
MAY 2003

G A M E D E V E L O P E R M A G A Z I N E

L E T T E R F R O M T H E E D I T O R

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Everard Strong estrong@cmp.com
Production Editor

Olga Zundel ozundel@cmp.com
Art Director

Audrey Welch awelch@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Jonathan Blow jon@number-none.com
Hayden Duvall hayden@confounding-factor.com
Noah Falstein noah@theinspiracy.com

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Monolith
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed Microsoft

ADVERTISING SALES
Director of Sales/Associate Publisher

Michele Sweeney e: msweeney@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 828.350.9392

Account Manager, Northern California & Southeast
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Recruitment
Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225

Account Manager, Western Region & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Account Representative
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz

Advertising Production Coordinator Kevin Chanel

Reprints Cindy Zauss t: 909.698.1780

GAMA NETWORK MARKETING
Director of Marketing Greg Kerwin

Senior MarCom Manager Jennifer McLean

Marketing Coordinator Scott Lyon

CIRCULATION

Group Circulation Director Catherine Flynn

Circulation Manager Ron Escobar

Circulation Assistant Ian Hay

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Executive Vice President & CFO John Day

Chief Operating Officer Steve Weitzner

Chief Information Officer Mike Mikos

President, Technology Solutions Group Robert Faletra

President, Healthcare Group Vicki Masseria

President, Electronics Group Jeff Patterson

President, Specialized Technologies Group Regina Starr Ridley

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, HR & Communications Leah Landro

Vice President & General Counsel Sandra Grayson

Vice President, Creative Technologies Philip Chapnick

W W W . G A M A N E T W O R K . C O M

✎

Igot back from GDC not too long

ago, physically exhausted but men-

tally energized as always. Seeing

the development industry face-to-

face every year causes me to reflect

on its state of diversity, as it’s hard not to

when you’re swimming upstream in a

rushing river of primarily male, white

faces in their 20s and 30s.

To be honest, I’m never quite sure how

to react when people bring up the fact

that the editor-in-chief of a confidently

eponymous industry publication for game

developers is a woman. I at least get some

entertainment value out of the people who

begin a comment on this fact before real-

izing they failed to secure an intelligent-

sounding or at least nonoffensive conclu-

sion to the comment. And believe me, I’m

not easily offended. But I do have a sense

of humor at least, which I reserve for the

well-meaning.

It’s no secret that the short history of

game development carries a long tradition

of not having many women in it.

Nonetheless, I’m encouraged for the

future by seeing more women in more

roles year over year at GDC, from speak-

ers to attendees to volunteers to students,

as I think many people in the industry are.

I’m even more encouraged by the active

efforts of the IGDA’s results-oriented

Women in Game Development Commit-

tee, as well as companies such as

Microsoft, who sponsor an annual event

at GDC called “Women Celebrating

Women in Gaming.”

More and more people from all back-

grounds are taking an interest in the

issue of gender diversity in game develop-

ment. The magnitude of the issue can be

overwhelming to those wondering

whether and how they can make a differ-

ence for the better. For one thing, it’s

important to remember that there is no

single “issue” about gender in game

development, yet I often see discussions

in newsgroups and at in-person gather-

ings devolve quickly when the tendency

prevails to bond the big slabs of distinct,

complex issues with the mortar of gener-

alizations. Following are some issues that

I like to keep distinct from each other for

the purposes of organizing productive

discourse and formulating solutions.

Lack of female-friendly product on the
market and a dire lack of information on
the female consumer market itself doesn’t
inspire women to play games or make them.
This may be the single biggest frustration

facing women who currently work in the

game industry and anyone in the industry

who wants to target a broader or girl-

focused audience rather than the “tradi-

tional” audience of young males.

There’s a huge challenge in attracting
women to computer science study and work
that is much bigger and older than the
game development industry. Organizations

like Women in Technology International

(WITI) and the ACM have been grappling

with this issue as it has existed in the

broader technology sector for far longer

than computers have been used to make

bikini-clad volleyball players jiggle across

TV screens.

It’s extremely hard (not to mention dan-
gerous) to make generalizations of any kind
about women, be they consumers or devel-
opers. Not all women are into touchy-

feely “empowerment” efforts, not all girls

want to play social-based games, not all

women game developers magically know

what women game players want, and to

top it all off, not all generalizations are

entirely false.

While these challenges seem formida-

ble, the upside is that solutions we find

will benefit all involved with the indus-

try, not just women. Developers will

learn more about the nature of what

they do when more different kinds of

people are doing it. They will learn

more about themselves when they start

questioning their assumptions and stop

projecting them on others. Carol Shaw,

creator of RIVER RAID, has been quoted

on the gender significance of her pio-

neering work as a game designer and

programmer, “I really don’t like to make

a distinction; other people always made

the distinctions for me.”

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

2

Game Developer
is BPA approved

G A M E P L A N

Jennifer Olsen

Editor-In-Chief

What’s Good for the Goose . . .

www.gdmag.com

The Khronos Group grows. The Khronos

Group, whose members participate in the

development and deployment of OpenGL

ES and OpenML applications, recently

announced that Ericsson Mobile Plat-

forms has joined the group as a promot-

ing member. FueTrek Company and

Mitsubishi Electric Corporation also have

joined the group as contributing members.

GameSpy allies with Vivendi Universal.
GameSpy Industries announced an agree-

ment to supply technology and back-end

services, including server, bandwidth, and

reporting support, for several online

games to be released by Vivendi

Universal. The first two titles planned

under this agreement (for which no finan-

cial terms were released), are Relic’s

HOMEWORLD 2 and Impressions Games’

LORDS OF THE REALM 3.

Sony moves production to China. Sony

recently announced the company will be

moving all Playstation 2 production to

China within its next business year. The

move, which was done to trim costs, fol-

lows Sony shifting half of its Playstation

manufacturing to the Chinese factories of

two Taiwanese electronics firms. Though

there is some speculation that these

moves have been made in part to set up

production for the estimated 2005

release of the Playstation 3, Sony has

said they do not know where the future

console will be manufactured.

A gathering of developers perform ritual,
create Skylab. Original members of Ritual

Entertainment, led by co-founder Michael

Hadwin, have joined forces with original

members of Gathering of Developers, led

by co-founder Rick Stults, to form Skylab

Entertainment. Calling Austin, Tex.,

home, the company is working on their

first unannounced title.

Acclaim target of class action lawsuit. The

law firm of Cauley Geller Bowman

Coates & Rudman filed a class action

lawsuit against game publisher Acclaim

for failure to disclose and/or accurately

represent claims that, among other

things, the company was engaged in

aggressive sales practices; that Acclaim

was suffering from decreased demands

for its products; that the company had

failed to meet revenue and earnings guid-

ance; and that projections and forecasts

concerning Acclaim were lacking in a

reasonable basis at all times. q

Send news items and product
releases to news@gdmag.com.

m a y 2 0 0 3 | g a m e d e v e l o p e r4

TTHHEE TTOOOOLLBBOOXX
D E V E L O P M E N T S O F T W A R E , H A R D W A R E ,
A N D O T H E R S T U F F

Virtools releases Virtools Dev 2.5. Virtools

has released the latest version of its

flagship 3D development environment,

Virtools Dev 2.5. The update features a

new Virtools Scripting Language, a

Schematic Editor, and an SDK. The

company also announced the Virtools

AI Pack, a behavior library for Dev 2.5.

www.virtools.com

Criterion introduces several new products.
Criterion launched four new products at

GDC. RenderWare Physics is designed to

enable developers to add real-time

dynamic behavior to game objects and

environments. RenderWare AI will pro-

vide direct, customizable access to AI

tools. RenderWare Graphics 3.5 features

an updated user interface. RenderWare

Studio 1.2 includes such features as Build

Process Tools, Enhanced Event Visualizer,

and Spline and graph editing.

www.renderware.com

Gamebryo is hatched. NDL unveiled

Gamebryo, the successor to its

NetImmerse 3D graphics toolkit and

engine, at GDC. New features include an

expandable tools architecture, pixel and

vertex shader editing, and new anima-

tion tools. www.gamebryo.com

DTS offers PS2 SDK free for one year. DTS

announced at GDC that they are offer-

ing a zero-fee license for use of its multi-

channel sound technology for

Playstation 2 games. The license, which

includes technical and marketing sup-

port, will be offered to all developers

working on Playstation 2 games that are

certified by DTS prior to April 1, 2004.

www.dtsonline.com

I N D U S T R Y W A T C H; K E E P I N G A N E Y E O N T H E G A M E B I Z | e v e r a r d s t r o n g

P
G A M E D E V E L O P E R S W O R L D

BELLA CENTER

Copenhagen, Denmark
May 8–10, 2003
Cost: variable
www.gd-world.com

E 3
LOS ANGELES CONVENTION CENTER

Los Angeles, Calif.
May 13–16, 2003
Cost: Free–$550
www.e3expo.com

E L S PA G A M E S S U M M I T
RADISSON SAS, PORTMAN SQUARE

London, United Kingdom
June 17–18, 2003
Cost: Approx. $618–$2,245, + VAT
www.elspa.com

B U P C O M I N G E V E N T S

CCAALLEENNDDAARR

Impressions’ LORDS OF THE REALM 3 will be one
of the first Vivendi titles to share technology
and services with GameSpy.

m a y 2 0 0 3 | g a m e d e v e l o p e r6

D oing a “complete” review

of a product with the

scope of Maya 4.5 is a

monumental task, so I

considered my approach

carefully. Given that my role at Rockstar

San Diego is primarily one of a modeler

and MEL guy, I decided to focus on what

I know best and use the most, while also

giving a circumspect look at the more

intriguing offerings among this version of

Maya’s new features.

For an incremental update, Alias|Wave-

front has presented in Maya 4.5 a fair

number of advancements, including Fluid

Effects, Smooth Proxy, a large number of

API enhancements, new (and groovy)

snapping tools, sub-d to NURBS conver-

sion, interface changes that facilitate bet-

ter workflow, and new polygon and

beveling tools. But are these improve-

ments significant enough to warrant an

upgrade? Productivity and creativity are

co-rulers of the game-art world, so I’ll try

to relate how these new features affected

my workflow and my ability to translate

my ideas to the screen.

Fluid effects. Based on my experience

of using water plug-ins in the past, I tend

to be intimidated by anything that has the

words “fluid dynamics” in it. However,

the Maya Fluid Effects package is actually

very usable, with a great amount of depth

if you need more out of it than the preset

values (which are numerous). Our effects

artists around the office are using this

new functionality a lot and digging it.

Workflow improvements. I’ve been using

Alias|Wavefront’s Bonus Games Package

of plug-ins (available on the Alias|Wave-

front web site for Maya 4.0.x) for a while

now, so some of the workflow enhance-

ments integrated into 4.5 are old hat to

me, but they are nevertheless a huge step

up in usability. Alias|Wavefront has bun-

dled a large number of “patch scripts”

into this version as well, including Poly

Power Tools and the majority of the

Bonus Games Package set, allowing you

to do things like “Split Face,” “Poke

Face,” and “Wedge Face,” which can be

combined in a large number of ways to

give you some really great MEL scripts.

They’ve also unhidden the Annotate com-

mand and put it in a pull-down menu.

However, there are still some things miss-

ing, such as the excellent UV Texture

Editor tools that come with the Bonus

Games Package for 4.0.

Also among the new workflow

improvements are the new snapping tools,

which are very intuitive and easy to use.

In particular, the “Snap Together” tool

has proved extremely useful for the work

we’re doing right now, where lots of

objects need to be placed with transforms

relative to the surface of the landscape.

“Retain Component Spacing” is proba-

bly one of my most anticipated additions

to Maya. Coming over to Maya from 3DS

Max, I was frustrated with the fact that

when I used the snap tools, it always

snapped all the selected objects to the

same transform direction. Now, with

“Retain Component Spacing” switched on

(the default now in 4.5), you don’t have to

cluster your components in order to snap

them in relation to each other. It’s a small

but very welcome change.

Subdivision surfaces. Manipulating

subdivision surfaces, or sub-d’s, hasn’t

Alias|Wavefront’s
Maya 4.5

by spencer l indsay

XX
P R O D U C T R E V I E W S

T H E S K I N N Y O N N E W T O O L S

Maya 4.5’s ability to convert between subdivision surfaces and NURBS provides a new modeling
workflow.

S P E N C E R L I N D S A Y | Spencer is a technical artist at Rockstar San Diego, where
there are scary SUVs everywhere. He misses the redwoods. You can contact him at
slindsay@rockstarsd.com.

changed much in functionality, but Maya

4.5 adds the ability to convert between

sub-d and NURBS, which is great if you

do a lot of NURBS and sub-d modeling,

which I don’t. One thing I did notice was

that during the conversion from NURBS

back to sub-d, Maya tended to tessellate

the edges of my isoparms unnecessarily,

creating extra subdivisions in the new

sub-d set. Happily, there are some added

smoothing techniques which give you

more control over the final polygonal

model’s density.

The best new thing in the subdivision-

surface domain is the new “Smooth

Proxy” tool, which is basically the same

thing as 3DS Max’s NURMS. A

“smoothMesh” object is created with

input connections from the “proxy-

Mesh,” so whatever large polygonal mod-

ifications you apply to the proxy are

transferred down to the smoothed ver-

sion. I played with this for hours and

found it to be a very usable way to model

polygons organically in Maya.

NURBS. Like subdivision surfaces,

NURBS functionality remains largely the

same. The most significant change is that

all the functionality of the advanced

modeling tools, like Booleans, Offset

Surface, and the like, which were previ-

ously available in Maya Unlimited are

now standard in Maya Complete.

API and MEL refinements. In Maya 4.5,

Alias|Wavefront has continued to refine

the MEL tools. Improvements include the

ability to change the background colors in

windows (PC only), the addition of

lockNode/lock functionality, and the

exposure and documentation of the

“Annotate” command. The HTML help

pages have been completely reformatted

to be much more readable. However, ver-

sion 4.5 still lacks an easy method of

designing UIs in MEL, as well as a usable

script editor.

Support. While Alias|Wavefront has

made excellent progress with regard to

feature additions and stability improve-

ments, support is a relatively sore point.

As with all products that make the price

migration from high-end to consumer,

Alias|Wavefront has stumbled in the sup-

port it provides for Maya. In my experi-

ence, although I can call or write e-mail

and get a pretty fast response Monday

through Friday between 3:00 a.m. to 8:00

p.m. Eastern time, I have experienced vir-

tually zero weekend or late night support.

As we all know, the game and film indus-

tries operate 24/7/365, and sometimes we

need support right away during deadlines

and milestones (I was fortunate enough to

be experiencing both of these during my

evaluation of Maya 4.5 for this review).

With their growing customer base,

Alias|Wavefront needs to invest some

thought and effort into shoring up this

weakness as soon as possible.

Last word. Maya 4.5 offers lots of use-

ful additions to the workflow and model-

ing tools, and to the great relief of users

the stability improves with every release.

Clearly Alias|Wavefront has been listen-

ing to their game customers and their

feature requests, a trend I certainly hope

to see continue. If you can manage the

significant hiccup Maya’s rapidly grow-

ing user base has caused in the area of

support, Maya 4.5 is a worthy upgrade.

Real Sound Synthesis
for Interactive
Applications
by Perry R. Cook

reviewed by jeremy jessup

R eal Sound Synthesis for Interactive
Applications describes elementary

and advanced techniques to simulate the

audio components of dynamic systems

using physics. While the book is not

specifically directed toward game devel-

opers, the application to game develop-

ment is clear. The book’s organization is

easily to follow through three sections

detailing digital audio, sound modeling,

and simulation of real-world instruments.

The first section (chapters 1–3) defines

digital audio, compression, wave synthe-

sis, and simple filtering techniques. These

chapters serve as the foundation for what

follows, defining common asset formats

and techniques currently used in games.

The second section (chapters 4–8)

introduces sound modeling through sim-

plified physical systems, such as an ideal

spring, and Fourier series equations.

While an understanding of college physics

and calculus is helpful (especially if you’d

like to code these methods), the book

doesn’t require it or get bogged down in

theory or mathematical proofs.

The last section (chapters 7–16) pro-

vides physics equations that allow for the

simulation of real-world instruments

(string instruments, tubes, and multi-

dimensional objects). Each chapter

describes a different system based on

Fourier construction, filtering, and

physics-based equations. It’s the heart of

the book and most interesting.

The clean organizational layout made it

easy for me to refer back to previous sec-

tions when I felt the need. In many cases,

however, I found the writing to be a little

too condensed and wished for a para-

graph describing a concept rather than the

sentence provided. Cook does supply ref-

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

w w w . g d m a g . c o m 7

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

MAYA 4.5 XXXX]]

STATS
ALIAS|WAVEFRONT

Toronto, Ontario, Canada
(800) 447-2542 or (416) 362-9181
www.aliaswavefront.com

PRICE
$1,999 (MSRP)

SYSTEM REQUIREMENTS
Windows XP/2000: Pentium II or AMD

Athlon with 128MB RAM (256MB recom-
mended) and qualified graphics card;
three-button mouse

Mac OS X, Linux, IRIX: see web site for
requirements

PROS
1. New SmoothProxy tool kicks butt.
2. Lots of incremental workflow improve-

ments add up.
3. Reformatted HTML documentation is

more user friendly.

CONS
1. Customer support is slipping.
2. MEL still relatively ungainly.
3. Maya 5 already looming on the horizon at

press time.

erences at the end of each chapter for

those readers seeking additional detail.

The book also includes a CD contain-

ing audio samples of the topics dis-

cussed throughout the book. While

reading the book, it was useful to be

able to hear the point made or tech-

nique used in the text. The CD also con-

tains Cook’s sound synthesis toolkit and

several examples of instruments high-

lighted in the last section.

Unfortunately, real-time sound synthe-

sis in games currently has a limited place.

Due to the complex calculations of

Fourier series, fast digital signal proces-

sor chips are required to simulate the

audio effects without impacting the rest

of the game. Minimally, filters and other

simple routines outlined in the book can

be written for target hardware to accom-

plish specialized effects, but this is noth-

ing radically new.

However, Cook’s research in simulat-

ing audio is extremely exciting. During

the calculation of an object’s dynamic

behavior (such as collision response,

striking, falling, and moving), a mini-

mal additional amount of time can be

spent to determine the audio effects.

According to Cook’s findings, this

amount is generally less than 5 percent

of the total time required to simulate an

object’s physical behavior. Admittedly,

these calculations are on the order of

minutes versus milliseconds, but eventu-

ally Moore’s law will catch up and sim-

plifications will allow unparalleled

audio effects in conjunction with physi-

cal simulation.

Developers and sound designers inter-

ested in the math and physics of creat-

ing real-time sounds should pick up this

book. Those interested in a fascinating

look at the mechanisms of dynamically

producing sound might also want to

give it a read, provided it’s with the

understanding that the direct applicabil-

ity to games is at least few years away.

XXX | Real Sound Synthesis for
Interactive Applications | A. K. Peters |

www.akpeters.com

Jeremy Jessup has been developing games
professionally for nearly five years.

Whole Tomato’s Visual
Assist .NET 7.1 and 6.0

by noel llopis

I f you’re using Visual Studio, chances

are you’ve heard of Visual Assist. For

the three of you who haven’t, it’s a plug-

in for Visual Studio (.NET or 6.0)

intended to improve the everyday tasks

of C++ programming.

Some of its features improve on things

Visual Studio already supposedly does,

like syntax coloring. Visual Assist takes

it a step further and uses different colors

for classes, variables, preprocessor

macros, and class member functions.

You can print the source code using

those colors, or copy it to the clipboard

in full color.

One of my favorite features is the abili-

ty to switch between an .H file and its

corresponding .CPP file. Keeping the class

declaration and the implementation in

synch was never so easy; press a key and

you’re there. Visual Assist integrates very

well with Visual Studio, allowing you to

map any of its commands to keyboard

shortcuts or toolbar buttons.

I often find myself searching for a spe-

cific function within a file, but I might

not remember the exact name of that

function. No problem, Visual Assist lets

me bring up a list of all the functions in

the current file, and with a click it jumps

to that location. You can even sort the

functions alphabetically.

Another indispensable feature is the

ability to jump to the declaration or def-

inition of any symbol under the cursor.

Visual Studio claims to do that, but it

often fails miserably, especially when

dealing with symbols outside the current

project. Visual Assist does a much better

job, and only on rare occasions won’t

be able to find a symbol. They even

finally implemented good namespace

support. Visual Assist can also display

the full declaration of functions under

your cursor, including the type of all the

parameters. It also provides very effec-

tive autocompletion for any symbol

while you are typing.

As far as I’m concerned, the rest of

the features are pure gravy: column

delimiter marking, current scope dis-

play, auto insertion of parentheses and

brackets, and syntax error underlining,

to name a few. You can also turn off

any feature you don’t need.

So, what’s not to like? My biggest

complaint is the apparently rushed way

in which new versions are released.

Sometimes it seems that every week

there is a new release coming out, and

sometimes major bugs slip through. I

spent a whole month getting lock-ups

and crashes that I was blaming on Visual

Studio, until I upgraded to the latest

release of Visual Assist and it fixed all

my problems. Needless to say, I was not

particularly happy.

Installation wasn’t totally smooth

either. Maybe it’s because I was upgrad-

ing from VC++ 6.0 to .NET, but at one

point I had to fully uninstall Visual

Assist and install it from scratch. Not a

big deal, but I lost all my custom settings

in the process. Some people have also

reported incompatibility problems with

other plug-ins. Whether that’s a problem

with Visual Assist or with the other

plug-ins, I don’t know, but you should

definitely get the trial version and make

sure you don’t have any problems.

Their upgrade policy isn’t particularly

friendly. You have to pay an upgrade fee

for each major version released, which

is understandable, but the versions for

.NET ($49 upgrade) and VC++ 6.0 ($29

upgrade) are considered two different

products, so you’ll be paying twice if

you need to upgrade both versions. At

least their pricing scheme is reasonable

($79 for either version new or $119 for

a bundle).

All in all, Visual Assist is an indispen-

sable aid for any C++ programmer using

Visual Studio. But be warned: you’ll feel

withdrawal symptoms if you ever have to

program without it. q

XXXX | Visual Assist .NET 7.1 and
6.0 | Whole Tomato Software |

www.wholetomato.com

Noel Llopis is a software engineer at
Day 1 Studios. Contact him at
llopis@convexhull.com.

XP R O D U C T R E V I E W S

m a y 2 0 0 3 | g a m e d e v e l o p e r8

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

T om Hall wrote his first game,

GOLD QUEST, on an Apple II+, in

BASIC, in 1980. Since then, he

has gone on to work for

Softdisk, helped found id

(COMMANDER KEEN, DOOM, QUAKE) in 1991,

and then moved on to Ion Storm in 1997

(where he created ANACHRONOX). He has

worked alongside industry notables John

Romero and John Carmack for most of his

career. In 2001 — along with Romero —

Tom formed Monkeystone Games, where he

currently serves as chief creative officer (“a

fancy title for lead game designer,” he con-

cedes) concentrating his time on creating

games for portable devices.

With this issue of Game Developer high-

lighting mobile gaming, we gathered Tom’s

thoughts on this emerging medium and its impact on the game

development industry.

Game Developer: Do you see the promise of mobile devices —
and the delivery of information and entertainment through them
— in danger of being overhyped, as the Internet was through the
late ‘90s?

Tom Hall: Well, the Internet was useful already before it was

hyped up — I was on it in college when the best I had at home

was a 300 baud modem. Of course mobile devices are in danger

of being overhyped. Everything is. But there are always technolo-

gies that are ripe for some application to come along and prove

them indispensable. Mobile devices need that. Getting 20 cents off

a burger because I walked past McDonald’s with my SmartPhone

is hardly a killer app. However, once everyone has a GPS on their

phone, the equivalent of Mapquest becomes the killer app.

GD: In respect to graphics and programming limitations, what
comparisons do you find between the early days of PC and console
game development and now mobile games?

TH: You have to pull out your old-school knowledge,

because you don’t have that fast a system. It also makes you

focus on gameplay, because you aren’t going to wow them

with thousands of polys. Also, it limits what kind of games

you can do, as you can’t fit a lot of text, and some devices

don’t allow you to press two buttons at once.

However, handheld devices are starting to get pretty impres-

sive. You can have DOOM-level tech on some of them for sure,

and — if you work really hard — QUAKE on a smaller set of

them as well.

GD: How do you approach a project intended for mobile devices
as opposed to a PC- or console-based title?

TH: I first have to think of a game that

works in that resolution. Most phones are

around 128¥144 or so. So a lot of game types

go out the window. And the app and the data

have to fit in 200K. That takes care of a

bunch more types of games. And then you

have to be able to play it with a D-pad and a

button, really. You can use the number keys,

but if you’re someone waiting for their plane,

you don’t want to get involved in an epic

story or use complex controls. You can’t

press two buttons at once, so fighting games

and shoot-em-ups like GALAGA or THUNDER-

FORCE are the wrong thing to try for.

However, we are now doing a 3D shooter

for cell phones and it will use Bluetooth for

multiplayer, so that’s an exciting step. What-

ever features the phone excels at, we try to take

advantage of those. Shigeru Miyamoto gave a speech at the

Game Developers Conference a few years ago, asking designers

to study the technology they have at their disposal to get the

most of it. That’s what we try to do.

GD: You once said, “There’s little room for doing true design in a
technology-oriented company.” How has this view changed since
your days at id, Ion Storm, and now Monkeystone?

TH: That statement was simply my reaction to the focus at id,

which was a great focus: “We have the best technology in the

world, let’s get it out there before anyone catches up to us.”

DOOM could get away with little content and no ending because

it had amazing raw cool. But getting away with it, to the person

wanting to have design innovations as well, was not the point.

At that point, we’d made HOVERTANK ONE, CATACOMB 3D,

WOLFENSTEIN 3D, and SPEAR OF DESTINY. I was ready to add to

the bare-bones approach, to leave other people that much fur-

ther in the dust. Romero felt the same way during QUAKE.

I absolutely stand by that statement. There’s nothing wrong

with having absolute focus — you get great things out of it —

look at DOOM 3’s technology. But with that technology, you

could do a lot of insane, creative things. [id’s] charter is to do

more of what they’ve done, add minor stuff that shows off

what the technology can do, and then let the licensees take the

design risks. It makes total sense, but it isn’t a situation where I

could find my work rewarding and fun.

GD: What other portable devices do you think hold promise for
the gaming industry?

TH: We’re excited about the new Game Boy Advance SP, the

SmartPhone, and the new Nokia N-Gage, especially. Finally,

someone is making a phone for gamers. q

m a y 2 0 0 3 | g a m e d e v e l o p e r10

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | e v e r a r d s t r o n g

Been There, Done That
Tom Hall Revisits the Basics

Tom Hall is re-examining the rela-
tionship between gameplay and
technology on mobile devices.

m a y 2 0 0 3 | g a m e d e v e l o p e r12

Unified Rendering LODPart 3

FIGURES 1A–D (from left to right). 1A: A 1,000-triangle Stanford bunny. 1B: The same bunny clipped in half with the halves joined together by a
seam. 1C: The right half of the bunny has been passed through a detail reducer, decreasing its triangle count by a factor of 4. The seam has been
cross-referenced and correctly preserves the manifold. 1D: The bunny halves, at differing LODs, have been moved back together and the seam is
now drawn using the same shader as the rest of the bunny.

j o n a t h a n b l o wI N N E R P R O D U C T

A B C D

My goal up to this point with this series of

columns on unified rendering level-of-detail

(LOD) has been to create a general method of

LOD management that works for a wide variety

of geometry types. But so far I’ve only discussed

the rendering of regularly sampled height fields. This month I’ll

start extending the system to triangle soups.

Recall that the basic algorithm works by dividing the input

data into spatially localized blocks, then hierarchically combining

those blocks. Because we were working with height fields, the

vertices were spread mainly across two dimensions, so the array

of blocks was two-dimensional. Since the input data was a grid

of samples, dividing the data into blocks was easy, and building

the initial seams between high-resolution blocks was also easy.

Now we want to allow the triangle soup to extend arbitrarily

in any direction, so the array of blocks must be three-dimension-

al. Building the blocks and seams will also be more involved. But

fortunately, we’re already familiar with the necessary tools; we

use them when constructing spatial organizations in a variety of

triangle-processing algorithms.

As an overview of what I’m discussing, see Figures 1a–d,

where the Stanford bunny has been chopped in half and joined

by a seam. The separate halves can change their detail levels; the

seam tracks the changes and maintains the manifold. By repeat-

ing this operation with different planes, we can chop a mesh into

a grid. (This month’s sample code only does a single plane, since

there are complications with edge and corner handling that I will

discuss next month.)

Clipping or Binning?

W e want to divide the input geometry into a three-dimen-

sional grid of blocks. Since the triangles will not generally

be aligned with block boundaries, the obvious idea is to clip the

geometry using planes aligned with the faces of each block.

However, the goal of dividing the geometry into blocks was

just to create groups of triangles, where each triangle is located

near the other triangles in its group. Strictly speaking, there is no

algorithmic requirement that prevents the blocks’ bounding vol-

umes from overlapping. So instead of clipping, we could divide

the geometry as follows: (1) start with a set of empty “bins,”

each representing a cubic area of space; (2) for each input trian-

gle, find the cube that contains its barycenter, and put the triangle

into that bin; and (3) compute the smallest axis-aligned bounding

volume for each bin by iterating over all the binned triangles.

When we have done this, we’ll have a set of rectangular volumes

that are probably a little bigger than the initial cubes, so they

overlap a little bit. (Pathologically large triangles might cause the

bounding volumes to overlap significantly, but you can easily

subdivide those triangles to eliminate the problem.)

Which of these methods, clipping or binning, should we imple-

ment? Unfortunately, clipping increases the total triangle count,

which should be cause for concern. I chose clipping anyway,

though, because even though non-overlapping bounding boxes

were not a basic algorithmic requirement, they provide a greater

interoperability with arbitrary rendering algorithms. Some algo-

rithms require a strict rendering order for correctness, such as

rendering back-to-front. If we’re rendering grid squares that

don’t overlap, we can quickly achieve correct ordering of every

triangle in the scene like this: (1) sort the triangles in each block

J O N A T H A N B L O W I Jonathan is cur-
rently living in Austin, Tex. and not having
any fun. E-mail him at jon@number-
none.com.

individually; (2) treating each block as an indivisible unit, sort

the blocks by the distance from their center points to the camera;

and (3) render the blocks in the sorted order. This sorting works

because the grid squares are regions of space that result when

you chop the space up with a bunch of planes. The applicable

idea here is “Render everything on the same side of a plane as

the viewpoint, then everything on the opposite side,” which is the

same idea that makes BSP-tree visibility work. A grid of cubes is

isomorphic to a BSP tree; it’s just stored in array form instead of

tree form (and array form has a lot of advantages).

Now it’s true that one of the basic goals of this algorithm is to

enable the treatment of blocks as opaque entities, so that we can

progress very quickly; if we need to sort the blocks, we lose

much of that speed. But users of the LOD algorithm should ide-

ally be free to make the judgment call themselves: whether to

adopt an order-dependent rendering algorithm and accept slower

running, or to run with unsorted blocks, getting higher triangle

throughput, and using a different shading algorithm. If we don’t

clip, we make it much harder to sort the scene properly; we are

effectively saying, “If you use this LOD algorithm, you won’t be

able to do rendering techniques X, Y, or Z without undue pain.”

In fact I referred to an order-dependent rendering technique

last month: the color-blending method of interpolating

between LODs, used on DirectX 8 and earlier hardware.

Rather than sorting the triangles in each block, the algorithm

used the Z-buffer to effectively sort on a per-pixel level. This

color-blending technique already tolerated some inaccuracy in

order to run quickly: occluded triangles in the translucent

layer for a block may or may not contribute color to the ren-

dered scene, depending on the order the triangles are stored in

the mesh. However, due to the way colors were being blended,

the inaccuracies are small and hard to notice. I suspect that if

we used binning and thus rendered the scene slightly more

out-of-order, the resulting errors would be similarly subtle and

the result would be acceptable. Just the same, though, one of

my major goals has been to make the system maximally com-

patible with unforeseen game engine components. It seems

like strict ordering is a potential trouble spot for cross-algo-

rithm interactions, so I chose clipping.

Then again, maybe the set of conflicting rendering techniques

is small and unimportant. If we decide not to support them, we

get a simpler LOD system, because binning is simpler than clip-

ping. A simpler LOD system is desirable so that when users

need to modify it, their job will be easier. Really, this is a tough

call to make.

Another reason I chose clipping in the end was that, with

regard to seam building, clipping is a superset of binning: you

need to solve the weird cases that happen with binning and do

extra work on top of that to clip. So a clipping solution illus-

trates both cases, and if you wanted to simplify the preprocessing

stage to use only binning, you could streamline the sample code

instead of writing code from scratch.

Clipping and Triangle Count

The extra triangles created by clipping may not matter much.

When we give the block to our mesh simplifier — assuming

the simplifier works effectively — these triangles will mostly be

seamlessly merged, so they’ll have a small impact on the resulting

triangle count and topology. Thus the time the extra triangles

should matter most is in the highest-resolution blocks.

On fast, modern hardware, when geometry is finely tessellated,

a relatively small number of triangles are created by clipping. To

show why, let’s once again look at a mesh built from a square

grid of vertices. The number of triangles in the block is 2n2
,

where n is the number of samples on each side of the block. But

the number of triangles added by clipping is approximately 4n.

So as we increase the resolution of our world mesh, the number

of triangles added by clipping grows much more slowly than the

number of triangles we actually render.

Building Seams

I recommend following the same strategy as last month when

it comes to seams: create seams between the meshes at the

highest resolution, then cross-reference them into the reduced

meshes. The results are fully precomputed seams that you can

render quickly.

For every line segment produced by clipping, we must cre-

ate a degenerate quad to bridge any potential gap. Figure 2a

shows a triangle that has been clipped by a plane, and Figure

2b shows the degenerate quad that links the triangles on each

half of the plane. Because we’re working in 3D now, the pos-

sibility exists that one of these segments will lie on a border

between more than two blocks. If we employ an algorithm

that generates seams between blocks based on which planes

the segment touches, we could generate strange, spurious

seam triangles.

There are some other factors of which we need to be cautious.

When clipping geometry by a plane, we usually classify vertices

as being in the plane’s positive half-space, being in the negative

m a y 2 0 0 3 | g a m e d e v e l o p e r14

I N N E R P R O D U C T

FIGURE 2A (left). A triangle (brown) has been clipped by a plane (red
dashed line). The resulting convex polygons must be triangulated,
yielding three triangles in this case (green). FIGURE 2B (right). We
insert a degenerate quad (blue) to link the triangles on each half of the
plane. The triangles have been artificially pulled apart here so that the
quad is visible.

half-space, or lying on the

plane. We can end up in a

situation where two con-

nected triangles straddle

the plane as Figure 3

shows. Even though clip-

ping doesn’t create new

geometry in this case, we

need to detect it and add

the appropriate seam.

In this month’s sam-

ple code, which you can

download from

www.gdmag.com, I

wanted to solve all these

problems while trying to keep things simple. The approach I

take is clipping each block in isolation, then matching up

seams between the blocks after the clipping phase is complete.

Whenever I create a new edge via clipping, or detect an edge

coplanar to one of the clipping planes, I add it to a list of

potential seam edges. When all the blocks are clipped, I look

at neighboring blocks and match up edges, creating degener-

ate seam quads between them. This two-pass approach is also

important for out-of-core clipping, which may be necessary

for large input geometry, so it’s good to have it already built

into the core algorithm.

When matching up the seam edges between blocks, we need to

ensure that we don’t attach the wrong edges to each other. There

might be ambiguity due to multiple vertices located in the same

positions, or due to floating-point calculations coming out slight-

ly differently when edges are clipped multiple times. (Ideally, such

floating-point problems don’t happen if you’re careful in the code

that computes clipped coordinates. However, the current state of

FPU management in Windows game software is dicey, so extra

care is warranted.) To eliminate all ambiguity, I identify each

edge by its two endpoint vertices, and each of those vertices is

identified by three integers: the two indices of the vertices in the

input mesh that comprised the segment that was clipped to yield

this vertex, and the index of the clipping plane that clipped that

segment. Basically, we have a unique integer method of identify-

ing each clipped edge, and we don’t rely at all on the floating-

point output of the clipping system to match them up.

In last month’s column, I showed that, in the height-field case,

holes will appear in the mesh between the corners of blocks at

varying LODs. An analogous problem happens in 3D, and we

need to analyze that. Also, I haven’t discussed methods of decid-

ing which LOD of a given block to render. I’ll get to both of

those next month. q

w w w . g d m a g . c o m 15

FIGURE 3. Two connected triangles
straddling a plane.

T he growing sophistication of

videogames has demanded

soundtracks that are both

dynamic and intimately

linked with gameplay. Unlike

film or television, in which characters,

locations, and plot are predetermined,

these elements are subject to rapid change

in the realm of gaming. So how is a com-

poser supposed to score a videogame

keeping in mind that music elicits emo-

tions in players and therefore has a direct

impact on how the gameplay unravels?

In the summer of 2002, I began writing

music for Naughty Dog’s forthcoming JAK

II. It became clear early on that the game-

play was going to be much more intense

than its more exploration-based predeces-

sor. In addition to an increased amount of

opponents, a number of accessories were

now available to the player at any given

time. The soundtrack needed to address

these new gameplay elements.

The challenge. The environment of JAK

II is made up of several expansive loca-

tions designed for a free-roaming, non-

linear gaming experience. Each location

has its own look and specific set of

tasks. In addition, a variety of opponents

enter the game at varying intervals. Also,

accessories are integral to JAK II’s game-

play, and their use enables players to

complete tasks and defend themselves.

The urgency of accessory use necessitates

an immediate entrance and exit of its

assigned musical layer.

The allotted memory permitted enough

space for a looped MIDI sequence, which

provided a bed that captured the mood

of each location, and 20 extra MIDI

channels to address accessory use.

The large volume of MIDI instruments

necessitated the main level music bed to

be simply constructed and memory-effi-

cient enough to allow for these extra

channels. The technical and creative chal-

lenge was composing the extra musical

layers in such a way that their instanta-

neous, gameplay-dictated entrances and

exits would be both effective and organic

to the main music bed.

Each appended musical layer needed to

be composed to run the entire length of

the MIDI sequence and remain muted

until the player chose to use a particular

accessory. Layering different percussion

parts initially seemed like a good solution.

The non-tonal quality of percussion didn’t

interfere with but rather enhanced the

main music bed and seemed to sound nat-

ural when entering and exiting. Unfor-

tunately, layering exclusively percussion-

oriented parts didn’t allow for enough

variation to differentiate one accessory

properly from the next.

The solution. We decided to use stacca-

to-pitched instruments. The percussive

nature of the parts written for these

instruments retained the desired continu-

ous driving effect while still following the

chord progression of the main music bed.

The relatively simple orchestration of the

main music allowed enough space for the

extra layers to play within a fairly unclut-

tered environment. Thankfully, the game-

play only allowed for one accessory to be

used at a time. This also kept the sound-

track from getting too busy.

The issue of how the extra MIDI tracks

entered and exited was dealt with as such.

For example, if a player decides to utilize

the hoverboard accessory, the accompany-

ing hoverboard instruments are unmuted

concurrently with that decision. The extra

musical layers were composed as repeated

one-to two-bar patterns. These MIDI

channels were programmed to mute or

unmute on any given downbeat without

sounding too unnatural. To avoid possible

auditory fatigue from the repetitiveness of

these instruments, we thinned out their

frequencies. This gave them a lighter,

more transparent quality, which helped

them blend into the overall music mix. As

the extra layers entered and exited the

main music bed, the soundtrack was final-

ly starting to feel dynamic and scored to

gameplay.

After a couple months of writing music

for the game, Naughty Dog’s sound guru

Bruce Swanson and I stumbled upon a

further step toward a truly interactive

score: silence. Instead of building layer

upon layer within a looped music bed

which played the entire time a player visit-

ed a given location, we discovered that

stopping the music periodically and bring-

ing it back in at appropriate moments

profoundly increased its effectiveness. By

punctuating key actions and scenarios, the

score is given a purpose beyond a relent-

less musical backdrop.

Composing music for multiple game-

play-dictated scenarios often felt like scor-

ing each scene of a film or television show

over and over again; a bizarre, modular,

creative, and technical puzzle. However,

the end result is more successful in draw-

ing the player farther into the realm of the

game, a goal worthy of achieving. q

JOSH MANCELL I Josh began composing for Mutato Muzika studios
in 1992 and has scored such interactive titles as INTERSTATE ‘82,
JOHNNY MNEMONIC, CRASH BANDICOOT (first four), JAK AND DAXTER

and its forthcoming sequel, JAK II, as well as television spots and radio
commercials. Josh received an Emmy nomination in 2002 for his music
on the Clifford the Big Red Dog television series.

JAK II, slated to hit shelves in late 2003, will
feature a more dynamic experience than its
exploration-based predecessor.

Scoring the Unknown
j o s h m a n c e l lS O U N D P R I N C I P L E S

A Case Study in Building an Interactive Soundtrack

ph
ot

o
by

 M
r.

B
on

za
i ©

20
03

m a y 2 0 0 3 | g a m e d e v e l o p e r22

of ProgressThe Price

A R T I S T ’ S V I E W h a y d e n d u v a l l

m a y 2 0 0 3 | g a m e d e v e l o p e r24

T he game industry is a

strange one with which to

be involved. There aren’t

that many industries that

will pay well-educated pro-

fessionals to argue the merits of giant

killer robots versus mutant zombie

wolfmen. As far as I’m aware, (I’m sure

you’ll correct me if I’m wrong), no

other industry in the world that has

yearly revenue as great as ours relies on

such a small number of 20- and 30-

year-olds to create its product.

Of course, the “game industry”

includes by association advertising exec-

utives, journalists, recruitment agencies,

publishing lords and minions, and

countless others, but regardless of how

you look at it, without those of us who

makes the games, there would be noth-

ing to promote. So this month I’d like

to focus on some of the changes that are

taking place in the game industry from

an artist’s point of view, and how they

affect the way we all work.

Changes for Developers

A s far as the changes that are affect-

ing game companies themselves,

team size comes to mind first. The size of

teams working on each project has

increased from the artist-programmer

pairings of the 1980s to the gargantuan

extremes of the massive Japanese fran-

chise teams we’ve seen in the last few

years. We find the “average” developer

putting between 20 and 30 people on a

project that is aiming to be AAA, or if

time is short and budgets are high, up to

(and beyond) 50 people can comprise a

mid-sized team.

While work practices differ consider-

ably between companies, the sheer vol-

ume of art assets that need to be created

and managed, all within a tight schedule,

has meant that art teams are becoming

more compartmentalized. The produc-

tion pipeline is now often divided into

specialist subcategories that define 2D

texture artists, character modelers, envi-

ronmental modelers, concept artists, and

other specializations.

Additionally, art teams in many cases

now include art directors or art leads,

who inevitably spend the majority of their

time managing rather than contributing

assets. This is not to suggest that this

layer of personnel is necessarily a bad

thing, but the more development teams

grow, the more middle management will

be required, further inflating team size,

and increasing wages and project costs.

Also, we are seeing an increase in the

number of managerial roles that involve

working directly with the art team. As

the industry continues to mature, senior

managers are likely to migrate toward

the role of manager.

Do these kinds of changes lead to more

or less autonomy for individual artists?

On the one hand, larger projects run

more smoothly if artists are proactive in

their work, able to take charge of their

particular tasks without the need for con-

stant supervision. On the other hand,

with a larger team and what ends up as

being less actual input from each individ-

ual artist, creative independence can be

seen as counterproductive to an overall

aesthetic, and in many cases, autonomy is

not part of the job description.

As artists find their roles becoming

more specialized, the danger of accumu-

lating an overly specific skill set becomes

greater. At the end of a project, or with

the demise of a company, it may become

harder to find appropriate work else-

where unless your specific skills are high-

ly in demand.

These movements toward large budgets

and huge teams put pressure on inde-

pendent developers, and the future of

independents is called into question.

Thus, art direction in today’s game indus-

HAYDEN DUVALL I Hayden started work in 1987, creating air-
brushed artwork for the games industry. Over the next eight years,
Hayden continued as a freelance artist and lectured in psychology at
Perth College in Scotland. Hayden now lives in Garland, Texas,
with his wife, Leah, and their four children, where he works as an
artist at 3D Realms.

try has to also reflect the reality of devel-

opment pressure, where team size and

resources must be considered alongside

artistic vision, especially where independ-

ent developers are concerned.

Changes for the
Publishers

I t’s easy as a developer to look at the

industry’s woes and point the finger of

blame squarely at the publishers. Whether

or not that’s fair, it’s certain that publish-

ers are in the ascendancy as far as the

balance of power goes.

As the principal holders of the develop-

ment budget purse strings, in most cases

publishers control what games get made,

when, and by whom. In recent years

we’ve seen a significant shift away from

original games towards the “safer”

ground of licenses and sequels. It’s far less

risky for publishers now to pay for the

rights to make a game out of the next

original potential blockbuster movie, than

to invest in the next original potential

blockbuster game. Currently, something

like the top 5 percent of games pays for

all the others that don’t quite make it, and

publishers are always looking to score the

next multi-million-dollar seller that they

can turn into a long-standing franchise.

Is the situation likely to change for the

better? As it stands, a publisher Super

League has developed, with four or five

hugely powerful publishers on top, and

the other weaker publishers relegated to

the lower ranks. As with other indus-

tries, consolidation and mergers seem

inevitable as the largest companies aim

to squeeze out the opposition by becom-

ing the biggest fish in the pond. The

trend benefits neither developers nor

consumers, as the less real competition

there is between publishers, the fewer

opportunities there will be for diversity

and originality in games.

Changes in the Market

A s an industry, we are continuing to

sell more games each year. So who

buys games these days?

It depends on what kinds of games,

time of year, and platform you’re talk-

ing about, but there are two broad con-

sumer trends of which developers

should be aware.

First, in the last five years, there has

been a reported increase in the number of

female game players, attributed primarily

to both the rise of online gaming and the

phenomenon of THE SIMS. Mainstream

games specifically targeting the emerging

“female market” haven’t exactly flooded

the shelves. This indicates a level of indus-

try skepticism resulting from past failed

efforts to offer female-targeted games, as

well as a reluctance from publishers to

invest significantly in something that

strays away from the safer ground to

which they are accustomed.

Second, comic book heroes with abs of

steel and women with breasts that could

easily double as life rafts still grace the

front of every game magazine on the

shelf. The 14-year-old boy (or at least the

14-year-old-boy mentality) still seems to

be a dominant force in our industry.

While I am not suggesting that this is a

problem, as these types of game form a

solid part of our output, I think that

games are going to struggle against the

idea that they have no more to offer than

big guns and leather-bound cleavage as

long as the public at large is presented

with these images more than any others.

As artists, is it our responsibility to

expand the range of imagery on offer to

help broaden the scope of the next gener-

ation of games? That’s up to you and

your company to decide, but while the

stereotypes will always have their place, a

maturing consumer base will be best

served by products that provide entertain-

ment on a whole range of levels.

Overall, it looks like the market is

developing, but opportunities are also

being squandered when they are seen as a

departure from traditional, previously

successful gaming genres.

Changes in Technology

I t would be a huge understatement to

say that over the last 10 years the tech-

nology associated with videogames has

improved significantly. Technology is

always racing forward, especially where

electronics are concerned, but as the game

industry consistently grew in size and rev-

enue (faster than many other areas of

high-tech), investment soared. We now

find ourselves with gaming systems that

two decades ago would have been multi-

million-dollar supercomputers.

On the one hand, we have the afore-

mentioned creative freedom and the

A R T I S T ’ S V I E W

m a y 2 0 0 3 | g a m e d e v e l o p e r26

The tremendous popularity of Maxis’ THE

SIMS among women has shifted the gamer
demographic.

As much diversity as exists in the game industry, such “typical” game character as the buxom
female from DEAD OR ALIVE XTREME BEACH VOLLEYBALL (left) and superheroes like SPIDER-MAN (right),
still pervade the consumer consciousness.

ability to bring our ideas more easily to

the screen. The software we now have

available to us makes our jobs as an

artists far easier, while providing us

with tools that can give us room to

experiment in ways that previously we

may never have imagined. All this is

great, and I can’t see many people opt-

ing to return to the days of 8-bit color

and textures no larger than 32�32.

On the other hand, is there a price to

this progress? Without sounding disingen-

uous, it can be argued that technology

moving so fast has added significantly to

the difficulties of developing (and releas-

ing) a successful game.

The race to deliver a game that remains

at the cutting edge visually is exceptional-

ly difficult to win, and specifically with

PC gaming, the choice is either to target

the top 5 percent of systems and push the

boat right out, or to aim at lower-spec

PCs, which obviously includes more con-

sumers but restricts what you can do.

Determining an answer to this question

depends largely on your product and to

whom it is most likely to appeal. But with

graphics cards settling into a six-month

release cycle and faster processors con-

stantly being churned out, a two- or three-

year project has to fight hard to remain at

the top of the performance heap.

Consoles alleviate a certain amount of

hardware pressure, but the three consoles

currently on offer are significantly differ-

ent in terms of performance and market

placement, leaving a developer with sev-

eral options. One can choose between

specializing in a single platform, exploit-

ing all of its strong points to deliver a

more impressive game (particularly visu-

ally), or trying to spread their project

across all formats.

The all-format approach has the obvi-

ous advantage of the widest potential

market, but unless resources are signifi-

cant, cross-platform development can

end up being a project killer, as no single

format gets the attention it needs, so all

versions suffer. Producing art assets

across a number of platforms can be

frustrating where different technical spec-

ifications have an enormous impact on

what can be used. While it is fair to say

that the number of triangles that each

console can push is theoretically massive,

memory issues have a constraining effect

on textures as well as the different ways

in which each console achieves special

effects, for example.

Targeting a specific console is much

tidier, but limits your game to a smaller

set of potential customers.

Throw into the mix the fact that the

PS2 is the oldest and least powerful of the

consoles, but also happens to be the one

that has an installed base that towers way

above that of its competitors. So what

choice does a developer really have?

The answer to that question probably

lies with the developer itself. A large-

scale, multi-platform project is an unre-

alistic goal for any developer without

significant resources. The attraction of

the widest possible market is all well

and good, but a finished game is infi-

nitely better than a half-finished one,

even if the half-finished one is in fact

multi-platform. The crunch often comes

when a publisher demands the widest

possible release imaginable and the only

sensible outcome has to be one that is

realistic, otherwise chances are that no-

one will be happy in the long run.

In addition to all of this, we are told

that the “console lifespan” is now around

five years, so if our AAA game is going to

take up to three years (and that is not

over-generous as an estimate), we only

have time for one full production cycle

before a new raft of consoles hit the shelf.

While this seems to be bad news on

the face of it, in a sense, it serves to

focus effort on what it takes to make a

successful title. In many cases, an initial

game, especially if it happens to use an

original IP can be a solid foundation for

a lucrative franchise. Sequels are the

easiest way to generate income if the

first game in the series did well, and

from a production point of view, lever-

aging the technology from the original

game is usually the way to go, with the

focus being on minor improvements

and, of course, a whole boat load of

new art.

The juggernaut that the games indus-

try has become will continue to surge

forward, controlled for the most part by

those with the cash, fueled by a potent

brew of technology and marketing. In the

end, few of us will have any say in where

it takes us, but for those of us who want

to stick around, the best advice is to

strap in tightly and try to enjoy what is

bound to be a bumpy ride. q

A R T I S T ’ S V I E W

m a y 2 0 0 3 | g a m e d e v e l o p e r28

The proliferation of consoles creates mass-
market opportunities for developers but
increases competition greatly for smaller
studios.

Sequels, such as MYST III (right, shown with the original MYST, left) can be an effective way to
leverage income from a successful first game and save on the development costs of new
technology.

ra lph barbaga l lo
Illustration by Glenn Hanson

Mobile Game
Development

Open Road:
Sun’s J2ME Profile
Takes a Major Step

Forward with MIDP 2.0

on
the

m a y 2 0 0 3 | g a m e d e v e l o p e r28

M I D P 2 . 0

M uch has been said

about Java 2 Micro

Edition (J2ME) being

a “standardized” API

for mobile applica-

tions. However, Sun’s J2ME profile for

mobile phones, the Mobile Information

Device Profile (MIDP), initially failed to

address game developers’ needs with its

extremely sparse feature list. This list

included a lack of standardized support

for pixel transparency, network commu-

nication restricted to only HTTP, an

inflexible GUI, and a lack of support for

sound and music. To overcome these

shortcomings, handset manufacturers

introduced custom extensions to the

basic J2ME/MIDP specification. Soon, it

was as if every J2ME handset was its

own platform. A MIDP “standard” was

relatively meaningless, as you had to

cater your code to every handset’s

nuances and special extensions. Those

that stuck to basic MIDP for maximum

compatibility were left with a bland and

featureless gaming experience.

There are two major standards in the

mobile gaming marketplace: J2ME and

BREW. BREW (Binary Runtime Environ-

ment for Wireless), Qualcomm’s wireless

application platform, provides a lower-

level C/C++ API for writing mobile appli-

cations on BREW handsets. Although

implementations of J2ME Virtual

Machines have been written on top of

BREW and despite the potential symbiot-

ic relationship of the two later down the

road, BREW exists largely as J2ME’s

competitor. Although not perfect, BREW

filled many of the gaps that MIDP lacked

— including support for pixel trans-

parency, TCP/IP sockets, and MIDI

music from the SDK’s first release.

Handsets supporting advanced fea-

tures such as 16-bit graphics, multiple

key-press, and advanced audio mixing

are rolling out at an increasing pace. In

turn, Qualcomm has released several

new versions of BREW. The latest edi-

tion, BREW 2.0, introduces many game-

specific features, including a built-in

sprite and tile engine. However, handsets

with BREW 2.0 installed on them have

yet to appear commercially and may not

do so until the fall.

Although it has taken them a while to

act, Sun has not been ignorant of these

developments. Taking suggestions from

major game developers and publishers,

among others, they have formed the

MIDP 2.0 specification. In addition to

features suited for all sorts of mobile

applications, MIDP 2.0 contains a new

Game API that addresses a lot of MIDP

1.0’s shortcomings. Combined with a

horde of new nongaming features, J2ME

now rivals BREW’s feature-richness.

Combined with the relatively inexpensive

and simplified Java development process,

MIDP 2.0 may become a serious threat

to Qualcomm’s more gaming-friendly

development environment.

The GameCanvas

I n MIDP 1.0, all screen painting and

input operations were handled by the

Canvas class. However, the Canvas object

could only receive one key event at a

time, making it impossible to hold down

two keys simultaneously — for instance,

running while shooting. The new

GameCanvas object is subclassed from

Canvas and includes new features, includ-

ing the ability to poll the state of the

keypad with the getKeyStates() method.

This function returns an integer that

contains bitflags for all the currently

pressed keys. In many cases, the ability

to detect multiple keys is a hardware

issue, so despite MIDP 2.0’s support for

multiple keys, it’s still up to hardware

manufacturers to include this feature in

their handsets.

The GameCanvas class also allows the use

of an off-screen buffer for double buffer-

ing. The flushGraphics() method will then

transfer this off-screen buffer to the

main display. It’s also possible to use an

overloaded version of flushGraphics() to

update a smaller region of the screen for

dirty-rectangle optimizations. Depending

on the hardware, this may dramatically

increase your performance for games

that do not have a lot of on-screen

motion or animation.

Graphics
Enhancements

M IDP 2.0 has a series of graphics

enhancements that both fix old

problems and add new features game

developers have been pining for during

w w w . g d m a g . c o m 29

R A L P H B A R B A G A L L O | Ralph runs Flarb Development (www.flarb.com), a Los
Angeles–based game developer that has created leading wireless games for various publishers
and carriers. Prior to this, Ralph worked at various studios, including Ion Storm, where he
was a programmer on the RPG ANACHRONOX. Ralph has a B.S. in computer science from the
University of Massachusetts at Lowell and is the author of the book Wireless Game Devel-

opment in C/C++ with BREW (Wordware Publishing, 2003).

WHAT’S NEW IN MIDP 2.0

• GameCanvas: The new Canvas class
allows multiple key-press and partial-
screen repaints.

• Sprite: This new class handles the
drawing, animation, movement, and
collision.

• TiledLayer: This class represents a tile
map. It handles the scrolling, anima-
tion, and collision detection of tile
worlds.

• The drawing order of sprites and tile
layers is managed by an easy-to-use
LayerManager class.

• Signed MIDlets now allow you to use
APIs which may not adhere to the
sandbox security model.

• MIDP 2.0 now has sound and video
playback as standard features. It is
possible to play MIDI music as well as
MPEG video streams.

• Over-The-Air Provisioning is now a
standard part of MIDP. This means the
interface to installing and downloading
your MIDlet will be consistent between
handsets.

• Vastly improved messaging support
allows for TCP, UDP, HTTP, HTTPS, and
SMS communication.

the past few years of MIDP 1.0’s reign.

These include native sprite and tile sup-

port which, combined with hardware that

fully supports these features, may bring

us Game Boy–quality visuals and smooth-

ness on J2ME handsets in the near future.

Personally, I would prefer a simple but

fast hardware-accelerated blitting system

instead of forcing developers to use a

restrictive sprite and tile architecture that

may or may not be suited for the game’s

needs. Perhaps Sun took it a bit too liter-

ally when developers asked for sprites

and tiles. Whatever the case, the sprite

and tile systems provided in MIDP 2.0

are leagues ahead of the graphics support

in MIDP 1.0.

Sprites

B oth sprites and tiles are based on

what is called a Layer. A Layer is an

abstract base class that represents any

visual element. The Sprite object is sub-

classed from Layer. The Sprite class con-

tains all the functionality for drawing,

moving, and animating sprite graphics.

MIDP 2.0 still uses PNG as the basic

file format for all graphics. To create a

Sprite, you pass a reference to an Image

object created from a PNG to the con-

structor. To conserve memory, multiple

sprites can be created from the same

Image. If you want to draw the Sprite, call

Sprite’s paint() member; however, the

Sprite class has a lot more functionality

beyond this basic usage.

Because the Sprite is derived from the

Layer class, it inherits the basic size and

position functionality of the abstract Layer

object. Thus, by using the move() member,

you can move the Sprite through a world-

coordinate system by an arbitrary number

of units. You can also explicitly set the

position using setPosition(), as well as

hide the sprite using setVisible() and pass-

ing false as an argument.

The Sprite allows a custom “reference

pixel” to be set — which is the origin of

the sprite. Back in the 1.0 days, you had

the anchor argument in Graphic’s

drawImage method to control the origin of

a drawn image. Through the use of the

setRefPixelPosition() function in the

Sprite object, this origin can now be set

to any arbitrary pixel in the image. This

point can be continually reset for anima-

tions or other instances that require the

origin to be modified over time.

Another interesting feature of the

Sprite class is the ability to apply trans-

forms. Through the setTransform()

method, you can flip, rotate, or mirror

any sprite in 90-degree increments. The

ability to flip sprites is essential for devel-

opers trying to conserve space in their

MIDlet JAR files. Before MIDP 2.0, you

had to have a separate image of the

sprite facing in each direction. Now, it’s a

matter of flipping or otherwise trans-

forming the sprite to the desired facing.

This can crunch down your graphics

usage dramatically, depending on the art-

work of the game. All sprite transforms

are relative to the reference point, mak-

ing it possible to “orbit” a sprite around

any arbitrary point in the image. This

ability often ends up being an annoyance,

as in many cases you simply want a hori-

zontal or vertical flip regardless of the

reference point. In some cases, this action

may make the reference point system

somewhat useless.

The Sprite class also contains function-

ality for animation. In order to have an

animated sprite, you must use a PNG

image that contains all the frames of ani-

mation. These frames must all be of

equal size and can be in the form of a

wide strip, narrow strip, or square lay-

out. The frames are automatically num-

bered in row-major order. When an ani-

mated Sprite is created, the width and

height of each frame must be specified

either in the constructor or via the

setImage() method.

Individual frames can be displayed by

calling the Sprite’s setFrame() function

before painting it. However, frame

sequences can give you more complicated

animation control. A frame sequence is

an array of integers with each entry rep-

resenting a frame to display at that point

in the animation. These frames can then

be advanced or backed up using the

nextFrame() and prevFrame() methods, as

well as explicitly referenced using

setFrame(). The setFrame() method takes

an argument which is an index into the

frame sequence. The default frame

sequence is a list from 0 to the number

of frames in the image. Thus, setFrame()

still works even if you haven’t set a

frame sequence; frame sequence entry 0

references the Image’s frame 0, and so on.

Finally, MIDP 2.0’s Sprite class con-

tains some collision detection functionali-

ty. First, each Sprite can have a unique

collision rectangle. By default this is the

size of the frame or Image, however it can

be explicitly set using the

defineCollisionRectangle() function. Where

the sprite is in the world is determined by

the parent Layer class’s position functions.

m a y 2 0 0 3 | g a m e d e v e l o p e r30

The new and improved KToolbar IDE.

M I D P 2 . 0

Now you can check if the Sprite has col-

lided with other Sprite, tiles, or even

Images. Inside the Sprite object, there are

three overloaded versions of the

collidesWith() method, each one used for

one of these previously mentioned cases.

Each takes a Boolean argument,

pixelLevel, which if set to “true” will per-

form a pixel-accurate collision test.

Otherwise, the collisionRectangle, tile

width, or Image dimensions will be used

to check for intersections.

Pixel transparency, which was not part

of the formal specification, was another

major issue with MIDP 1.0. Handset

manufacturers either had custom exten-

sions for transparent pixels in Images, or

did not support them at all. For instance,

in the case of Motorola’s VM, they sup-

ported transparency in the PNG palette

using the tRNS block. With Siemens, you

had to provide a 1-bit mask and use their

custom API to have transparent pixels in

sprites. So far, Sun’s emulator supports

transparency palettes in PNGs much like

Motorola’s J2ME handsets. It remains to

be seen whether this will be standardized

among all MIDP 2.0 implementations on

actual devices.

Tiles

N ext up on the list of graphic

enhancements is support for tile

backgrounds. MIDP 2.0 achieves this

through use of the TiledLayer class. Much

like the Sprite, this class is derived from

Layer and thus contains all of Layer’s

functionality in addition to its own.

TiledLayer contains functionality not only

for loading tile set graphics and display-

ing scrolling tile maps, but also for ani-

mating individual tiles for advanced

graphic effects.

In many respects the TiledLayer object

behaves much like a Sprite. One of the

arguments to TiledLayer’s constructor is

an Image object, created by loading a

PNG containing all of the tiles used for

the map. The tiles are basically the same

as sprite animation frames; they must be

all of equal size, and can either be deliv-

ered in tall strips, wide strips, or a large

rectangle. The actual tile map is set by

calling the setCell() function. Here you

pass the X and Y locations of the cell

and the tile index you wish to set. This

tile index references the tiles in the Image

much like an animation sequence does

frames of a Sprite. To scroll the map, you

call move() or setPosition() as defined in

the Layer class. Drawing the tile map is as

easy as calling paint().

The Layer Manager

W hile it’s possible to call paint()

manually on all of your Sprites

and TiledLayers, MIDP 2.0 provides the

LayerManager class, a class that handles

some of the more mundane details of

drawing Layer objects.

The LayerManager is an object that

maintains a list of Sprite and TiledLayer

objects, and draws them in their current

position in the order that you add them

in. You can adjust the Z-order of sprites

and tile maps for drawing with different

priorities as well. Those familiar with

Game Boy Advance programming can

think of it is as the MIDP 2.0 equivalent

of the OAM table, in that it maintains a

list of active sprites and tile back-

grounds and draws them in the order

you define.

Using LayerManager is easy. Construct

the object, and then either add Layers by

calling append() or explicitly set the Z-

order for them by calling insert() to

specify the position in the drawing list.

Calling LayerManager’s paint() method

draws all the Sprites and TiledLayers in

the order they are currently stored in the

drawing list. Using setViewWindow(), you

can also alter the size of the viewport.

This may be useful for reserving some

screen real estate for score display or

other HUD information.

Mobile Media API

I ncluded in MIDP 2.0 is the audio sub-

ject of the Mobile Media API, a new

collection of classes dedicated to playing

media such as MIDI tunes, MP3 files, and

MPEG video clips on mobile devices. The

way this API works is through a series of

Player objects. You construct a Player by

passing a URL for a video file, such as

“http://www.flarb.com/blah.mpg,” to the

Media Manager object’s createPlayer()

method. This function returns a Player

object associated with the media type of

the URL. This Player object can then con-

trol the media, including the position in

the file to start playing, looping the

stream, and starting and stopping the

playback. Whether wireless devices will

w w w . g d m a g . c o m 31

THE MIDP 2.0 EMULATOR IN ACTION. This
example is running at a glorious two frames
per second with a single sprite and a simple
tilebackground layer.

have enough memory to store movies and

MP3s or the bandwidth to stream them is

a whole other issue. Still, it’s nice to see

some forward-looking support for fea-

tures that may become more common-

place on handsets in the near future.

Wireless Messaging API

A J2ME standard extension, the

Wireless Messaging API, has wide-

spread ramifications for multiplayer

game development, as it standardizes

several network communications meth-

ods that previously were only available

in vendor-specific custom extensions

and packages. In MIDP 1.0 you were

limited to HTTP communication via the

Generic Connection Framework. Some

handset manufacturers provided lower-

level socket access, however this was

nonstandard and thus MIDlets using

these features had to be catered to each

handset’s custom SDK. Now, the

Wireless Messaging API not only

includes HTTP and socket communica-

tion, but text-messaging protocols and

HTTPS as well. Communication via the

serial port is also standardized in MIDP

2.0. This wealth of communication

options directly contrasts with the mini-

mal approach of MIDP 1.0.

“Push Architecture” is another one of

MIDP 2.0’s new features. Although

rarely used, a feature of Qualcomm’s

BREW allows an applet to receive an

SMS message broadcast by a remote

server. If the applet is not already run-

ning, it can either wake up and run, or

silently process the message behind the

scenes. Otherwise, it receives an SMS

message as any other event in the mes-

sage handler.

MIDP 2.0 now features the ability to

push data to MIDlets, which bears some

resemblance to the above-mentioned

process. This is done via the

PushRegistry, a mechanism that allows a

MIDlet to register one or more sources

that may push data to itself. Inside the

descriptor file, you can list a number of

different data sources and the class

inside the MIDlet suite that they push

data to. Then, inside the respective

classes, the PushRegistry object can be

used to create connections to any of

these sources as data is pushed to the

class. As messages are fed to the applet,

they can be read via a Connection object

and dealt with.

The Toolkit

A long with the advent of MIDP 2.0,

Sun has also released an updated

version of their Wireless Toolkit. The

Toolkit includes the familiar KToolbar

IDE and emulator as well as a few new

utilities and tools to debug, profile, and

digitally sign MIDlets for distribution.

KToolbar is the IDE we all know, but

with a few changes. As has been the case

with some of the more recent versions,

MIDP 2.0’s KToolbar has the ability to

obfuscate the code before putting it in a

JAR. This not only makes it difficult to

reverse-engineer the binary, but it crunch-

es down the size of the applet as a side

effect. The size savings may be great in

some cases or miniscule in others, but

saving a few bytes any way you can is

welcome in the restrictive world of wire-

less application development.

KToolbar also has extensive debugging

and profiling features as well as emula-

tion performance settings. The Profiler

allows you to peek inside the execution of

your MIDlet, timing functions, and moni-

toring memory usage. You can also

inspect network traffic via the same inter-

face. The emulator has many different

m a y 2 0 0 3 | g a m e d e v e l o p e r32

The new Profiler gives extensive performance information and analysis of your MIDlet’s execution.

M I D P 2 . 0

performance options that allow you to

adjust the execution speed, graphics dis-

play latency, and other properties to sim-

ulate the behavior of an actual handset.

The biggest problem with Sun’s new

Toolkit is the emulator’s performance. As

there are no MIDP 2.0 devices available, I

can’t judge the accuracy of the emulator,

but it runs painfully slow regardless of the

performance options selected. My demo

of a tile background and a single sprite

seemed to run at a miserable two to three

frames per second. I refuse to believe next-

generation handsets that run MIDP 2.0

will have such horrible performance.

Granted, at press time the current emula-

tor was still a beta release. Hopefully, Sun

will improve the emulator’s performance

by the time the final release is upon us.

Provisioning

M IDP 2.0 goes beyond the program-

ming end of things to address the

distribution side as well. With MIDP

1.0, every handset manufacturer and

carrier was free to implement its own

provisioning system. Some manufactur-

ers required the handset to be linked to a

PC where the applets were uploaded in a

Palm HotSync-style fashion, others had

Over The Air, or OTA, distribution of

applets. Each OTA system had a unique

interface and feature set. Sun has stan-

dardized the OTA process providing a

mandatory method and interface to the

wireless downloading and installing of

MIDlets. The OTA interface also allows

carrier-side querying of installed applets

as well as other features. This is the

equivalent of BREW’s Mobile Shop —

however, unlike BREW, Sun has not

addressed the billing and revenue collec-

tion issue. It’s nice to see some progress

being made on this front, but J2ME des-

perately needs a standardized billing and

certification system much like Qual-

comm’s True BREW process.

MIDP 2.0 vs. BREW 2.0

S o, how does MIDP 2.0 compare

against Qualcomm’s latest version of

BREW? They are quite similar in many

ways: both contain sprite and tile func-

tionality, both include the ability to trans-

form graphics, both have robust support

for various communications protocols;

both support rich media playback, and

both are only available in emulated

phones. We should start to see MIDP 2.0

handsets by the middle of this year, and

although I have seen prototype BREW 2.0

devices, we may not see them on these

shores until the holiday season. Therefore,

it’s only possible to compare both from a

development perspective, not on real-

world performance.

Since both compare favorably to each

other in regards to features, it’s now a

matter of market penetration, the ability

to make money with the platform, and

your own development preferences that

factor. Market penetration is an issue that

will play out over 2003 and beyond.

Despite J2ME’s wider market penetration,

Qualcomm’s billing system allows you to

generate revenue from a much smaller

user base. However, if you like Java you

will probably be a fan of MIDP 2.0; if

you are an old C/C++ hack as I am,

BREW may still be preferable. I still like

the low-level device access provided by

the BREW environment as well as the

ability to use C/C++. However, I also

admire the ease of use of the J2ME envi-

ronment and all the convenience the basic

language features offer. These features

include such things as garbage collection,

collection classes, threads, and other stan-

dard J2ME features.

We’re going to have to wait to see how

well the device manufacturers implement

both MIDP 2.0 and BREW 2.0 on their

new handsets. One thing is for sure, how-

ever, the mobile gaming industry is in

constant change, and we’ll see how these

platforms evolve over the rest of the year.

The Big Picture

M IDP 2.0 represents a dramatic step

forward in game development for

mobile devices. Now it’s up to handset

manufacturers to adhere to Sun’s stan-

dard and provide robust and speedy sup-

port for MIDP 2.0’s enhancements. If

the hardware follows through, the days

of primitive beep sound effects, single-

digit frame rates, bland monochrome

graphics, and frustrating controls may

be a thing of the past for mainstream

Java handsets. q

m a y 2 0 0 3 | g a m e d e v e l o p e r34

M O B I L E G A M I N G R E S O U R C E S

MIDP 2.0 Resources
http://java.sun.com/j2me
www.microjava.com
www.wirelessdevnet.com

BREW Resources
www.qualcom.com/brew
www.loftesness.com/radio/

categories/brewlog
http://developers.verizonwireless.com

General Mobile Developer Resources
www.wirelessgamingreview.com
www.midlet-review.com
www.radio-gamer.com

The memory monitor allows you to examine your MIDlet’s memory usage statistics in real time.

M I D P 2 . 0

a l e x m a c r i s

m a y 2 0 0 3 | g a m e d e v e l o p e r36

M y first experience as a

middleware user dates

back to 1995, when I

first used RAD Game

Tools’ Miles Sound

System. Windows 95 hadn’t yet replaced

DOS as the major gaming platform, and

there was no standard sound API. Years

have since passed, but many of the inher-

ent challenges of licensing technology

remain unchanged. Nowadays, free mul-

tiplatform standard APIs are increasingly

rare, opening wide the doors to the mid-

dleware business. As the game business

matures, middleware is addressing more

and more of our needs, especially the

ones that are more recent to game devel-

opment: MMO network technology,

physics, and advanced AI.

Middleware products are a part of

our working environment like any other,

but they hold a privileged position.

Because they are central to project

development, they can represent an

important cost. Choosing a technology

can be a relatively straightforward task,

one which most developers can handle

successfully with the right approach.

But because choosing a middleware

solution is more than just choosing a

technology, the evaluation process

becomes a delicate exercise, the ramifi-

cations more far-reaching.

Be prepared to spend several man-

months for a good middleware evalua-

tion. This is the price to pay to minimize

risk. The secret of an efficient evaluation

is more than simple resource allocation,

it lays the strategy that you set up for the

task. This article is designed to help

developers formulate a strategy that best

suits their needs.

Know Your Middleware

D espite the inherent vagueness of the

term “middleware,” we need to

classify its aspects in order to compare

different commercial offerings, looking

both at how we define the components

of middleware and how we distinguish

classes of middleware from each other.

Middleware components. The most

obvious element of a middleware pack-

age is a piece of software, or more pre-

cisely a library accessed through an API.

Typically, middleware packages also

comprise the necessary learning materials

in the form of books, samples, and tuto-

rials. Some packages also come with pro-

duction tools. That is the product part of

a middleware package.

In addition to the product itself, there

is also the service part. The minimum

service middleware provides is technical

support, but many providers also offer

consulting. Contract work can also be

part of the service offer. If you lack the

knowledge or manpower to develop one

feature of your game, or you don’t have

time to optimize it yourself, some mid-

dleware providers will develop software

specifically for you or dispatch a site

engineer to spend some time with your

team, or offer training sessions.

Middleware categories. The middleware

world splits into two main categories:

dedicated (to certain kinds of games,

such as the Unreal engine) and generic

(such as Renderware, Alchemy, Havok,

and so on) (Figure 1). The two categories

address different needs, so when choos-

ing middleware you have to take care to

compare comparable things. I’ve seen

companies comparing middleware offers

from both categories in the same evalua-

tion process, clear evidence that the

developer’s needs were not well defined.

Another common situation is the need

to choose between using a proprietary

technology and licensing an external one.

Let’s distinguish two kinds of proprietary

technology: the reusable and the recycla-

ble. Reusable technology is developed

separate from any project by a dedicated

team. Its goal is to follow the scheme of

commercial middleware but is restricted

to internal needs.

Recyclable technology is, most of the

time, a game engine designed for a spe-

cific game with poor reusability potential

(poor documentation is a common cul-

prit). Nevertheless, cost savings tempt

developers to consider recycling it. From

a strategic standpoint it doesn’t make

sense to compare such a game engine

with commercial middleware.

Frequently, developers also consider a

third kind of proprietary technology: the

imaginary one. It’s the perfect technolo-

gy that some developers dream of pro-

gramming. But as far as I’m concerned, I

M I D D L E W A R E

A L E X M A C R I S | Alex has seen many sides of the young middleware business. He
debugged his first game program in 1994 at Cryo. There, he spent many years co-engineer-
ing Cryogen, Cryo’s in-house middleware used in more than 20 games. In 2001 he joined
Intrinsic Graphics’ developer support team, where he assisted many studios in their middle-
ware evaluation. Alex now works as an independent middleware consultant. Contact him
at alex.macris@wanadoo.fr.

Effective
Middleware

Evaluation

don’t know how to compare middleware

with dreamware.

Know Your Evaluation
Needs

E valuating middleware offers is not

necessarily very complex, but it still

needs a lot of attention. Developers

should give particular care to the evalua-

tion environment and resources.

Evaluation’s actors. There are three par-

ties involved: the good, the bad, and the

ugly. At first sight we could think that

there are only two: the middleware com-

pany and the game company. But most of

the time game companies’ interests or

publishers’ interests may diverge from the

game project’s constraints. Thus two par-

ties may represent each side for the studio:

the producer/publisher/technical director

on one side, and the project manager on

the other. This point is very important in

terms of negotiation diplomacy; middle-

ware offers are evaluated twice.

Technical directors have a global

approach. They do not think on a single-

project basis but on a multiple-project

one. For example, let’s imagine that a

new and very promising middleware

product has come on to the market.

There is a game company that uses a

well-established middleware solution for

all its projects that it finds largely satis-

factory. This company’s technical director

may decide that it is strategically impor-

tant to test this new middleware, but he

wants to do only one in vivo test,

because it is risky for the chosen project.

The project manager on the other hand

has the mission to succeed in developing

a game, and probably doesn’t want to see

his or her project chosen as a guinea pig.

Keep this in mind: project managers have

to anticipate the fact that they may have

to live with middleware which is not the

solution they prefer, so the scope of their

evaluation changes.

Thus the project manager doesn’t sim-

ply need to find out which middleware

responds best to the project’s needs, but

rather how far away each middleware

solution is from his or her needs. With

this in mind, when the choice is eventual-

ly made, the project manager immediate-

ly knows where to direct the team efforts

to fill the gaps that the chosen middle-

ware solution leaves open.

Evaluation reasons. Making an effective

decision also depends on the reasons your

studio is licensing middleware. For example,

one rationale for licensing technology that

rarely gives good results is when there is a

recognized gap between the ambition of a

project and the experience and technical

talent available on the team. Some think

that licensing technology will fill this gap,

but the truth is you cannot realize a great

game without talented people, and middle-

ware products need talented people to lever-

age their power.

The most com-

mon reason cited

for licensing an

external technolo-

gy is decreasing

game development

costs and saving

time. This is not

always the out-

come of licensing

middleware. Don’t

hope to save a lot

of money on the

first shot. Taming

an external tech-

nology takes a lot

of time and a lot

of energy. This is mostly true for generic

middleware. Dedicated middleware,

which is closer to the final game soft-

ware, benefits from a shorter trial period.

Another reason you might be licensing

middleware is the specialization of tasks.

Today we clearly distinguish the profes-

sions of game development and technolo-

gy development. While one must neces-

sarily know about the work of the other,

knowing is not doing. Middleware dis-

charges the game developers from the

task of creating technology, letting them

focus on gameplay. During past evalua-

tions, I have faced situations where the

key point for the customer was the

capacity of the product to receive new

pieces of technology that were developed

by the game team. Just as game program-

mers long ago gave up creating their own

art, so too should they learn to distin-

guish between technology development

and game development.

Evaluation resources. Let’s try to calcu-

late the amount of time needed to evaluate

just a single product. At the very least, you

have to test the technology, the API, the

tools, the documentation, the performance,

and the feature set, and you have to do

this work for each platform. My experi-

ence estimates the time needed to cover

these bases adequately at 20 to 40 work-

ing days. Then, you have to do that for

each competing product. If there are three

competing products, you end up with a

potential six-man-month evaluation time.

Besides time, the other resource con-

sideration is manpower. If you can only

allocate a single person for this work,

assume that between the beginning and

the end of the evaluation, the products

will have evolved. Then, if you want to

license two generic pieces of middleware

of different kinds (such as graphics and

physics), you have to evaluate their

capacity to cooperate and work together.

This process takes even more time than

you can imagine.

You also need to test the service,

which means setting up a list of test

questions that you will submit to each

middleware provider’s developer support

service. Distribute your questions all

FIGURE 1. Dedicated middleware provides all the technology needed for
a unique game genre. Generic middleware provides a unique technology
that is designed to fit the needs of any kind of game.

Dedicated Middleware Generic Middleware

3D
graphics

Technologies
Game
Families

RTS

Sound Physics AI Network

FPS

Adventure

Racing

Sports

Other

Etc.

w w w . g d m a g . c o m 37

M I D D L E W A R E

m a y 2 0 0 3 | g a m e d e v e l o p e r38

along the evaluation period. Waiting

until the end of the product evaluation to

post questions (a common habit) means

lengthening the overall evaluation time.

It’s critical not to underestimate the

resources needed for the evaluation; this is

the single biggest cause of poor decisions.

Determining the Scope
of Your Evaluation

T he amount of resources you can

assign to the evaluation exercise is

naturally limited. Let’s see how you can

utilize resources to get the most economi-

cal and informative evaluation possible.

Not one, two evaluations. You should

remember you are evaluating both a prod-

uct and a service. Most of the time, devel-

opers only evaluate the product; evaluat-

ing a service is difficult and not always

relevant. Service is a cost to middleware

companies, so some may be reluctant to

spend too much effort with evaluation

processes. At the other extreme, other

companies seem to expend more effort

supporting potential clients than in sup-

porting their actual customers.

By taking the time to evaluate the service,

you can’t be blamed for choosing a middle-

ware provider that has overestimated its

capacity to provide services. In short, a

game company should choose middleware

based on both evaluations, but should keep

it for the next production because of their

satisfaction with the service.

Not two, three evaluations. Besides eval-

uating both the middleware product and

service, you must also do a thorough and

honest evaluation of your needs. This step

is essential but so often overlooked. This

aspect of the evaluation is required,

because there is no good or bad middle-

ware — only middleware that addresses

problems and then aims to solve them.

All three evaluations (your needs, the

products, and the services) may be done

together, and in fact middleware compa-

nies can help you in evaluating your

needs. Involving middleware companies’

developer relations staff in identifying

needs is a good way to evaluate the

expertise part of the service they offer.

Middleware providers may understand-

ably be tempted to bias their advice to

influence your choice. But remember that

it’s not in the technology provider’s inter-

est to disguise your real needs too much.

In a small industry where the fame of any

product is fragile, they don’t want to risk

turning you into an unsatisfied client.

Evaluating your needs should answer a

fundamental question: Are you making a

long-term or a short-term choice? For a

short-term choice you want to focus on

the robustness of the technology and on

its capital, not on its potential. For a

long-term choice you need to distribute

the risks across a longer period, thus

making the extensibility of the product a

key point. Extensibility can be measured

through both the product (its technology,

the way it is architected, the roadmap,

and so on) and the service (the size and

the talent of the engineering team and its

capacity to respond to both the customer

needs as well as the hardware evolution).

Determining short-term versus long-

term needs will also answer the question

of to what degree you will need to stay

independent of your middleware solu-

tion. How important is it for you to be

able to step back and change your mid-

dleware choice after a year or two? If

you need custom tools, where should

they be developed, on the game company

side or on the middleware provider side?

Any tools developed by your middleware

provider would need to be redeveloped if

you changed middleware. A work supply

is good, but it’s also a way for middle-

ware companies to increase their cus-

tomers’ loyalty. On the other hand, keep-

ing your tools independent of an external

technology has a cost too.

Product Evaluation
Checklist

F ollowing is a list of the main points

to hit during a middleware evalua-

tion. It doesn’t take into account one of

the biggest points, cost, but it is

designed to help you figure out exactly

what and how much you are getting for

your money.

Evaluating performance. Performance

has been at the heart of the game indus-

try since its earliest days. Thus it has

long been a passionate subject for devel-

opers. Today, however, developers may

be overestimating the importance of per-

formance at the expense of the impor-

tance of the production tool chain. The

main thing to evaluate with middleware

performance is what you achieve with

the middleware, not what the middle-

ware achieves. It is a very common mis-

take to compare peak middleware per-

formances. Performance optimization

strongly depends on knowledge and time

spent on it, so what you want to find out

is what performance you can achieve

spending a known amount of time.

Evaluating performance in relation to

time spent with middleware is difficult,

but the main thing you want to find out is

how easy it is to leverage the power of the

middleware. The only way you can do

this is to give a try. Set up a benchmark

and test it over the middleware candi-

dates, then try to optimize it for each one

and see how easy it is. Get help from the

middleware support teams, and be persist-

ent with your own work. Many evalua-

tors are tempted to pass the bench proto-

col to the middleware support team, ask-

ing them, “What performance can you

• There are no inherently good or bad
middleware solutions, only offers that
fit or don’t fit your needs.

• Choosing middleware is a difficult, long,
expensive, and critical job. Do not
underestimate it.

• Licensing middleware is buying both a
piece of software and a service. Don’t
underestimate the service, and more
than that don’t forget to evaluate this
service.

• Avoid some classic traps such as
performance misevaluation and
extensibility misevaluation.

• Project managers should be prepared
to work with middleware they haven’t
chosen. Evaluating doesn’t always
mean choosing.

E S S E N T I A L
M I D D L E W A R E W I S D O M

achieve with that?” Thus optimizations

are achieved by very experienced engi-

neers who know the product very well.

Such results reflect only the peak per-

formance of the middleware, which does

not inform you about the speed of the

technology once your own team has

implemented it in your game. Figure 2

illustrates how your real-world imple-

mentation can lead you toward a differ-

ent decision from simply favoring mid-

dleware with higher peak performance.

Given the capabilities of your team, it is

the difference between analyzing average

performance versus peak performance,

and analyzing the capability of the prod-

uct to be leveraged by your team.

Evaluating the learning curve. The preced-

ing example illustrates the importance of

evaluating the learning curve. This point is

even more important if you are making a

short-term choice, where anything that

helps shrink the learning curve is welcome.

Again your team’s unique experience

comes into play: don’t underestimate the

significance of having some programmers

who have prior experience working with a

certain kind of middleware.

The ability of the middleware product

to conform to standards is also an

important factor. For example, does the

middleware product use STL, or does it

use some custom container sets? Many

programmers already know how to use

STL and thus shouldn’t have to waste

time learning a new container API.

Evaluating the technology. Another

point of interest is the technology on

which the middleware product is based.

This is a passionate issue. There are sev-

eral philosophical schools out there (C

versus C++, consoles versus PC, and so

on), and it’s not common to betray your

alma mater. But this is another case of

the game industry changing faster than

many developers’ minds. An evaluation

must keep in mind that technology is

only one aspect of an overall middleware

solution. Don’t neglect a product because

its technology doesn’t belong to your

philosophical school of thought.

Evaluating extensibility. Conventional

wisdom suggests that extensibility, poten-

tiability, replaceability, dreamability, or

whatever you want to call it, is a good

quality for middleware. This thinking is

so common that I’ve assisted in evaluation

discussions (from both the developer’s and

the provider’s side) where the desire for

extensibility expressed by the customers

ended up as: “We want to be sure that we

are allowed to extend or replace every

piece of your middleware.” A translation

of this question could be: “I want to buy

a $100,000 product from you that I have

the desire to rewrite entirely.”

Extensibility is only good if it’s need-

ed; it’s bad if it’s not needed, because

building something extensible means

integrating as many constraints as possi-

ble, leading to more and more compro-

mises. Extending middleware is not nec-

essarily a goal unto itself,

so it should be avoided as

much as possible. Devel-

opers must keep in mind

that extensibility is just

one of many aspects of a

middleware product to be

weighed.

Using a product and

extending it do not have

much in common. Most of

the time, extension mecha-

nisms are poorly document-

ed, poorly tested, and poor-

ly respected (generally, be

prepared to rework all your

extensions at each new

release of the product).

Your middleware solution also may need

a very high level of expertise to extend.

Based on my range of experience, my

advice is to keep as far away as possible

from the temptation to extend a middle-

ware product. This work is better done

by your middleware company as part of

your work supply contract.

Source code or not? The question of

whether to obtain source code is always

a sensible one. Most of the time middle-

ware companies are reluctant to provide

it, but many customers express the desire

to have access to it. Each side has its

obvious and nonobvious rationales

behind the source-code question.

The game developer’s main argument is

that source code addresses the need of

easy debugging. This is a genuine need,

and source code indeed helps, but there

may be better ways to solve this problem.

Another argument is that source code

helps the developer understand how to

use some features or how to extend them.

More than arguments, source code may

provide a psychological comfort for those

whom black boxes frighten.

On the other hand, middleware compa-

nies also have their own sets of arguments

against supplying source code. First, they

don’t want to support a modified product.

Also, they don’t want customers to make

assumptions about how features work.

They want to be free to change any piece

of code (keeping the functionality and the

interface intact) without breaking some-

thing in the customer’s realization.

Thinking more deeply about the utility

of having access to source code reveals

more unexpected cons than pros. The

main con is time. When customers are

tempted to seek an answer to a question

directly in the context of source code

files, they must face potentially hundreds

of such files that the average middleware

consists of. Compare that time spent with

asking a question to the provider’s devel-

oper support team, who should be more

familiar with the middleware source

code. Seeking information or bugs in the

middleware’s source code is not the game

developer’s job; it’s the middleware

provider support team’s job — develop-

ment customers pay for it.

w w w . g d m a g . c o m 39

FIGURE 2. Theoretical results of two middleware comparisons.

Peak hardware performance

Peak middleware performance

Performance achieve

Product A

you

Product B

40

There is one situation where you

absolutely need source code, which is

when the middleware company goes

bankrupt. Be sure that your contract

gives you access to the source code if

such a situation occurs.

The goodies. The last point on the prod-

uct evaluation checklist concerns the good-

ies. Not T-shirts or key rings, but more

serious extras. All developers have a pet

aversion to some parts of the development

of a game. Localization is an example, or

perhaps big files or memory card support.

Even having access to a rich mathematics

library is a nice extra. Some of these func-

tionalities are offered by middleware prod-

ucts. Depending on your team, they can

add up to the difference between a good

choice and a very good choice.

Don’t Forget the Service

F or all the focus on technology in the

game business, service is the heart

of middleware business, and it’s also the

Achilles’ heel of many middleware offers.

Don’t give short shrift to evaluating the

service aspect.

Evaluating the developer support serv-
ice. The simplest aspect of developer sup-

port you must evaluate covers such bland

communication as, “Hello, there is a bug

in your SDK.” Or perhaps, “I’m testing

the client-server feature but it doesn’t

work.” “Have you plugged in the net-

work cable?” “Oh! No! Thanks.” You

will probably stress this service a lot in

the beginning of the evaluation, as it is

the period when you have many ques-

tions to ask. The ratio of customers to

support engineers can also help you to

evaluate a provider’s potential availability.

But beyond those basic questions,

think of a developer support service as a

critical resource, and don’t procrastinate

until October or November to ask ques-

tions — you won’t be the only customers

facing a holiday crunch. During non-

peak times, a fair developer support team

should be able to respond to you in an

hour, at least to tell you that they are

handling your request. But developer

support alone can’t handle all types of

requests. Its limit is when you ask, “How

do I do that?” Developer support’s job is

in part to give you an answer, but it is

also their job to pull you to another level

of service: the expertise.

Evaluating expertise and consulting.
The expertise service is there to orient

customers. At this level a typical answer

to the customer’s question “How do I do

that?” is “Why do you need to do that?”

Developer support helps you implement

a solution, the expertise level helps you

find the solution. A middleware compa-

ny is a partner that can help you in ana-

lyzing your needs. Ask a potential

provider “How do I do that?” and if

you don’t get the right answer, the mid-

dleware company might not be con-

scious enough of their role.

By understanding your needs, your

middleware partner can point you to a

different solution; they should know that

their product will respond better to one

method over another. They may have

already faced the same problem with

another customer. Used intelligently, such

services can be of a great help, efficiently

complementing an internal R&D team,

as the middleware company’s sources of

experience are potentially more diverse.

Consulting is a step beyond the expert-

ise level, able to address problems not

related to the product, such as: “Help, it’s

my first game on PS2 and I have no expe-

rience setting up an MMP platform!” In

the middleware provider’s role as consult-

ants, you may also be able to benefit

from their network of acquaintances.

Evaluating work supply. Last but not

least is the work supply evaluation. This

is a key point if you need to extend a

middleware product significantly. It can

also be very useful if you need some extra

resources to finish your game on time. In

this case you need immediately opera-

tional staff, which makes it hard to evalu-

ate far in advance, but you can take some

precautions. At least try to anticipate

your future needs and specify further

work into the contract. List all the exten-

sions, features, and tools you will need,

and list all the project’s phases where you

will need an expert on your site. For

example, if you are already sure that a

short period before your alpha you will

need to do an optimization pass on your

game, schedule that into the contract.

Final Advice

B eyond process-specific evaluation

strategies, there is also some over-

arching advice to go with any company

evaluating any technology partner. First,

go on-site and visit the middleware com-

pany’s headquarters. Visit the engineering

teams. Talk with them.

Abuse the intimate nature of the indus-

try. Pick up the phone, call friends work-

ing for other companies, and ask them

what their experiences are with a given

middleware solution.

Ask middleware companies about the

level of renewal of licenses. If you ask

them for their number of customers,

they may answer you with a number

that may seem impressive but really

lacks context. Instead ask them how

many satisfied customers they have who

have renewed their licenses.

Think of the ramifications on your hir-

ing and training strategies. If you can

easily find game developers that already

have experience with a given middleware

product, that’s a point in its favor.

Above all, remember that the middle-

ware market is still at a very early stage.

It changes very quickly, so keep evaluat-

ing middleware on a regular basis. q

M I D D L E W A R E

m a y 2 0 0 3 | g a m e d e v e l o p e r

A C K N O W L E D G E M E N T S

Thanks to Stuart, Laure, Cecile, Ben,
Olivier, Manu, and Toni for their help
reviewing this article.

F O R M O R E I N F O R M AT I O N

Generic middleware list
(incomplete but thorough):
www.middlewarenet.com

Specific middleware:
www.idsoftware.com
www.unreal.com

All-in-one middleware:
www.virtools.com

c h r i s z i m m e r m a n

m a y 2 0 0 3 | g a m e d e v e l o p e r42

The Character Development of
Sucker Punch’s

SLY COOPER
AND THE THIEVIUS RACCOONUS

A fter the somewhat-success-

ful 1999 holiday release

of ROCKET: ROBOT ON

WHEELS, Sucker Punch’s

inaugural title, we were

eager to start on our next game. We’d set-

tled on doing another platform adventure

but knew we’d need a more compelling

lead character to compete with the great

titles sure to come to the Playstation 2.

We expected that defining a great

character would be a challenge for our

team. We would be doing lots of things

for the first time: building a new PS2

engine, switching to Maya as our author-

ing environment, casting voice actors and

doing lip sync, animating a fully articu-

lated character, and designing for a

worldwide release. It turned out to be

more of a challenge than we ever antici-

pated. Without three years of hard work

from everyone at Sucker Punch, and

without reams of useful feedback and

support from our production teams at

Sony, we would have been lost.

This Postmortem focuses on the genesis

and development of our lead character, Sly

Cooper, a raccoon thief from a long line of

raccoon thieves. We hope that focusing on

a single aspect of the development of SLY

COOPER AND THE THIEVIUS RACCOONUS will

provide an interesting change of pace from

the more general project-wide Postmor-

tems that usually run in this space.

What Went Right

1. Using interaction with other
characters to define Sly. In

early iterations of the game, Sly wasn’t a

very convincing character. We’d given

him thiefy abilities — breaking into safes,

swinging from hooks, dodging security

systems — but it wasn’t enough. Sly felt

more like a puppet than a character. It

was fun to drive him around, but we

were well short of the immersion we

sought after.

The breakthrough came when we start-

ed using Sly’s interactions with other char-

acters in the game to define Sly to the

player. It’s difficult to define a character in

isolation; it’s much easier to define a char-

acter by contrasting him with other char-

acters, both allies and adversaries.

Sly isn’t acting alone in his criminal

escapades, he has two partners, Murray

and Bentley. Bentley the Turtle is the

brains of the outfit; he’s very cautious,

and — there’s no way around it — a

complete nerd. In contrast, Sly is smooth

and a little reckless. Murray the giant

pink hippo is the innocent burden of the

team; he’s bumbling and clumsy, where

Sly is lithe and agile.

Sly’s adversaries perform a different

function — they help maintain the ethical

tension of being a thief. We liked the

fuzzy morality of Sly. He’s not exactly a

hero, but he’s not exactly a villain either.

We use the Inspector Carmelita Montoya

Fox character to make sure Sly doesn’t

feel like just another good guy. Her pri-

mary function is to jump out and yell

“Criminal!” every so often, just to remind

players that they are, in fact, breaking the

law. Otherwise, it’s easy to forget Sly’s a

thief. Worrying about the ethical basis for

the character’s actions isn’t something

platform gamers do very often.

G A M E D A T A

PUBLISHER: Sony Computer Entertainment
NUMBER OF FULL-TIME DEVELOPERS:

between 14 and 24
NUMBER OF CONTRACTORS: up to 4
LENGTH OF DEVELOPMENT: 3 years

RELEASE DATE: September 2002 (U.S.),
January 2003 (Europe), February 2003

(Korea), March 2003 (Japan)
TARGET PLATFORM: Playstation 2

DEVELOPMENT HARDWARE: 1800+ MHz
PCs with 512MB RAM, 40GB hard drives, and

Nvidia Quadro 4 graphics cards
DEVELOPMENT SOFTWARE USED:

SN Systems’ ProDG, Maya, Photoshop,
Visual C++ 6.0, Visual SourceSafe

PROJECT SIZE: 3,000 Maya files (1.5GB);
4,300 textures (800MB);
1,000 source files (9MB)

P O S T M O R T E M

w w w . g d m a g . c o m 43

On the other side of the spectrum are

the boss characters Sly confronts. The

bosses are ruthless, rapacious, and over-

the-top in their disregard for all decent

standards of propriety. In comparison,

Sly doesn’t seem so bad. Sure, Sly’s steal-

ing stuff, but at least he isn’t burying an

entire village under an avalanche, like the

Panda King character does.

With Carmelita on the good side and

the bosses on the bad side, Sly becomes a

more interesting character, not purely

good or bad, but with elements of both.

2. A seemingly simple control
scheme. A combination of

factors pushed us toward a simple con-

trol scheme. First, we wanted the game

to be accessible to both young and inex-

perienced players. Second, we wanted the

game to be fun rather than challenging,

and trying to remember complicated con-

trol mechanisms didn’t seem fun. We set-

tled on a three-button scheme: X to

jump, Square to attack with the cane,

and Circle to trigger a thief move.

The thief moves were the tricky part.

The Circle button is contextual; pressing it

has different effects depending on where

Sly is in the environment. Pressing Circle

while jump-

ing near a

rope causes Sly

to grab the rope;

pressing Circle while standing next to a

chimney causes Sly to crouch and hide

behind the chimney.

Guessing what players intended when

they pressed Circle was crucial. If we

guessed right and Sly did what the player

intended, then it wouldn’t be very differ-

ent from the character jumping when the

player pressed X. If we guessed wrong,

everything would fall apart. The player’s

self-identification with the character

would immediately be broken, and Sly

would be just a balky puppet.

We attacked this nasty relationship

between action and expectation from

both ends. First, we visually marked

areas where Sly could do something

thiefy with a distinctive blue particle

emitter. Obviously, this helped prompt

the player through the game, but on a

more subtle level it disguised all the

places where thiefy actions were not

allowed. We didn’t allow the player to

crouch behind all objects, just in places

where crouching was interesting.

This vastly reduced the number of

possible guesses when the player pressed

Circle, and made it much easier to guess

the player’s intention correctly.

At the other end of the problem, we

ran into situations where more than one

thiefy action was plausible. We might

have two pipes running fairly close to

each other, with the player jumping

between them and pressing Circle. Which

pipe should Sly grab?

If Sly’s standing on the ground, choos-

ing the closest pipe works pretty well. If

Sly’s in midair, however, the answer isn’t

as obvious. Sly might be closer to one

pipe but moving away from it toward the

other pipe, which happens to be a couple

of meters below. Divining the player’s

intention in cases like this is problematic.

The obvious solutions, such as always

choosing the closest object, weren’t fool-

proof enough. Our eventual solution was

to choose the thiefy alternative that

required the least amount of air steering.

This matched player expectations pretty

C H R I S Z I M M E R M A N | Chris is the development director at Sucker Punch. Sad to
say, of all the characters in SLY COOPER AND THE THIEVIUS RACCOONUS, Chris most resem-
bles Bentley. Contact chris_zimmerman@suckerpunch.com.

P O S T M O R T E M

m a y 2 0 0 3 | g a m e d e v e l o p e r44

well, as it involved the smallest applica-

tion of physically implausible air steering.

So, Sly would be likely to choose the

lower pipe in the between-two-pipes

example, since the player is already head-

ed toward it and there’s plenty of time to

make any small course adjustments as the

player falls to it.

3. Making Sly look great. Our

art direction for levels was con-

sistent throughout the development cycle.

We wanted dense, graphically rich worlds

for Sly to run around in. The back-

grounds would have lots of color, lots of

movement, and lots of shape. Early in

development, we did two full-color con-

ceptual paintings, one of an exterior envi-

ronment and one of an interior, which

acted as touchstones for the graphical

look of the game. From then on, we were

just trying to make a game that looked

like those paintings brought to life.

The danger of all this background

richness was that Sly might get lost in it.

We couldn’t afford to have the environ-

ments look so good that Sly looked

weak in comparison. In short, Sly need-

ed to be the most attention-grabbing and

attractive thing on-screen. Three tech-

niques of the dozens we tried were

notably effective.

Cel borders. Drawing cel borders

around the characters (actually just a

dark gray outline) really drew the eye to

them and separated them from the back-

ground.

Color and texture. We used color and

texture to distinguish Sly from the back-

ground. The Sly model uses simple, rela-

tively low-detail textures. The dominant

colors are cool blues and unsaturated

grays, with bright red and yellow

accents. Backgrounds, on the other hand,

use much higher-detail textures. Colors

are much warmer and more saturated.

We found these differences to be subtle

but effective.

Tail. Given the way our camera system

works, a player spends most of the time

looking at Sly’s rear end, so the tail was

going to be a focal point for most of the

game. We wanted the tail to be big and

bushy, but having it as a big part of the

visual look of the character made it cru-

cial to get the tail’s movement right.

Initially, we expected to hand-animate

the tail, so we spent an unfortunate

amount of time writing a spline controller

plug-in for Maya, with accompanying

support in our tool chain and run-time

engine. The results were disappointing —

it just didn’t look like a tail, despite our

animators’ best efforts. In fact, it looked

like someone had stapled a big, striped

sausage to Sly’s butt. This wasn’t exactly

the look we were going for.

Next, we tried simulating the tail,

which was much more successful.

Basically, we treated the tail as a chain of

particles in world space, with distance

constraints between adjacent particles,

velocity damping in world and local

space, and spring functions that try to

straighten the tail. In most of Sly’s anima-

tions, we animated the tail by wiggling

the first tail segment; the rest of the tail

wagging along falls out of the simulator.

The results were emotionally satisfying.

Not only did Sly’s tail move much more

gracefully in each animation, it also looked

great during transitions between anima-

tions, when Sly jumps up and down, when

running in circles — whatever Sly did, the

tail reacted in a believable way.

4. A rich animation toolkit.
We used a simple skin-and-

bones system for Sly’s character model, so

his movement boiled down to transform

animation on the bones. It all seemed so

simple to us at the start of the project,

but we managed to find ways to make it

complicated by the time we were done.

Smoothing. We didn’t want to have Sly

pop between animations, but we also

needed him to react instantly to player

input. We ended up adding smoothing to

our animation controllers. Our smoothed

controllers don’t lock the bone to the

animated keyframes; instead, they

smoothly move the bone toward the ani-

mation. Once the bone gets to the anima-

tion, it locks onto it, and thereafter plays

the animation as originally authored.

Blending. One of the drawbacks of

hand animation is that you can only

afford to do a small number of anima-

tions, which have to be applied to a huge

number of situations. We leveraged ani-

mation work by blending between ani-

mations. For instance, we continuously

blend between a walk cycle and run cycle

at partial joystick deflections.

Layering. In some circumstances, we

needed to play two animations at once. If

Sly whacks at something with his cane

while running, we need to play the

whack animation while still playing the

run animation. We have a simple priority

system to handle this. For example, both

animations have keyframes for the right

hand, but the whack animation runs at a

higher priority, so it ends up controlling

the right hand.

Programmatic control. We ended up

programmatically controlling lots of

bones, especially when Sly is standing

still. We move and rotate the feet to keep

them on the ground, for example, and

we shift Sly’s body and hands around to

make it look like he’s balancing when he

stands on a moving object.

In the end, all of these features were

When it comes to sneaking around, nothing
beats ... a barrel.

Sly sending a guard to his E-rated demise.

w w w . g d m a g . c o m 45

mixed and matched in

arbitrary ways. For

instance, when Sly is

grinding down a slippery

vine, we peek ahead

down the vine to see

how much Sly will need to

accelerate as he goes

around corners. We used

this to decide how much

to blend between three

animations — an anima-

tion of Sly leaning right

while grinding, one of him

leaning left while grinding,

and one of him grinding straight. So Sly

anticipates and leans into turns, just like

players would expect.

Players never notice all of this elabo-

rate technology; they just see Sly swoop-

ing gracefully around corners. The goal

of all the refinements we put into Sly’s

movements was to make the technology

invisible, so that Sly’s personality could

shine through.

5. Doing pencil animations
first. In the course of building

the 230 or so animations that comprise

Sly’s move set, we built some pretty ugly

animations. I was personally responsible

for most of them — well, maybe all of

them — when I needed placeholder ani-

mations to match new Sly move logic

under development. (Readers who can

identify which Sly animations in the

game are actually “placeholders” get

extra credit.)

In general, we found it difficult to con-

ceptualize the animation while working

in the animation tool. Even after discus-

sions between the programmer, animator,

and 2D artist working on the move, we

had a hard time doing animations that

met everyone’s expectations. We found

that having some sort of sketch or visual

outline of Sly’s movement invariably pro-

duced more dynamic results.

Eventually, we settled on doing pencil

animations for all of Sly’s moves.

Typically, this meant sketching the

extreme poses during the move. So, for a

simple attack animation, the extreme

poses were the furthest extent of the

wind-up, a pose at contact with the target

of the attack, and the fullest follow-

through pose.

Doing an animation workflow based

on these poses was much easier. The

extreme poses were a much higher band-

width means of communicating the feel

of the move between the people working

on it than words ever were. Timing need-

ed to be set and animation between the

extreme poses needed to be defined, but

the first cut at animation was usually

pretty close to final quality. A couple of

rounds of refinement usually got us to a

stylish and polished animation that satis-

fied everyone.

An unexpected bonus was that these

pencil animations were extremely useful

to product marketing in the end game.

We used the pencil sketches as source

material when outsourcing work on

magazine covers, manual art, and other

marketing materials.

What Went Wrong

1. Too much complexity. Not

surprisingly, the Sly model is the

most complicated one we built. A typical

NPC model in SLY COOPER has six to 10

animations; the Sly model has about 230

separate animations, with roughly 10 to

15 total minutes of animation. Tools and

techniques that worked well on simple

files broke down with the Sly model.

In addition, the interface between the

Sly code and the Sly model is much more

complicated than anything else in the

game. The code makes assumptions

about how the model is

constructed, how the ani-

mations are named and

built, and so on. Breaking

any of these assumptions

caused Sly to stop function-

ing, sometimes in mysteri-

ous ways.

Finally, there were lots of

people involved with any

change to the Sly model.

Typically, this meant a con-

ceptual artist, an animator, a

coder, and usually the game

designer who’d be incorporat-

ing the new move or capability into a

level. That’s a lot of cooks in the kitchen.

This technical and organizational com-

plexity made it harder to work on the

Sly model than on any other model in

the game, which made progress painfully

slow at times.

Some of this complexity seems

unavoidable, even in hindsight. In many

cases, though, we built in more complexi-

ty than was necessary. For instance, our

initial implementation of Sly’s walk cycle

derived his target forward velocity from

the velocity of the ball of the left foot at

the keyframe where it first touches the

ground, with the somewhat misguided

goal of reducing foot-slip while walking.

Needless to say, the animation team had a

hard time keeping track of rules like this,

especially since we had slightly different

(but just as complicated) rules for Sly’s

target velocity during other animations.

Eventually, we went to a simpler

model. We animated Sly moving forward

during the walk cycle, then stripped out

that animation channel, which then

defined Sly’s target velocity at run time.

2. Run-time-only features.
We put a lot of effort into giv-

ing Sly a distinctive look and feel in our

run-time engine, and we feel we succeed-

ed. However, there was one huge draw-

back: none of this custom code ran in

our authoring environment. All the cus-

tom look, all the custom behavior, was

run-time only. In order to see the effect

of a change to the Sly model, we needed

to compile it into a level, then load the

Not trusting players to think for themselves, Bentley goes step by step
through his complex plan.

46

level into our run-time engine.

This made texturing Sly and the

other models in the game tricky. The

colors in a texture change radically

when lit by our shading model.

Running Photoshop on a PC you see

one color; running through a level

with lots of blue lighting and purple

fog on an NTSC TV, you see a com-

pletely different color. The only way to

test a texture change was to compile

and load a world with representative

lighting and see what Sly looked like.

Refining Sly animations was also frus-

trating. In order to see how an animation

really worked, we needed to compile it

and try it out in a level. For specialized

moves, we needed to compile a level

where the move applied — it’s hard to

test a new pipe-climbing animation with-

out a pipe to climb.

Level compiles were relatively fast —

from 15 seconds up to a couple of min-

utes — but when multiplied by the num-

ber of times we needed to preview a

model change over the course of a day,

the time really added up.

3. Not enough expression. We

used morphing to do facial

expressions and lip synching for our talk-

ing head sections, which turned out to be

barely adequate. Managing the morph

targets was painful, we were limited to a

relatively small set of expressions, adding

new expressions was difficult, and per-

formance was sluggish — in general, life

was not good.

Given how clunky our technology was,

we were happy with the results we man-

aged to obtain. However, the perform-

ance problems and general flimsiness pre-

vented us from having any facial expres-

sions during gameplay, which hurt the

game. During gameplay, Sly’s head is

completely rigid (except for his ears,

where we hacked in morph targets).

The worst manifestation of this prob-

lem is Sly’s eyes. They don’t move, the

face doesn’t move around them, and we

don’t do any special shading on them.

The net effect is a completely blank, rac-

coon-in-the-headlights look. We may have

a pretty convincing body, but Sly’s head

looks like a marionette’s. Luckily, he

spends most of the game facing away

from the camera, so this problem isn’t as

bad as it might have been.

4. Performance, or lack
thereof. All the depth and

complexity in Sly’s animations and behav-

ior severely taxed our run-time engine. Sly

has roughly 45 bones, which is twice as

many as most of our other characters

have. He also has lots of vertices to

relight, and lots of custom behavior. The

net effect was persistent performance

problems in every level Sly appeared in.

Unfortunately, that describes pretty much

every level of the game.

In general, we spent roughly 15 to 20

percent of every frame just dealing with

Sly. Taking this big of a chunk out of the

performance budget limited what we

could do in the levels.

5. Late addition of moves.
Most of Sly’s moves were in

place early in the development cycle. We

were good about not changing the func-

tionality of basic moves, although we

tweaked the visuals relentlessly for the

whole project. Once we had levels laid

out, we couldn’t change things like jump

height or length without breaking things.

There was one huge exception to this.

We scattered “clues” through most of the

levels in SLY COOPER. Players who find

and break the bottles containing all of

the clues are given the combination to a

vault. Inside the vault is a page torn from

the Thievius Raccoonus (the stolen fami-

ly heirloom Sly is trying to retrieve in the

game), which grants the player a new

power-up move.

We went through most of the develop-

ment of the game without worrying about

what prize the player would get for col-

lecting all the clues, so we had most of the

game levels built by the time we started

working on the power-ups. That made

designing the new power-ups extremely

constrained. The power-ups needed to be

fun, but they couldn’t break any of the

game design of existing levels. Basically,

they had to be fun, but not very powerful.

In the end, we were able to invent 25

power-ups that met the constraints, but

the results weren’t well integrated into the

rest of the game design. Instead, they feel

like afterthoughts.

Stealing Victory

I f we need a good laugh, we can

always dig up an old build of SLY

COOPER, say from about the spring of

2001, and start playing the game. It’s

hard to not laugh at ourselves, because

we thought that Sly was pretty cool at

that point. With the perspective of anoth-

er 18 months of work, we can see just

how pathetic he really was — especially if

we choose one of the sausage-tail builds.

It would have been nice if we’d nailed

the character right away, but that’s not

the way things worked. We worked on

getting Sly right from the day we started

the project to the day we went gold.

Sometimes this meant taking a feature

that seemed perfectly acceptable and try-

ing to make it better still, or jettisoning

some move that we’d all gotten attached

to. It took a team-wide commitment to

end up where we did, and we were grati-

fied by being awarded the Game Devel-

opers Choice Award for “Original Game

Character of the Year” at this year’s

Game Developers Conference. q

P O S T M O R T E M

m a y 2 0 0 3 | g a m e d e v e l o p e r

Carmelita Fox — Sly Cooper’s token
nemesis/love interest.

S O A P B O X g u i d o h e n k e l

m a y 2 0 0 3 | g a m e d e v e l o p e r56

T he advent of

mobile devices

has changed

many rules of

traditional

game development. Several

of the stigmas associated with

the industry are being broken,

and new opportunities arise to make

games based on creative decisions rather

than purely commercial ones. The tech-

nology being reminiscent of game

development during the 8- and 16-

bit eras in many ways, mobile

game development poses signifi-

cant challenges to everyone

involved. Such challenges have

attracted many veteran game devel-

opers to the mobile development, as

they are most familiar with many of

the demands imposed on developers.

One such demand is the ability to write portable code.

Many of today’s game programmers still write their games

essentially with one platform in mind, and format conversions

end up a sore afterthought. In the mobile space, however,

developers realize two things very quickly. First, there are

countless platforms out there, and since they are generally not

compatible in any way, each requires a tailored implementa-

tion. Every handset requires a custom build with dedicated art

assets. The variety of OSes on these devices, ranging from

BREW and Symbian all the way to Windows CE, to name but

a few, also adds flavor to a mobile developer’s life. The second

thing developers realize is that if they want to be profitable

they will have to support a number of these platforms. Given

all the idiosyncrasies of each platform and device, this can

expand into quite a challenge.

There are different approaches to this situation. One of

them is to use a middleware package that abstracts the plat-

form-dependent layer of the code from your game implementa-

tion. Though generally a very good way to start things, such

technologies may not be suitable for all cases. Fathammer’s X-

Forge engine is a great example of how developers can obtain

a top-tier 3D engine that runs on Symbian phones, Smart-

phones, Pocket PCs, Palm OS 5 devices, and mobile Linux

handhelds. Using such an engine, you are covering a lot of

ground already with a minimum of work.

Another possibility is Mophun, a game API developed by

the Swedish company Synergix. While it is currently available

only for the Sony Ericsson T300 handset, this engine will soon

be implemented on a variety of handsets, giving game develop-

ers greater opportunities to write portable games.

continued on page 55

Game Mobility Needs
Code Portability

Ill
us

tr
at

io
n

by
 D

av
e

W
ha

m
on

d

But no matter whether you hard-code

every line or use some of the APIs and

middleware available, if you never gave

much thought to writing portable code

before, now is the time. Here are some

thoughts to get you started in the right

direction.

Create sensible coding guidelines. Very

few game programmers adhere to any

sort of coding standards, and very few

companies have traditionally enforced

them. Start now. Create coding standards

for your company and make sure they

are sensible. Get rid of all the bad habits

and start writing “clean” code. It sounds

simple, but you will be doing yourself a

big favor. Having proper coding guide-

lines in place is the first step toward writ-

ing portable code because the most valu-

able coding standards automatically

enforce practices that intrinsically make

code much more portable.

Never try to #ifdef your way through your
machine-dependent code. This is a

favorite bad habit that has been taught

throughout the years, but it is in fact

tedious and error prone. The last thing

you want to do is mess with a fully

functional and tested implementation

for one platform, simply because you’re

interleaving a new implementation for

another one in the same source file.

Better to separate each device imple-

mentation into separate files that are

then included at compile-time using the

compiler preprocessor.

Start using constants. Much of the

code I see every day is practically hard-

coded to specific device specifications of

the desired target. It’s time you started

using constants — and I am talking

about real constants, not the C/C++-

abomination #define. Use your constants

liberally instead of using hard-coded

coordinates, dimensions, sizes, and so

on. In your game, use these constants

and derive all other values from those

constants if needed. If you separate

these constants from the rest of your

game code, then suddenly, by editing a

single source file, you can create an

entirely different version of the game in

the blink of an eye.

Create an asset and workflow structure.
While most projects have a directory

structure that has been established at one

point by the developer, few of those proj-

ects are thorough enough to accommo-

date different versions of the same assets.

Make sure to create multiple directories

for your final art assets — one for each

platform. Create subdirectories for your

project and make files — for each plat-

form. Create source subdirectories for

your machine-dependent code — for

each platform.

With these points in mind, you are

already better prepared for cross-platform

development than most developers in the

industry, and it will pay off. It’s easy to

understand why so many veteran game

developers are flocking to develop for the

mobile market. Nostalgia may be one rea-

son, but everyone who has ever written

games simultaneously for the Apple II,

the C64, the Atari ST, the Amiga, and the

IBM PC understands how important

portable code is, and how to design and

write it. For developers who enjoy a chal-

lenge, writing truly portable code is an

attractive one. q

G U I D O H E N K E L | Hailing from
Southern California, Guido is a veteran of
the game industry. He has worked on
dozens of game titles over the past 18 years,
including the REALMS OF ARKANIA series and
PLANESCAPE: TORMENT. Most recently he
founded G3 Studios (www.g3studios.com),
a developer and publisher of mobile games.

S O A P B O X

w w w . g d m a g . c o m 55

continued from page 56

Everyone who has ever writ-
ten games on the Apple II,
the C64, the Atari ST, the
Amiga, and the IBM PC
simultaneously understands
how important portable
code is — and how to design
and write it.

	02gameplan
	04indwatch
	06prodrev
	10profile
	12innerp
	22soundp
	24artview
	28f-barbaga
	36f-macris
	42postmort
	56soapbox

	return:

