
MAY 2002

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N
L E T T E R F R O M T H E E D I T O R

Crossing Over

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Everard Strong estrong@cmp.com
Production Editor

Olga Zundel ozundel@cmp.com
Product Review Editor

Daniel Huebner dan@gamasutra.com
Art Director

Audrey Welch awelch@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Jonathan Blow jon@bolt-action.com
Hayden Duvall hayden@confounding-factor.com
Noah Falstein noah@theinspiracy.com

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Beemania
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed WildTangent

ADVERTISING SALES
Director of Sales & Marketing

Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218

National Sales Manager
Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Account Manager, Northern California & Southeast
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Recruitment
Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225

Account Manager, Western Region & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Account Representative
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz

Advertising Production Coordinator Kevin Chanel

Reprints Cindy Zauss t: 909.698.1780

GAMA NETWORK MARKETING
Senior MarCom Manager Jennifer McLean

Marketing Coordinator Scott Lyon

Audience Development Coordinator Jessica Shultz

CIRCULATION
Group Circulation Director Catherine Flynn

Circulation Manager Ron Escobar

Circulation Assistant Ian Hay

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Executive Vice President & CFO John Day

President, Technology Solutions Group Robert Faletra

President, Business Technology Group Adam K. Marder

President, Healthcare Group Vicki Masseria

President, Specialized Technologies Group Regina Starr Ridley

President, Electronics Group Steve Weitzner

Senior Vice President, Business Development Vittoria Borazio

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, HR & Communications Leah Landro

Vice President & General Counsel Sandra Grayson

Vice President, Creative Technologies Philip Chapnick

W W W . G A M A N E T W O R K . C O M

✎

A s much as game-industry

cheerleaders tout the

apples-to-oranges statistic

that game sales figures

continue to outpace

Hollywood box office receipts, no one

would sensibly think that the game

industry is even close to leaving Holly-

wood in its wake, either financially or in

the currency of artistic legitimacy. As

long as poetry collections can become

Broadway musicals, books can become

movies, and TV shows can spawn chart-

topping singles, enterprising types won’t

be able to resist brute-forcing a given

work into a different medium in the

quest for a quick buck.

Most entertainment providers seem to

understand how this system of media

crossovers works and manage expecta-

tions accordingly. For every To Kill a
Mockingbird that elevates an existing,

profound work of art to new levels in a

different medium, there are hundreds of

Car 54, Where Are You?s racing to a the-

ater near you. The latter are unabashedly

products of business enterprises, with

decidedly less of an emphasis on the artis-

tic exploration of a given medium.

The game industry is used to being

manhandled by Hollywood at the apex of

every gaming fad, when people see an

opportunity to cash in on a trend. Last

year saw what looked like another resur-

gence of this cyclical games-into-movies

trend (as opposed to the opposite status

quo of movie and TV licenses migrating

to oft-mediocre games), with the release of

the Tomb Raider and Final Fantasy
movies. Many brought up the game-to-

movie box-office flops of years past and

predicted doom for these projects, lament-

ing the further aspersion that box-office

failure might cast on the legitimately good

works being turned out by the game soft-

ware industry, which go largely unnoticed

by the general public.

But whereas past abject flops have sent

Hollywood recoiling from the game indus-

try as quickly as they pounced on what

they thought was a hot trend, last fall’s

new console releases and the increasing

financial momentum of the game industry

seem to have sustained people’s interest in

bringing games to film and TV. There’s

still a good business argument to be made

for doing so, both for game studios and

publishers and for film and television pro-

ducers. But the inherent challenges that

have beset past attempts to cross over

have not been eliminated.

The first is that games are successful

and appreciated largely for their interac-

tivity. Game developers understand this

fact, but they still haven’t been able to

fully fathom the essence of interactivity

and how to exploit this unique facet of

our medium to advance games as their

own art form (see Chris Hecker’s

Soapbox this month on page 56 for his

take on the issue). It’s difficult to help

someone translate such a pivotal concept

to a medium that utterly lacks it, when

we still do so much hand-wringing trying

to figure it out for ourselves.

Games also tell interesting stories

sometimes, but our being yet so far from

divining the ideal relationship between

storytelling and interactivity intensifies

the problem of translating whatever the

essence of this relationship is to com-

pletely noninteractive, all-story-based

media. Game developers who premature-

ly fancy themselves Hollywood-style

auteurs and fast-buck Hollywood pro-

ducers have conspired time and again to

confound each other.

The crossover momentum is increasing

nonetheless, as G4 Media aims to launch

a cable channel devoted to games, more

game titles than ever are being optioned

for film, and even Microsoft has engaged

a creative talent agency to pitch its PC

and Xbox titles for film and TV.

Microsoft Games Studios general manag-

er Stuart Moulder gives me great hope

that something good may finally come of

these latest efforts with his remark on

Microsoft’s decision to enlist the agency’s

help: “We don’t understand Hollywood.

We’re the wrong people to try to make

movie or TV deals.”

Now who says our industry never

learns from its mistakes?

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

4

Game Developer
is BPA approved

Take-Two resumes trading. Take-Two

may have released its long-awaited

restated financials — twice — and

resumed trading, but many investors fear

that this isn’t the end of the company’s

woes. On February 12, the company

restated nearly two years of its financials

and admitted to overstating 2000 rev-

enues by almost $20 million. Take-Two

also revealed that the Securities and

Exchange Commission had issued a for-

mal order of investigation related to the

company’s financial statements and

accounting controls. One day later, Take-

Two released its results for the fourth

quarter of 2001, posting a net loss of 15

cents per share on sales of $123 million.

In December, the company had projected

a profit of 1 cent to 4 cents per share on

sales of $140 million before announcing

the decision to delay its reporting. Two

weeks later, Take-Two again restated

financial results for several quarters, this

time because of math errors.

When Take-Two finally resumed trad-

ing after being halted for three and a

half weeks, investors sent shares tum-

bling 19 percent to $15 per share in the

first 15 minutes. So far the only execu-

tive casualty from the company’s finan-

cial mess is chief financial officer Albert

Pastino, whose resignation was termed

due to personal reasons. Pastino had

been on the job just two months, having

replaced Chip David in December short-

ly after the company announced the

need to restate its numbers.

Interplay faces Nasdaq delisting.
Interplay has received formal notice that

it will face delisting from the Nasdaq

stock exchange unless the company’s

market value and share price rise. The

company has been below a minimum

market value based on publicly held

shares for over 30 days, in violation of

requirements set by the Nasdaq market

for listing shares. The February 14 defi-

ciency notice also said that Interplay

does not meet Nasdaq’s alternative list-

ing requirements, which require stock-

holders’ equity of $10 million, a mini-

mum market value of publicly held

shares of $5 million, and a minimum bid

price per share of $1. If Interplay fails to

meet the market’s conditions, the compa-

ny would face delisting on May 15.

Ubi Soft wins preliminary victory in
Red Storm battle. Take-Two has

agreed to pay more than £1.1 million

($1.6 million) to Red Storm, a Ubi Soft

subsidiary, including reimbursement for

some of Red Storm’s legal costs. The

trial concerns Take-Two’s sales of Red

Storm games under a European distribu-

tion arrangement prior to Red Storm’s

acquisition by Ubi Soft. Red Storm con-

tends that Take-Two still owes nearly

£6.3 million ($8.9 million) in missing

payments. To date, the court has

ordered Take-Two to pay Red Storm

more than £3 million ($4.3 million).

The court also agreed to Red Storm’s

request to fast-track the remainder of

the case.

Immersion files force-feedback
patent infringement suit. Immersion

Corporation, a developer and licensor of

haptic feedback technology and the

owner of more than 150 related patents,

has filed an infringement lawsuit against

Microsoft and Sony. The suit, filed in the

U.S. District Court for the Northern

District Court of California, alleges that

the force-feedback controllers, acces-

sories, and games for the Xbox, PSX,

and PS2 infringe on Immersion patents.

No recovery for Midway. Midway’s fis-

cal results for its second quarter ended

December 31, 2001, showed a sharp drop

in revenues, from $80 million last year to

$44 million this year. The company attrib-

uted the fall in revenue to the low number

of titles released during the quarter and

the company’s hasty exit from the coin-

operated games business. The net loss for

the quarter was $2.7 million, compared to

a net loss of $3 million last year. q

m a y 2 0 0 2 | g a m e d e v e l o p e r6

I N D U S T R Y W A T C H
T H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e rJ

U P C O M I N G E V E N T S

CCAALLEENNDDAARR
E L E C T R O N I C
E N T E R TA I N M E N T E X P O

LOS ANGELES CONVENTION CENTER

Los Angeles, Calif.
Conference: May 21–23, 2002
Expo: May 22–24, 2002
Cost: $200–$475
www.e3expo.com
Expo admission free to game
industry professionals

M E D P I 2 0 0 2 S O F T WA R E
GRIMALDI FORUM

Monte Carlo, Monaco
June 25–28, 2002
Cost: variable
www.medpi.com

Immersion’s force-feedback technology, used
in games such as Lionhead’s BLACK & WHITE, is
now the subject of a patent infringement case
against Sony and Microsoft.

Take-Two’s Rockstar Games published STATE OF

EMERGENCY at a time when Take-Two’s financial
reporting was in something of a similar state.

GHOST RECON, a Red Storm Entertainment title.

XX

G ames on mobile phones

are nothing new. With

NTT DoCoMo’s famous

iMode service, Japan has

gone mobile-game crazy,

and even we Stone Age Americans and

Europeans have been able to squeeze

some entertainment out of primitive text

WAP games on our handsets.

A new generation of phones similar to

those available in Japan is approaching

Europe and the Americas, however, and

two major platforms are vying for

supremacy over these new handsets. Sun

Microsystems’ Java 2 Micro Edition

(J2ME) and Qualcomm’s Binary Runtime

Environment for Wireless (BREW)

emerged in the last half of 2001 as the

leading development environments for

mobile gaming.

J2ME

T he concept of Java on embedded and

small devices has been around for

some time. Sun’s efforts to provide a

slimmed-down Java have taken many

forms over the years, including the Java

Card API and PersonalJava, a predeces-

sor of sorts to J2ME; the Japanese hand-

sets used with iMode have a customized

version of Java developed before Sun

could finalize a J2ME standard.

When we speak of J2ME for mobile

phones, we really mean J2ME using the

Connected Limited Device Configuration

(CLDC) and the Mobile Information

Device Profile (MIDP) running on top of

the K Virtual Machine (KVM). Essential-

ly, the CLDC and MIDP define a set of

Java services and language features

available for a family of related devices,

in this case, mobile phones and other

similar technologies. These Java features

are implemented on top of a special vir-

tual machine, KVM, designed to be com-

pact and portable to many small devices.

Applets developed for MIDP are called

MIDlets. This article uses CLDC/MIDP

as the platform to compare with Qual-

comm’s BREW.

The development environment. Most

Java IDE vendors have made J2ME/

MIDP support a prominent feature in

their new Java development tools. How-

ever, Sun’s free J2ME Toolkit, available

at http://java.sun.com/j2me, has just

about everything you need to begin

developing a MIDlet.

Among the most useful tools in Sun’s

J2ME Toolkit is KToolbar, a simple proj-

ect manager that allows you to load,

compile, and run MIDP projects through

a clean, elegant GUI. KToolbar also

allows you to run your MIDlet in Sun’s

standard device emulator while seeing

debug output and error messages in its

main window.

The emulator doesn’t accurately repre-

sent how your code will behave on the

real device. First, the emulator doesn’t

reflect the handset’s performance; the

emulator’s speed depends entirely on

your computer’s CPU. Your applet will

run much slower on actual hardware.

Sun’s emulator is also inaccurate in

other ways. In the case of Motorola’s i85

iDEN handset, simple operations such as

the placement of “soft buttons” (tool tips

for function buttons on the handset), the

behavior and display of GUI compo-

nents, and basic graphics operations vary

wildly from emulator to handset. Even

the screen resolution on the emulator is

wrong (111�100 on the handset,

105�78 on the emulator). In the end,

there is no substitute for testing your

MIDlet on an actual handset.

Games on the Run:
BREW and J2ME

by ralph barbagal lo

m a y 2 0 0 2 | g a m e d e v e l o p e r8

P R O D U C T R E V I E W S
T H E S K I N N Y O N N E W T O O L S

R A L P H B A R B A G A L L O | Ralph (flarb@concentric.net) has most recently worked on
Ion Storm’s 3D RPG, ANACHRONOX. He now consults for various mobile gaming compa-
nies and has developed several titles in both BREW and J2ME with his development com-
pany, Flarb Development (www.flarb.com). Ralph is currently working on a book, Wireless

Game Development in C/C++, due in July 2002 from Wordware.

The J2ME Toolkit’s KToolbar is a simple yet powerful MIDP project manager.

So, how do you actually test your

MIDlet on a real handset? This is not part

of the J2ME Toolkit, but depends on tools

provided by the handset manufacturer. In

the case of Motorola, their Java Applica-

tion Loader (JAL) can be found on the

iDEN developers’ web site,

www.motorola.com/iden. This tool allows

you to upload .JAR files containing your

MIDlets to any of their iDEN handsets.

It’s worth mentioning that there is some

effect that Java itself has when developing

for such small hardware. Java’s language

conventions make it somewhat difficult to

keep code size small. However, using Java

also means you generally don’t have to

worry about strange memory errors and

pointer math. Also, the phone OS handles

a lot of housekeeping issues for you, such

as suspending your applet when an

incoming call is received. And MIDP

includes handy collection classes such as

vectors and hashtables.

Overall, working with the J2ME devel-

opment environment is a real pleasure.

Whether you are using the included

KToolbar application or the J2ME edi-

tions of any major Java IDE, the process

of programming and running MIDlets on

hardware is a snap. There are plenty of

issues with emulation performance and

accuracy, but given the scope of the aver-

age mobile game, they are relatively

minor. With every release, Sun continues

to improve their tools.

Graphics features. The structure of

J2ME’s graphics system is similar to that

of the Java 2 Standard Edition (J2SE). The

familiar image and graphics classes are

available, but with less functionality.

J2ME’s native file format is .PNG files,

with devices commonly supporting 1- to

8-bit color. Palettes are hard-coded in

most handsets, so colors are mapped to

the closest match. Pixel transparency,

often thought to be impossible with

MIDP, is actually an optional part of the

MIDP standard, but it’s up to the handset

manufacturer to support this option.

The usage of the image class allows for

off-screen images and, therefore, double

buffering. Many handsets have double-

buffered displays by default, requiring no

additional programming. Although it’s

possible to create an image from an array

of bytes as pixel data, it’s impossible to

do the opposite. This means pixel-level

access to bitmaps is impossible, or at least

extremely annoying. Aside from images,

the graphics class supports the drawing of

different geometric primitives such as

boxes and lines as well as text.

GUI. MIDP has done away with the

Abstract Windowing Toolkit (AWT)

package and replaced it with a package

called LCDUI. This package has a set of

GUI control classes that are suited for

the display of a mobile device.

MIDP’s GUI components are grouped

into two types: items and screens. Items

are GUI controls in the traditional sense:

components that can be added to a

screen to build an interface. For instance,

you can add a text field, a static text

string, and a bitmap image to create a

screen of several different GUI compo-

nents. Or, you can use GUI controls that

are screens themselves. For example, the

list screen is a simple menu of selectable

items. Since this takes up the entire

screen, you can’t combine the control

with bitmap images or other custom

graphics. The screen system can be rather

inflexible, and both types don’t allow

you to explicitly position controls in

pixel coordinates.

Cost. Aside from the cost of a phone,

you can begin J2ME development with-

out spending a dime. The prices vary on

the different commercial Java IDEs such

as Metrowerks’ CodeWarrior, Borland’s

JBuilder, IBM’s VisualAge, and others.

Sun’s J2ME Toolkit also integrates with

their own free Forte IDE. The real cost

comes with getting your MIDlet tested

with each carrier for distribution. These

testing runs can often cost thousands of

dollars. Considering the myriad of carri-

ers who support or have announced sup-

port for J2ME, this can get expensive.

Documentation. J2ME comes with

extensive documentation in the form of

HTML files. Sun’s J2ME Toolkit comes

with many sample programs which dis-

play features such as GUI controls, graph-

ics, and network communication. There

are also a few great books out on the

market about J2ME.

Support. There are several developer

mailing lists and web boards for most

J2ME handset manufacturers. With these

resources, you will find company repre-

sentatives and helpful developers answer-

ing questions and posting news on new

tools, hardware, and events.

Final comments. J2ME and MIDP are a

relative breeze to get started and develop

with. MIDP, while basic, gives enough

functionality to develop games. However,

the Java language makes writing compact

code somewhat of a chore.

J2ME handsets vary in performance.

Motorola’s iDEN hardware is impressive:

with a reasonable blitting speed, it’s pos-

sible to squeak out about 12 frames per

second for a simple action game. Unim-

pressive perhaps, but I have seen compet-

ing J2ME handsets with frame rates in

the single digits.

Because J2ME is an open standard,

each carrier and handset manufacturer is

free to add its own custom packages to

the default installation. However, porting

code between different flavors of J2ME is

relatively painless. Each carrier also has its

own testing guidelines and billing stan-

dards, so you need to set up a billing rela-

tionship and get your applet tested by

each carrier before being distributing on

their network.

BREW

Q ualcomm introduced Binary Run-

time Environment for Wireless

(BREW) technology in early 2001. A

C/C++ programming API for a specific

kind of hardware platform, BREW is

also a certification and distribution

XP R O D U C T R E V I E W S

m a y 2 0 0 2 | g a m e d e v e l o p e r10

The LCDUI
package has
control classes
suited to the
display of this
phone.

model for getting mobile phone applica-

tions out to your audience.

Qualcomm invented the CDMA stan-

dard, widely used in the United States

for digital mobile phone communica-

tions. Qualcomm once manufactured

CDMA handsets for various carriers,

and the internal programming API used

to develop software for these phones

lives on in the form of BREW.

BREW is more than just a program-

ming API, it also includes a distribution

system whereby Qualcomm offers your

application to all participating BREW

carriers and manages billing services to

collect subscription and purchase fees.

Once your application goes through the

compatibility-testing process with NSTL

(an independent testing lab), it’s then

priced by the developer and made avail-

able to BREW carriers, who, having

agreed on the pricing and accepted the

application, then make it available for

users to download. Qualcomm’s singular

control over the BREW standard may be

a real advantage if they can get more car-

rier support.

This article includes information on

BREW 1.0, as 1.1 was released too close

to press time to evaluate; however,

important new features are noted where

relevant, and Qualcomm is already hard

at work on BREW 2.0.

The development environment. The

BREW API can be used natively with

either C or C++. The vast majority of the

included sample programs are written in

C using a bizarre set of macros which

seem to convert C++ object references to

C macros masquerading as API function

calls. Most of these alleged functions take

an interface pointer as the first argument,

which would be the implicit pointer in a

C++ environment. The C++ examples in

the SDK still use these macros instead of

the objects themselves. However, at least

you can encapsulate your own code in an

object structure when using C++.

Getting started in BREW is a bit more

complicated than J2ME. You simply

can’t start coding immediately. After

retrieving the SDK from

www.qualcomm.com/brew, you must cre-

ate a project from scratch or edit one of

the existing example projects for a frame-

work (BREW 1.1 adds the AppWizard to

get started more quickly). Then there are

a few other files associated with a BREW

application that must be generated. The

first is the BREW ClassID (BID) file. This

is a simple C source file that contains a

definition of a unique ID value that is

included as a way to distinguish your

application from others. It’s possible to

create your own BID value by using a

number not present in any of the exam-

ple application BIDs. This will allow you

to run your application locally.

For final release and to pass Qual-

comm’s QA requirements, you need to

create a genuine BID using the BREW

developer web site. Another file you

need to create is the Module

Information File (MIF) using BREW’s

MIF tools. A MIF contains the icon that

is seen on the phone’s desktop and the

application name, copyright informa-

tion, and permissions. Once you begin

testing your application on a BREW

handset, you need to generate a test sig-

nature file for your phone using the

BREW developer’s web site.

Programming for the BREW platform

is similar to writing most event-driven

C/C++ applications. However, BREW has

a few guidelines you must follow: no

floating point calculations, no static data

or global variables, and no standard

library calls. Also, keep the paucity of

memory on the average BREW device in

mind; some common BREW handsets

have a mere 500 bytes of stack space.

Much like J2ME, BREW has an emu-

lator. When you compile a BREW project

in Visual Studio, you create a Windows

DLL. This DLL, as well as the MIF and

any associated files, is then run through

the emulator. The performance of the

emulator is also directly tied to the CPU

speed of the host PC; developers basing

their application performance on the

emulator are in for a shock when they

compile a native binary.

To compile a native ARM binary, you

must spend $1,500 on the ARM Builder

software (which includes the compiler,

linker, and assembler components of the

ARM BREW developer suite). You will

also need a $400 yearly subscription to

Verisign’s Authentic Document Service,

which allows you to generate up to 100

BID and signature files annually. Larger

subscription fees give you more files. You

must also obtain the BREW AppLoader,

which allows you to upload your com-

piled application to the handset.

Once you set up the ARM compiler, it’s

time to test on a real phone. In doing so,

you will often find your application

crashes or responds with some error mes-

sage that you didn’t get in the emulator.

Tracking down hardware bugs is a night-

mare descent into medieval debugging

techniques; there are no tools included for

debugging on actual hardware. You can’t

so much as get a simple printf from the

phone to your host PC’s console window.

I also found some handsets had various

bugs in their implementation of BREW:

the Kyocera 3035 handset, for example,

would not send resume messages after

certain events, and other handsets were

not properly interpreting arguments to

certain function calls. Because Qualcomm

is constantly revising BREW, it’s

unknown whether these bugs will still be

present in the versions of BREW carriers

decide to use.

Though the development and debug-

ging process on a handset may be the ulti-

mate in pain, the ability to use C/C++ and

Visual Studio, not to mention the free-

dom of programming without Java’s

sandbox security model, makes BREW a

very game programmer friendly environ-

ment. One major complaint I have, aside

from hardware debugging, is that Qual-

comm doesn’t currently provide support

for the free GNU GCC ARM compiler.

w w w . g d m a g . c o m 11

BREW’s
native emula-
tor: Don’t use
this to judge
performance
from your
compiled
binary.

Graphics features. BREW is a bit more

gamelike in its graphics functionality.

Much like J2ME, BREW provides mecha-

nisms for displaying shapes and vector

graphics as well as bitmap images. BREW

currently lacks some critical features such

as double buffering and low-level pixel

access to bitmap data, but Qualcomm

promises these and other improved

graphics features in future releases.

In version 1.0, only Windows BMPs

can be loaded and displayed; 1.1 adds

PNG and BREW Compressed Image

(BCI) support. BREW contains a high-

level image class that can load and dis-

play BMPs; it can also animate BMPs

that include multiple like-sized frames.

However, converting a BMP to a device-

dependent bitmap and then using

BREW’s own bitblt function to copy

native image blocks to the frame buffer is

the fastest method.

BREW supports four color systems: 1-,

2-, 4-, and 8-bit graphics. Both 4-bit and

8-bit graphics provide color, but only

through hard-coded palettes. BREW’s

hard-coded 8-bit palette is rather garish

and makes it quite a challenge for most

artists to make use of its rather mis-

matched array of colors. Also, much like

J2ME, manipulating the palette is impos-

sible. Special colors are reserved in the 4-

and 8-bit palettes for pixel transparency;

masking must be used with 1-bit.

GUI. BREW has many of the same GUI

components as J2ME. Individual controls

can be created in code and positioned in

absolute screen coordinates for the ulti-

mate in flexibility, or laid out with the

included resource editor.

BREW’s ability to position and size

GUI controls makes it easy to display

graphics and GUI components at the

same time. This feature is useful if you

want to have a title graphic over the main

menu of your game or display a simple

menu control on top of the current game-

play screen. However, J2ME’s controls

are encapsulated in easy-to-use objects,

whereas BREW requires a lot of fumbling

around with SDK calls and message han-

dlers to get your components to behave.

Cost. BREW’s basic tools are free to

standard authenticated BREW develop-

ers, with additional development costs

mentioned previously. You also have to

use Microsoft’s Visual Studio for com-

piling on Win32 for use with the emula-

tor. You can also opt to pay for higher

levels of developer access which can

gain you quicker payment cycles, access

to beta SDKs, marketing support from

Qualcomm, and various other perks.

Documentation. BREW comes with

extensive documentation of the SDK

and all related tools in a series of PDF

files. BREW also comes with quite a few

examples demonstrating most major

portions of the API. These include a few

complete games as well as examples of

GUI, graphics, networking, and sound.

Support. Qualcomm maintains a series

of mailing lists and message boards that

provide invaluable help from fellow

developers and Qualcomm representa-

tives. The mailing list is archived on

Qualcomm’s own developer web site.

Although you can pay for higher devel-

oper status that gains you better techni-

cal support, Qualcomm provides excel-

lent information through its own free e-

mail support service and official repre-

sentatives on the mailing list.

Final comments. Overall, BREW is a

more difficult and expensive platform to

develop with than J2ME. Creating a

bug-free native binary is a torturous

process hindered by a serious lack of

tools. Because BREW is currently only

used by Verizon Wireless domestically

and by a few carriers overseas, handsets

are rather uncommon. However,

Verizon Wireless is the largest wireless

phone carrier in the U.S., and BREW’s

continuing roll-out in Korea and Japan

could be huge.

The BREW API itself has a bit more

functionality with graphics and GUI

components than J2ME. BREW has

great features such as MP3 playback

and SMS messaging just waiting for car-

riers and handset manufacturers to take

advantage of them. Because BREW uses

C/C++, it’s much easier to write com-

pact code using structs and preprocessor

tricks. And, with no Java sandbox secu-

rity model, there’s more flexibility in

memory and file access.

For game developers, the current

BREW hardware is rather unimpressive.

The Kyocera 3035, the standard mono-

chrome handset, can barely manage two

full-screen 1-bit blits per second. The

Sharp BREW color handset is also rather

slow; however, Qualcomm continually

releases revisions of BREW with faster

graphics performance.

It’s Qualcomm’s distribution and

billing system, though, that may push

BREW over the top. If Qualcomm can

convince more carriers to adopt BREW

technology (to date, 17 carriers have

announced BREW support), then

Qualcomm’s centralized billing and certi-

fication process not only saves publish-

ers money in testing fees, but makes col-

lecting royalties from various carriers

much easier.

The Last Word

B ased purely on API features, BREW

has more options, and the low-level

C/C++ access to the phone’s features is a

more familiar environment to the sea-

soned game programmer. Additionally,

Qualcomm continues to update BREW

with new SDK and tool releases at a

faster pace than J2ME spec revisions.

As a development environment, J2ME

is far easier to get started with and much

simpler to implement than BREW, but

J2ME has been around far longer than

BREW. This year will be critical for

BREW — if Qualcomm can sign more

carriers, produce more powerful handsets,

and refine the toolset, it will be a major

rival to Sun’s early lead in mobile applica-

tion development platforms. q

XP R O D U C T R E V I E W S

m a y 2 0 0 2 | g a m e d e v e l o p e r12

Qualcomm
San Diego, Calif.
(858) 587-1121
www.qualcomm.com/brew

Sun Microsystems
Palo Alto, Calif.
(650) 960-1300
http://java.sun.com/j2me

J2ME

BREW

C hris Taylor has been suc-

cessfully exploiting inno-

vative technologies to

fuel solid game designs

for well over a decade.

Starting out with sports titles at

Distinctive Software (now EA Canada),

then later moving on to Cavedog and

spearheading the seminal 3D RTS TOTAL

ANNIHILATION, he founded Gas Powered

Games in 1998. With the grueling task

of starting up a new company behind

him, Taylor was busy putting the final

touches on GPG’s debut, DUNGEON

SIEGE, when Game Developer caught up

with him.

Game Developer. Your design work has
spanned a lot of different genres, from
sports to RTS, and now to fantasy RPG.
What design principles have you discov-
ered and applied that you’ve found com-
mon to all your games?

Chris Taylor. Surprisingly I manage to

reuse most of what I learn, even lessons

from the first game I ever worked on.

For example, in HARDBALL 2, all the baseball team data was

stored in data files, and the players could create their own

teams. This sort of game architecture where we data-drive the

game engine is still how we do things today, whether it’s

TOTAL ANNIHILATION or DUNGEON SIEGE. The key is to allow

the database to grow over time as new content is added, with

no preset limits.

On the gameplay side of the equation, the interface has

always been one of the fundamental design elements. With each

successive game that I work on, I endeavor to create an inter-

face that is simple and easy to use and that utilizes the latest

ideas and popular interface paradigms.

GD. Where do you seek out interface inspirations?
CT. Other than the obvious method of looking at as many

games as we possibly can and blending all the good ideas

together, we basically do R&D and brainstorm new ideas. We

test these new ideas in a special usability session where we

watch exactly how people interact with the game. It’s especially

important that they have never seen it before, or the results are

compromised. So, it’s just a lot of hard

work in the end.

GD. DUNGEON SIEGE aims to blend tradi-
tional RPG gameplay with more action-ori-
ented elements. Do you see games heading
in the direction of more or fewer distinct
genres in the future?

CT. I think we are likely to see fewer

distinct RPG genres, as even now it seems

to be breaking out into two camps. One

flavor of the genre is combat and action

oriented, whereas the other seems to be

heavily story driven with lots of very

deep dialogue trees. Having said that, the

genre can still surprise us and prove that

ultimately there is no way to know where

it’s all heading.

GD. What one piece of advice would you
give developers who want to start their
own studios?

CT. My one piece of advice would be to

find the best people, and this means peo-

ple that are not only talented but who

share the same vision. If you hire some-

one because you are in a hurry and they

turn out to be the wrong person, it could kill the whole project

and company. You have to take chances, but don’t risk it all by

rushing on critical decisions when it comes to team building.

This is easily the single biggest piece of advice I could share.

GD. How do you suss out potential candidates to determine
whether they’d be a beneficial or detrimental addition to a team?

CT. Hiring is a critical skill that anyone who builds teams

needs to have. It’s not a skill that can be learned in 10 minutes,

it comes from years of experience, and making a lot of bad hir-

ing decisions and a lot of good ones. There is no substitute for

learning this. I’d advise people to interview 10 people for every

person you hire, if possible. And checking references is critical,

no matter how much you like them. Also, have different people

interview the candidate on different days, and don’t let the inter-

viewers talk or compare notes with each other until you have

debriefed them. People should also consider putting employees

on a short contract first, then hiring them full-time if they work

out. But perhaps the most important rule is that if you have a

bad feeling in your stomach, trust it — it’s probably right. q

Fresh Games,

m a y 2 0 0 2 | g a m e d e v e l o p e r14

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | j e n n i f e r o l s e n

Taylor-Made

Gas Powered Games’ Chris Taylor.

Maybe you’re writing a

console game and you

want to fit your save-

game data into as small

a space as possible for

storage on a memory card. Or perhaps

you’re writing a networked game and

you want it to perform well over low-

bandwidth connections. Or, if you’re

making a massively multiplayer game,

maybe you want to save your company

$100,000 per month in server bandwidth

costs. This month I’m going to start a

series of articles about packing informa-

tion from a 3D game into small spaces.

In his recent article “Distributing

Object State for Networked Games Using

Object Views” (Game Developer, March

2002), Rick Lambright provided a high-

level overview of game networking. Now

I’ll look at techniques that fill in the low-

level side of that picture, discussing what

you actually want to send over the wire.

I’ll start this month by talking about

integers. Later, I’ll discuss real numbers,

3D vectors, constrained 3D vectors (like

unit vectors), and rotations. Represent-

ing rotations in a size-efficient way is an

interesting problem that turns out to be

pretty deep.

Compression

I n future articles I’ll be looking at

probability-modeling compression

schemes such as Huffman and arith-

metic coding, but I’ll start with simpler

methods. General-purpose compressors

have surprisingly limited use when we

try to apply them to games. For exam-

ple, the best Huffman coders use adap-

tive encoding techniques, which means

the full history of data to be transmitted

is used to generate statistics that help

make the data small. To uncompress

this data, you need to receive the entire

stream in order, so that you can retrace

the compressor’s steps. But if you’re

writing a networked game, you want to

use an unreliable delivery protocol like

UDP so that gameplay doesn’t stall due

to line noise or other packet loss. In

other words, you need to process

incoming network messages with mini-

mal dependencies between them. But

adaptive encoding creates a dependency

for each message upon each previous

message, which requires reliable,

sequential delivery by a system such as

TCP, and thus causes poor game per-

formance.

Compressors are not guaranteed to

make your data smaller; in fact, they

may make it bigger. When you look at

the results over all possible input values,

compressors don’t compress at all; their

output on average is as large, or larger,

than their input. So if you absolutely

must save your game state into a 64K

block on a memory card, regardless of

the positions of entities in the world, a

compressor is not going to help you.

A Task

S uppose we’re a game developer, and

we’re going to make another

QUAKE-style first-person shooter. We

only have five kinds of entities in our

universe, for which we have declared

some enumerated constants:

PLAYER = 0

ROCKET = 1

AMMO_PACK = 2

HEALTH_PACK = 3

CRATE = 4

We want to save the types of a bunch of

these entities into a file.

We could be extravagant and write a

full CPU-register-sized value into the file

for each entity type. These days, a CPU

register is a 32-bit integer, so we are wast-

ing a whole lot of space. Values from 0 to

4 will all fit into a byte, so we can write

one byte per entity. But that still wastes a

fair amount of space, as you can see from

Table 1: we’re leaving five bits per value

completely unused.

Packing Bits

W e can reduce our storage size by

using only three bits per entity.

For example, you can create some helper

code that takes as arguments a value and

how many bits that value occupies; then

I N N E R P R O D U C T j o n a t h a n b l o w

m a y 2 0 0 2 | g a m e d e v e l o p e r16

Packing

J O N A T H A N B L O W I Jonathan (jon@bolt-action.com) still does-
n’t understand the monkey jump.

Integers

it packs that value into a string of bytes.

We pack in a three-bit number for each

entity in the world, and when we’re done,

we ask it how many bytes of data it has

collected (rounding up to the next byte

boundary). Then we write those bytes out

to disk.

Listing 1 shows some code that writes

the input number into the destination

buffer, one bit at a time. I wrote this list-

ing for clarity and simplicity, not speed.

A faster version, which operates on

groups of bits simultaneously, is avail-

able in this month’s source code on the

Game Developer web site at

www.gdmag.com. I’ve omitted some

implementation concerns for brevity, like

range-checking our position in the out-

put buffer.

To successfully decode this buffer and

read the values back in, you need to

know how many values are stored in the

buffer and how big they are, because we

didn’t store that information. Usually, in

a real game situation, we have some set

number of fields for an entity for which

we know the sizes of the data (its type,

position, orientation, and so on). In cases

where not everything is predetermined,

we will pack some additional data at the

beginning of the buffer that tells us what

we need to decode correctly.

To read back the values, we want a

routine that grabs bits out of a buffer. I

won’t show the listing here, because the

idea is very similar to our Bit_Packer;

it’s included in this month’s sample code,

along with some tests that pack and

unpack sequences of data.

At this point, just by using the

Bit_Packer, you have a 90 percent solu-

tion for storing integers, in terms of fit-

ting them within a guaranteed small

space. Many people stop here. But if we

really care about making things small,

we can do better.

Packing Values with
Sub-Bit Precision

Looking back at Table 1, it ought to be

obvious that we don’t even need three

whole bits to store an entity type. We only

use the third bit once; if we had one less

type of item, we could fit the values into

two bits each (though that would mean

making a shooter without crates, which

would be absurd). As a corollary, while

using three bits, we could have up to eight

different item types. But since our imagi-

nation limits us to five types, for now we

are just wasting almost a bit per type that

we pack.

The Bit_Packer is a very programmer-

oriented solution to the value-packing

problem. In the past, we as game develop-

ers have had to do a lot of low-level stuff

to make our games perform well. We’ve

taught ourselves to think about numbers

in terms of bits and bytes, and value pack-

ing looks like a problem that is well

served by that kind of thought. But in

fact, restricting ourselves to bit boundaries

is problematic — it’s causing us to waste

that extra space.

We can get that space back if we stop

thinking about bits and instead consider

what is necessary to encode and decode

an integer value. Suppose we want to

pack two entity types together. Picture a

5�5 grid of squares, where the x-coordi-

nate of each square in the grid indicates

the type of the first entity, and the y-coor-

dinate indicates the type of the second

entity. Every combination of entity types

maps to some square in this grid; since

there are 25 (5�5) different squares, we

can store both entity types in five bits

I N N E R P R O D U C T

m a y 2 0 0 2 | g a m e d e v e l o p e r18

LISTING 1. The Bit_Packer code that packs integers, their sizes indicated by number of
bits, into an array of bytes.

typedef unsigned long u32;

typedef unsigned char byte;

struct Bit_Packer {

int next_bit_to_write; // Initialized to 0

byte buffer[BUFFER_SIZE]; // All initialized to 0

...

};

void Bit_Packer::pack(int num_bits_to_write, u32 value) {

while (num_bits_to_write > 0) {

u32 byte_index = (next_bit_to_write / 8);

u32 bit_index = (next_bit_to_write % 8);

u32 src_mask = (1 << (num_bits_to_write - 1));

byte dest_mask = (1 << (7 - bit_index));

if (value & src_mask) buffer[byte_index] |= dest_mask;

next_bit_to_write++;

num_bits_to_write—;

}

}

Entity TypeValue (Base 10) Encoding (8 Bits)
PLAYER 0 00000000
ROCKET 1 00000001
AMMO_PACK 2 00000010
HEALTH_PACK 3 00000011
CRATE 4 00000100

TABLE 1. The numeric representations of the different elements in our game.

with room to spare. Before, at three bits

per entity type, we would have required

six bits.

Any programmer who’s ever

addressed a screen of pixels knows how

to generate a single integer index for

this grid: it’s y*5 + x, where x and y
range from 0 to 4. To decode this inte-

ger, which we’ll call n, we just reverse

this process: x = n%5; y = n/5.

This process scales to any number of

dimensions and for any range of integer

values in each dimension (as a quick

exercise, visualize the three-dimensional

case). Listing 2 shows code that packs an

arbitrary number of values into a 32-bit

integer. In my own code, I use the

Multiplication_Packer to cram as many

values together as I can without exceed-

ing the packer’s 32-bit limit; then I pass

the results to the Bit_Packer, which packs

it into a long buffer of bytes. This still

induces a little bit of waste, but I figure

that if I can reduce my memory wastage

to a fraction of a bit in every 30, then

I’m doing just fine. Extra sweating does-

n’t seem too worthwhile to me at that

point. But if you feel that you must

absolutely eliminate all possible memory

waste, you can write a version of the

Multiplication_Packer that automatically

stores its results into a byte array when it

gets full enough.

The Multiplication_Packer is, at its

heart, an arithmetic coder without statisti-

cal modeling. So understanding this small

set of functions may be a good introduc-

tion to more sophisticated compression.

By way of quick comparison, packing

together 10 of our entity types using the

Bit_Packer would have required 30 bits;

using the Multiplication_Packer, we need

only 24 bits, a savings of 20 percent.

(People who use a byte per value will

require a whopping 80 bits.)

Something to Notice

I t’s important to see that the Byte_Pack-

er and the Multiplication_Packer are

essentially doing the same thing to stick

values together. The Byte_Packer uses

shifting and a bitwise OR; these are special

cases of multiplication and addition for

when the range of input values is a power

of two. The Multiplication_Packer is sim-

pler, more general, and in some sense

more pure. But, as game programmers, we

tend to think of numbers in a computer as

being stored in binary, so we tend to think

of the Bit_Packer first. It’s important not

to be trapped in the binary-number mode

of thought. Sure, the CPU gives us opera-

tions that twiddle individual bits very

quickly, and we know that internally,

that’s how it likes to store things. But so

what? That thing held in the CPU register

is a number, not a string of bits.

Byte Order

P rogrammers are used to confronting

byte-order (or endianness) issues

when considering different platforms. But

this month’s sample code has no such

issue; it will work correctly regardless of

the endianness of the underlying CPU.

This is because we are using mathemati-

cal operations to carve chunks off of

numbers and store them as units no larg-

er than a byte each. That array of bytes

can be written by an Athlon and read

back by a Sparcstation.

I have in the past seen bit-packing

implementations that did not work this

nicely. They would treat an input value

(32 bits maximum) as a string of bits in

memory and copy that string of bits into

the destination buffer. But because the

format of bits in memory is not invariant,

they have extra work to do when the time

comes to port the code (and that extra

work can get pretty messy).

Clarification and
Erratum

I n my March column (“Hacking

Quaternions”), I discussed a method

of compensating for the angular distor-

tion induced by linearly interpolating

quaternions. I chose to think of this as a

multiplication-oriented task, deriving

some f(t) that, when multiplied by the

distorted t, eliminates the distortion.

Strictly speaking, what the problem

demands is a g(f(t)) approach, not an

f(t)t approach. But we could get away

with thinking of this as a multiplication

problem because we were using splines

that had no constant coefficients, so we

could factor out t.
This can lead to some confusion in

implementation. Listing 1 of the article

looks like it returns a t� that you can use

for interpolation, but it actually returns

t�/t. Also, Listing 2 is incorrect due to an

unintentional deletion. Correct code for

that article can be found at

www.gdmag.com. q

w w w . g d m a g . c o m 19

LISTING 2. The Multiplication_Packer code that packs integers, their sizes indicated by
maximum value, into a larger integer.

struct Multiplication_Packer {

u32 accumulator; // Initialized to 0

void pack(u32 limit, u32 value);

u32 unpack(u32 limit);

};

void Multiplication_Packer::pack(u32 limit, u32 value) {

accumulator = (limit * accumulator) + value;

}

u32 Multiplication_Packer::unpack(u32 limit) {

u32 quotient = accumulator / limit;

u32 remainder = accumulator % limit;

accumulator = quotient;

return remainder;

}

A R T I S T ’ S V I E Wh a y d e n d u v a l l

A s far as great visuals go,

texturing is often half the

battle. It’s all very well

modeling a superbly

detailed Celtic warrior

complete with authentically tasselled

sporran and impressively bulky facial hair,

but if the texturing is weak, he’ll lose

some of his menace. Faultless animation is

all well and good, but if your character’s

textures make him look like he’s made out

of plastic that has been slightly melted, the

overall effect will be compromised.

As it stands, even the most overenthu-

siastic claims from our leading hardware

manufacturers as to the number of trian-

gles per frame their system can juggle

still mean that it’s impossible (and cer-

tainly impractical) to create all detail in

geometry. Textures are still the paint that

gives life to the surfaces of our meticu-

lously crafted gaming worlds.

Still, there is often something of a stig-

ma attached to the role of texture creator

in the art pipeline. It’s almost as if the

shift into three dimensions the game

industry experienced several years ago put

a premium on the ability of artists to

model, relegating the pathetically two-

dimensional task of texture creation to the

lowliest of art monkeys. How could the

arcane skill of making a texture possibly

compare to the taxing, multidimensional

conundrum that is creating a model?

It has often been my experience that the

enormous power of the top 3D packages

can allow a competent technician, well

versed in the process of building geometry,

to create objects and environments with a

minimum of problems (characters are a

different story). Producing truly effective

textures, however, often requires the eye

of a genuine artist.

While very few games use hand-paint-

ed textures, and most textures originate

from a photographic source of one form

or another, the journey from photo to

game is not simply one of cut and paste.

Like any discipline that claims to be art,

there is no single formula that will pro-

duce the desired results every time without

fail. Different projects have different

requirements, and engines running on dif-

ferent systems have their own advantages

and limitations, but there are some basic

ideas that are fairly fundamental when

creating textures. The best place to start is

the beginning, and in the case of textures,

this means looking at the source material.

Traditional
Photography

E xplaining how to take a good photo-

graph is beyond the scope of this

column as well as outside my area of

expertise. There are, however, a variety

of factors that you need to consider

when taking photos specifically intended

for texture creation.

Lighting. Living in England (home of a

perpetually gray sky) has finally paid off.

It’s true that there are downsides to being

in a country where children stand in the

street, point at the sky, and ask,

“Mummy, what’s that big light?” if the

sun happens to appear briefly from behind

the clouds, but when it comes to texture

sourcing, it’s a blessing in disguise. Wher-

ever there’s strong sunlight, there are

harsh shadows, and this contrast usually

makes for a poor source photo.

Even without considering bump map-

ping, textures need to be relatively low

on obvious light-source information.

Severe highlights or hard shadows will

make the texture less likely to fit within

a game, unless you match the local light-

ing to that which is in the texture. With

multiple light sources, or any kind of

dynamic lighting, this is very difficult.

Figures 1 and 2 show examples of good

and bad lighting, respectively.

Gentle, diffuse lighting works much

better. This kind of light will generally still

have a direction (if nothing else, it will be

Textures:

w w w . g d m a g . c o m 21

H A Y D E N D U V A L L I Hayden started work in 1987, creating
airbrushed artwork for the games industry. Over the next eight years,
Hayden continued as a freelance artist and lectured in psychology at
Perth College in Scotland. Hayden now lives in Bristol, England, with
his wife, Leah, and their four children, where he is lead artist at
Confounding Factor.

From Source
to Screen

FIGURE 1 (left). Good lighting. FIGURE 2 (right). Bad lighting.

coming from above), but this directional

information will be subtle enough so as

not to interfere with your lighting scheme.

On the other hand, climate control isn’t

generally something that any of us can lay

claim to.

Focus. It is useful to be aware of the

elements within a photo that will be in

sharp focus. If a surface is rounded, or if

you are photographing extreme detail

where the surface has a lot of variation in

it, only some of the photo will be in

sharp focus. This can restrict the areas

that are useful for texture creation.

Depth-of-field adjustments can increase

the range of features that will be in focus,

but choosing the right positioning for the

shot ensures that the part of the photo

you are most interested in will be evenly

focused. You can compensate for uneven

focus to a small extent, but it’s always

better to do as much of the work at the

source as possible.

Color. Taking photos at either sunrise or

sunset might well produce dramatic

images with fantastic skies, but these are

times to avoid when you are collecting

source material for textures. Due to the

low angle of the sun, the shadows are

likely to be long, and with ambient light

levels low, everything will also be less well

lit. The reds and oranges from the light at

these times of day can also interfere with

the quality of the image.

Color manipulation is possible at a later

stage, but color information can be per-

manently compromised if the overall light-

ing has a strong enough hue. The same is

true of most artificial light, which is gen-

erally biased toward the yellow end of the

spectrum. Figures 3 and 4 show examples

of good and bad color, respectively.

Film speed. Use the fastest film possible

that will perform adequately when you

take conditions into account. A higher-

speed film has a finer grain and will hold

up better to high-resolution scans.

Flash. Using a regular flash, as

opposed to a more complex, umbrella-

diffuser kind of rig (which won’t exactly

fit into your jacket pocket) can result in

a washed-out photo. Even if this is not

the case, a flash produces irregular

shadows, as the main light source is

from a well-defined point. A flash is

also prone to distributing brightness in

a radial pattern, darkening towards the

edges. Figure 5 shows an example of

what can happen to an image if you use

a flash.

Perspective. Just about any surface

has noticeable features that define how

it looks. Whether it’s wood, rock, or

elephant hide, these features appear

larger when they are close to the cam-

era, producing perspective scaling as the

surface recedes.

When you try to create a texture to

mimic this surface, you need to keep in

mind that the game world is in three

dimensions, and the surface itself recedes,

just as in real life. Creating such perspec-

tive is most challenging when photo-

graphing surfaces that have some kind of

repetitive parallel feature, such as bricks

or a metal grid. Figures 6 and 7 show

good and bad perspective, respectively.

Thus, eliminating as much perspective

as possible from within a photo will

make it much more friendly when it

comes to using it to produce textures.

The best way to do this is to attempt to

have the surface being photographed as

square as possible to the camera. This is

not always possible, and if the texture is

on the ground, chances are your feet will

get in the way.

Digital Photography

T here is little doubt that the advent of

digital photography, which has taken

out the slow and expensive chemical

processes and removed the need to scan,

has helped make the accumulation of

photographic source material for textures

much quicker and easier. In addition, the

fact that most digital cameras allow you

to preview your images (albeit on a fairly

small screen), gives you a limited amount

of filtering at this early stage.

Aside from film speed, the same con-

siderations apply for digital as for tradi-

tional photography, although only the

most expensive digital cameras let you

choose which type of lens to use, so you

won’t likely be able to make depth-of-

field adjustments.

Digital photography does, however,

have a few considerations:

Size. Most digital cameras allow a

choice of image sizes, and (like most

electronic devices) performance seems to

increase at an almost daily rate. The

maximum size of an image (in pixels)

varies from camera to camera, but

selecting the largest size available is usu-

ally the best idea, as this allows small

A R T I S T ’ S V I E W

m a y 2 0 0 2 | g a m e d e v e l o p e r22

FIGURE 3 (left). Good color. FIGURE 4 (right). Bad color.

FIGURE 5. A radial pattern of brightness char-
acteristic of flash photography.

areas of an image to be used while

maintaining an acceptably high resolu-

tion. All these pixels use up a lot of

space in the camera’s memory, which

brings up the next point.

Compression. Again, this depends on

the specific camera, but several compres-

sion options exist on most models. It’s

important not to compromise the clean-

liness of each image with artifacts associ-

ated with high compression levels. At the

same time, try to maximize the number

of images that you can store. Buying a

massive amount of memory can help, as

does deleting unwanted images rather

than letting them build up. It’s also use-

ful to carry a laptop around with you,

downloading as you go.

Scanned Images

B efore digital photography was an

affordable option, the scanner was

a texture artist’s best friend, and it still

forms an important part of the texture

sourcing process.

Scanning actual photos is usually the

best option, as the quality of the printed

surface is quite high, and you can set a

scan to an enormous resolution. Often,

due to lighting, color, or feature changes

across a source image, only part of an

image will be useful for generating a tex-

ture. When working with a large scanned

image, the artist can pick out small ele-

ments from within the image and still

retain a good level of crisp detail.

A very large scan produces a very

large file size, but with today’s enor-

mous hard-drives, storage capacity is

hardly an issue. It is, however, worth

considering the speed at which the

image can be manipulated when it’s

extremely large. If you want to scan a

photo and use the whole image instead

of just a small part, you can reduce the

resolution of the scan to a sensible size

to make it faster to use.

Printed source material is good

because of the vast range of books and

magazines that are available. Scanning

from a book or magazine, however, is

limited by the quality of the print.

Magazines are the worst, as their print

process is all about being cheap and

cheerful. Often, more expensive books

have better-quality images, but this isn’t

always the case.

This reduction in the quality of the

images means that the size of the scan is

limited, as enlarging a particular area too

much exposes the print process and

makes it unusable.

Image Libraries

T here are many companies that pro-

vide images from within their own

vast collections to anyone who wishes

to use them. These kinds of images

often end up in corporate presentations,

or on the back of some idiotic junk

mail, but they are generally of very high

quality and cover just about any subject

you care to mention.

There is a cost involved (some are

subscription based, some are priced per

image), which quite often rules these

services out. Nevertheless, they are

worth considering as an option.

Procedural Textures

P rocedural textures, usually generat-

ed through a process of parameter

adjustment and combination, are better

at simulating some surfaces than others.

There are ranges of packages that can

generate them. Often, you can use proce-

dural textures in conjunction with photo-

graphic images to produce interesting

results, but unless their mathematically

generated nature fits the style of your

game, they may not be that useful on

their own.

Rendering Textures

I n some cases, you can render textures

using a model that has already been

textured. This double-texturing method

allows you to convert details from what

may be a high-polygon model from

geometry to texture. More importantly,

it can allow you to use complex lighting

solutions by having their results render

to texture.

Even though the latest hardware and

newest engines allow for an impressive

range of lighting effects, processes such as

the currently popular global illumination

are still rooted firmly in the world of

high-end graphics. Using software that

allows light information to be “baked”

into textures is one way to bring visual

complexity to a game.

A Solid Foundation

Choosing source material carefully and

generating usable images on which to

base your textures are vitally important.

In most cases, the finished texture will

only be as good as the image from which

it was generated. The amount of photos

you take that turn out to be useless will

diminish as you automatically choose the

kind of surface that will work. And when

you find that you can’t walk down the

street without making a mental note to

return later to get a couple of good shots

of the crumbling brick wall you’ve just

passed, you know that you’ve got the tex-

ture bug. It could be time to take a vaca-

tion (just don’t forget your camera). q

A R T I S T ’ S V I E W

m a y 2 0 0 2 | g a m e d e v e l o p e r24

FIGURE 6 (left). Good perspective. FIGURE 7 (right). Bad perspective.

m a y 2 0 0 2 | g a m e d e v e l o p e r26

This month I introduce a rule from
Mark Barrett, a freelance designer and
storyteller who has led a roundtable at
the GDC the past three years called
“Creating Emotional Involvement in
Interactive Entertainment.” He can be
reached at mark@prairiearts.com.

The Rule:
Protect the player’s suspension of disbelief.

In any game that uses or relies on

narrative content, players should

be encouraged to suspend their dis-

belief and become imaginatively

involved the experience. Once so

engaged, players should be protected from

other elements which might shatter this

imaginative experience.

The Rule’s domain. This rule applies to

any game involving narrative content,

including elements that only provide an

imaginative context for play. This means

any game that includes characters, loca-

tions (real or imagined), story elements,

plot, and so on. Only purely rational

games along the lines of tic-tac-toe or

chess are excluded, provided they are

depicted in minimalist form. (BATTLE

CHESS, for example, would still be subject

to this rule.)

Rules that it trumps. This rule is a con-

stant in game design. It does not trump

other rules, but exists alongside them.

Rules that it is trumped by. This rule is

a constant in game design. It is not sub-

ordinate to other rules, but exists along-

side them.

Examples from games. Mark did not

supply examples, so I’ll step in here. I’m

indebted to Mark for setting me straight

years ago on the concept of suspension of

disbelief. I had been familiar with the con-

cept from science fiction and fantasy writ-

ing, and thought it primarily applied to

keeping your fantasy elements from being

so jarring or unbelievable that it reminded

readers that they are reading a fantasy.

But Mark pointed out to me that it’s a

more fundamental principle: suspension of

disbelief is necessary to let readers forget

that they are reading or hearing a story

instead of living it firsthand.

With all of our industry’s focus on

technology and high-tech applications like

virtual reality, it’s easy to forget that our

species’ first VR was invented tens of

thousands — perhaps even millions — of

years ago. It’s storytelling, or narrative.

We learn to listen to stories from early

childhood, and the good ones suspend our

disbelief, letting us enter into the world of

the story and identify with the characters

so deeply that we jump when they are

attacked, smile when they are delighted,

and cry when they are hurt. We must sus-

pend our natural disbelief that “this isn’t

happening to me” or, even more funda-

mentally, that “this isn’t real.” As media

such as epic poetry or theater, then tech-

nologies like writing, film, and computers,

created new ways to deliver narrative, sto-

rytellers have learned ways to use each

new medium to tell stories effectively

while suspending disbelief.

In games there are many examples of

how to maintain suspension of disbelief,

and sadly, many grating ones of how to

shatter it. One of the more egregious

examples of failure in applying this rule

comes from the mechanism, once preva-

lent in some adventure games, of killing

off players when they made even a small

misstep, then intruding with a blatant

reminder that they were only playing a

game — would you like to reload a

saved version? I heard of one young boy

who refused to play such a game, claim-

ing, “I’m afraid of the evil witch who

shows up every time you die,” referring

to an awkward intrusion of the designer,

picture and all, into the game world.

Although the basic mechanism of multi-

ple lives and starting over again is

deeply ingrained in many games, it has

evolved into a much more elegant fade-

out/fade-in, as in any of Shigeru

Miyamoto’s recent games, or retreated

further into the background, with the

use of waypoints or the touching of spe-

cial in-game icons to keep a player from

ever having to reload a saved game at

all. Many RPGs now let you recover

your “body” in the game and retrieve

most or all of your belongings, letting

you stay within the (admittedly magical)

game world.

To conclude this column, I’d like to

clarify a misconception to which a reader

alerted me. These rules of game design are

not meant to analyze games and derive a

rigid system of rules that you can use to

churn out new titles. Rather, if applied

with an appreciation of the informality,

creativity, and flexibility inherent in the

game industry, they’re intended as tools

that a talented designer can use creatively

to break free of a rut, or to improve or

expand a design. q

The 400 Project Continued:
Suspending Disbelief

n o a h f a l s t e i n

N O A H F A L S T E I N | Noah is a 22-year veteran of the game
industry. You can find a list of his credits and other information at
www.theinspiracy.com. If you’re an experienced game designer
interested in contributing to The 400 Project, please e-mail Noah
at noah@theinspiracy.com (include your game design background)
for more information about how to submit rules.

B E T T E R B Y D E S I G N

If you’ve never experienced hassles

managing a massive voice file set,

don’t read any further. If, however,

you’ve experienced frustrating,

time-consuming, and costly bumps

along the way, then read on.

Voice development happens in three

phases: preproduction, production, and

postproduction. Although the proverbial

rubber hits the road when actors are

directed and recorded in the production

phase, the first and last phases are para-

mount, as so much of the process hinges

on designing a good plan in preproduc-

tion and sticking to it in postproduction.

Apart from a good version-control

plan, an essential part of preproduction

planning is a good file-naming conven-

tion. Every file should be named uniquely

to express the character and location, and

also contain a numerical ID. Also, leave a

free space for the appendage of an identi-

fying character that may be necessary in

post. A snippet of the verbal content may

also be included. For example, if Theseus

has lines in the Labyrinth, a good naming

convention would be something like

“TH_LAB_001.WAV,” or optionally

“TH_LAB_Heyyou_001.WAV.”

Being able to isolate a file subset easi-

ly is critical — especially to the audio

developer who must process all the files.

Different character subsets often have

problems unique to their original

recordings, and all they need is a single

batch process such as EQ or compres-

sion. If the sound designer can’t get a

handle on a file subset because of a

poor file-naming convention, it’s a

major drain on quality, efficiency, and

morale. If all of Theseus’s lines are bass-

heavy, the audio pro can isolate all

Theseus’s lines by doing a find for

“TH*.WAV” and performing a batch

EQ. Similarly, to apply special process-

ing such as reverb to every line in the

Labyrinth, one can isolate

“??_LAB*.WAV” and run a batch.

A good database is another key part of

the plan. If you’re dealing with a couple

hundred lines, it’s optional; when you’re

talking about thousands, it’s necessary. A

good database tracks file name, charac-

ter, location, level/mission, verbal con-

tent, development status, localization

information, and processing notes, and

has various check boxes or radio buttons

for easy finds. A database is only as use-

ful as it’s adhered to, though. When

you’re dealing with localization issues,

for example, a strictly accurate correla-

tion with the file set is a must.

A word on hard-processing voice files

with special effects: In short, go ahead

and process the actual audio files for

character enhancements, such as pitch-

shifting the evil overlord character, but do

everything possible to accomplish envi-

ronmental processing such as reverb in

real time. This is not only more efficient,

but it also avoids the hassle of isolating

the precisely correct file subset that needs

the process. Inevitably, lines are missed,

accidentally included, or have to be dupli-

cated because they occur in multiple loca-

tions with different sonic properties.

Generally, the two greatest pitfalls

occur when non-audio personnel either

change file names autonomously or edit

verbal content themselves. Both of these

practices invariably cause problems, even

nightmares for those responsible for the

database and master file set as well as

those handling localization. Never

change file names unless absolutely nec-

essary, and in those rare cases, consult

the appropriate staff. Rather than edit

audio files by yourself, request it through

the audio pros. A good audio provider

will turn around a better edit quickly and

maintain all supportive information

accordingly.

Khris Brown of KBA Voice Produc-

tion, a voice production studio for inter-

active media, believes that one of the

best ways to ensure a successful collabo-

ration with the development team is

good preplanning. “Preproduction and

guideline planning remove contention

from the picture,” says Khris. “Your

energy can then be spent perfecting the

creative vision as opposed to chasing

down technical inconsistencies.”

A clear set of rules and procedures

doesn’t mean that flexibility or creativity

should be restricted. Needing ongoing

changes or citing new needs such as pick-

ups is indicative of a designer who cares

about his or her project, and a good audio

developer will be happy to support those

needs. “Characters, puzzles, and dialogue

are continually refined throughout the

production period,” says Khris. “I always

build pickups into a budget to ensure

designers have the freedom to make

adjustments without expensive surprises.”

Managing thousands of voice files is a

difficult task to begin with, but the last

thing it needs is to be further complicated

by folks departing from a solid prepro-

duction plan, or worse yet, not even hav-

ing a decent plan in place at all. When

the process works well, everyone can stay

more focused on the fun and creative

aspects of the project and, as a result,

ship a better game. q

Voice Development:

S O U N D P R I N C I P L E S c l i n t b a j a k i a n

m a y 2 0 0 2 | g a m e d e v e l o p e r28

CLINT BAJAKIAN | Clint is a composer and sound designer with 11
years of game industry experience. A sound design supervisor at
LucasArts for nine years, he now co-manages The Sound Department
(www.thesounddepartment.com), providing original music, sound
design, and voiceover production services. He is vice-president of the
Game Audio Network Guild (GANG), on the steering committee of
the IA-SIG, and a member of NARAS, IGDA, and BBQ.

Becoming Lord of the Files

A nimation blending is one of the latest buzzwords

to join the bullet-pointed ranks of real-time

engine feature lists everywhere. But even as pro-

grammers are busy implementing the technology,

many artists and producers are still wondering

what benefits and opportunities it offers. For those of you who

don’t have to worry about the implementation side, this article

will focus first on explaining what animation blending can and

can’t do, and then explain how art staffs and game designers

can make best use of it.

Current games excel at animation playback, but no matter

how smoothly the animations unfold, the unerring repetition of

every cycle and action soon renders even the most satisfying

animations stale and lifeless. Picture a typical game crowd

scene. The animations may be quite convincing at first glance,

but upon closer examination we find that every pedestrian

walks down the street with an unvarying stride, eyes fixed

straight ahead, oblivious to the outside world. After a few min-

utes of watching we’ll have identified and memorized every one

of the cycles being played. However well animated the charac-

ters may be, monotony — compounded by our remarkable sen-

sitivity to repeating patterns — soon drains the life out of them

and leaves us a street full of walking zombies.

Imagine, though, how much more satisfying this street scene

would be if some of the folks on the street were admiring the

scenery as they walked; others might stuff their hands in their

pockets, nod to passersby, or look at their watches. More sub-

tly, but most importantly, each person’s walk cycle could be

unique, differing subtly from every other’s in ways that suggest

different personalities and different moods.

Such a scene would be far more immersive than our avenue

of the living dead, and it could also tell us far more about the

ongoing state of the game and its inhabitants. Until recently,

though, this kind of variety could only be produced with a pro-

hibitive investment in individual animations and detailed plan-

ning to make sure that sequences dovetailed with each other.

Animation blending can bring our zombified pedestrians

back to life with a much more reasonable outlay of time and

effort. The key advance blending offers is that many animations

are played concurrently, with variable influence on the final

behavior of the character. In essence, blending also allows the

game to create new animations on the fly as circumstances

change. Animations can be modified; for example, a walk

might become a “tired” walk. They can be combined, so a walk

can become a “walk and check watch.” And they can be

sequenced with greater flexibility and fewer snaps and pops.

Blending widens a character’s repertoire of behaviors, but

more importantly, it helps preserve the essence of animation —

the illusion, spontaneity, and variety of life. And, fortunately

for developers, they can derive this breadth of new content

from a manageable library of basic sequences, instead of mak-

ing a vast investment in custom art assets.

Blending Basics

S o what is animation blending? In the simplest terms, ani-

mation blending is still just animation.

Any animator knows that animations consist of keyframes —

significant points in time and space — and “tweens,” the

stretches between keyframes where the computer supplies inter-

polated positions. Animation blending works exactly the same

way, except that where an ordinary animation tweens between

sequential keyframes, a blended animation interpolates between

whole animations.

A visual analogy makes this relationship easier to understand.

Imagine an old-fashioned cel animation laid out frame by frame

like a filmstrip. Each successive cel in the strip is a “tween” —

an “in-between,” or an interpolation — between the first and

last key. A blended animation would look like a grid formed by

two parallel strips of cels forming two sides of a square. Each

cel in the grid is an interpolation between the corresponding cels

in two original films. Moving forward in time would be travers-

ing along the line of original strips, and blending from one ani-

mation to the other would be moving sideways across the grid

of tweened cels (Figure 1). A simple transition would move diag-

onally (forward in time and across the grid from one animation

to another), while subtle layering effect could be achieved by

traveling ahead in time at some slightly varying point in the

space between the source animations (Figure 2).

An animation succeeds or fails on the strength of its poses,

that is to say, its keyframes. Indeed, early animators dubbed

A N I M A T I O N B L E N D I N G s t e v e t h e o d o r e

S T E V E T H E O D O R E | Steve is an animator and character
designer at Valve Software, where he works on online titles such as
COUNTER-STRIKE and the upcoming TEAM FORTRESS 2. He can be
reached at stevet@valvesoftware.com.

m a y 2 0 0 2 | g a m e d e v e l o p e r30

Understanding
Animation Blending

w w w . g d m a g . c o m 31

them “key” frames because they were the critical

poses. Keyframes were drawn by the senior ani-

mators, whereas tweens were added later by

interns and journeymen who needed only to

interpolate between the important poses.

Animation blending treats entire animations as

keyframes and produces new sequences of tweens.

Thus, an important rule to keep in mind is that, like the

tweens in an ordinary animation, blended animations contain

no new information that was not present in their sources.

Certain types of blends, therefore, aren’t likely to work out

well: blending between a standing animation and a swimming

animation isn’t going to spontaneously produce a diving anima-

tion, since neither animation contains a diving pose. We’ll

return to the importance of this rule again, because it drives

several important aspects of the blended animation process.

Some Ground Rules

T he best way to understand the practical applications of

blending, as well as a few of the pitfalls which await the

uninitiated, is to look at some simple examples.

Let’s begin with the simplest animation imaginable: a ball

bouncing up and down in place. We’ll add a second sequence

with the ball just resting on the ground. What happens when

we blend between them? As we increase the influence of the

still sequence, the ball bounces less and less (Figure 3). The

interesting lesson here is what happens to the timing of the ani-

mation: In this case, nothing. The ball bounces lower but the

timing of the bounces doesn’t change. In other words, blending

affects the amplitude of an animation but not its frequency,

which is another important rule to keep in mind.

This rule means that blending between animations with mis-

matched frequencies can be dicey. If, for example, you blend

between a ball bouncing three times per second and a ball

bouncing four times per second, the frequency of the bounces

does not increase smoothly; instead you see little hiccups as the

two patterns overlay each other.

There are in fact many occasions where you may want to

break up the underlying frequencies of the source clips, particu-

larly in idles or other cycles that need a little “noise” to add

variety. Nevertheless, understanding the interaction between tim-

ings is the first key to making effective use of blends. Put simply,

you can’t blend smoothly

between animations with

mismatched cycles. It’s possible to build a system that would do

this by time-warping the source animations to make them cycle,

but few engines currently on the market offer this option.

Verbs and Adverbs

A nyone who has experienced game animation is familiar

with idle animations and knows how few repetitions it

requires to turn an exquisite little character study into a mean-

ingless cipher. Instead of creating longer idles, or randomly

choosing from a list of different animations, we can use blending

to create a less repetitious and more flexible set of behaviors.

For a simple example, consider two simple animations: one

in which the character has his weight on the left leg and is look-

ing off in to the middle distance, and another in which he has

his weight on his right foot and is looking down. Blending

between them will cause the character to appear to shift both his

weight and his attention. Simply blending across from one ani-

mation to the other effectively creates a third animation, in the

form of the weight shift. This is already an advance; but more

importantly, we can create ongoing, subtle variations in the

stance by blending only fractionally. We can randomly blend in

order to add variety to the cycle, or we can use the blend to

communicate information about the character’s mood or status.

It’s important to note that we’re not restricted to just two

blends. We can create a huge range of variations for very little

extra effort in authoring by blending between only a few

sources. When working with sets of animations like this it’s

often a good idea to think of one animation as the “verb” and

the others as “adverbs” — modifications on the basic action. In

this example we could have not only a default idle, but also a

nervous idle, an alert idle, a depressed idle, and so on. We

could then vary the mood of the idling character by blending in

various small amounts of the various “adverb” animations. (See

Bodenheimer, Rose, and Cohen’s paper in For More

Information for more on verbs and adverbs.)

Grammatically, we also use adverbs to indicate directional

information. An important application for blending is enabling

characters to look at the player, aim guns, and so forth. Many

games do this now by directly controlling character’s heads or

torsos — for example, this was how Valve made the scientists

and security guards look at the player in HALF-LIFE. Blending

improves on direct bone control by giving a more fluid and nat-

ural orientation to the whole character, since the blend can

affect the entire body at once. Well-chosen poses can make even

the simple act of aiming a gun a real study in character. More-

over, the control of the character remains in the hands of the

animator, where it can be critiqued and tweaked without hav-

ing to recompile any code.

Understanding Blend Space

A s the number of source animations increases (particularly

in applications such as directional blends), it becomes

increasingly important to think clearly about how the sources

relate to each other. A useful tool for visualizing these relation-

ships is what I call a blend space, a graphic representation of

the range of behavior a given blend is meant to describe.

A blend space can be thought of as a simple graph whose

axes are the parameters or variables that control the blend. A

look animation might have a “left-right” and an “up-down”

axis, for example. Each source animation is fixed at a particu-

lar location in the grid formed by the relevant axes of the

blend space. Thus the “look left” and “look right” anima-

tions, for example, would be at opposite ends of the “left-

right” axis.

The axes are not always spatial, however. They can be used to

represent whatever abstractions are important to the character’s

animations — not unlike the alignment diagrams found at the

end of old Dungeons & Dragons manuals. An idling character

might have a “confident-nervous” axis, an “alert-relaxed” axis,

and so on. A blend can have three or more of these abstract

dimensions. The character’s state — how “left-right,” “happy-

sad,” and so on — will be a point somewhere on the grid that

moves as the state changes. The relative influence of source ani-

mations on the blended result can be seen in their distance from

the character’s “parameter point.”

Blend spaces are important for understanding the rule that

blending doesn’t create new information; they help to visualize

what conditions a given set of sources will, or will not, cover.

The blend’s range is represented by a hull drawn around the

sources’ points on the grid of the blend space. If, for example,

you attempted to make a look blend using only four sources —

up, down, left, and right — the blend space diagram would

warn you that the “corners” of your blend space (look up and

left at the same time, for example) were outside the area cov-

ered by your sources.

A N I M A T I O N B L E N D I N G

FIGURE 2. Blending from “happy” to “sad” while both animations play
produces a smooth transition.

Time

Time

B
le

n
d

in
g

B
le

n
d

in
g

m a y 2 0 0 2 | g a m e d e v e l o p e r32

FIGURE 1. Blending two animations is just interpolating between the
matching frames.

Blending between look up and look

left would be looking 50 percent up and

50 percent left, as you can see in Figure

4. If you need to look all the way up and

all the way left simultaneously, you will

need another source animation. It’s

mathematically possible to fake a miss-

ing source by extrapolating based on a

blended point on the hull, but the results

are rarely satisfactory.

It’s easy to assume that the best way to

cover a blend space is with a regular grid

of samples. However, the analogy

between source animations and

keyframes suggests that some useful

effects can be achieved by the clever

placement of sample animations in the

blend space. Any feature in the behavior

being blended that would deserve a

keyframe in a traditional animation prob-

ably should be a source clip in the blend.

Consider a simple blend between a

standing and a squatting pose. A straight

blend between these two poses will play

similarly to a deep knee bend, with the

character’s back remaining mostly verti-

cal and his center of gravity moving

almost straight downward. Most people, however, start a

squat by leaning forward and pushing their hips back. If we

add a source animation about one-third of the way from the

standing pose to the squat with fairly straight legs and a lean,

the resulting blend becomes much more natural and realistic.

How Many Sources?

Y ou’ll still want to use as few source clips as you can get

away with. If you have two extreme poses that are perfect-

ly symmetrical — say, a character who is looking exactly 45

degrees right in one sequence and 45 degrees left in another —

you may be able to omit an intermediate pose and blend

straight across. But when the sources are asymmetrical or the

motions between them extreme, the tweened results are less

predictable and the likelihood that you’ll need additional source

poses grows.

For example, a character who’s aiming a rifle in the classic

cross-body shooting stance will have to treat his right hand and

left hand arcs differently (turning left involves mostly the upper

body, whereas turning right requires turning the hips as well).

It’s unlikely that a straight blend of the rightward and leftward

aims would produce a perfect straight-ahead pose, so in this

case you probably need a third source for the blend.

The last but most important rule for placing samples is that

(in the absence of specific code that says otherwise) blended

animations are always forward kinematics animations. A limb

animated with IK will follow a straight

line in space between two keyframes to

generate tweens, whereas an FK anima-

tion between the same keys will typically

travel along a compound curve defined

by the changing rotations of all the joints

involved in the motion.

Animators typically use IK for parts of

the body that interact with the world: feet

that stay planted on the ground, hands

that grasp objects, and so on. FK, on the

other hand, is better for motions with a

pendulum-like arc, such as the relaxed

swing of an arm during a walk or the

tossing of a ponytail. Animators who pre-

fer FK generally end up setting many

more keyframes than IK animators do if

they need exact control of positional data

such as foot placement.

The difference between the types of

tweens becomes more and more pro-

nounced as the interval between keys gets

larger. For small movements it may be

unnoticeable to the untrained eye, but it’s

very obvious in larger motions. Since

blending is generally done as FK, blended

animations in which positional relation-

ships are critical — those with locked feet, hands holding

weapons, and the like — will show slippage during the blend

(Figure 5).

Animations where these relationships are critical need more

sources in their blend space to minimize the error. Any anima-

tor familiar with FK and IK keying will have a pretty good

intuitive sense for what will happen and what trade-offs will be

acceptable. The lack of IK blending is in many ways the biggest

handicap in working with blends right now. The technology for

doing real-time IK blending exists but is not very widespread. It

will hopefully become standard in the near future.

Masking Animations

A s we have already seen, blending gives us very powerful

tools for manipulating characters. By far the most powerful

is the ability to blend selectively on only some parts of the body.

Localized replacement of animations is fairly simple from a tech-

nical standpoint. If regular blending can be likened to simple 2D-

image blending, then replacing only part of a body is analogous

to compositing with an alpha mask. The “mask” in this case tar-

gets only some bones in the skeleton for blending. By replacing

only the transforms on one arm, we can let a walking character

make a wave gesture, or throw a ball, without having to author

complete “walk and wave” or “walk and throw” animations.

Masking is equally useful for animating characters who have a

large variety of equipment or weapons, while reusing basic cycles

w w w . g d m a g . c o m 33

FIGURE 3. Blending between a bouncing ball
(red) and a nonmoving ball (blue) produces a
lower bounce but does not change the timing.

such as walks and runs.

We’ve already considered the common cases of looking and

aiming blends. Shooting and running, however, can’t be blended

because of the rule presented previously about mismatched fre-

quencies. (Even if the run and shoot cycles have the same dura-

tion, the firing can occur at any time.) With masked blends,

however, the character’s upper body can be replaced when the

character shoots. The frequency of the moving legs won’t inter-

fere with the fire animation and — as long as the animations

are properly planned — the two should work together regard-

less of the length of the animations involved, which weapon is

used, and when the shot occurs.

Masked blends are fairly simple to implement in code, but

they demand careful attention from animators and character

designers. Most actions are part of a complex dynamic system

involving almost the entire body, and the parts cannot be isolat-

ed from each other without a certain degree of artificiality and

stiffness. For example, even an athlete or a soldier trying care-

fully to keep his or her upper body still while moving needs to

use the entire torso to compensate for the movement of the

hips; although this movement is fairly subtle, its absence is easi-

ly detectable.

Moreover, the arrangement of the skeletal hierarchy can

seriously affect the resulting animation. In TEAM FORTRESS

CLASSIC, we used masking to give the characters’ upper bodies

aiming and shooting animations. Unfortunately, our anima-

tion package treated the pelvis as the root of the skeleton.

Thus, the pelvis transmitted all of the rotation of the hips to

the model’s upper body when we masked out the compensat-

ing animation on the torso. We were forced to choose

between unnaturally flat hips and a “Frankenstein walk” in

which the whole upper body jerked back and forth.

If you know you’re going to have two body sections with

unrelated animations, the point where the two halves meet

should most likely become the root of your skeleton. If this is

impossible, you can try to minimize the Frankenstein effect by

differing the amount of blending (in traditional 2D composit-

ing, this would be “feathering the mask”) along the bones of

the torso so that the compensating animation that keeps the

torso from swinging is retained as much as possible. Even with-

out the Frankenstein problem, starting your mask farther up

the torso, rather than at the waist, helps preserve the original

body dynamic and gives a more natural feeling to the result.

The ability to reuse basic cycles with multiple overlays is

both an excellent way to add variety to characters and a very

efficient tool for leveraging content. It is, however, rather tricky

from an authoring standpoint for both aesthetic and technical

reasons. Good planning and a lot of testing are the keys to get-

ting the most out of masked blends.

Creating Source Art

I n general, game engines don’t care how a character was ani-

mated. Ordinary keyframes, inverse kinematics, motion cap-

ture, or even dynamics simulations can all provide good starting

points for blends. Unfortunately, in almost every case, the

engines will know only about the transforms resulting from the

various animation tools; unless the animation system is specifi-

cally designed to recognize and reproduce IK or other kinds of

controls, the original driving mechanisms will be lost. Moreover,

when blending begins, the blends will be taking place through

FK regardless of how the original animations were created.

A N I M A T I O N B L E N D I N G

m a y 2 0 0 2 | g a m e d e v e l o p e r34

FIGURE 4. Blend space for a two-dimensional look blend. The interpolated
position (orange) is inside the area covered by the sample; compare
with the full "look up and left" pose in gray.

FIGURE 5. FK (blue) and IK (red) will follow different paths between the
same keys.

Look Up

Look Left Look Right

Look Down

The real difficulty in authoring for a blended animation sys-

tem is in visualizing and previewing the nearly infinite possi-

ble interactions between the various source animations. The

current versions of the major 3D packages now include some

form of nonlinear animation editor that can be used for pro-

totyping blended sequences. Maya’s Trax Editor, Lightwave’s

Motion Mixer, the layering system and Motion Flow module

in Character Studio, and most recently the Mixer in Softimage

XSI (perhaps the most powerful of the current crop) all allow

animation blending, as do many motion capture processing

packages. Most artists will probably have encountered the

nonlinear animation functions in the unglamorous roles of

asset management, content recycling, and retargeting anima-

tions from one character to another, but as the use of blending

in games becomes more widespread, these tools are bound to

become more popular (and I hope more capable) as laborato-

ries for tinkering with blends.

For the time being, though, most of the nonlinear anima-

tion systems are designed around light-duty editing and per-

forming simple transitions rather than real-time, free-form

blending and masking. In fact, these systems are often too

good — they preserve information such as IK relationships

that will be lost in the game engine. Artists, therefore, must

have a quick, low-overhead method of testing and previewing

the blends. A good viewer application is an unbeatable invest-

ment for a team that wants to use blending; the availability of

such a tool should be a key feature in deciding whether to

license an existing animation system.

The real difference between working with a blended anima-

tion system and a traditional, playback-oriented system first

becomes apparent in the planning stage. Higher granularity —

storing more narrowly-targeted animations and gestures — is

fundamental to effective use of blending. Unfortunately, high-

er granularity may inflate the initial asset list to alarming pro-

portions, as multiple versions of base cycles, masked actions,

and so forth are added up.

Fortunately, most components tend to be easier and cheaper

to create than complete, unblended action animations. Full-

body blends often consist of a single base animation and a

number of modified derivatives (our verbs and adverbs). The

derivative animations are much cheaper to build, particularly

if the character rigs are well designed or tools such as

Character Studio’s Layers interface are available. Masked ani-

mations cut down on the number of combinations that need

to be authored.

Masked blends are especially important to asset manage-

ment, because they essentially offer the flexibility to trade

quality for speed of authoring and asset reuse. A one-fire ani-

mation, for example, could be added onto walking, running,

and standing animations. While it’s sometimes painful to have

to make such a trade-off, it’s nevertheless an invaluable option

available to the typical overstressed and understaffed art

team.

Into the Blender

A nimation blending is much more than a buzzword. Even in

its current state, which is far from mature, it has revolu-

tionary potential for bringing freshness, variety, and a wider

range of behaviors to game characters. As new options become

available, such as the ability to blend IK targets and time-warps

for blending between mismatched cycles, the power of blending

will only become greater.

While games have only just begun to harness the power of

this new tool, it’s clear that blending will soon be an indispen-

sable weapon in the designer’s arsenal. Working with blends

does involve new challenges for coders, artists, and producers,

but mastering them is far from impossible, and the rewards of

doing so will be great for both developers and our players. q

w w w . g d m a g . c o m 35

F O R M O R E I N F O R M AT I O N

Ashraf, Golam, and Kok Cheong Wong. “Constrained Framespace
Interpolation.” In Computer Animation, November 2001. pp. 61–72.

Bodenheimer, B., A. V. Shleyfman, and J. K. Hodgins. “The Effects
of Noise on the Perception of Animated Human Running.”
Eurographics Workshop on Animation and Simulation, 1999.

http://citeseer.nj.nec.com/bodenheimer99effects.html

Bodenheimer, B., C. Rose, and M. Cohen. “Verbs and Adverbs:
Multidimensional Motion Interpolation Using Radial Basis
Functions.” IEEE Computer Graphics and Applications (Sept. 1998):
pp. 32–40.

http://citeseer.nj.nec.com/rose98verbs.html
see also http://research.microsoft.com/graphics/hfap/

Bruderlin, A., and L. Williams. “Motion Signal Processing.”
Proceedings of Siggraph 95. pp. 97–104.

http://citeseer.nj.nec.com/bruderlin95motion.html

Grassia, F. Sebastian. “Believable Automatically Synthesized
Motion by Knowledge-Enhanced Motion Transformation.” Ph.D.
thesis, Carnegie Mellon University, 2000.

http://citeseer.nj.nec.com/cache/papers/cs/19972/
http:zSzzSzreports-archive.adm.cs.cmu.eduzSzanonzSz2000
zSzCMU-CS-00-163-bw.pdf/grassia00believable.pdf

Lander, Jeff. “To Deceive Is to Enchant: Programmable Animation”
Game Developer (May 2000).

online at www.darwin3d.com/gamedev/articles/col0500.pdf

Perlin, K., and A. Goldberg. “Improv: A System for Scripting
Interactive Actors in Virtual Worlds.” Proceedings of Siggraph 96.
pp. 205–216.

http://citeseer.nj.nec.com/perlin96improv.html

Unuma, M., K. Anjyo, and R. Takeushi. “Fourier Principles for
Emotion-Based Human Figure Animation.” Proceedings of

Siggraph 95. pp. 91–96.
www.cs.wisc.edu/graphics/Courses/cs-838-1999/Papers/
UNUMA.PDF

A ll roads lead to Rome, or so goes the expres-

sion. In classical times, Roman engineers placed

stone markers every mile by the side of their

highways, each one indicating the distance to

the capital city, the center of the empire. In soft-

ware development, the release-to-manufacturing (RTM) date is

Rome and the schedule is the road leading to this destination.

Every project can use periodic milestones to gauge progress and

set attainable objectives on a long and often difficult journey.

Milestones also provide convenient places to pause to get one’s

bearings or to recuperate before moving on.

This article assumes that you already use milestones, but pos-

sibly not as consistently or efficiently as you would like to. You

may not use a Milestone Acceptance Test (MAT) document, at

least as it is presented here. It is my hope that the methodology

my group has developed over a number of projects at Microsoft

will prove useful to others.

Setting Milestones

I n the Microsoft Games Studios (MGS), we use MATs to help

set goals for each milestone, define the success criteria, and

verify that these criteria have been met before a team can move

on to the next milestone. These documents also help break the

master schedule (usually a large Microsoft Project file) into con-

venient chunks that are easier to understand at a glance. As a

test lead, the act of creating a project’s MATs helps me become

intimately familiar with the feature set, uncover problems with

the schedule, and establish the quality bar for each milestone.

How frequent should milestones be? At MGS, we usually set

milestones six to 10 weeks apart. If they’re farther apart, you

risk losing focus, which defeats the purpose of milestones. If

they’re closer together, you risk putting your project into a per-

petual state of milestone preparation and verification, and

nothing really gets accomplished.

In addition, you can use one or more interim drops between

milestones to track progress and show developers what to

expect from final acceptance. In my current project, we decided

to use the interim drops as a forcing function to improve our

level-completion process. At each interim drop, the developers

deliver new engine code. This allows testing and stabilization to

happen before the level designers need to access this code base

for their own deliverables. It also means that during the final

drop, developers are available to address level-specific problems

that may block level designers from resolving bugs assigned to

them. Similarly, modelers complete their deliverables for the

interim drop so that animators have time to finish their work

by the final drop. Finally, artists and animators deliver out-of-

game art assets (for example, AVIs showing animations in-

progress or an updated art bible) during the interim drops. This

allows the product manager (PM) and me to verify these deliv-

erables outside of the often-hectic milestone acceptance period.

Having decided upon the frequency of your milestones, set

specific due dates for each milestone candidate drop. I prefer

that these drops be scheduled for Fridays, with an optional

extension to 9:00A.M. Monday morning. This provides a week-

end buffer and makes it easier to calculate and remember the

end of our 10-day acceptance period (explained later under

“Testing a Milestone Candidate Build”). It often makes sense to

set deadlines around important dates such as management

reviews, E3, or hard-stop localization deadlines.

Whatever schedule you set, double-check everyone’s under-

standing. If you expect the milestone drop in the morning and

others plan to prepare it in the evening (or vice versa), better to

discover this disconnect early. Clarify whether this time repre-

sents the launch of the build process or the start of testing.

There could be several hours’ difference between the two when

you consider the time necessary to compile a build, install it on

a test machine, and perform a smoke test (the preliminary run

performed immediately after delivery).

In a publisher-developer relationship, be sure to consider

additional factors such as Internet connection speed (for FTP

processes), physical distance (mailing CD-ROMs), and time

zones. While working with a developer in France, for example,

there was a nine-hour time difference and sub-optimal Internet

M I L E S T O N E A C C E P T A N C E c h r i s h i n d

m a y 2 0 0 2 | g a m e d e v e l o p e r36

C H R I S H I N D | Chris is a test lead in the role-playing, adventure,
and technology (RAT) group within Microsoft Games Studios. He
is currently working on a future Xbox title. Contact him at
chind@microsoft.com.

Taking Your Project to the MAT:

Implementing Milestone
Acceptance Tests

connection to consider. The Redmond-based test team at

Microsoft had to initiate the download by 5:00A.M. so that we

would have the option of requesting a second build that same

day should our smoke test fail. Working backward, the devel-

opment team had to start their build process in the morning

(France time; midnight in Redmond) to have time to compile,

smoke-test, and upload the build to our FTP site.

The Contents of a Milestone

F undamentally, a milestone contains whatever tasks in your

schedule fall within a range of dates. While this is the sim-

plest definition, you can do more to make each milestone

cohesive and worth striving toward. At MGS, we try to give

each milestone a theme or focus, or at least make them a logi-

cal grouping of deliverables. For instance, “first playable mis-

sion” is a great milestone focus, as it clearly indicates the

objective of pulling together a sample level. This becomes a

launching point for visualizing tasks that must be completed

and may actually be missing from the schedule. A focused

milestone is more likely to generate demonstrable progress and

excitement (with management, marketing, and the develop-

ment team) than a milestone that simply sets out to complete a

series of scheduled items.

In my last two projects, the PM and I pushed our develop-

ment team to define their milestones around complete levels

(where possible), which could be delivered in two states: alpha

and beta. In alpha state, the test team could validate geometry,

AI, and basic gameplay. In beta state, a level was supposed to

be essentially finished, with the understanding that additional

polish and play-balancing would happen. This strategy pro-

duced a half-dozen playable levels one year before the final

“release to manufacturing” (RTM) milestone. No previous

project received as much integration testing, play-test time, or

usability feedback.

Figure 1 shows a simplified milestone structure where each

milestone has a clearly defined goal. (The contents of each mile-

stone do vary from project to project.)

Creating a MAT

F or most projects at MGS, the test lead is responsible for

creating the first draft of the MAT. It shouldn’t take more

than one or two days to generate a first draft. This draft then

gets sent to the development team (designers, coders, and

artists) to review and comment on. The test lead and PM

review the comments and then decide whether to incorporate or

reject them. This process of give-and-take continues until every-

one agrees on the final result, which takes anywhere from a few

days to a week. In contrast, on my current project, the produc-

er at the external development house generates the first draft.

The benefit here is that she knows the deliverables better than

anyone and has better access to the leads. There are trade-offs

to this arrangement, not the least of which is that the PM and I

must be extra diligent during our subsequent review of the

MAT to ensure that it represents all milestone and schedule

goals. Whoever creates the MAT, the most important element is

collaboration between those who create the deliverables and

those who verify them.

If your schedule is in excellent shape or you have worked on

a similar project before, you may be able to create all of the

MATs (or one meta-MAT) early in the project. More likely, the

required level of detail is simply not present until each mile-

w w w . g d m a g . c o m 37

FIGURE 1. This sample milestone overview reveals how and when the
game is going to come together.

M I L E S T O N E D E L I V E R A B L E

M0 – Kick-off Contract, contact info

M1 – Vision/Prototyping Vision document, high-level design
and determine project scope

M2 – Design/Engine Project schedule initial level designs,
functional specification, art bible, and
concept art

M3 – Proof-of-Concept Rendering engine, scripting engine,
camera control, collision system,
character in game, “money shot” of
expected final visualization. Refine
character control, run intellectual
property though focus group, sched-
ule management review

M4 – First Playable Rudimentary UI, sample mission,
basic attacks, basic camera, repre-
sentative gameplay. Perform play-test

M5 – Production Levels 1 to 4, game shell (select mis-
sion), inventory system, finished
camera

M6 – Production Levels 5 to 8, tutorial, save/load,
game shell (options)

M7 – Feature Complete Levels 9 to 12, all game features in
and functioning, including cheat
codes, finalized lighting and shadows,
finalized special effects

M8 – Code Complete Levels 13 to 15, code optimization
and/or rewrites complete

M9 – Content Complete All game content in and functioning.
Bonus levels, all cinematic cut-
scenes in place. Release to beta and
localization

M10 – RC0 to RC? Release candidate(s)

M11 – RTM/RTC Release to manufacturing / release to
certification (for console titles)

stone’s start date approaches. To ensure that MAT creation

does not drag on too long and that the test team has sufficient

time to prepare for the next milestone, you might add “Sign off

on the next milestone’s MAT” as an exit criterion to each MAT.

When creating a MAT, you will likely follow one of two

approaches: the schedule-driven (or bottom-up) approach or

the goal-driven (top-down) approach. In the schedule-driven

approach, you comb through the schedule for tasks that fall

between the milestone’s start and end dates and add each one

to the MAT. Figure 2 shows typical tasks in a fictitious project

schedule. Additional clarification is usually needed to make

sense of the often-arcane notation used in schedules (particular-

ly in the Tech/Dev section). Be sure to specify how a successful

implementation would manifest itself and behave in-game. This

approach works best if you have a reasonably complete sched-

ule and the developers are good at answering questions.

In the goal-driven approach, your team first generates a mile-

stone showing when all of the features and levels will appear in

game. This is similar to the outline provided in Figure 1 but is

usually more detailed. The milestone outline differs from the

schedule in that it’s only concerned with deliverables as they

will appear in-game. This outline becomes the foundation for

your MATs and drives the revision of the schedule to ensure

that these deliverables are met. This approach works well if

your project has a weak or incomplete schedule, or if you find

it difficult to get answers from the development team.

In the end, you might consider a mix of these two approach-

es. You can use the goal-driven approach to set high-level

expectations and ensure that everything can be finished by the

end of the project, then use the schedule-driven approach to fill

in the details on each MAT.

The biggest challenge when creating a MAT is getting the

right level of detail. If the MAT is too vague, it fails to enforce

the schedule and standards of quality. If the MAT is too granu-

lar, you will spend a lot of time negotiating and revising its con-

tent right up to the lockdown date (see the following section,

“Locking Down a MAT”), frustrate the developers by con-

straining their implementation, and overwhelm the testers as

they attempt to verify such a daunting list during the short

acceptance phase (more under “Testing a Milestone Candidate

Build”). Figure 3 shows a portion of three hypothetical MAT

outlines, built from the schedule in Figure 2. The too-vague

example speaks for itself. In the too-granular example, note

how the “refined chase camera” tasks are not really testable.

Under “animations, player character,” the MAT squashes cre-

ativity should an animator think up better idle animations. The

Enemies and Gameplay sections are too tied to a design that is

almost guaranteed to change. This too-granular MAT loses

focus of what the project is about (creating a great game) and

instead acts as a sterile checklist or process dictator. In contract,

the good MAT example shows how you can set measurable

objectives without constraining creativity.

To help you get you started creating your own MAT, down-

load the MAT template from the Game Developer web site at

www.gdmag.com.

Locking Down a MAT

Once everyone is comfortable with a MAT, lock it down. In

this state, changes are no longer allowed. If you fail to for-

malize this lockdown process, the temptation to tweak the MAT

continually (right up to the milestone due date) remains. Not only

is constant change costly in terms of analyzing the impact of the

change and updating the MAT document, it’s also bad practice.

The MAT is supposed to drive development, not reflect a slipping

schedule. This is particularly critical in a developer-publisher rela-

tionship, in which delivery of specific content is a matter of con-

tractual agreement and often tied to payment.

For projects where signing off on next milestone’s MAT is

included as an exit requirement in the current MAT, the lock-

down date is obvious. Otherwise, specify a date that makes sense.

For instance, you might require that each MAT be locked down

two to four weeks before the milestone due date, depending on

the length of your milestones and other project-specific factors.

This time frame gives a team more than enough time to draft, dis-

M I L E S T O N E A C C E P T A N C E

m a y 2 0 0 2 | g a m e d e v e l o p e r38

FIGURE 2. The tasks in this fictitious schedule (created in Microsoft
Project) constitute the basis of the project’s M4 MAT document.

cuss, and revise the MAT. Most potential problems (such as overly

optimistic scheduling or unforeseen dependencies) should be obvi-

ous before then.

Enforcing lockdown is simply a matter of establishing owner-

ship and version control. At MGS, the test team owns the MAT

and keeps the master copy checked into Visual SourceSafe. A

read-only copy is placed on a file share for reference purposes.

Change requests — or even subsequent drafts of the MAT — are

submitted via an agreed-upon mechanism, such as e-mail or an

entry in a defect-tracking database. The test lead ensures that all

approved changes are applied to the master copy.

Occasionally, you may need (or just think you need) to make

changes to the MAT after the lockdown date. Carefully consider

the reasons for this potential change. If they are legitimate — for

example, approved redesign, unforeseen dependencies that require

the swapping in of tasks from later milestones, or unexpected

complexity or delays — then go ahead with the change, but only

after identifying any potential consequences or risks and dis-

M I L E S T O N E A C C E P T A N C E

m a y 2 0 0 2 | g a m e d e v e l o p e r40

GOOD MAT: Measurable ObjectivesPOOR MAT: Too Vague

POOR MAT: Too Granular

Refined Chase Camera
When character remains in place, camera could slowly drift

around behind character.
When character stands still, his head should be a little lower

than the center of the frame.
When character moves to the right or left, camera should rotate

in place slightly to show more of what is ahead.
When character moves away from camera, camera should tilt

to show more of what is ahead of him.
When character moves toward camera, camera should tilt to

show more of what is between the camera and him.
Animations

Player Character
Idle Animations (2)
Death Animations (3)

Level 1
Landscape

Geometry
Entire map is walkable
Entire map has correct collision
Player character cannot step off map anywhere

Textures
All surfaces textured
No visible seams
Skybox present (if applicable)

Object Placement
No floating objects on map
No objects embedded in geometry on map

Lighting
Landscape “lit” with correct lighting model

Enemies
All Enemies present, per level design document (model

and finalized textures)
All animations complete and in-game
AI complete

Gameplay
NPCs

All NPC encounters per level design document
Puzzles

All puzzles fully described in level design document
All puzzles finalized, functional, and fun

Experience Points
Experience points allocated per level design

document

Refined Chase Camera (tweaking)
New Player Character Animations
Level 1 Complete

Refined Chase Camera (tweaking)
Using current target position
Using current target orientation
Script control of camera
Unit testing and revision

Animations
Player Character

Idle: Scratch Head
Idle: Look Around
Death: High Fall
Death: Crushed
Death: Drowned

Level 1 Complete
Landscape

<details omitted for space>
Enemies

Three “Skeleton Defenders” in Hall of Bones
Skeleton Defender

Model
Model
Texture
Bones

Animation
Shamble
1/4 Turn Left/Right
Choke Attack
Death

AI
Move Behavior
Attack Behavior
Death Behavior

Gameplay
NPCs

Failed tomb robber standing next to
entrance provides hint #37.

Puzzle
Tomb of the Ancient Defender, secret door
puzzle: stand on pressure-sensitive floor tile
while singing the song of opening.

Experience Points
Player character gets 200 experience points
for escaping the tomb.

FIGURE 3: The first MAT outline (top left) is too vague, the second (bottom left) is too granular. The third MAT (right) contains clear, measurable
objectives without restricting the ultimate implementation.

cussing these with the other leads. The likelihood that a MAT

would need to be changed is greater early on in the project and

should decrease as people become more comfortable using them.

Testing a Milestone Candidate Build

A t MGS, we are contractually bound to evaluate milestone

candidate builds and provide feedback — acceptance or

rejection — within 10 business days. In theory, rejecting one build

and requesting another resets this 10-day deadline. In practice, we

strive to limit the entire acceptance period to 10 days to minimize

impact on the schedule. Though this deadline is based on the

needs of a contractual relationship between a publisher and a

developer, internally managed projects should also set an accept-

ance deadline. Ten days should be adequate, if used wisely.

Remember, this stage involves verifying that a milestone meets its

intended goals, not performing the same comprehensive test pass

that should be expected in the months leading up to the ship date.

I break our 10-day acceptance period into four phases: initial

review (one to two days), testing (three to four days), regression

testing (two to three days), and final review (one to two days).

Initial review begins with verifying the presence of all assets:

art files, documents, build (debug, release, instrument versions),

build notes, and so on. With regards to nonbuild assets, the test

lead (or sometimes the PM) merely verifies that these are pres-

ent, leaving the actual evaluation to other leads. At MGS, we

have an art liaison review concept art, models, and animation;

the PM checks the schedule and full design document; a usabili-

ty expert performs heuristic evaluation of the UI, control

scheme, inventory system, menu structure, and other such

aspects. As test lead, I place either a check mark or an X in the

“Present” column and then follow up with these other leads

during the final review phase. Once the initial review is com-

plete, I e-mail the development team with a list of any items

that appear to be missing and a list of questions (for example,

“Where can I find an example of bumpmapping in this

build?”). Since missing assets can delay verification, I expect a

response as soon as possible.

In the three or four days devoted to the testing phase, don’t

expect to test every feature completely. That’s not the goal. Aim

to verify that every feature works and does not block further test-

ing. (This further testing is performed in the weeks and months

following milestone acceptance, while developers, artists, and

level designers work on the next milestone’s deliverables.) The

test team should divide the most important features equally so

that every area gets a similar depth of coverage. Failing that (per-

haps it’s early in the project, and there’s only a test lead), perform

a series of test passes, each one deeper than the last. This ensures

at least minimal coverage of every feature. It’s also more likely to

spread bug fixes among the development team. In contrast, if a

tester focuses on one feature or level for too long before moving

on to the next one, a single member of the development team

may become swamped with work while other members (especial-

ly artists and animators) sit idle. In my current project, our MATs

specify that all Priority 1, Severity 1, and Severity 2 bugs be fixed

before milestone acceptance. Priority 1 bugs are test blockers: all

features must be in the build, basically working, and fully

testable. Severity 1 bugs are crashes and things that prevent con-

tinuing gameplay: by running the game entirely in debug mode, I

can catch most crashes and locks; I also seek out bad collision

geometry that causes the playable character to fall though the

world. Severity 2 bugs signify a broken feature: this involves

checking each MAT item against the latest spec to verify that it

behaves correctly.

As soon as a fair number of defects have been logged, perform

bug triage to determine which ones must be fixed immediately in

order to pass milestone acceptance and which can be punted to a

later milestone. You definitely want to take this opportunity to

stabilize the code base as well as avoid adding to the workload

and stress of the final crunch that can result from postponing too

many bug fixes. At the same time, stubborn insistence can jeop-

ardize the project schedule, lead to poorly considered “quick-fix”

solutions, and damage your relationship with the team. As a

member of the triage team, I enforce each MAT’s requirement

that we fix all Severity 1, Severity 2, and Priority 1 bugs immedi-

ately. For each remaining bug, the triage team checks if there is

another milestone where the corresponding feature or code is

scheduled for revision or additional work. If so, we assign the

bug to that milestone with the assumption that grouping bug

fixes with scheduled tasks is more efficient and reduces risk. If

not, then the bug must be resolved immediately. Besides fixing

the bug, possible resolutions include reworking the schedule,

redesigning the feature (with team approval), or cutting the fea-

ture completely. To further mitigate risk, we have an “entry

requirement” in our MATs that states that all bugs punted to a

given milestone must be fixed before that milestone’s candidate

build can be submitted.

Once the development team fixes all milestone-blocking bugs

and submits a new build, the test team enters the regression-

M I L E S T O N E A C C E P T A N C E

m a y 2 0 0 2 | g a m e d e v e l o p e r42

FIGURE 4. Your MAT should look something like this by the final review
phase of Milestone Acceptance, replete with check marks, Xs, and
comments.

testing phase. Testers concentrate on verifying bug fixes and

ensuring that previously working features still work, but new

milestone-blocking bugs sometimes crop up. This phase may

last considerably longer than the recommended three days if

subsequent builds are required.

During final review, the test lead meets with other leads or

compiles their written feedback, and reviews each MAT item

with the testers responsible for the corresponding test area. For

each item, he or she notes its status as “present” or “not pres-

ent,” “passed” or “failed.” Optionally, I record active bugs

next to each item and add a comment, such as “Bugs are minor

and do not block milestone acceptance,” or “Fails due to bug

134.” At this point, you are ready to meet with the team leads

and discuss whether the milestone has passed or failed.

Accepting a Milestone

A t the end of the acceptance period, you should have a

completed MAT document, new bugs in your defect-track-

ing database opened against milestone features, and feedback

from various functional leads regarding the deliverables they

were responsible for evaluating. This data helps determine

whether or not the team has met the milestone’s goals.

At MGS, the test lead, product manager, and product planner

are responsible for signing off on milestone acceptance. In an

electronic workplace, this signature usually takes the form of an

e-mail thread wherein everyone clearly states whether the MAT

passed or failed:

• The test lead looks to the MAT document and to the contents

of the defect-tracking database: Are all items present? Do all

items function per specification? Have all bugs found during

the current milestone been resolved in some manner, either

fixed or reassigned to a later milestone?

• The test lead also represents the art, development, usability,

and localization liaisons, ensuring that their feedback is

being considered.

• The product manager has similar concerns, but also considers

the big picture: What risks are involved? Are those risks

acceptable? How can we lessen risk? How will the schedule

be impacted? How might this decision affect our relationship

with the development team?

• The product planner is responsible for releasing payment, so

the test lead and PM must keep this individual informed

regarding the status of a milestone.

Limiting sign-off authority to three people works well, reduc-

ing the chance of someone becoming a bottleneck, especially

since at MGS only the PM and test lead work full-time on a

single project. Additionally, we find it difficult to justify to an

external developer that an art or play-test concern, for instance,

can block milestone acceptance and payment.

In contrast to the publisher-developer situation described in the

preceding example, an integrated environment might require

sign-off from the producer, test lead, and development lead. A

test lead in this situation requires more authority and more tact,

as he or she may need to argue points against the development

lead or possibly even push back on both the development lead

and the producer. This is where a MAT really pays off as sup-

porting evidence; after all, everyone contributed to and agreed

upon its contents in advance.

Can a milestone pass even if the MAT document contains

failed items? While your team should discuss and decide upon

this issue (and do so early on in the project), allow for the possi-

bility of a “yes.” Say the usability liaison reports that the new UI

has tested abysmally and should be completely reworked, or the

art liaison insists that the new character models are constructed

of too few polygons, or the development liaison finds serious

flaws in the rendering engine’s architecture. Do you hold up the

milestone for what could be weeks? Do you force the developers

to implement a hack just to pass the letter of the MAT? Probably

not. Better to reschedule these items and assign them to a later

milestone. Whatever your decision regarding MAT failures,

record it somewhere so that the debate does not reappear at a

bad time, such as in the middle of a contested milestone accept-

ance period. You might want to record this decision in the intro-

duction or appendices of every MAT document.

By suggesting that the team can sign off on a “failed” mile-

stone, I don’t mean to endorse leniency. For the most part,

MAT items should meet or exceed the predetermined goal for a

given milestone. If your MAT contains mostly failures, there is

likely a disconnect somewhere in terms of acceptance criteria;

review the MAT to determine if it’s too vague (in that it doesn’t

set clear expectations) or too specific (allowing no flexibility in

terms of implementation). If the failures are legitimate, hold the

development team to strict standards: milestone acceptance is

the best tool you have to enforce schedule and quality.

Signing off

O nce everyone has signed off on the MAT, that milestone is

officially over, and everyone should congratulate one

another for their hard work. A little goodwill helps soften any

hard feelings that may have developed during the often-tense

acceptance phase. Some teams celebrate with a milestone din-

ner. The PMs I have worked with usually send a little milestone

acceptance gift, such as a big jar of jellybeans or a box of

assorted toys. Finally, encourage team members to take a cou-

ple of well-deserved days off, schedule permitting. Better yet,

plan ahead and schedule vacations for just after the expected

acceptance date, leaving a one-to-two-week buffer to account

for potential last-minute delays.

Enjoy this feeling of accomplishment while it lasts. Soon,

you’ll be starting work on another milestone, driving towards

the requirements in the next MAT. q

w w w . g d m a g . c o m 43

A C K N O W L E D G E M E N T S

Thanks to Scott Amis for helping brainstorm the article idea and to
Richard Thames Rowan for providing feedback.

m a y 2 0 0 2 | g a m e d e v e l o p e r44

j o n a t h a n c h e yP O S T M O R T E M

Irrational
Games’

Freedom
Force

Irrational
Games’

Freedom
Force

G A M E D A T A

PUBLISHER: Crave
Entertainment/Electronic Arts

FULL-TIME DEVELOPERS: 24
PART-TIME DEVELOPERS: 3

CONTRACTORS: 1
LENGTH OF DEVELOPMENT: 18 months

RELEASE DATE: April 2002
PLATFORM: PC

DEVELOPMENT HARDWARE: 600MHz
Pentium IIIs with 256MB RAM and

32MB GeForce 2s (average)
DEVELOPMENT SOFTWARE: MS Visual

C++, cvs, BoundsChecker,
3DS Max, Photoshop,

Paint Shop Pro, ACDSee,
MS Access, and

ColdFusion
NOTABLE TECHNOLOGIES: NDL

NetImmerse

w w w . g d m a g . c o m 45

I n November 1999, after

Irrational finished SYSTEM

SHOCK, I wrote a Postmortem

for Game Developer. Did we

apply the lessons we learned

from SYSTEM SHOCK 2 to our new proj-

ect, FREEDOM FORCE? If not, what new

lessons did we learn?

In answering these questions, I’ll

avoid discussing source code control sys-

tems and resource management. Instead,

I’ll discuss problems we encountered

motivating and organizing game devel-

opers on a new team and new project,

and how design issues forced us to think

about risk management as opposed to

innovation and ambition.

SYSTEM SHOCK 2 presented a number

of major challenges that were overcome

only with hard work and good luck. It

was my ambition not to face the same

challenges on the next project, or, if

these challenges were to be faced, then

to outflank them and not confront

them head on. Unfortunately, most of

these problems did reoccur on FREE-

DOM FORCE, and the fact that we did,

in the main, surmount them again

resulted more from hard work and

good fortune than clear thinking.

Starting Over Again

A t the time I wrote the

SYSTEM SHOCK 2 Post-

mortem, I was about to

return to Australia from Boston,

where Irrational is based. Our develop-

ment team in Boston moved on to a

new project, THE LOST, a survival hor-

ror RPG that shares many features in

common with SHOCK 2 but moves them

into the console environment. It was my

job to organize a new development pro-

ject to be run from a new office located

in Australia.

After several months back in my

home town in Australia, we managed

to organize FREEDOM FORCE for the

new studio. Although design elements

mutated during its early development,

the core idea for FREEDOM FORCE has

always been very clearly defined: a

superhero tactical combat game aiming

to re-create comic-book battles on a

PC. There is a lot that goes along with

this notion: RPG elements, user-created

characters, homage to 1960s comic

conventions, and so on. But the game’s

core is superhero tactical combat and

all that goes along with it.

So we established our new office in

Canberra, a sleepy town of 300,000

that happens to be Australia’s capital,

and I set about finding a team to com-

plete the game in around 18 months.

What followed was a wild ride with

lots of ups and downs. Most of these

experiences don’t fall neatly into the

categories of “what went right” or

“what went wrong”—“what mostly

went right” or “what mostly went

wrong” would be more accurate.

What Went Right

1. Finding a new team.“The

SYSTEM SHOCK team was fright-

eningly young and inexperienced, espe-

cially for such a high-profile title,” I

wrote in the SYSTEM SHOCK 2 Post-

mortem. Despite this forewarning, we

committed ourselves to the same prob-

lem on our new project.

The initial problem was simple: to

fully staff the project in the shortest

time period possible while simultane-

ously setting up the new office and pro-

ceeding with development. The many

administrative problems associated with

establishing a new office were time con-

suming, but could always be overcome

with enough money. Renting office

space, buying PCs and software, setting

up Internet connections, and establish-

ing payroll are all relatively well-under-

stood problems; recruiting game devel-

opers is another problem altogether.

Any developer, new or growing, faces

recruiting problems. We were in a

slightly unusual position with some

unique advantages and disadvantages.

On the one hand we had dug ourselves

into a hole by committing to a quick

start-up, a technically difficult project,

and a relatively short development

schedule. On the other hand, we had

many advantages not enjoyed by a

completely new company: as a result of

our work on SYSTEM SHOCK 2, we had

a high profile; we had adequate cash

reserves, and we had a core of experi-

enced developers available to help out,

though I was the only one of them

physically present in Australia.

These advantages ultimately enabled

us to successfully build a new team. We

raised our profile in the local develop-

ment community as fast as possible, as

we knew that our reputation and the

project would attract staff if they could

be made aware of what was going on.

Articles in the local press and on the

local TV station made Canberra residents

aware that we were established in their

town; developer diaries and previews in

Australia’s gaming press and interviews

on local web sites made us known to

the local developer community.

Developing in Australia is an attrac-

tive proposition: Australians are well

educated and technologically minded.

They speak English (of a sort) and are

familiar with just about every aspect of

American culture. Despite the presence

of several well established and quality

developers, there are still a lot fewer

opportunities for game developers

than in the U.S., and we

counted on not having

to face the same sav-

age competition for

talented staff that we

were familiar with in

Boston. However,

there is

not a

J O N A T H A N C H E Y | Jon is a co-founder of Irrational Games and currently managing
director of Irrational Games Australia. He served as project manager and lead designer
on FREEDOM FORCE and was project manager on SYSTEM SHOCK 2. Prior to
working at Irrational he spent time at the late Looking Glass Studios and
received his Ph.D. in cognitive science from Boston University.

great pool of experienced staff in the

country. This would be our biggest prob-

lem — finding that core group of experi-

enced people to manage and direct the

talented but relatively inexperienced staff

who would form the bulk of the team.

When recruiting, we faced choices

between several competing alternatives:

expensive and distant (and therefore

poorly evaluated) staff from overseas,

inexperienced but talented local staff, or

experienced local developers from out-

side the industry. In almost all cases we

settled for inexperienced local developers

with great potential. This caused us

many short-term headaches but set us up

to be in a good position provided we

could weather these problems.

2. Supporting the fans. Very

early on in the development we

realized that it would be impossible to

make a game with enough content to sat-

isfy comic-book fans. Clearly, we needed

to make a big effort to enable players to

incorporate their own content into the

game. We tackled this at several different

levels to support casual users who just

want to make their own characters, more

committed players who want to create

their own skins, and hardcore enthusiasts

who want to create new meshes, anima-

tions, or missions.

To support the casual users, we creat-

ed a flexible system for generating char-

acters and powers that we would use to

both build the precreated characters and

expose to users in the game. Our power

system allows users to construct new

characters not just by changing their

stats but also by creating new powers

from scratch. In addition to setting the

parameters for these powers, users can

choose an animation and an effect to go

with that power. Each created power

has a cost value and then goes to form

part of the overall cost of that character.

While this flexibility created balanc-

ing nightmares for us, it opened up an

immense array of possibilities for user-

created content in the game. How well

users ultimately respond to this remains

to be seen, but we have already had an

excellent response to the already relea-

sed character tool — a viewer that

allows users to cycle through anima-

tions and skins on game character mesh-

es. With nothing more than this to work

with the online community has already

generated hundreds of new skins, mesh-

es, and animations.

This kind of user support is clearly

important to the extended life of the

product. Minimal effort on our part has

paid off many times already. What we

could have achieved with greater levels of

support — releasing the full character

and power generation system, for exam-

ple — we can only imagine.

3.Not starting from scratch:
NetImmerse. We successfully

made use of the NetImmerse technology

from Numerical Design Ltd. to provide the

core rendering systems for the game. This

proved to be a wise decision that gave us

an early leg up and provided a stable ren-

dering platform. Third-party rendering

technology has matured enough to make a

lot of sense; the remaining issues come

down to price and flexibility.

4. Cool scripting language:
Python. We made good use of

Python, which we used for a scripting

language. This was an admirable choice

whose only downside was that it

required our designers to be fairly com-

petent programmers. Because Python is

already a complete language with a rela-

tively easily understood syntax, we were

tempted to provide little on top of it and

require the designers to write real Python

code. Scripting at this level essentially is

programming and requires designers who

wish to write scripts to master program-

ming as well as conceptualizing game ele-

ments. We encountered problems initially

because we didn’t realize the level of

technical expertise required when we

hired our script designers. But ultimately

Python proved to be a flexible and pow-

erful scripting tool.

5.Breaking the curse. FREEDOM

FORCE is not a unique concept.

Similar kinds of games have been

attempted before, most noticeably Micro-

prose’s GUARDIANS: AGENTS OF JUSTICE, a

CHAMPIONS licensed game, and Bullfrog’s

INDESTRUCTIBLES. None of these games

has made it onto the shelves thus far,

P O S T M O R T E M

m a y 2 0 0 2 | g a m e d e v e l o p e r46

The team in action. From left to right: Minuteman, El Diablo (flying), Manbot, Iron Ox, Man O' War
(flying), Liberty Lad, Mentor.

leading to the perception of a hex on this

genre. How did we avoid this curse?

Perhaps it’s more instructive to con-

sider why such a curse might exist.

Perhaps a good superhero game has

only recently become possible. Super-

heroes are about smashing stuff up, and

making clever use of the environment as

much as extravagant numbers of powers

and abilities. This kind of stuff doesn’t

lend itself well to the sort of static envi-

ronments that most games have been

able to portray up to now.

X-COM, the initial touchstone for our

game design, included a destructible

environment that was rich enough to

portray superhero combat, but its turn-

based mechanics would be hard pressed

to do justice to the dynamics of comic-

book combat. What we needed was X-

COM levels of destruction and interac-

tion but in real time, something that has

only recently become possible.

The destructible and interactive

nature of the FREEDOM FORCE environ-

ment creates major headaches for the

physics and AI systems as well as the

renderer. The CPU requires considerable

grunt to handle these systems properly.

While this kind of stuff was clearly pos-

sible a few years ago, it’s only recently

that a game can handle it without a

major investment in experimental tech-

nology (or indeed, with a third-party

rendering engine).

So has FREEDOM FORCE then avoided

the superhero curse? To the extent that

the game is on shelves, yes. Certainly

there are aspects of comic books that

could be realized better, and this will

hopefully be addressed in future prod-

ucts. The richness of the character inter-

actions is less than it might be. Proper

dynamic character interactions await the

attentions of future developers.

What Went Wrong

1.Organizing the team. As we

slowly grew the team, the

Canberra Irrational office changed from

a start-up into a large development stu-

dio. This process created problems famil-

iar from our previous project. However,

due to the larger scale of the project,

these problems were more severe this

time around.

The initial work on FREEDOM FORCE

was done in my living room by the first

four staff members. Now, 18 months

later, 25 developers occupy a large office

in the downtown business area. We are

actively looking to our next larger office

space and considering how to manage

multiple simultaneous projects. Natural-

ly, this rapid growth has created changes

and points of stress.

One of the greatest stresses is simply

the change in organizational structure

required by growth. Four people working

in a living room don’t require hierarchi-

cal management structures or formal

management systems. Imposing these

kind of systems can lead to resentment

and bad feelings, particularly among

game developers who have come to

regard informality and freedom as an

essential part of working in the industry.

As a result, we have had to be very care-

ful about making changes along these

lines; but changes are necessary to

accommodate greater numbers of people.

For example, when we were working in a

living room, we had no official policy or

rules about such things as work hours, the

use of office computers for game playing,

and the use of Internet services for down-

loading movies or music. As we grew, we

had to introduce standards for all of these,

if for no other reason than that with 25

people there will always be outliers who test

the bounds of any unregulated system. One

developer who prefers to start work in the

afternoon, for example, or another who

spends the afternoon playing LAN games,

can cause problems not only through per-

sonal behavior but also by undermining

other people’s work practices.

Regulations and restrictions that might

seem reasonable or lax in a big business

can seem harsh and authoritarian when

they are introduced into a less-regulated

environment. Managing the process

requires slow change and providing

proper justifications to accompany any

rule system. It may be better to impose

these rules from the start, even if they are

only required once the team has grown.

2.Motivation and self-belief.
Most games developers are in the

industry because they love the work.

Game development is an act of creation,

where a small group of people bring into

being a complex and original piece of

software. A very import part of the

reward is the recognition of one’s peers

and the public. That’s why game credits,

while unimportant to the general public,

are an important part of any game.

But before the game is finished, devel-

opers, like most people, not only want to

be recognized for their work, but also

want to know that they are doing some-

thing worthwhile. The path from initial

conception of a game to gold master and

box on the shelves is long and hard. An

experienced team that has worked

together and achieved good results can

rely on their past to sustain their belief in

themselves and the eventual results; a

new team needs to make a leap of faith.

Perhaps the biggest difficulty we faced

in the development of FREEDOM FORCE

was getting the team to believe in them-

selves and the product. Initial progress

w w w . g d m a g . c o m 47

on the game was slow, and a year into

development there were many on the

team who were still unclear about what

the game was about or who were not

confident in their abilities or the abilities

of other team members. This situation

was complicated by the fact that there

was no existing game that we could iden-

tify as a template for what FREEDOM

FORCE would finally be like.

For this reason, milestones along the

way, such as our E3 demo, were very

important, not only for their external PR

potential but also to prove to our own

team that we were making progress.

Nevertheless, it was not until a couple of

months before the game was complete

that it was really clear to everyone what

standard was going to be achieved and

whether or not the core gameplay

mechanics worked. It was only at this

stage that enthusiasm and productivity

and enthusiasm peaked.

Our catch-22 was that we required

self-belief to create a good product, but

self-belief was contingent upon creating a

good product. There were several

moments in the development process

where incremental progress toward a

good product produced positive feedback

to self-belief. Had these moments not

been present, destructive negative feed-

back would have resulted instead.

What factors helped create positive

feedback? The most important elements

were the key people who bought into the

project ideas early on and sustained that

buy-in until completion. Without

those people, things

could have turned

out very differently.

Finding and keeping

these people can

therefore mean the

difference between

success and failure.

3. Inter-office
politics. A dif-

ficulty we encountered in

developing SYSTEM SHOCK

2 was coordinating devel-

opment between

Irrational and our co-

developer, Looking Glass Studios.

Although we were the sole developer of

FREEDOM FORCE, two teams were

involved: one in Australia and a smaller

group in Boston. Although both were a

part of the same company, this arrange-

ment created problems, made worse by

the fact that they were unforeseen and

that we were slow to respond to them

once they became apparent.

I’ve already identified the root causes of

these problems: passionate interest in

being recognized as a creator of the prod-

uct combined with lack of self-belief. Our

Australian team felt very strongly that

they were responsible for creating the

game, yet publicity often ascribed develop-

ment of the product to Irrational Games,

commonly understood to be based in

Boston, not Australia. In addition, Boston

staff members filled two key roles,

conceptualization of

the story and charac-

ters. Since Australian

staff members required

direction in these

roles from

Boston,

some

people in

Canberra

had the feeling

that the

Australian office

was simply in charge

of the grunt work,

while the Boston office

would take all the credit

and make all the interesting

decisions.

Resolving this issue took time and ener-

gy — and it wasn’t resolved until we rec-

ognized that this problem would not just

go away on its own. There’s no simple

solution to these kinds of issues, only an

ongoing process of encouraging more com-

munication in the form of moving staff

from one office to the other and ensuring

that appropriate public exposure is provid-

ed to all parts of the company. For exam-

ple, team members in the Australian office

had no real idea what roles were being

filled by U.S. staff. Once they became

aware of these people’s efforts, the prob-

lems ebbed.

Companies that rely heavily on the

passion and enthusiasm of staff must be

prepared to deal with the negative as

well as the positive aspects of those feel-

ings. Most employees in large companies

accept that they are faceless elements of a

process, but many game developers want

more than that. It’s key that the company

recognize and respond to this feeling.

4.Ambition and risk. Games are

hard to design from the scratch.

Some of the most successful developers

espouse iterative game design processes

in which games are polished and changed

over time — the end result of which is a

“It’ll ship when it’s ready” policy. Most

developers cannot afford this luxury.

For many games, a fixed schedule is no

greater a problem than any group of peo-

ple creating a complex product faces, and

it has been suggested that game design

should proceed as would any major soft-

ware project, with a specification docu-

ment followed by an implementation

P O S T M O R T E M

m a y 2 0 0 2 | g a m e d e v e l o p e r48

The editor and character tool in action. Character creation in 3DS Max.

phase. However, games

that employ new game-

play or test out new ideas

have to find room in their

schedules for experimentation

in a way that developing a

spreadsheet program does not.

Irrational’s game designs do not

rely on exact analogues

from existing products.

This leads to scheduling

strains as the teams

implement complex

technology, create

ambitious amounts

of content, and test out

new gameplay at the same

time.

Certain tools and processes

can help with this. The

NetImmerse engine helped us get

our renderer and basic game shell

running in the first month of the proj-

ect. Artists were able to create content

and view it in the game in the same time

period. Monthly “releases” provided us

with a steady stream of prototypes

through which we were able to explore

gameplay and UI concepts. Nonetheless,

we had a tough job prototyping and

experimenting — as well as actually

shipping the product — in a short peri-

od of time.

Our major difficulty stemmed from

lack of clarity about how gameplay

issues would be resolved. Our initial

specification for the game described it as

a turn-based tactical combat game

involving multiple player-controlled char-

acters with a deep set of combat options.

However, we quickly decided that

turn-based gameplay was no longer

appropriate for this kind of title,

and therefore committed to creat-

ing a real-time game. Although a

sensible decision, it increased

our risk, as we

didn’t clearly

understand

how to create

complex tacti-

cal gameplay

in a real-time

game.

Constructing a simulation envi-

ronment and UI that realized this

design concept became a major risk.

The solution we settled on made use

of elements drawn from other games

put together in a unique way. We uti-

lized a contextual command menu with

auto-pausing whenever the menu was

open as well as other contextual UI ele-

ments. Camera controls, combat mechan-

ics, and many other elements were bal-

anced carefully to find the right amount of

information and decision making that

would neither make the game too simplis-

tic nor overload the player. The balance

we settled on was not what we wrote our

initial design proposal; we introduced

major changes and new elements as we

worked the problem through. Without

our regular monthly prototypes, we would

have had no hope of solving these prob-

lems in time. Even with them we were

lucky to do so. Because our gameplay was

not completely established until close to

the end of the project, we didn’t have time

to tune the very complex combat and

RPG systems properly.

Although the results are not perfect,

we are happy with them and intend to

use these same solutions for further tacti-

cal combat games. Reusing this design

gnosis is the key to avoiding project slip-

page and crunch periods in the future.

Experimental game design requires a

generous schedule. If new game design

concepts are to be explored in a short

period of time, then technology and con-

tent requirements must be low. FREEDOM

FORCE contains gameplay innovations

and experiments, sophisticated technolo-

gy (physics and AI), as well as large

amounts of content. This is a recipe for

overwork and scheduling problems that

we hope to avoid in the future.

5.Multiplayer blues. The only

other technology issue of note

was the continued difficulty developing

good multiplayer systems, another thing

we had previously struggled with on

SYSTEM SHOCK 2. Again, this probably

resulted from a failure to recognize mul-

tiplayer as a core game element from

the beginning of the project. This lack

of interest inevitably results in problems

as multiplayer systems take a backseat

to the development of the single-player

technology. As a result, our multiplayer

components are less than they can or

should be.

Lessons Learned
(and Relearned)

A lthough FREEDOM FORCE was Irra-

tional’s second published title, the

process of building it felt very much like

a first project. Many of the problems we

encountered have been identical to those

encountered in developing SYSTEM SHOCK

2. These are not the kinds of problems

that are enjoyable to encounter more

than once.

One core lesson I have taken home

from this project is the tremendous

importance of psychological factors.

Developers are human beings, not face-

less automatons. Keeping people happy

and motivated is difficult, but it is also

the most important task for anyone

w w w . g d m a g . c o m 49

The character tool with a generic model
released entirely for fan-made custom skins.

A city layout in 3DS Max.

hat is the role

of technology

in games?

There is con-

ventional wis-

dom in the

game industry that games and game

designs should not be based on technolo-

gy, especially if we are ever going to be

seen as a true art form. I’d like to chal-

lenge this wisdom.

I take it as a given that games are —

or at least have the potential to be — an

art form on par with literature, film,

music, visual arts, and the rest. We

might squander this opportunity, but I

am confident we have the potential. As

many have said before, we resemble film

in the early 1900s: disrespected as mind-

less popular entertainment. Sadly, we

live down to that expectation all too

often. However, someday, someone will

design the game equivalent of D.W.

Griffith’s Birth of a Nation, and the

world — like it did with film in 1915 —

will take notice of what’s really possible

with games.

Music is completely different from

painting, and games will be different

from the other art forms as well. This is

why the Hollywood people who occa-

sionally try to overrun us always fail:

they don’t understand our medium and

its strengths and weaknesses.

What is so different about games? The

answer is clichéd and appears in a lot of

dot-com business plans, but it’s the

truth: interactivity. The computer under-

lying all of our games offers us the abili-

ty to dynamically respond to the player,

and that’s something no other art form

can touch.

If interactivity is the key differentiator

of our form, then it behooves us to

understand it. I’m not going to step into

the morass of defining interactive and

noninteractive, and certainly not good

interactivity versus bad interactivity, but

it’s clear that interactivity is inherently

algorithmic at its core. There is a set of

inputs (the current state of the world,

the actions of the player, and so on), a

system that decides what outputs to pro-

duce from the inputs (have an NPC kiss

the player, have an NPC shoot the player),

and a set of those outputs (the rendering

of the smooch, a bit of text saying,

“You’re dead”).

S O A P B O X c h r i s h e c k e r

m a y 2 0 0 2 | g a m e d e v e l o p e r56

continued on page 55

W

Art, Game Design,
Programming, and

Technology

Ill
us

tr
at

io
n

by
 B

en
 F

is
hm

an

S O A P B O X

w w w . g d m a g . c o m 55

The algorithm that decides what to do

at any given moment has to be described

to the computer. Depending on the com-

plexity of the algorithm, there are many

ways of doing this, ranging from having

some high-level visual flowchart system

where designers connect boxes with inputs

and outputs, all the way down to writing

assembly code on a DSP.

However simple these descriptions may

seem, they’re all computer programming,

and this is the inescapable fact of embrac-

ing interactivity and games: You must tell

a computer how to respond to the various

inputs, and you tell a computer how to do

things via programming.

Getting back to the conventional wis-

dom that games shouldn’t be founded on

technology, if I regard “technology” as

“programming,” then games are founded

on technology, as they must be. I’m not

saying games should be founded on fancy

graphics tricks, as is so often the case

these days. However, designing and tuning

the algorithms at the heart of the game —

how it reacts to the player and how

proactive it is — should be the fundamen-

tal task of game design. These algorithms

determine how the game feels to play.

Which leads me to my next heretical

statement: Game designers must learn to

program.

Still with me? No, I don’t mean that

every game designer has to be a C++ wiz-

ard who dreams in curly braces, but game

designers must be able to think and solve

problems algorithmically and have a very

clear understanding of what’s easy and

what’s hard to do on a computer. Sure,

game designers can tell programmers what

to implement, but, as all programmers

know, there’s a world of difference

between “what to implement” and “how

to implement.” The more vague the

description of the “what,” the more deci-

sions get made during the “how.” Those

decisions directly affect the gameplay. The

more precise the designer is with the

description, the closer he or she comes to

real programming, and the more control

he or she has over the game design itself.

Learning to think algorithmically is not a

burden for game designers. On the con-

trary, it liberates designers from the whims

of programmers.

As my colleague Jon Blow once put it,

programming is the last mile of game

design. It grows to be much more than

just the last mile when we begin to consid-

er game designs that are not built of sim-

ple, hard-coded paths but are procedural

by their very nature.

Eventually, the graphics engine will not

be a differentiating factor. All that will

matter is the algorithms that make one

game play differently from another. Those

algorithms must be designed. To the game

designers who want to do more than tune

the damage a weapon inflicts, to designers

who want to take games into the realm of

interactive storytelling and richer emotion-

al experiences, I say: Study up. The art

form needs you. q

CHRIS HECKER | Chris (checker@d6.com)
is editor-at-large of Game Developer.

continued from page 56

I am certainly not the first person to say
all this stuff. Chris Crawford, for example,
has been talking about this since 1987,
as you can see in the excellent library of
his writings from the old Journal of
Computer Game Design:

www.erasmatazz.com/Library.html
Also, Richard Rouse did an excellent
Soapbox in April 2001 about the
advantages of being a designer/program-
mer; you can read that at:

www.gamasutra.com/features/
20020222/rouse_01.htm

Game designers
must be able to
think and solve

problems algorith-
mically and have a
very clear under-

standing of what’s
easy and what’s
hard to do on a

computer.

F O R M O R E I N F O R M AT I O N

	04gameplan
	06indwatch
	08prodrev
	14profile
	16innerp
	21artview
	26betterby
	28soundp
	30f-theodore
	36f-hind
	44postmort
	56soapbox

	return:

