very
substantial, reducing the error in the system
by a factor of thousands. In some sample cases
I’ve run, I’ve been able to reduce the error by
tens of millions.

We also have the flexibility to employ
approximations on the representation of our
forces, such as when we introduced the Average
Acceleration method. Such an approximation can
be enacted globally across all forces, in order to
reduce the error due to the feedback mechanism
of some forces, like springs.

F O R W H O S E A D V A N T A G E ?
» The Kinematic Integrator has the potential
to revolutionize the way integration is done for
game physics across the entire spectrum of
development. From two-person indie projects,
to third-party physics engines, to AAA titles.

To access the full potential of the
Kinematic Integrator, the forces that are being
simulated need to be integrable. Can you
think of a single force used in a game that is
not integrable? No doubt such forces exist,
but I’ve never had to use them. Nonetheless,
such non-integrable forces aren’t excluded
from use by the Kinematic Integrator—they

just won’t get the full benefit of employing an
exact solution.

How might your game physics benefit
from a dramatic increase in accuracy and
stability? How do you think you might go
about inserting a Kinematic Integrator into
an existing physics engine? How might
you design a physics engine to employ
a Kinematic Integrator? These are the
questions you must answer for yourself.

ERIC BROWN lives the rogue existence of a game

physicist, scratching out a life in the bitter streets of Salt

Lake City, UT. He is currently working at Rockwell Collins as

a senior software engineer in the Simulation and Training

division. He is in the final stages of completing a graduate

degree in theoretical physics. Eric has lectured at the Game

Developers Conference and participated in the publication

of several articles relating to game physics. Eric's work

focuses mainly on physics simulation and animation. He

believes that a true game physicist must possess the three

P's: Passion, Patience, and Perspective. The 4th P is either

Pantyhose or Peanut Butter.

SAMPLE CODE IMPLEMENTING THE KINEMATIC
INTEGRATOR
www.gdmag.com/resources/code.htm

PHYSICS FOR GAMES BY ERIC BROWN
http://physicsforgames.blogspot.
com/2010/02/kinematic-integration.html

ADVANCED CHARACTER PHYSICS BY THOMAS
JAKOBSEN
www.teknikus.dk/tj/gdc2001.htm

"PHYSICS, THE NEXT FRONTIER" BY CHRIS
HECKER, GAME DEVELOPER, OCTOBER/
NOVEMBER 1996
http://chrishecker.com/images/d/df/
Gdmphys1.pdf

INTEGRATION BASICS BY GLENN FIEDLER
http://gafferongames.com/game-physics/
integration-basics

resources

http://www.gdmag.com/resources/code.htm
http://www.teknikus.dk/tj/gdc2001.htm
http://chrishecker.com/images/d/df/Gdmphys1.pdf
http://gafferongames.com/game-physics/integration-basics
http://chrishecker.com/images/d/df/Gdmphys1.pdf
http://gafferongames.com/game-physics/integration-basics
http://physicsforgames.blogspot.com/2010/02/kinematic-integration.html
http://physicsforgames.blogspot.com/2010/02/kinematic-integration.html

“We found Epic´s licensing process to be outstanding,

starting with a tremendous level of support during

CCP´s evaluation stage,” said Thor Gunnarsson, CCP’s

vice president of business development.

“The DUST 514 team in CCP´s Shanghai office was

able to prototype and iterate early proof of concept

with close proximity to and support from the Epic

Games China team, which proved to be invaluable.

As we completed

this phase and

moved to licensing,

confidence and

trust in the working

relationship was

cemented, leading

to a rapid and

streamlined com-

mercial licensing

pipeline.“

In just six months,

dynamic lighting

and massive mega

terrains were

implemented in DUST 514 due to the standardizing on

Unreal Engine 3 that gives CCP’s development team the

time and flexibility to focus on perfecting the optimal

client-side engine and pipeline to fully realize its

creative and artistic vision.

With its own core technology platform, CCP created a

fully scalable and persistent online gaming experience

that meets the visual, technical and creative demands

for DUST 514.

“Unreal Engine 3, which complements and integrates

easily with our own technology, provides CCP with

precisely the sort of elegant solution we favor,” said

CCP’s CEO Hilmar Veigar Petursson.

“Having a proven framework for consoles supporting

our first venture into that genre allows the DUST 514

developers to focus time, talent and energy squarely on

making an incredible game,” said Petursson.

For more information about CCP or DUST 514, visit

www.ccp.com or www.dust514.org.

CCP DEVELOPING A GENRE MASHUP USING

UNREAL ENGINE 3

CCP’s DUST 514™ is an MMO and first-person shooter

hybrid for consoles that will be set in the same deep

universe as EVE Online, their long-established PC game

that has become a staple of the MMO genre.

Developed for Xbox 360 and PlayStation 3, DUST 514

allows players of both

games to interact

seamlessly across

platforms. If that

sounds ambitious,

that’s because it is

– nothing of its kind

has been attempted

before.

CCP’s decision to

use Unreal Engine 3

was based on Epic’s

reputation, speed

and functionality.

“We needed to

provide our development team with a solid foundation

to work from, an engine that allows rapid prototyping

and iteration of our core FPS mechanics,” said Atli Már

Sveinsson, DUST 514’s creative director.

“With the scope of certain elements of the game, such

as terrain size and lighting, we needed an engine that

was agile enough to provide quick iteration within the

provided framework. Combining that flexibility with

the fact that the Unreal Engine has been battletested

by some of the greatest titles ever crafted, made Unreal

Engine 3 the absolute best choice for us.”

The team members at CCP and at Epic Games China

worked collaboratively, creating a strong relationship

from start to finish.

According to Sveinsson, hands down, accessibility of

knowledge was Epic’s greatest asset. Unreal’s long-

standing reputation for excellence and convenience

has produced a multitude of seasoned users, including

members of their own development team. The Unreal

Developer Network (UDN), with its various mailing lists

and access to the talented engineers and artists at Epic

Games China, gave them an edge, allowing CCP to train

its team quickly on how to use the tools and hit the

ground running.

Paul Meegan, Epic Games China’s CEO, leads efforts

to make sure that Epic’s licensees can walk through a

process in a way that’s efficient and fast.

Canadian-born Mark Rein is

vice president and co-founder

of Epic Games based in Cary,

North Carolina.

Epic’s Unreal Engine 3 has won

Game Developer magazine’s

Best Engine Front Line Award

four times and is also one of

the few Hall of Fame inductees.

Epic’s internally developed

titles include the 2006

Game of the Year “Gears of

War” for Xbox 360 and PC;

“Unreal Tournament 3” for

PC, PlayStation 3 and Xbox

360; “Gears of War 2” for Xbox

360; and “Gears of War 3” for

Xbox 360.

Upcoming Epic

Attended Events:

E3 2010

Los Angeles, CA

June 15-17, 2010

Develop

Brighton, UK

July 13-15, 2010

Gamescom

Cologne, Germany

August 18-22, 2010

Please email:

mrein@epicgames.com

for appointments.

For UE3 licensing inquiries email:

licensing@epicgames.com

For Epic job information visit:

www.epicgames.com/epic_jobs.html

w w w . E P I C G A M E S . C O M

Unreal Technology News
by Mark Rein, Epic Games, Inc.

Epic, Epic Games, the Epic Games logo, Gears of War, Gears of War 2, Unreal, Unreal Development Kit, Unreal Engine, Unreal Technology, Unreal Tournament, the Powered by Unreal Technology logo, and the Circle-U logo are trademarks or registered

trademarks of Epic Games, Inc. in the United States of America and elsewhere. Other brands or product names are the trademarks of their respective owners.

Advertisement

CCP’s cross-platform online world DUST 514

mailto:mrein@epicgames.com
http://www.ccp.com
http://www.dust514.org
mailto:licensing@epicgames.com
http://www.epicgames.com/epic_jobs.html
http://WWW.EPICGAMES.COM

game developer | may 201020

In May 2009, TellTale GaMes celebraTed ITs fIfTh
anniversary. In this short time, we’d already released
over 20 games across six franchises—most of them on
a consistent monthly release schedule—and had gained
a reputation for being the only company to really get
episodic gaming right.

Our founders and many members of our staff came
from LucasArts, where they worked on popular adventure
games such as Grim FandanGo, day oF the tentacle, and,
of course, the monkey island series. Although we had long
believed that these classic franchises would be perfect
for our episodic format, LucasArts holds the rights. Then
something pretty amazing happened: we reached an
agreement with LucasArts and their new president, Darrell
Rodriguez, to develop their best-known and most beloved
adventure game franchise into an episodic series. tales oF

monkey island would give us the rare opportunity to take
the best of the games we’d built in the past and combine
that legacy with the episodic model we’re pioneering today.

A few weeks after our anniversary, we announced
tales oF monkey island at E3, and hunkered down for our
most ambitious episodic production yet.

W h a T W e n T r I G h T

1) TellInG a sTory In fIve chapTers. monkey island is
famous for sending Guybrush Threepwood, Mighty Pirate™,
on sprawling adventures. It may be a comedic franchise, but
below the surface, it’s fairly serious and epic. To do it justice,
we felt tales oF monkey island needed to be one big story
told in five chapters, rather than five little stories loosely
strung together (as we have typically handled other episodic

series). Approaching the story this way meant evolving our
design process and staying hyperconscious of our story
decisions, right from the beginning.

Episodic games provide a unique chance to keep the
audience’s attention for several months as the series runs
its course. While we wanted each episode to provide a
gratifying experience on its own, we also wanted to leave
players dying to find out what would happen next—the same
way an addictive television series like Lost keeps viewers
guessing week after week. Early in the design process, we
put a lot of thought into the questions each episode should
raise and the cliffhanger it would end with. Our intent was
not to abruptly end the episode at the height of the action
but to bring it to a satisfying conclusion, and then tantalize
the player with a tiny bit more. In the first episode, this
cliffhanger came in the form of a mysterious woman putting
a sword to Guybrush’s neck. We knew we’d made the right
choice when our forum exploded with speculation about who
she was and what she would do to him.

This season-wide approach to the story gave us
interesting opportunities to develop character relationships
as well. Rather than revealing up front that Guybrush would
enter into a complicated friendship with this new woman, we
allowed this relationship with mercenary Morgan LeFlay to
unfold naturally throughout the series’ five-month run. The
demon pirate LeChuck suddenly denouncing his evil ways
would have been a much harder sell if we hadn’t been able
to gradually reveal his new personality. And the shocking
events of the fourth chapter, which set up our grand finale,
were heightened by the fact that terrible things were
happening to people the players had grown to love not over

e M I l y M o r G a n T I

WWW.GDMAG.COM 21

E M I L Y M O R G A N T I

http://WWW.GDMAG.COM

GAME DEVELOPER | MAY 201022

the course of a few hours, but over several months.
TALES OF MONKEY ISLAND showcases some of our
most intricate storytelling to date, and we couldn’t
have pulled it off if we hadn’t thought so much up
front about how to use the five-chapter format to
tell this story.

2) WORKING WITH MONKEY ISLAND “OLD TIMERS.”
Since many on our team got their start working
on (or playing) classic LucasArts adventure
games, we’re in a pretty good position when it
comes to reviving a franchise like MONKEY ISLAND.
However, we didn’t have the benefit of working
alongside MONKEY ISLAND creator Ron Gilbert.
(He was busy over at Hothead Games with his
own project.) Fortunately, we were able to pick
his brain for a few days last spring, when he
graciously agreed to visit our office.

Brainstorming with Ron was incredible. He
cast new light on the characters’ personalities
and helped us understand what their motivations
would be in the storyline we were devising. His
most influential input came when we discussed
Elaine’s character. We had originally imagined
her as a typical damsel in distress who had to
rely on Guybrush to save her. In Ron’s mind,
though, Elaine was smarter than that; she should
always be one step ahead. This simple revelation
completely changed our perspective on her
character and had a huge impact on our story.

Instead of being clueless, Elaine was now playing
the long game—going along with LeChuck’s plans
because she had an inkling of the bigger picture
that Guybrush, and even the player, did not. In
fact, if we recall correctly, it was Ron’s idea for
Elaine to give Guybrush her wedding ring early
in the season, an item that he carried around
with him through the remaining episodes which
became crucial to his eventual success.

Other “old timers” with whom we had the
pleasure of working were several returning
members of the voice cast, including Dominic
Armato as Guybrush Threepwood and Earl Boen
as LeChuck. Dominic knows Guybrush’s character
so well that during voice recording, the designers
just stepped back and let him do his thing. (If he
hadn’t been available for this game, we’d probably
have an entirely new “What Went Wrong” section
for the postmortem!) We also got to work with
Michael Land, the original MONKEY ISLAND composer,
who did a fantastic job on the music and met our
expectations with almost every piece.

And of course, our development team has quite
a few series veterans as well. Our design director,
Dave Grossman, co-designed and co-wrote the
first two MONKEY ISLAND games with Ron Gilbert and
Tim Schafer. Many other members of the design,
art, and programming teams had been involved
in previous MONKEY ISLAND games at LucasArts.
Considering it had been nearly 10 years since a

new MONKEY ISLAND game was released, it was a
really special feeling to bring together so many
people who made the original magic happen.

