
MAY 2000

G A M E D E V E L O P E R M A G A Z I N E

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228 w: www.gdmag.com

Publisher
Jennifer Pahlka jen@mfgame.com

EDITORIAL

Editorial Director
Alex Dunne adunne@sirius.com

Managing Editor
Kimberley Van Hooser kvanhoos@sirius.com

Departments Editor
Jennifer Olsen jolsen@sirius.com

News & Reviews Editor
Daniel Huebner dan@mfgame.com

Art Director
Laura Pool lpool@mfi.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Mel Guymon mel@infinexus.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed id Software
Dan Teven Teven Consulting
Rob Wyatt Microsoft

ADVERTISING SALES

National Sales Manager
Jennifer Orvik e: jorvik@mfi.com t: 415.905.2156

Account Executive, Silicon Valley
Mike Colligan e: mike@mfgame.com t: 415.356.3486

Account Executive, Northern California
Dan Nopar e: nopar@mfgame.com t: 415.356.3406

Account Executive, Western Region and Asia
Darrielle Sadle e: dsadle@mfi.com t: 415.905.2182

Account Executive, Eastern Region and Europe
Afton Thatcher e: athatcher@mfi.com t: 415.905.2323

Sales Associate/Recruitment
Morgan Browning e: mbrowning@mfi.com t: 415.905.2788

ADVERTISING PRODUCTION

Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Kevin Chanel

Reprints Stella Valdez t: 916.983.6971

MARKETING

Marketing Manager Susan McDonald

Marketing Coordinator Scott Lyon

CIRCULATION

Vice President/Circulation Jerry M. Okabe

Assistant Circulation Director Kathy Henry

Circulation Manager Stephanie Blake

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Pam Santoro

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

CORPORATE
President & CEO Gary Marshall
Corp. President, Business Tech & Channel John Russell
President, Business Technology Group Adam Marder
President, Specialized Technology Group Regina Ridley
President, Channel Group Pam Watkins
President, Electronics Group Steve Weitzner
General Counsel Sandra L. Grayson
Vice President, Creative Technologies Johanna Kleppe
General Manager, CMP Game Media Group Greg Kerwin

W alt Disney once said,
“People spend money
when and where they
feel good,” and even

in these days of shopping from web
sites, I think his observation still holds
true. For me, Amazon.com was such a
place for a number of years. For a long
time I enjoyed the site and spent quite
a bit of money on books and movies
there. But recently that changed. I
joined the Amazon boycott.

Back in 1997, Amazon decided to file
a patent on “one-click ordering.” This is
a system whereby you select an item to
purchase, and using a unique identifier
on your computer (like a cookie), the
server takes you to a checkout screen
containing your previously-entered
identification, greatly simplifying the
transaction for the customer. Amazon
received the patent for this system last
fall (U.S. Patent Number 5,960,411).

The fact that this patent was award-
ed speaks little (or perhaps volumes)
about the patent office. It’s my opinion
that this government agency, like
many others, is underfunded, under-
staffed, and will probably continue to
blunder along as technology zooms
ahead. So don’t be surprised if we con-
tinue to see other idiotic patents
awarded in the future.

That’s the government’s excuse.
What about Amazon? On one hand, I
can see a company wanting to stake a
claim on a process as a defensive move.
After all, if someone’s going to snag a
patent that affects your business, and
philosophically you detest software
patents, common sense dictates that
it’s better you than your competitor.
(As someone once told me, “If you’re
not part of the problem, you’re getting
screwed.”)

But Amazon demonstrated that it
wanted the patent for more than just
an insurance policy. Within a week of
being awarded the “one-click” patent,
Amazon promptly sued its arch rival,
BarnesandNoble.com, for patent
infringement. Right out of the chute,
Amazon used the patent as an offensive
weapon. More recently in February,
Amazon locked up a patent on Internet

affiliate programs in which associate
web sites are given a commission for
each referral to Amazon. It’s not clear
how aggressively the company plans to
enforce that patent, but given its track
record, I’m not optimistic.

If you’re wondering what Amazon’s
patent has to do with game develop-
ment, look around you. Any patent that
puts a stranglehold on Internet com-
merce affects the games business. Selling
games direct over the web is big busi-
ness for game publishers, and if this sort
of ridiculous patent is any indication of
e-commerce’s future, we’re all in for a
rough ride. This patent stampede has
plenty of potential to trample us all, and
whether or not you believe that Ama-
zon will bully your company tomorrow,
imagine if the next e-commerce patent
— let alone one governing a well-estab-
lished in-game process — is snagged by
your direct competitor.

It’s possible, even probable, that
many Internet patents being awarded
today won’t hold up in court. But since
the high cost of defending a patent case
naturally favors large companies who
can afford protracted court battles, it’s
the little companies that are most
threatened by the rush to patent mun-
dane computational processes. Burgeon-
ing game development companies
should spend their money developing
games, not on lawsuits brought on by
deep-pocket corporations.

I urge you to raise your voice against
Amazon and other companies who use
our overwhelmed patent office to claim
ownership of well-understood and wide-
ly used techniques. Tim O’Reilly (presi-
dent and CEO of computer book pub-
lisher O’Reilly & Associates) posted an
excellent open letter to Amazon CEO
Jeff Bezos, which you can read and add
your name to at http://perl.oreilly.com/
cgi-bin/amazon_patent.comments.pl. I
urge you to lodge your protest against
Amazon, and also to hit the company
where it really hurts: in the wallet. Buy
merchandise elsewhere, and don’t sell
your games through the site. ■

G A M E D E V E L O P E R M A Y 2 0 0 0

2

P L A NG A M E

Amazon.com:
Part of the Problem

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

Game Developer

magazine is

BPA approved

h t t p : / / w w w. g d m a g . c o m M A Y 2 0 0 0 G A M E D E V E L O P E R

New Products
by Daniel Huebner

Maya 3 Announced

ALIAS|WAVEFRONT has announced the
fifth major release of its Maya 3D ani-
mation and visual effects software.
Maya 3 includes a new feature called
Trax, designed to benefit game artists
who need to edit large amounts of
motion capture data or mix together
multiple animation sequences of the
same character in a nondestructive,
hierarchical, and time-independent
manner. Trax allows developers to
manipulate and blend animation in a
way that can be reproduced in final
game play, allowing subtle changes to
motion capture data while leaving the
original data intact.

In addition to Trax, other new fea-
tures in Maya 3 include the full inte-
gration of Maya’s subdivision surface
tools into the animation and rendering
pipeline. Maya 3 also introduces a
completely new polygonal architecture
that is more efficient in terms of speed

and memory, and capable of support-
ing a much wider variety of polygonal
topologies. A new Bézier surface editor
provides full access to curved surface
representation.

Maya Complete 3 will be available
this summer for IRIX and Windows
NT. Prices are expected to start around
$7,500.
■ Alias|Wavefront

Toronto, Ontario, Canada
(416) 362-9181
http://www.aliaswavefront.com

Nuendo for Postproduction

STEINBERG released its Nuendo Media
Production System, a modular system
centered on an audio software applica-
tion that integrates seamlessly with
several software and hardware acces-
sories. Nuendo is a 128-track audio
recording facility and a complete 128-
channel audio mixer, which supports
surround sound in impressively flexi-
ble ways. The system can be configured
for any surround format, including 5.1
and 7.1, and users can create their own
setup or use a standard configuration
from Nuendo’s library. Nuendo features

up to 200
tracks of 24-
bit, 96KHz
digital audio,
advanced sur-
round mix-
ing, a video
track, and
MIDI tracks,
along with
comprehen-
sive functions
for digital
audio. Nuen-
do uses exclu-
sively native
signal pro-
cessing with
no DSP chips
needed. Every

function is run from the computer’s
host processor.

Nuendo is available for Windows 98
and NT, and Steinberg also plans to
release a version for BeOS in the near
future. Pricing for Nuendo starts at
$1,295.
■ Steinberg North America

Chatsworth, Calif.
(818) 678-5100
http://www.us.steinberg.net

Animal Logic’s Maxman Plug-in

ANIMAL LOGIC has created Maxman, a
plug-in that allows 3D Studio Max
users to output their content directly
to Pixar’s Renderman package as a ren-
dering alternative.

Maxman produces a Renderman
.RIB file from a 3D Studio Max scene
while preserving all geometry, anima-
tion, and texture data and allowing
the assignment of Renderman shaders.
The Maxman suite of fully integrated
and interactive plug-ins includes a
top-level interface for 3D Studio Max,
a set of modifiers, and materials and
maps with which Renderman users
can manipulate the finer details of the
.RIB creation sent to Renderman.
Maxman integrates into 3D Studio
Max using standard scene controls.
Renderman shaders are supported in
all contexts, including global atmos-
phere, light, displacement, volume,
and surface, with full integration of
their parameters into the Max anima-
tion system.

Maxman can be used with Pixar’s
Renderman Toolkit, BMRT, or other
Renderman-compliant renderers, and
support for RenderDotC is forthcom-
ing. User licenses for the full version
start at $2,000 for Windows NT 4 and
3D Studio Max 3.1.
■ Animal Logic

Sydney, Australia
+61 (2) 9383-4800
http://www.animallogic.com

New Products: Alias|Wavefront intro-
duces Maya 3, Steinberg releases Nuen-
do, and Animal Logic offers Renderman
output to Max users. p. 7

Industry Watch: Sony and Nintendo
try to out-convenience each other in
Japan, Connectix bests Sony in court,
and Bonnell takes over at GT. p. 8

Product Review: David Stripinis
looks at two facial animation tools,
Famous Technologies’ Famousfaces and
Lipsinc’s Echo. p. 10

News from the World of Game Development

7

The Nuendo Media Production System harnesses the power of
your host processor, eliminating the need for DSP chips.

B I T B L A S T S - I N D U S T R Y W A T C H

Industry Watch
by Daniel Huebner

FINAL FANTASY VIII AND SOME BEEF
JERKY, PLEASE. Both Sony and Nin-
tendo have made moves to place their
products in Japan’s ubiquitous corner
stores. Playstation.com, Sony’s online
hardware and software sales site, counts
7-Eleven of Japan among its group of
11 investing companies, giving Sony
sales and distribution access to 7-
Eleven’s 8,000 retail locations across
Japan. Nintendo matched the move by
purchasing a three-percent stake in
Japanese convenience retailer Lawson,
granting Nintendo access to 7,000
Lawson outlets. Both arrangements will
include on-site sales of hardware and
software and the option for Japanese
customers to pay for and take delivery
of products ordered online.

GRAPHICS WARS RAGE ON. Leading
contenders in the hardware accelera-
tion wars ended the fiscal millennium
on decidedly different notes. Nvidia’s
fourth quarter revenues increased 96
percent to $128.5 million from fourth-
quarter totals a year earlier. Net
income for the quarter doubled the
previous year’s result, increasing to a
company record of $14.6 million. For
the entire fiscal year, revenues rose
137 percent to $374.5 million, while
net income for the year increased 822
percent to $38.1 million. The numbers
posted by 3dfx were less rosy. Though
3dfx’s fourth-quarter revenues rose
this year from $60.7 million in the
fourth quarter last year to $109.4 mil-
lion this year, the company recorded a
quarterly loss of $31.9 million as
opposed to a profit of $2.1 million in
the same period a year ago. Revenues
for the entire year of 1999 went up to
$360.5 million compared with 1998’s
total of $202.6 million. Losses, howev-
er, increased to an astounding $63.3
million compared with earnings of
$21.7 million in 1998.

RECENT ACQUISITIONS. ATI Technolo-
gies has entered into a definitive deal
to acquire graphics chipmaker ArtX for
approximately $400 million in ATI
common shares and options. The
acquisition helps move ATI into new
consumer markets; in addition to

developing graphics chips for DVD
players and Internet terminals, ArtX is
the provider of graphics technology
for Nintendo’s upcoming Dolphin
console. ArtX founder Wei Yen has
joined the ATI board of directors, cur-
rent ArtX president Dave Orton took
the newly-created title of president
and COO of ATI Technologies, while
ATI’s K.Y. Ho will continue as CEO and
chairman.

Electronic Arts went on a buying
spree of its own, buying game maker
Dreamworks Interactive. Under the
terms of the agreement, Dreamworks
Interactive will become a wholly-
owned subsidiary of Electronic Arts
while continuing to produce titles
related to Dreamworks SKG properties.
The company, originally founded as
joint venture between Dreamworks
SKG and Microsoft, has been publish-
ing with EA for the past two years.
Terms of the sale were not disclosed.

UNDER NEW MANAGEMENT. Info-
grames chairman and CEO Bruno Bon-
nell has taken up the reins at GT Inter-
active as chairman and CEO. Bonnell is
filling the positions left vacant by the
departures of GT CEO Thomas Hey-
mann and COO John Baker. Los
Angeles–based Heymann and Baker
both decided to leave in part because
of the company’s decision to remain
headquartered in New York.

The moves follow Infogrames’ acqui-
sition of a 70 percent stake in GT, and
could signal the start of Bonnell’s efforts
to merge the two companies. GT Inter-
active’s third-quarter results were short
on bright spots as the company
announced net losses of $118 million
for the quarter, while revenues slipped
to just $102 million. Though GT blames
the quarter’s slump on a light release

schedule, as much as $89 million of the
quarter’s loss can be attributed to
charges incurred from restructuring and
reorganization related to the acquisi-
tion. GT’s reorganization includes an
end to its European operation, folding
its budget publishing business, and the
closure of TOTAL ANNIHILATION developer
Cavedog Entertainment.

CONNECTIX WINS APPEAL. Playstation
emulator maker Connectix has won
the reversal and remand of a court
injunction banning the sale of its Vir-
tual Game Station for Macintosh. Sony
had contended that the Virtual Game
Station infringed on Sony copyrights,
especially in relation to the Playstation
BIOS (basic input/output system), and
tarnished the Playstation reputation.
Connectix, backed by software makers
and trade associations, argued that
they had the right to replicate non-
copyrightable functional elements
including a reverse-engineered BIOS.
The court agreed, and recognized Con-
nectix as a legitimate and innovative
competitor. Connectix plans to begin
shipping the Macintosh Virtual Game
Station immediately and a Windows
version soon after. ■

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w. g d m a g . c o m

8

PC Data Trends 2000

THE W HOTEL
San Francisco, Calif.
June 8–9, 2000
Cost: early-bird rates available
http://www.pcdata.com/

conferences

MedPi Software 2000

CONGRESS CENTER AND
AUDITORIUM MONACO

Monte Carlo, Monaco
June 28–30, 2000
Cost: variable
http://www.unmf.fr/anglais/

home-a.html

UPCOMING EVENTS

CALENDAR

ATI’s Ho (left) and ArtX’s Orton seal
the deal.

PRN

B I T B L A S T S - P R O D U C T R E V I E W

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w. g d m a g . c o m

10

Facial Animation
with Echo and
Famousfaces

by David Stripinis

Until recently, facial animation
wasn’t an issue in game produc-
tion outside of prerendered

cutscenes. Memory limitations prevent-
ed large-scale facial animation, while
polygon budgets often kept characters
from even having lips, never mind lip-
synched dialogue. The advent of next-
generation platforms like Sony’s Play-
station 2 and Nintendo’s Dolphin
promise capabilities that will make
these limitations nearly immaterial. The
downside of this is that as producers
and designers begin to promise publish-
ers hours of detailed facial animation,
the animators sit in abject horror. While
the thought of doing hours of facial ani-
mation may appeal to some, the sheer
scope of such a task sends many anima-
tors running and screaming to the hills.
As technical limitations evaporate,
ambitions grow and production sched-
ules shrink. Animators looking for
viable solutions for streamlining this oft
tedious process would do well to exam-
ine two pieces of software: Echo from
Lipsinc and Famous Technologies’
Famousfaces.

