B FEATURE: 2009 GAME ENGINE SHOWDOWN

United Business Media
VOL1IG6NOS
gTHE LEADING G AME INDUSTRY M AG ZINE
\:&_ "

SIMPLIFYING
ASYNCHRONGUS ¥
OPERATIONS o

.i'l.'l

;gfstmorte_rg

:'1

sty

ROCKSTAR
ELECTRONIC ARTS
UBISOFT

SONY

2K INTERACTIVE
MIDWAY, THQ, etc...

= | ~

- www.eyetronics.com

N L O >
800.205.9808.EU +32.16.298309

F

L o g A & 'S o i

... 'POSTMORTEM ~ DEPARTMENTS-

.‘ e d - ?# II._.‘ -3 "‘

1 = -

24 RAINBOW'S DEADLY CREATURES < 2 GAMEPLAN By Brandon Sheffield [EDITORIAL])
Original, adult-oriented titles on the Wii are a rarity, and even Don't Hate the Game >
fewer games possess the rather odd arthouse aesthetic of DEADLY o\ ; A
CREATURES. Rainbow, kniown for its racing games, organized a small 4 HEADS UP DISPLAY =, : [NEWS]
team of developers to build a creepy-crawly, action-adventure, Chinese pirate NES ports, and quotes overheard at GOC. -
original game for the Nintendo Wii. By James Comstock 35

36 TOOL BOX By Jeffrey Fleming [REVIEW]

FEATURES GOC Tool Report

7 GAME ENGINE SHOWDOWN 38 GAMESCAPE By Jeffrey Fleming [REGIONAL]
Former Game Developer editor Mark DeLoura surveyed nearly 100 Vancouver, BC
decision-makers to ask them what they really think of the various
game engines on the market. Here, he shares why they chose one 39 THEINNER PRODUCT By Noel Liopis [FROGRAMMING]
over another, what features or services represented deal-breakers, as Nitty Gritty Unit Testing
well as usage and mindshare statistics. By Mark DeLoura

43 PIXEL PUSHER By Steve Theodore [ART]

15 ASYNCHRONOUS PROGRAMMING Is 40 the New 307
Traditional asynchronous coding models increase responsiveness, but
can complicate certain kinds of algarithms significantly. Javier Blasquez 46 DESIGN OF THETIMES By Soren Johnson [DESIGN]
of LucasArts provides a method for simplifying asynchronous operations Our Cheatin® Hearts
considerably through the use of coroutines in C++. By Javier Blazquez

48 AURAL FIXATION By Jesse Harlin [souUND]

20 GAMING THE SYSTEM The Audio Design Overview
What does it really take to get ahead in your chosen field? A group
of pseudonymous developers share their uncensored, occasionally S6 ARRESTED DEVELOPMENT By Matthew Wasteland [HUMOR]
rather brash opinions. By John (. Developer Getting to No

COVER SOURCE ART: DEADLY CREATURES ART TEAM
WWW.GDMAG.COM 1

GAME PLAN

DON'T HATE THE GAME

RUMINATIONS ON DEVELOPER GAME-PLAYING MALAISE

IN APREVIOUS COLUMN
[November, 2008], | mentioned
that it would be beneficial for
developers to look outside games
for inspiration. This is something |
believe strongly, but on top of that,
how many of you out there actually
have the time to even play games,
let alone consume other media?

It seems that nine times
out of ten, when | ask a working
developer what games he's played
recently, he'll honestly admit he
doesn't have the time to play any
games but his own. Those that say
they have played contemporary
titles, if pressed, often admit
only a cursory familiarity with
the recent games they've tried.
Some actually seem to be proud
of the fact they don't actively play
games but theirown. Thisisa
world-wide phenomenaon, and not
a particularly awesome one.

FIRST, ACOUNTER-EXAMPLE
»» |recently heard a story from a
friend who used to be a producer
on the publishing side. He played
a lot of games on his own time,
and talked about it vocally with
others in the office, as watercooler
discussion. Over time, he became
known as a guy who plays a lot of
new releases—even by his higher
ups. His bosses would start to
come around, asking for opinions
on competing titles, and he'd be
able to give solid answers. As a
result of being known as the guy
who knows about games, he got
promoted to an executive-level
position dealing with third parties.
Now, this guy is competent
and intelligent, so those are
contributing factors to his rise, but
even to hear him tell it, his having
played conternporary games was
s0 unigue and valuable that it
warranted a promotion.

KNOWING ME,
KNOWING YOU, A-HA
»» Games are, like most
entertainment media, very

GAME DEVELOPER | MAY 2009

strongly influenced by past
successes. If you make an

FPS, you're not just referencing
the CALL OF DUTY series, you're
riding on the shoulders of DOOM,
WOLFENSTEIN 30, and even ADED:
TREASURE OF TARMIN for the
Intellivision, No product exists
in avacuum, and in this world of
iterative improvements, those
games which are made with an
awareness of the past are less
likely to repeat mistakes, and
more likely to push forward.

I've heard some folks say
they don’t want to be accused of
being influenced by other games,
but theoretically if your design
is solid and well-implemented,
it should stand on its own. And
as | mentioned, what game isn't
influenced by a host of others?
Leads at the very least should be
paying attention to the work going
on in other studios, or should be
playing those studios’ games,
After all, what director doesn't
watch movies, and what novelist
doesn't read books? Certainly only
the outliers.

THE USUAL CAVEAT

2> Time is every game
developer's nemesis. A 60 hour
work-week is not unusual, and

if you've got a family, how can

you justify playing games at
home [other than perhaps with
your child or spouse]? There is

a lot of institutional pressure
keeping developers from playing
competing products, and some

of thern may not be solvable in
the short term. |f people could
stop working 60 hour weeks, they
would. In the film industry, the
whole team works ridiculous hours
for the duration of the project,

but they are compensated well
enough that they can actually
take a bit of a break. A potential
solution might be to have
mandatory scheduled playtime
for leads and key creatives during
work hours. Of course, when the

pedal's to the metal, that looks like
an attractive cut, but building it
into company culture would likely
be beneficial.

| personally have been trying
out the first hour of any game |
get, rather than filing it away for
the day when I'll *really have time
to sit down with it." You can glean
alot from that first hour, and if it's
engaging, you might go for another.
Reading reviews and gathering
popular opinion on a title just isn't
enough. No judgment is more
sound than our own, yes? In some
cases it may be impossible to work
games into your life more than
they already are—but it seems like
something worth doing.

NOUVELLE VAGUE

»» I'd also like to point out
something you may have already
noticed—our redesign, the first
this magazine has had since
2003, We began the processin the
April issue, and believe now that
we've taken it about 90 percent of
the way to its destination. Praises
go to our art director Joseph
Mitch and production editor
Jeffrey Fleming—the whole team
collaborated to try to smooth out
some of the magazine's rougher
edges [though naturally Joe did
most of the actual work).

We feel the magazine is now
straddling a fine line between the
hardcore programmer-oriented
whitepapers and the more broadly
accessible articles like What
Went Wrong? [December, 2008)
and Dirty Coding Tricks (March,
2009). With any luck, our current
redesign reflects our interstitial
position between bath spaces, and
will be a welcome change. If you
love it, hate it, or have any other
comments regarding the recent
direction of the magazine, drop a
line to bsheffield@gdmag. com. We
do make this magazine for you, and
we want to make the best use of
our pages as is possible.

—FBrondon Sheffield

FOR INFORMATION, ORDER QUESTIONS, AND
ADDRESS CHANGES

PUBLISHER
EDITOR-IN-CHIEF
PRODUCTION EDITOR
ART DIRECTOR

CONTRIBUTING EDITORS

GLOBAL SALES DIRECTOR

MEDMA ACCOUMNT MAMAGER

GLOBAL ACCOUNT MANAGER, EDUCATION
AND RECRUITMENT

COORDIMATOR, EDUCATION AND RECRUITMENT

PRODUCTION MANAGER

CED THINK SERVICES
GROUP DIRECTOR
CREATIVE DIRECTOR

EROUP DIRECTOR
MRECTOR

LIST RENTAL

SERVICES MARKETING CODRDINATOR

CHIEF EXECUTIVE OFFICER

CHIEF OPERATING OFFICER

CHIEF FINANCIAL OFFICER

CHIEF INFORMATION OFFICER

CORPORATE SEMIOR VP SALES

SENIORYE, STRATEGIC DEV. AND BUSINESS ADMIM.
SENIOR ¥F, MANUFACTURING

WWW.CMPEAME.COM

TFHI\IIG'LY

www.trinigy.net

EVALUATING 3D GAME ENGINES?

Trinigy’'s Vision Game Engine offers:

ir\flulti Platform: PC, XBOX360, PS3, Wi
V/_F’m:wen Technology: More than 100 titles
V/Matur‘e Real-Time Tools: Stable and extensible
Vﬁapid Game Development: Edit, test, iterate
V/_Industry Standard Middleware Integrations

V/High Performance: Multi-core architecture

‘ . . - 1 | .r.ﬂ I 'l —
Dedicated Middleware Provider v | — L A !
' "’1" ":.:i.. [— T

V/Fil‘st—class Support N - e B

oheck us out

PLAYSTARTION = L = O & Windons

GREG ZESCHUK AND RAY MUZYKA
BioWare heads and Electronic Arts VPs on their
transition from creative to more management-
oriented positions.

Greg Zeschuk:
‘ ‘ In the early days, we were right in there
as the producers on the game, working on
stuff. Mow, | think it's still a very rewarding job,
because we get to work across all the products.
You look at things from a portfalio perspective
in terms of all the games you want to work on,
and you actually tend to work on the teams
themselves—sort of, “How do we help our teams
be successful? How do we help them be among
the best?"

Ray Muzyka:
‘ ‘ We coach or mentor them.

[Over a decade ago] we were directly
producing games ourselves. Now we have great
exec producers and project directors, leads that
are responsible and accountable and delivering
on all fronts for our games.

From our perspective, now we get to
play the games and just really enjoy them
as consumers, and offer feedback from that
perspective, at the early start of the ideation
phase. We say, “What's our audience excited
by? What's our aspirational fantasy? What are
we solving for here? What goals are we setting
up for this project ?” Then the team goes and
they work on that. We play it throughout the
process and give feedback whether the team'’s
rmeeting the goals that they set out at the start
of the process.

i. Right: Zeschuk.

ﬂ GAME DEVELOPER | MAY 2009

EMIL PAGLIARULO
Lead designer and writer of FALLOUT 3, on
balancing main quests and sub-guests.

‘ ‘ The main quest is where we like to tell
our story. But all of the side quests that
we do aren't really connected to the main quest
in any way; most of the time, they're not even
connected to each other. They just fill in the world,
and they're just out there for you to find.
That's one of the benefits—the player can
jump between one and the other at any time.
It’s interesting how we concentrate our time,
because we spent a lot of time working on the
story for the main guest and its polish and stuff,
] but at the same time, we have
almost two games there to make
what the player’s experiencing, It's
impossible for us really to track
what that experience for the player
is going to be. Do they do two quests of the main
quest, do thirty hours of the side quests, then
come back and finish the main quest? Do they
just beeline through the main quest? We find
that most people dom't do that.

When we design the game, we tend to
structure it so that the player traverses the
map. We'll actually move the quests to achieve
that: “Let’s put this over here because when
they're on the main quest, they're going to run
into this location.” They're two separate things,
but they're symbiotic, too.

STEVE MERETZKY

Classic adventure game maker and VP of garne
design at Playdom, on the plight of game writers:

‘ I'm a big advocate that writers shouldn't
Just be someone who you bring on two
months before the game ships as a “Oh, the game

is almost done; add some writing.” It's much
better for them to come early on so that, for one
thing, they can be a lot more familiar with the
game and do a lot better job when it is time to
do the writing, so that they can do the writing in
stages and sort of provide almost a first draft of
the writing. And that will make the game much

maore playable for everyone who is playing early
builds of the garne. And then polish those drafts,
as the game gets closer to release.
The writer, by coming early, is then
in a position to make a lot more
suggestions about the design of the
game where they see that will aid
the writing or that will avoid hurting the writing.

| think for the people who do only writing,
more often than not, it's a pretty frustrating
experience because they don't feel like they
have enough of a creative role. They feel
like they are just sort of being treated as a
compartmentalized craftsman, and they don't
feel like they were brought in early enough.

1

HIROSHI MATSUYAMA

CED of Cyber Connect2, on his early difficulties
with work/life balance:

‘ For three years | basically lived at work.

| paid rent on an apartment that was
empty; that | never lived at. Because of the fact
that | was an amateur entering into a world
where there were other professionals working,
| had to work three times as hard as everybody
else—and that was a reality that | couldn't
escape: no matter how hard | pushed myself,
there just wasn't enough time, because | didn't
know the industry. And so, | had to stay at work
three times as long as everybody else.

[After everyone] would go home, | was alone,
by myself, working on things. | would look at what
| had made, and wasn't satisfied, so | had to fix
what | had done during the day. And | was looking

at other people’s stuff, and wasn't
satisfied with what they had done
either! 50 | was messing around
and fixing the things that they had
been making during the day. 5o
was there all night long. But, what | would do s,
| would stick my head under the kitchenette's
warm water spout, and wash my hair there, and
strip down and take a towel and take a sponge
bath. And since there's nobody there, | can
completely just take it all off. But that's just how |
lived, day after day! And | lost a lot of weight.

¥
hl.

VAAAAS L

b
" ";M,
- .

PIRATE PORTS

UNUSUAL CONVERSIONS TO THE NES

The latest and greatest consoles don't always make it to the developing world. In China, the gaming scene of the 1990s was dominated by
the Famicom—or at least the Famiclone. Still, the country’s booming magazine industry kept a stream of teasers flowing in from Japan that
left gamers eager to play the latest and greatest. Enter the pirates.

The fabricators of unlicensed Famicom cartridges—usually IP pirates, but occasionally developers—came up with a slew of really
—Uerrick Sobodash

creative ways to backport titles from fourth and fifth-generation systems to the “Red and White Machine.”

=LIEE M

SUPER DONKEY KONG 2

FINAL FANTASY ViI

CHINESE TITLE CHINESE TITLE

Chaoji Da Jingang Zuizhong Huangxiang VI
PUBLISHER: Ka Sheng PUBLISHER: ShenZhen
PRICE: Unknown Nanjing Technology

Rare took a big financial

risk when it invested in

5GI workstations to make
DONKEY KONG COUNTRY: the
Super Nintendo's [SNES)
third bestselling game.
DONKEY KONG brought
cutting-edge 3D technology
to a comparatively old
system and paved the way
for similar games like KILLER
INSTINET. Ka Sheng brings its
sequel, DIDOY'S KONG QUEST,
back to 8 bits.

THE G00D: Ka Sheng's game
plays as solid as the original,
though with smaller sprites
relative to the screen size.
THE BAD: The rich, CGI-
rendered characters appear
here in three colors. They stll
look good, but lose one of the
series’ key selling points. The
enemies also respawn too
soon, making backtracking
dangerous.

THE UGLY: Only four stages?
This engine is too good for
such a short game.

PRICE: 35 yuan [$5.12 USD])

Square brought in millions

of converts to the RPG genre
with FIMAL FANTASY VII. This
FINAL FANTASY installment was
praised for its soundtrack,
narrative and “beautiful
cut-scenes.” But what
happens when those scenes
vanish? ShenZhen Nanjiing
answers that on its custom
Famicom board.

THE G00D: ShenZhen crushed
3 CD-ROMs into a 16-rmegabit
cartridge. The story survived
unscathed—if you can live
without Yuffie and Vincent.
The game even has a Materia
systemn, and the death of Aeris!
THE BAD: Zero originality,.
The script was lifted from

the Chinese translation of
FINAL FANTASY VII. Sprites

and backgrounds were
pillaged from FINAL FANTASY
lil. Character portraits were
pilfered from SUFER ROBOT
Wars. Did ASCIl make a Final
Fantasy Maker 19907

THE UGLY: The soundtrack is
terrible 8-bar loops of early
FINAL FANTASY music hacked
1o fit Nanjing's driver. Battles
are unbearably slow and
unbalanced, and surviving to
the first item shop depends
entirely on luck.

HE WL ﬁmmﬂr"i!ﬁ

BIOHAZARD/
RESIDENT EVIL

CHINESE TITLE:
Sheng Hua Weiji

PUBLISHER: Waixing
Lomputer Science and
Technology

PRICE: 25 yuan [$3.6€ USD)

URL: www.waixing com.cn

Waixing has a dirty name in the
industry, but turned out a few
gemsin its early days. In this
RESIDENT EVIL clone, the player
guides Jill Valentine through a
20 mansion during the first T-
Virus outbreak in Raccoon City.
This Famicomn remake comes
out sufficienthy scary.

THE GOOD: The zombies are
fast enough to offsetany loss
in tension that came with the
switch to an overhead view.
Major gameplay elements like
mixing iterns and hunting for
ammo were preserved—for
better or for worse.

THE BAD: While Waixing might
have made the map sprites, it
stole the zombies and battle
systemn frorm RESIDENT EVIL
GaDEN. That's not necessarily
bad, but the first-person
shooter style battle engine,
based on a bouncing-line
rhiythm game, would be a lot
cooler if it used the NES Zapper.
THE UGLY: Repetitive,
rumbling music. Ambience

is key to survival horror, and
that's where Waixing loses
out. For a Famicom game with
suitably scary music check
out Capcom’s SWEET HOME.

CHRONO TRIGGER
CHINESE TITLE:
Chao Shikong Zhi Lun

PUBLISHER: ShenZhen
Nanjing Technology

TOMB RAIDER
CHINESE TITLE: Gumu Li Ying

PUBLISHER: ShenZhen
Nanjing Technology

PRICE: 15-30 yuan

PRICE: 35 yuan
URL: www.sznanjing.com

CHRONO TRIGGER pushed the
limits of the Super Nintendo's
base hardware with its rich
visuals and moving music.
But just as important to the
experience was its story,
something a Famicorn clone
cannot possibly get wrong.
Right? The Black Wind howls
for whoever dares to play
this disaster.

THE G00D: Nanjing tried to
copy three of the game's
songs, but the beautiful
melodies of Yasunori Mitsuda
end up an ear-shattering
mess with scratchy drums.
THE BAD: Guardia 1000 A.D.
has a suspizious number of
PCs and Pokéballs. The game is
dlearly hacked over Nanjing's
pirate POKEMON—Crong’s first
fightis against a pack of wild
Rhyhom. Every plot point is
changed, and the pame ends
when you meet Magus,

THE UGLY: The active battle
systern, lagpy scroll speed,
and poor list organization
combine in a fatal cocktail,
Clearlyno testing was done
before this garne shipped,
since it is unbeatable without
sorne impressive RAM hacking,

URL: www.sznanjing.com

Eidos/Core Design came out of
nowhere with TOMB RAIDER, one
of the first fully 3D adventure
games on the PlayStation [and
Saturn) and a key seller in the
systems' early libraries. Critics
were as taken by the idea of
an adventure game with a
heroine as they were by her
baxy curves. But all the mid-
1990s girl power in the world
can't make this 30 adventure
work on Famicorm.

THE GOOD: Nanjing wrote a
new story. In this game, Lara
has to locate a missing map
whose finders have all died
mysterious deaths. Is it a
curse or something else?
THE BAD: Lara runs like she's
weighted down by two really
heavy objects: her guns.
Movernent slows to a crawl
when the pistols come out,
and those one-pixel bullets
would be'more at home on an
daari 2600.

THE UGLY: Hope you like the
title screen music, because
that is the entire soundtrack.
Damage caleulation is stupid:
you have to bury six slugs ina
spider before it digs. Once you
realize bringing up the menu
resets all enemy positions,
you'll be abusing that glitch to
avoid playing this game.

WWW. GDMAG.COM H

wWww.sea PiﬂEiﬂﬂm/ga mescm
Satisfy your quality obsession.

_ infinite
L+ 1= possibilities

© 2000 Saaping Software, Inc. All rights resanved.

TestTrack Pro + Surround SCM = infinite SCCM possibilities. Seapine’s integrated software change and
configuration management (SCCM) tools do much more than competing tools, and at a much lower price

point. Start with TestTrack Pro for change management and add Surround SCM for configuration management—

two award-winning tools that together give you the best integrated SCCM solution on the market.

+ Link issues, change requests, and other work items with source code changes.
+ Manage simple or complex change processes with flexible branching and labeling.

« Coordinate distributed development with RSS feeds, email conversation tracking, caching proxy
servers, change notifications, 3-way diff/merge, and other collaboration features.

« Enforce and automate processes with incredibly flexible work item and file-level workflows.

Built on industry-standard RDBMSs, Seapine’s SCCM tools are more scalable, give you more workflow options,

and provide more security and traceability than competing solutions.

Get more, do more with Seapine tools. Visit www.seapine.com/gamescm.

Z Seapine Software

Automated Testing

QA Wizard" Pro

‘ e

pine CM"
| Change Management

Sea

-
¥

Surround SCM®
Configuration Management

e

"‘I
-

TestTrack”™ Studio
Test Planning & Tracking

#
<)

TestTrack™ TCM
Test Case Management

(<

o
£3
-
=2
|5
..I—_'E
wm
Y

L 4

4]
g

-

|
I8
g g

a
u 3
vmgn

_. GAME ENGINES HAVE BECOME BIG BUSINESS. IN THE PAST YEAR, THERE HAS BEEN A DRAMATIC

increase in the number of companies selling their game engines as middleware. Engines are now
available for every game category, from casual to mobile to social to MMO,

From the developer's perspective, questions about game engines have shifted from, "Why would |
use that?” to “Does it make sense for my game, genre, category, budget, and timeline?”

To find out the general perceptions of licensed game engines, as well as what developers want

from them, | surveyed around 100 game industry technology and production executives [roughly

60/40], primarily in the core games space in North America, For the purpose of this article, “core”
games refer to high-budget games for PlayStation 3, Xbox 360, and PC—or AAA titles. [The casual
and mobile markets have different engine demands, which sometimes overlap with the core, but the

infarmation contained here should not be taken as directly applicable to those markets.)

| wanted to find out from the decision makers of engine purchases whether theyre using a

.-licensed game engine, what they look for, and how much they are willing to pay.

| first asked survey respondents, “For what platforms are you currently developing titles?” [see

Table 1, Pg 8). Respondents were able to select more than one platform, and the top three were Xbox

- 360(70.6%), PlayStation 3 (66.2%), and PC [55.9%).

The budgets for these titles fell largely into two groups: less than $4 million [42.2%) and more
than $16 million (42.4%).

. GAME ENGINE AWARENESS AND USE
.« # One of the most important pieces of the business puzzle for game engine companies is getting their

product in front of the right people. Executives can't purchase an engine if they don't know it exists, so

- .one issue this survey considered was awareness.

The game engines that our respondents were most aware of were not a huge surprise [see

* Table 2 Pg 9). The top five were: Unreal [93.4%), CryENGINE [92.1%), Torque [90.8%), Gamebryo

(85.5%), and Source [82.9%). Comparatively, both the technology specialists and producers

- surveyed had roughly the same level of awareness of the engines.

However, when asked which of these game engines they've actually used, the picture becomes

g mare interesting [see Table 3 Pg 9). A little more than 60% had used Unreal, 23.7% had used Torque, and

'22.4% had used Gamebryo. Despite its high awareness rating, only 9.2% had actually used CryENGINE.

. -, PERCEIVED USEFULNESS

»» Beyond simple awareness, how useful do executives think the various game engines would be for

+their current projects? Respondents were asked to rate the perceived usefulness of each engine on a

.. what game engines are studios using, and why? &

Something that pops out of thié'data when
combined with the previous questions is the belief
that CryENGINE is the second most useful game
engine middlewarelauailgl:lje, even thuugh"ﬂ is one
of the least used! These ratings point to a perception
of a game engine's capabilities, rather than actual
user experience. ' o

Also notable is the sudden emergence of idTech,
and Infernal in the top five, in spite of not being
widely used. Does it reflect a belief that game engines
made by companies that are using them for their own
games must be the most useful ? B¢ bearing in mind
that the question asked respondehits to think about
their own currént.pmjects, could it be that thése
engines are being used for garnes of similar genres
or on the same platform, and thus seem to be highly *
relevant and useful? "

Certainly some of the other game engines pride
themselves on being more broadly Useful agross a
variety of genres, but the data collected Here may
suggest a belief that genre specialization is valuable.

A& third point immediately noticeable is that, due
to the respondents largely being focused in the core
space, Unity and Torque did not fare as well. This , ~
finding should not be taken as indicative of these
engines’ actual usefulness, but rather a reflection.of -,
the people who wefe polled for this survey andthe | -

"kinds of projects tHeg have in development.

L TR HE .t o

"SERVICES OFFERED PN e

> The practices by engine manufacturers vary
significantly, in terms of support, source availability,
deliverg,'and sticking to a foadmap! | asked
te&nujugists about a few important practicesto
se"e Wit th would stand oqt. Table § (Pg 11) shows

Dt e
ot o

72 WWW GDMAGRCOM ' L
il '_‘ oA s _r T o

]

the ones they felt were the

most important.
Having access to source code

;-.and easy integration with other

>

middleware libraries were most

", important—even more so than

details of the engine itself, such
as having the ability to modify
memaory allocators.
. Some of the engine providers
-give continual access to new
'engine builds, and this is valuable
indeed, but seems less valuable
than the current working feature
set. The fact that having a clear
“engine roadmap is judged as being
as valuable as ongoing access
seems to imply a desire to lock
in on an engine version and not
worry about upgrades during the

-+ _ development process. [This is

- G -

¥, mirrored in the way that many

studios lock in on a version of their
_third-party tools during the span of
_agames development.]

One respondent made a

very important comment about

engine development roadmaps: “I

would not purchase nor use any

middleware where | am dependent
~on a future feature. Tying my studio

to the whims of development of a

third party is not good business.” |

think that says it all.

WHY BUY?
»» Although a lot of game

' .. development teams are using

licensed game engines, many still

_.. use their own. The technologists and

producers surveyed for this article

* ‘agreed on three primary reasons for

using a third-party engine.
First, artists and designers

_ . can begin working immediately.

table 1 platform

OR WHICH PLATFOR
NTLY DEVELOPI

- L T . I ..
N - GAME DEVELOPER

Without engine tools and technology
available, it's difficult to gauge
the limitations of the engine and
the unique features available to
the game designers and artists,
Second, engineers can focus on
game-specific code. Why spend
programmer-hours writing mermory
allocation code when the team
can instead work on tweaking the
physics to suit the particular style of
the game being created? Third, and
tightly related to the two previous
points, many engine users believe
that using a game engine allows
them to shorten the development
cycle overall, reducing the amount
of work needed on the part of the
engineering team and allowing the
content creators to start working
earlier in the development process.
Let’s look at each of these
points in more detail.

PROTOTYPING AND ITERATION
»» Why is early ramp-up and quick
iteration time so important? Is it to
save costs by allowing a smaller
team to develop more rapidly ?
Mot necessarily. In fact, 69% of
producers surveyed said that they
expect using a game engine 1o have
no impact on staff size. Instead, it
allows them to focus more on game-
specific details. They mentioned
getting to "focus on enhancements
and differentiating features.”
Having early-stage development
tools is useful in two major ways.
First, having tools early allows
artists and designers to begin
working immediately on content
that may actually wind up in the
game. Without such a toolset, they
are limited to more conceptual, pre-

_ 'eh'
refer

Crytek's CryENGINE 3
www.crytek. coms/technology/
cryengine-3/specifications

ine
ce

Digital Extremes’
Evolution Engine
www.digitalextremes.com/tech

Emergent Game Technologies'
Gamebryo
www.emergent.net

Epic Games’ Unreal Engine
www.unrealtechnology.com

Garage Games' Torque
WWW.garagegames.com

|d Software's idTech
www.idsoftware.com/business/
technology

Terminal Reality's
Infernal Engine
www.infernalengine.com

Trinigy's Vision
www.trinigy.net

Unity Technologies' Unity
www.unity3d.com

Valve Corporation's
Source Engine
http://source valvesoftware.com

Vicious Cycle Software's
Vicious Engine
www.viciousengine.com

production, pen-and-paper work,
which, while valuable, probably won't
end up in the final product.

Second, developing prototypes
is an important process that helps
establish the game's unique tone
and direction before gearing up for

i

full production. Finding the funina
garne concept in the early stages

of a project makes it much easier to
pitch and get funded, and highlights
the game development challenges
that will have to be solved during
the length of the project. Without the
ability to rapidly create prototypes
to determine the features that will
be mostimportant tothe game, the
early part of the title's praduction
will be much less focused.

One myth I'd like to dispel is
that game developers have solved
these challenges already. Recently
a developer wrote me and reasoned,
“over the past few years, the '
industry has discussed prototyping,
and now it is a solved problem.” Tell
that to the independent studio that
starts out tool-less. We all may now
agree that prototyping is important,
and it may well be the case that
established studios and publishers
that share technology among their
teams have solutions in place, but
as far as tools for small studios go,
prototyping solutions are still not
widely available outside a full game
engine purchase.

Table 6 [Pg 12) shows what
tools developers are using now for
prototyping. In addition to the tools
shown in Table &, other respondents:
noted that they've used Epic's
Unreal Engine, Emergent’s
Gamebryo, Vicious Engine, Google
SketchUp, and Adobe Photoshop.

I's hard to replace the good old
pencil and paper for ease of use, but -
the relatively low response on the
use of XNA was surprising, since
several teamns are known to have
used it for prototyping with good
success. L/C++ is of course an
obvious choice for developing any
playable prototypes, but Flash, Lua,

and XNA have been great productivity

multipliers for many teams.

Rapid iteration is also
considered a valuable factor in
creating high guality games. The
ability for any member of the team

to test out new content in the game .. -, -

[whether it be art, audio, or code],
and do it easily and rapidly, allows
for more experimentation and
fine-tuning. If it takes 15 minutes
for an artist to see her work in the
game engine, how likely is she to

Top: Source engine. Inset left: dTech. ble 2 awareness |
Bottom left: Torgue englne.

Bottom right: Infernal englne. WHICH OF THE FOLLOWING GAME
EMGIMES ARE YOU AWARE OF ¢

UNREAL ENGINE 93.4%
CRYENGINE 921%
TORQUE 70.8%
GAMEBRYD _8.5% |
SOURCE

IDTECH

UNTY

VICIOUS ENGINE
INFERNALENGINE =~ 329%
"."I‘.;_i]\l

EVOLUTION ENGINE

table 3 engine use
WHICH OF THE FOLLOWING GAME

ENGINES HAVE YOU USED?

UNREAL ENGINE

TORQUE

ERLECT

T Y R A A SOUR

R T S : SOURCE

CRYENGINE

UNITY

VICIOUS ENGINE

—

IDTECH ____ .
8 .. _ ' INFERNAL ENGINE
Irl_":::Ll':T - ! ! S R R R

—— EVOLUTION ENGINE

table 4 perceived usefulness

ON A SCALE OF 1 T0 5, HOW USEFUL
- WOULD THE FOLLOWING ENGIMES BE
experiment? She may become your target consoles is also an Of those surveyed, BB% said they FOR YOUR PROJECTS [RESPONSES OF
_prone to settling for “good enough.” incredibly valuable tool to have use automated build systems or UNKNOWN" WERE NOT COUNTED) ?
If your game could be in yourarsenal, since art can be continuous integration to ease their UNREAL ENGINE
* ‘previewed on the target platform especially affected by a change in development. CruiseControl. NET was CRYENGIN
five minutes sooner, how many target platform. mentioned by many as a popular SOURCE
more times could your artists For a full content build, the continuous integration choice. IDTECH
. check out their work each day? average time taken is much ST
Drilling down on the idea of longer—approximately 105 minutes. GAME-SPECIFIC FOCUS S .-
rapid iteration, more than 50% of Typically, a full build is done at » By purchasing a game engine, e
- .developers surveyed reported that night, or when a major change has developers gain access to an EVOLUTION ENGINE
a small change to their game’s been made to the code or toolset, array of technology and a suite of Uwir,y
' content or code can be in and and involves code compilation, art tools. This gives them the ability VICIOUS ENGINE
~ - running in less than twa minutes, and audio format conversion, and to immediately begin focusing on T_QR.;,_U_E""""_
*,- with the average iteration time occasionally other pre-processing their title. The engineering team viSloN 200
clocking in at around 3.5 minutes. steps, such as lightmap construction gets a solid working engine and
" Some console teams use a PC and spatial partitioning. While itis can begin developing additional
‘version of their engine or a full- valuable to reduce the amount of tools and technology unique to the
featured world editor with their time required for a full build, if it's game’s needs.
. engineintegrated into it in order done in the evenings, it has less of an | asked executives to rate
to achieve speedy iteration times impact on day-to-day development. several tools and techmologies,
without having console previewing. See Table 7 [Pg 12] for the typical in terms of importance, that
. But rapid preview capability on length of time needed to do a rebuild. they might expect to receive

A

* ATTHETIME OF THISS lﬂm DNGITAL EXTREMES” ENGINE HAD YET TD BEFORMALLY RELEASED

Dynamic behavior. Clothing required.
Unparalleled support.

Havok Behavior
Havok Cloth

Top to bottom: u:il'ry, CryENGINE,

...~ - .\nreal Engine, Gamabryo. *

[4] lilarah sty - ratereiees
i+ o M
. B leawns |G e (F P L ey

Py S T e

v = o s C (¥ 8

PR T
A
R PR

LN N
*e - cian

M

T
' e Peias Eamaesties Pasias

Lt Toa o

Gy Mo A s Bl M Cwnds Gawsl Daem M Cmem Tee e b

EE TR AOSra | Ry we=i

~when purchasing game engine

middleware, as well as what
middleware libraries they are most
interested in integrating into the
engine [see Table 8],

It's debatable whether profiling
capability should be considered
a systemn or tool, but clearly it's
incredibly important. If I'm making
a game on a third-party engine and
can't easily tell why I'm getting 10
fps instead of my target of 30, I'm
very likely to make some angry
phone calls and figure it's the
engine's fault instead of my own.
Having live preview on the target, so
the content creators can see what
they're creating properly and iterate
onit quickly, is also very important.

A standalone world builder is
something most game engines
seem to provide now. However, I've
seen many younger game studios
use their 30 art packages as world-
building tools through the use of
custom extensions. But as one
respondent said, when it comes to
licensing a game engine, “a game
editor is perceived as a must-have,

* -as building one from scratch is still
heavy duty.”

Asked in a separate question if
people are using a 30 art package
or a custom application for world
building, 73.2% pointed to using a
customn application. Some replies
remarked that while using the art
package is sometimes the shortest
path, it's not necessarily a good
way to go. In fact, for PlayStation
3 and Xbox 360, according to one
respondent, “the tools don't handle
dense scenes well, so the art
package doesn't work terribly well
as a world-building tool.”

Something that came up
repeatedly in the survey results is

the importance of ease of integration.

Whether it's integration with pre-

existing technology and tools or with = . .=
other middleware libraries, a game .
engine should be designed in a way
that eases inter-communication
between components,

While a great many developers
[46.5%) commented that they
would much prefer to create all the
tools and technology themselves
than license a game engine, many
[37.2%] would rather create a
low-level engine layer and simply
purchase the middleware libraries
that suit their game. Only a small
number [9.3%) actually want to
purchase a full engine suite. This
highlights just how important it is
for game engine manufacturers 1o
design their engines for integration
of game-specific code and other
middleware libraries. Engineers
almost always prefer creating as
rmuch technology as possible for
their games themselves.

One executive responded, “It's

necessary that there be an existing + ;. .8

integration with a middleware
library solution. Also, having
these is just a start. The flexibility
to modify and augment is very
important.” Another wrote, | prefer
to see an engine have hooks for
these systems than to attempt to
provide everything.”

Of all those surveyed, 90%
claim that they are using some
type of middleware library, whether
to enhance the functionality of a
licensed game engine or as part of
a completely custom code base.
Table 9 shows the libraries that
were the most popular.

It would be wonderful if all
middleware libraries were easy to
integrate into all game engines.
But at the moment, apart from
a few exceptions, determining
whether a particular package can
be plugged into your game engine

¥WITH OTHER MIDDLEWARE
RESOURCE MAMAGEMENT EASILY ALTERED

T ENGINE

BUILDS

E

S WWW.GDWAG.COM m
il '_‘ Yo '_1:._ e fae

O e T LR T

-

pom N

is a slow and complex evaluation
process. There are engine
manufacturers who provide fairly
simple integration steps for some
middleware libraries, and they are
definitely ahead of the curve. We
can only hope that this practice will
continue to gain popularity!

Of course, having source code
access is fundarental to the
evaluation process. The technologists
in the survey voted “availability
of source code” as the most
important practice for game engine
manufacturers [followed closely
by “known to easily integrate with
other middleware”). Since engineers
always seek to customize the engine
they license for their particular
games, having source code access
and the ability to recompile the

higher quality product. When asked
about the potential of a decrease

in staff size resulting from the use
of game engine middleware, 69%
of the executives reported that
staff size also remains the same,
with a stronger focus on creating
differentiating game-specific
technology and content,

PRICING

2> At the 2009 Game Developers
Conference in San Francisco, game
engines were everywhere. New
engines were displayed on the expo
show floor as well as behind closed
doors. The engines roughly broke
down into three pricing tiers and
corresponding technology levels: 1)
high-end with high-technology, 2)
mid-priced with many variations in

&
i

rarely have royalties!” but, “Itisbest = . &

to have both options, depending

on projections.” One experienced
executive noted, “Publishers are
averse 1o getting locked into royalty
deals by the developer.”

REWVING UP

» Developers are fortunate to

have s0 many game engines
available tolicense, as there is no
one-size-fits-all solution in the game
industry! Although there are some
similar needs among developers,
each game has different needs and
different targets, so engines need to
be powerful yet flexible. Integrating
other middleware libraries into a
purchased game engine should

be made as simple as possible,

and source code availability,

table 7 rebuild times support structures, and extensive Lol

documentation are absolutely critical. - ':_':;
When game engines first)
appeared on the scene, many

engine are fundamental. Why bother
with a binary-only license?

functionality between the engines,
and 3) engines with unique
business models targeting more
casual developers [such as Unity

HO\ JUR CURRENT
PROJECTT LL REBUILD
[ART AND CODE)?

DEVELOPMENT IMPACT

S THAMN 10 MIMUTES

» As indicated by the survey
results, one of the major reasons

for buying a game engine is a belief
that it will enable game development
more guickly since there will be less
technology to build, However, what
actually occurs on most projects
appears 10 be quite different. In
regard to development cycle length,
65.5% of the producers surveyed
indicated that using game engine
middleware generally results in a
project with the same developrnent
cycle length—but of higher quality
overall: “Building content happens
much earlier ... but overall length
doesn’t change.”

Why does the quality improve?
According to a majority of
respondents, it's primarily due to
having rapid prototyping capabilities
in the early stages. The top five
most likely effects of game engine
middleware on the quality of a
title as rated by the executives are
shown in Table 10. [Very few people
responding to the survey expect a
lower quality game due to the use of
game engine middleware.)

From this data, it seems that
a project using game engine
middleware is typically scheduled
to be the same length as one that is
created from the ground up, but the
time gained is used to produce a

and Torque).

In terms of the price
developers expect to pay for a
game engine, the survey results
varied broadly. On average,
the expected cost was 6.1% of
the total development budget
[with total technology costs at
20% of the total budget). For a
multiplatform game with a $15
million development budget, this
means the projected cost for a
game engine is about $900,000,
and $3 million for overall
technology development.

Respondents strongly favored
[82.1%) flat-rate pricing versus a
*lower cost plus royalties on the
back end” madel. It's certainly
nice to have options for financing
thaough, since newer studios are
frequently low on cash and may
need a royalty-based option. As
noted in the survey comments, “We

developers complained that they
would make all games look alike. In
some circumstances, perhaps this
was true. But teams have adapted
and now recognize that a game's
unigueness isn't based purely on
its engine. Licensing an engine Is
just the beginning of a process.
Fine-tuning it with your own code
and content, and integrating other
middleware librarles as appropriate,
can result in a game that is just as
distinctive as if you had developed
all the tools and technology in-
house. And you might even save a
little money.

MARK DELOURA isawideo game
technology consultant residing in

San Froncisco, California. He hos held
leadership roles at Sony, Nintendo, ond
Ubizaft, ond os editor-in-chief of Game
Developer magazine. Email him at

mdeloung @ gdmag. com.

R . =¥ R0
GAME DEVELOPER [MAY 2009

* i

We are tired of stupid zombies populating games.
Help us and give 'em brain. Sign up NOW for FREE
and download the NEVY xaitment SrainPack SDKs

Set up and control complex game logic in a few steps. Generate your perfect .’?:
navigation mesh with a single click. Create realistic behavior in no time.

Join the xaitment community now and turn your idea into a stunning proto
paying any license cost. By signing up for free, you'll receive our complete
plus our world-class support. Experience the future of next gen game tech
with the smartest Al technology available,

Contact xaitment today for more information about the BrainPack Program
brainpackaxaitment.com or visit our website www.xaltment.com

Canadian-bom Mark Rein is
vice president and co-founder
of Epic Games based in Cary,
North Carolina.

Epic’s Unreal Engine 3 won
Game Developer Magazine’s
Best Engine Front Line Award
for three consecutive years,
and it was inducted into the
Hall of Fame this year.

Epic’s internally developed
titles include the 2006

Game of the Year “Gears of
War” for Xbox 360 and PC;
“Unreal Toumament 3" for
PC, PlayStation 3 and Xbox
360; and “Gears of War 27 for
Xbax 360.

Upcoming Epic
Attended Events:

Electronic Entertainment
Expo

Los Angeles, CA

June 2-4, 2009

GameHorizon Conferance
MNewcastle, England
June 23-24, 2009

Develop Conference
Brighton, England
July 14-16, 2009

Please email:
mrein@epicgames.com
for appointments.

POWERED

Advertisement

Unreal Technology News

by Mark Rein, Epic Games, Inc.

BATMAN: ARKHAM ASYLUM PACKS A PUNCH WITH
UNREAL ENGINE 3

The door to a part of the DC Universe never seen before
outside of comic books is about to be opened: Warner
Bros. Interactive Entertainment, Eidos and Rocksteady
Studios are using Unreal Engine 3 to bring Batman:
Arkham Asyfum to PC, Xbox 360 and PlayStation 3 on
the heels of The Dark Knight's box office tidal wave.

“We have always seen technology as ameans to an end,
so for this reason we switched to middleware as soon as
we moved onto P53 and Xbox 360 development,” said
Sefton Hill, director and owner, Rocksteady.

“We evaluated the different options in the marketplace,
and Unreal Engine 3 was the best choice for us for two
main reasons. First, the creative tools for artists and
designers are excellent. Second, the design of the tools
is driven by a game development studio which shares

a similar philesophy to us — that the creative staff must
be empowered to unleash their imaginations to create
great results. This gave us every confidence that, as

Epic developed Unreal, it would remain consistent with
Rocksteady's requirements in the future.”

Development started with a team of 40, many of whom
had been working with UE3 on various game concepts.
That team eventually grew to over 60. When the game
ships, total development time will be 21 months from
start to finish including pre and post-production.

“Using Unreal allowed us to start work on the gameplay
from day one,” said Hill. “When creating your own
technology, the game team is often waiting for the
technology team to deliver their tools before they can
start work, which means that even games that have
been in development for over two years have often had
less than one year of work on the gameplay.”

Hill believes UE3's tools remove technology hurdles that
restrict many aeative professionals from being able to
realize their potential. He said the tools are powerful
and versatile, making game development about the
talent and imagination of artists and designers as
opposed to just engine programmers.

“This also frees up your engine team to be much more
creative, as well,”said Hill. “l know some of our engine
team have found ways to use the tools which has
surprised even Epic.”

Another advantage of using UE3 is its aoss-platform
interoperability. Hill said each platform has its own
inherently unique requirements, so it’s important to
tailor content to maximize cross-platform results, He
added that using UE3 allowed the team to get all three

[Eplc, Epic Games. the Eplc Game: inga, Cears ofWor, Gears ofiar 1 Unreal Uneeal Eagine, Unreal Techroiogy, the Powered by Unreal Tedndiogy loge. and the Chde-Uloge are s

TR] T . (TITw OGS 41 PO BT FhZiVae 2 T DCeTical WS O DN T TerionTIwe fdTRad

platforms up and running very quickly and easily.

“We have an excellent relationship with Epic, and |
cannot speak highly enough of them,”said Hill. “They
have developed such powerful technoloqy, provided
great hands-on support through the Unreal Developer
MNetwork, and have been excellent hosts when we have
visited them. All this, and they still find time to develop
such amazing games!”

Batman: Arkham Asylum

Rocksteady's team makes full use of UE3 technology to
bring Batman's spectrum of dark environments to life.

“This universe is so rich and diverse; we set ourselves
the goal to build a game world with the Batman DNA
flowing through its veins,” said Hill. “A key reason to set
the game on Arkham Island was to have the player see
and feel the history of this universe as they play.”

“0ur overall goal was simply to deliver an authentic
Batman game that was great fun,”said Hill.

Batman: Arkham Asylum is the third game featuring
the Caped Crusader that's powered by Unreal Engine 3.
Midway Games released Mortal Kombat vs DC Universe
last year, and Sony Online Entertainment is developing
the massively multiplayer online game, DC Universe
Online, for release early next year.

Thanks to Rocksteady Studios for speaking with freelance
reporter John Gaudiosi for this story, which will be posted
i full at www.unrealtechnology.com.

For UE3 licensing Inquiries email:
Neensing@epicgames.com

For Eplc job Information wisit:
www.eicgames.comsepic_fobs.ftmi

WWW.EPICGAMES.COM

of Epkc Games, Inc. In the Unibed Sates of

I'.\ 1 4-1' | |
GOOD RESPONSIVENESS IS A DESIRABLE PROPERT ‘FOF H.IH‘I’LFPLIEA“I]HS. BUTITIS esp
important in games, where reacting immediatélg o the player’s Input is paramount, and dr
frames is unacceptable. Thus, any long processa cumpumtinHuch as file |/0—should be
asynchronously if at all possible. = = ' :

However, the traditional model for asgnthmmus prog]
in a different way than for regular sequential code, c:mnpll[:atlng certain kinds of algorith]

=L

significantly. Since C++doesn't provide any built-in constructs for dealing with asynchronous. = 0

operations, game programmers have to rely on their operating system APls, which tgplcallg
provide only low-level mechanisms, such as handles or completion callbacks.

This article presents a method for simplifying asynchronous operations considerably through
the use of coroutines.

PROGRAMMING ASYNCHRONOUSLY, THE HARD WAY

»» Non-blocking I/0 operations are commonly used in asynchronous programming, so let's use them

as an example. When dealing with asynchronous |/0, the typical scenario is to initiate a non-blocking

operation and then defer any processing on the data until it becomes available. To know when the

data is available, we can wait for a callback or query the handle retumed by the asynchronous AFL.
There are several drawbacks to both options. Relying on a callback forces us to artificially

partition the code into multiple functions that perform only part of the computation. When

we start an asynchronous request in the middle of an algorithm, we have to pass a pointer to

the function that will perform the rest of the computation, and then return from the function

immediately, basically delaying the rest of the algorithm while the data is in flight. Once the

data is available, the new function will be called to continue the computation. If that function in

turn performs a non-blocking operation, it has to similarly defer the rest of the code to another

function and pass it as a callback. This approach of chaining functions together can quickly make

the code unmanageable and difficult to understand.

0 ,I e the problem of potentiall r
g0 be thread-safe, since they |
me from another thread. On ceftain
: ating system invokes these gallbacks
b 4‘(pund thread that performs the Y0
PO s, forcing us to protect any shared data that
allback function might access. On other platforms,
- n3z2,the completion callbacks are called in the
context of the thread that initiated the request, solving
theimultithreading problem, but they can only run when
the thread is in an alertable wait state. |f we are not
eful to enter this state regularly, we could be delaying
the reception of callbacks for a long time.

On the other hand, when polling regularly for
completion, we are usually required to make the code
maintain some Kind of state to know what pieces of
data we have processed already and which ones we
are still waiting for, effectively turning our routine into
a state machine. Again, this approach usually obscures
the intent of the algorithm, and has us jumping through
hoops to gather the data we need.

To illustrate the point, consider an entity class that
represents an object in the world. These entities contain
a reference to their 3D model and a list of textures.
When loading an entity, we might have some kind of
index file that describes it, containing the names of the

WWW.GDMAG.COM 15

-

model and texture files that it uses. To create an entity,
we start by reading the index file, extracting the file
names of the other resources, and then loading the data
from those files.

To load an entity asynchronously, we would need
to write a function similar to that in Listing 1. This
function needs to be called regularly [once every
frame, for instance] to query the status of the pending
asynchronous requests. Note that the function has to
not only maintain a notion of current state, but also use
member variables to hold the intermediate data used
throughout the load, since it will be called over several
frarmes and would otherwise be lost. This example is
very simple and could be improved by tracking multiple
requests at the same time, but it's meant to illustrate
the problem of dealing with asynchronous requests
that depend on the results of other requests.

The resulting code is far from ideal, since it turns
simple sequential code into a switch statement, which
maintains many pieces of state. It also makes error
handling especially difficult should a problem arise on
an intermediate step.

Given these drawbacks, it's worthwhile to consider
alternatives to the traditional asynchronous madel. | will
show how to use coroutines to avoid dealing with these
Kinds of callback chains or state machines in the code.

WHAT ARE COROUTINES?

#» Coroutines are basically subroutines that can be
suspended during their execution and resumed at

the same point later. While subroutines can only give
control back to the calling code by returning, coroutines
can yield at any point, effectively pausing their
computation temporarily. When yielding, coroutines
capture the values of local variables, which become
avallable again and can be used normally when
execution resumes.

Coroutines are first-class citizens in some languages,
but C++ does not support them directly. However, many
operating system AFls offer similar constructs, like fibers
on Win32 and user contexts on POSIX,

The way these implementations work is by
basically performing a context switch, much like
what happens when a new thread is scheduled by the
operating system. In essence, this context switch just
copies out the value of the CPU registers [including
the stack pointer] and restores the values for the new
coroutine, resuming at the point where it last yielded
execution. And because the stack pointers are switched,
the resuming coroutine can access its local variables
normally. Note that, unlike a real thread switch, this
kind of context switch doesn't involve a call into the
operating system kernel, making it faster.

For most cases, it's best to use the coroutine APls
provided by the operating system, which are usually
quite lightweight. Implementing a homegrown context
switching logic can be very tricky on certain platforms.
It can be tempting to build a custom system so that
we can, for instance, control where the stack for each
coroutine is allocated or track its lifetime—however,

GAME DEVELOPER | MAY 2009

{1Syng |

bool Entity::Updateload()

{

switch (mState)

{
case InitialState:
nFile = File(mIndexFile);
nRequest = mFile.Read(&mIndex, sizeof(mIndex));
nState = Readinglndex;
break;

case ReadingIndex:
if (!mRequest.IsComplete()) break;

// The index has finished loading, start reading model
nFile File(mIndex.mModelFile);

nModel = std::malloc(mIndex.mModelSize);

nRequest = nFile.Read(nNodel, wmIndex.mModelSize);
nState = ReadingModel;

break;

case ReadingModel:
if (!mRequest.IsComplete()) break;

/! The model has finished loading, start reading textures
nTexIndax = -1;

nitate = ReadingTextures;

break;

case Readinglextures:
if (!'mRequest.IsComplete()) break;

if (++mTexIndex == mIndex.mTextureCount) {
n5tate = Finished;
break;

}

nFile File(nIndex .nTextureFiles[mTexIndex]);
nTextures[mTexIndex] = std::malloc{mIndex.mTextureSizes[mTexIndex]);
nRequest = mFile.Read(mTextures[mTexIndex],

mIndex.mTextureSizes[mTexIndex]);
break;

}

return mState == Finished;

usypp ¢ .

size_t File::Read(void* buffer, size_t size)

{

OVERLAPPED overlapped = { 0, 0, { mOffset, 0 }, NULL };
ReadFile(mHandle, buffer, size, NULL, boverlapped);

while (!'HasOverlappedIoCompleted(koverlapped))
{
ResourceManager: :Yield();

}

DVORD bytesRead;
GetOverlappedResult(mHandle, &overlapped, kbytesRead, FALSE);

nlffset += bytesRead;
return bytesRead;

one of the properties of a stack is that it grows
autornatically when the current call chain requires more
storage. Because this process is usually controlled by
the operating system, it's difficult for the application to
hook in its own logic here, We would need to use guard
pages or a similar mechanism to capture accesses past
the end of the stack that must trigger an extension.
Also, allocating the stack manually can confuse
the operating system and subtly break certain
constructs. For instance, on Xbox 360, exception
handling doesn’t work properly for code that runs on
a user-allocated stack. If the stack is not allocated
by the operating system, then it refuses to run
the exception handlers that have been setin the
code. Exceptions can be thrown, but they cannot be
caught. Even if you don't actually use exceptions in
your game, there are certain operating system APls
that rely on them, and they would cease to function
properly. ReleaseSemaphore is an example of a function
that internally relies on exceptions for handling
certain cases.

ENTER FIBERS

#» The entity loading code presented earlier can be
simplified substantially through the use of coroutines
implemented on Win32 using fibers. Fibers are defined
as lightweight units of execution that run cooperatively,
that is, they are not preempted by the operating system
but rather have to yield execution explicitly. Although

| show here what an implementation for Windows and
Xbox 360 could look like, the concepts are transferable
to other platforms.

Consider a ResourceManager class that centralizes the
creation and loading of resources such as an entity. We
would call a LoadResource<R> function to kick-start the
creation of a resource given its wype R and the path to its

index file. This would create a fiber that, when scheduled,

will call a static Create function on our resource,
which contains the logic for loading and instantiating
that particular resource. Note that on a synchronous
implementation, we would call the
Create function immediately as part
of the LoadResource function, and
the function would block until the
resource has been loaded, returning
a pointer to it.

However, in the asynchronous
case, the LoadResource function
just creates the fiber and returns immediately. Since
the resource doesn't exist yet, we cannot return a
pointer to it. We have to return some kind of handle
or descriptor that will let the client retrieve the actual
resource when it's ready. The handle could be as
simple as an integer ID that can be resolved later
to retrieve the resource pointer. A more interesting
handle type would be some Kind of strongly-typed
proxy object that can be queried to see if the resource
is available, as well as provide reference counting
semantics and regular pointer syntax for accessing
the resource.

but
ma nl‘il

Entity* Entity::Create(const char+ filename)

{

J/ Load index
File indexFile(filename);

EntityIndex index;
indexFile.Read (kindex, sizeof(index));

[/ Load model
File modelFile(index.mModelFila);

void# modelData = std::malloc(index.mMNodelSize);
nodelFile.Read{modelData, index.mModelSize);
Model* model = new Model{modelData);

[/ Load testures
std::vector<Textures*> textures(index.mTextureCount);

for (size_t 1 = 0; 1 < index.mTextureCount; ++i)

{
File textureFile{index.mTextureFiles[i]);
void* textureData = std::malloc(index.mTextureSizes[i]);
textureFile.Read(textureData, index.mTextureSizes[i]);
textures[i] = new Texture(testureData);

i

return new Entity(model, textures);

After requesting the creation of one or more resources, we would need to call an Update
function on the resource manager at some regular interval, for example, every frame, This Update
function Is responsible for processing the pending resource loads, and it does so by basically
scheduling the existing fibers in turn, giving them a chance to execute part of the resource
creation code. Note that the resource manager cannot preempt the running fiber, so it has to wait
until it yields explicitly.

The way each update step works is as follows. First, we call ConvertThreadToFiber so that we
can start scheduling fibers on the current thread. Next, we switch to the first fiber on the list. The
fiber will then resurne execution at the point where it last yielded. If it is a newly created fiber, it
will start at the main fiber routine, which will immediately call the static Create function on the
resource to run the loading logic for that resource. Eventually, this function will either return

Coroutines are first-class citizens in some languages,
C++doesnat sup

ortthem directly. However,
tern Pls offer similar Constructs,

perating s
in32 and user contexts on POSIX.

fibers on

[meaning that the load is complete and the resource is ready) or yield by calling a Yield function
on the resource manager, allowing the next fiber to be scheduled. Note that fibers don’t return
from their main routine—they just mark themselves as finished and yield one last time, which
effectively prevents the fiber from being scheduled again inthe future.

The manager keeps activating the next available fiber until the last one yields, after which the
Update function cleans up by calling ConvertFiberToThread and then returns. The call to Update is
therefore a single pass over the list of fibers on which they are given an opportunity to progress
and maybe finish the load process.

This description might seem toimply that the resource loading code must have explicit
knowledge of fibers and yield manually at certain points during its execution. This is not
necessarily the case, and | will show how this behavior can be abstracted so it deesn’t introduce
such requirements for the loading code.

WWW.GOMAG.COM

SEQUENTIAL ASYNCHRONY

#» The Key enabling feature of fibers here is the
opportunity for resource loading code to be written in

a sequential manner even though its operations are

all asynchronous, Since fibers can yield at any point
and be resumed later, they can effectively block on an
asynchronous I/0 operation until it has completed. Note
that this doesn't imply blocking the whole thread of
execution—other code can and will run in the meantime
on the same thread.

The behavior can be encapsulated ina simple fiber-
aware File class that presents a synchronous /0 APl to
the resource loading code but performs asynchronous
operations under the hood. For the user, a call to the
Read function appears to block until the data is available,
and indeed it will anly return when the data has been
read. In the meantime, it will yield to give other fibers
a chance to execute, and it will keep doing so until it
has determined that the asynchronous request has
completed. See Listing 2 for the implementation of
File::Read.

With this infrastructure in place, we can now
write the code for loading entities in a much more
straightforward way, as in Listing 3. The new version
of the code resembles very much what one would
write for loading data synchronously. The code relies
on the File object to perform the reads, allowing it to
be completely oblivious to the fact that it's actually
running on a fiber and being scheduled out every time
it performs a read.

Additionally, this code can be run unchanged for
performing both synchronous and asynchronous
resource loads, if we want to give this option to users of
the resource manager. All we would need to do is make
the ResourceManager . Yield function check whether it's
being called from outside of a fiber. If itis, it will yield the
thread by calling Sleep(0), effectively turning reads into
blocking operations.

Another advantage of fibers is that they all execute
in the context of a single thread. They do not run
concurrently with any other code that executes on that
thread. Therefore, the resource loading code can freely
access any other data or systems without having to
make them thread-safe necessarily. Also, the call to
Update on the resource manager happens at a predefined
place in the game loop, making it easier to reason about

resources

Stackless Python
www.stackless.com

Hawes, David, “Snakes on a Seamless Living
World,” Game Developer, February 2009

Richter, Jeffrey, “Concurrent Affairs” series,
http://msdn.microsoft.com/en-us/magazine/
cc501041.aspx

GAME DEVELOPER | MAY 2009

the state of other objects at that point. Compare this with the non-deterministic behavior of
callbacks that can be invoked at any time on a different thread or whenewver the thread happens
to enter an alertable wait state,

PAUSE AND CANCELLATION

2> One of the interesting advantages of performing resource loads using fibers is that they can be
interrupted at certain points, meaning we don't have to wait for the whole process to be completed
in a single call. We can leverage this feature to easily add support for pausing and canceling
resource loads, which can be valuable for systems that deal with many resources at the same time
and must prioritize or discard some of them for memory, performance, or game-related reasons,

Implementing pause is straightforward. We can extend the resource manager interface with
two functions to support pausing and resuming ongoing resource loads. Considering that the
resource loading code will yield at some point [when performing a read, for example), we can use
that opportunity to check whether the user has requested the fiber to be paused. If this is the
case, we can mark the fiber as paused and avoid scheduling it again until somebody requests it
to be resumed. Hence, we can effectively delay a certain operation indefinitely.

On the other hand, to properly support cancellation we have to extend the resource loading
code so that it regularly checks for this condition. We could provide a function that the loading
code can call to check whether it has been canceled and is supposed to return. This function
could also act as a checkpaint by yielding execution so that the fiber doesn’t run for too long
when performing a complex operation. By inserting calls to this function throughout the code,
the resource loading function can further improve the responsiveness of the game by reducing
the maximum amount of time that the main thread is blocked. These calls can be thought of as
preemption points for the fiber.

To irnplement cancellation support, the code must check the return value of the function and act
accordingly. If it determines that it has been canceled, it must clean up all intermediate resources
and retumn a null pointer from the Create function. Note that just removing the fiber from the list of
running fibers when it has been canceled is not a proper solution because it prevents the resource
loading code from cleaning up any intermediate objects, resulting in memory leaks.

An alternative solution would be to throw an exception when a fiber yields and we detect
that it has been marked as canceled, and then catching that exception on the main fiber routine,
This solution would force the resource loading function to return, cleaning up all intermediate
resources as long as the user has properly followed the Resource Acquisition Is Initialization
[RAll) pattern, which ensures that resources are cleaned up when they go out of scope by
releasing them in the destructor of stack objects. The advantage of this alternative is that it
doesn’t require the user to add explicit checks for cancellation throughout the code, but relies
instead on the proper application of the RAll pattern and having compiled support for exceptions,
which is commonly disabled for games.

THE COMMENDABLE COROUTINE

#» | have shown how to leverage coroutines with little effort to simplify code that deals with
asynchronous processes, such as file /0. The resulting code is much easier to understand since
it retains its sequential nature and avoids multi-threading issues that can happen when we rely
on callbacks.

There are several drawbacks to this approach, of course, The main problem is that coroutines
are collaborative by nature. They have to voluntarily yield execution for other coroutines to have
a chance to run. Since there is no preemption, a coroutine that’s behaving badly can hold the
thread of execution indefinitely, a problemn that can't happen with the common rulti-threaded
approach, since the operating system scheduler makes sure that all threads have a chance to
run [unless they have different priorities).

There’s also a risk of introducing too much latency on |/D operations or reducing their
throughput considerably, seeing as coroutines are scheduled out as soon as they initiate an
1/0 operation, which could complete long before the coroutine is scheduled again. This risk can
be partially mitigated by scheduling the coroutines more frequently and performing certain I/0
operations synchronously when they are deemed small enough not to block for a significant
amount of time Q)

JAVIER BLAZQUEI works s a core engineer ot Lucas Arts, where he deals mainly with systems-level fibrories
forthe inshouse gome engine. Previously he worked at Pyro Studias, where he was respansible for the overoll game
architecture implementation. Email him at |blozguer 8gdmag. com.

ACTIVISION.

GREAT GAMES

START WITH

GREAT PEOPLE

= -
IM SHABA e i
ﬁn Ea ?ﬂ% et t'.'?':l.h —— i FIEBST.?IBGBMB‘E
l’ - — - -;«-{ET
d : ’ - . _‘5 ? . , \ /1 H‘_qq." m Tons Pl O b
octane o -j "I“_T" Mg _w HI:II:N { ubcar

DemonWane

Visit our site: activision.com

20

GIAMDINJGITIHIE:
SIYISITIEIMIL L
HOWI(TJOJRJEJAJL
LYJIGIENTAJHENA
DONTDHEG(AM
EDNDUSITIRIY.

SUCCESS IN GAME DEVELOPMENT TAKES A CAREFUL BALANCE OF HARD
work, timing, and company politics, whether we like it or not. And yet,
getting ahead in your specific discipline doesn’t always mean doing what
you're told or following advice to the letter,

A few successful developers with some strong, honest opinions have
agreed to share their thoughts on what it actually takes to get ahead in
the industry. Every level of employee is represented, from the most junior
to the executive level. Pseudonyms have been used to allow the authors
to speak their minds unconditionally.

Each company is different, of course, so some of the advice that
follows may feel like it doesn't pertain to you—or maybe you disagree
entirely. But chances are, what these developers have to say will resonate,
even when it comes from a discipline other than your own. To that end,
different positions are represented as well, from the “learn the rules of
the game” approach of the production entry, to the “do it your own way"
approach by the design author.

Don't like what you read? Send your alternate approaches to
bsheffield@gdmag.com. The most convincing [or contentious] responses
may be published on Gamasutra.com. —Brandon Sheffield

PROCREAMMING)

JUST DO IT! CONSTRUCTIVE
DISOBEDIENCE

By Larry Hacker

There are many things you can do to advance your career as

a game programmer. You can excel at the tasks you are given,
you can learn new skills, you can research current technigues, you can
document your code, you can stay late nailing down a tricky bug, you can
follow coding conventions, and you can help others solve problems.

But all these things are simply doing what is expected of you. Let's
step outside the box. How can you advance your career by doing things
that are not expected of you, or even things that you've specifically been
told not to do?

As a programmer, it's not uncommon to see problems that you think
should be fixed, or to see an opportunity to improve some piece of code,

GAME DEVELOPER | MAY 2009

or speed up a process that takes a lot of time. It's also not uncommon for
your suggestion to be ignored, or dismissed with an “it's not broke, so let's
not fix it” response.

Say your code uses a lot of hard-wired checksums as identifiers.
Every time a new identifier is added, the programmers use a command
line utility to calculate the checksum, and then copy and paste it into the
code. Now, it would be vastly quicker if they could do this inside the editor
with some hot key. You suggest this to the lead, and he says, "We don't
have time for things like that.”

Whiat should you do? You should just do it—on your own time, Figure
out the macro system in the editor, hook in the checksum generator,
and link it to a hotkey. Then quietly show everyone what you've done.
The other programmers will be grateful that you've saved them work and
will be impressed with your coding. And the lead will hopefully admire
your initiative,

| say “hopefully” because the “just do it" approach is a potential
minefield. While it's a great opportunity, you do need to be careful that
you know what you're doing. Before taking the initiative [or rather, before
telling people that you did], make sure it's really something worth doing.
If possible, try it covertly first so that if it's not actually worth doing,
nobody will need to know you wasted your time—and make sure that
“your time” is actually that. People have different opinions of what your
own time is and might think any time you spend coding should have
been company time.

“Oh, that? It only took 10 minutes!” That line usually absolves you of
the time-wasting label, and makes you look even more impressive.

AR
A POLITICAL PARTY

By Mr. Confidence

For all you game artists looking to level up in your careers, here is

d :nmpendlum of suggestions that might help you do just that.
forgive s. There comes a time on every project when you
knuw the snlunun toa prubla‘n but you haven't asked permission from your
lead to implement it. Sometimes, it's better to just do it and apologize than to

request permission. You could do worse than getting a warning about going
over your boss’ head, but solving the problern will likely diffuse her anger.

Be the single e. This sounds contrary to what you'd want
to be, but it suggests increased accountability and ownership. This is
exactlg what you want! Make the team dependent on your skills. If you

“own' part of the production process, then they can't live without you,

Intro * first. Well before the end of your project, you should spend

time mvest@u ng other projects at your studio. Take time to meet people on
the project that you want to be on and carve your own destiny. Don't wait for
your lead or HR representative to tell you where you're going next. If there's
one thing makes an impact on a team, it's passion for their project.
During production or even prototyping, always be on
the lookout for opportunities to make a big impact. Finish early. Create a
process. Solve an art issue. Whatever it Is, nothing beats the kudos that
come from being the person who saved the day.

Meet irld. Too many talented artists are content to sit at their
desks and work hard as great employees, but you are doing a disservice
to yourself and to your studio if you aren’t making an impact outside the
office as well. Opportunities to speak at the Game Developers Conference
and other venues offer an opportunity to network and communicate with
the industry as a whole, and the potential opportunities this leads to can
be plentiful. One good art talk generally leads to more.

Circumvent the boss. This is the sneaky, dark secret. Honestly, if
your boss is not helping you advance your career, or if he's making bad
decisions that you think will adversely affect the project, communicate
that knowledge upward. Most of upper management is insulated from
knowing what's happening on the project on the team level. You may do
more than just help the project—you could also be helping your
career in the process. Just make sure Yyou express yourself in a
professional manner, and don't sound like a complainer.

paint of failur

LHTE Wl

EEIS)EN]
SHOW AND TELL

By Daxter Crate

As a game designer, your job is to design games.
As obvious as that sounds, it's easy to lose sight

of and get sucked into having the wrong priorities.

You have to contend with company politics,
unreasonable requests from publishers, the stroking
of egos, and other baloney that has nothing to do with
the game itself.

| recommend taking a vow to make the game the
best game it can be, no matter what that means for
all that other hogwash. Little Jimmy in lowa who
buys your game doesn't know or care about any of
that other stuff, and neither do game reviewers. They
judge the game you put in front of them, so put the
best game in front of them you can.

Onone project | worked on, an outside art contractor
we were using created an elaborate standoff about
fixing art bugs. My company wanted the contractor
to fix all the art bugs on principle. Nice principle, but
Little Jimrmy and all the other lowans only care if they
are fixed, not which politics prevented them from being
fixed. | personally fixed several and recruited an artist
co-worker to fix more on his own time.

In a different situation, we wanted to add a set of sound
effects but had no one allocated to do the sound processing. |
downloaded free sound processing software and learned how
to do it myself because | knew it would improve the product.
These anecdotes aren’t even about game design, but they help
create a culture where “make the product good” is the highest

priority. If you can get other tearn members to buy into this mindset, your
team as a whole will be capable of making that much better of a game—
and that is how you'll be measured in this industry.

In addition to doing good work, try to let the general public know exactly
what you're doing. As a designer, your decisions shape what the player-
experience is. Players will be very interested to hear why you made those
decisions, and that raises your value in the industry outside the company.

The reality is you're probably not going to be at the same company your
whole career. [Although if you do work at an awesome company, staying
put could be great!] It's to your advantage to let the outside world know
exactly what you did. Your company or publisher might not want to see you
self-promote because they might see an advantage in preventing you from
getting credit for your work. Fair is fair though, and what you have on your
side is that the marketing and even the design of your game will benefit from
keeping players in the loop. Make that argument if you get any resistance
from within, and try to let the world know what it is you actually do.

PRLOELVCETOLN
THE UNSPOKEN RULES

By Tracky McProject
E It might sound crazy, but sometimes, shipping something
awesome on time and on budget isn't enough.

Don't forget that as a game producer, you are judged on not only the
results you get, but also how you went about getting them. There are a
lot of ways to interpret the job of a producer, and one thing you'll want
to do early on is make sure You're doing things the way your boss
imagines them being done. A pitfall for people in the

production field is finding out after the fact that
their production style or methods weren't what the
powers that be actually wanted.

And dom't expect them to tell you what they
want right off the bat, either! I've seen them
wait until the project is done and it's employee
review time for it to finally come to light, So

before you get in too deep, spend some time

learning what the boss wants in terms of

process. If she doesn't seem to care either
way, don't believe her. It will come back to haunt you later.

Another thing to watch out for is unspoken rules.
Unfortunately, nobody will tell you about these upfront. |
once watched my boss in the production organization give
some creative feedback on the game’s story, and | naively

assumed this was an acceptable practice. My own small

attempt at creative feedback turned out to be a strike

against me when it came time for a performance review!
My boss explained that he had a rapport with the creative
director that | didn't have. Okay then, lesson learned!

Most of the time, you find out that these rules exist only
by breaking them, but sometimes you can spot them from
someone else’s turmaoil, such as when the co-founders of a
company are fighting. Be very careful when sending emails
on sensitive topics like these, Everything, including your
language and who is on the To and CC line, can turn into a
landmine, When in doubt, talk to folks in person. If you break
one of these unknown rules in conversation, well, at least there
isn't a permanent record of it.

Finally, don't forget why you're putting up with all this crap
to be & producer. For me, it's the guys on the team. One time, the
company | worked for bought a limited number of new manitors
and decided to dole them out based on tenure. It happened
to be my turn to receive one. As the |T guys installed this
big, brand new screen at my workstation, | couldn’t help

WWW.GDMAG.COM

2

1

r

L s

ENEHEEHMEEHREEHEEE

but think about an animator we had just hired, fresh out of schoal. He
was working hard and doing amazing things in Maya using small, crappy
rnonitors. How could | look up from an Excel spreadsheet on my beautiful
wide-screen display while this poor Kid who actually made content was
struggling with 15 meager inches of visual real estate? "Hey, give my
new rmonitor to him,” | told the IT guys, who were happy to cornply. Pull for
your guys like this, and pretty soon you'll have their trust. That might not
get you a promation immediately, but rernember, these are the people
who actually make the game.

AU
SHUT UP AND LISTEN!

By Johnny Foley

Audio always gets forgotten. It always ends up being last—in

everything! Meetings, production, you name it!

It makes sense, then, that audio developers, be they audio
directors, composers, sound designers, or voice directors [all sensitive
souls who strive for quality), are generally evangelists by nature. At
any audio-exclusive gathering, yow'll hear the same war stories and
tales of producers and senior management making horrific decisions
that adversely affect the quality of the audio.

Venting is natural and, | would argue, actually necessary to mental
well-being and survival in video game audio development. Howewver,
that same airing of grievances can often be the downfall of audio
developers who cross over to the dark side and start overtly speaking
their minds and generally losing it with senior development staff,

| have seen and interviewed many of the fallen, those who were let
go for disagreeing with a fundamental product or studio decision because
it affected their audio in some disagreeable way, and who, rather than
waorking in a bustling team atmosphere, now work in a lonely home studio.

Developing audio for a video game is, ironically, intensely
collaborative, not just between the audio, design, art, and code, but [and
this is something that never gets talked about] between producers,
senlor producers, and executive producers, The top brass
often likes to be involved when it comes to casting,
dialogue recording, and directing, and sometimes
composing There's always a corporate creative
guy who owns a studio and thinks audio is his b |
“thing.” There will always be an exec producer |8 -
whose "thing” is dialogue direction, especially if 4 \ 4

s
=

someone famous is involved.

The same thing happens when product and % min
marketing people get involved, too. And, oh yes,
they are also your collaborators. Marketing
and PR always had a presence in voice
casting meetings, and often it was my
job to fight for quality and common
sense casting, while they bounced
around the latest pop stars as would-
be lead characters in the game. The
trick is to view this as a part of the |
collaborative process as an inevitable]
part of development. Get them involved
and listen to their ideas. In all likelihood,
they'll be distracted by a shiny object and will
leave you alone.

Survival Tip: Always treat senior publisher
staff and producers with respect [through
all communication channels), as they are
collaborators, too. Often, they see the bipger
picture on a product with a clarity that you
don't have. Listen to their ideas, try to

22 GAME DEVELOFER | MaAY 2008

understand what they want 10 achieve, and give them a way that it can
be done. Compromise of creative ideals is unavoidable, but it need not
always be negative.

If you can make things happen for them and make what they want
actually happen, they will sing your praises and adorn you with all the
respect you can hope to get, This will ultimately make future projects
a lot easier.

QUADOOVOREEURAENCIE
GETTING THE HELL OUT OF QA

By Bugsy Checker

QA is often thought of as the standard point of entry into game
development for careers outside the programming and art

fields. While this is true for some, it also means you're far from alone

in trying to make your move. Because of this, the most basic rule for

getting the hell out of QA is to get noticed,

Know your producer, and make yourself an asset to her. Find out
what extra work needs to be done, and do it. If the company doesn’t
have an associate producer role, try to forge one by taking on some
of those tasks. Get yourself known as the guy who is interested in
learning new skills and going the extra mile,

Unfortunately, just being good at your job and eager to learn often
isn't enough. You'll need to play politics.

Some companies develop an adversarial culture between QA and the
development teams. Do your best to avoid this. It's going to be difficult to join
developrment if you see each other as the enemy. Beyond that, you'll need to
know people socially. Be friendly around the office, go to company events,
and get to know people in the positions that will be making hiring decisions
when the time comes. The smaller your company, the easiertis.

There are also a few things to watch out for. When taking on extra
tasks and learning new things, don't do it to the point that you're
ignoring your duties in QA. It's also important to not become Free
Work Guy. You don't want to be seen as the person who doesn't need
to be promoted because, after all, he'll do all the extra work for free,
Do as much as you can, but don't hesitate to make it clear that with
your QA responsibilities, you can only do so much. And don’t overdao the
socializing. You want to be friendly and easy to talk to, but not a social
butterfly who can't walk to the bathroom and back without chatting for
30 minutes about the last episode of Battlestar Galactica.

Assuming you can walk these lines effectively, you should be in

good shape, but nothing is sure in this world. While working at a

small company makes it easier for a QA staffer to get noticed,
the budget there may be too lean to accommodate an associate
producer or junior designer position, meaning getting
out of QA/could require you to jump two or three steps
up into a role that's a little out of your league. Larger
companies, on the other hand, are more likely to have
one-step-up openings, but that also means more
competition and more distance between you and the

people doing the hiring,

Naysaying aside, QA is still probably the
best place to get a foot in the door. You'll
develop familiarity with development cycles;
working as a lead will give you important
experience managing people and schedules;

and creating test plans and scripts develops your

technical writing abilities—all of which are essential skills

for both game producers and designers. And, of course,

the longer you're in the industry, the more people you'll

know, and the more connections you'll make. Don't

assume that the promotion you're hoping for will be at
the company where you're currently working.

THE MAD DOCTOR WANTS YOU TO APPLY...

[4

TALENTED GAMES FOLK APPLY!
WWW.NEVERSOFT.COM

R OIS T IN.0rtem
J AMES C DM STOT LK

deadlycreatures

rainbow/thaqg

24 GAME DEVELOPER

DeADLY CREATURES IS A THIRD-PERSON ACTION-ADVENTURE GAME ABOUT

the brutal lives of two creepy predators: a tarantulaand a scorpion. The game’s
basic concept makes it a risky creative challenge for any development team,
but we at Rainbow/TH[) faced a few additional risks.

First, we planned for the developmentteam to be small and built from the
ground up, often through external hires. Second, the title was planned for the
Nintendo Wii only, which was a new console at the time and had an unproven
controller. Third, the title was new IF. Fourth, Rainbow has traditionally made
racing games, so the |IPwas a departure from the core competencies of our
personnel and toals. In short, or as | oftén sum it up: new team, new IF, new
genre, new platform, new controller.

These risks were large and pervasive. To be successful, we needed to think
outside the "Rainbow” box and question our own status quo, then identify and
implement new production processes and development technigues that would
mitigate these risks.

This led ta many key decisions [or gambles, depending on your point
of view) that were made early in the project, each of which shaped bath our
journey and the end result.

whatwent right
] ITERATION, ITERATION, ITERATION. One key decision we made early was

1 to focus on building tools that would minimize content jteration time.
We implemented a common framework that allowed content changes within all
tools to be synchronized with the game in real time. At a minimum, any asset
saved by a game developer would be automatically propagated to the game.
More advanced tools could leverage the framework directly to implement real-
time editing features, for example, editing entity properties within the level
editor and synchronizing the level editor's camera with the game's camera.

This feature quickly liberated us from our traditional development
processes. Developers could find a more natural development rhythm
since they could iterate ideas without penalty. Also, it became easier for us
to contribute in more areas, as the tools were easier to learn and use, and
facilitated collaboration.

We embraced scripting across all disciplines, which caused a dramatic
shift in how we developed the gameplay. Programmers wrote most of the game
code in Lua, which allowed us to iterate the Al, control schemes, and so on, in
real time. We complernented this with a custorn visual scripting system, which
was used heavily by all disciplines to create level content, such as tutorials,
encounters, boss battles, cut scenes, and objectives.

| maAY 2009

An unintended benefit of the real-time editing
features was that they led 1o less complex tools. In
the past, developers would iterate content extensively
without reviewing the updated versions in the game
because launching the game was time-consuming. To
compensate for this bottleneck, they would request
complex, specialized features that maximized their
productivity with a certain tool. But as users became
comfortable with real-time iteration, they began to prefer
simplicity and stability over depth of features, Most
importantly, they didn't perceive the absence of deep
editing features as a hindrance.

2] TEAM VISION. We assembled our core
development team carefully, with the intent
to develop a game based on a new IF. Before the idea
for DEADLY CREATURES existed, the team established

its identity and vision, which guided us through
development. Here's an excerpt taken from a best
practices document written soon after the team
was formed:

“|t's vital that the entire team rally behind a single
vision for the tools and development processes. It's
important early on to unify the key leadership of the
project behind a single vision, as this gets all team
members invested in the solution. The team must then
hawve the discipline to stick to this vision. Also, as the
team grows, we must evangelize this vision to all new
team members.”

Put simply: Agree on a vision, then execute it. Our
team took this philosophy to heart, and it manifested in
many forms. For example, we were able to work fluidly
within a flat team structure throughout development,
and relied on a common vision as our primary guide,
rather than a traditional management staff. This
empowered us to solve problems ourselves. Also, we
persevered through difficult development problems
and iterated extensively until we found solutions. By
accepting that successes generally follow failures, we

r : WWW. GDMAG.COM 25

— ¢

e
eatures

were able to stay focused on moving forward inthe
midst of trying circumstances.

Our success was contingent on setting high
standards for both ourselves and our potential hires.
We carefully selected team members wha catld
understand, champion, and execute our team vision. Of
course, this slowed the hiring process, but we accepted
that our short-term hiring pains would lead to lang-term
development gains.

U

] GENERALISTS PHILOSOPHY. When searching
3 for a new IP, we looked for one that would allow
us to keep our team small. We wanted to maintain our
team chemistry and towork in a fluid development
environment, while also allowing each of us ta have a
broad impact on the game.

To succeed, each person would have to'shoulder
mare responsibility and take on ancillary roles. We also
had to ensure thateach ofour new hires was willing and
able to work in this kind of enviranment.

Strike teams were used throughout development,
which forced each of us towear many hats. The strike
teams were always inter-disciplinary and were generally
responsible for developing gameplal and combat
mechanics, scripted encounters, cUt.scenes, and
boss battles. Depending on how the strike teams were
constructed, individuals would pick up and rin with
different responsibilities. We even had some talented

P

i

&

=

-

E GAME DEVELOPER | MAY 2009

postmortem

memdbers of our DA department participate. They went on to create some of the best encounters
in the game.

Dn the programming side, we took this concept a bit further. We abolished the roles of game
pregrammer, technical programmer, and tools programmers, and redefined ourselves collectively
és generalist programmers. In our definition, a generalist programmer is responsible for
designing and implementing end-to-end features, from the tools through the gameplay. We relied
on teamwork to fill in the gaps, as each programmer had areas of expertise that could be tapped
when others were faced with challenges.

Hiring programmers became difficult, as many applicants didn't fit the role, or preferred roles
that offered specialization. However, the results of this structure were fantastic, as it fostered
levels of communication, teamwork, and productivity that exceeded our expectations.

] CONCEPT ART AS COMMUMICATION. In preproduction, we homed in on a painterly art style
4 that complemented our game design and the technical constraints of the Wii.

Conceprart was the linchpin in communicating the art style, setting standards, and
measuring quality throughout development. Our goal was to achieve the look and tone of the
concept pieces directly within the game experience.

weused & mix of internal and contract artists to visualize a diverse cross-section of the
game’s environments. Commissioning work from a wide variety of sources helped us to digest
and jAterpret our vision, and allowed us to generate a large number of concept pleces quickly. The
final concept pieces fedinto all aspects of development and helped us set the tone for the game.
They inspiFed ideas for IeVebdesign, creature design, and story presentation. We used the pieces
to communicate our vision to marketing, sales, product development, and the press.

'Sia testament o the talentof ourartists that there are many areas of the game that met or
exceeded the original concept pieces they were based on, despite the technical limitations of the Wil.

Concept art wasn't just forsupport and visualization. We continued to use it as a resource
throughoutproduction. Our internal concept artists created large and exquisitely detailed texture
scripts for @very imaginable material: rock, wood, sand, rusted metal. These provided a consistent

yet stylized palette from which our artists could pull 1o add texture ta our
diverse environments.

] REMOVING BOTTLENECKS. Cantent creation bottlenecks can be costly
5 when they prevent game developers from working. In addition to
content iteration time, we identified and resolved two key bottlenecks that
were the source of significant downtime in previous projects,

First, a developer may be unable to work because the tools are broken [in
this context, we consider the game tobe part ofthe teals]. This situationcan
be especially costly, as one bug in the tools can bring the'entire team taa
standstill. We believed this to be avoidable and set a goal never to break the
tools. We created a formalized tools release process, which the programmers
followed throughout the project. In a nutshell, all the tools were released
simultaneously on a regular schedule, once a week. The tools were well
tested and documented prior to each release. If a critical bug slipped through
testing, we immediately released an update containing a bug fix.

The benefits were many. For one, we consistently released stable
tools, which helped to foster a trust between the programmers and
other developers. Additionally, the total number of support requests for
programmers declined, as the tool user's first instinct was not to blame the
tools indiscrirminately for every issue that occurred. When an issue.did ogeur,
it was easy to determine if the tools contained a bug and which release
introduced it, or whether the issue was caused by user error or bad data.

Additionally, a developer may be blocked while waiting to edit a level
that is locked by another user. To streamline access to level data, we added
support for fragments to the level editor.

A fragment is a file that contains level data. Each level includes any
number of fragment files, and each fragment file can be checked out and
edited independent of other fragment files. By storing data in multiple
fragments in a manner that reflected our workflow, we were able to greatly
reduce contention over access 1o level data.

As a side note, we were also able to include a fragment within multiple
levels, which facilitated content authored in one fragment to be used in

WWW.GDMAG.COM

— ¢

i

6 full-time and 1 contract

animator

10 full-time and 5 part-time

Lt B

1 full-time and 1 part—tlme

audio developer

2 full-time and 2 part-time
A

e
eatures.

any or every level in the game. This was invaluablé for auﬂ‘mnni shared data for the Ul, PC,
MNPCs, and so forth. .
what went wrong

] CREATIVE CONSTRAINTS, When pitching DEADLY I:HE ATURES, the IP stood out because of how
1 different it was from other products wé gxpected 1o sée on'the Nintendo Wii. Many action-
adventure games take place in fantasy or sci-fi settings, and those that take place in realistic
settings usually have a hurman protagonist, In DEAOLY CREATURES, we-aimed to craft a realistic
world and believable behaviors for the tarantula and scarpion. This prevented us from leveraging
many of the design patternsin the standard action-advienture toolbax,

By choosing non-human, non-speaking, nan-bipedal pretagonists, we created an emotional
barrier that could hinder the player from connecting withra traditional narrative experience.

Our solution was to present an overarching storyvia non-traditional means. As a scorplion or
tarantula, the player becomes a mostly passive participant in'a story told through the dialog of
human NPCs and the details found in one’s surroundings.

Adhering to a naturalistic tone significantly affected the gameplay mechanics. The
player's expectation is that a tarantula can't beat up insects with a crowbar, and a Scorpion
can't solve puzzles by pushing buttons. We had to redefing our expectations for melee and
ranged combat, as insect combat generally revolves around slow and deliberate grappling
rather than the punching, Kicking, and throwing. Dealing with puzzles and collections was a
challenge, as we strived 1o avold any behavior that seemed tog' intelligént or Unrealistic for
these creatures. :

Level design was tricky, too, SINCe we were designing fof creaturgs that can defy grawity and
walk on any surface. A completely open world withaut any restrictions, progression, of guidance
would have been unfocused, so we had 10 define Copstrainits whidhdirected theplayer hut
which still meshed with our design goals. We started toreld onhuge setpieces, like a rusted-out
truck, which became unigue and memorable, but required a lot of creativity to trans fopminto
compelling game experiences.

Although we feel that we lived up to the challenges and constraints posed by ourcore
concept, we had to iterate the design throughout developrmient and rework content multiple times

along the way,
2] SOLIDIFYING GAMEPLAY EARLY. We recognized the creative constraints we faced, but
underestimated the complexity of crafting a balan€ed gameplay experiente. Thisled us
to deprioritize work on the gameplay during preproduction; It's not that the work wasn'ta high
priority, but we had many other pressing risks ta address, such as minimiZing iteration time
within the tools, developing gameplay design tools, updating our topls to support the Wii, and
researching the Wiiremote. We distributed resources to tacklethis broad set of fisks early. In
retrospect, this left our gameplay prototyping efforts understaffed for much 6f preproduction.

designers

1 part-time and 4 contract
concept artists

4 full-time and 2 part-time
OA testers

1 full-time and 2 part-time
producers

9 full-time and 1 contract
programmer

E GAME DEVELOPER | MAY 2009

postmortem

This problem had a trickle-down effect on the rest
of development. We began production before all our
gameplay was solidified, which forced us to approach
some development tasks out of order. For example,
we began building all the levels before the gameplay
mechanics were finalized, which led to bottlenecks and
rework as mechanics changed. Consequently, the project
plan fluctuated rather significantly, as unplanned rework
required us to reorganize tasks and resources to minimize
the negative impacts, We also weren't able to balance the
user experience until later in the production, which forced
us to refactor or scrap content that had already seen
significant development time,

Allocating resources differently during preproduction
may have led to better results—or even worse. It may be
the case that we simply tackled too many risks with the
project, given the resources and time available. However,
there are many smaller decisions we could have made
that, cumulatively, would have improved the efficiency of

how we developed the gameplay.
3] BUILDS. During preproduction, we decided to
delay putting the game on DVD in order to free

up resources for other tasks. At the time, we didn't
have enough resources to address all our Key risks,
and this was a calculated risk that seemed reasonable
given the alternatives. We also planned to deliver most
milestone builds in a rough, in-development format
rather than in a polished, self-directed format.

The result, inevitably, was that we received more
requests for builds than we anticipated, and we
were unprepared to fulfill them. While we created
regular builds of the game throughout development,
their frequency and quality was insufficient to meet
demand. This inhibited our ability to show off the game
to the press when unexpected opportunities arose.
When we did assemble builds on short notice, it slowed
our momentum and caused a ripple effect on the rest
of development.

The DEADLY CREATURES T@am.

Spending resources on bulldsis analogous to allocating
a budget for marketing and insurance. It's tempting to cut
back on these costs, but it can end up costing Yol more
inthe long run, That was certainly the case for us. We now
believe that producing multipte, high-quality, self-directed
builds throughout development would have actually
reduced our costs, while also putting US in.a better position
to market our product internally and externally:

4] GRAY-BOXING. Dne of our development poals was 10
use gray-boxing to maximize iteration and minimize
rework. During development, it felt like we were executing
this goal successfully. In hindsight, we could have
leveraged gray-boxing more often and more effectivily.
We had used gray-boxing techniques on previous
projects, but never to the extent that DEADLY CREATURES
required. We were effective at creating gray-box
content for environments, animations, cut scenes, and
gameplay, but we struggled to create and evaluate all
our gray-box content in the context of working levels
with complete gameplay mechanics. Various constraints
often led us to review gray-box content in isolation,
and then move on. When we were able to review the
content in the proper context, we received better critical
feedback, which improved quality and reduced rework.
Most gray-boxing used in environments and cut
scenes was created by an artist or animator under
a designer's direction. The quality of this work was
proportional to how effectively the designers and artists
communicated with each other about abstract concepts.
In the future, we want to have designers provide
the initial gray-box versions of their environments and
cut scenes. We expect this will empower them to iterate
quicker and generate results that more accurately
reflect their vision.

] UNDERSTAMDING THE Wil REMOTE. Leveraging the
5 Wii remote toits full potential was a key design
goal. However, we began preproduction before the Wii
had been released, and our imaginations led us to devise
overly ambitious control schemes. When we were finally

able to prototype the control schemes on the Wii and play
other Wil titles, we realized that our expectations were
beyondthe capabilities of the technology.

Withahé Wii remote inhand, we spent significant
time trying to bend it to ourwill: After much
expesimintation, we eoncluded that complex gesture
patterns were difficult to recognize with an acceptable
level of accuracy. They also required significant design
constraints, as recognizing such patterns required that
we clearly identify the beginning and end of the gesture.

We eventually defined design constraints to help
us avoid creating usage patterns that would punish
a userfor ‘mashing” gestures, and to avoid creating
control mechanics that could be misinterpreted by our
software. We limited the remaote’s gestures to cardinal
directions—up, down; left, right, forward, backward—
and the Wiinunchukto non-directional shaking, as
testing proved that users can make these gestures with
a high degree of accuracy.

We then created Usape scenarios that required a
pattemn of timed cardinal gestures with ample delay
between each gesture. We also tried to map all cardinal
directions to avalid input, so if players gesture-mashed,
they would still get a satisfying experience during combat.

Reaching this point required significant iteration
in design and implementation, which impeded the
development of our gameplay and combat mechanics.

no arachnophobia

#» Our mostsignificant successes came when we
opened the floor to new ideas, and tackled risks head-on
in novel ways. The game was a key achievernent for our
team, but also for our studio as a whole, since many of

us at Rainbow have always wanted to expand beyond our
core competency of making racing games. We are all very
proud of DEADLY CREATURES and are confident that the risks
we took In making it resulted in a fresh, surprising, and
high-quality game that we hope our audience enjoys.)

JAMES COMSTOCK isa technicol director at RainbowTHQ.
Email him at jcomstock@gdmag. com.

GAME DATA

FUBLISHER
THQ
DEVELDPER
Rainbow

NUMBER OF FULL-TIME
DEVELOFPERS

LENGTH OF DEVELOPMEN

& years

rarn, Nvidia Geforce 7300+, RAID O hard

drives

SOFTWARE

(2, Flash, Adobe
Cakewalk Sonar, Somy Sound Forge,
Digidesign Pro Tools HD

Bink, FMOD, Havok, Lua

FLATFORM
Hintendo Wi

WWW.GDMAG.COM

Perforce ‘ Fast Software Configuration Management

PAGT

PERFORCE

SOFTWARE

Introducing P4GT,

a productivity feature of Perforce SCM.

The Perforce Plug-in for Graphical Tools, PAGT, makes version control
painless by seamlessly integrating Perforce with leading graphical tools.
Drop-down menus allow access fo Perforce from within 3ds Max, Maya,
Softimage XS|, and Adobe Photoshop.

Art and development teams can standardize on Perforce to version and
manage both source code and digital assets. Enhanced collaboration
during the design process helps teams to work together in real time to
release small patches or create whole new worlds.

PAGT is just one of the many productivity tools that comes with the
Perforce SCM System.

Download a free copy of Perforce, no questions

asked, from www.perforce.com. Free technical support is

available throughout your evaluation.

INTEL-SPONSORED SUPPLEMENT

-

Launch of Intel® Graphics

Performance Analyzers: Virtual
raphics Support for Your
Game Studio

You have an hour to kill before your next class. What to do? Study for
your physics test? Nah, you whip out your lightweight laptop and
continue the cool new game you were playing last night!

The shift from desktop PCs to laptops is creating new
opportunities for game companies to expand
! -~ *:....-v-""_‘ their customer base. Gaming on the go—
N anytime, anywhere—is becoming commonplace.
Game developers who once made games that
were considered exclusively “high end” are now reaching a
broader audience by making their games scale better across
platforms. In 2008 mobile integrated chipset sales outsold
discrete desktop graphics card sales for the first time in history. By 2013
mobile chipsets are expected to outsell discrete graphics cards by more than
three to one.! As these numbers continue to
One of the characters grow, developers need tools to help them quickly
from Gas Powered Games optimize gameplay to reach this broader market.
new game Demigod.

New tools, such as the Intel® Graphics
Performance Analyzers (Intel® GPA), are helping developers optimize
game code for integrated graphics, so they can hit the performance
targets needed while still delivering the great visuals their
customers want.

Unlike some other tools on the market that were really intended
: for internal use and don't fit the needs of customers, Intel worked with
/, \ anumber of game companies to identify the features game developers
ﬁ needed most, and designed the tools specifically to fulfill those needs.
% “This is just the start,” said Dave Shinsel, Intel GPA engineering
manager. “We have a bunch of cool features we'll be implementing. We
continue to listen to our customers; they tell us the features that are
most important, and we build those first."

. PC Craphics } Updated Edition 40 eport. Avallable at www.mercuryresearch.com

REPRINTED FROM INTEL® VISUAL ADRENALINE ISSUE NO. 3, 2009 1

INTEL-SPONSORED SUPPLEMENT

Mark Randel, president and chief technology Taking advantage of the opportunity to sell
officer of Terminal Reality, said his team used games into the mobile chipset space makes sense
Intel GPA extensively on their upcoming title only if the effort doesn't substantially increase
Ghostbusters™*: The Video Game. Based on the development time. Randel reported that his team

smash hit motion picture franchise, the new game was pleasantly surprised when Intel GPA helped
reunites theoriginal cast members not only with make this a reality. “The Intel Graphics Performance
voice work, but also within the story line. The game Analyzers helped us mainly by reducing
uses graphics to enhance both humor and fright development time, since the tool provides a focus
and is meant to appeal to all key market segments. on specific problem areas. It also allowed our game

to support the widest possible audience, by being
able to run on
Intel® Graphics. The
benefit is mainly cost
savings; the tool helps
the engineer focus on
the problem areas
versus trial and error
experiments. You can
locate problem areas
quicker than just
turning visuals in the
game on and
off” The Intel GPA
consists of two tools:
the Frame Analyzer
and the System
Analyzer. Both tools
sit on a network-
based architecture,
making data collection
less intrusive and
more suited to remote
analysis than similar

Figure 1. User interface of the Intel® Graphics Performance Analyzers' Frame Analyzer tool.

Early on, Randel knew he wanted to support analyzers on the market. Because Intel GPA
more than just the high-end desktop space. “Intel performs the calculations on a different machine
CPA is a great first step into optimizing games than on the one running the game, developers don't
for integrated graphics,” he said. “With the client/ have to worry about tool overhead.
server approach, you can measure the system
in real time with minimal overhead to the target The Frame Analyzer (Figure 1) allows developers
application. For example, you can launch your to inspect and adjust graphics APl-level interactions
app. move to a problem area, and see where on a frame-by-frame basis. This capture- and
your time is going from buffer locks to state playback-based tool shows detailed frame
changes, and even down to the chip level if that performance, with draw calls visualized on a GPU
is what you need to get it running faster.” duration graph. Using the scene-overview feature,

which gives a spreadsheet view of the same GPU

REPRINTED FROM INTEL® VISUAL ADRENALINE I1SSUE MO. 3, 2009 2

information, developers
can drill down from the full
frame to single draw calls.
Full-render state overrides,
shader overrides, and other
high-level experiments are
supported with real-time
feedback. For example

a developer can modify

a shader directly in the
tool and immediately see

if that change affected

the frame time, region
time, or draw-call time.,
Similarly, the developer
can modify the DX state or
run a high-level experiment,
such as a simple pixel
shader, and immediately
see if that change affected
the frame time, region
time, or draw-call time.

Analyzer tool.

The SEGA development team working on
Empire*: Total War used the Frame Analyzer
extensively. Chris Southall, technical director
at SECA, said, "We have mainly used the frame
level of Intel GPA. We have made changes to
the level of detail in the game, made some art
changes, optimized some shaders, changed
draw order, and reduced overdraw. Using
the system-level debugger, we have found a
few bottlenecks with the way we were filling
vertex buffers, which have also been fixed."

The System Analyzer (Figure 2) is a high-level,
real-time performance tool with game pause-and-
resume capabilities that provides a
system-level footprint of game performance
as well as a single-frame-capture button that
transitions to the Frame Analyzer. Developers can
experiment with Microsoft DirectX* state overrides,
as well as customizable drag-and-drop metrics.

REPRINTED FROM INTEL® VISUAL

ADRENALINE ISSUE NQ. 3, 2009

INTEL-SPONSORED SUPPLEMENT

on —— CPU | Likzefion

ol BRSNS u LN s TR N W S
CPU 0 Uikt

A ey

Atemory Bandsadih [Fesd] Aymraga I3

Figure 2. User interface of the Intel® Graphics Performance Analyzers' System

Bartosz Kijanka, vice president of engineering
for Gas Powered Games, said his team relied on
the Intel GPA tools for the company’s forthcoming
title: Demigod*. A fast-paced, real-time strategy
game, Demigod blends role-playing elements
with tactical combat. Players can choose from
a variety of wildly customizable demigods,
who fight in ancient battle arenas for the
right to ascend into the pantheon of gods.

Kijanka was intent on supporting integrated
graphics chipsets from the start, so the Intel GPA
tool was invaluable. “The System Analyzer helped us
identify bottlenecks in the graphics pipeline through
a few simple and easy-to-understand graphs,” said
Kijanka. “The Frame Analyzer is an amazing tool
for drilling down deep into our engine’s render
pipeline and identifying individual pieces of work
that may be disproportionately expensive. What is
particularly impressive about this module is that
the Frame Analyzer allows us to test possible
fixes and to see the results immediately.”

INTEL-SPONSORED SUPPLEMENT

Using Intel GPA significantly reduced
the cost of identifying and fixing graphics
performance problems on the PC, according
to Kijanka. “Many problems are costly
to repair because they are very time consuming
to diagnose,” he explained. “They are time-
consuming because they often require
creation of project-specific instrumentation or
project-specific tools. Spending less time on
such tools allows us to spend more time on
actually making the games, which is something
every game developer wants to do.”

The System Analyzer allows developers
to run experiments that pinpoint common
problems. The simple pixel-shader-override
mode replaces every pixel shader with one
that writes a constant color to the render
target. A large increase in the frame rate after
enabling this mode means that the game is
spending a large proportion of time in either
pixel shader compute or stall conditions.

The 1x1 scissor-override mode causes
all pixels to be discarded after the pixel

REPRINTED FROM INTEL® VISLIAL

ADRENALINE ISSUE NO. 3, 2009

shader has run, before the pixel
values are written to the render
target. A significant increase in

the frame rate after enabling this
mode means the pixel-fill rate

may be a potential bottleneck.
Developers can then examine the
operations, such as stencil and alpha
blending, in the graphics pipeline to
determine optimization potential.

Potential performance bottlenecks in
the use of texture maps can be identified
by using the 2x2 texture-override
mode, in which all textures for a scene
are replaced with a simple 2x2 pixel
texture. If the override mode significantly
improves the frame rate, the GPU may be
bottlenecked on texture memory reads. If
the total texture size is high for a scene,
developers may want to consider reducing
texture bandwidth in various ways.

The System Analyzer also collects
various CPU and GPU metrics while the

INTEL-SPONSORED SUPPLEMENT

/ draw-call highlighting for
the draw-call selection
set, textures, and so on.
0y --"t\! The visual element of
the tool suite allows any
game developer to pick
up the tool and use it
effectively immediately.

“PC developers have
never had such a reliable,
flexible, and extensive
tool set for identifying and
resolving complex graphics

performance issues,” said
Kijanka. “Intel GPA collects
and presents a breadth and
depth of information about

application is running. Developers can analyze the graphics performance that we have never
results and perform various “what if” scenarios to previously seen for the PC platform. Our games
help isolate performance bottlenecks. The metrics perform much better, across a wider range of
data are stored in a local database and can be hardware than ever before, including many graphics
displayed in chart form for interactive analysis. parts with high market penetration that we have
Developers can pause the application and perform traditionally not had the resources to optimize for.
on-the-fly modifications without changing the This means more customers can play our games and
application code. have a great, high-frame-rate experience, even on
older or lower-cost PCs, and we definitely benefit
Intel's software team worked hard to create an from that.”

intuitive interface for the tools. For example, the
Frame Analyzer displays all DX data in visual form For more details, go to:
when possible. This includes the render targets, www.intel.com/software/gpa *

To get more great articles like this one, (. 1B

subscribe today to Intel® Software Dispatch I S U (ll'lte!
for Visual Computing at:
www.intelsoftwaregraphics.com ADRENALIN Software

Intel does not make any representations or warranties whatsoever regarding quality, reliability, functionality, or compatibility of third-party vendors and
their devices. All products, dates, and plans are based on curment expectations and subject to change without notice. Intel, Intel logo, and Intel Core are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others. | Copyright ©2009. Intel Corporation. All rights reserved, 04/09/SM/CS

REPRINTED FROM INT

REPORT FROM THE SHOW FLOOR

GAME DEVELOPERS
CONFERENCE 2008

ENABLING SMALL TEAMS WAS THE UNDERLYING MESSAGE OF MANY OF THE GDC 09 EX-
HIBITORS. FROM PROTOTYPING TO FULL-SCALE DEVELOPMENT, HERE IS A CROSS SECTION OF
SOME OF THE TOOLS THAT ALLOW DEVELOPERS TO DO MORE WITH LESS. —Jeffrey Fleming

VIRTOOLS 5
30VIA
http://a2.media.3ds.com

The Virtools game
prototyping and game
production engine has been
updated to version 5. The
engine now features Lua
integration and blend shape
support for fast integration
of art and animation assets.
The Virtools Scripting
Language also adds Lua
support, Games created with
the engine can be deployed
on Xbox 360, Nintendo Wii,
PC, Mac, or the Web.

SOUNDSEED AIR
AUDIOKINETIC
www_audiokinetic.com

Audiokinetic is continuing
to expand on its SoundSeed
family of sound generators
for Wwise. Takinga
synthesis-based approach,
SoundSeed promises to
enable continually variable
sound effects while reducing
file sizes to a minimum.
SoundSeed Impact is
already available and is
focused on generating short
transient impact sounds
such as clangs, thunks, and
crunching noises.

At GOC Audiokinetic
was showing the upcoming
SoundSeed Air, which models
a variety of wind effects
like the sweep of an arrow
or the thwip of a passing

bullet. It s also able to
realistically model ambient
wind effects and gives
audio designers full control
over wind speed, direction,
and sound reflectors in the
environment. SoundSeed Air
uses parametric synthesis
to create its wind effects in
real-time and requires no
source files. Audiokinetic
plans to make SoundSeed Air
available later this year.

SUBSTANCE AIR
ALLEGORITHMIC
www.allegorithmic.com

Replacing traditional bitmaps
with procedural texture
generation can substantially
reduce file sizes as well
as Open up new creative
opportunities. Currently
under closed beta testing,
Alegorithmic's Substance Air
is the latest iteration in the
company’s line of texturing
middleware. Utilizing both an
editor and a runtime engine,
Substance Air allows artists to
freely mix 5VGs and bitmaps
with procedural textures as
well as create dynamic assets
that can be altered by end
users or by the game engine.
“There is a direct
relationship between the size
of a game and the money
itwill generate in the end.
Especially in the case of free-
to-play games,” Sébastien
Deguy, ceo of Allegorithmic

told us. “Gravity is one of our

E GAME DEVELOPER | MAY 2009

clients, and by reducing the
size of the game textures,
they've seen the number of
players actually entering the
garne after they registered
on the web site go from 16
percent to 26 percent. That
means they've seen less
people abort downloading a
garme because it was taking
too long. Players want to
click and play immediately.”
Allegorithmic plans to make
Substance Air publicly
available within several weeks.

AUTODESK
KYNAPSE 6

AUTODESK
www.autodesk.com

Autodesk gave GDC
attendees an early look

at their upcoming release

of Kynapse 6. "It doesn't

do decision making for

you. We believe that is

very integral to the game
play and we leave that to
the game designers and
programmers to decide

how it's implemented. What
Kynapse does is spatial
awareness, so that a
character is fully aware of

a 30 enwvironment with true
30 dynamic pathfinding and
team coordination,” Leonard
Teo of Autodesk told us.

The Al tool features new
*flat" pathfinding technology
that enables simplified data
generation workflows, flexible
runtime data streaming, and

the adding of new paths at
runtime. Authoring is made
easier by Kynapse's new
remote debugging tool that
enables game variables to be
inspected with an interactive
30 view. The debugging
tool also allows recorded
sequences to be played back
with full access to the datain
the recorded files.

Kynapse’s hierarchal
30 pathfinding gives NPCs
the ability to plan paths
for maps that extend
beyond what is loaded
into memaory. Using a
level of detail method,
paths are computed at a
low level and then refined
as more data becomes
available. The company
also announced that it
is working on integration
between Kynapse and
NaturalMotion's morpheme
animation middleware.

GAMEBRYO
LIGHTSPEED

EMERGENT
www.emergent.net

Emergentis responding to the
increasingly fluid nature of
game creation with the release
of Gamebryo LightSpeed.
Using a development
framework built on Gamebryo
technology, LightSpeed
features a new data-

driven entity and behavior
architecture that enables
changes to game assets to be

- "J . 3
goc
1
iGame Developers

Conferences l

reflected in real time without
the need for recompiling,

Montgomery Markland
of Killswitch Entertainment
spoke with us and described
using LightSpeed to
prototype his studio’s new
project, BEAT, in eight days.
“LightSpeed lets you rapidly
prototype and rapidly iterate.
The ability to do that reduces
your risk because you can
pitch a lot easier. You're not
Just pitching on paper, you
can show people something
that they can grab on to and
understand and see the
aesthetics of,” he said.

The LightSpeed
Toolbench IDE is designed
to host all tools as plug-ins,
enabling developers to use
pre-integrated tools out of
the box and facilitating easy
integration of custom-built
tools. |t also supports a
number of scripting systems
and includes a full-featured
Lua debugger tool as well.
LightSpeed's Entity Modeling
Tool enables the easy
creation of new data-driven
game objects by mixing
parent entities. WorldBuilder
is a level editor integrated
into the Entity Modeling Tool
that allows developers to
model entities, define their
properties and behaviors,
and then see the results
reflected immediately in the
game world.

LightSpeed also includes
drag and drop positioning of

objects, exporters forindustry
standard DCC tools, built-in
support for PhysX, as well

as support for the variety of
Emergent Partner technologies
that are available,

*The most pernicious
problem that faces content
generators is that pipe
between the tools and the
platform. That is the biggest
bottleneck on every project
and LightSpeed completely
solves that problem. It
totally levels the playing
field. In the past it was like
this guy is playing a guitar
and this guy is driving a
bulldozer. Now everybody
is playing instruments
on the team. Everybody
is collaborating with the
same tools, with the same
language. |t means the
producer, the designer, the
artist, and the programmer
can all work based off the
same platform. It's almost
like it gives us a real-
time, straight 1o platform
whiteboard,” Markland said.

BLADE 3D GAME
ENGINE

BLADE3D
www.bladegamesworld.com

Blade3D says its game
creation platform is a fast,
artist-friendly engine for
creating 30 games for
Windows XF, Vista, and Xbox
360 [requires XMNA Creators
Club Membership for Xbox
360 deployment). Visual
programming tools coupled
with Blade 30's real-time
design environment allow
for changes in editors to be
reflected instantly in the
game world. Game logic can
be authored using C# based
scripting or a graphical
programming language
called Visual Logic Diagram.
Blade has also created a
marketplace for creators to
buy and sell game assets for
Blade30. Blade's marketplace
includes models from the
Daz 30 catalog and is also

positioned with Vyk Games
in Shanghai to provide full
outsourcing Services.

“The way we've structured
our business, we want to
be there for the developer,
wherever they are. 5o if
they're a hobbyist, or they
have an idea for a game but
they're not an artist, they
can go to our marketplace.
If they're an indie guy and
have some programmers
but need an engine, there's
Blade. If they're a professional
developerand have a big
project but the cost of the
production is going to be too
high, we've got the services
component. We want to scale
it depending on who needs
what and make it affordable,”
Torwy Garcia, then CEQ of Blade
30 told us.

HEROENGINE 2009
VOLUME 1

SIMUTRONICS
www heroengine.com

For years Simutronics has
been using a decentralized
model for developing and
managing their MM0s by
giving their GameMasters
the ability to work offsite
and collaborate over the
network to provide content
and resolve support issues.
The company has embedded
this methodology into its
HeroEngine development
platform that allows teams
to work concurrently from
multiple locations on a
shared game world that is
running in real-time, Game
assets are drawn from a
central repository, and
HeroEngine's data object
model enables definitions
that are changed in realtime
to be replicated system-wide
without recompiling. Content
in a running game can also
be updated without the need
to bring servers down.

“Our database is
morphing in real-time so
we don't ever have 1o shut
anything down or manage

migrations of databases
between versions. That's a
lot of friction to pull out of
the development process,”
David Whatley, president of
Simutronics told us,

HeroEngine can handle
100,000 players in a single
shard, the company claims,
and its Seamless World
technology allows developers
1o link together unlimited
virtual areas of any size.

The HeroEngine backend
supports both Windows and
Linux servers.

"MMOs cost way too
much time and money to
build, taking four years and
tens of millions of dollars,”
Whatley said. “0One of the
reasons that there's not
a lot of innovation in the
MMO space is because you
can't afford to take much
risk under that scenario.
Going forward, this kind
of tool is going to be great
for allowing people to
build out a small amount
of content with some
innovative features, put it
in to the marketplace, see
if it catches on, and then if
it does, start iterating really
fast on content and pushing
it out into the environment.”

HAVOK Al
HAVDEK
www. havok.com

avoid traffic jams. The
software is fully extensible
and customizable as well
as being multithreaded and
platfarm optimized.

IISU 3D GESTURE
RECOGNITION SDK
SOFTKINETIC
www.softkinetic.net

Softkinetic's iisu platform
provides tools and APls for
developers looking integrate
3D gesture recognition

into their games. Working
with infrared depth sensing
cameras, lisu supports
automated camera
configuration and can classify
and filter data coming from
the camera. The software

is able to identify and track
individual body parts allowing
for recognition of hand and
finger gestures or full-body
movement. The SDK promises
to speed development by
allowing creators to focus on
gameplay rather than pesture
recognition algorithms.

BLUE MARS
SOFTWARE
DEVELOPMENT KIT

AVATAR REALITY
www.avatar-reality.com

to support a variety of
business models including,
free-to-play, subscription,
and micro-transactions.

It also supports scalable
attractions for simultaneous
users, which the company
says should eliminate
customer restriction limits.
Aiding development for Blue
Mars are LUA support and
acasual games AP, as well
as an asset pipeline that
supports industry standard
DCC tools and Flash-based
user interfaces. Avatar Reality
intends to have a limited
public beta of Blue Mars
available by June of this year.

XAITENGINE
XAITMENT
www . Xaitment.com

Havok stepped in to

the Al arena with the
announcerment of their
pathfinding solution at GOC.
Integrating with Havok’s
Physics, Destruction,
Animation, and Behawior
products, Havok Al enables
dynamic pathfinding and is
designed to quickly generate
an optimized nav mesh.
Havok claims that the Al's
dynamic pathfinding can
track thousands of moving
obstacles in real-time. It
also includes a predictive
local steering module that
allows characters to react
to moving obstacles and

The Blue Mars 50K is
now available at no

cost to approved third
party developers who
want to begin work on
Avatar Reality's virtual
world platform. Built on
CryENGINE 2 technology,
Blue Mars uses a secure
transaction backend that

allows game developers

Avatar Reallty's Blue Mars
SDK Is now avallable,

Xaitment has created a

suite of modular Al tools

that target specific Al needs,
allowing developers to mix
and match according to their
project's requirements. For
pathfinding solutions, the
company offers xaitMap

for creating navigation

maps, and xaitMove? for
authoring bot behavior.
xaitControl can be used

to create state machine
behavior while xaitKnow and
¥aitThink provide high-level
Al functions such as world
knowledge and rule-based
autonomous decisions.
Xaitment is bundling xaitMap,
xaitMap, and xaitMove 2
together under an initial no
cost license that allows start-
up projects to move to a full
license once the game has
been sold to a publisher.)

WWW.GDMAG.COM

VANCOUVER, CANADA

GAME DEVELOPMENT DIVERSITY

THE PACIFIC RIM IS HOME
to a number of unique
game industry clusters
and Vancouver in British
Colurnbia joins California
and Washington as a
major center of gravity
for development talent.
For almost three decades
the Vancouver scene
has been dominated by
Electronic Art's massive EA
Canada facility and Radical
Entertainment’s equally
productive studio.
However, in recent years
the city has supported a
healthy ecology in which
the big studios have acted
as proving grounds for
ambitious developers
who have gone on to
create numerous start-up
companies of their own.

DISTINCTIVE SOFTWARE
2» Much of Vancouver's
current development
landscape is fed by streams
of influence that stretch
back to 1982 and the
founding of Distinctive
Software. Distinctive was
formed by Don Mattrick

and Jeff Sember, and was
closely associated with the
publisher Accolade during its
early years. Initially working
on a number of PC ports and
action games, the studio
soon distinguished itself by
creating the first entry in
the long-running TEST DRIVE
series in 1987, Over the next
several years Distinctive

continued to hone its racing
game expertise with the
subsequent releases of THE
DUEL: TEST DRIVE I, GRAND PRIX
CIRCUIT, and STUNTS.

In 1991 Distinctive
joined Electronic Arts,
becoming the publisher’s
first studio acquisition.
Renamed EA Canada, the
studio was a comerstone
of EA's rapidly growing
dominance in Sports games.
In 1994 EA Canada partnered
with Rood & Trock magazine
to produce THE NEED FOR
SPEED for Trip Hawkins'

300 drearn machine, The
game took advantage of

the new hardware, to raise
the bar for future racing
sims by including realistic
car handling and careful
attention to engine sounds,
along with race commentary
and video clips of its exotic
Cars in action.

In addition to the NEED
FOR SPEED series, EA Canada
has gone on to produce a
variety of sports titles for
Electronic Arts including
55X, the NBA, NFL, and
FIFA STREET series, among
others. After leading EA
Canada, Mattrick went on
to become the president
of EA's worldwide studios
before moving on to
Microsoft in 2007

Veterans of EA Canada
hawe formed the basis of
many smaller Vancouwver
area studios. Members of
Propaganda, the creators

GAME DEVELOPER | MAY 2009

of the new TURDK, accrued
years of experience at EA
Canada before starting their
own studio. The staff at
Deep Fried Entertainment,
A.CR.ONYM. Games, Jet
Black Games, and Koolhaus
Games, have all spent time
at EA Canada as well.

RADICAL
ENTERTAINMENT
»» Radical Entertainment,
creator of the upcoming
PROTOTYPE, has a long
history in Vancouver
game developrnent. Since
the studia’s founding in
1991, Radical’s strategy
of developing sure-fire
licensed titles such as
SIMPSONS ROAD RAGE and
SCARFACE: THE WORLD IS
YOURS, along with original
IF like DARK SUMMIT
has enabled it to grow
into a major employer
of Vancouver game
development talent.
Rockstar Vancouver,
maker of BULLY, began life
as Barking Dog Studios
in 1998. Founded by
developers from Radical,
Barking Dog created
several games including
HOMEWORLD: CATACLYSM and
GLOBAL OPERATIONS, Take-
Two Interactive bought the
studio and brought it into

the Rockstar family in 2002.

The studio is currently at

work on MAX PAYNE 3.
Another Radical

alumnus, Martin Sikes,

leftin 1998 to start Black
Box Games. Four years
later the studio joined EA
Canada and created MEED
FOR SPEED: HOT PURSUIT 2.
Black Box took the series in
new directions with NEED
FOR SPEED UNDERGROUND,
MEED FOR SPEED CARBOM, and
NEED FOR SPEED PROSTREET.
Spun off as an independent
EA studio in 2005, Black
Box gave the skateboarding
genre a much-needed shot
in the arm with the release
of SKATE three years later.
Although Black Box remains
an individual entity within
EA, the studio has since
been moved back into EA
Canada’s facilities in a cost
saving effort. Sikes went on
to help form United Front
Games in Vancouver before
passing away in 2007,

RELIC
» Specialists in real-time
strategy, Relic made a strong
debut in 1999 with the
release of HOMEWORLD. The
space combat game took the
somewhat moribund genre
in creative new directions
with a true 30 environment
and a minimalist, hard-
science aesthetic that
emphasized fire and
movement over resource
farming, HOMEWORLD also
featured a sophisticated
visual design that harkened
to the great work done by
European science fiction
illustrators of the 1970s.
Following their
acquisition by THQ in 2004,
Relic released WARHAMMER
40,000: DAWN OF WAR and
two years later brought the
critical smash COMPANY OF
HEROES to market. Former
Relic staff members have
since split off to form
Srnoking Gun Interactive
and are currently at work on
an unannounced project.

LITTLE STUDIOS, BIG
PROJECTS

»» In addition to the major
studios of Vancouver, a

plethora of smaller studios
have found a home in the
area. While they may not
have the three and four digit
staff numbers of the big
studios, their projects are
no less impressive,

Hothead Games is
reinvigorating the adventure
game genre with the
episodic PENNY ARCADE
ADVENTURES: ON THE RAIN-
SLICK PRECIPICE OF DARKMESS.
The studio is also at work
on Ron Gilbert’s upcoming
DEATHSPANK. Ironclad
Games, the creator of the
real-time strategy game
SINS OF A SOLAR EMPIRE, is
located in nearby Burnaby,
Blue Castle Games, which
developed the sports titles
FRONT OFFICE MANAGER and
THE BIGS, is currently at work
on DEAD RISING 2 for Capcom.
As part of the Foundation 9
family of studios, Backbone
Entertainment maintains
a studio in Vancouver.
Next Level Games created
SUPER MARIO STRIKERS and
MARIO STRIKERS CHARGED
for Nintendo. Slant Six
Games has taken over
the SOCOM franchise for
Sony and is currently at
work on SOCOM: LLS. MAVY
SEALS FIRETEAM BRAVD 3,
Threewave Software began
by creating a Capture the
Flag mod for QUAKE and has
since provided rmultiplayer
content for a variety of
high-profile shooters
including RETURN TO CASTLE
WOLFENSTEIN, DOOM III:
RESURRELTION OF EVIL, and
ARMY OF TWO.

By supporting such
a range of developrent
activity, both on a large
and small scale, Vancouver
is well positioned 1o
influence the game
industry throughout the
21st century. (D

JEFFREY FLEMING is
production editor af Game
Developer. He likes William
Gibson books. Email him at
Ifleming@gdmag.com.

THE INNER PRODUCT

NITTY GRITTY UNIT TESTING

ALL YOU NEED TO KNOW TO START UNIT TESTING YOUR CURRENT PRODUCT

IT'S ONE THING TO SEE A PERSON DRIVE
a manual transmission car and have a
theoretical understanding of what the
pedals do and how to change gears. It's
another thing to drive on the street, safely
and without stalling. There are certain
activities that, to execute successfully, a
person needs to have not only knowledge
of all the details that go into making
them happen, but also some hands-on
experience. Unit testing is one of them.
The good news is unit testing is a lot
simpler than driving stick. But there are a
lot of small details that game programmers
need to get right to do it successfully.
Even after reading about unit testing
and being convinced of its benefits,
programmers are not always sure how to
get started. It's not my intention to convince
you of the many benefits of unit testing (|
hope you're already convinced), but rather,
to describe some very concrete tips to help
you get your hands dirty right away.

GOALS OF UNIT TESTING

2> Unit tests are used for many kinds of testing:

=% CORRECTMESS TESTING: to check that the code behaves as designed.

=% BOUNDARY TESTING: to check that the code behaves correctly in odd or
boundary situations,

=% REGRESSION TESTING: to check that the behavior of the code doesn't
change unintentionally over time.

=% PERFORMANCE TESTING: to check that the program meets certain
minimum performance or memory constraints.

»w PLATFORM TESTING: to check that the code behaves the same across
multiple platforms.

#=» [ESIGN: tests provide a way to advance the code design and
architecture [usually referred as test-driven development or TDD].

»w FULL GAME OR TOOLS TESTING: technically this is a functional test, not
a unit test, because it involves the whole program instead of a small
subset of the code, but a lot of the same technigues applu.

Some developers use unit tests only for one of the reasons listed above,
while others use many kinds of tests for a variety of reasons. It's important

-

o
s
ILLUSTRATION BY JOMATHAN KIM

Q @

to recognize that because there are so many different uses for unit tests, no
single solution is going to fit everybody. The ideal setup for some of those
situations is going to be slightly different than for others, but the basics are
the same for all of them.

When working with unit tests, the main goals are:

=»» Spend as little time as possible writing a new test,

== Be notified of failing tests, and see at a glance which ones failed and why,

=0» Trust the tests [have them be consistent from run to run and robust in
the face of bad code), and

= Create a testing framework.

TESTING FRAMEWORK

»» Most of us have created one-off programs in the past to test some

particularly complicated code. It's usually a quick command line program

that runs through a bunch of cases and asserts that the results were correct

for each one. That's the most barebones way of creating unit tests.
Unfortunately, it's also a pain, and it misses on most of the unit testing

goals described in the previous section. Creating a new program just to run

a new set of unit tests is a nuisance, we have to go out of our way to run the

WWW.GDMAG.COM

THE INNER PRODUCT

tests, and it's usually out of date
faster than the latest Internet meme.
Perhaps this explains in partwhy a
lot of programmers have an initial
aversion to writing unit tests at all.

If you're considering writing even
a small unit test, you should use a
unit-testing framework. A unit-testing
framework removes all the busywork
from writing unit tests and lets you
spend your time on the logic of what
to test. This doesn't mean that the
framework writes the tests for you—
be wary of any tool that claims to do
that! Rather, a unit-testing framework
is simply a small library that provides
all the glue for running unit tests and
reporting the results, However, you
still need to use your brain and do
[some of] the typing. Sorry.

A quick search will reveal plenty
of unit testing frameworks in your
language of choice to choose from,
maost of which are free and open
source so you can rely on them and
madify them to suit your needs.

For C/C++ and game
development, | strangly recommend
starting with UnitTest++. Charles
Micholson and | wrote that framework
a few years ago specifically with
games and consoles in mind. Many
game teams have adopted it for their
games and tools, and it has been
used on a lot of different platforms,
including current and last generation
consoles, Windows, Linux, Mac, and
the iFhone. In most situations, it's a
straight drop-in to the project to get
you up and running.

If you end up using a different
testing framework, or if you code
your own, the techniques described
here still apply, even if the syntax is
slightly different.

HELLO TESTS

#» Writing your first test is easy as
pie. Try this sample code:

$include <UnitTest++. h>

TEST(MyFirstTest)
{

int a = §;

CHECK(a == 4);

To run it, you need to add the
following line to your executable

GAME DEVELOFER | MAY 2008

somewhere [we'll talk more about
the physical organization of testsin
a moment):

int failedCount =
UnitTest::RunAllTests():

Done. Easy, right?

When you compile and run
the program, you should see the
following output:

Success: 1 test passed.
Test time: 0.00 seconds.

Let's add a failing test:

TEST(MyFailingTest)

{
int a = &;
CHECK(a == 4);
}
Now we pet:

ffullpath/filename.
cpp:17: error: Failure in
MyFailingTest: a == 4
FAILURE: 1 out of 2 tests
failed (1 failures).
Test time: 0.00 seconds.
That’s great, but if we're going to
diagnose the problem, we need to
know the value of the variable a,
and all the test is telling us is that
it's not 4. We can change the CHECK
statement to the following:

TEST (MyFailingTest)
{

int a = §5;

il

CHECK_EQUAL(4, a);

And now the output will be:

ffullpath/filename.
cpp:17: error: Failure in
MyFailingTest: Expected 4
but was &

FAILURE: 1 out of 2 tests
failed (1 failures).
Test time: 0.00 seconds.

That's much better. Now we see

both the error information and the
value of the variable. Virtually all unit
testing frameworks include different
types of CHECK statements to get

more information when testing
floats, arrays, or other data types.
You can even make your own CHECK
statement for your own common
data types, such as colors or lists.

As a bonus, if you're using an |DE,
clicking on the test failure message
should bring you automatically to the
failing test statement.

WHEN TO RUN

»» When to run unit tests will
depend on what's being tested

and how long it takes to testit. In
general, the more frequently you
run the tests, the better. The sooner
you get feedback that something
went wrong (maybe before code

is checked in and is disseminated
to the rest of the team], the easier
it will be to fix. On the flip side,
realistically, building and running

a set of unit tests takes a certain
amount of time, so it's important

to find the right balance between
feedback frequency and time spent
waiting for tests.

At the very least, all tests should
run once a day during the nightly
build process in your build server.
[You have a build server, don't you?
If not, stop right here and read The
Inner Product column, The Heartbeat
of the Project,” in the August 2008
issue before you continue.] It
doesn't matter how long they take
or how many different projects you
need to run. Just add the tests to the
build script, and hook their output
into the build results.

On the other extreme, You can
build your tests every time you
build the project and execute them
as a post-build step. That way,
any time you make a change to a
project, all tests will execute and
you'll see if anything went wrong.
This approach works great, but |
wouldn't recommend using it if the
tests add more than a couple of
seconds to the incremental build
time; otherwise, they'll be slowing
you down more than they help.

Most developers will find that
the approach that makes the most
sense for them is somewhere
between these two extremes, for
example, taking a small and fast
subset of tests that are more likely
to break, and running those with

every build. Whenever code is
checked in to your version control
system, the build server can run
those tests, plus a few others that
are slower. And finally, at night, you
can bring out the big guns and run
those really long and thorough tests
that take a few hours to complete,
One way to lower the impact
of constantly running tests is to
separate those tests into different
projects, or, if your framework
supports thern, into different test
suites, which allows you to decide
which sets of tests to execute at
runtime.

REPORTING RESULTS
2> |f a unit test fails and nobody
notices, is it really an error?

Just running tests isn't good
enough. We have to make sure that
someone sees fallures when they
occur and fixes the problems.

Most unit-testing frameworks
will let you customize how the
failure errors are reported. By
default, they will probably be sent to
stdout, but you can easily customize
the frarnework to send them to
debug log streams, save themto a
file, or upload them to a server.

Even more important than
seeing the actual error messages
is automatically detecting whether
there were any failures. After
running all the tests, there is
usually some way to detect how
many tests failed. The program that
was running the tests can detect
failures, print an error message,
and exit with an error code. That
error code will propagate to the build
server and trigger a build failure.
Hopefully by now alarms are ringing
across the office, and someone is
on his way to fix the problem.

PROJECT ORGANIZATION
2> When people start down the unit
test path, they often struggle 1o
figure out how to physically lay out
the unit tests. In the end, it really
doesn't matter how you do it too
much as long as 1) it makes sense
toyou, 2] the final build doesn’t
contain any tests, and 3] the unit
tests are easy to build and run.

My personal preference
is to keep unit tests separate

from the rest of the code.

Usually, | end up creating one

file of tests for every cpp file,

for example, FirstPersonCamera
Controller.hand . cpp

should have a corresponding
TestFirstPersonCamera
Controller.cpp. Since | use this
convention regularly throughout all
my code, | have a custom IDE macro
to topgle between a file and its
corresponding test file. | also put all
the tests in a separate subdirectory
to keep them as physically
separate as possible.

| prefer to break up my code
into several static libraries for
gach major subsystem: graphics,
networking, physics, animations,
etc. Each of those libraries has a
set of unit tests, but instead of
compiling them into the library,
| make a separate project that
creates a simple executable
program. That project contains all
the unit tests and links against
the library itself, and in its main
entry paint, it calls the function to
run all unit tests and returns the
number of failures. This way, tests
stay separate from the library, but
they're still very easy to build.

If all your code is organized
inta libraries, and your game is
just a collection of libraries linked
together, that's all you need. But
most games and tools have a fair
amount of code that you might
want to test in the project itself.
Since the game is an executable,
you can't easily link against it
from a different project like we
did before. In this case, | build the
unit tests into the game itself, and
| optionally call them whenever a
particular command-line parameter
like -runtests is present. Just be
sure to #ifdef out all the testsin
the final build.

MULTIPLATFORM TESTING
»» Running the tests on the same
PC that you built the code on is
straightforward. But unless you're
only creating games and tools for
that platform, you will definitely
want to run your tests on different
platforms as well.

Unit tests are an invaluable
tool for catching slight platform

inconsistencies caused by
different compilers, architecture
idiosyncrasies, or varying floating
point rules.

Unfortunately, running unit
tests on a platform other than your
build machine is usually a bit mare
invalved and not nearly as fast as
doing it locally. Start by compiling the
tests for the target platform. This is
usually not a problem since you're
already building all your code for that
platfarm, and hopefully your unit
testing framework already supports
it. Next, upload your executable with
the tests and any other data required
to the target platform and run it there.
Finally, get the retum code back to
detect if there were any failures.

Surprisingly, that final step
is often the trickiest part of
the process on a lot of console
development kits. If getting the
exit code is not a possibility, you
need to get creative by parsing the
output channel, or even waiting
for a notification on a particular
network port.

Some target platforms are
more limited than others in both
resources and C++ support. One
reason UnitTest++is a good
choice for games is that it requires
minimal C++ features [no STL],
and it can be trimmed down even
further (no exceptions).

For example, on past projects,
running tests on PlayStation 3 5PUs
was extremely useful, but required
stripping down the framework to
the minimum number of features,

It also took some finagling to fit

the library code plus all the tests
into the small amount of memory
available. We ended up changing the
build rules for the SPUs so each test
file created its own SPU executable
[or module). We then wrote a simple
main SPU program that could load
each module separately, run its
tests, keep track of all the stats, and
finally report them.

Running a set of unit tests
on the local machine can be
an almost instant process,
but running them on a remote
machine is usually much slower
and can take up to 20 seconds
just with the overhead of copying
them and launching the program

remotely. For this reason, most
developers will prefer to run tests

on other platforms less frequently.

NO LEAKING ALLOWED

»» Finally, if you're going to have
all this unit testing code running
on a regular basis, you might as
well get as much information

out of it as possible. | personally
find it invaluable to keep track of
memory leaks around the unit test
code. You'll have to hook into your
OWn memeory manager or use the
platform-specific memary tracking
functions. The basicidea is to get
one memaory status before running

the tests and another one afterward.,

If there are any extra memory
allocations, you've probably got a
leak. In that case, you can report
it as a failed build by returning the
correct error code.

Watch out for static variables
or singletons that allocate memory
the first time theu're used. They

might be reported as memory leaks
even though it wasn't what you
were hoping to catch. In that case,
you can explicitly initialize and
destroy all singletons, or better,

not use them at all and keep your
rmemory leak report clean.

You're now armed with all you
need to know to set up unit tests
imto your project and build pipeline.
Grab a testing framework, and get
your feet wet today. ()

HOEL LLOPIS has been making
games for just abowt eveny major platform
in the last ten years. He's now gaing

retro and spends his days doing iPhone
developpment from local coffee shops.
Email him at nilopls @gdmag.com.

resSources

UnitTest++ framework

http://unittest-cpp.sourceforge.
net

size matters

www.rtpatch.com

RTPatch and Pocket Soft are registered trademarks of Pocket Soft, Inc.

WWW.GDMAG.COM

NOKIA

Connecting People

This year at GDC, Tero Ojanperd gave an insight into what the world's
largest mobile device manufacturer sees on the horizon. During his
keynote at GDC 2009, Tero talked about Nokia’s mobile gaming efforts,
including N-Gage, and shared trends and lessons learned from the first
year of the service.

Looking to the Future

With more mobile platforms in the market, developers now have more
channels than ever before to reach users with great games experiences.
Tero looked to the future consumption of digital entertainment via

the mobile phone, revealing some impressive numbers. For example,
emerging markets will account for 40% of mobile gaming revenue by
2012 and in developed markets, games continue to be the most popular
3rd party applications installed on devices.

Growing Mobile Gaming

This magnitude of growth has significant implications on mobile game
development and represents a valuable opportunity for both game
developers and Nokia. Tero Ojanperd explored some of the newest
innovations in game development, from recent Nokia Research Center
device technologies to the combination of Nokia services such as music
and games in Dance Fabulous.

Publish to Ovi

He also emphasized the importance of social networking with the
recent announcement of the Ovi Store and the launch of Publish to

Owi. Ovi Store is a next generation media service that will serve up
content (including games) pro-actively based on the users’ location
and consumption patterns between friends. To access this distribution
channel, Publish to Ovi lets content owners easily upload and monetize
their content, making it available to millions of Nokia devices.

to Mobile Entertainment
Tero Ojanpera at GDC 2009

With mobile gaming capturing the imagination of consumers and
developers alike, there is much in store for the future of games on the
mobile phone.

To view full Nokia presentations from GDC 2009 including Tero Ojanperd’s
keynote, please visit www.insider.n-gage.com.

insider.n-gage.com

© 2009 Nokia

MANY MOONS AGO, ALMOST FIVE YEARS IN FACT
[or as we count in the game industry, “two
product cycles ago”), | wrote a column on age
discrimination called, “Never Hire Anyone Over
30" (August 2004, With game developers

more focused on their careers these daysin a
trernulous global economy, it seemed like a good
idea to revisit the topic and see what, if anything,
has changed for the grizzled ancients of the
game art world,

“Mever Hire Anyone Over 30" was one of the
most commented on and controversial columns
I've ever written. Dozens of people wrote me to
share their personal experiences about being on
the wrong end of their third decade. The general
consensus among the angry respondents
seemed to be that the article was too tame.

Alot of folks in their mid-to- late 30s felt the
business had no use for them and that no one was
shy about showing them the door. Bitter veterans
at 33 years of age, many artists recounted being
slighted in favor of kids who could work all night,
didn’t have to answer to angry spouses at crunch
time, and didn't dare talk back to management.
Add in the dire effects that crunch culture can
have on families [and on the health of sedentary
folks in their 30s and 40s), and it seemed like the
average career of a game artist was destined to
last only seven or eight years.

Five years on, the game industry remains
a young person’s playing field, but the culture
has shifted noticeably. Folks in their 30s are no
longer quite the demographic rarities they once
were, As a matter of fact, the IGDA's Diversity
study claims the average game developer is now
between 31 and 35. It wasn't long ago that the
stereotypical developer was supposed tobe a
boomerang kid living in his parents’ basement,
surrounded by mountains of unwashed laundry
and empty pizza boxes. Nowadays, an employed
game developer is more likely to be a parent than
to live with one, and the unwashed laundry pile
probably includes some bibs and onesies. Only
the pizza boxes remain true to form.

BRINGING PEOPLE TOGETHER

#» The age increase of our demographic
reflects the maturation of the business as

a whole. According to the Game Developer
Research Developer's Census 2008 there are
now more than 40,000 developers in North
America alone—and that's just the folks in core

game development, not counting the retail and
distribution sides of the industry. The pool of
veterans must be a lot bigger now than five years
ago by a fairly reasonable arithmetic assumption.
But more importantly, the incredible increase

in the scale of the industry has made a lot of
headroom that wasn't here five years ago.

One of the most common reasons artists used
to cite for exiting the game industry young was
topping out, hitting a point in one’s career where
there was no obvious path to more responsibility,
more creztive freedom, or more money.

In the 2004 article, | wrote: "It might be
easier to seduce us into management if there
were management niches to fill—but in most
studios, the career ladder is extremely short. You
can become an art lead, and then an art director
... and then you're done and can retire. Without
a lot of intermediate positions, it's tough to even
know if you have the aptitude or the desire to
lead a team.”

In the intervening five years, the boondoggle
known as next-gen development has expanded
team sizes enormously. Next-gen bloat has
been tough on the industry's finances and
creative freedoms, but it's been a boon to middle
management, and also, indirectly, to the careers
of many artists who might otherwise have found
their career paths stunted by the lack of ladders
to climb.

BRINGING UP BABY

»» When | first discussed ageism five years

ago, a lot of artists werent sticking around

long enough to mature into managers due to

the punishing cycle of crunches, which often

prevented them from pursuing a real family life.
Crunch certainly has not disappeared, but

the flowering of new kinds of game studios

and companies has definitely allowed many

developers to stay in the game business while

sidestepping the traditional studio-to-Best

Buy model of development and distribution.

Games for casual play, mobile devices, PCs,

and download—even games for Facebook

and MySpace—have forged new and typically

smaller environments that beckon to folks who

love games but can't reconcile the demands

of a deadline-driven AAA studio with the needs

of family life. It's a lot easier to approximate a

traditional 9-to-5 work schedule when a company

isn't looking for a product to hit store shelves to

IS 40 THE NEW 307

THINKING ABOUT YOUR CAREER IN THE LONG TERM

the tune of a $15 million marketing blitz and a
raft of action figure tie-ins by a certain date.

Many senior artists also find a lot of
satisfaction in putting their personal stamp on a
smaller project, instead of toiling anonymously
in the bowels of a 200-person team with a focus
group driven design. Old school skills, like low-
poly modeling, texture palette management,
and limited frame rate animation, are still very
much in demand in the casual and handheld
spaces. Plus, middle-aged game artists are
often grateful for the opportunity to share their
work guiltlessly with their own children, instead
of negotiating delicately between their duties
as parents, their pride as creators, and, let's
face it, the dirty looks they can expect from
other parents if they introduce little Johnny's
third grade classmates to their fine work on the
chainsaw bayonet blood-spatter effect.

The explosion of video games outside the
conventions of the AlA market has been a big
help in keeping artistic talent in the business.

BRING DOWN THE HOUSE
2» Surprisingly, the rise of outsourcing has also
provided a means for many veteran artists to
stay with the industry when their families or
waistlines] can't handle the crunch-and-bust
cycle anymore.

Freelancing or working at an outsourcing
studio lets artists pick and choose projects
that sync up with their lifestyles. Freelancing,
outsourcing management, and consulting are all
jobs inwhich experience and a large network of
industry contacts offer an edge to the veteran.

Unfortunately, the flipside of the freelancer's
freedom is economic insecurity and lack of
benefits. Without the infrastructure of a studio
setting, the life of a contractor or freelancer
demands a lot of hustle, self-motivation, and
risk tolerance, requirements that can be just as
taxing as a conventional ship cycle. It's nice to
be able to paint textures with your Wacom while
rocking your baby to sleep with your free hand,
but it's also important to do your homework
before going solo. Suddenly becoming an
entrepreneur when you have grown-up expenses
and responsibilities is a serious challenge, one
that demands more than just a great portfolio
and a hormne copy of Maya.

To survive in a second career as a freelancer,
you first need to make sure you have a solid

WWW.GDMAG.COM

ILLUSTRATION BY DAVID HELLMAN

network of contacts who can really deliver work,
You also need to know how to turn that work into
contracts, which requires a solid understanding

of deadlines, technical expectations, and review
standards for your would-be partners before you
rnake yourself dependent on them. Anybody who
has ever lived as a freelancer for long knows all too
well how easily verbal agreements, even between
old friends and colleagues, can disguise enormous
and potentially very expensive differences of
opinion about what constitutes “done.”

You'll also need to do some serious financial
planning. Contract work is full of late payments,
disputes about change orders, and promising
projects that never materialize, so a substantial
rainy day fund is very important. Successfully
transitioning ta life as an independent is a real
challenge. The rewards [personal and, if you're
lucky, financial] are great for those who can
handle the inevitable downtime and the need for
constantly seeking the next job.

If you're seriously considering going freelance,
you should troll the GamingMercenaries.com
forums for some frank discussion of ups and
downs of the independent lifestyle.

BRING HOME THE BACON
#» One more important reason the industry has
been seeing a few more gray hairs is money.
Back in 2004, many artists in mid-career found
they had run out of upside, With few directorial
and management jobs, and no Hollywood-style
seniority system, a lot of older artists found
they could no longer expect much change in
their compensation as they got older. Although
the industry certainly has not followed the
Hollywood or union model in terms of seniority,
we have started paying veterans more,
relatively speaking,

Receiving pay that's actually commensurate
with experience has a lot to do with same
trend toward bigger studios and more complex
production that | alluded to earlier. The

GAME DEVELOPER | MAY 2009

complexity of modern game development is just
staggering. A big AAA game represents about the
same amount of work as the complete design
of a skyscraper—and that's the nuts and bolts,
where-are-all-the-electrical-outlets design, not
Just the pretty concept sketches. The task is
absurdly complex, and it only holds together
because of the collective experience of the team.
In such a mind-numbingly tricky business,
experience cornmands a price. In the most
recent “Game Developer Salary Survey” [April
2009), line artists with more than six years of
experience made about 50 percent more than
entry-level artists, and that differential has been
slowly increasing.

BRING ITON

»» The flipside of experience, of course, is the
danger of complacency. There's no question
that our medium is constantly evolving; staying
competitive is difficult. A regular production
schedule and the demands of adulthood can
make it hard to keep up with the latest tools
and techniques. Plenty of veteran artists are
traumatized when they see how their portfolio
of professional work compares to the latest
ambient-occluded, sub-surface-scatterad
10,000,000-poly sculpture from some digital
media arts grad. The hard truth is that the
goalposts never stop moving.

For some of us, that’s a positive. Plenty of
grizzled vets still thrive on technological churn
and find that the constant stimulus of new tools
and tricks keeps the job from getting stale. Those
who get tired of constantly relearning their jobs,
on the other hand, face a tough set of choices.

Some gravitate toward jobs for which
technological change is irrelevant, like concept
art, management, or art direction. That transition
can be rewarding and may also involve a welcome
burnp in perks and compensation, but all three
of those areas are highly competitive and hard to
break into. Some artists are able to migrate their

existing skill sets to smaller platforms. The AAA
world may not have much call for the ability to box-
model a 500-poly character anymaore, but the FSF,
Nintendo DS, and mobile games still thrive on the
parsimonious skills of the old school.

Most artists in mid-career fall somewhere
between gung-ho technical enthusiasm and
unrepentant technophobia. Many older artists
can't spare the free time to troll through
HighEnd3d.com every night and download every
cool new normal-map ripper or Max Script that
makes the rounds on the forums. At the same
time, they're uneasily aware of the possibility
that somebody, somewhere, may be making
them obsolete. That, alas, is a feeling that even
raw recruits learn pretty quickly. At least there
are always high quality sources of information
[say, magazine columns) to help keep you up on
the latest developments.

BRING ME STRENGTH

»» Looking back five years, it seems that some
aspects of life for the long-term game artist have
definitely improved. The games business still
makes heavy demands of all developers, but at
least we're not driving out our most senior people
with the same regularity we used to.

We're gradually coming to the point where
we reward experience and create jobs that
make good use of it. None of us has a clearidea
of what a 15-, 20-, or 30-year career in games
looks like [except perhaps Shigeru Miyamoto]
but at least it's something we can begin to
imagine. It's a start, (D)

STEVE THEODQDODRE has been pushing pixels for mare
thon a dozen years. His credits include MECH COMMANDER,
HALF-LWFE, TEAM FORTRESS, and COUNTER-STRKE. He's been

a modeler, animator, ond technical artist, os well os a
[frequent speaker at industry conferences. He's currently
content-side technical director aof Bungie Studios. Email him
at stheodore@gdmog. com.

BECOME A MASTER OF DIGITAL MEDIA
APPLY NOW FOR 2009

We offer a 20-month master's degree in entertainment technology and digital media. This
powerhouse graduate program combines industry-facing curriculum, real world projects, and a
4-month internship in Vancouver, Canada: videogame capital of the world.

Learn More. Drop by our booth at GDC Canada (Vancouver), contact alison_robb@gnwec.ca or
visit

Get your digital black belt during a day of intensive training and professional development
workshops. Register at

CENTRE FOR |
DIGITAL MEDIA emily carr

Masters of Digital Media Program
@ Great Northern Way Campus o collaborative university campus environment

OUR CHEATIN" HEARTS

DESIGNING FAIRNESS IN GAMES

THE DESIGNERS OF PUZZLE QUEST
have a frustrating burden to bear.
Everyone thinks they are a bunch
of dirty cheaters.

The game includes a
competitive version of BEJEWELED,
in which players duel against
the game's Al to create the most
rmatch-three sets. The problem
comes from how the pieces on
the game board are created. When
three like-colored orbs line up,
the player scores, the orbs are
removed from play, and new pieces
fall in 1o take their place. However,
sometimes, these new pieces
happen to be all the same color,
which means that a new match is
automnatically made, and the player
effortlessly scores again.

The odds of getting this result
are low [around two percent], but it
happens often enough that a player
will see it many times with enough
games played. The problem is that
the Al is playing the same game,
and the player sees the same good
luck fall into the enemy’s lap from
time to time, too.

At this point, human
psychology takes over. Because the
new pieces are hidden from view,
how does the player know that the
computer is not conducting some
funny business and giving itself
free matches?

The human mind is notoriously
bad at grasping probability, leaving
many players convinced that the Al
is cheating, The developers at Infinite
Interactive have pledged over and
over again that the code operates
fairly, but whether they like it or not,
the player's experience is affected by
the possibility of unfairmess.

TRUST ME

»» Players don't trust games
from the outset. Trust needs to be
earned over time. Our audience

is well aware that we developers

GAME DEVELOPER | MAY 2009

can make a game do whatever

we want under the hood, so the
transparency and consistency

of a game's rules contribute
significantly to player immersion.

The worst feeling for players
is when they perceive—or more
accurately, suspect—that a game is
breaking its own rules and treating
the human unfairly,.

This situation is espedally
challenging for designers of
symrmetrical games, in which the
Al tries to solve the same problems
as the human. On the other hand,
for asymmetrical games, cheating
is simply bad game design. Imagine
the frustration that would result from
enemies in HALF-LIFE warping around
the map to flank the player, or the
guards in THIEF instantly spotting a
player hiding in the shadows.

However, under symmetrical
conditions, the Al often needs to

Showing the mechanics that drive Al decislons helps alleviate player distrust.

cheat just to be able to compete
with the player. Accordingly,
designers must learn which
manifestations of Al cheating feel
fair to a player and which do not.
As the PUZZLE QUEST team knows,
games need to avoid situations
inwhich players suspect that the
game is cheating them.

What do we really mean when
we talk about whether the Alis
cheating? It's not the same as
increasing the difficulty level, in
which case players expect the
game to provide extra challenges
for them. Rather, cheatingis a
matter of unfairness: Is the player
rewarded for successful plays and
not arbitrarily punished just to
maintain the challenge?

Unfartunately, in practice, the
distinction between difficulty levels
and cheating is not so clear.

SHOW THE MECHANICS
»» Fans of racing games are
quite familiar with this gray area.
A common tactic employed by
Al programmers to provide an
appropriate level of challenge is to
“rubber band" the cars together. In
other words, the code ensures that
if the Al cars fall too far behind the
human, they automatically speed
up. On the other hand, if the human
falls behind, the Al slows down
while the player catches up.
Rubber banding is often
obvious to players, which can dull
their sense of accomplishment
when they win and raises
suspicions when they lose,
Ironically, games that turn rubber
banding into an explicit game
mechanic often become more
palatable to players. The MARID
KART series, for example, has a
history of disproportionately

ILLUSTRATION BY MATT BRALY WITH JOMATHAN KIM

divwying out rewards via mystery
boxes relative to each drivers
current standing, While the first-
place racer might receive a shell
(only useful for attacking other
cars in the lead), players in the
rear might get a speeding bullet,
which automatically warps them
to the middle of the pack.

These self-balancing
mechanics aren’t unigue to
electronic games; in Settlers of
Catan, for example, the robber
can block the leader’s tiles. These
explicit mechanics don’t seem
like cheating because the game is
so explicit about how the system
works. Thus, players understand
that the bonuses available to the
Al will also be available to them
if they fall behind. With cheating,
perception becomes reality, so
transparency is the antidote to
suspicion and distrust.

CHEATING IN CIVILIZATION
»» Sometimes, hidden bonuses
and cheats are necessary to
provide the right challenge for
the player. The CIVILIZATION series
provides plenty of examples of
how this process can go awry and
drive players crazy with poorly
handled cheating.

Being turn-based, the
developers could not rely on
a human's natural limitations
within a real-time environment.
Instead, CIVILIZATION gives out a

progressive series of unit, building,
and technology discounts for the
Al as the levels increase [as well

as penalties at the lowest levels).
Because of their incremental
nature, these advantages for the Al
hawve never earned much ire from
players. Their effect is too small to
notice on a turn-by-turn basis, and
players who pry into the details
usually understand why these
bonuses are necessary.

On the other hand, many
other inequalities between the
player and the Al have struck the
audience as being unfair. In the
original version of the game, the
Al could create units for free under
the fog-of-war, a situation that
clearly showed how the computer
was playing by different rules than
the human. Also, Al civilizations
would occasionally receive free
“instant” Wonders, often robbing
a player of many turns of work.
While an Al beating the human to
a Wonder using the slow drip of
steady bonuses was acceptable,
granting it the Wonder instantly
felt entirely different.

How a cheat will be perceived
has much more to do with the
inconsistencies and irrationality
of human psychology than any
attempt to measure up to some
objective standard of fairness.
Indeed, while subtle gameplay
bonuses might not bother a player,
other legitimate strategies could

£
©

€

Infinite Interactve’'s PUZILE QUEST: CHALLENGE OF THE WARLORDS

drive players crazy, even if they
know that a fellow human might
pursue the exact same path as
the Al.

In the original CIVILIZATION, the
Al was hardwired to declare war if
the player was leading the game
by 1900 AD. This strategy felt
unfair to players, who believed
that the Al was ganging up on
them, even though most would
have followed the same strategy
without a second thought in a
multi-player game.

In response, by the time
Firaxis rolled out CIVILIZATION I,
we guaranteed that the Al did not
consider whether an opponent
was controlled by a human or
a computer when conducting
diplomacy. Still, these changes
did not inoculate the dev team
against charges of unfaimess.
CIVILIZATION Il allowed open trading,
letting players swap technology
far maps or resources for gold.
Enterprising players would learn
when to demand full price for their
technologies and when to take
whatever they could get—from
a weak opponent with very little
wealth, for example.

We adapted the Al to follow
this same tactic so that it would
be able to take whatever gold it
could from a backward neighbor,
To the players, though, the Al
appeared to be once again ganging
up against them. Because the
Al civilizations were fairly liberal
with trading, they tended to be
around the same technology level,
which led the player to believe that
they were forming their own non-
human trading cartel, spreading
technologies around like candy
[or, in the parlance of the forums,
“tech-whoring”).

PERCEPTION IS REALITY

»» Once again, perception Is
reality. The question is not
whether the Al is playing “fairly,"
but what experience it creates for
the player.

If questions of falrmess keep
creeping into the player's mind, the
game needs to be changed. Thus,
for CIVILIZATION IV, we intentionally

resources

Falstein, Noah. “Fair Play,” Game
Shui, Game Developer, August
2006,

West, Mick. “Intelligent Mistakes:

How to Incorporate Stupidity Into
Your Al Code,” Game Developer,
April 2008.

West, Mick. “Texas Hold'em
Al The Inner Product, Game
Developer, November 2005,

crippled the Al's ability to trade with
one another to ensure that a similar
situation did not develop.

The computer is still a black
box to players. Single events
based on hidden mechanics need
to be handled with great care.
Developers of sports games, for
example, need to be very sensitive
to how often a random event hurts
the player, such as a fumble, steal,
or ill-timed error. The dangers of
perceived unfairness are simply
too great,

Returning to our original
example, the developers of PUZILE
QUEST actually should have
considered cheating—but in favor
of the player. The game code could
ensure that fortunate drops only
happen for the hurman and never
for the Al The ultimate balance of
the game could still be maintained
by tweaking the power of the Al's
equipment and spells, changes
that appear fair because they are
explained explicitly to the player.
The overall experience would thus
be improved by the removal of
these negative outliers that only
serve to stir up suspicion.

When the question is one of fair-
ness, the player is always right. ()

SOREN JOHNSON iz a designes’
programmer at £4 Maxis, working an
an unannounced project. He was the
lead designer of CVILIZATION [V and the
co-designer of CVILIZATION Il Read maore
of his thoughts on game design at
www designer-notes.com. Email him at

slohnson@gdmag. com.

WWW.GDMAG.COM

AURAL FIXATION

THEAUDIO DESIGN OVERVIEW

NOTING THE ESSENTIALS

IN “WORKING IN CONCERT" (JANUARY 2009), | EXAMINED THE NEEDS OF
different parts of the developrment team regarding audio documentation
on a project. Once published, | received a slew of emails asking for copies
of sample documents to help further illustrate the points | had discussed.
Unfortunately, as with nearly everything in our industry, those documents
are full of proprietary information, and thus confidential.

However, | am going to share here some information about what
goes into a standard audio design overview document. This multipurpose
document can help communicate a game's overarching audio plan to
producers, composers, and sound designers while simultaneously helping
you organize your aural plans for a game into a cohesive structure,

PURPOSE AND STRUCTURE

o> At a macro level, an audio design overview will contain a minimum of
four sections: an introduction followed by separate sections for sound
effects, music, and voice. Even if your game doesn't contain all of those
disciplines, incorporate sections for each and simply include a statement
saying, “[Game] will not include any voice.”

The introduction spells out to the reader what the document is, what
kind of information it contains, and a high-level summary of what else is
in the document. Introductions may contain a section detailing the various
authors of the audio design overview and what their roles will be on the
praject,

Another section that's very common in the introduction is one that
outlines the goals of the audio design overview. As with all information in
an overview document, these goals can either be written as paragraphs or
listed as bullet points. For exarmple:

C. GOALS
The goals of this document are:

® To define the scope of the work and its pipeline,

® Joschedule the work against the deadlines of the
project, and

* To define any outstanding questions so that we
can pursue resolution,

Remember that the introduction is a summary, not a place to get bogged
down in details. Just outline for the readers what they should expect to get
out of reading the document.

DISCIPLINE DETAILS

»» The sections outlining each of the disciplines can come in any order,
though perhaps most common is: sound effects, music, voice. Each section
should be broken down into at least two subsections: aesthetic style guide
and technical requirements.

The purpose of the style guide is to explain how the aural approach for
the game falls in line with the overall aesthetics of the project. Is it a sports
game meant 1o capture the feel of watching Monday Night Football? If so,
explain the plans for helmet-crunching foley or the network TV sports Ll
effects that will populate the HUD. If the game is a space shooter, talk about

GAME DEVELOFER | MAY 2009

how realistic or hyper-realistic the audio will be—is it more like DEAD SPACE
or Duck Dodgers? Give examples from television, maovies, and games that
approximate your aesthetic goals.

When talking music aesthetics, mention genres of music, orchestral
versus pop/rock instrurnents, and whether you want wall-to-wall music or
a more nuanced interplay between sound effects,
ambiences, and soundtrack. In the voice
section, talk about casting. If you have kids in
your game, do you cast adults who sound
young or child actors? Are you going 10
cast locally, or is there a benefit to casting
actors across the globe? Is there a fully
voiced script that needs to be localized,
or does the voice work consist of only
iconic vocal utterances?

The technical sections for each
discipline can vary in their depth of
detail. If you're planning to create
separate documents that outline
audio technical requirements in
greater detail, you might want to use
the audio design overview to give just a summary of the audio tech needs.
If, on the other hand, the document is going to serve as the bulk of your
documentation, you'll want to be very specific about the tech requirements.

For sound effects, spell out your needs for streaming, stream
management, sound prioritization, and the loading and management of
resident sounds. Talk about needs like DSF, pitch, pan, and volume variation,
or zone-based ambience implementation and occlusion.

For music, discuss how many streams will be needed, whether the
music is interactive or dynamic, fade or crossfade needs, or any tech that
isn't inherent to the platform, like customizable soundtracks.

For voice, have subsections on anything from concatenated stitching,
to ducking, to hit react voice interrupt systems. If you're planning to use
middleware like FMOD or Wwise, discuss their uses in these sections.

SUPPORTING SPECIFICS

»» Staffing plans, production pipeline maps, and specific technical needs
documents can all be supplemental supports to the audio design overview.
If, howevwer, you chose to only have the overview document, you may want
to consider including more sections than the four spelled out here.

If there will be cut scenes in the game, consider a section that deals with
their tech, pipeline, and aesthetic needs. If you'll be outsourcing some of the
production work, talk about hiring and management plans. If you're going to
be releasing on multiple SKUs, spell out what the different approaches will
be for each SKU so as to best ensure a cohesive audio experience from one
platform to the next.

Comprehensive, cohesive documentation will help ensure that the
audio teamn and the development team both understand their roles and
expectations.)

JESSE HARLI N hos been composing music for gomes since 1999, He is currently the
staff composer for LucasArts. You can email him ot (harfin@gdmag. com.

¥/ i
DEADLY SKI 1LS?

L dills™ N T R W LS TR . A

L PlayStation.

We are HIRING across all disciplines:
programmers, artists, producers, designers, etc.

Apply online: http://www.us.playstation.com/Jobs

ENTERTAINMENT

IS HIRING

1\” ;:-:f“-f':;_“-: ﬁs‘.-:&._‘ .
N = = T oy | g @
NTARLRAF]
W - N
e W= AL |
We are actively recruiting across all disciplines for the following locations:
Irvine, California | Austin, Texas | Velizy, France | Cork, Ireland
Seoul, South Korea | Shanghai, China ‘ Taipei, Taiwan

www.blizzard.com[jobs

(€ 2009 Blizzard Entertainment, Inc. All rights reserved.

--.i'.‘_ ‘| o2

(4]
%,

Nan
] L e »
o
[2

r
=

Artwiek by Jashoon Kim, Animation & Visual EMects Student

@) ACADEMY of ART UNIVERSITY

= ..': "':"a:_

Advertising

Animation & Visual Effects
Architecture (u-asca)

Computer Arts New Media
Fashion

Fine Arts

Graphic Design

lllustration

Industrial Design

Interior Architecture & Design
Motion Pictures & Television
Multimedia Communications (sa, wa)

Photography

FOUNDED IN SAN FRANCISCO 1929 BY ARTISTS FOR ARTISTS

= -

¥ s
’l"‘L

-

-
=

-
"

Artwiork by Sunggaie Cho, Animation & Vieual Effects Student Astwork by Diego 5. Velasquer, Animation & Visual Effects Student

ENROLL NOW

STUDY ONLINE OR IN SAN FRANCISCO
e Degree Programs

* Continuing Art Education Courses

» High School Programs

800.544.2787
WWW.ACADEMYART.EDU

79 NEW MONTGOMERY STREET,
SAN FRANCISCO, CALIFORNIA 94105

Accredited member WASC, NASAD, Council for
Interior Design Accreditation (BFA-IAD), NAAB (M-ARCH)

GET EDUCATED

Create the Game

Gaming Degree Programs for the Next Generation

Game Art

Bachelor's Degrea Program

Game Development

Bachelor's Degree Program

Game Design

Master's Degree Program

iq
a
(g ~
ey N
‘ % v | — -
o 3
' ™ &
el 4@
® ' g rt
ANIMATION | DESIGN ENTERTAINMENT BUSINESS | FILM | RECORDING ARTS SHOW PRODUCTION | VIDED GAMES | WEB

Master’s Bachelor’s Associate’'s Degrees

800.226.7625 - 3300 University Boulevard - Winter Park, FL 32792
Financial aid available ta those who qually = Cemsr development assistance = &ccredited Lsiveraity, ACCSCT

fullsail .edu Online Programs Available

June 2-4, 2009 « L.A. Convention Center « E3Expo.com

- Disney Interactive | Konanu
| Nintendo of America Inc. | Atari, Inc. | Logic.
square Enix, Inc. | Games | TOMY | Sonic Ga.
Namco Bandai Games Softworks | Diy
_Natsume | Game Source | sent | E Games for Less
KOEI Corporation | Plays 25 Interactive | CH Products
Ubisoft Entertainment, Inc. | Bre 25 | Dreamcatcher Games | SEGA
USA, Inc. | Griffin Inter= ‘ma Games/Random House, Ii
] | dreamGEAR, LLC | ny Computer Entertainmer
igital Entertainment | KOEI Coro o nepark Holdings | Eidos Int
THQ, Inc. | Gametech | IGN Ente. {yko Technologies | MTV /
Microsoft Corporation | £== - “*al River | Hi Rez Studios
L " vajesco Entertainmer € XP© 2o 1101 Epic Game
’ “®roducts | Electronic Arts | Take-Two Interactive | U*

O e Doy ' Gamers First | Activision | Brady Games !

“~n | Warner Bros. Interart*

Une Time.One Place.One Event

sntartainmant See the biggest games and the best names in interactive entertainment. == .

@ saftware They're all in one place, at one time, for the one event of the yvear. -]I.}-(‘;-

1558 Pl e

Check out the full exhibitor list at www.E3Expo.com. Register todavy!

53

Connect with the Largest Educational System in the World

MEI Gamegs: SUDNIALON

meigamesim. |nt onetwo KS.C

| (T rain YLur E oneeé“ GL |

Apply for Staté and Federal Grant Pré ams
'Access Business De lopment Resourc \ Multimedia &

: Ent rmnment
'. O] C_’i , t CO C rmmﬁ:«

DD C
' DS HAN B
1. vELA@M

MAKE MORE

Game Design at Vancouver Film School
shows students how to make more
enemies, better heroes, cooler levels,
and tighter connections to the industry.

In just one year, you'll learn every
aspect of game design. Your portfolio
project is a playable video game.

VFS grads get snapped up by top
companies like BioWare, Radical, Relic,
and Ubisoft, and the LA Times named
VFS a top 10 school "most favored by
video game industry recruiters”.

1 vfs.com/enemies VI -

Thaddeus Maharaj

m| MAY 2009 | GAME DEVELOPER |

CENTER FOR DIGITAL IMAGING ARTS

"o G

apture -
“,,,_.CmagLﬁ t1op

S0 ANIMATION

INTERACTIVE MEDIA
B()ST(}N
UNIVERSITY

GAME ART+CHARACTER ANIMATION

Financial assistance and career services available.
Now accepting applications. Apply today!

CDIABU.COM

ADVERTISER INDEX

COMPANY NAME PAGE COMPANY NAME

Make Your
World

Your Career

Today’s world is
all about podcasts,
video games, and
Facebook.”

Take your passion to the next
level with a bachelor’s degree
in T]igi[ﬂl Entertainment
and Interactive Arts with a
concentration in Video
Game Art and Animation
from National University

Learn more today at
Getinfo.nu.edu/Game

or 800. NATUNIV

628.86

The University of Vilues

San Jose Campus:
3031 Tisch Way
100 Plaza East
408.236.1100

& National University 2009,

55

a3iivona3 139

ARRESTED DEVELOPMENT

GETTINGTO N

THE MOST EFFECTIVE WAYS TO DEFLECT WORK

HOW MANY OF US HAVE HAD THE EXPERIENCE OF HAVING A LEISURELY DAY
at the office of web surfing and forum participation rudely interrupted by
somebody who wants us to actually do something? Sure, maybe there's
some fantastic new feature for the game that someone is proposing. But
that will mean work for you! Here's how to put a stop to this Kind of thinking
befare it turns real.

BIG SIGH! When you hear someone potentially creating work for you, look
immediately to the first weapon in your arsenal—the BIG SIGH. Sigh as
deeply as you can and let your eyes roll upwards a little [not too much,
or it will seem unnatural). The BIG SIGH establishes right off the bat how
you're going to approach this, especially when you use it with nuance.
For example, it could be a condescending sigh that says, “l can't believe
you're going to bother me about this,” or it could be a passive-aggressive
sigh designed to evoke pity, like, “Here | am, buried under an impossible
amount of work, and now you're going to add some. Well, if there's one
thing I'm used to by now it's suffering, so | guess I'll deal with it. Or | won't,
and keel over dead.”

“That’s not in the schedule.” Your second line of defense is to invoke the
schedule. Never mind that you don't pay attention to the schedule yourself.
Use it as a weapon when it suits you! If sormebody’s got a proposal you
don't like, be sure to point out how it will negatively impact the game's
ahility to ship on time. For bonus points, say this within earshot of a
producer—you might get on their good side!

“Cool idea, but it's a bit late in the project cycle to implement now. Next
game!” It's pretty remarkable how many games in a row you can keep up
the whole “next game” ruse. By the time you reach the fourth or fifth go
around this loop, the requesting party is probably on their way out the door.
That is, if the studio is still in business.

“That's totally unproven in the market. The sales data proves it." If raising
the specter of actually shipping the title doesn't throw them off their
dogged path, it's time to start picking on the idea itself. As Herman Melville
once said, “Itis better to fail in originality than succeed in imitation.” And
Melville died poor and unknown, so why would anyone want to do that?
Risk is the bane of the industry, especially when millions of dollars are

on the line. So point out that the investment is at risk when anything that
deviates fram the norm is proposed. You can count on the people who
control the purse strings to see it your way.

“Yeah, well, we're not Valve." Someone's got a great idea inspired by the
smart and well-respected developers at Valve Software. But hey, if you

had unlimited time and rmoney for your game project, you'd all just be
doing whatever you wanted, right? Such as working at Valve. The point

is, most projects must acknowledge they have hard limits on time and
rmoney, and if you can tie whatever it is you don't want to do to those limits,
you're pretty much set. Plus, doing this lets you shrug your shoulders with
indifference—you don't have to be the bad guy, it's the whole world that
just isn't fair! Just keep saying "we're not Valve,” and befare you know it, it'll
be a team-wide mantra.

E GAME DEVELOPER | MAY 2009

“That's the stupidest thing | ever heard.” When all of your picking on the idea
fails, try to frighten therm with what appears to be your massively superior
intellect. Angrily say the idea is unworkable because of some incredibly
obvious reason or other, and that you can't believe they didn't realize it
immediately like you did. Since nobody wants to be seen as dumb, they'll
probably back down right away instead of calling your bluff. It doesn't really
matter what the problem you point out actually is—it could be UV mapping, or
endianness, or something related to the Pauli exclusion principle.

“As much as | love your Idea, | just don't think that's what the rest of the
team wants ... " Ah, the ferment of studio politics! This is the Machiavellian
power play you can try if you're the heartless type. Pit the requester
against the rest of the team. He'll start to feel weak and isolated. He might
lash out. Make him think you're on his side. “| know it's unfortunate, but
I'm really the only one here who seems to recognize your talents.” Playing
Puppet Master is a lot of work. But it's probably more entertaining than
whatever it was the guy was about to ask you to do.

“Seems all right to me, but please run that through the appropriate
channels.” This Is sort of a stalling technigque if none of the other things
you've tried have worked. You can only hope that the person who's making
the request doesn't even know what the proper channels are—which is
pretty likely in a game studio. But there's always the danger that against
all odds, the request will somehow get all the way through, and—of all the
indignities— you'll actually have to do the work. That doesn't mean you
have to be happy about it, though. Start prepping another BIG SIGH. ()

MATTHEW WASTEL AN D is a pseudonymous game developer who has o fainy
commaon first name. Email him at mwasteland@gdmag. com.

ILLUSTRATION BY DAN PALADIN

Tools for mortals to (intel)‘
achleve the divine

When crafting epic battles of the nearly divine,
a developer's weapon of choice must

have both power and precision,
optimizing performance and
engaging the senses in real time,
The Intel® Graphics Performance
Analyzers Suite opens new doors
iN game performance and

expands the horizon to

new customers

'PC developers have never had
such a reliable, flexible, and
extensive tool set for identifying
and resolving complex graphics
per If, rmance issues.”

— BARTOSZ KIJANKA, GAS POWERED GAMES

Get more information on Intel Graphics Performance Analyzers:
www.intel.com/software/gpa
|0 get the latest on software development

for visual computing, visit:
www.intel.com/software/visualadrenaline

THERE ARE LOTS OF WAYS To BE AN EVEN

COOLE

GAME DEVELOPER
e el o
X dvive a sweet alJ quwa /[

er yev <~ v [BINK VIDEO.

You getr am amazing, supev -F4CT BI N

Video amd andio codec - all in &

simple, clean APl. AnA Bink Video

\ VYIDEO
vums on 3 EVERY PLATFORM S |

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

USING BINK VIDEO NOT ONLY MAKES You

COO%PF , T MAKES You T?CI‘ ‘
7

XA - A
~RAD - G
7

GAME TOOLS

Foooax X