3) THE CREATION OF A NEW CINEMATIC DIRECTOR
ROLE. We want our games to be cinematic
experiences, like you’re playing an episode of a
TV show. Our versatile development tools allow
us to achieve this by making it easy to move
cameras around and add effects, but of course
someone needs to be available to take a hard look
at the scene, decide what needs to be done, and
make sure this happens. Normally, this is part
of the designer’s job—along with designing and
implementing puzzles, writing all the dialogue,
and overseeing the voice recording process.

Due to TALES OF MONKEY ISLAND’s ambitious
schedule, certain scenes weren’t getting the
attention they required. The problem first became
apparent as we reviewed the series’ opening,
which sets the entire story in motion. Set on
ships at sea, the scene was supposed to be
a high-stakes battle between Guybrush and
LeChuck, but initially it felt static and not very
exciting. The designers were too swamped to
focus on it, so Jake Rodkin, our graphic designer,
stepped in and provided additional direction to
the choreography team to help get the scene
up to snuff cinematically. Thunder and lightning
were added, the sky was changed from dusk to

dark, and movement and camera shakes were
implemented to send the ships bucking and
rolling through the choppy waters.

The changes gave the scene the impact it
needed, and led us to create a new “cinematic
director” role—someone who could work with
the designers to identify the big story beats
that needed this type of attention, then with the
animators and choreographers to make sure the
scenes came together. This provided continuity
across the series that is sometimes lost due
to the design lead changing from episode to
episode, and it freed up the designers to focus
on script writing and puzzle implementation,
which became even more critical as the season
progressed and the schedule got tighter. The new
role proved to be an important addition for TALES
OF MONKEY ISLAND, and we are now including it as
a regular part of our teams moving forward.

4) A GOOD BALANCE OF OLD AND NEW CONTENT.
We were lucky to have a vast MONKEY ISLAND
tradition to draw from. It was tempting to bring
back every character and gameplay mechanic
that fans enjoyed in the old games, but we also
had an incredible opportunity to evolve a series
that had been dormant for years. So we made
an effort to embrace the old tradition while also
building upon it.

We knew that the game should include
Guybrush, his wife Elaine, his nemesis LeChuck,
and the enigmatic Voodoo Lady—it wouldn’t be
Monkey Island without them. We also wanted to
include other popular characters, like Stan the
used ship salesman and Murray the demonic
talking skull, but wanted their appearances to be
surprising for the fans and to make sense to the
story. We looked for places in our overarching plot
that would accommodate them, and held off on
bringing them back until later in the episodic run.

Instead, we populated the first few episodes
with new characters who were true to the MONKEY
ISLAND universe, like Reginald van Winslow,
Guybrush’s faithful first mate, and Morgan
LeFlay, an adversary-turned-ally as the season
progressed. By season’s end, both had become
fan favorites. When Murray and Stan made their
highly anticipated appearances, we brought back
elements we knew the fans would expect, such
as Murray’s voice actor Denny Delk, and Stan’s
waving arms and crazy, dancing-plaid jacket. (It’s
not easy to make 3D plaid dance!)

We took a similar approach to beloved
gameplay mechanics such as Insult Swordfighting,
the practice of overpowering an opponent through
calculated quips such as the classic“You fight
like a cow.” From the day we announced TALES OF
MONKEY ISLAND, we were constantly being asked
whether the game would include it. Our designers
maintained that we would only revisit Insult
Swordfighting if it made sense for the story, and if
we could evolve the mechanic rather than simply
copy it. When Insult Swordfighting eventually

appeared in the final episode, we put a new spin on
it by making the player compliment one character
while insulting another. Ironically, the puzzle was
so well integrated that many players didn’t realize
it was Insult Swordfighting at all. It was simply
good gameplay that fit into the MONKEY ISLAND
universe—and that was our goal all along.

5) STRONG ART DIRECTION. Art direction tends
to be a hotly debated topic among our audience,
and TALES OF MONKEY ISLAND was no exception.
Some fans wanted the game to look exactly like
the pixelated THE SECRET OF MONKEY ISLAND (but
better!), or to have the hand-drawn cartoon style
of THE CURSE OF MONKEY ISLAND. Others thought
it should use the best available 3D technology.
What we wanted was the best of both worlds: 3D
art with a distinct cartoon style that made the
best possible use of our development tools. We’re
proud of the outcome.

Defining the art style started with nailing
down the characters. Our concept artist, Ryan
Jones, worked closely with Jeff Sengalli from
LucasArts, who provided valuable feedback about
the characters’ silhouettes, facial features, and
clothing. Since Guybrush had presumably been
on many adventures since we last saw him, we
were aiming for an older, wiser Mighty Pirate.
Many people on the team liked the coat he wore
in MONKEY ISLAND 2: LECHUCK’S REVENGE, so our

Guybrush was given a similar coat with a pattern
that looked like gold embroidery. Jeff noticed
this and encouraged us to use similar details on
the rest of the characters’ clothing, which helped
provide visual interest and a cohesive design.

Our art directors Derek Sakai and Dave Bogan
had worked on the THE CURSE OF MONKEY ISLAND and
ESCAPE FROM MONKEY ISLAND, so they knew what
they wanted—and what they didn’t want—in a
3D cartoon style. Our plan was to take the best
aspects of the first two games, which had a more
realistic (if pixelated) look, and mix them up with
the whimsy of the third game to create a visual
style that was distinctly ours. A lot of consideration
went into the color palette, details around the
environments, and the use of light and shadow.

All of our series are built with the same
engine, and new tech that had been developed
for our WALLACE & GROMIT and CSI games
allowed the MONKEY ISLAND team to push the art
direction. Updates to the lip sync and character
acting systems allowed for more detailed facial
expressions which benefitted all of the TALES
characters—especially Guybrush, who we think
is our best-acted character to date. New lighting
tech allowed us to do effects we previously
couldn’t have achieved, like having a character
walk in and out of pools of light in the Voodoo
Lady’s hut. All these additions contributed to a
game that looks unlike any other Telltale project.

WWW.GDMAG.COM 23

http://WWW.GDMAG.COM

game developer | may 201024

W h a t W e n t W R O n G

1) the schedule Was tOO clOse fOR cOmfORt.
Tales of Monkey Island is our fifth monthly
episodic series, and by this point, we have a
pretty good system. We usually take several
months up front to build assets, plan the story,
and get a head start on episode production
before the monthly releases begin. Once the
series launches, we follow overlapping schedules,
with work on a new episode ramping up as the
previous episode wraps.

The Tales of Monkey Island schedule followed
the same principles but encountered problems
in practice, starting with a very ambitious release
date. From a marketing standpoint, revealing the
game at E3 in June and announcing its July 7
premiere at the same time was a good move. We
maximized the Monkey Island love by putting out
our game at around the same time as LucasArts’
The secreT of Monkey Island specIal edITIon.
However, our agreement with LucasArts wasn’t
finalized until sometime in February, so we were
on a very fast-tracked schedule to meet this date.
Thanks to hard work from everyone on the team, we
were able to launch our first episode on time, but
this situation sent a ripple effect through the rest of
the schedule.

We believe that for an episodic game to be
successful, it must follow a consistent and reliable
schedule. This makes scheduling a critical factor in

our process, and keeps us under pressure to stay
on track and release our games on time. We did
initially try to make up for the scheduling issues
by planning a six-week gap between the first two
episodes, instead of four weeks. Since we were
still getting up to speed with the series, we needed
that time to get Episode 2 out the door, but we still
couldn’t get a head start on Episode 3. By the end
of the season, the schedule was extremely tight,
and we ended up taking a few extra weeks to get
the final episode out.

The external conditions that drive
announcements can’t always be controlled, and
even in hindsight, we’d probably still announce
at E3 and launch soon after. But we now know all
too well that if the schedule is compromised up
front, it will be very tight in the home stretch.

2) multiplatfORm develOpment caused
pROductiOn tRaffic jams. Tales of Monkey

Island released episodically on both PC and
WiiWare. We had some prior experience with
multiplatform development, but we weren't yet
at the point where we could easily release an
episode on two platforms simultaneously. For
this reason, we decided to lead with each episode
on PC and follow on WiiWare as soon as we could.

Since the PC version always launched first,
this is where the team’s focus was concentrated
during production. Once the PC version of an

episode was complete, most of the team rolled
onto the next episode while our QA group and
producer got the WiiWare version out the door.
This often meant that testing of the newest
episode began late, by which time the people
capable of fixing bugs may have already moved
on to the next episode. So when WiiWare
submissions were kicked back to us, we had to
take resources off the latest episode to fix them.

The music pipeline presented another set of
problems. Since cutscene music can’t be finished
until scenes are time-locked, it’s delivered late in
the production cycle. The Tales of Monkey Island

music was created in MIDI to allow a smaller data
size for the WiiWare version, then converted to
WAV for better quality in the PC version. It’s a time-
consuming process that couldn’t get underway
until the cutscene music came in at the very
end of an episode’s development, and often
wasn’t completed until days before the episode’s
scheduled release date on PC.

Multiplatform development—and in
particular, simultaneous episodic launches
on multiple platforms—is an important goal,
so these are issues we’ll have to continue to
anticipate and plan for as we work on new series.

3) OuR “GeneRic” piRates tuRned Out tO
be tOO GeneRic. Reuse of assets is critical in
episodic games. By developing useful libraries

of art and animations that can be used across
a series—like a Hollywood back lot and prop
department—we can focus our resources on
the most important areas of each episode. We
can also reduce our data size this way, which
is necessary for downloadable PC games and
especially crucial for WiiWare titles.

Since TALES OF MONKEY ISLAND’s storyline would
send Guybrush on an epic pirate adventure, we
decided not to reuse locations as much as we had
in previous games. To compensate, we developed
a system that would easily allow us to reuse
character skeletons and animation suites. We
wanted the illusion of a big, bustling world full of
pirates—similar to THE SECRET OF MONKEY ISLAND,
where random pirates are roaming the jungle and
standing around on the streets—so we conceived
a “pirate toolkit” with four different body types that
would allow the so-called “generic” pirates to share
animation suites and to be visually differentiated
by minor changes in their appearances.

The first problem we encountered was that even
with only four body types, the data size was too big,
and we had to narrow the suite down to two—a tall/
skinny pirate, and a short/fat pirate. Then, although
we customized them, we didn’t customize them
enough to make them unique. Even with different
outfits, facial features, and skin tones, it was very
obvious in the first couple of episodes that these
pirates all came from the same stock, which
detracted from the overall presentation.

By Episode 3, we started making more
drastic changes to the pirates’ appearances by
diversifying their facial features and giving each
pirate a unique silhouette. We tried to make
sure that these model changes only minimally
increased our riggers’ tasks by focusing on areas
of the model that did not deform much (i.e. noses,
chins, skull shapes, and hats). We also tried to
add at least one unique animation to each pirate’s
acting suite, and differentiated their idles to help
set them apart. These changes required help from
a character modeler and rigger who otherwise
would have been assigned to another project.

4) CONTROL SCHEME DECISIONS WERE MADE AT
THE LAST MINUTE. Traditionally, Telltale’s games
have used a mouse-driven, point-and-click
interface. Starting with WALLACE & GROMIT’S GRAND

ADVENTURES, we implemented a direct control
system instead. Direct control makes for a less
passive and more engaging player experience,
plus it gives us more freedom cinematically. On the
downside, WALLACE & GROMIT’s direct control was
designed for an Xbox controller and was clunky on
the keyboard. The MONKEY ISLAND audience is made
up of some devoted point-and-click fans, and we
didn’t want to alienate them with spotty controls.

Unsure of how we were going to proceed, the
designers began working with the assumption
that TALES OF MONKEY ISLAND would be point-
and-click, and had already brainstormed much

of the first episode before
they knew for sure that direct
control would be used. This
didn’t cause any major issues
with the puzzles that had been
conceived, but it prevented
the team from incorporating
gameplay that took advantage of
the control scheme—something
that might have helped us
sell to those point-and-click
die-hards. Fortunately, our
episodic development meant
that we could improve this in
subsequent chapters.

Even after direct control was
confirmed, during most of the
first episode’s development, we
didn’t really know how it would
work. We ended up completing
the new “click-and-drag” system
just days before release, with
insufficient review or usability
testing. We were generally happy
with the system, which works
by holding down the left mouse
button and dragging in the
direction you want the character
to move, but there was no time
to fine-tune it before the first episode launched. In
particular, the wonderfully cinematic opening scene
was difficult to control under this system, and since
this sequence was our series-wide demo, it might
have ended up turning off some of the players we
were actually hoping to accommodate.

We do plan to keep evolving “click-and-drag”
for future series, but we have to be more diligent
about making decisions like this one while there’s
still plenty of time to implement changes. Which
brings us to our final headache.

5) WE WANTED EVERY EPISODE TO BE BIGGER AND
BETTER THAN THE LAST (AKA FEATURE CREEP).
The drive to make the best game possible is hardly
a negative, and we don’t regret having a team
full of overachievers who take enormous pride in
their work. The problem comes when people don’t
know when to stop. To some extent, our episodic
development prevents feature creep, because the
schedules are fairly compact and the monthly
release dates provide clearly defined endpoints.
But if a scene isn’t reading right, this often isn’t
apparent until late in the process. The game
doesn’t come together in its fully playable format
until a week or two before release, at which point
there’s not much time left for changes.

Spending time perfecting the story’s
important moments is easy to justify. It’s devoting
too much time to smaller bits and throwaway
gags that can get us into trouble. For example,
when Guybrush dives down to the ocean floor in
the third episode, we had a perfect opportunity to

reference a similar scene in MONKEY

ISLAND 2: LECHUCK’S REVENGE. Doing so
wasn’t necessary for the story, but it
made the game a richer experience
for MONKEY ISLAND fans who would
understand the reference. On the
other hand, it was a lot of work for
only about 20 seconds of gameplay,
and additions like this can have
impacts on other departments, such
as the testers who have to make sure
the new content works correctly, and
the sound team which has very little
time to score sound effects. The more
we tried to squeeze in, the more those
guys were slammed.

Feature creep caused additional
problems with our multiplatform
development, since last-minute
changes to the PC version could send
us over the size limit for the WiiWare
version. Our compression tools make
Wii conversion fairly painless, but
when the episodes get too large,
we have to start hunting for space
wherever possible. Our producer
recalls a few stressful days where
we needed to squeeze another 600K
out of the final episode, and we had

already purged all of the “low-hanging fruit” to get
it that far. We ended up reducing or purging assets
that added up to a measly 5–10K to find space.

Of course we’re going to keep creating the
best games we can, but we need to get better
about prioritizing and ensuring that any last-
minute additions are really important “need to
have” changes as opposed to tweaks that would
be nice to have.

M O N K E Y O F F O U R B A C K S

TALES OF MONKEY ISLAND was an ambitious and at
times stressful project. It was difficult to meet the
schedule and we worried about whether we were
doing right by the source material. Nearly everyone
on the team has a special spot in their hearts for
MONKEY ISLAND—either because they worked on
the series previously, or because they played it
and loved it long before entering the video game
industry—and it was very important to us to get
this game right. Thankfully, the hard work paid off;
TALES OF MONKEY ISLAND is our best-selling and most
successful episodic series so far.

Bringing back MONKEY ISLAND was an amazing
opportunity, one that caught us by surprise and
forced us to push ourselves and the episodic format
farther than we ever had before during Telltale’s first
five years. And you know what? We’d do it all over
again, and we sure hope we get the chance.

E M I LY M O R G A N T I handled Telltale’s public relations,

customer service, and community management for three

years. She now works as a freelance writer and PR consultant.

WWW.GDMAG.COM 25

GAME DATA

PUBLISHER Telltale Games

DEVELOPER Telltale Games

NUMBER OF DEVELOPERS 50

LENGTH OF DEVELOPMENT
10 months

RELEASE DATES
Chapter 1 – July 7, 2009
Chapter 2 – August 20, 2009
Chapter 3 – September 29, 2009
Chapter 4 – October 30, 2009
Chapter 5 – December 8, 2009

LINES OF CODE
700k or thereabouts

SOFTWARE
Telltale's proprietary game
engine, Autodesk Maya

PLATFORM
PC and WiiWare

OTHER FACTS
5 children born, 3,400+ bagels
eaten, 1,200 pots of coffee
consumed

http://WWW.GDMAG.COM

Download the NEW xaitControl 3.0 SDK.
xaitControl 3.0 off ers a cross-platform live-live debugger featuring conditional breakpoints, per instance realtime-view,

history and graphical decision path, manual triggering and blocking of transitions and dynamic FSM updates.

Contact xaitment today for more information about the BrainPack Program under

brainpack@xaitment.com or visit our website www.xaitment.com

... if you LOVE

 your ZOMBIES ...

... give ’em CONTROL!

mailto:brainpack@xaitment.com
http://www.xaitment.com

www.gdmag.com 27

R o n G i l b e R t

A couple of yeARs AGo, when i stARted desiGninG the soon to
be released DeathSpank, I played all the way through the Secret of
Monkey ISlanD to refresh myself on the puzzles and dialog.

I know this will come as a shock to many hardcore Monkey
ISlanD fans, but I don’t spend my evenings playing Monkey
ISlanD. It’s probably been 15 years since I sat down and really
played it. Doing so brought back a lot of memories and tidbits
of facts, so I started keeping notes in celebration of all things
Monkey ISlanD.

Before we begin, a couple of points:
• I was playing the VGA version that was released after the

 original EGA version. The original version used 16 colors
 and the inventory was text only.

• These are only “somewhat” in order.
• It’s been almost 20 years. My brain is full.

Someone please turn off the lights; I’ll start the projector.

» The very small “hot spot” areas are very annoying these days,
but they were accepted back then; they were even considered

a good thing (1). It’s called gameplay! It
would be hard to make an adventure game
today where players were forced to hunt
for small objects.

Back in the late 80’s, the mere thought
of a scroll wheel on a mouse would have
been crazy talk, but today I find it hard to
break the habit of trying to scroll through
the inventory with it.

Most people know you can hit the period key to skip a single
line of dialog, but surprisingly, some don’t know why I chose the
period key. It seems obvious to me: a period ends a sentence.

Something I added to Humongous Entertainment’s adventure
games was the cursor changing into a big arrow when you hit the
edge of the screen and it was an exit. Monkey ISlanD would have
benefited from this. I was so used to it from the Humongous games
that I’d scan the screen expecting to see it over exits.

The UI for having to open and close doors independently from
walking through them was obnoxious. You’d never do this in an
adventure game today, but like pixel hunting, it was accepted
back then.

» While Insult Sword Fighting is one of the first things people
think of when they hear Monkey ISlanD, I thought it seemed a little
tedious (but fun) when I played through it again (2). There is a
point where you say, “I get it,” but you’re still forced to go through
the motions again and again. If I were going to do Insult Sword
Fighting in a future game, I’d make it more free form, allowing the
player to be clever and construct their own sentences.

During the early stages of the Monkey ISlanD design, we
watched old Errol Flynn-era pirate movies. One thing that stood

2

3

1

http://WWW.GDMAG.COM

» The “touch the parrot” puzzle was a little lame and linear. I remember
being rushed, and we couldn’t think of anything better. The game was feeling
good and long already, so I just punted on this puzzle.

» Begging for the necklace from the head of the navigator is a bad puzzle.
It’s too easy for players to think they’re on the wrong path (9).

» “I had a feeling in hell there would be mushrooms” is one of Tim’s lines.
Tim hates mushrooms. I also hate mushrooms, but unlike Tim, I’m happy to
pick them out (10).

» The key to the Monkey Head used to be called a Q-Tip(tm), but due to my
second legal lesson on the project, it was changed (11). According to our
legal advice, it would have been OK if we were using the Q-Tip in a “correct
fashion,” but taking a giant Q-Tip and sticking it into a stone monkey’s ear is
not “correct usage.” Interestingly enough, a Q-Tip box states: “Do not insert
cotton swab into ear canal.” I think we were doing just that.

» Elaine Marley was called “The Governor” until the scene in the church was
written. Dave Grossman wrote that scene and put in the gag dialog choice
where Guybrush shouts “Elaine!” which is from the movie The Graduate (12).
I liked that, so it became her name. In the original design, Elaine was a more
ruthless Governor, but she softened up and became a true love interest as
the project progressed.

» The last legal snafu we had with Monkey Island revolved around a “Look At”
line in the voodoo shop. When you looked at a statue, Guybrush says, “Looks like
an emaciated Charles Atlas.” We got a cease-and-desist letter for that and had to
change it in future versions. I don’t know for sure what version it changed in.

» Each of the “actor” sprites had a set of basic animations that included
standing, walking, talking, picking up, and reaching. If we needed an
animation that would only be used in one place, it was called a "Special Case

Animation"—each one was carefully considered due to the five floppy disk
limit (13). Every pixel had to count. The first SCUMM game they appeared in
was The lasT Crusade, and we used them to an amazing (well, amazing for
1990) extent in Monkey Island.

» After acquiring the root, we didn’t make the player walk all the way
back to the cannibals then all the way to the ghost ship. There was much
discussion about this. I think we made the right decision.

» For the most part, Monkey Island is fairly open-ended. It gives players a
lot of freedom to explore and solve several puzzle threads at a time, but there
are two big choke points where the puzzles become very self-contained. The
first is on the ship as you’re sailing to (or trying to sail to) Monkey Island. The
second is while you’re on the ghost ship. All of the solutions to the puzzles can
be found right where you are. These were done on purpose to give the player a
small break and allow them to focus on one area.

» After you’ve made your way back to Mêlée Island, you are forced to kill
two ghost pirates with root beer. This was important because it showed not
only how the root beer worked, but that it would work.

» By design, the whole ending of the game is a “gimme.” The player has
worked hard to get to this point, I wanted to give them something they could
just sit back and enjoy playing.

» In closing, I should mention that I was always
bothered by these close-ups (14). While they were great
art, I never felt they matched the style of the rest of the
game. Still not sure how I feel about them 20 years later.

R o n G i l b e R t helped create Maniac Mansion, The secreT of Monkey island, and Monkey

island 2: lechuck's revenge. He cofounded Humongous Entertainment and has most recently

been working with Hothead Games on Penny arcade advenTures and the upcoming deaThsPank.

9

10

12

13

11

14

www.gdmag.com 29

http://WWW.GDMAG.COM

http://www.techexcel.com

www.gdmag.com 31

TooLBoX

Havok aI, ClotH, and
destruCtIon
Havok
www.havok.com

Havok AI is Havok’s latest
addition to its portfolio
and aims to solve
developers' pathfinding
and path following needs.
“That’s the core thing
we’re concentrating on,”
Dave Gargan, Havok’s VP
of engineering told us.
“Because higher-level AI
is so game-specific that
developers want to keep
those things for themselves
to make their gameplay
unique.” The SDK provides
automatic nav mesh
generation that promises to
create optimized navigation
meshes for game levels
within seconds. Along with
nav mesh generation duties,
the tool supports nav mesh

streaming for large game
worlds that can be stitched
together dynamically
at runtime. Havok AI is
designed for dynamically
changing environments
and gives NPCs a variety of
optimized runtime queries
that enable fast pathfinding
decisions including line of
sight checking, single- and
multiple-goal pathfinding, as
well as identifying potential
cover locations. The tool
features a local steering
module that can handle large
crowds, allowing characters
to move and react naturally.
“Characters understand how
fast they can run and walk
and they’ll avoid moving
objects by slowing down and
speeding up,” Gargan said.

Responding to the need
for greater visual fidelity
while reducing animator
workloads, Havok Cloth

can be used to simulate
the motion of clothing,
hair, foliage, flags, and
curtains. “People think of
it as just garments but it
can be used for dynamic
skin deformation as well,”
Gargan noted.

Also on show was
Havok Destruction, Havok’s
tool for simulating rigid
body destruction such as
shattering, splintering,
crumbling, and deforming.
“The hard part about
simulating physical
destruction is the cost
that it adds to the game
development pipeline. So
we’ve focused on tools
that let you do this very
quickly in the model,” Gargan
said. 3D modelers can
choose between automatic
destruction algorithms
that cover a variety of
materials such as wood,

stone, or metal, or using
the tool to handcraft their
own break patterns. The
tool can also generate extra
debris at runtime for added
realism. “With very little
artist effort you can have
these beautifully destroyed
buildings in your game and
you can do them without a
huge burden on the graphics
engine because you’re
procedurally instancing the
same pieces of geometry
around, so it’s very efficient
for rendering,” Gargan added.

modo 401
Luxology
www.luxology.com

Luxology was demonstrating
its new Studio Lighting
& Illumination Kit (SLIK)
add-on for modo 401, a
pre-built rig that simulates
the lighting environment of
a real-world photography
studio. In addition to SLIK,
Luxology has created a
number of additional kits
that simplify common
modeling and rendering
tasks such as high-dynamic
range panoramas, render-
ready background plates,
and liquid effects. “It’s
not taking away or adding
anything that a user couldn’t
do with enough time and
knowledge. It is streamlining
certain processes,” Brad
Peebler, president of
Luxology said. “Everybody

has the same core modo,
but if you want to learn a
new discipline, you can add
a kit, or you can use your
own time to build it. Also, the
system we set up to build
and use the kits is in every
modo. For example, Seneca
Menard at id Software
builds his own kits with
customized UIs, scripts,
and tons of content that
they use internally for level
development.”

autodesk dIgItal
entertaInment
CreatIon software
Autodesk
www.autodesk.com

Autodesk updated
Softimage with a variety of
enhancements to its node-
based Interactive Creative
Environment (ICE) toolset.
ICE Kinematics brings
custom inverse kinematics,
spines, and constraints
to help in the creation of
advanced rigging elements.
New predefined compounds
have been added to ICE
that cover areas such as
kinematics, deformation
effects, particle emissions,
and skinning. Support for
PhysX 2.83 allows artists
to use the NVIDIA PhysX
rigid body library to create
meshless deformations
in ICE and also provides
new support for springs
and dampers. Softimage’s

RepoRt FRom the Show FlooR

game developers
ConferenCe 2010
we didn’t See aS many hype-Filled announcementS at thiS yeaR’S Game developeRS conFeRence. inStead, companieS Seem
to be takinG an eaRneSt look at developeRS’ needS in oRdeR to ReFine what woRkS and pRovide the induStRy with the
matuRe toolSet it RequiReS to Get the job done. —Jeffrey fleming

Havok destruction in action.

http://www.havok.com
http://www.luxology.com
http://www.autodesk.com
http://WWW.GDMAG.COM

TOOLBOX

game deveLOper | may 201032

Face Robot facial animation
toolset has also been
enhanced with automated
lip-synching capabilities.

Autodesk Maya
2011 sports a number of
improvements including a
redesigned user interface
that is customizable and
features dockable UI elements
and improved editors. A new
Vector Paint feature has been
added to Maya Composite
that improves painting
and rotoscoping tasks.
The skinning workflow for
creating 3D characters has
been made easier with a Paint
Skin Weights tool redesign.

Autodesk 3ds Max has
also been refreshed with a
new node-based material
editor. The software’s
underlying technology
has been upgraded with a
multithreaded hardware
rendering engine that
utilizes both the central
processing unit and the
graphics processing unit to
provide significant speed
increases. A high-dynamic
range compositor that is
based on technology from
Autodesk Toxik has also
been added to the tool.

FMOD Designer 2010
Firelight Technologies
www.fmod.org

Firelight Technologies is
readying FMOD Designer for
a soon-to-be-released 2010
update. The new version of
the sound design tool will
feature extensive integration
with Unreal Engine 3 that
will allow designers to
access their content in
Unreal Script, Unreal Kismet,
and Unreal. All FMOD disk
reads, including streaming
audio, will go through the
Unreal IO, streamlining disk
access tasks. Loading and
unloading of event data and
sound banks will be handled
automatically by the C++
side of the integration which
will eliminate the need
for designers to manually

manage their memory usage
during Unreal Script and
Unreal Kismet sequences.
Working in Unreal Script
and Kismet, designers will
also be able to directly
manipulate FMOD events,
categories, parameters,
and music cues to create
dynamic music scores and
complex event behavior.

KOre
Kore Virtual Machines
http://kore.net

Scripting languages are
fast becoming an essential
component in game
development. Seeing a
need for fast and efficient
virtual machines to embed
scripting languages in,
Kore aims to become the
VM of choice for demanding
console developers.

“We’re focusing on
the LUA language which
is a fantastic, accessible,
small, easily integrateable
language, and we’ve
re-written the virtual
machine and the compiler,”
Hugh Reynolds, Kore’s CEO

told us. “We see people
using scripting languages
in lots of different ways.
We’ve seen some teams
that have chosen to write
all of their game in scripting
language. You can produce
a world-class product
and it doesn’t have to be
bleeding-from-your-teeth
samurai assembly. It can
be other languages.”

A key advantage that
scripting languages provide
over lower-level coding is
the speed of iteration. “Five
years ago, build time was
the problem. Now, link time
is the problem. You make
any change whatsoever
that requires just a relink
and it’s going to take five
minutes,” Reynolds said.
“The half-life of an idea is 10
to 12 seconds. If a designer
or a technical designer can
get feedback within that
time frame, they will stay
there and they will iterate,
and they will polish until
they get it right. But if you’ve
got a three- to five-minute
link time on your game,
then it’s very hard to get a

productive flow. Anywhere
that you have to iterate,
we’re going to see scripting
languages more and more,”
he predicted.

VisiOn engine 8
Trinigy
www.trinigy.net

Trinigy’s Vision Engine 8 has
been updated with a host
of new features including
DirectX 11 and Shader Model
5.0 support, a water shader
that enables streamlined
creation of realistic water
surfaces from rivers to
oceans, a LUA remote
debugger, and an extended
audio system that supports
additional sound formats
and streaming.

Third-party support has
been enhanced with an
extended Havok Physics
and Perforce integration.
Vision 8 has been optimized
to run on Intel six-core
hyperthreaded processors
and the engine’s Console
Resource Viewer has been
extended to support Xbox
360, PlayStation 3, and Wii.

Also new to the engine is
the Windows-only browser
plug-in WebVision. “We
see a rise in higher end
casual games and that was
definitely something we
wanted to address. The idea
is that people have the full
capabilities of the Vision
engine, the full feature set
and the same tool chain
that they use to make XBLA,
PSN games, and large-scale
boxed productions. They
don’t need to adapt to a
new feature set to make
browser games that reach
a completely new level of
visual quality due to the
fact that we are running
the whole Vision engine
inside the browser,” Dag
Frommhold, Trinigy’s
managing director said.

Vision 8 offers a new
post-processing framework
that integrates with the
engine’s forward and

deferred rendering pipeline
allowing developers
to dynamically switch
between the two. “We take
care of all the switches
between shaders. People
can use this to extend our
standard rendering pipeline
regardless of whether it is
deferred or forward with
their custom effects and
rendering features. The
big advantage is that it
allows developers to very
easily, without having to
modify any of our code or
do anything from scratch,
implement whatever
rendering solution they
want to have in there,”
Frommhold said.

xaitCOntrOl 2.6 anD
xaitMap 2.6
xaitment
www.xaitment.com

As part of xaitment’s modular
suite of AI tools, the company
unveiled recent updates of
xaitControl and xaitMap at the
conference. xaitControl is a
tool for designing hierarchical,
probabilistic finite-state
machines that uses a unique
node-based graphical
interface. By drawing states
and connecting them with
transitions, designers can
intuitively create complex
NPC interactions that can be
grouped into hierarchies of
sub-behaviors.

The tool’s new graphical
debugger also promises to
make fine-tuning AI a less
painful process. "This was
previously a major concern
for developers," Alexander
Seifert, xaitment’s field
application engineer told us.
"Especially for designers
who were meant to script
state machines. They
typically had a really hard
time reading through tons
and tons of debug output
just to figure out what had
happened. Our graphical
debugger makes it very easy
to trace back what happens
inside the state machine." ph

Ot
O

 b
y

Vi
n

Ce
n

t
D

ia
M

an
te

http://www.trinigy.net
http://kore.net
http://www.fmod.org
http://www.xaitment.com

http://E3Expo.com
http://E3EXPO.COM
http://www.E3Expo.com

Game Developers Conference® Europe

August 16–18, 2010
Cologne Congress Center East | Cologne, Germany

Visit www.GDCEurope.com for more information

Game Developers Conference® Europe

Supported by

GDC Europe returns to Cologne in 2010

http://www.GDCEurope.com

WWW.GDMAG.COM 35

THE INNER PRODUCT // DAVID TUFT

A YEAR AGO, I DECIDED TO DIVE DOWN ON SHADOW MAPS AND WRITE A SAMPLE THAT ATTACKED THE
most common artifacts. When I got to Percentage Closer Filtering (PCF), I found myself playing with
offsets and slope-scaled depth bias to try to find a sweet spot that would satisfy the evil twins: Peter
Panning and shadow acne. I had created a large outdoor scene to demonstrate how important it is
to conserve depth buffer precision by setting the near and far planes as close as possible. However,
this scene was so large that in the end, I could not find a combination of offsets that removed self-
shadowing without making objects appear to fly.

The crux of this problem is that PCF is fundamentally flawed (see Figure 1). Comparing
neighboring pixels in the depth map is invalid because these pixels correlate to different geometry.
The solution that I found was to use derivatives to calculate custom offsets based on the orientation
of the light with respect to the orientation of the geometry in screen space.

SLOPE-SCALED DEPTH BIAS IS NOT SUFFICIENT
» As you can see in Figure 2, without a bias, pixels are as likely to erroneously fail the depth
test as they are to pass. The rasterization hardware has to quantize the depth of a primitive for
each pixel it passes through. A view-space depth is then tested against its corresponding texel in
the depth map. This quantization error results in 50 percent of the pixels being erroneously self-
shadowed.

Slope-scaled depth bias solves the problem for single-tap filters by adding a custom bias to the
depth based on the orientation of the polygon with respect to the camera. In other words, the depth is
scaled by the slope of the polygon. Slope-scaled depth bias does not remove self-shadowing artifacts
when large PCF kernels are used because we’re comparing neighboring pixels in the depth map
against the current depth in view space.

PERCENTAGE CLOSER FILTERING
» Filtering ordinary shadow maps does not produce soft, blurred shadows. The filtering hardware
blurs the depth values, and then compares those blurred values to the light-space texel. The hard
edge resulting from the pass/fail test still exists. Blurring shadow maps only serves to erroneously
move the hard edge. PCF enables filtering on shadow maps. The general idea of PCF is to calculate a
percentage of the pixel in shadow based on the number of subsamples that pass the depth test over
the total number of subsamples.

Direct3D 10 and Direct3D 11 hardware can perform PCF natively in hardware while older
hardware can do PCF filtering in shader code. The input to a PCF sampler consists of the texture
coordinate and a comparison depth value. For simplicity, PCF is explained with a four-tap filter. The
texture sampler reads the texture four times, similar to a standard filter. However, the returned
result is a percentage of the pixels that passed the depth test. Figure 3 shows how a pixel that
passes one of the four depth tests is 25 percent in shadow. The actual value returned is a linear
interpolation based on the sub-texel coordinates of the texture reads to produce a smooth gradient.
Without this linear interpolation, the four-tap PCF would only be able to return five values: { 0.0,
0.25, 0.5, 0.75, 1.0 }.

It is also possible to do PCF without hardware support or extend PCF to larger kernels. Some
techniques even sample with a weighted kernel. To do this, create a kernel (such as a Gaussian) for an
N x N grid. The weights must add up to 1. The texture is then sampled N2 times. Each sample is scaled
by the corresponding weights in the kernel.

CONTINUED ON PAGE 36

PLANE-BASED DEPTH BIAS
FOR PERCENTAGE CLOSER
FILTERING
CALCULATING A CUSTOM OFFSET TO REMOVE SELF-SHADOWING FOR LARGE PCF KERNELS BY FITTING
THE UNDERLYING GEOMETRY TO A PLANE

FIGURE 1 Large PCF kernels have problems with self-
shadowing.

1 TAP

9 TAP

49 TAP

http://WWW.GDMAG.COM

THE INNER PRODUCT // DAVID TUFT

GAME DEVELOPER | MAY 201036

THE PCF FLAW
» It is only valid to compare a pixel's light-space depth against the pixel it maps
to in the depth map. The depth-map texel's neighbors refer to a different position
in post-projected view-space. This depth is likely to be similar, but can be very
different depending on the scene. Figure 4 highlights the artifacts that occur. A
single depth is compared to three neighboring texels in the shadow map. One
of the depth tests erroneously fails because its depth does not correlate to
the computed light-space depth of the current geometry. One solution to this
problem is to use a larger offset. It can be frustrating to try to find the perfect
offset that removes self-shadowing without causing Peter Panning.

CALCULATING A PER-TEXEL DEPTH BIAS WITH DDX AND DDY
FOR LARGE PCFS
» Calculating a per-texel depth bias with ddx and ddy for large PCFs is a
technique that calculates the correct depth bias—assuming the surface is
planar—for the adjacent shadow map texel.

This technique fits the comparison depth to a plane using the derivative
information. Because this technique is computationally complex, it should
be used in conjunction with deferred shadows or some other technique that
skips regions that are clearly inside or outside of shadows.

Figure 5 highlights the problem. The depth in light space is known for the
one texel that is being compared. The light-space depths that correspond to
the neighboring texels in the depth map are unknown.

At a high level, this technique uses the ddx and ddy HLSL operations
to find the derivative of the light-space position. This is nontrivial because

the derivative operations return the gradient of the light-space depth with
respect to screen space. To convert this to a gradient of the light-space
depth with respect to light space, a conversion matrix must be calculated.

EXPLANATION WITH SHADER CODE
» The details of the rest of the algorithm are given as an explanation of
the shader code that performs this operation. This code can be found in the
CascadedShadowMaps11 sample in the DirectX SDK. Figure 6 shows how the
light-space texture coordinates correspond to the depth map and how the
derivatives with respect to X and Y of these light-space coordinates can be
used as a matrix to transform from screen space to light space.

The first step is to calculate the derivative of the light view space position
as below:

float3 vShadowTexDDX = ddx

 (vShadowMapTextureCoordViewSpace);

float3 vShadowTexDDY = ddy

 (vShadowMapTextureCoordViewSpace);

Direct3D 9 class GPUs calculate these derivatives by running 2 x 2 quad of
pixels in parallel and subtracting the texture coordinates from the neighbor
in X for ddx and from the neighbor in Y for ddy. These two derivatives make
up the rows of a 2 x 2 matrix. In its current form, this matrix could be used
to convert screen space neighboring pixels to light-space slopes. However,
the inverse of this matrix is required. A matrix that transforms light space
neighboring pixels to screen-space slopes is needed:

float2x2 matScreentoShadow = float2x2(vShadowTexDDX.xy,

 vShadowTexDDY.xy);

float fInvDeterminant = 1.0f / fDeterminant;

float2x2 matShadowToScreen = float2x2 (

 matScreentoShadow._22 * fInvDeterminant,

 matScreentoShadow._12 * -fInvDeterminant,

 matScreentoShadow._21 * -fInvDeterminant,

 matScreentoShadow._11 * fInvDeterminant);

FIGURE 2 Without a bias, pixels are 50 percent as likely to be erroneously self-shadowed.

FI GURE 3 A PCF-filtered
image, with 25 percent of the

selected pixel covered.

Light

Depth Map

View Camera

Unbiased Depth
Slope-Scaled Depth

The Light Space to Screen Space matrix.

CONTINUED ON PAGE 38

CONTINUED FROM PAGE 35

www.gdmag.com 37

LINEAR PCF POINT PCF

1
TA

P
9

TA
P

25
 TA

P

Figure 4 Linear PCF produces smooth gradients.

http://WWW.GDMAG.COM

THE INNER PRODUCT // DAVID TUFT

GAME DEVELOPER | MAY 201038

FIGURE 5 Erroneous self-shadowing.

the texture coordinates used by the PCF filter can
be used instead of point-based PCF filtering to give a
smoother gradient.

WRAP UP
» Correct shadows tell us when objects are
hovering or securely planted to the ground.
Shadows don’t need to be correct, just believable.
However, when too much offset pushes the
shadow away from the base of an object, the
eye is tricked and suspension of disbelief is lost.
Additionally, the self-shadowing pattern that
occurs from incorrectly comparing neighboring
depth-map texels to the current view-space texel
looks out of place. A plane-based depth bias
mitigates these two artifacts.

D A V I D T U F T works in the advanced technology group

at Microsoft. In the past he has worked on Direct3D 11 and

various GPU projects.

View Space Depth

Depth Map

View Camera
Depth Map

Screen Space to Light Space

Self Shadowing

Pixel Quad containing Light
SpacePosition (LSP)

This matrix is then used to transform the two texels above and to the right of the current texel (listing
2). These neighbors are represented as an offset from the current texel:

float2 vRightShadowTexelLocation = float2(m_fTexelSize, 0.0f);

float2 vUpShadowTexelLocation = float2(0.0f, m_fTexelSize);

float2 vRightTexelDepthRatio = mul(vRightShadowTexelLocation, matShadowToScreen);

float2 vUpTexelDepthRatio = mul(vUpShadowTexelLocation, matShadowToScreen);

The ratio that the matrix creates is finally multiplied by the depth derivatives to calculate the depth
offsets for the neighboring pixels:

float fUpTexelDepthDelta =

 vUpTexelDepthRatio.x * vShadowTexDDX.z

 + vUpTexelDepthRatio.y * vShadowTexDDY.z;

float fRightTexelDepthDelta =

 vRightTexelDepthRatio.x * vShadowTexDDX.z

 + vRightTexelDepthRatio.y * vShadowTexDDY.z;

These weights can now be used in a PCF loop to add an offset to the position as seen here:

for(int x = m_iPCFBlurForLoopStart; x < m_iPCFBlurForLoopEnd; ++x)

 {

 for(int y = m_iPCFBlurForLoopStart; y < m_iPCFBlurForLoopEnd; ++y)

 {

 if (USE_DERIVATIVES_FOR_DEPTH_OFFSET_FLAG)

 {

 depthcompare += fRightTexelDepthDelta * ((float) x) +

 fUpTexelDepthDelta * ((float) y);

 }

 // Compare the transformed pixel depth to the depth read from the map.

 fPercentLit += g_txShadow.SampleCmpLevelZero (g_samShadow,

 float2(

 vShadowTexCoord.x + (((float) x) * m_fNativeTexelSizeInX) ,

 vShadowTexCoord.y + (((float) y) * m_fTexelSize)

),

 depthcompare

);

 }

 }

EXISTING TECHNIQUES
» After implementing the technique in this paper, a colleague of mine sent me a link to a previous
GDC session by John R. Isidoro. For the most part, Isidoro’s technique is the same. His technique
transforms the projected texture coordinates, while my technique uses the derivatives of the light-
view space, which allows the technique to be used with cascaded shadow maps without performing
derivatives in divergent flow control. Since Isidoro’s GDC technique was revealed, deferred shadows
have become commonplace. Deferring shadows enables computationally complex techniques for
filtering to only be performed on the silhouettes of the shadows. Additionally, linear interpolation of

CONTINUED FROM PAGE 36

FIGUR E 6 Screen Space to
Light Space matrix.

IrvIne, CalIfornIa I austIn, texas I velIzy, franCe I Cork, Ireland

sInGaPore I shanGhaI, ChIna I taIPeI, taIwan I seoul, south korea

sao Paulo, BrazIl I Buenos aIres, arGentIna I MexICo CIty, MexICo

jobs.blizzard.com

©2010 Blizzard Entertainment, Inc. All rights reserved. World of Warcaft, Diablo, StarCraft and Blizzard Entertainment are trademarks
or registered trademarks of Blizzard Entertainment, Inc., in the US and/or other countries.

we are actively recruiting across all disciplines for the following locations:

®
®®

http://jobs.blizzard.com

game developer | may 201040

d e s i g n e r ' s n o t e b o o k J o r d a n M e c h n e r (P r i n c e o f P e r s i a)

May 3, 1987 I’m back in work mode. Whatever the reasons, the long dry spell that
began with Corey’s and my exile to the attic ended the day Sensei moved in with
us. I got a hell of lot done this week, and I’m actually starting to look forward to
arriving at work every morning, sitting down at the Apple to make things happen.

revisiting original design docuMents froM years Past

www.gdmag.com 41

pixel pusher // steve theodore

Blind Alleys
Production Should be a two-way Street

“PiPeline” hAs long Been the go-to metAPhor
for the magic that helps us turn hand-wave-y
design docs and whiteboard doodles into
finished game art. When you think about it
though, a better metaphor for a production
environment might be a city street map,
particularly if the city is old and confusing, with
lots of gnarly back alleys, meandering routes,
and rundown neighborhoods where outsiders
fear to tread.

Like a city, game production doesn’t involve
a simple linear flow—there’s lots of data moving
in various directions. You’ve got designers
commuting in from the suburbs to drop off story
notes and character ideas. There are engineers
tearing up the streets to lay new pipes, blocking

off old routes and promising that the new
bypass will shave minutes off the drive from
Concept Street to Gold Master Boulevard. Deep
in their underground bunker, the producers
are playing with the stoplight timings, hoping
to ease the traffic flow (while management
keeps lobbying for new red-light cameras).
The artists, meanwhile, are frantically pedaling
their bicycles across town, trying to deliver
their assets on time despite choking traffic,
route changes, and an irrational street layout.
Hunting for shortcuts and safe routes has some

renegade, bike messenger chic to it—if you don’t
get run over by the art director in his Escalade.
And don’t forget to wave "hi" to the tech artists
on their Segways!

merge AheAd
» Seriously, the street-grid metaphor is a better
way to understand what we do than the usual
Visio diagram of pastel rectangles connected
by arrows. Game studios, like cities, evolve and
grow in surprising ways. Plenty of studios work
in rhythms based on vanished technology, much
like Boston’s streets follow colonial cow paths
and the routes of horse-drawn trolleys. Politics
reroute real-world traffic to represent the balance
of power; rich folks get nice smooth highways,

poor folks get potholes and detours—just as our
toolsets reflect the relative power of different
departments. Most importantly, driving an asset
from concept to completion—like getting cross-
town at rush hour—requires a good map. All
routes are not created equal; pick the wrong turn
and you’ll end up wasting a lot of time.

Every toolset includes some steps which are
very hard to re-trace—the digital equivalent of
one-way streets. As we’ve pointed out before (in
past columns like "The Boneyard," March 2009,
and "Most Likely To Succeed," November 2009),

committing to a character skeleton, adding a
UV map, and baking lightmaps are all examples
of these one-way streets. Going down a one-
way street is a serious proposition, because it
involves many possible ramifications. Animating
a character with bad proportions, or texturing on a
badly done UV map means wasted work, schedule
trouble, and the risk of shipping something lame.
Revisiting these kinds of decisions is always
expensive because new assets are constantly
created that depend on the flawed originals; any
fix will involve updating all the dependencies too.

One-way streets are a fact of life. Some
decisions really are harder to unwind than
others. You can twiddle a single texture all day in
pursuit of artistic perfection without sending a
tremor through your whole team’s schedule, but
if design wants to move all those buildings you
painstakingly hand-stitched into the map terrain
grid, there are going to be a lot of repercussions.
Knowing how to spot the one-way streets in your
production roadmap and handle them safely is
one of the most important and least respected
skills in game production.

one WAy
» UVs, skeletons, and lightmaps are all classic
examples of production milestones which are
hard to revisit without serious costs, but there
are other examples too. Carefully stitching
geometry to make watertight volumes? Check!
Distributing a complex character rig? Hell yeah!
Normal casting? You betcha! Any decision which
lays the groundwork for subsequent work is
a potential one-way street. One-way streets
are a fact of life—some decisions really do set
the stage for others (it’s hard to imagine, for
example, animating a character that hasn’t been
given a skeleton yet). Even so, you can—and
should—design your workflow to minimize the
costs and likelihood of expensive do-overs.

One-ways are doubly difficult to work with.
The rightness or wrongness of a one-way route
is rarely obvious until new content comes later
in the game. The flaws in a skeleton, for example,
are usually revealed when the character’s
animation set is really taking shape—which is
to say, alas, only after enough work has been
put into the character that going back to fix the
skeleton will be painful and costly.

Try to keep in mind that the first pass of
any one-way process is the beginning, not
the end of a process. Never build schedules

A game production is a lot more like a complex street map than it is like a pipeline.

http://WWW.GDMAG.COM

pixel pusher // steve theodore

game developer | may 201042

on the assumption that laying down a skeleton or a UV map is something you do once and forget.
Instead, try to push the asset as far as you can go in a loose, unpolished state first, so you can make
sure that the one-way streets are really safe to travel. Build a few key cycles and run them on an
untextured mesh and provisional skeleton before committing to months of animation production;
play your level for a few weeks with low-res lighting before you get down to massaging the
lightmaps by hand. You don’t want to make big commitments of time and energy until your one-way
street has been thoroughly surveyed.

Making this work demands trust between the art team and other departments. Nobody wants to
charge down blind alleys, but artists are emotionally attached to polish work, and our clients in other
departments often have trouble visualizing final quality from rough beginnings. The art leads need
to be able to convince design and engineering that preliminary work really will be shippable before
the game is ready to go. Resisting pressure to polish up assets too early is hard, but vital. It’s also
important to placate the frazzled egos of line artists who don’t want any of their babies to go out the
door looking less than perfect. The art staff needs to trust that they’ll be judged on the final, shipped
product and not on placeholders, tests, and trial balloons.

OBEY POSTED LIMITS
» Another important tactic for dealing with one-way streets is clear signage. It’s important that
everybody, both inside and outside the art team, be well educated on which kinds of changes do and
don’t have big downstream costs. Say, for example, you’ve got a system for assigning parts of a model
to different hit regions so the game can translate a hit on the head into a headshot at runtime. This is a
small example of the one-way street problem, since odds are whatever region modifiers you paint onto
your character won’t survive serious mesh edits.

Naturally, the designers will want you to add this kind of markup right away when the character
is coming online. It’s important, though, that they get some education on the maintenance costs
of adding this kind of detail early. Grabbing a few face triangles and hitting a button might not take
that long to do once, but because this happens on the wrong end of a one-way street, that little extra
increment of work will be added on to every future revision of the character.

Mesh and skeleton-dependent markups always create a one-way route, so adding this kind of
data should be put off as long as possible. Perhaps you can convince the designers that a system of
hitboxes attached to the skeleton will work as well as per-face control, or generate the data off of the
ragdoll. Or, if per-face control really is needed for gameplay, is it certain that it has to be added early
in the dev cycle? Just postponing the markup step until polish time will remove a lot of schedule
pressure. In the worst-case scenario, if this fragile bit of data really must be available as soon as
the character is in the game, talk to engineering or tech art about tools for preserving the markup
between model edits (and get the designers to back you up!). The key goal is to keep the iterative part
of developing the character as cheap as possible, and to add one-way dependencies only after the
character is in its final form.

CONSTRUCTION AHEAD
» Of course, the best way to deal with one-way streets is to eliminate them altogether. For example,
if your production is consistently handcuffed by the costs of offline lightmapping, maybe it’s time to
consider an all-dynamic lighting system. It’s certainly true that the technical quality of dynamic lights
and shadows isn’t a match for the gorgeous effects you can achieve with an offline radiosity solution
and a big render farm. Even so, when artists get to iterate—even on a system that's short on bells
and whistles—the results can compete well against technically perfect systems that are too slow
and cumbersome to tweak. More importantly, should you discover that one of the firing spots in your
level is useless due to sun glare, you’ll be able fix it instead of shipping useless content because you
don’t have a week to manually re-do all the lightmap UVs. Naturally, a lot depends on the nature of the
game—competitive multiplayer games need to be more flexible; cinema-driven, story-based games
can do more up-front planning. In any case, though, it’s always valuable to check your assumptions
once in a while.

There are lots of similar situations where “the best” really is the enemy of “good enough.” Quick
procedural content isn’t as good as carefully crafted art—but it can be a huge timesaver for early
iterations. For example, a smart artist can build better and more efficient collision models than the
automatic convex-hull generators that come with Havok or PhysX. But is “better” enough to justify the
cost? Automatic tools are often fine for anybody except the artist who built the asset in the first place.
In the heat of gameplay, when the polygons are flying, who will really notice that the tailpipe on your
go-kart clipped through track walls by an inch as it tumbled out of control?

Using automatic tools to do a first pass or to generate placeholders is a great way to cut down
on the costs of one-way decisions. By making the iteration cheaper, they allow you to make really
important fixes to the look and feel of the game without busting schedules. By all means, replace

the computer-generated filler with beautifully
tweaked hand-built hulls—just tolerate the filler
until you’re certain the content is locked. Besides
saving wasted iteration time, you’ll be making the
resource calls at the end of the project when the
tradeoffs really stand out in stark relief instead of
blowing your budget on minutiae when the project
is young and the team is overly-optimistic.

DEAD END
» The last, and perhaps most important survival
tip for navigating one-way streets should be
obvious: Iteration is good, one-ways are bad—so
don’t create one-way streets of your own. It’s
surprisingly easy for a hastily designed tool or
process to add hidden iteration costs. Be vigilant
and don’t let new features (even ones you really
want!) drag down your agility.

Imagine you’ve finally convinced your
engineers to add tweakable animation compression.
Hurrah, at long last, artists have some fine-tuning
control over the animations! No more stuttery
pantomime! Still, don’t let excitement over the new
tech lead you down a blind alley for production.
It seems natural to add compression right into
the exporter; it’s probably what the engineers will
offer to do. Unfortunately, doing the compression
there means that a last-minute change in the
budget (or, for that matter, in the compression
technology!) requires you to re-open and re-export
every existing animation file. It’s infinitely better
to run the compression in a separate tool so you
can experiment, make bulk changes, and react to
last-minute resource crunches without spending
massive amounts of time revisiting old work.

It’s easy to get carried away by enthusiasm
when new tech comes along. Even the swankiest
new effects need to fit into our overcrowded,
chaotic schedules. Make sure to stand up for
flexibility and iteration whenever a new tool or trick
is on the table. If you don’t, you’ll pay for it later.

Flexibility is an easy thing to praise and a
hard thing to achieve (if you don’t believe it, try
taking a few weeks of Pilates). The complex web of
interdependencies that makes up a game is never
going to look like a rational, streamlined assembly
line. Maybe we don’t want it to—creativity and
experimentation aren’t usually found on the factory
floor. However, we can certainly make our own lives
easier, and make better art, by making sure that
we—and our teammates—know the real costs of
the decisions we’re contemplating. We may never
get satellite navigation for our crazy, constantly
changing environment, but we can certainly learn to
read the street signs and keep out of dead ends.

STEvE THEODORE has been pushing pixels for more than

a dozen years. His credits include Mech coMMander, half-

life, TeaM forTress, counTer-sTrike, and halo 3. He's been a

modeler, animator, and technical artist, as well as a frequent

speaker at industry conferences. He’s currently a consultant

helping game studios perfect their art tools and pipelines.

http://5thcell.com/jobs

game developer | may 201044

Win ExpEctancy
How players perceive tHe odds

in 2004, thE REd Sox WERE doWn 4–3 in gamE fouR of thE amERican LEaguE championShip
Series in the bottom of the ninth inning. Their hated rivals, the Yankees, had won the previous
three games and were three outs away from going to the World Series. But in one of the most
thrilling championship series in all of sports, the Red Sox managed to tie the game in the ninth
inning, win the game in the twelfth, and proceed to win the ALCS and then the World Series. What
are the odds?

Thanks to a bunch of fans, we know exactly what the odds are. Baseball as a sport lends itself to
statistical analysis—a hobby advocates call Sabermetrics. Unlike other team sports, baseball has a
relatively low number of variables —it really comes down to the duel between the pitcher and batter—
so it’s easy to quantify the value of any given player in any given situation. There are few parts of the
game that have not undergone statistical analysis.

So when we ask, “What are the odds the Red Sox would win game four?” we know the answer
exactly. In the history of all baseball games ever played, a team that has been down one run with
no outs at the bottom of the ninth inning has won 23 percent of the time. When Kevin Millar got
his walk, that percentage jumped up to 37 percent. One stolen base later—meaning there was a

runner on second with no
outs—the odds shot up to
47 percent. When Bill Mueller
knocked him home to tie
the game, the odds that the
Red Sox would finally end
their accursed run of bad
luck against the Yankees
shot up to 73 percent. There
are two takeaways for game
designers. The first is that
the odds of victory (what
Sabermetricians call “win
expectancy”) can absolutely
be quantified. There are, in
fact, iPhone apps that you

can take with you to determine your team’s win expectancy at the ballpark. The second, more
important takeaway is that the low win expectancy of the Red Sox (that 23 percent I mentioned)
is what made the game great. It’s a game that is still discussed today, out of hundreds of
championship baseball games that have been played. It is the underdog triumphing over long odds.

gamES and Win ExpEctancy
» Movies play with win expectancy all the time. When Darth Vader is trailing Luke Skywalker in the
trench near the end of Star Wars and breathes, “I have you now,” you feel like Luke’s chances are
hopeless (perhaps Sabermetric geeks would say sub-10 percent). Then Han Solo comes in like a
cowboy and clears Luke for the shot. Han’s appearance is epic, but it is the emotional low beforehand
that makes his appearance so fist-pumping.

Overcoming great odds is just one of the scenarios that can provide an emotional high to the
player, one that can make a gaming experience even more memorable and compelling. However,
game designers have some real difficulties to overcome when attempting to manipulate win
expectancy. The first is the role of player skill: A 90 percent win expectancy for a seasoned NiNja
GaideN player may plummet to 10 percent for a casual player.

The more pernicious problem is that underdogs lose most of the time. The Red Sox-Yankees game
in 2004 is unusual because the Red Sox statistically should have lost. But if a boss fight has an actual
win expectancy of 10 percent, this suggests that the player should flat-out fail 9 attempts out of 10. In
practice, most players will throw their controllers through their flat screens in frustration. Still, many
who have finished a boss fight with a sliver of remaining health feel the resulting emotional peak is
worth some frustration along the way.

design of the times // damion schubert

On top of all this, a win expectancy that is too
high may indicate a game that is ultimately not
very interesting. A game where victory is effortless
is one where the player fails to get emotionally
invested and, as such, it’s very easy for him to put
the controller down.

thE iLLuSion of thE undERdog
» We want players to feel like they are riding on the
edge of failure, without actually putting them there.
This isn’t insurmountable—movies do it all the time.
Cognitively, you know that Luke is going to blow up
the Death Star, but in the midst of the roller coaster
ride, you’re fooled.

One easy way is to conjure the illusion of
toughness—most commonly, this is done with
puffery. Scaling up the boss in size, giving him an
intro speech and extremely showy particle attacks,
or even doubling the size of his health bar can all
instantly create the sense that you’re expected to
fail. Another method is to simulate attrition, even
fake attrition. Star Wars does this by winnowing
down Luke’s wingmen one by one. In games, this
can be done by knocking off a player’s armor,
breaking his weapon, or killing a companion.

Most games, like the God of War series, set up
boss fights with a good amount of easily dispatched
enemy fodder that can easily be overcome. Just
as a low win expectancy can make the resulting
victory that much higher, having an easy baseline
experience can make a boss feel much tougher than
he actually is.

Playing with the player’s health bar is another
way to create an illusion that the player is closer
to death than he actually is. Potions in diablo allow
the player to see a health bar that empties much
faster than he normally expects, while still giving
him a statistical edge to recover. The health bar can
also unlock functionality: Tanking Paladins in World
of Warcraft get access to a talent that results in
them taking less damage when they are below 35
percent health (which helps put them in the “danger
zone” more often), and certain fighting games,
such as some entries in the KiNG of fiGhters series,
give players access to super attacks that are only
available if they are below a certain health threshold.

pLayER vS. pLayER activity
» These days, most single-player games are
designed to let the player win. They might have an
overall win expectancy for most of their content at
about 95 percent. However, this is not the case in
player vs. player scenarios. For example, in a one-on-

a graph of the win expectancy of game 4 Red Sox–yankees 2004 aLcS over
time. note the spike when Bill mueller singles in the run in the 9th inning.

www.gdmag.com 45

one StarCraft match, a player’s chances of winning
start at 50 percent, and that is with the assumption
that the players are evenly skilled. Add more
contestants, such as in a Quake deathmatch or a
large game of Risk, and the individual’s chances
drop with each additional contestant. This is
especially problematic in games where both kinds
of content exist. A PvE (player vs. environment)
player in an MMO like World of WarCraft or
Warhammer online who is used to winning 95
percent of the time may have trouble adjusting to
the sudden increase in failure when playing PvP
(player vs. player).

This is one of the reasons that team gameplay
is important—having only two teams in capture
the flag mode means a Quake player is much more
likely to experience victory than in a deathmatch.
Furthermore, to some degree, it disguises a
player’s own contribution to failure. If you lose a
one-on-one match, you have no one else to blame.
If you lose a four-on-four match, that sense of
failure is ameliorated. And sometimes, a low-skill
player will experience victory by osmosis.

Calculating win expectancy in situations with
asymmetric power can be extremely complex. In
the board game Illuminati, the Gnomes of Zurich
are by far the most powerful Illuminati faction,
but according to Steve Jackson, they don’t win
disproportionately often. It turns out that most
other players recognize that power and gang up
on the hapless sap playing the gnomes.

The IllusIon of Closeness
» The polling for the presidential election of 2004
was never even close—nearly every poll in the
election gave George Bush leads over John Kerry.
This was even more true in 2008; other than a short
spike around the Republican convention, Barack
Obama had a convincing lead over his opponent
John McCain from the moment he secured the
nomination. In both cases, the frontrunner played
defense, avoided making any mistakes, and
secured the election with relatively little doubt.

You wouldn’t know that from the election
coverage. Every news story made it clear
the underdog was within arm’s reach of the
frontrunner, and that the election was anyone’s
game. Close elections sell more newspapers
than blowouts. The candidates were complicit,
too. The frontrunners wanted the election to feel
close to create pressure on their voter base to
turn out. The underdogs have to seem to have a
fighting chance if they want to attract donations
and volunteers.

Close matches are compelling because the
expectations around a contest remain in doubt.
In blowouts, there is precious little doubt, and the
contest ceases to be interesting. Ensuring that
there is doubt, that there is always an angle for
an underdog to get back into the thick of things,
is a time-honored design principle. Consider mario
kart: there are a lot of power-ups in the game that
allow you to attack other racers on the track, but
by and large most of them fire forward. One well-
aimed tortoise shell can knock a frontrunner to
the back of the pack.

Having slightly opaque game mechanics can
also create this doubt. In Settlers of Catan, the
player may purchase cards that offer secret victory
points. The leader may have a convincing lead over
other players, but anyone who has cards in his hand
may actually be able to surprise the leader and steal
victory, which maintains interest in the game.

The fuTure of WIn expeCTanCy
» Game designers are already becoming more
and more sophisticated about building a good
win expectancy cadence in their experience,
ensuring that players alternate between assured
victories and more challenging content. I expect
we will see more sophistication of this nature in
the future.

Already, games are starting to notice that
players are failing more often than expected and
asking them if they want to adjust their game’s
difficulty on the fly. In the future, more will start

doing this behind the scenes—to have AI determine
the worthiness of the foe and adjust automatically.
This is already commonplace in racing games like
kart rider, although designing systems to do this
without cheapening the accomplishments of your
more hardcore players takes more design thought
than you might expect. left 4 dead similarly uses
an “AI Director” in order to provide an appropriate
level of challenge to whichever four players have
found their way into a match.

Game mechanics like Xbox Achievements
and Boasts in fable are already helping players
to make this choice manually. More casual
players can just play the game as presented and
experience a default win expectancy that was
balanced for them. Hardcore players who can blow
by that challenge as-is can choose to make the
fight harder: in fable, players can boast they are
capable of defeating a boss unarmored, or without
taking damage. In World of WarCraft, players
can earn achievements for killing bosses without
losing any raid members, within a time limit, or
in other ways that provide hardcore players a
challenge without bending the difficulty curve
to a place where more casual players can never
conquer it.

Surprising players is important—they need
to expect the unexpected. But it is equally
important for game designers to cater to what
players do expect. Doing so will give the players
greater understanding of their own failure, and
increase their satisfaction when they succeed.
Win expectancy is a powerful tool, and designers
should be willing to cheat and manipulate it in order
to provide the appropriate sense of challenge and
tension in their game experiences.

DamIon sChuberT is the lead combat designer of Star WarS:

the Old republic at BioWare Austin. He has spent nearly a

decade working on the design of games, with experience on

Meridian59 and ShadOWbane as well as other virtual worlds.

Damion also is responsible for Zen of Design, a blog devoted

to game design issues.

The leviathan in God of

War III. Turns out, he just
looks big.

http://WWW.GDMAG.COM

C

M

Y

CM

MY

CY

CMY

K

S10_GAME.pdf 4/4/10 2:11:45 PM

http://www.siggraph.org/s2010

jesse harlin // aural fixation

www.gdmag.com 47

The Global asseT lisT
Data Infrastructure for the lIttle guy

biG developmenT sTudios
function because of their
infrastructures. FTP servers,
T1 connections, and
networked source control
software are commonplace
tools used to connect studios
to their global development
partners. These days, big
studios aren’t the only
ones with global partners.
Freelance composers
and sound designers can
make use of the Internet

for collaboration with team
members from Los Angeles
to Louisiana to London.
Large developers hire
smaller contractors who can
subcontract to any number
of satellite team members.
Thankfully, a slew of online
tools exist to provide anyone
with a solid infrastructure
comparable to those of the
largest development houses.

inFoRmaTion CenTRal
» One of the largest hurdles
facing small networks
of freelancers is version
control. Simultaneously
emailing Word or Excel files
to a number of recipients is
a prime recipe for allowing
critical data to get out of
sync. When coordinating
cues between a team of
orchestrators, tracking
sound effect iterations
between sound designers,
or maintaining a changing

script of in-game dialogue,
the last thing you want is
for critical data to become
unsynchronized. To
combat this, a number of
online document services
are available.

The two main services
are Microsoft Office Live
and Google Docs. Both allow
users to upload existing
Microsoft Office documents.
Once uploaded, documents
can be viewed, edited, and

shared with a vast number
of users—100 for Office
Live and 200 for Google
Docs. Security groups can
be created so that users
have editing or read-only
privileges. As such, anything
from design documents to
asset lists can be created,
managed, and maintained in
one central location.

Microsoft Office Live
has a familiar web interface
and a clear UI. Office Live
also makes use of version
control and options that
allow users to track changes.
New documents can be
easily created and shared
within the browser. However,
creation and uploading
of Office Live documents
requires installation of
Microsoft Office.

Google Docs doesn’t
require the downloading or
installation of any additional
software. Document owners

can set up user privileges just
like Office Live, and the tool
sticks to Google’s simplistic
UI aesthetics. Unlike its
Microsoft competitor, though,
there is no version control.
As such, audio leads using
Google Docs may want to
ensure that they routinely
download and archive
evolving versions of their
documents manually.

A note for freelancers
on the go: neither Google

Docs nor Office Live works
completely with smart
phones. Until specific
smartphone-centric
applications are created
for these services, expect
limited functionality and the
potential for lost data.

Google Docs and
Microsoft Office Live aren’t
the only options available.
Other products such as Zoho.
com or ThinkFree.com fill
the same niche. However, it
should be kept in mind that
less established companies
always run the risk of being
eaten by larger companies.
EtherPad.com was a
popular alternative until it
was bought by Google and
absorbed into Google Docs.

daTa in aCTion
» On a recent project, I
supervised the work of a
five-composer creative team
preparing for six days of

orchestral recording. Two
composers were located in
rural northern California, two
in San Francisco, and one in
Los Angeles. Each composer
had his own orchestration
team with members spread
across California. Additionally,
a number of cues were further
outsourced to ghostwriters
across the country. The lead
composer created a Google
doc to track the composition
status of each track and

shared it with the entire
team. The doc had columns
for composition status, final
file names, cue assignments,
whether approved cues were
orchestrated or not, if parts
were printed and shipped
to the stage, and lastly, a
“Notes” column where we
could communicate centrally
without the fragmentation
of email.

As we recorded, we
had a laptop set up in the
control room that updated
the “Recorded” column of
the doc at each break. Rather
than dealing with printouts
or handwritten lists, all our
project-long documentation
was at hand any time we
needed it. If a Pro Tools prelay
or instrumental part was
missing, we were instantly
able to call up its status
on the spreadsheet, track
down who was responsible,
and find the missing asset

without having to skip any
cues. As we moved into
post-production on the
score, columns for mixing
and mastering status were
added to the same central
document. Trying to tackle
this project with a non-
networked spreadsheet
would have instantly become
a version control nightmare.

a WoRd oF WaRninG
» The security of online
document services is
nebulous. As such, IT
departments of large
developers and publishers
will likely be opposed to their
use. With the risks of cyber
attacks, network outages,
or the simple vagaries
regarding what information
is captured and shared
through online services,
IT fears over the leaking of
confidential or proprietary
data are well founded.
Smaller studios and indie
developers may not have the
luxury of an IT department,
but their contractors will still
need ways to share data and
communicate in sync with
each other across the globe.

With the gulf in price
between secure data sharing
systems and free online
alternatives, the chances
are good that—IT-sanctioned
or not—online document
solutions outside of the
control of corporate IT
departments will continue
to gain ground as part of the
standardized suite of modern
development tools.

jesse haRlin has been

composing music for games since

1999. He is currently the staff

composer for LucasArts.

If a Pro Tools prelay or instrumental part was missing, we were
instantly able to call up its status on the spreadsheet, track
down who was responsible, and find the missing asset without
having to skip any cues.

http://WWW.GDMAG.COM
http://Zoho.com
http://Zoho.com
http://EtherPad.com

game developer | may 201048

good JoB! Hired someone interesting? Let us know at editors@gdmag.com!

Yamaoka's HeteropHonY new studios

whowentwhere

H i r i n g n e w s a n d i n t e r v i e w s

As reported in these pages in January, Silent Hill composer Akira Yamaoka has
left Konami—and now he’s turned up at no More HeroeS developer Grasshopper
Manufacture. We caught up with Yamaoka to ask about the switch.

Brandon Sheffield: What made you decide to go to Grasshopper Manufacture?
akira Yamaoka: Well, Grasshopper is one of those Japanese companies that makes very original
games, even by global standards. their games always have a very unique worldview, and with
the sort of toolset I had in the fields of music and audio, I thought I’d be able to contribute to
what they’re doing in a really constructive way. that was what inspired me. they have the sort of
projects going on that I want to be involved with, and that was a big aspect behind the decision.

BS: how do you think your personal style will fit into the Grasshopper style? There’s a
lot of innovative sound work there—will you be managing that as well, or will you only be
composing?
aY: I think I could do it either way. of course, when you’re talking about “style,” it’s not like I’m
going to demand a particular type of music or a kind of output in our games’ audio. We think in
terms of what the game requires; it’s not a matter of me needlessly pushing my perspective
into projects.

BS: i notice that you don’t often use symphonies, or a lot of orchestration. Why is that? do you
think that’ll change in the future?
aY: I do think that a change of pace in that respect could be a good thing. I think that, but ... going
back to the first question for a moment, whether you’re using a symphonic or heterophonic
approach in asian or Western music, first you have a rhythm—beating out time in one way or
another. to that you add harmonies, the chords that are played at set times to this rhythm.
melody is the thing that puts these chords together. In heterophony, you think of each aspect

as being on its own axis; you come up
with melodies, then you come up with
the rhythm and harmonies to make them
work. Western music often begins with the
composer thinking about harmonies first,
but within music, there are only a limited
number of harmonies (about a hundred or
so) that are suitable to use. It’s a matter of
combining those together. I thought about
this for a bit once, and I’m not saying that
one is better than the other, but for example,
the english alphabet has 26 letters, while
there’s a practically infinite number of kanji
characters—not infinite, but quite a lot.

so in english, you take this small set of
characters and form words like “god” and
so on with them, but playing with these
same letters can give you very different
results, like “dog.” the eastern line of
thought simply has a character, "kami,"
for god, and then a completely different
and unrelated character to signify dog. In
much the same way, Western music often
takes this given set of chords and comes
up with new and novel ways to combine

them together, while Japanese heterophony is more concentrated around melody. so thinking
symphonically is actually pretty difficult for me—it’s not like I couldn’t do it if I studied a bit,
but it’s tough. I am interested in symphonic composition, though, definitely.

Silent Hill Composer Joins grassHopper manufaCture
2D Boy co-founder Kyle Gabler (World of Goo)
and Experimental Gameplay Project cohort
Kyle Gray (Henry HatsWortH) have founded
the “authentic indie labor”-powered developer
Tomorrow Corporation. The duo has teamed
up with fellow Carnegie Mellon University’s
Entertainment Technology Center graduate
Allan Blomquist, who contributed to World of
Goo. All three developers are also co-founders
of the influential rapid prototyping-centric
Experimental Gameplay Project.

Renowned resident evil creator Shinji Mikami
plans to launch a new Tokyo-based studio,
Tango, as soon as his current project wraps.
Mikami is currently at work on Platinum
Games’ shooter vanquisH.

Following the closure of Melbourne, Australia-
based Heroes over tHe Pacific developer
Transmission Games last year, former employ-
ees of the studio founded Trickstar, which claims
to have a number of games in production.

Monkey island creator Ron Gilbert has left
Hothead Games, the studio at work on his
upcoming deatHsPank. Gilbert says that now
that the game’s creative and production
phase has wrapped, he’s finished with his
work at the studio.

UK-based development conglomerate Kuju
Entertainment (cHiMe, House of tHe dead:
overkill) will see co-founders Ian Baverstock
and Jonathan Newth leave their current roles
for non-executive director positions, as a new
CEO, Nigel Robbins, steps in.

David Reeves, formerly the longtime president
and CEO of Sony Computer Entertainment
Europe, has joined Capcom as chief operating
officer of the company’s European arm. He
had spent 14 years at Sony.

Activision chief financial officer Thomas Tippl
will become the publisher’s chief operating
officer, continuing to hold the CFO role until a
replacement is hired to fill that spot. This busy
gentleman was also previously CCO.

After spending 15 years with Electronic Arts,
executive Steven Chiang has left the publisher
to join social gaming firm Zynga (farMville)
as the president of its development studios.

pH
ot

o
 b

Y
vi

n
Ce

n
t

d
ia

m
an

te

mailto:editors@gdmag.com

ARE YOU READY TO EXPLORE
THE MOST SOUGHT AFTER JOBS IN ENTERTAINMENT?

Visit our site: www.activision.com

®

http://www.activision.com

http://www.gameloft.com
http://www.gameloft.com

http://gearboxsoftware.com/jobs

The mass markeT may
have passed the adventure
game genre by in recent
years but the form continues
to attract a small cadre
of designers and players
who crave a well-told story.
Joshua Nuernberger’s 2010
IGF Student Showcase finalist
Boryokudan rue is a new
game with a compelling sci-fi
noir setting that reaffirms the
timeless appeal of 2D point-
and-click adventures.

Jeffrey Fleming: How
did you like working with
Adventure Game Studio to
create Boryokudan rue?
Joshua Nuernberger:
Working with AGS is like
working with an old friend.
It can pretty much do
everything you need it to
do as far as point-and-click
adventures resembling
Monkey Island or any
other early '90s adventure
games are concerned, and
it continues to improve over
the years and with a great
community to boot. So I’ve
never seen the need to go
on to look for other methods
of game creation.

JF: In addition to the AGS
forums, have you found
other online resources
that have been useful
to Boryokudan rue’s
development?
JN: Pixeljoint.com is always a
favorite source of inspiration,
in addition to other art-
related sites or blogs. The
musings of other game
developers—professional
or otherwise—such as Ron

Gilbert or Ben "Yahtzee"
Croshaw also prove useful.

JF: Was learning AGS’
scripting language difficult?
JN: The learning process was
relatively straightforward,
and the AGS community is
always there if you don’t
understand something.

JF: Have you been able to
express all of your ideas
with it?
JN: Yes, I was able to convey
all of my ideas properly,
particularly because they
didn’t rely on the existence of
particle systems or physics-
based puzzles—minus some
handy-dandy box-moving
sequences, that is.

JF: You seem to be pushing
at the limits of traditional
adventure game mechanics
by incorporating action
sequences into Boryokudan
rue as well as your earlier
game, La Croix Pan. How
difficult was it to construct
these sequences in AGS?
JN: I’m by no means a
master programmer, so it
was basically reiteration off
of what I knew at the time,
and then construction of
a basic prototype during
the first couple of weeks
of production to make sure
that I could actually achieve
what I wanted to do.

In all my games, I like to
try and incorporate different
aspects of gameplay into
the adventure genre, rather
than just reusing existing
mechanics from the heyday
of twenty-or-so years ago.

Wow, was it really
that long ago? So that’s
what led to these different
amalgamations of
gameplay scenarios.

JF: Has being at UCLA helped
you in developing the game?
JN: I would like to say
yes, but for the most part,
Boryokudan rue has been a
side project that I’ve worked
on for about two years now,
with a lot of the work having
been done before I even
started at UCLA. Being at
UCLA, however, has been
a great opportunity to get
to know others who are
interested in game design
as well.

JF: Boryokudan rue has
a fantastic look to it. The
desaturated color palette
and rough-edged sketch
aesthetic communicates
the noir atmosphere
really well. What was your
process in designing the
game’s visuals?
JN: One of my main
inspirations in creating the
visuals was Cowboy Bebop.
There’s a specific scene set
in a gloomy cathedral that
really captured the mood I
was looking for.

JF: What art tools did you
use?
JN: Tools of the trade
include Photoshop, a
Wacom tablet, and many,
many blank canvases of
320x200 with a pink, beige,
and blue palette to jump-
start the drawing process.

JF: Nathan Allen Pinard’s
moody electronic
soundtrack adds an extra
dimension to the game.
JN: Even though we’ve
never met, Nathan has been
extremely collaborative with

the project. I have been very
fortunate to work with Nathan
as he’s a great composer and
his work really adds a lot to
the atmosphere.

JF: A good narrative is
crucial in adventure games.
Did you write Boryokudan
rue first and then design
the gameplay or have they
evolved together?
JN: Like probably most
other game narratives, it
evolved together as time
went on. Creating a narrative

for games always depends
upon the gameplay, because
the story has to set up
natural barriers that will
reinforce whatever gameplay
mechanics you have in mind
for that specific game.

So, writing a story about
organized crime naturally
sets up an enemy force that
would impede the player’s
progress. In addition, setting
a story in a prison-like facility
automatically creates some
opposition to the goals of the
second character, Delta-Six.

JF: What has been the most
difficult part in creating
Boryokudan rue?
JN: Probably the writing.
It was a real challenge
developing the characters,
dealing out the exposition,
and just making sure
everything in the story
“worked.” It’s hard to tell when

things are working or not until
you get a secondary opinion
on the game. Someone who
can specifically tell you “Yes,
I get it,” or “No, I have no idea
what’s going on, who that
character is supposed to
be, or why I’m here.” It’s just
one more reason to playtest
your games.

JF: What is appealing to
you about telling a story
through games rather than
print or film?
JN: Interactivity. Or that’s

what I keep telling myself
anyway. It’s a hard balance
to find what is unique to
games and exploit that,
rather than trying to deceive
yourself into thinking that
the story you’re telling is
different just because it’s
in a game, rather than in a
novel or film.

What’s compelling for me
in an interactive narrative
is the idea of choice, which
is a theme that also plays
out in Boryokudan rue. I’d
really like to play with choice
more in future projects—how
does a player’s choice or
rather, the illusion thereof
influence a narrative?
Games are different because
of their interactivity, so it’s
important to exploit that
in order to provide unique
narrative experiences.

—Jeffrey Fleming

game developer | may 201052

edUCaTed play!

BORYOkUDAN RUE

resources
Boryokudan rue Trailer
www.bigbluecup.com/yabb/index.php?topic=35594.0
adventure Game studio
www.adventuregamestudio.co.uk

Game Noir

e D U C a T I O N N e W s a N D s T U D e N T P r O F I L e s

http://Pixeljoint.com
http://www.bigbluecup.com/yabb/index.php?topic=35594.0
http://www.adventuregamestudio.co.uk

©
 2

01
0

Fu
ll

S
a

il,
 I

n
c

.

Game Art
Bachelor’s Degree Program

Campus & Online

Game Development
Bachelor’s Degree Program

Campus

Game Design
Master’s Degree Program

Campus

Game Design
Bachelor’s Degree Program

Online

fullsail.edu

Winter Park, FL

800.226.7625 • 3300 University Boulevard

Financial aid available to those who qualify • Career development assistance

Accredited University, ACCSC

Campus Degrees

Master’s

Entertainment Business

 Game Design

Bachelor’s

Computer Animation

Digital Arts & Design

Entertainment Business

Film

Game Art

 Game Development

Music Business

Recording Arts

Show Production

Web Design & Development

Associate’s

Graphic Design

Recording Engineering

Online Degrees

Master’s

Creative Writing

Education Media
Design & Technology

Entertainment Business

Entertainment Business:
with a Sports Management

Elective Track

Internet Marketing

Media Design

Bachelor’s

Computer Animation

Entertainment Business

Game Art

 Game Design

Graphic Design

Internet Marketing

Music Business

Music Production

Web Design & Development

>> GET EDUCATED

53M A Y 2 0 1 0 | G A M E D E V E L O P E R

GDP GE RHP TEMPLATE 4/12/10 11:15 AM Page 53

http://fullsail.edu
http://mdm.gnwc.ca
mailto:alison_robb@gnwc.ca

>>
GE

T
ED

UC
AT

ED

54 M A Y 2 0 1 0 | G A M E D E V E L O P E R

GDP GE LHP TEMPLATE 4/12/10 11:19 AM Page 54

http://vfs.com/enemies
http://www.gamasutra.com/jobs

[IT’S IN YOUR PULSE]

[GEEKED AT BIRTH]

You can talk the talk. Can you walk the walk? Here’s a chance to prove it. Please geek responsibly. www.uat.edu > 877.UAT.GEEK

Bachelor of Science > Game Programming

Bachelor of Arts > Game Art and Animation, Game Design, Serious Game and Simulation

Master of Science > Game Production and Management

LEARN:
Advancing Computer Science
Artificial Life Programming
Digital Media
Digital Video

Enterprise Software Development
Network Engineering
Network Security
Open Source Technologies

Robotics and Embedded Systems
Technology Forensics
Virtual Modeling and Design
Web and Social Media Technologies

DNA Pulse (OC)

5th Cell . 43

Activision . 49

Blizzard Entertainment 39

E3 Expo . 33

Epic Games . 19

Full Sail Real World Education 53

Gameloft . 50

Gearbox Software . 51

Havok . C3

Masters of Digital Media Program 53

Nintendo of America . 3

Perforce Software . 6

Rad Game Tools. C4

Scaleform Corporation C2

Seapine Software . 12

SIGGRAPH .46

TechExcel .30

University of Advancing Technology 55

Vancouver Film School 54

xaitment . 26

COMPANY NAME PAGE COMPANY NAME PAGE COMPANY NAME PAGE

ADVERTISER INDEX

Game Developer (ISSN 1073-922X) is published monthly by United Business Media LLC, 600 Harrison St., 6th Fl., San Fran-
cisco, CA 94107, (415) 947-6000. Please direct advertising and editorial inquiries to this address. Canadian Registered for GST
as United Business Media LLC, GST No. R13288078, Customer No. 2116057, Agreement No. 40011901. SUBSCRIPTION RATES:

Subscription rate for the U.S. is $49.95 for twelve issues. Countries outside the U.S. must be prepaid in U.S. funds drawn on
a U.S. bank or via credit card. Canada/Mexico: $69.95; all other countries: $99.95 (issues shipped via air delivery). Periodical
postage paid at San Francisco, CA and additional mailing offices. POSTMASTER: Send address changes to Game Developer, P.O.
Box 1274, Skokie, IL 60076-8274. CUSTOMER SERVICE: For subscription orders and changes of address, call toll-free in the U.S.
(800) 250-2429 or fax (847) 647-5972. All other countries call (1) (847) 647-5928 or fax (1) (847) 647-5972. Send payments to Game
Developer, P.O. Box 1274, Skokie, IL 60076-8274. For back issues write to Game Developer, 4601 W. 6th St. Suite B, Lawrence,
KS 66049. Call toll-free in the U.S./Canada (800) 444-4881 or fax (785) 838-7566. All other countries call (1) (785) 841-1631 or fax
(1) (785) 841-2624. Please remember to indicate Game Developer on any correspondence. All content, copyright Game Devel-
oper magazine/United Business Media LLC, unless otherwise indicated. Don’t steal any of it.

M A Y 2 0 1 0 | G A M E D E V E L O P E R 55

>> GET EDUCATED

GDP GE RHP AD INDEX TEMPLATE 4/12/10 3:17 PM Page 55

http://www.uat.edu

GAME DEVELOPER | MAY 201056

WEEK 1 Hey guys, I’m
really looking forward
to working with you
on your game. I love
modern military
hardware and modeling
intricate detail is totally
my specialty. I am “all
systems go,” and ready
to bust ass on these
models and get them
to you fast and looking
extra hot! I should have
something to show
you by next week. This
is going to be, like, a
master at work! Alright
dudes, talk to you later!

WEEK 2 What’s up?
How are you? Oh yeah,
the models. They’re
coming along pretty
awesomely, even
though I did run into
some delays I couldn’t
do anything about.
There was, uh, band
practice on Thursday,
so I had to stop working
early, and that was
something I just
couldn’t miss because
we have a pretty major
gig coming up—the
open mic night at
O’Malley’s Irish Tavern,
right next to the library.
You heard of that place?
Also, my cat got sick
and I had to take care of
her. It’s all good, though.
Just a couple more days
and we’ll be good to go.

WEEK 3 Yo! Making
progress! Making
really good progress,

actually, considering
the fact that I only
have one monitor. See,
it’s actually kind of
difficult to work on my
single-monitor setup
here. I envy you guys in
your big studio setup,
haha! I was talking to
my friends and they
were like “Woah, you
don’t have a dual-
monitor setup?” So I’m
sure that once I get
that, my productivity
will skyrocket and
I can get all those
models done on time.
I actually just spent
the last couple of days
researching monitors
and I found one I want.
Just need to order that
sucker and then it’s
productivity city.

WEEK 4 Huh? Who
is this again? Oh! Hi!
Sorry, yeah, you called
pretty early in the
morning. Do you all
get up before 11 over
there? Haha! Well, I’ve
got something to show
you. If you point your
browser to this URL
here, you can check out
this orc head I modeled
in ZBrush the other day.
Isn’t that incredible?
Look at all the crazy
detail on his mottled
skin there. I know you
guys are making a
game with a realistic
modern military
setting, but I was just,
you know, evaluating

potential tools. I mean
that orc head modeling
technique will translate
directly over to the
weathering I’m going
to put on your jeeps
and trucks and stuff.
It’s almost the same
exact thing, you know,
with, like, the texture
and whatever. So yeah,
as soon as I get back
from the workshop
I’m attending in San
Francisco on orc head
modeling techniques,
I’ll be ready to start
cranking.

WEEK 5 Got a great
update for you guys
this morning. I’ve
been working out an
all-encompassing
generic vehicle system
that should allow me
to easily create any
vehicle you want at
a moment’s notice.
I’ve got some generic
chassis assemblies
and a big MEL script
I’ve been working on
over the last week
that automatically
puts together the
basic components of
any vehicle. You get
a dialogue box where
you can input the
number of wheels the
vehicle has, and it
figures out the best
placement for all of
them. You should see
what it does when you
put in numbers like 7
or 3.5! It’s crazy, dude!

WEEK 6 Hey, it’s
me, the contractor.
Hope you remember
me, haha. I was just
wondering if you could
send me the, uh, asset
list again? I can’t find
the original one you
sent and I just thought,
hey, if I’m going to be
making these models, I
should know what they
are, haha! Thanks bro.

WEEK 7 Hi guys, it’s
me, the art contractor. I,
uh, haven’t heard from
you in a while, so I just
thought I’d check in and
like, say hey, what’s up.
I’ve got stuff cooking,
stuff on boil, and lots
of pots and pans in the
kitchen, haha. Cookin'.
Cookin’ like a maniac.
Sorry I called late—I
just finished a wild set
with the band, like, out
of control. The drummer
told me he thought I
couldn’t keep down
as many shots as he
could and, uh, uh, uh,
anyway, I’m sure you’ll
get this message in the
morning. Give me a call
when you can. I know
you guys are busy
making your awesome
video game. And your
game will have sweet
models. I guarantee
this. Sweetness.
Okay, bye.

WEEK 8 Yo, it’s me
again. I hope this
isn’t awkward, but I

just saw the trailer
for your game and
it looks like there
are, like, vehicles
in it already. Are
they placeholders?
I noticed you didn’t
even use the hubcap
model I turned in the
other day. It’s too
bad because I think
my hubcap is better
than the one you can
see in the video. And
there’s more where

that came from. I’ve
got a tire coming in
the next couple of
days, too, and maybe
even more than—oh,
crap. My cat just threw
up again. Hey, I’ll, uh,
call back later, okay?
Alright. Bye.

MATTHEW WASTELAND writes

about games and game

development at his blog,

Magical Wasteland (www.

magicalwasteland.com).

ARRESTED DEVELOPMENT // MATTHEW WASTELAND

PHONE TAG WITH
THE ART CONTRACTOR
FROM HELL
WATCH A MASTER AT WORK!

http://www.magicalwasteland.com
http://www.magicalwasteland.com

http://www.havok.com

http://www.radgametools.com

	Contents
	POSTMORTEM
	TELLTALE GAMES ' TALES OF MONKEY ISLAND

	FEATURES
	TALES FROM THE CRUNCH
	TRUE PHYSICS
	AN ISLAND OF DETAILS

	DEPARTMENTS
	EDITORIAL
	GAME PLAN

	NEWS
	HEADS-UP DISPLAY

	REVIEW
	TOOL BOX

	PROGRAMMING
	THE INNER PRODUCT

	DESIGN
	DESIGNER'S NOTEBOOK
	DESIGN OF THE TIMES

	ART
	PIXEL PUSHER

	SOUND
	AURAL FIXATION

	CAREER
	GOOD JOB!

	EDUCATION
	EDUCATED PLAY

	HUMOR
	ARRESTED DEVELOPMENT