ECHO works via voice
analysis. The user pro-

vides audio files of dialogue, and Echo
breaks the voice track into keyframe
data and writes that data into a simple
text file. This data can then be read
directly by a game engine to provide
on-the-fly animation data, or anima-
tors can use it to hand-animate char-
acters.
INTERFACE. On first starting the pro-
gram, you are presented with a very
simple interface. A text window gives a
status report of all options currently
set, but not much else. The only way
to change program options is by edit-
ing the .INI file directly. While this
may provide some with a sense of secu-
rity that users will not mess up the

data coming out of
Echo, I found it
quite cumbersome.
A simple Prefer-
ences menu would
have been wel-
come. Once the
options are set,
however, using the
program could not
be easier. The user
simply has to drag
a selection of audio
files onto the Echo
window, and the
analysis is done in
a batch process.
WORKFLOW. Output
is provided as a text file with a .SYNC
extension. There are three flavors of
output: flipbook, dopesheet, and
viseme curve. With both the flipbook
and dopesheet options you can speci-
fy either viseme or phoneme output.
The viseme curve output is limited
only to visemes. The program sup-
ports 16 visemes and 41 phonemes,
the choice of which is controlled in
the .INI file. This may seem confusing
to animators familiar with the “clas-
sic” mouth shapes used for lip-synch-
ing, which are commonly referred to
as phonemes; in Echo, “viseme” is the
comparable term. The 16 visemes are,
by default, referred to by a rather con-
fusing set of words that approximate
the mouth shape of the viseme. The
mapping can be changed in the .INI
file, including mapping multiple
shapes to a single shape. The larger set
of phonemes provides a much more
detailed analysis report, though that
amount of detail is largely unneces-
sary for most applications.

The simplest of the three output
options is the flipbook. It outputs a
time index and a viseme name. The
time, in milliseconds, indicates at what
point from the beginning of the sound
file a phoneme or viseme begins. It is
the least complicated of all the output
options, and is possibly the format
most suited for direct use in real-time
applications.

For animators, a more familiar out-
put option is the dopesheet. This for-

mat is very similar to a traditional ani-
mator’s exposure sheet, listing frames
and mouth shapes. If you have no way
of automatically inputting the Echo
output files into your software, the
dopesheet format will most likely fill
your needs quite well.

The most robust output option of
the three is the viseme curve, which
lists every viseme, including detailed
information for each key. It lists frame
time, keyframe value in a percentage,
and spline values in and out of that
key. For ambitious animation systems,
this data can be read directly into the
real-time engine. This is also the most
useful for reading into 3D animation
software.

If none of these options works for
your application, Lipsinc does offer
customization options. You can contact
them for more details regarding your
circumstances.

Overall, I found the output from
Echo to be very accurate, especially
when using the optional text compan-
ion files to remove all ambiguity as to
what is being said. The analysis can be
too accurate, in fact, providing too
much detail and resulting in an overly
busy animation. Echo also does not
take into consideration any of the
emotive qualities of the vocal perfor-
mance, and cannot handle full facial
animation, only lip-synching.

FAMOUSFACES, from
Famous Technologies,

offers a completely different approach.
It is a stand-alone Windows NT appli-
cation dedicated to facial animation
and plug-ins for a variety of popular
animation packages are also available.

David Stripinis is director of animation at Factor 5. When not rambling on about the
sociopolitical ramifications of next-generation platforms, he can be found at his comput-
er, desperately trying to finish his short film India. Contact him at david@factor5.com.

Echo’s user interface.

Excellent Very Good Average PoorBelow Average

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w. g d m a g . c o m

12
Famousfaces works by facial capture, a
process very similar to motion capture.
A performer’s face is rigged with a
number of reflective markers and
videotaped. This data is then read in
and tracked, producing the animation
data while the voice recording is being
done. Famousfaces supports both full
3D point tracking and 2D image track-
ing in the FamousTracker software that
is included.
INTERFACE. I was very pleasantly sur-
prised by the Famousfaces interface
when I first opened it up. It was very
clean and would be familiar to any ani-
mator working with the current gener-
ation of 3D software. A main window
holds the 3D viewport, the menu and
command panels sit along the top and
right side, and a time slider rests along
the bottom. Navigation in the 3D
viewport was very intuitive to me as a
Maya user, using a combination of
mouse clicks to pan, zoom, and rotate.
Actually, it may have been a little too
familiar, as I found myself getting frus-
trated trying to use the Maya com-
mands in Famousfaces. Too much of a
good thing, I suppose.
WORKFLOW. Famousfaces works by
importing a model via a variety of
object formats and applying clusters
to the face. Clusters are collections of
vertices controlled by a common
point, influenced by the controlling
cluster points by varying percentages.
These clusters are quite intuitive to set
up using a painting tool to control
the weighting of each cluster point.
These points are then driven by ani-
mation channels derived from your

captured data, and
may be edited and
tweaked using a
familiar suite of
keyframing tools.
The software
allows you to view
the video of the
capture session
linked to your
playback and time-
slider scrubbing,
giving you the
ability to check
the integrity and
quality of your
animation.

One of the best
features of
Famousfaces is the

Enabler plug-ins, which allow you to
integrate Famousfaces into Maya, 3D
Studio Max, Softimage, and Light-
wave. Famousfaces integrates itself
into each program’s particular work-
flow, for example running as a Maya
Embedded Language (MEL) script in
Maya while appearing as a modifier in
3D Studio Max, allowing artists to go
back and forth relatively seamlessly
between Famousfaces and their soft-
ware of choice.

The quality of the animation pro-
duced by Famousfaces, even using a
simple 2D track of a video, is quite
stunning. Even more impressive is the
full 3D capture that can be achieved
via multi-camera setups. I was really
amazed by the subtlety of motion
achieved in such a short period of

time. I managed to set up the clusters,
track the video, and apply the motion
in a just few hours. After I familiarized
myself more with the product, the
process was even faster.

The quality of data may be the
major shortcoming of Famousfaces. It
works by pure vertex deformation, not
by using weighted morph targets. This
means that in real-time applications a
large amount of data must be streamed
into the animation engine, which may
cause some problems.

Overall, I found Famousfaces to be
quite viable in a production environ-
ment. While it comes with all the bag-
gage and hassles generally associated
with motion capture, such as data
management, animation data density,
and the need for input hardware, the
results are worth the hassle. Being able
to create animation of this quality and
detail with such speed and ease should
be a welcome blessing to animators
everywhere.
GETTING A HANDLE ON YOUR WORKLOAD.
Facial animation in games is here to
stay and it will only get more complex
as time, technology, and expectations
move inexorably forward. Animators
must find viable solutions to stream-
line the process if they are to keep on
schedule. Lipsinc and Famous Tech-
nologies provide tools that help,
though neither product has yet
achieved perfection. In the end, I
found both still required some massag-
ing of data and an animator’s skilled
hand, but they were extremely helpful
to the animation process. ■

Lipsinc
Cary, N.C.
(919) 468-7005
http://www.lipsinc.com

Price: Licenses start at $10,000.

System Requirements: Windows 98/NT 4,
Pentium II, and 64MB RAM.

Pros:
1. Variety of output formats and customization.
2.Simple to use, especially while batch

processing.
3. Very accurate analysis.

Cons:
1. Only derives speech; emotion is left to the

animator.
2.Configuration options not easily accessible.
3. Output can be too busy.

Famous Technologies
San Francisco, Calif.
(415) 835-9445
http://www.famoustech.com

Price: $4,990

System Requirements: Suggested requirements
include Windows NT, 330MHz Pentium III,
256MB RAM, and OpenGL acceleration.

Pros:
1. Highly detailed full facial animation.
2. Intuitive interface.
3. Easy integration with other 3D software.

Cons:
1. Cost of equipment for capture.
2. Density of data.
3. Facial animation can’t be done until final

dialogue is recorded.

Echo: Famousfaces:

Setting up clusters with Famousfaces.

b y J e f f L a n d e r G R A P H I C C O N T E N T

Games are getting pretty good at cre-
ating believable and immersive 3D
game worlds. Graphics hardware has
enabled multi-texture lighting tech-
niques and higher polygon counts,
greatly improving the environments
where we play. It’s not uncommon for
a person passing by a computer moni-
tor or television screen to mistake a
game environment for a video broad-
cast or a still photograph of some real
place.

There are few people, however, who
would mistake a 3D animated character
for a real person. In the early days of
3D games, it was sometimes even hard
to tell what a character was supposed
to be. Now that computing power has
enabled us to create more realistic-
looking characters, we need to make
these creations come alive. It is not
enough that the character looks as
good as a still rendering. Characters
need to have what Frank Thomas and
Ollie Johnston of Disney called “the
illusion of life.”

Creating the Illusion

One of the great challenges that an
animator faces is giving a model

the appearance of life. Creating a walk
cycle for a character where the feet
move correctly and do not slide will
not make it come to life. A good ani-
mation will give the character a sense
of weight, purpose, and emotion,
attributes which must be individually
crafted for each character. This is one
of the pitfalls many encounter when
using motion capture to generate ani-
mation. It would seem that when cap-

turing the performance of a live per-
son, you would get all the subtle
nuances that gives the person life. To
some extent that’s true. However, what
you are capturing is the performance of
an individual of a particular size and
type operating under certain physical
limitations. These limitations affect the
range of reality the actor can impart on
a character.

An interesting example of this was a
visual effects company that needed to
create a superhero. They hired a very
talented stuntman and attached him
to various harnesses and had him
leap, roll, pose, strut, and fight all
over a stage while the performance-
capture cameras were rolling. Unfor-
tunately, when the motion was
applied to the hero model, instead of
looking like a superhero it looked like
a guy hooked up to a harness jumping
around. This is because the equipment
accurately captured the performance

of this person. He was an actor, not a
superhero. He didn’t move the way we
expect a superhero to move, and the
company ended up hiring a group of
animators to bring this superhero to
life. Sometimes even captured reality
is not enough to make a work of art
come to life.

Winkin’, Blinkin’, and Nod

One of the things that can kill the
illusion of life very quickly is to

have a dialogue with a character star-
ing at you continuously without ever
blinking. This is very distracting, as we
are very obviously accustomed to talk-
ing with people who blink occasional-
ly. When this doesn’t happen, it’s
immediately apparent that something
is wrong. So, an easy step toward mak-
ing your characters more realistic is to
allow them to blink.

h t t p : / / w w w . g d m a g . c o m M A Y 2 0 0 0 G A M E D E V E L O P E R

15

To Deceive is To Enchant:

Programmable Animation

W hen we create a game, we create an illusionary world for the

player. Hopefully this world is so rich and alive that the player

may actually begin to believe in the existence of this game

world. As game makers, we are in the business of creating life.

Jeff is becoming more and more concerned about what procedural functions are con-
trolling his thoughts. If you are the one actually in control, drop him a line and let
him know what is really going on at jeffl@darwin3d.com.

F I G U R E 1 . Programming a blinking animation can add realism to a character.

In a low-polygon model, there may
not be polygons allocated to the eyes
that would make a blink possible. In
this case, it’s possible to use texture
animation to make a blink happen.
This has been done in a few 3D games
(GRIM FANDANGO, for example). How-
ever, if I really want to create expres-
sive characters that can show a range of
emotions, I need a model with enough
facial polygons to convey the expres-
sions I want. I could hand-manipulate
the eyes throughout all of my anima-
tions, including an idle cycle. But this
would mean the blinks would always
happen at the same time in the cycle
and it may look canned. Why not ani-
mate the eyes automatically through
the game engine?

If you read my column on real-time
facial animation (“Flex Your Facial
Animation Muscles,” Graphic Con-
tent, July 1999), you may remember
that I advocated creating a series of
facial morph targets that simulated
the actions of the facial muscles. In
this system, there is one muscle that
controls the closing of each eye. By
activating these two muscles, I can
make my character blink whenever I
want. It may seem overkill to have
each eye individually controlled
instead of having one action that clos-
es both eyes. However, if you want the
character to have the ability to wink,
you will need this flexibility. I also
don’t really care for synchronized
blinks. There are arguments over this
among animators, but I happen to
prefer it if the eyes do not close at the
exact same time. I like the eyes to

close just off a half-frame or so. Creat-
ing my models with separate muscle
targets gives me this flexibility.

Anyway, assume I have a model with
individual muscle targets for closing
the left and right eye. The muscle set-
tings go from 0 percent (open) to 100
percent (closed). I know that I general-
ly want the blinks to happen every four
to ten seconds and each blink should
take only two to three frames to com-
plete. This gives me the outline for a
procedural blinking model:

1. Pick a random number from 90 to
300 that signifies the number of
frames until the blink begins
(three to ten seconds at 30FPS).

2. Every frame, count that number
down until it hits 0.

3. Pick a random number from 30 to
50 for each eye.

4. Add that number to each eye mus-
cle, limiting to 100 percent.

5. Subtract that number from each
eye to get back to 0.

6. Start over at step 1.
You can see a sample blink sequence in
Figure 1.

This procedural sequence can run as
part of my animation loop without any
other controller. As the actual morph-
ing system is part of the standard facial
animation system, the blinking gener-
ates very little overhead.

This idea of a procedural function for
generating motion can go beyond sim-
ple blinking. When people are standing

idle, their attention drifts. They look
around to get a sense of the surround-
ing environment. Likewise, a character
in a game should not stare rigidly for-
ward waiting for input from the player.
If your facial controller allows you to
orient the eyes, you can apply the same
techniques as the blink function to
make the character look around a little.
Obviously, if the character is actually
looking at an object or a person, this
look-at constraint would override the
random eye-wandering behavior. Simi-

lar random facial effects can easily be
crafted to move the eyebrows and
mouth slightly, giving the character
even more life.

The game AI can also drive the char-
acter animation system automatically.
For example, the AI system may track
many of the character’s various attrib-
utes such as fatigue level, mood, and
physical pain. Facial expressions can be
crafted to exhibit these various traits
automatically as the AI system changes
them. This not only adds realism to the
game, it provides a secondary feedback
mechanism to the player.

Looking Beyond the Face

W hile simple facial adjustments
can do a great deal to break a

character’s wooden stare, something
needs to be done with the static poses.
An idle animation or two can help a
great deal. However, these animations
are usually cyclical and the pattern is
easy for players to detect. Adding some
procedural noise to these standard ani-
mations can help a lot. If your anima-
tion system is composed of a character
that is deformed by the use of a skeletal
system, these kinds of on-the-fly modi-
fications are easy to implement. For
one thing, you could add a little ran-
dom rotation to the head joint to
match the wandering gaze of the pro-
cedural eye controller. If there is a bone

controlling the finger rotation, the
character’s grip can be relaxed and
tightened, which people often do
when they are waiting around for
something to happen.

I have often found it useful to create
special bones in the character skeleton
specifically for these sorts of custom
procedural effects. One example is lit-
erally breathing life into a game char-
acter. In my column on skeletal defor-
mation techniques (“Over My Dead,
Polygonal Body,” Graphic Content,

G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

16

F I G U R E 2 . People tend to look
around their surroundings when idle.

A character in a game should not

stare rigidly forward waiting

for input from the player.

October 1999), I discussed the use of a full transformation
matrix to deform a 3D character. A side benefit of this tech-
nique is the ability to use transformation components
beyond simple rotation. A bone can also be translated and
scaled to deform the character. Though it may not be obvi-
ous when these techniques are useful, this is one of those
cases. Suppose I made a child bone of the chest and called it
“breastbone.” I could then attach the vertices at the front of
the chest to this bone. By cyclically scaling this bone up
and down, I can give the character the appearance of
breathing. Say my character normally breathes 12 times a
minute and this goes up to 20 times a minute when the
character is very excited or fatigued. I can create a simple
procedural formula that will automatically create a breath
cycle in the game without using any animation. Something
like breastbone.scale = (sin(DEG2RAD(frame * 1.2)) / 4.0) + 1.25
will make the breastbone scale up from 1 to 1.5 once every
150 frames, or 12 times a minute at 30FPS. Increase that 1.2
to 2 and the character would breathe 20 times a minute.
You can see how formulas can easily be crafted that would
enable all kinds of automated behavior.

Ken Perlin has experimented more than most with using
procedural functions and controlled noise to generate ani-
mation. The Improv animation system, developed at New
York University’s Media Research Lab and since licensed to
Improv Technologies, uses controlled noise and a variety of
animation blending functions to create unique and believ-
able animation. The animation is controlled from a high
level using a scripting language. You can see a Java interface
to an Improv-driven facial animation performance in Figure
4. Improv Technologies is licensing its animation system for
game development applications.

Muscles Flexing

A procedural noise or cyclical animation effect can be
very interesting. However, sometimes an effect needs to

be the direct result of an action. For example, a strong char-
acter may have biceps that bulge as the character bends its
elbows. Just as I did with the breathing example above, I can

create a child bone of the upper arm and place it in the mid-
dle of where I desire the biceps “muscle” to appear. This log-
ical bone for the biceps is then associated with the vertices
along the top of the upper arm, exactly where the biceps
would appear. I just need to scale the biceps bone up a bit to
make the muscle bulge. In order to detect when I want this
to happen, I could watch the rotation of the forearm and
adjust the biceps as the forearm rotates. However, I really do
not want to create all this code to monitor the bones
involved in these effects. I just want it to happen automati-
cally.

In many 3D animation packages, you can create a struc-
ture called an “expression.” An expression creates a mathe-
matical link between two objects in the animation system. I
want to use this same idea to simplify my muscle-bulge situ-
ation. When the lower arm rotates around 120 degrees about
its local X-axis, I want the biceps to be scaled up to 1.5 of
their original size. An expression that performs this task may
look like bicep.scale = (forearm.rotX / 240.0) + 1.0.

As you can see, if the forearm is not rotated, the scale
would be one. When the bone rotates, the scale will
increase. Extra care needs to be taken to make sure that the
scale doesn’t go below one or get too great. However, this is
easy to accomplish with degree-of-freedom restrictions.

Effects similar to this can be achieved simply by animat-
ing the biceps directly along with the forearm. Unfortu-
nately, this will not work if the player can dynamically
pose the character through inverse or forward kinematics.
The use of expressions also saves animation space by elimi-
nating the need to store the data directly. And while this is
just a simple example, you can see that using expressions
to generate real-time animation data can be a very power-
ful tool.

Looking Around the Room

Many algorithmic techniques for animation cannot be
triggered simply by a mathematical expression or sto-

chastic procedure. They require some input from the user. A
simple example is the look-at constraint. When the player

G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

18

F I G U R E 3 . Trust me, this chest is heaving. Adding a breath-
ing sequence can enhance a character’s emotional response.

F I G U R E 4 . Improv Technologies’ system uses animation
blending functions and controlled noise for unique effects.

(or AI system) directs a character to
look at a location, this direction takes
the form of a request for an animation
solution that solves a geometry prob-
lem. Given a character who has a head
that can look at a limited subspace, we
need to find the orientation for that
head that points in the direction of a
target location.

Recall that a 3×3 orientation matrix
is composed of three orthogonal unit
vectors that define the local coordinate
axes of the rigid body. These vectors
are often known as the right (R), up
(U), and forward (F) vectors which
define the local X-, Y-, and Z-axes in
the right body. If I can determine the
direction for these three vectors, I can
combine them to form the orientation
matrix for the head of my character.

When the character looks at a loca-
tion, the head is aligning one of these
three axes with the vector between the
root of the head and the look-at target.
In my case, I have constructed the head
such that it normally looks down the
positive Z-axis. So to make the head
look at something, I create a vector
between the root and the target and
normalize it so it becomes a unit vector.
This defines the forward vector in the
above matrix, giving me one piece of
the puzzle. I know that generally I still
want the head to be aligned upright
along the original Y-axis. So for now, I
am going to set the U vector to be
(0,1,0). This may not be correct (the
look-at may cause the head to tilt a bit),
but for now it will be fine.

To determine the R vector, I am
going to use the fact that the cross

product of two vec-
tors is perpendicular
to them.

R = U × F
But I still need to fix
up U since my guess
may not have been
correct. This is easi-
ly accomplished by
crossing the F vec-
tor with the new R
to determine the
actual U vector.

U = F × R
That gives me all

the pieces to the
orientation matrix
and I can make the
head look at any
point in my 3D world. However, this
could lead to problems if the point is
behind the character. The head would
spin around like Linda Blair’s in The
Exorcist. In most cases, you will want
to have limits on look-at constraints so
the characters will only do what is
physically possible. For the head, I
probably want to restrict the character
so it can turn its head only 60 degrees
or so in each direction. In order to
make this happen using the above
method, I would need to take the ori-
entation matrix I calculated and con-
vert it to Euler angles and make sure
none of the angles was outside the
range of plus or minus 60 degrees.
That is kind of a pain and mathemati-
cally intensive so let’s take a look at
the problem in another way.

From a geometric perspective, the
problem of looking at an object can be
thought of as a two-degrees-of-freedom
problem. I want to find the angle
around the local Y-axis (or yaw) and
the angle around the local X-axis (or
pitch) that the head needs to rotate in
order to look at the target. I can solve
the problem by projecting the target
point onto the local XZ plane to deter-
mine the yaw, then projecting the tar-
get on the local YZ plane to determine
the pitch. Each of these steps then
becomes very easy. Figure 5 shows the
target position projected onto the XZ
plane.

I know from trigonometry that the
value for tanθ is equal to Tx/Tz. So I can
determine what yaw the head needs to
turn by taking atan(Tx/Tz). I can do the
same for the pitch using atan(Ty/Tz). If
those values are within the range of

motion for the head, the character can
animate to that position.

The Rise of the
Programmer/Animator

I think we are quite a ways from
being able to create complete,

believable, and interesting animations
programmatically for interactive 3D
characters. But an interactive charac-
ter is not like an actor in a video clip
or a 3D cutscene movie. In order for
this character to create the illusion of
life while the player interacts with it,
we need to accentuate the 3D model
with programmable animation tech-
niques. Through creative use of meth-
ods such as procedural animation and
programmable expressions, we can
supplement the basic animation with
interactive elements that react with
the game environment. In this
respect, game developers are clearly
treading across new ground. These
challenges and opportunities are
unique to interactive animation. How-
ever, this is certainly not the domain
of game programmers alone. Creating
tools and production procedures that
can get artists, with their creative
vision for the game characters,
involved in the process will be critical
if we are to deceive and enchant our
audience successfully. ■

Orientation

R U F

R U F

R U F

x x x

y y y

z z z

=

G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

20

θ

X

Z
T(x,z)

F I G U R E 5 . Projecting the target position.

Disney Animation
Thomas, Frank, and Ollie Johnston. The
Illusion of Life: Disney Animation. New
York: Hyperion Press, 1995.

Improv Technologies
For information on Improv see Ken
Perlin’s web site as well as Improv
Technologies’.
http://www.kenperlin.com
http://www.improv-tech.com

FF OO RR FF UU RR TT HH EE RR II NN FF OO

Thanks to Lisa Washburn at Vector
Graphics (http://www.vectorg.com) for
the model of Vivian used in the article.

Acknowledgements

b y M e l G u y m o n A R T I S T ’ S V I E W

will, in general, rise to take advantage
of the increased capability. In order to
accommodate this increased capability,
we have presumed that a shift in pro-
duction techniques is now or will soon
be appropriate, so that we as artists will
be able to plan for and take advantage
of this increased horsepower.

Of all the surfacing methods we’ve
examined, I identified the B-spline
patch surface to be one of the most
effective, and last month we took a
look under the hood at how to con-
struct and implement a RT3D patch
surface model using 3D Studio Max.
Since it’s unlikely that your job as an
artist ends there, we’ll round out our
discussion of surfacing techniques this
month by examining texturing and
animation methods for our B-spline
patch surfaces.

Task Breakdown:
Modeling, Texturing, Animating

In last month’s column, I demon-
strated the advantages, from a mod-

eling standpoint, of using a B-spline
patch. Following the guidelines of our
predetermined ideal process (that is,
using a control point lattice to sepa-
rate the modeling process from the
complexity of the final result, as
shown in Figure 1), we were able to use
the surfacing tools in 3D Studio Max
to create a resolution-independent
RT3D character model. And since the
technique we used was totally resolu-
tion-independent, we could scale the
complexity of the model instanta-
neously to generate an arbitrary num-
ber of levels of detail. The example

character we generated took only a few
days to create. By contrast, to arrive at
the same result using standard polygo-
nal methods would have required sev-
eral additional days’ worth of model-
ing time.

Though significant, the time saved
in generating the character geometry is
only one of the benefits of using a sur-
facing technique. The task of modeling
a character is by far the smallest and

least time-consuming part of the char-
acter creation process. The texturing
and animation setup for the character
can take anywhere from two to five
times the amount of time spent in
modeling the geometry. And, using
standard polygonal methods, the time
and effort spent in texturing and ani-
mation setup is directly proportional
to the complexity of the geometry. In
other words, the more complex the

h t t p : / / w w w . g d m a g . c o m M A Y 2 0 0 0 G A M E D E V E L O P E R

23

Skin Deep 3: Animating and

Texturing a Patch Surface

F or the past two months, we’ve been examining some of the latest and

greatest surfacing strategies for real-time 3D content. The motivation for

this has been the fact that as the rendering and processing power of gam-

ing platforms increases, the amount and complexity of gaming content

Mel Guymon has been animating in the gaming industry for several years. When he’s
not at his desk pushing polygons, he can usually be found at the local Barnes and
Noble, slumming for reference materials. Mel can be reached at mel@infinexus.com.

Polygonal Method Surfacing Method

High-Resolution
Polygonal Model

LOD 1LOD 2

LOD 3 etc.

High-Resolution
Polygonal Model LOD 1 LOD 2 LOD 3 etc.

Art Path

Run-Time Application

Low-Resolution
Primary Control Lattice

Surfacing Process

Art Path

Run-Time Application

F I G U R E 1 . Control point methodology.

character model, the longer it takes to
apply the mapping coordinates and
weight the character to its skeletal
hierarchy. In order for our chosen sur-
facing technique to be valid, we need
to make sure that the efficiency and
cost savings we saw in the modeling
tasks are fully realized in the texturing
and animation setup for the character
as well.

Texture Mapping

A mong the various production
tools, the processes for applying

a texture to 3D geometry are reason-
ably uniform. In general, a pregenerat-
ed texture map is applied first using a
global mapping object (planar, cylin-
drical, spherical, and so on), and sub-
sequent local modifications to vertex
UV coordinates are made by manipu-
lating the points on a 2D projection of
the geometry, as seen in Figure 2.
Although there have been some
advances with procedural textures and
spatial coordinate field mapping, the

steps and procedures for applying tex-
tures follow these basic guidelines.
And since the global mapping objects
offer only gross control over the UV
coordinates of the geometry, much of
the time and effort spent texturing the
model is used to tweak the local coor-
dinates directly, using one of the vari-
ous unwrapping tools available. So the
more vertices an object contains, the
more UV coordinates need to be
stored and manipulated, and the
longer it will take to apply and adjust
the texture mapping. Until the basic
techniques for texturing are changed,
the time and effort spent texturing
will be directly linked to the complex-
ity of the content. By implementing a
surfacing technique like our ideal
process (Figure 1), we can break this
link between complexity and textur-
ing time.

Figure 2 shows the same texture
map applied to two similar geome-
tries. At the top is a relatively high-
resolution polygonal mesh and its cor-
responding representation in the local
mapping tool (UVW Unwrap). Note

the excessively high number of UV
coordinate points, corresponding to
the number of vertices in the mesh.
It’s clear that any local manipulation
of the mesh’s UV coordinates will be a
difficult and tedious process. Compare
this with an equivalent surface created
with patches, shown at bottom.
Regardless of the resolution and num-
ber of patch subdivisions, the artist
need only work with the control point
lattice when it comes to mapping. Not
only will the artist spend less time on
the mapping process, but the result
will be exact, since the UV coordinates
are smoothly interpolated along each
patch boundary when the model sub-
divides procedurally. Furthermore,
once the control point lattice is tex-
tured, any number of LODs can be
generated instantly, whereas with the
polygonal mesh each LOD must be
texture-mapped by hand.

Animation Setup

A s is the case with the texturing
process, the tools and techniques

for setting up a character to be animat-
ed using a weighted skeletal hierarchy
are fairly consistent between produc-
tion packages. The process is achieved
in two steps: first the animator applies
a skinning modifier to associate the
geometry globally with a pregenerated
skeletal hierarchy (bipedal hierarchies
now come ready-made in most pack-
ages), and then modifies the weighting
values by hand to ensure proper defor-
mation of the animated skin. Similar to
the texturing process, the initial global
skinning process is seldom accurate
enough, and much of the time in ani-
mation setup is spent making minute
adjustments to the vertex weights to
ensure that the skinned geometry
deforms properly.

The tools for adjusting the weights
are fairly advanced, and include the
ability to paint the weights directly on
the surface of the geometry or to
adjust a “bounding envelope” graphi-
cally, which is associated with a spe-
cific hierarchical node. However, the
number of vertices or control points
in the weighted geometry remains the
limiting factor in time and effective-
ness. This is even more important
than in the texturing step: with a
polygonal mesh, as the complexity of

A R T I S T ’ S V I E W

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

24

F I G U R E 2 . The Unwrap modifier in Max, comparing the high-resolution polygonal
map (top) with an equivalent surface created with patches (bottom).

the model increases, so too does the
number of vertices which may be
slightly off in their weighting values,
which when animated can create a
host of visible kinks and tears in the
surface.

Removing or preventing these
weighting errors and creating a smooth-
ly contiguous animating surface is the
primary goal of the animation setup
process. Clearly, when using standard
polygonal methods the animator’s
effort and effectiveness are linked direct-
ly to the model’s complexity. In order to
produce good, quick results, we again
need to sever this link between the ani-
mator and the complexity of the data. A
visual representation of how this occurs
can be seen in Figure 3. In the example
on the right, a fairly detailed polygonal
mesh has been weighted to a skeletal
system. The skeletal envelopes and ver-
tices of the mesh are clearly visible. An
animator tasked with setting up this
mesh has a long day ahead of him. On
the left, we see a patch-based model of
equivalent complexity. The number and
density of the polygons present at run
time are identical, yet the number of
vertices the animator has to weight is
substantially less. As a result, there will
be fewer potentially errant vertices, and
subsequently fewer total errors to cor-
rect and troubleshoot.

Just as with the texturing process, in
a standard polygonal implementation
each and every LOD generated needs to
go through a similar setup process.
With a control point lattice implemen-
tation such as
patch surfaces, the
process need only
be executed once,
and the higher-
level LODs can be
derived instanta-
neously from the
original surface
simply by increas-
ing the number of
subdivisions.

One additional
advantage of
B-spline patch sur-
faces specific to 3D
Studio Max 3 is
that the control
point handles can
be given weighting
values indepen-
dent of the control
points to which
they are associated.
This gives the ani-
mator an addition-
al layer of controls
over the deforma-
tion process and,

when successfully implemented, can
enable the animator to simulate com-
plex surface behaviors such as muscle
and cloth deformation. Figure 4 shows
an example of this. On the left, the
control point handles have all been
weighted the same as their respective
control points. On the right, the han-
dles have been weighted differentially
so that when the joint flexes, the sur-
face simulates a muscle bulge.

Taken in combination with the time
saved actually modeling the geometry,
the additional benefits in texturing
and animation add up to a significant
production cost savings. To quantify
this, Figure 5 shows how the two
approaches might compare in a real-
world art path. Clearly, the cost sav-
ings associated with such a surfacing
strategy are well worth the time
invested in adjusting to the new tech-
nique. In contrast with the standard
polygonal mesh approach, the control
point lattice method has the potential
to minimize production effort while
maximizing the fidelity of the final
result. The patch method can unfetter
you from the burden of content com-
plexity, allowing you to focus your
efforts instead on the more creative
aspects of your craft.

A R T I S T ’ S V I E W

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

26

F I G U R E 3 . Comparing the number of skeletal envelopes and vertices between a
patch-based leg and boot with weighting applied (left) and a polygonal one (right).

F I G U R E 4 . An example of control handle weighting.

Be Fruitful and Subdivide

This wraps up our discus-
sion of surfacing tech-

niques, though we may even-
tually pick it up again as the
next generation of tools
becomes available to us. It’s
interesting that as artists our
primary motivation for
exploring these surfacing
techniques is related directly
to issues of content produc-
tion — that is, development
time and cost. As such, it
hasn’t been necessary to
focus on how these surfacing
techniques can benefit from
an application which has been
optimized for nonpolygonal
rendering. Clearly though,
this is the direction in which
the technology is headed.

The benefits of using a pro-
cedural subdivision technique
are manifold, generating huge
cost savings in transform and
calculation speeds as well as
data compression and render-
ing speed. For example, in an

engine optimized for render-
ing patch surfaces, the data
(geometry, texture coordi-
nates, weighting information,
and so on) sent to the engine
can be kept at its lowest reso-
lution, giving the engine the
ability to subdivide the surface
only as necessary. Further-
more, because all of the neces-
sary information required to
describe the surface exists
within the low-resolution con-
trol point lattice, the trans-
forming and lighting calcula-
tions can be executed before
the surface is subdivided, dras-
tically reducing the processing
power required to render the
complex surface. This trans-
lates directly to faster render-
ing and more efficient data
storage, which to an a artist, is
the equivalent of an almost
unlimited canvas. ■

27

F I G U R E 5 . A snapshot schedule showing the time saved
using the patch surface method compared with the tradition-
al polygonal method.

Modeling: Time/days: Time/days:
LOD 1 / 400 polygons 0.5 2.0
LOD 2 / 1,200 polys 1.0 0.0
LOD 3 / 4,000 poly 2.0 0.0
LOD 4 / 12,000 polys 2.5 0.0

Texturing:
Texture Maps 3.0 3.0
LOD 1 Mapping 0.5 2.0
LOD 2 Mapping 0.5 0.0
LOD 3 Mapping 1.0 0.0
LOD 4 Mapping 2.0 0.0

Animation Setup:
LOD 1 0.3 1.0
LOD 2 0.5 0.0
LOD 3 1.0 0.0
LOD 4 1.5 0.0

Total Time 16 days 8 days

Standard
Polygonal
Mesh

B-Spline
Patch
Surface

Stages of Main
Character Creation

Special thanks to Dave
Coathupe and Louise Smith.

Acknowledgements

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

Duke Nukem © 3D Realms, Lara Croft © & ™ Core Design Limited and © & published by Eidos Interactive Ltd. All Rights Reserved. Indiana Jones © & ™ Lucasfilm Ltd. All rights reserved.

Building Character

by Toby Gard

h t t p : / / w w w . g d m a g . c o m M A Y 2 0 0 0 G A M E D E V E L O P E R

s games evolve into an increasingly complex and sophisti-

cated medium, game characters are also experiencing a

considerable metamorphosis. Just a few years ago, a game character had

to be simple enough so that it could be represented clearly under very

severe artistic limitations. Essentially,

game characters were just icons, amor-

phous blobs, or tiny men rendered from a

handful of pixels. But steady technological

progress has slowly opened up possibili-

ties for more believable and realistic

characters. The question now is, how

does a game developer leverage all of

these additional technical resources to

create more compelling characters?

This article attempts to set out the ele-

ments of design that need to be

addressed in order to create

a memorable and power-

ful game character. Q

T
OBY GARD started working in the games industry in 1994 at Core

Design in Derby. While at Core, he conceived the game TOMB RAIDER and

its main character, Lara Croft. Toby was both the designer and lead artist on

the project. His roles covered everything from story development, storyboard-

ing, FMV generation, in-game animation, character design and modeling, level

flow, title and load screens, box art and marketing/PR materials. In 1997, hav-

ing left Core Design, he set up Confounding Factor with business partner and

lead programmer of the original TOMB RAIDER, Paul Douglas. Confounding

Factor is currently producing the game GALLEON due for release this

Christmas.

The greatest genre for
characterization has always
been the adventure game.
Early Infogrames classics like
PLANETFALL and LucasArts’
later adventures such as FULL

THROTTLE showed how effec-
tive “game actors” could be.
These characters used spo-
ken dialogue and were por-
trayed with emotional per-
sonalities. Now these game
actors are moving into new
cross-genre 3D games, and it
is here that they really
thrive. In fact, they may be
becoming a little too suc-
cessful; we’re beginning to
see games sold purely on the
strength of these characters.
Worse still, it seems that
characters today are inserted
into games that simply don’t
require them, perhaps because it is now
seen as a marketing necessity.

The single most important rule in
character design is “the game comes
first.” The type of game you’re develop-
ing will determine most of your charac-
ter-creation decisions. A character is
just a tiny element of any game, and in
many cases, it is a superfluous element.
If a game works without a character, it
shouldn’t have one. The rules of ele-
gance apply — look for the clearest,
simplest way to represent an idea.

Character Identification

Y ou can split games broadly into
two groups: those with a first-

person point of view (POV), and those
with a third-person POV. Although
that difference between them may
seem slight, it is absolutely fundamen-
tal, as the psychology of the two POVs
is drastically different.

A first-person game invites players to
immerse themselves in the game, to
play as though they themselves are in
the game experiencing the events first-
hand. On the other hand, the third-
person game makes a distinction
between the player and the on-screen
character; they are separate entities. In
a third-person game, the player is con-
trolling a character rather than becom-
ing the character.

This difference utterly splits charac-
ter design into two entities that I will

refer to as the “Avatar” and the
“Actor.” The Avatar is simply a
visual representation of the
player’s presence within
the game world. The Actor
is a character distinct from
the player, with its own
personality, characteristics,
and, to some extent, mind
(Figure 1).

For example, let’s look at
Lara Croft vs. Duke Nukem.
Although some projection always
occurs in games, when you play
TOMB RAIDER, it is Lara, not
you, who gets eaten by the
Tyrannosaurus rex and goes
around shooting animals.
When you play DUKE NUKEM

though, even though Duke
shows a personality, it’s you
who gets killed and you who
goes around shooting things.
Many games muddy this
distinction and they
lose a great deal of
impact on players as
a result.
FIRST-PERSON POV: THE

AVATAR. A first-person
game should make it
as easy as possible for
players to believe that
it’s actually them-
selves in the game.
The main character
(the Avatar) must not
interfere with the

player’s illusion of
immersion. This means
the Avatar shouldn’t do
anything with a mind of
its own. For example, it
shouldn’t go around
talking, and the game
should never take con-
trol away from the play-
er under any circum-
stances. From a design
point of view, the Avatar
is a cipher, an empty
vessel waiting to be
filled and given purpose
by the player.

There are two basic
routes that you can go
down when designing
an Avatar. Either you
create a deliberately
insubstantial character,
or better still, you allow

players to create their own. This second
method is even more valid when it

comes to multiplayer games.
In a first-person per-
spective, many of the
techniques of story-

telling and characteriza-
tion common to other
mediums can’t be used,

simply because you
don’t really know what

the main character, being
completely controlled by

the player, is going to do.
THIRD-PERSON POV: THE ACTOR

The third-person POV allows far
greater freedom to tell what is a
more traditional story form.
Because the character (the Actor)
on the screen is a separate entity
and dissociated from the player,
it’s not too disturbing when the
Actor acts of its own accord in cer-
tain situations. Even though this

on-screen entity is controlled
directly by the player, it is dis-
tinct from the player’s personali-
ty, allowing the designer to

imbue the Actor with a per-
sonality of its own and occa-
sionally control how it
behaves. This extra element
of control over the game

makes it possible to use
some of the less intrusive

storytelling and mood-
enhancing devices that

have evolved in film.

30

C H A R A C T E R D E S I G N

F I G U R E 1 . There is a fundamental difference between a first-
person character and a third-person character.

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

Making an Actor

F rom a design point of
view, game characters

can be sorted in order of
design detail:

• AVATAR. These charac-
ters require visual
design only.

• ACTOR. Full character
design, but with a nec-
essarily one-dimen-
sional personality so
that the player can
flesh out its motiva-
tions. The trick is to
strike a balance
between establishing
the actor’s personality
without letting that personality
disturb the player.

• NON-PLAYER CHARACTERS (NPCS). These
require full character design.

We all use very powerful subcon-
scious mechanisms to judge people
visually, whether we realize it or not.
When you meet someone, the amount
of information you gather from them
using your eyes is incredible. You take
into consideration their shape, height,
sex, race, physical attractiveness, hair,
clothing, makeup, cleanliness, facial
hair, age, weight, stance, facial expres-
sions, body language, movements,
and so on. You perceive a vast amount
of information almost instantly and
without really trying. Your brain then
begins to make assumptions about
that person using built-in pattern-
recognition techniques, most often
based on your personal set of stereo-
types. In contrast to these visual cues
we pick up on, the slow linear stream
of spoken information is incredibly
small. After a while, our opinions may
be re-formed based on a person’s per-
sonality, but for a long time it is still
filtered through our preconceptions
based on our first
impression. So to cre-
ate a really good
character, you have
to control all of the
visual clues that peo-
ple use to judge each
other and establish a
clear, unified message
to make players inter-
ested in — and ulti-
mately like — your
character.

Style and Exaggeration

In the early 1930s, Disney animators
were struggling to bring the same

depth of acting skills to their cartoon
characters that actors were achieving in
live-action films. Cartoons are a delib-
erately simplified representation of
reality, stripped of the incredibly com-
plex subtleties we are accustomed to in
the real world. These animators real-
ized that they could never portray the
same subtleties through animation,
since the medium was too broad by
nature. Instead, they exaggerated all
the subtle body language and emotion-
al expressions made by actors until
they became almost a pantomime of
good acting. Through exaggeration,
cartoons are able to elicit very powerful
emotional responses from an audience,
because cartoon acting is a concentrat-
ed version of live acting.

Computer games are much more akin
to cartoons than films. Games aren’t
very good at imitating reality, because
elegance requires them to be visually
limited. They can’t mimic the incredibly
complex world we live in. If such detail

could be achieved, most
games would consist of
overly complex, messy,
and irrelevant details.
Similar to cartoons, games
use simplified representa-
tions of real-world ideas,
stripped of the massively
complicated rules found in
reality. Therefore, to make
the greatest impact, we
have to caricature; we
must amplify the aspects
we want players to focus
on. This is the route to
making games a more
powerful medium.

The Three Linked Elements

In a character-based game, there are
three intrinsically linked elements:

environment, game play, and charac-
ter (Figure 2).

A powerful character must be well
adapted to its environment. Good
characters typically have some ele-
ment about them that makes them
especially suited to their world. Take
Indiana Jones, for example. Indiana
hangs around all day in tombs and
ancient sites that are filled with dan-
gerous traps and angry natives. He is a
tough, strong person, but more impor-
tantly he is an archaeologist, and this
is what makes him so well suited to his
environment. From a character cre-
ator’s point of view, you would proba-
bly come at this in reverse: the charac-
ter is an archaeologist, so therefore his
environment will be tombs and
ancient sites.

While the link between character
and environment is true for noninter-
active media as well as games, game
developers must also consider an even
more important factor: game play.

Game play affects
how an environment
works. There is a link
between what the
player can do and
what the environ-
ment contains.
Game-play decisions
are also dictated by a
character’s special
abilities, so game
play and character
design are linked,

32

C H A R A C T E R D E S I G N

F I G U R E 2 . Much of a character's design is determined by the deci-
sions made about a game’s environment and game play.

The evolution of Mickey Mouse. © Disney Enterprises, Inc.

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

too. Look at the character Bob in
Shiny’s MESSIAH. This little angelic
character goes around and possesses
people, and this attribute has massive
game play significance, dictating exact-
ly how his environment has to be pop-
ulated and designed. Thus, as you
change the attributes of any one of
these three elements, the other two ele-
ments are affected as well.

Simply stated, the character design
process cannot be isolated from the
game design process. Many elements of
a game character are completely decid-
ed by game play and environment.

Visual Design

T he visual design of a character can
be split broadly into two aspects:

physiological form and the clothes
worn (if any). Physiological differences
between one human and another are
fairly slight; there is some variation in
skin tone, size, hair, build, and weight.
Gender is the only major variance, and
apart from that I’m afraid all humans
look alike to me. Clothing, however,
varies greatly in color, shape, purpose,
and significance. That is why costume
design is so important.

There has been a sudden surge of
female main characters recently, which
is good since it redresses the gender
imbalance in our predominantly male
industry. The choice of a char-
acter’s gender is critical, and
not simply from a marketing
perspective. (I won’t talk about
any aspect of character design
from a marketing point of view
since I don’t think it is wise to
approach any aspect of design
from that angle. If you design a
character to be liked by players,
marketing opportunities will
follow of their own accord.)

A character must have digni-
ty. Any design that objectifies
the character (that is, encour-
ages you to think of it as an
object rather than a living
being) will prevent players
from empathizing with it and
relating to it. Creating this liv-
ing essence is the trick to mak-
ing people like a character. Far
too many female characters
have been put into games sim-
ply as tokens, usually as sexy

bodies for use by marketing depart-
ments. This is something to avoid.

Male and female players react to the
gender of a lead character in different
ways. Players usually want to protect a
good character of the opposite sex, so
drawing on a person’s primeval and
innate response to the opposite sex is a
powerful tool. If the character is attrac-
tive, believable, and commands
respect, players will grow fond of it. On
the other hand, someone playing a
good character of the same sex usually
grows to admire the character and its
characteristics. If the character has
been designed well, the character can
even develop into a role model for
some players. Whatever the gender of
the character, the fundamental rule for
getting people to respond positively to
the character is that the character must
be likeable and admirable.

The Halo Effect

Some great psychology experiments
have been conducted about the

“halo effect,” the results of which can
apply to character design. Briefly, the
halo effect postulates that we treat
attractive people better than we do
ugly people. Not only that, but we
often make all sorts of subconscious
assumptions based on looks. Good-
looking people are often assumed by

strangers to
have other pos-
itive traits, such as being “poised, inde-
pendent, sociable, interesting, exciting,
and sexually warm” according to
Brigham. On the other hand, unattrac-
tive people are apparently seen by
strangers as more “deviant,” according
to Jones and his colleagues (see the
References section at the end of this
article).

I’ve heard arguments that game
developers should not create a cast of
highly attractive characters, either
because it provides unrealistic role
models for children or because some
equate creating sexy characters with
sexism. I don’t consider it sexist to rep-
resent males and females in an equally
distorted way, but action comics have
been criticized for years because they
portray exaggerated strength and sexi-
ness in characters. Note however, that

as a medium, comics command
one of the largest groups of
enduring and instantly recogniz-
able characters.

Thus character designers
should do everything in their
power to make characters as
attractive as possible. People’s
first impressions of characters
will almost certainly come not
from what they do, think, or
say, but what they look like. If
the character makes a good first
visual impression, players will
likely stay focused on it, allow-
ing you to further entice them
with the character’s personality.

Costume Design

K eeping a consistent cos-
tume throughout a game is

the best way to help imprint the
character in a person’s mind, so

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

34

C H A R A C T E R D E S I G N

F I G U R E 3 . The character shown left has been heavily
overworked. The excessive detail and overuse of colors
has left it muddy and confused. In contrast, the charac-
ter on the right illustrates a cleaner design.

TM & © 2000 Marvel Characters Inc.,
All Rights Reserved.

costume changes should be avoided as
much as possible until the character’s
visual design has become fully estab-
lished. Once established though, giving
a character some costume changes will
increase its believability.

Let’s look at Indiana Jones again, as
he appeared in films. Indiana wears his
costume with some variations; some-
times without the jacket, sometimes
without the hat, and in certain brief
scenes he wears a completely different
outfit. All in all though, Indiana keeps
a strong sense of consistency which
contributes to a solid, consistent image
in our imagination.

The simpler a costume design is, the
easier it is for a person to recognize
and remember it (Figure 3). Complex,
muddy, drab, and over-rendered
clothing results in confusing, mud-
dled characters. Try exaggerating
essential elements of your character
until you can strip it down to its
essence, the simplest representation
that gets across the meaning you are
trying to represent.

Color schemes should be kept
bold and within a limited palette.
That way the colors begin to sym-
bolize a character, just as blue,
gray, and a dash of yellow invokes
Batman (Figure 4).

It’s always a good idea to try to
put elements into a design that
help symbolize the character’s
essence. Obvious examples of this
technique include Hermes’s
winged feet or the web designs on
Spiderman’s costume. You can also
leverage the subtler associations
people make about clothing and
accessories to provide more clues
about the character: glasses for
intelligence, cardigan sweaters for
massive sexual magnetism, or
whatever.

Personality Counts

Once you have a good,
strikingly designed

character, the next step is to
work on conveying its
personality. Again, the
extent to which you
need to portray
personality
depends
on

whether the character is an Avatar or
an Actor.

I can’t overstate the importance of
body language when creating images of
any character. Not only do people
make dozens of snap assumptions
based on a person’s physical appear-
ance and apparel, they also make
strong judgments based on the way
people carry themselves and their
physical presence.

Just the way people stand reveals
enough information for others to read
all sorts of traits about them. The trick
is to be aware of this, know what mes-
sages you want to give, and provide
those cues clearly (Figure 5).

Far too many characters are portrayed
in static poses designed to look “hard.”
Unfortunately, the quintessential hard
look is the emotionless, squinty-eyed,
Charles Bronson–style stance. This does
not allow people to “read” a character at
all, but it works with Bronson and Clint
Eastwood because that’s the point of the
“Man with No Name” tough guy — he’s
supposed to be unreadable. So many
characters imitate this look that they all
fade into an obscure morass of similari-
ty. Instead, create some attitude
through poses that provide clues about
the character’s personality.

Poses are especially important for the
static artwork typically used on game
boxes and by marketing people. Dy-
namic poses are far more interesting,
striking, and memorable than static
ones. If a character is meant to be an
action character, then for goodness’s
sake show them in motion.

Consider taking the final step and
exaggerating a character’s pose to the
point that it actually begins to signify
the character. If you create a set of

strong, distinctive poses for your
character, people will recognize
these poses even when seen in sil-
houette or from a great distance.
Spiderman is an excellent example
of a character that has a great array
of extremely strong, immediately
identifiable poses (Figure 6).

Motion, The Fourth Dimension

Just as with visual design and
poses, it’s incredibly important

to consider how a character moves,
and design around that aspect. The
most important step is making a
character move in a convincing
way. That means showing weight,
balance, and inertia. Unless you
pay particular attention to the
solidness that a character demon-
strates while interacting with its
environment, people will never
accept it as anything but a group of
weightless polygons. Every time a

foot slides or a character snaps
between animations, the illu-

sion of life is totally shat-
tered. Since computer

game characters con-
stantly repeat their

animations, it is
worth the extra

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

36

C H A R A C T E R D E S I G N

F I G U R E 4 . Batman’s color scheme is
so strong that even with the added
confusion of the film versions intro-
ducing black, you still can recognize
him.

F I G U R E 5 . Even with all other visual clues
stripped away, a person’s pose can send very
clear messages about a character.

TM & © 2000 Marvel Characters Inc., All Rights Reserved.

time
to
make
movement
animation as flawless as possible.

Apply the concept of unique poses to
the actual motion of a character. The
way people walk suggests vast amounts
of information about them, such as how
they feel about themselves and their
surroundings. If a character’s move-
ments are a consistent, exaggerated rep-
resentation of its inner self, you can
build up its personality while it moves
about its environment. (As a side note,
there is a vast difference between real-
ism and believability — I feel you can
always get a stronger, more universal
emotional response from high-quality
hand animation than you ever can from
motion capture.)

Awareness

T he key that Disney animators ulti-
mately found to

creating the illusion of
life was showing their
characters thinking.
Making a character
aware of its environ-
ment has an incredible
impact on its believabil-
ity. If your character
examines its surround-
ings and the other char-
acters in it, it automati-
cally appears to be
thinking about what it’s
looking at. Awareness
doesn’t just end with
where a character looks,
it extends to its reac-
tions to its environ-
ment. A character
can give emotional

responses
to what it sees,

such as surprise, fear,
happiness, and so on.
One aspect of awareness

that reinforces a character’s
believability is how aware other char-

acters are of your main character.
Besides just awareness of presence,
emotional responses by NPCs toward
the main character add immeasurably
to its substance and believability. Note,
however, that the player will be affect-
ed by how NPCs react to the main
character. Unless you want to lower a
player’s opinion of the main character,
NPCs should generally react positively
towards it.

What’s Your Story?

I like to work out some sort of back-
ground history for a character, even

if it only helps to flesh things out in
my own head. Don’t go too far when
creating the history, though — it’s
risky to give a main character loads of
hidden motivations that might con-
flict with the player’s, and the charac-
ter could react in ways that make the
player feel uncomfortable. At the end
of the day, a game character shouldn’t

have anything more than
superficial personality traits
since, whatever the POV, the

player needs to retain as
much control as possible. A bit of

background just helps solidify the
character design process so that it can
be consistent.

If a character is going to speak, the
benefits of having a decent voice artist
are immeasurable. We glean a host of
information from each other’s voices
that has nothing to do with the nature
or content of the words spoken. We lis-
ten to the timbre, the accent, and the
range of a voice to make basic assump-
tions. More importantly though, we lis-
ten to the rich subtle inflections that
hint at whether a person is sarcastic,
sincere, intelligent, or has a sense of
humor. Only highly skilled actors can
evoke all of this hidden information as
they deliver their lines. If anything is
lacking in the voice acting, then you
can’t inject personality into a character
even if all its other design elements are
spot-on.

So much about character design is
subjective. I mean, what is attractive?
On that point alone you could argue
for hours. But one very important
thing remains to be stated. Any of the
points I’ve discussed can, and probably
should be turned on their heads if you
want to create new and exciting char-
acters. Guidelines such as these are just
guidelines: ingenuity, humor, and orig-
inality require that rules be broken. ■

h t t p : / / w w w . g d m a g . c o m M A Y 2 0 0 0 G A M E D E V E L O P E R

37

Brigham. “Limiting Conditions of the
‘Physical Attractiveness Stereotype:’
Attributions about Divorce.” Journal of
Research in Personality 14 (1980):
365–375.

Jones, Hannson, and Phillips. “Physical
Attractiveness and Judgments of
Psychotherapy.” Journal of Social
Psychology 105 (1978): 79–84.

RR EE FF EE RR EE NN CC EE SS

Thomas, Frank and Johnson, Ollie. The
Illusion of Life: Disney Animation. New
York: Hyperion Press, 1995.

McCloud, Scott. Understanding Comics.
Northampton, Mass.: Kitchen Sink
Press, 1994.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

F I G U R E 6 . Spiderman’s poses are so strong that you
can recognize him from them alone.

TM & © 2000 Marvel
Characters Inc., All

Rights Reserved.

testers report to different companies
and are separated geographically, com-
plications naturally arise. But regard-
less of your business structure, the test-
ing and development teams should
share the same goal: to release the
highest quality game possible. Here are
some guidelines to help an outside test-
ing team achieve that goal.

Kick It Off Right

It’s important to kick off the product
testing process well. Here at Micro-

soft we try to spend some social time
with the development team and work
through our anticipated project issues.
Whether you’re a developer or a tester,
you should see how the “other side”
operates and meet everyone you’ll be
working with as early in the process as
possible. The hard discussions will
begin sooner than anyone would like,

but they become easier when some per-
sonal contact has already been made.
People also tend to be less flexible in
e-mail than they are in person.

Early in the game’s development, the
testers and developers should sit down
and develop a shared glossary of terms
that are relevant to the project so
there’s no miscommunication later.
Terms such as “milestone,” “alpha ver-
sion,” and “code complete” mean dif-
ferent things to different teams, so
establishing and documenting terms
from the outset will head off misper-
ceptions. What terminology you chose
isn’t important; what is critical is that
all parties understand that terminolo-
gy. Take time to define what “quality”
means to the testers and developers,

and make sure that everyone buys into
that definition. Do the same with the
definition of “bug.”

Decide the methods by which you
will measure the status of the project,
and how these measurements will be
conducted. There are many ways to
measure a product, and you will proba-
bly use a wide variety of metrics to
judge progress. You can hinge mile-
stone acceptances on bug count, fea-
ture implementation, play-testing
results, multiplayer success rates, per-
formance, or all of the above. Clarify-
ing this from the beginning should
minimize arguments later, when ques-
tions such as “What is ‘good enough’?”
and “When do we know when the
game is ‘done’?” arise. This agreement

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

38

T E S T I N GG A M E

Testing When You’re
Worlds Apart

b y M a r k T h o m a s

here are a number of situations in which a test-

ing team can find itself working with an exter-

nal developer. Probably the two most common

scenarios are the publisher-developer relationship

(which itself can operate under a number of models)

and when the testers work for an outsourced testing

company. Testing games can be difficult under the

best of circumstances, but when developers and

Mark Thomas is a test lead in the action and strategy games group at Microsoft and
is currently working with developers on two continents. He can be reached at
markct@microsoft.com.

TT

should be sought at the beginning of
the product, and continually rein-
forced as the project proceeds. It is best
to document these agreements in writ-
ing once a consensus is reached. This
gives the development team a goal to
shoot for, and there is no confusion as
to where the bar is. At Microsoft, mile-
stone criteria not only list the features
to be completed, but also specific bug-
tracking goals and multiplayer success
rates. For example, a milestone might
have the criterion “no active severity 1
bugs, and at least 60 percent success on
four-player ISP games.”

Testers should continue to provide
these measurement criteria to the
development team as early and often as
possible. I try to prepare the metrics
and expectations for the next set of
deliverables as soon as the last set has
been signed off on. If your milestones
are more than four to six weeks apart,
try to set measurable goals and targets
no more than six weeks from your last
checkpoint.

I recommend sharing your upcom-
ing build verification tests and mile-
stone acceptance tests with the devel-
opers. As soon as you have written
them, send them to the development
team. Encourage the development
team to run these tests before each
build is delivered. By doing so, the
developers will know exactly what is
expected of their game and they’ll have
the means to assess its progress prior to
submitting the build to the testers. This
also helps manage the expectations of
the development team, and prevents
them from saying, “We didn’t know
the game was supposed to do this!”

Setting up and documenting how
testing will be handled is critical. There
are myriad details associated with test-
ing a game, and you should make every
effort to lock down the steps of your
testing schedule as early as possible. Set
up processes you can live with. In gen-
eral, you will need to integrate your
testing with the development schedule.
There are times, however, when it is
very important to make sure that the
development schedule takes the testing
needs into account. When schedules
are being developed, I try to analyze
them from two perspectives. First, I try
to figure out what feature is going to be
the most difficult to develop. Will it be
the AI, the multiplayer code, or some-
thing else that must be finished before

content is created?
Features like these are
always risky, and
when possible, front-
loading them in the
schedule helps make
sure that they get
completed and stabi-
lized. Second, I look
for features that will
have a lot of impact
on game play or take
a long time to test.
While these features
may not be technical-
ly difficult to imple-
ment, they tend to
require a lot of tweak-
ing and tuning. If
you get the core func-
tionality of these fea-
tures done and tested
early, you should have plenty of time
to adjust them and perfect the game
play as the product evolves. Every title
has its own list of risky features, and
the sooner you can isolate and control
them, the better.

Builds

Builds are important steps in the
testing process; they are the criti-

cal and ultimate deliverable to the test-
ing team. The testing and development
teams should agree when and how
often builds will be delivered. Typically
at Microsoft we make this decision col-
lectively with the producer, lead devel-
oper, and test lead.

Set up a schedule for delivering
builds that makes sense and try to stick
to a pattern. Maybe it is the first of the
month, or every other Friday. I find it
helps to have a set day on which the
build will be sent. If the entire develop-
ment team knows that every Thursday
at noon is the last time to check in
code before the build is made, it starts
to become a habit. Typically at Micro-
soft the schedule for builds changes as
the project progresses, and builds are
delivered more frequently as the ship-
ping date approaches. As a test lead, I
begin to get a bit nervous whenever I
go longer than one month without a
new build being delivered for testing,
but I expect the development team to
be building the product internally at
least once a week.

The testing team should make it
clear to the developers what the expec-
tations are for each build, and a written
list is a great tool to have at the project
kickoff meeting. Does the testing team
want to receive the build via FTP or
CD-ROM? Should a release executable
or debug build be sent? Should a .PDB
(program database) file be sent? Are
there any support tools that need to be
delivered at the same time, such as an
editor or a file compression tool?
Whatever you do, structure the builds
such that the development team
doesn’t fear the prospect of sending a
build to the test team.

Avoid requesting surprise builds
from a development team. Assuming
you’ve chosen a reasonable interval at
which a build should be delivered
(say, every other Friday), make sure
that everyone understands what is
expected. I recommend assigning
responsibility to one person on the
development team and one on the
testing team for the build. The former
is responsible for building the product
and sending it off to the test team,
and the latter receives or downloads
the build and prepares it for release to
the team. At Microsoft we typically do
the setup for the product, so we ask
developers to send us the raw files,
and then the test lead integrates the
build with the set up and distributes it
to the rest of the test team.

There should be an understanding
between the testing and development
teams as to the importance of always

h t t p : / / w w w . g d m a g . c o m M A Y 2 0 0 0 G A M E D E V E L O P E R

39
A configuration lab is one of the best resources a publish-
er can provide.

Ph
ot
o
by
 B
il
l
Me
tt
er
s

keeping a buildable code base on
hand. It is very important to build the
project frequently, as a build is the
best indicator of the status of the prod-
uct. A process that results in frequent
builds gets your product to a known
level and gives you a great way to see
progress. By keeping to a frequent
build schedule, any big snag or step
backwards is visible to the entire team
very quickly.

Making a build for the testing team
should not be an event; it should not
take days. At Microsoft we encourage
developers to invest in a build process.
We try to help developers get a system
set up that lets them build their prod-
uct every day, just by pressing a but-
ton. If you cannot build the product, or
something breaks this process, this is a
big warning flag. With a frequent build
schedule, such problems are exposed
immediately.

Bug Tracking

S tandardize a uniform way to report
and track bugs using some sort of

database system, one that lets you
query the bug database for specific
issues and get a quick snapshot of the
product’s status. A database is a lot eas-

ier for a team to work with than a
spreadsheet. At Microsoft we have an
internal tool called RAID (“kills bugs
dead!”). It runs on a SQL back end and
is accessible from every desktop at
Microsoft. With some effort, RAID can
also be set up and shared with our
external partners. We put everything
into RAID (Figure 1).

When a bug is entered into the data-
base, it is assigned a priority and severi-
ty, tied to a specific area of the product,
and then assigned to the appropriate
person for fixing or research. When the
fix is made, the bug status is changed
from active to resolved, and then
assigned back to whoever opened the
bug. The tester then regresses the bug
and verifies the fix before closing the
bug. Only testers close bugs, which
ensures that a fix is well tested before
the issue is closed.

Bug reports should be as detailed as
possible. When you are not at the same
location as the developers, this is even
more important. Reports should contain
all the information that will be needed
to reproduce the bug on a developer’s
machine. A typical bug report also con-
tains a title, which is the one-line
description of the bug. A good title
makes clear in just one sentence exactly
what the bug is. Next, in the details

about the bug itself, there should be a
more verbose description of the prob-
lem, and the shortest possible list of
steps to reproduce the bug. The last
component of a good bug description
should be the expected behavior, had
there been no bug. Often this seems
obvious, but often the expected behav-
ior of the product in this situation isn’t
clear or is different from the specifica-
tion. If the tester takes the time to clari-
fy what is expected of the product, the
developer can quickly determine if there
is confusion. Also, if a change to the
product is needed, the developer knows
what the tester expects the product to
do before changes are made. We also
make sure to include any debug infor-
mation (call stacks, log information,
and so on) and details about the hard-
ware and operating system of the
machine where the bug was found. If
you can save the developer a phone call
or an e-mail to ask a question, it’s worth
the extra time.

Make sure that the development
team has equal access to whatever you
use to track bugs. Ideally, every devel-
oper should have real-time access to
their bugs at their desk. Whenever I set
up a database for a new product, I open
the first bug and fill it with a bunch of
information about the process the
team has agreed upon for bug tracking:
things such as the life cycle of a bug, a
template for a new bug, an explanation
of the version numbering system, and
anything else that’s appropriate to the
product. If anyone forgets the process
or new people join the team, they can
always open up bug number one and
access this information.

Access to the bug database should be
available to as many members of the
team as possible. Testers, developers,
artists, writers, designers, producers —
everyone — should be able to get in to
view bugs. Your bug list shouldn’t be
hidden from members of the develop-
ment or testing team; it is the most
accurate description of the state of the
product. Also, avoid any bug-tracking
solutions based on two different tools
— the development and testing teams
should use the same tool to capture
this information so that tracking the
status of bugs and sharing information
back and forth between the two teams
is easy and seamless. One shared data-
base that everyone can access promotes
communication and ensures that

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

40

G A M E T E S T I N G

F I G U R E 1 . We track everything in RAID. The database back-end gives us the abil-
ity to search and query on almost any element of a bug.

everyone has the same information
and priorities.

Team Communication

Every company has different styles
and methods of communication.

For instance, some development teams
prefer to funnel testing information
through their producer, while others
want their developers to interface
directly with individual testers. As
such, it’s important determine how the
testing and development teams will
interact.

I’ve found that many producers want
to restrict the contact between the test-
ing and development teams to pro-
mote consistency in bug tracking and
prevent developers from talking with
random testers every time they call.
Whatever communication system is
put in place, it’s important that the test
team has a way to get questions and
concerns addressed. However, once the
“code complete” stage has been
reached, it’s important for testers to
communicate directly with individual
developers. Direct communication at
this stage increases the productivity of
both teams.

Triage

Bug triage meetings are much easi-
er when the development and

testing teams meet in person. Early in
the development of the game, all those
involved should agree upon the
method of triage and who will conduct
it. At Microsoft, the program manager,
the test lead, the user education lead,
and the support lead attend bug triage
meetings from the Microsoft side. On
the developer’s end, usually the pro-
ducer, designer, and development lead
attend triage meetings, although this
varies from team to team. Whatever
the staff structure, make sure that the
primary stakeholders in the product are
represented.

As you triage bugs, make sure every-
one understands each bug completely
before deciding to fix it or blow it off.
Because these are often difficult deci-
sions with substantial consequences,
and because bug reports can sometimes
fail to clarify the scope of a bug, try to
review bugs in the order of the tester

that reported them and then invite
that tester to the meeting when the
bugs are discussed. This takes a little
more time than just reading through
the list with the committee members,
but allowing testers to present their
bugs often reveals reasons to fix the
bug that no one had thought about. It
also makes the test team feel that their
issues are taken seriously, even if some
bugs aren’t fixed.

Honesty, above all, is critical to a
good bug triage meeting. As a develop-
er, be honest about the scope of the fix
and any involved risks. As a tester, be
honest about how severe the bug is,
and your comfort level accepting a fix.
Ideally, the decision to fix or ignore a
bug should be a unanimous one.

Face Time Is Critical

There are some things that you can
do throughout the process that

will increase the likelihood of your test
team delivering a high-quality game.
Above all, share information you have
about the product with other team
members, both up and down the
chain. Status reports on the team and
the product are never a bad idea. Most
product leads at Microsoft write status
reports at least weekly, which often
include rolled-up status reports from
their team. These reports are typically
available on an internal web site or
sent out in e-mail, and are available to
the group management and the entire
team. Part of a tester’s job is to commu-
nicate the status of the product — at

Microsoft that is even in the tester’s job
description. In my experience, more
software development problems stem
from poor communication than either
technical or financial issues.

Face time between testers and devel-
opers is vital. Don’t be afraid to put
people on an airplane and hold meet-
ings between the testing and develop-
ment teams. Where you hold such
meetings should depend on the meet-
ing topic. For instance, as a publisher,
there are things that we do at Microsoft
that our developers aren’t as equipped
for, so we often have the development
teams fly to our office and spend a few
days or weeks on-site to solve specific
problems. Take advantage of testing
space and park whoever is fixing your
configuration bugs in the configuration
lab — do whatever is appropriate for
your project.

One project at Microsoft was within
a few weeks of shipping when suddenly
there was major problem with the mul-
tiplayer technology. It was so bad we
couldn’t even complete LAN games, let
alone games played via the Internet.
Since it was so close to our target ship
date, we scrambled to round up as
many testers as possible to analyze the
problem, and had three development
team members join us for almost two
weeks. The problem unfolded before us
like the layers of an onion; we fixed
one bug only to find another right
underneath. Having the developers
work alongside testers helped fix the
problem rapidly. We eventually
shipped the game on time with a solid
multiplayer component.

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

42

G A M E T E S T I N G

10.00

8.00

6.00

4.00

2.00

0.00

6.
25

.9
9

7.
2.

99
7.

9.
99

7.
16

.9
9

7.
23

.9
9

7.
30

.9
9

8.
6.

99
8.

13
.9

9
8.

20
.9

9
8.

27
.9

9
9.

3.
99

9.
10

.9
9

9.
17

.9
9

9.
24

.9
9

10
.1

.9
9

10
.8

.9
9

10
.1

5.
99

10
.2

2.
99

10
.2

9.
99

11
.5

.9
9

11
.1

2.
99

11
.1

9.
99

11
.2

6.
99

12
.3

.9
9

12
.1

0.
99

12
.1

7.
99

12
.2

4.
99

12
.3

1.
99

1.
7.

00
1.

14
.0

0
1.

21
.0

0
1.

28
.0

0
2.

4.
00

2.
11

.0
0

2.
18

.0
0

 Close Rate (actual)

Find Rate (actual)

Fix Rate (actual)

F I G U R E 2 . It is valuable to track how bugs are addressed. Your fix and find rates
can help you figure out when your product is close to shipping.

Understand Your Role As a Tester

T esting is a key part of the process
of delivering a game. However,

outside development teams may not
realize the exact value you can add to
their game. There is a great deal of vari-
ation in the quality of testing resources
in our industry, so development teams
are often leery of letting a new testing
team exercise too much influence over
their product.

To combat that situation, make your
motivations as a testing team clear to
the developers. Often this can be as
simple as stating to the developers,
“My job is to help you make this the
highest quality product possible.” One
of the best ways I found to make devel-
opers comfortable with our test team is
to establish ourselves as a service for
them. This doesn’t imply that we
testers are a lower class of people. We
just let the developers know that we
think of them as our client, and that
our relationship with them is based
upon this belief. We want to know
what we can do to make their jobs easi-
er. We ask developers if we can unit
test their code before it gets checked in,
if we can run specific tests right away
upon build delivery, and so on. Take
the time to figure out what will make
the process easier for the development
team and see if you can provide it.

Often developers don’t know how to
make the best use of testing resources.
Sometimes they don’t really under-
stand what testers do exactly. If you
make yourself as available as possible
to them, you will find that most devel-
opers become quite excited about the
prospect of having testers work with
them directly. I’ve seen situations
where a developer and tester worked
so well together prioritizing which
bugs to fix in their areas that together
they convinced the team when not to
touch something. A cooperative devel-
oper-tester relationship like that can
make much greater strides toward
releasing a bug-free product than if the
developers and testers work against
each other.

During the course of a game project
I’ve seen producers and developers ask
testers to accept or change something
about the game. (The common request
is, “Can we let this slide a little?”)
When you’re asked to alter the test
plan in some way, determine the costs

and risks to your
team and the
product if you
accommodate the
request. In some
cases, a little bit of
flexibility can go a
long way, and ulti-
mately you have
to do what’s right
for the product,
not cling blindly
to “the way things
should be done.”
On the other
hand, never put
yourself or the test
team in an
uncomfortable
position.

As a rule, show-
stoppers should be
where you plant your flag and demand
a bug fix. The definition of a show-
stopper is different for every company
and every product. (Chances are that
you will know one when you see one.
A show-stopper is often a bug you find
two days before you are supposed to
ship that gives you that sick-to-the-
stomach feeling.) The realities of soft-
ware development prevent most devel-
opers from shipping 100 percent
bug-free products, but you should look
at every bug and consider its effect on
the consumer. How many people will
see it? How severe are its effects? Is it a
crisis, or merely an irritant? Is there
some sort of data loss associated with
the bug? Is there a workaround for the
player? How long will it take the play-
er who hits this bug to get back into
enjoying the game? What’s the likeli-
hood that it will generate a call to your
technical support department? Can
the player proceed past the bug at all?
The answers to these questions must
be compared with the risks and costs
of fixing the bug. Look at it from
the perspective of the consumer’s
expectations.

At Microsoft we don’t have many
hard-and-fast rules on how bug-free a
product must be before we ship, but we
try to maintain a high bar for the prod-
uct. All bugs must be closed before a
product ships. Being “closed” isn’t
always the same as “fixed,” but it
means that a tester agreed that it would
be O.K. to ship the product with that
bug. In general, we fix all known bugs

that cause system crashes. We also
compare the game against previous
titles. For example, we compare our
frame rate at our minimum configura-
tion against other games running on
the same hardware.

When the Budgeting Axe Falls

T esting is often shortchanged —
sometimes never even considered

— when the product development bud-
get is drawn up. Other times, a “stan-
dard” cost will be inserted into the
development budget’s testing line
item, without considering the game’s
scope. Ideally, the test lead should be
involved in preparing the product bud-
get, but that’s rare. The sad truth is that
testing funds are often the first to get
scaled back when budgetary goals must
be met.

When faced with a situation where
staffing and financial constraints pre-
vent you from properly testing a prod-
uct, make it your responsibility to
explain to management that these cuts
or shortfalls will lead to insufficient
testing and affect product quality. My
test manager responds to the threat of
budget cuts simply by asking senior
management, “What part of the prod-
uct would you like us not to test?” Usu-
ally the response is a bewildered look.
Here are some other techniques for
defending the testing budget:

• Remind those in charge that up-
front testing helps avoid post-ship

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

44

G A M E T E S T I N G

Play testers hard at work.

Ph
ot
o
by
 B
il
l
Me
tt
er
s

expenses; technical support costs
are often figured on a per-call basis,
and depending on your company’s
structure, those calls can be a very
expensive reminder of the benefits
of testing.

• If management offers to patch
instead of test, explain that patch-
ing a product can be a grim propo-
sition that actually involves double
costs: the time the team takes to fix
bugs and prepare the patch for
release, plus the opportunity cost
of delaying the next product.

• Play the reputation card. Remind
senior management that con-
sumers remember low-quality
games, and that brand reputation is
as real a corporate asset as cash.

• Finally, bring up the fact that there
have been a number of very expen-
sive product recalls in the past cou-
ple of years due to problems like
setup bugs that caused users to lose
data, and the discovery of unau-
thorized content on CDs. That
should be the nightmare scenario
of anyone involved with managing
product costs.

Ignorance of the benefits of testing
isn’t confined to upper management.
There are developers out there who
believe that they don’t need any help
from a test team; they are confident
that they will find all bugs themselves
and deliver a perfect drop to the pub-
lisher on the day of release. I suppose it
is possible that some developers are
capable of such perfection, but I’ve
never met any. I’ve only met develop-
ers who think they are this good. Work-
ing with this type of developer tends to
be painful and confrontational because
such an individual won’t value your
contribution and probably won’t be
flexible about meeting the needs of the
test team.

Unfortunately, no single solution
shakes such developers from this mode
of thought. Sometimes they react well
when testers find bugs in their code,
other times they don’t. One strategy
that has worked well for me is posi-
tioning testers as programmers’
“aides.” Explain to the developer that
you can take some of the cleanup work
off his hands. Offer to find invalid and
unexpected cases in the program after
they have unit tested their code.
Market yourself as a service to the
developer.

Make Each Project a Lesson

Every time you go through the test-
ing process with a different devel-

oper you learn a new way to conduct
tests. Don’t forget these lessons. If
something goes poorly, remember the
episode and employ that knowledge in
future projects. Examine the factors
that led up to it so you’ll be aware of
them next time. And of course, if
something works well, think about
how you can apply those same tactics
to a new situation.

Many companies, including Micro-
soft, hold thorough postmortem meet-
ings after a game has shipped, in which
everyone from the development and
testing teams gathers together to talk
about what went well and badly. Whe-
ther or not your company holds such
meetings, prepare as if you’ll attend
such a meeting some day. On the day
you start a new project, create a person-
al postmortem document, and make
entries when things go well and badly.
Having a written record helps you ad-
dress problems for the next project, and
constantly updating that document pre-
vents incidents from disappearing from
your memory once the product ships.

Above all, as a tester you must be
loyal to the product’s quality. It’s your
job to ship the best game possible.
Whenever you find yourself unsure
about what course of action to take, ask
yourself, “What will make this a better
product?” Once you ask yourself that,
choices usually become easy. ■

h t t p : / / w w w . g d m a g . c o m M A Y 2 0 0 0 G A M E D E V E L O P E R

45

Black, Rex. Managing the Testing
Process. Redmond, Wash.: Microsoft
Press, 1999.

Kaner, Cem, Jack Falk, and Hung Quoc
Nguyen. Testing Computer Software.
Boston: Thomson Computer Press,
1993.

Kit, Edward. Software Testing in the
Real World. Reading, Mass.: Addison-
Wesley, 1995.

Maguire, Steve. Debugging the Devel-
opment Process. Redmond, Wash.:
Microsoft Press, 1994.

McCarthy, Jim. Dynamics of Software
Development. Redmond, Wash.: Micro-
soft Press, 1995.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

46

NREAL TOURNAMENT, released in November 1999,

was, in a way, an accident. After the original

UNREAL was completed, Epic wanted to follow up

the project with some sort of add-on pack. UNREAL

multiplayer code was very poor, so the team felt

that an expansion that improved multiplayer would be

ideal. As feature lists grew and patches to UNREAL were released, the add-

on turned into a complete and independent game.

UNREAL TOURNAMENT has certainly seen a very

nontraditional development cycle, one that I feel

would not have succeeded in any other genre.

Ultimately, our decisions paid off, because the

game earned more than five “Game of the Year”

b y B r a n d o n R e i n h a r t

Epic Games’
UNREAL TOURNAMENT

P O S T M O R T E M

Brandon “GreenMarine” Reinhart is a 21-year-old programmer for Epic Games Inc. UNREAL TOURNAMENT

was his first game after being recruited by Epic from the UNREAL and QUAKE 2 mod community. He is
obsessed with games, game programming, and game design. When he isn’t playing games, he can be found
reading Michael Moorcock, painting miniatures, or listening to the latest in Norwegian black metal. Blodu
Ok Jarna!

UU

47

h t t p : / / w w w . g d m a g . c o m M A Y 2 0 0 0 G A M E D E V E L O P E R

awards and is consistently rated in the top ninetieth per-
centile in reviews. The online community is producing
excellent expansions and modifications to the game and we
feel that UNREAL TOURNAMENT will be around for a long time
to come.

Early Development

A proper look at the development of UNREAL TOURNAMENT

begins with the completion of UNREAL. The Unreal
engine was four years under development and the team was
wearing down. When the game shipped, it met with a large
amount of acclaim, but that positive image was tarnished
over time as hardcore players began to complain about the
terrible network support. The UNREAL team was now faced
with several more months of work on the game, essentially
to bring it to the point it should have been at when it was
put on shelves.

Early in the process, plans were discussed to work on an
official Epic add-on to UNREAL. The add-on would introduce
much-improved network play, new maps, and probably
some new game features. The original ideas for the add-on
were never put on paper and it never had a name. I was
hired by Epic in August 1998 to assist with patching UNREAL.
Eventually I started to write new code for the add-on with
Steve Polge.

Initial work on the add-on in early summer 1998 was
made difficult by the fact that Epic was a virtual company.
The last year of UNREAL’s development took place in Canada,
with the U.S.-based Epic team flying back and forth to work
with Digital Extremes in London, Ontario. When UNREAL

was finished, no one at Epic wanted to travel anywhere, but
at the same time the team recognized that they needed to
move to a central location. The team decided to relocate all
of its employees to Raleigh, N.C.

By September 1998 everyone was together or had a travel
plan. Work started to come together rapidly on the add-on
project. Steve Polge had laid the groundwork for several new
game types, including Capture the Flag and Domination.
The level designers had five or six good maps ready for test-

ing. Throughout sporadic but intense meetings, the team
agreed to focus the add-on entirely on improving the multi-
player aspect of the game with new features and better net
code.

The amount of content grew and we soon realized we had
a much larger project on our hands than we had originally
thought. In November, after meetings with our publisher GT
Interactive, Mark Rein suggested we turn the add-on into a
separate game. Initially, the team opposed the idea. We
wanted to finish the project quickly and move on to some-
thing fresh. The promise of a much higher profit potential,
coupled with our recognition of the state of the project
finally led us to agree with GT. In December, the name
UNREAL: TOURNAMENT EDITION was chosen, with “Edition”
subsequently dropped from the title.

A Game Takes Shape

Epic’s internal structure is extremely liberal, probably the
most liberal in the entire gaming industry. Programmers

work on the projects they want to work on, with major fea-
tures being assigned to whoever steps forward to take on the
task. Artists work with level designers but are given signifi-
cant design freedom. Level designers work on the kinds of
maps they think would be cool. This design philosophy per-
vaded UNREAL TOURNAMENT’s development.

In December, I downloaded a sample of a new UNREAL

mod under development by an Australian named Jack
Porter. The mod, UBrowser, was a server browser using a
Windows-like GUI. It was impressive, so I showed it to James
Schmalz, lead designer at Digital Extremes, who said, “We
need that, we need to hire this guy.” A few weeks later Jack
was a part of the team, expanding his UWindow GUI and
reworking UNREAL TOURNAMENT’s menus to use the system.
Jack fit into the team perfectly, bringing a complete solution
for the interface and menus as well as his own independent
programming initiative.

Weekly meetings infused order into our chaotic corporate
structure. Everyone would debate and yell about what fea-

Epic Games Inc.
Raleigh, N.C.
(919) 854-0070
http://www.epicgames.com

Digital Extremes
London, Ontario, Canada
(519) 657-4260
http://www.digitalextremes.com

Release date: November 1999
Intended platform: Windows 95/98/NT, Linux
Project budget: $2 million
Project length: 18 months
Team size: approximately 16 developers
Code Length: 350,000 lines of C++ and UnrealScript
Critical development hardware: Pentium II 400s with 256MB

RAM and Voodoo 2 or TNT-based cards
Critical development software: Microsoft Visual Studio, 3D

Studio Max, UnrealEd

UNREAL TOURNAMENT

A close-up shot of the Black Thunder skin on Shane
Caudle’s Male1 model. This was one of the first new skins
developed for UNREAL TOURNAMENT.

tures were cool and what fea-
tures sucked. The assignment of
major features was largely auto-
matic. Tim Sweeney worked on
improving net code and engine
fixes. Steve Polge wrote the origi-
nal AI code and focused on
adding player orders and other
improvements (in addition to
filling out the new game types).
Jack had the windowing system
and a lot of menus to work on.
Programmer Erik de Neve was in
Europe putting together level-of-
detail code as well as experi-
menting with next-generation
technology. I worked on the sin-
gle-player game, game-play fea-
tures, scoreboards, HUDs, special
level actors, tutorials, and wrote
a lot of the game’s story and
character background content.

The best features were added
entirely by the initiative of indi-
viduals. Level designer Cedric
“Inoxx” Fiorentino designed
CTF-Face, an extremely popular
Capture the Flag map. I added
the Multi-Kill system after a
short discussion with lead
designer Cliff Bleszinski sparked
the idea, and Jack implemented
decals shortly before we shipped.
It was this individual creativity
that ultimately bound the team
together. Each new feature
infused everyone with the
enthusiasm to add more.

Once the first batch of new
player models, weapon models, and
maps was completed we realized we
had a game quite different from
UNREAL. Feedback from the UNREAL

deathmatch community (including the
highly vocal QUAKE community’s com-
plaints) also drove our designs. Subtle
alterations to player movement and
control changed the feel of the game
completely. Some changes in game
play — such as whether to enable
weapon-stay in single player — were
controversial, so we held polls on pop-
ular UNREAL message boards.

Throughout the spring and summer
of 1999, Epic was pursuing contract
renegotiations with GT Interactive.
Everyone believed the game could ship
at any time, so development became
stop-and-go. We would be in a code
lockdown one week and adding major
new features the next. The result of

this jarring development cycle was
good and bad. The periods of code
lockdown allowed us more time to
play-test and fix bugs, which con-
tributed greatly to the game’s overall
polish. On the other hand, it prevented
us from adding many features that
would have otherwise been included
and it was detrimental to the morale of
the team. We liked working on UNREAL

TOURNAMENT, but it still felt like old
technology to us. The world had seen
the Unreal engine; we were ready to
move on.

New Code, New Features

A s it turned out, though, we had a
lot of time to enhance the engine.

UNREAL was before its time and a lot of
the content and code was rushed by

the need to ship. With UNREAL

TOURNAMENT, the team had a lot
of time to use previously unex-
plored engine features. Erik de
Neve’s level-of-detail code
ended up really speeding the
game up, giving us room for
beefier characters and more
map decorations.

Early on we experimented
with using 16 256×256 textures
per player, but opted for three
or four 256×256 pieces out of
memory considerations. This
quadrupled the detail available
to our skin artists for the player
models. Reserving one of the
256×256 textures for the head
alone allowed us to mix and
match body skins with heads,
yielding a massive amount of
customization with only a small
amount of work. Another one
of the 256×256 textures was
reserved for team color bits, so
that a player skin could encom-
pass all five possible team colors
(none, red, blue, yellow, green)
without too much memory use.

Level design didn’t stand still
either. Changing from single-
player to deathmatch-oriented
design was refreshing for the
designers, but not without its
unique challenges. One issue
was the task of balancing the
number of “hardcore” maps
with “theme” maps. A hardcore
map focuses entirely on layout

and game play, while the overall style
of the map comes second. Theme
maps, on the other hand, focus on a
unifying idea or look and build from
that. For example, the Koos Galleon,
designed by Pancho Eekels of Digital
Extremes, is a large sailing ship. It’s a
very beautiful level, but focuses on the
theme of being a ship more than being
a deathmatch map.

The UNREAL TOURNAMENT team decid-
ed that mixing the two styles was the
best approach. While most magazine
reviews have expressed frustration at
the theme-oriented maps, we didn’t
want to appeal to only the hardcore
crowd. Including maps that were
designed for their look and feel increas-
es the game’s interest to average play-
ers who aren’t skilled enough at the
game to benefit from hardcore designs.
Realism through textures and architec-

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

48

P O S T M O R T E M

UNREAL TOURNAMENT’s deathmatch maps were not con-
strained to any one particular theme or timeframe.
Cliff Bleszinski’s DM-Barricade, shown above, is a cas-
tle floating above a storm, while Pancho Eekels’ DM-
Galleon is a massive ship sailing the ocean (shown
top).

ture is one of the Unreal
engine’s strengths and it
was critical that we
exploit that strength.
Ultimately, we shipped
UNREAL TOURNAMENT

with somewhere around
45 to 50 maps, offering
more than enough vari-
ety and replay value for
everyone.

Another task we faced
was choosing which of
UNREAL’s weapons to keep
and which to ditch. UN-
REAL TOURNAMENT has
two firing modes which
makes designing a
weapon like designing
two weapons in one.
UNREAL’s stinger and dis-
persion pistol were not
needed in UNREAL TOUR-
NAMENT. Those weapons
were good in UNREAL, because a player
needed to start with simple, weak
weapons and build up. In UNREAL

TOURNAMENT, all the weapons had to be
equally effective and carefully balanced.
A player good with the minigun needed
to be lethal with it. A player good with
the pulse gun needed to be lethal with
it. Eventually we settled on the current
load-out, but made quite a few game-
play changes to the weapons that stayed
from UNREAL. Each weapon was also
given a much more beefed-up look and
sound.

An interesting little anecdote: GT
started doing promotion for UNREAL

TOURNAMENT before the new rocket
launcher was finished. They produced
a lot of marketing material with old
screenshots showing the eightball
launcher from UNREAL. If you look at
the gold trophy used in the print ads,
you’ll see the characters at the top are
holding eightballs, a weapon that isn’t
in UNREAL TOURNAMENT.

In the End, It All Worked Out

W hile the talents and devotion of
individual team members creat-

ed the content, the overall team spirit
tied it together. UNREAL TOURNAMENT’s
design process was often reckless, but
the game that resulted is nevertheless
very polished and a hell of a lot of fun.
The deathmatch-focused first-person

shooter doesn’t need a story, dialogue,
or scripted sequences, which are all fea-
tures that more or less require an orga-
nized design. Had we applied our
hodgepodge design approach to a more
focused genre, we probably would not
have had such a successful game.
UNREAL TOURNAMENT should not be
seen as a lesson in how to design a
game, but as a lesson on how to orga-
nize a small team of developers.

What Went Right

1.SMART INTERNAL MARKETING TEAM. At
the front of Epic’s public rela-

tions were Mark Rein and Jay Wilbur.
Their job was particularly difficult dur-
ing the development of UNREAL TOUR-
NAMENT. The media perceived us as
impossible upstarts, taking an engine
with terrible net-play and attempting
to compete against id Software, the
industry multiplayer champion. Both
Mark and Jay fought hard to win over
supporters in the online and magazine
press. Mark made sure that the team
stayed professional and that everyone
was saying what he needed to be say-
ing. Jay hunted down potential engine
licensees, and helped establish a level
of curiosity among the community and
media.

UNREAL TOURNAMENT was able to
garner significant magazine coverage
because of the ongoing “QUAKE killer”

debates. Mark and Jay
worked to turn the initially
negative public response
into something positive.
While we felt that our game
would definitely stand on
its own, we had to ensure
that the positives were
being clearly broadcast.
Epic was very careful to
avoid mentioning QUAKE 3:
ARENA whenever possible,
keeping the focus solely on
UNREAL TOURNAMENT’s fea-
tures and staying away
from comparative previews.
Most interviews and pre-
views would ask us the
inevitable “What about
QUAKE 3?” question, to
which we tried to answer
with complete respect for
id’s project. Everyone knew
that UNREAL TOURNAMENT

and QUAKE 3 would be pitted against
each other. Mark and Jay established
very early on that the competition
would be friendly.

2.LIBERAL INTERNAL STRUCTURE, OPEN

DESIGN DISCUSSION. The laid-back
environment that both Epic and
Digital Extremes fostered greatly
enhanced the quality of UNREAL TOUR-
NAMENT. Everyone was free to suggest
or implement an idea. Programmers
had as much design freedom as anyone
else on the team. Cliff Bleszinski (Epic)
and James Schmalz (DE) were the lead
designers of their respective companies
and served as content filters. They
worked towards focusing the ideas put
forth in the meetings. In addition,
both of them contributed significantly
to the final game content. James
designed two of the player models and
created many skins and faces, while
Cliff designed many of the game’s best
maps.

Team members were allowed to
come into work when they wanted and
stay however long they felt like being
there. The only requirement was that
every member attend a weekly design
and focus meeting. This system worked
because Epic was very careful to hire
mature, dedicated employees and the
core development team was kept small.
The open hours often saw team mem-
bers working a 24-hour day, sleeping
on a couch for six hours, and then
working another 24-hour day.

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

50

P O S T M O R T E M

UNREAL TOURNAMENT used from three to four 256×256 textures per
model. This allowed us to focus a lot of detail in the head and face
area. Within the game a player can choose a skin and then swap
through several different faces. This means players on a team can
wear identical armor and clothing but have unique faces.

In addition to fostering a hardcore
work ethic, the system created a side-
ways information flow. A programmer
would go straight to the artist he needed
something from, instead of through an
art director. The fast communication
allowed the programmers to stomp out
bugs relatively quickly and the level
designers to talk directly to the texture
artists. An example of this was the sin-
gle-player ladder system. Shane Caudle
designed the art and I wrote the code.
The fewer people we had to consult in
order to complete the task meant a
much faster turnaround. Everyone par-
ticipated in giving the “coolness factor”
thumbs-up or thumbs-down, but the
actual development process was inten-
tionally kept thin.

3.DIRECT COMMUNICATION WITH THE

GAMING COMMUNITY. Nearly every
Epic and Digital Extremes employee
frequented message boards dedicated
to the subject of UNREAL and UNREAL

TOURNAMENT. The majority of Epic
employees were drawn directly from
the gaming community, either through
mod projects or independent game
work. Keeping in contact with the
gaming community allowed Epic to
focus on the target audience during the
design process.

Beyond our direct communication
with the UNREAL community, we also
trolled QUAKE 3 message boards, read-
ing the discussions of the fans of our
lead competitor’s game. Learning what
people liked in a first-person shooter
and why they liked it helped us change
the marginal multiplayer experience in
UNREAL to the much faster paced game
play in UNREAL TOURNAMENT.

The gaming community can really
help set the tone for your game. When
UNREAL was released, the online com-
munity became extremely vocal and
angry about the state of the net play.
While most magazines had reported
positive experiences with UNREAL’s sin-
gle-player mode (reflected in positive
reviews), the media eventually came to
reflect the cries of the hardcore gaming
community. This was in part because
the net play was poor, but also due to
the fact that many members of the
gaming media are themselves hardcore
game players and visit those same mes-
sage boards and community outlets.

We also learned that while the hard-
core community is very vocal, it is also
relatively small. Designing a game to

appeal to that community alone is a
critical mistake. Early in 1999 we start-
ed work on tutorials for each game
type. The tutorials are far from defini-
tive, but they did cover the basics of
playing a 3D shooter. Testing on the
parents and grandparents of team
members demonstrated that the tutori-
als were useful for attracting and keep-
ing new players.

This community-mindedness greatly
contributed to the quality and com-
pleteness of UNREAL TOURNAMENT. We

had a very good idea of what players
wanted. As I mentioned earlier, we
often posted controversial design ques-
tions on public message boards to
gauge public reaction. The results of
these polls were taken into considera-
tion when the feature in question was
implemented.

4.STRONGLY OBJECT-ORIENTED ENGINE

DESIGN. The Unreal Tournament
engine’s strong object-oriented design
makes it extremely modular. This mod-
ularity allowed our programmers to
make massive changes to parts of the
game without affecting other features.
Each subsystem is connected to other
subsystems through a clearly defined
interface, and platform-specific code is
consigned to separate libraries. Creat-
ing the Linux port, for example, was
simply a matter of rewriting an input
and sound device and writing a Linux
version of the platform-specific library
behavior.

Throughout UNREAL TOURNAMENT’s
development, Tim Sweeney and Steve
Polge worked on improving the net-
working code. The modularity of the
engine meant that their work didn’t
disturb anyone else’s work. Some fea-
tures, such as Jack’s decal system, were
added very late in the project. The
decal system added a lot of depth and
feedback to the game, and took less
than a week to get working and fully
debugged. Erik de Neve’s mesh level-of-
detail code touched only a handful of
source files.

This ease of use is also reflected in
the engine’s scripting language,
UnrealScript. Calling it a scripting
language is a misnomer; it’s actually a
lot like Java. Weapons, pickups, level
events, AI nodes, and other world
actors are all independent objects.
A weapon can be added to the game
without touching any source files
but the new object definition. This
highly extensible language meant that
each programmer could add extensive
new game-play features with a very
limited set of potential side effects. In
the end, 90 percent of UNREAL TOUR-
NAMENT’s game-play code was written
in UnrealScript.

The Unreal Tournament engine’s
modular package system coupled with
UnrealEd makes the game a mod-
creation system out of the box. We
designed a lot of our code with ama-
teur extension in mind. Everyone at

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

52

P O S T M O R T E M

The characters in UNREAL TOURNAMENT

were designed to be futuristic pit
fighters. The selection of characters
include ex-military specialists, crimi-
nals, and alien warriors such as the
Necris Phayder Assassin pictured
above.

Epic recognized the value of the mod
community and we wanted to make
the game attractive to new artists and
programmers. Constructing game code
in this way made it much easier for us
to prototype our own new features.
Early UT weapons and pickups were
child objects of UNREAL. The two games
can easily coexist even now.

5.GOOD TIMING. As I said earlier,
UNREAL TOURNAMENT was devel-

oped in the same time period as id
Software’s QUAKE 3: ARENA. The two
games promised to be of the same
genre and the two companies were
known for a high level of competition.
While we tried to avoid the “QUAKE 3
vs. UT” comparisons, they ultimately
worked in our favor. The high level of
public interest in the new engine war
greatly increased our visibility. Maga-
zines and web sites often posted split
previews instead of focusing on one
game in particular. Interviews with id
employees would always lead to
UNREAL TOURNAMENT questions and
vice versa.

UNREAL TOURNAMENT took almost
exactly a year and a half to develop,
giving the team a lot of time to pack in
features. We didn’t have to focus on
writing an engine from scratch, so we
were free to focus entirely on improve-
ments. At this point, we’ve released
three patches for UNREAL TOURNAMENT

that have solved a handful of relatively
minor problems. The team has had a
lot of time available to spend on
adding even more features to the game
since its release, instead of fixing out-
standing issues. By the time this article
hits the stands, we’ll have released our
first bonus pack: a free collection of
new models, maps, and game-enhanc-
ing features.

What Went Wrong

1.BAD TIMING. Many aspects of the
game’s timing worked against

us. While the QUAKE 3 vs. UT hype
increased our exposure, it also set a
very hard deadline for completion. It
was critical that we complete the
game before QUAKE 3 was released.
The media advantage belonged to id
and we believed that if UNREAL TOUR-
NAMENT launched after QUAKE 3, we
would be forgotten in the storm. At
the same time, however, we were

caught up in grueling contract renego-
tiations with GT Interactive. We did
not want to deliver the completed
game until we knew the contract
would work in our favor. Many times
during the development of the game
we were promised that a resolution to
the contract issue was close at hand.
The team would race to reach a point
where the game could be shipped,

only to have negotiations drag on.
The gold master was delivered to GT

days after a final contract was agreed
upon. Unfortunately, the game hit
shelves in November, pushing us very
close to QUAKE 3’s release date. While
UNREAL TOURNAMENT often performed
better than QUAKE 3 in reviews, we
believe that sales would have been
much higher still had we released in

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

54

P O S T M O R T E M

The UNREAL TOURNAMENT development
team felt that several of Unreal’s
weapons were a lot of fun. Here is a
bot carrying the Shock Rifle, an
updated version of UNREAL’s ASMD.

Every weapon in UNREAL TOURNAMENT

has two distinct firing modes. This
made designing and balancing each
weapon twice as complex as a normal
first-person shooter.

After the release of UNREAL TOURNAMENT, the Epic team started working on a free
bonus pack containing additional models. These are concept drawings of the
Skaarj Warrior model for the pack.

October. Word-of-
mouth is a powerful
force and the extra
month would have
given us time to build a
larger community
before Christmas.

2.NO CENTRAL DESIGN

DOCUMENT. While
I am a big supporter of
open, cabal-style design,
I have to stop and won-
der how UNREAL TOUR-
NAMENT would have
turned out had we a
strong initial design. It’s
quite possible that the
game’s weaker elements
would have been much
stronger if we had put
together some concept
art and focus material.
In reviews, we have
been criticized for not
having enough variation in charac-
ters. If UNREAL TOURNAMENT had had a
library of concept art to draw from, we
might have had more interesting alien
warriors. The story is more or less
nonexistent in UNREAL TOURNAMENT,
but at times we considered having in-
game cutscenes as rewards for a play-
er’s progress. The idea was dumped,
but a design document might have
made it easier to visualize those
scenes.

I suppose this isn’t really a “what
went wrong.” It’s simply more of a
“what we should have done.” I think
it’s important to think about the game
in that light. UNREAL TOURNAMENT is a
very fun game with a lot of features
packed into a short amount of devel-
opment time. Those features were
largely added through spur-of-the-
moment decisions. A more unified
approach to design would have allow-
ed us to construct features that play on
features, or even think of ideas we
didn’t have the perspective to realize.
Epic will always be a very open, liberal
company when it comes to the design
process. If we develop a design docu-
ment, we’ll use it with the understand-
ing that it can be modified at any time.
That having been said, I think there is
a definite positive argument for having
some sort of central guide to every-
one’s ideas. Having the ability to sit
down and look over the big picture is
very valuable.

3.CO-DEVELOPMENT ACROSS TWO COUN-
TRIES. Epic Games and Digital

Extremes co-developed UNREAL TOUR-
NAMENT. The Digital Extremes team was
located in Canada and Epic was located
in the U.S. Epic supplied the program-
ming team and a large group of con-
tent designers. Digital Extremes provid-
ed level designers, a sound guy, and
texture artists. James Schmalz, the
high-up man at Digital Extremes, con-
tributed two of the game’s player mod-
els and a lot of art. This co-develop-
ment worked well for the most part,
but near the end of the project it
became very difficult.

During UNREAL, Epic team members
flew to Canada to work at Digital

Extremes’ offices. With
UNREAL TOURNAMENT, it
became Digital Extremes’s
turn to do the traveling.
Unfortunately, flying and
driving back and forth
every couple of weeks is a
very draining experience.
Many of the Digital
Extremes team members
spent several weeks away
from their wives and girl-
friends. Near the end of
the project, they grew
increasingly frustrated
with the situation. To
compound this problem
further, Digital Extremes
and Epic were attempting
an expensive merger. As
UNREAL TOURNAMENT came
to a close, it became clear
that the merger would not
happen. It was prohibitive-

ly expensive for a small company to
move across the border. Many Digital
Extremes team members already had
apartments and plans for living in
Raleigh, and the news of the terminat-
ed merger process was devastating.

Much to Digital Extremes’s credit,
the company quickly recovered and
moved to its backup plan of develop-
ing its own game with the Unreal Tour-
nament engine. Nonetheless, the
process of co-developing the game had
taken its toll on everyone. The ups and
downs of the merger process had a neg-
ative effect on team morale. Had the
co-development happened between
companies more closely situated, it
would not have been a problem.

4.NOT ENOUGH ARTISTS. On the
content side, UNREAL TOUR-

NAMENT was held back by the number
of available artists. Epic’s artist, Shane
Caudle, is a supreme Jack-of-all-trades,
creating skins, models, and levels of
the highest quality. He spent most of
his time working on new player models
and skins for those models. Digital
Extremes brought a few texture artists
to the table, but not enough to create
the huge libraries of new textures need-
ed for the game. In order to supple-
ment the skin and texture production,
Epic turned to contract artist Steve
Garofalo.

Even with the additional help from
external sources, the team was unable
to produce enough new textures. Level

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

56

P O S T M O R T E M

In the Assault game type, players have to enter a heavily defended
base and complete map-specific objectives to win. Assault was the
most difficult UNREAL TOURNAMENT game type to design, balance, and
play-test.

Steve Polge, our AI and game play
programmer, made the bots under-
stand the unique advantages and dis-
advantages of each weapon. Here a
bot is moving in very close to use the
powerful Flak Cannon.

designers who wanted custom textures
for their maps had to make do with
their own texturing ability. While the
final texture and level count in UNREAL

TOURNAMENT is quite high, the levels
would have been much more impres-
sive had the team been able to act with
full freedom. Since the completion of
UNREAL TOURNAMENT, Epic has hired
both Steve Garofalo and John Mueller
to strengthen the art team for future
projects.

5.VISUAL BASIC EDITOR INTERFACE. The
Unreal Tournament engine

uses UnrealEd as its level design and
content management tool. For several
years, UnrealEd has used a windowing
interface written in Visual Basic. The
VB code is fragile and very old. Add to
this the fact that nobody at Epic except
Tim Sweeney knows or cares about VB,
and you have a level design team that
is stuck with a tool that’s not easily
updated.

Several interface bugs have plagued
UnrealEd for some time and nobody
on the team had the time or inclina-
tion to fix them. If we had a more easi-
ly extensible tool, the team would have
been able to add extra features to the
editor for level designers to use. As it
stood, the editor was considered “off
limits” for new features.

For our next few projects we will
most likely use a new C++ editor that
Legend Entertainment developed. For
UNREAL TOURNAMENT, however, we sim-
ply didn’t have the time to work on a
new editor. Fortunately, our time spent
using UnrealEd taught us the dos and
don’ts of tool design.

Where We Go from Here

The things that went wrong are, all
in all, much less significant than

what went right. UNREAL TOURNAMENT

could have benefited from a more
focused initial design and a more solid
ship date, but it turned out to be very
polished and a lot of fun. Many of the
factors that worked in our favor, like
timing, also worked against us to some
extent. “What went wrong” is a good
way of looking at what we could have
done to make UNREAL TOURNAMENT

even better.
Epic has developed some pretty clear

plans of where we want to go from
here. We’ve been working on free con-

tent to release to support UNREAL

TOURNAMENT. We are also looking into
doing some kind of Playstation 2 ver-
sion of the game. After that, we want
to focus on an entirely new engine
technology for the PC. In the short
term, Jack Porter is working on his
terrain system and Erik de Neve is
putting the finishing touches on the
skeletal animation system. Tim
Sweeney has been developing an
entirely new programming language to
support the next engine, with some
very powerful features such as parame-
terized functions.

UNREAL TOURNAMENT served as a good
learning tool for the team. We have a
good idea of what processes we need to
adopt to produce larger, more story-dri-
ven games in the future. We see UNREAL

TOURNAMENT as a good lesson in how to
organize a team and produce a game in
a short amount of time. The team has
grown socially, and everyone is much
more experienced in the process of
game development. We feel very pre-
pared to face the upcoming challenges
and, hopefully, to continue to be seen
as innovators in the industry. ■

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

58

P O S T M O R T E M

Epic hired several extremely skilled
contractors to assist with art produc-
tion. This is an extremely detailed
female skin by Steve Garofalo. In
February, Epic hired Steve as a full-
time team member.

thinking about how work went today
on your current project? I bet.

You see, making computer games
today is not rocket science. It takes hard
work, talent, and dedication. It also
takes leadership. That’s right, the dread-
ed l-word. Everyone seems to want it,
no one seems to do it right, and the
ones most qualified to be in the cap-
tain’s chair are usually sporting a tight
red shirt, beaming down with the next
away-team. In order
to succeed, a game
has to have leader-
ship throughout the
course of its devel-
opment. Sure there
are exceptions, but
even in cases where
it seems a single
person isn’t at the
helm, there really is
someone who had a
vision and main-
tained it through-
out the develop-
ment process. (He’s
the guy behind the curtain.)

I didn’t pick up a mouse until I was
27 and even though I’ve been making
art for computer games for almost nine
years, I’m still astounded by the lack of
emphasis many companies place on
structure in the development process. I
know why, though. It’s that leadership
thing. Maybe I’m just more acutely
aware of it having served six years in
the Air Force, but it bugs me greatly
that in the time I spend pushing pixels
and vertices, concepts like “chain of

command” are deemed too militaristic
and constrictive for our industry.

What’s wrong with a little order?
What’s wrong with a little discipline?
What’s wrong with knowing without a
doubt who the right guy to turn to is?
What’s wrong with making sure the per-
son in charge of the vision for the game
has at least the basic social skills needed
to communicate to the rest of the team?
Nothing. But lapses in leadership hap-

pen all the time. Whether it’s a case of
the wrong person leading the team or
no one being willing to make a decision
without ratification by a ten-man com-
mittee, more often than not games are
made in a storm: a storm of inclement
social and team dynamics. Such bad
weather can always be traced to the top.
Think about it. When the director of a
project is passionate, committed, com-
municative, and willing to be flexible
while creating his or her opus, guess
what happens? It’s infectious. All the

other team members get those same
symptoms leading to one hell of a prod-
uct. But before we get into the impor-
tance of having a good captain at the
helm, let’s talk about the ship.

Without the right people, nothing
else matters when making a game
today. Money doesn’t matter. Swanky
location doesn’t matter. Nothing mat-
ters. This crew has to be a group of tal-
ented, hard-working, passionate indi-
viduals working together as a team. As
individuals, each person must be more
than just competent. They have the
ability, and more importantly, the
desire to solve problems. They’re profes-
sionals in their given areas of expertise
and proud of their work. Eager to
impress, they nonetheless understand

the value of teamwork
and clear communica-
tion. They don’t have
to have one, but an
occasional pat on the
back goes a long way,
even if they don’t
always show it.

Feedback and direc-
tion from the project
leader sustains the
members of the team
as they plod through
the long, hard trek
that is making com-
puter games today.

Not knowing if they’re doing a good
job, a bad job, or even an adequate job
will hurt morale. Not knowing what
they’re supposed to be doing and
whether what they’re doing is correct
will quickly herd a team into disaster.
This is where the leader comes in, not
only through carefully monitoring the
morale and status of the team, but by
successfully communicating his or her
vision to them.

The importance of having a coherent

G A M E D E V E L O P E R M A Y 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

64

b y P a u l S t e e dS O A P B O X

Take Me to Your Leader...

C abals. Committees. Design by attrition.

Mean anything to you? Bring on a

migraine from the experience you had on

your last project? Make you cringe while

CONTINUED ON PAGE 63

Paul Steed is a little-known, shy artist-type serving as the modeling and animation department at id Software. He often laments his
art director days at other companies where he spent many fruitful hours delegating responsibilities to others. Now he just tries his
best to keep up with the rest of the pack occasionally writing a tutorial or enlightening editorial.

vision for a game idea can’t be overstat-
ed. The project leader has to hold on to
the vision, know it, and convince
everyone else of his or her commit-
ment to it, so that everyone else can in
turn embrace and become excited
about it. This is most evident through a
well-written (and evolving when neces-
sary) game design document. An effec-
tive design document gives form to the
vision and adds to the team’s comfort
level as they settle in for the long haul.
Without this bible in hand, it’s impos-
sible to maintain and communicate the
vision for the game to the rest of the
team. But the term “bible” should be
used loosely.

The key to a good game design docu-
ment is lucidity and flexibility. It has to
identify important aspects and concepts
of the design clearly and quickly so that
they can be translated into workload. It
is a road map and a starting point for all
phases of preproduction and produc-
tion. Don’t make a phone-book-sized
tome and expect everyone (or anyone)
to read it. A well-written design docu-
ment exists in three iterations: one
page, ten pages, and one hundred pages.
All will read the one-page version, most
will read the ten-page version, and few
if any will read the one-hundred-page
version. It should be visually interest-
ing, not bogged down by flowery prose.
Revisions to the document should be
followed effortlessly. Flexibility in the
design document means that changes
can be incorporated if existing ideas
aren’t working out or can’t be executed.
Clinging tenaciously to an aspect of the
design when it’s apparent it won’t work
is bad. It’s a sign of pride over reason
and a sign of bad leadership.

So what about the leader himself?
What does it really take to be the cap-
tain of the starship? Good organiza-
tional skills, good communication
skills, and good people skills are a
must. Expressing endless passion and
unrelenting drive helps as well. When
people sense your commitment, they
become committed as well. If they
think you have your act together then
they’ll strive to keep their act together
and execute the plan you’ve devised
with aplomb. Of course, a dictatorship
doesn’t inspire any sort of devotion or
esprit de corps. Barking orders and dis-
regarding what others have to say
won’t work. Having confidence in your
leadership ability means just that —
throwing temper tantrums when
things don’t go your way is the surest
and quickest way to turn off your team.
Resolving sticking points during the
development process by demonstrating
tact and diplomacy isn’t the easiest
thing to do, but it is the most effective.

Does leadership necessarily have to
rest on the shoulders of one person?
Yes, it does. Leadership by committee
just doesn’t work, especially if the
team is small. Too many chiefs, not
enough Indians; too many cooks in
the kitchen — whatever saying comes
to mind can be applied here. Going to
one person for answers saves time and
confusion, allowing for (gasp!) projects
to be done on time. By contrast, com-
mittees are invariably bogged down by
politics and wasteful bickering. In our
industry, too often the decision-mak-
ing process is way too complicated and
involves way too many people. That’s
not to say democracy should be
thrown out the window, quite the
opposite. If a leader is on the ball, he

or she already knows what the general
consensus on any issue is. Leaders
should never be afraid to make deci-
sions and deal with the consequences.

Finally there’s commitment: doing
whatever it takes to get the job done.
Effective, confident leadership creates
an environment where synergy and
camaraderie grow through the under-
standing that effort won’t be wasted
and will be appreciated. But in the
end, everyone, not just the leader of
the team, has to commit unflaggingly
to their abilities and the game’s
premise in order celebrate a successful
finished result.

At the heart of it is this: Good leader-
ship is about conveying your vision to
the rest of the team effectively. A leader is
not a shy person. A leader is not one of
the socially challenged. Having
embarked upon the arduous journey
that becomes the game development
process, a team needs to know that a
competent and skilled captain is at the
helm. All the team members need to
know well beforehand what is expected
of them and what they need to accom-
plish to support the project’s various
milestones. The leader of the project
must provide direction so that members
of the team know at all times that what
they are doing is right and what they
need to be doing in the future. When
communication falters, so does the pro-
ject. The team will flounder, turn on
itself, dissolve, or complete a project
that results in a marginal game at best.

Successful games don’t happen by
accident. A good leader commits, moti-
vates, communicates, and in the end
inspires the rest of the team to stick it
out and care about what they do. A
good leader leads. ■

S O A P B O X

63

CONTINUED FROM PAGE 64

	return:

