
MARCH 2013
VOLUME 20 NUMBER 03

T
H

E
 L

E
A

D
IN

G
 G

A
M

E
 I

N
D

U
S

T
R

Y
 M

A
G

A
Z

IN
E

postmortem

INTERVIEW WITH EPIC'S TIM SWEENEY +++ IINTERACTIVE FICTION RENAISSANCE

mailto:jobs@asobostudio.com
http://www.asobostudio.com

Postmortem

036 THE WALKING DEAD
Q: When is a zombie game not just a
zombie game? A: When it’s Game of the
Year. Telltale Games CTO Kevin Bruner
explains how their craft for narrative set
THE WALKING DEAD apart from the rest
of the (zombie) pack. By Kevin Bruner

Features
013 QUALITY-OF-LIFE SURVEY

Devs: How are you doing? Check out
the results from Game Developer’s fi rst
quality-of-life survey. By Brad Bulkley and
Patrick Miller

021 INTERACTIVE FICTION RENAISSANCE
Text games are back! Game Developer
talks with fi ve movers and shakers
behind the resurgence of interactive
fi ction. By Leigh Alexander

029 THE OLD GUARD
Find out what’s next for next-gen
engines in this interview with Epic
Games CTO Tim Sweeney. By Brandon
Sheffi eld

045 FIVE TIPS FOR BETTER PLAYTESTING
Make the most out of your playtesting
sessions with these fi ve tips from casual
game developer Arkadium. By Vin St. John

Departments

002 Game Plan [Editorial]

004 Heads Up Display [News]

006 Educated Play [Education]

009 Good Job [Career]

010 GDC News [News]

049 Toolbox [Review]

055 Inner Product [Programming]

069 Pixel Pusher [Art]

078 Design of the Times [Design]

085 Aural Fixation [Sound]

086 The Business [Business]

089 Insert Credit [Editorial]

096 Arrested Development [Humor]

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
0

1
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

001
C O N T E N T S _ M a r c h 2 0 1 3

V O L U M E 2 0 N U M B E R 0 3

0
0

2

UBM LLC.
303 Second Street, Suite 900, South Tower
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

W W W. U B M . C O M

SUBSCRIPTION SERVICES

FOR INFORMATION, ORDER QUESTIONS, AND
ADDRESS CHANGES
t: 800.250.2429 f: 847.763.9606
gamedeveloper@halldata.com
www.gdmag.com/contactus

EDITORIAL

PUBLISHER
Simon Carless scarless@gdmag.com
EDITOR
Patrick Miller pmiller@gdmag.com
EDITOR EMERITUS
Brandon Sheffield bsheffield@gdmag.com
MANAGER, PRODUCTION
Dan Mallory dmallory@gdmag.com
ART DIRECTOR
Joseph Mitch jmitch@gdmag.com
CONTRIBUTING WRITERS
Alexandra Hall, Brad Bulkley, Leigh
Alexander, Brandon Sheffield, Kevin Bruner,
Dave Wilkinson, Andrew Maximov, Jason
VandenBerghe, Damiam Kastbauer, Kim
Pallister, Matthew Wasteland, Magnus
Underland
ADVISORY BOARD
Mick West Independent
Brad Bulkley Microsoft
Clinton Keith Independent
Bijan Forutanpour Sony Online Entertainment
Mark DeLoura Independent
Carey Chico Independent
Mike Acton Insomniac
Brenda Romero Loot Drop

ADVERTISING SALES

VICE PRESIDENT, SALES
Aaron Murawski aaron.murawski@ubm.com
t: 415.947.6227
MEDIA ACCOUNT MANAGER
Jennifer Sulik jennifer.sulik@ubm.com
t: 415.947.6227
GLOBAL ACCOUNT MANAGER, RECRUITMENT
Gina Gross gina.gross@ubm.com
t: 415.947.6241
GLOBAL ACCOUNT MANAGER, EDUCATION
Rafael Vallin rafael.vallin@ubm.com
t: 415.947.6223

ADVERTISING PRODUCTION

PRODUCTION MANAGER
Pete C. Scibilia peter.scibilia@ubm.com
t: 516-562-5134

REPRINTS

WRIGHT’S MEDIA
Jason Pampell jpampell@wrightsmedia.com
t: 877-652-5295

AUDIENCE DEVELOPMENT

AUDIENCE DEVELOPMENT MANAGER
Nancy Grant e: nancy.grant@ubm.com
LIST RENTAL
Peter Candito
Specialist Marketing Services
t: 631-787-3008 x 3020
petercan@SMS-Inc.com
ubm.sms-inc.com

G A M E D E V E LO P E R
M A G A Z I N E
W W W. G D M A G . C O M

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

002 gp
G A M E P L A N _ M a r c h 2 0 1 3

WHAT IS A GAME?

(MORE THAN JUST) A MISERABLE
LITTLE PILE OF SECRETS Video games
are an incredibly diverse medium. When we
describe other media (literature, fi lm, music,
and so on), we can establish a few basic
common assumptions about the experience of
consuming those works; music is something
we listen to, books are things we read, fi lms
are things we watch, and the difference
between artists and genres within those
media are defi ned by content (novels and short
stories and graphic novels).

You might say video games are something
we play, but that’s still vague; the word “play”
could describe something I do with a soccer
ball, or a Dungeons & Dragons crew, or slot
machines, or the lottery, or a set of dolls. So,
too, with video games: Some are (e)sports,
some are rules-driven narrative experiences,
some are games of chance, some are works
of interactive art, some are toys. Pretty much
the only thing one game is guaranteed to
have in common with another game is the
“video” part, and even that is questionable
(see J.S. Joust).

LEARN FROM THY NEIGHBOR I’ll admit it
right now: When I started working at Game
Developer this time last year, I was all excited
to see what was going on with the core PC/
console devs. Indies? Well, they’re okay, but
not my thing. Mobile? Sure, I guess. Social
games? Free-to-play? If I have to. I mean,
sure, they’re “video games,” but they’re
not really video games, am I right? Well,
no, I wasn’t—and I missed out because of
that mindset.

I wasn’t really into social games, but a few
months ago I tried the beta of Zynga’s THE
FRIEND GAME—and had a lot of fun asking and
answering questions with Facebook friends
that I never would have otherwise asked. I
never liked playing games on touchscreens,
but now I spend more time playing SUPER
HEXAGON on my phone than I spend on
Facebook or Twitter. And while I’m not a huge

fan of free-to-play’s effect on competitive
multiplayer game designs, last year I spent
more on free-to-play action games like
MECHWARRIOR ONLINE and PLANETSIDE 2
than I did on Steam games, because I was able
to play them for a long time without having to
shell out $50 up front.

None of these games replaced the games
I love; love for video games is additive, not
subtractive. But in dabbling with games across
the immensely vast spectrum of video games,
I developed my appreciation for how devs had
honed so many different skills, whether it’s the
folks who fi gured out how to tell a story that
works on a TV or a phone (see our postmortem
of THE WALKING DEAD on page 36), the artist
who puts the pixels in exactly the right place,
the programmers who make everything
happen, and even the devious geniuses who
persuade me to pay for (free) games. Even if
you don’t enjoy these games, it’s worth trying
to see what others like about them (see Jason
VandenBerghe’s Design of the Times column,
page 78).

LEAVING YOUR GREEN HILL (COMFORT)
ZONE If there’s one thing I’ve learned in the
last year, it’s that we’re all in this together.
When a studio closes or a team gets laid off,
we all feel it. When someone blames video
games for youth violence, we all feel it—even if
you, specifi cally, don’t work on violent games.
Instead of moaning about how video games
just aren’t what they used to be because
people are making games that you might
not personally like, I urge you to embrace
the spirit of game camaraderie. Play a game
outside your comfort zone. Talk to a fellow
dev who works in a different segment of the
industry than you do. If you’re at GDC, go
to a session that might not be immediately
relevant to your day-to-day job. You just might
be pleasantly surprised. gp

—Patrick Miller
@patthefl ip

HOW I STOPPED WORRYING AND LEARNED
TO LOVE THE GAMES I DIDN’T LIKE

Right now, you’re reading Game Developer magazine. You’re probably reading it at the Game
Developers Conference, or maybe during your lunch break working at a game development
studio—hopefully, you’re making games that you’d like to play yourself. Perhaps you’ve
looked at someone’s game and thought, “Yuck—who’d ever want to play that?” Maybe you’ve
even followed that up with, “Games just aren’t what they used to be.”

http://WWW.GDMAG.COM
mailto:gamedeveloper@halldata.com
http://www.gdmag.com/contactus
mailto:scarless@gdmag.com
mailto:pmiller@gdmag.com
mailto:bsheffield@gdmag.com
mailto:dmallory@gdmag.com
mailto:jmitch@gdmag.com
mailto:aaron.murawski@ubm.com
mailto:jennifer.sulik@ubm.com
mailto:gina.gross@ubm.com
mailto:rafael.vallin@ubm.com
mailto:peter.scibilia@ubm.com
mailto:jpampell@wrightsmedia.com
mailto:nancy.grant@ubm.com
mailto:petercan@SMS-Inc.com
http://ubm.sms-inc.com
http://WWW.UBM.COM

0
0

4
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

THROW TRUCKS WITH THROW TRUCKS WITH THROW TRUCKS WITH THROW TRUCKS WITH THROW TRUCKS WITH THROW TRUCKS WITH
YOUR MINDYOUR MINDYOUR MIND
USING AN EEG FOR IN-GAME TELEKINESISUSING AN EEG FOR IN-GAME TELEKINESISUSING AN EEG FOR IN-GAME TELEKINESISUSING AN EEG FOR IN-GAME TELEKINESISUSING AN EEG FOR IN-GAME TELEKINESIS

004 h
H E A D S - U P D I S P L AY _ M a r c h 2 0 1 3

 h

Gravity guns and dragonborn shouts just don’t have
the same panache as true telekinesis. Game Developer
chatted with Lat Ware, an indie dev working on a game
called THROW TRUCKS WITH YOUR MIND, about the
process of designing a game that uses the brain as an
input device.

Patrick Miller: So how, exactly, does this work?
Lat Ware: I’m using Neurosky’s Mindwave for my
electroencephalograph (EEG). They’ve been getting a lot of
attention for the mind-controlled cat ears lately, and I’m using
the same hardware. An EEG is a really sensitive voltmeter that
is looking at voltage patterns in the surface of the brain. Telling
what a person is thinking is an incredibly hard problem to solve,
but the headset does tell me how they are thinking; it’s doing
a discrete Fourier transform and some other signal cleanup
algorithms on 1-second blocks of your alpha and beta waves to
tell how calm and focused you are.

While I would like to do a purely brain-controlled game,
the hardware just isn’t there yet. So I am building a game with
standard fi rst-person shooter controls (keyboard and mouse) for
movement that uses the measurement of how calm and focused
you are as the scalars on your Jedi-like super-powers. You select
what power you want to use with the number keys, the same way
you select weapons in FPS games, and each power is tied to a
specifi c effect: throwing something is powered by how focused
you are, pulling something is powered by how calm you are,
super-jumping is powered by focus, slow fall is powered by calm.
You can only have one power active at a time, and the players
don’t have guns in this game, so it’s up to them to fi gure out how
to use the environment to destroy their enemies.

PM: What’s it like working with an EEG as an input device?
How’s the lag?
LW: The headset itself has at most 1 second of lag. I deliberately
introduced some more lag by making your focus and calm values
in the game be a rolling average of the last 3-5 seconds, and I’m
still playtesting to fi gure out what is best. The reason I did this
was that when I was having people playtest this very early on, I
noticed that as soon as people got any negative feedback, they
would panic and usually say something to the effect of, “What
did I do wrong?” At that moment, they are frantically searching

for what they did wrong, which destroyed their calm and focus,
sending them into a death spiral.

By smoothing out the values with a rolling average, I got rid of
the death spiral, and I think that is defi nitely worth the lag that I
introduced. You will see the effects of your changes immediately,
but not the full magnitude of them. To my amazement, everyone
who has tried this has gotten the hang of controlling their calm
and focus within 15 minute. This is the case even among non-
gamers. If anything, fi rst-person shooter controls are harder
to grasp than the headset—the player has considerable control
over the headset, but it is using a muscle that you didn’t know
you had, so everyone starts from the same point, unless you
practice meditation or neurofeedback therapy. Those people
always know how to use the headset before they start.

PM: What kind of challenges have you run into with the EEG?
LW: I noticed in playtesting that when two people engaged in
a battle of wills, unless someone really fell apart in the battle,
both players would get exhausted and nothing would happen.
This is because if you are trying to move one of the little crates,
you have to be at a minimum of 35% focus. If your opponent
is average (50%), then you have to be at 85% focus—which is
hard—just to get the crate to move, which isn’t enough to turn
it into a weapon. So, I put in a mechanic where, if two people
oppose each other on an object, they will keep pumping more
and more energy into it, so the object will feel a stronger force
from every player trying to affect it, and eventually, even if two
players are closely matched, one will overpower the other.

Most people, when they fi rst play, are completely exhausted
after an hour. I’m completely used to the game, so I can handle
it just fi ne, but I have been working on this for a year, and I did
not document how long it took me to adapt.

Also, I really wanted to have Force Lightning in the game,
but the only way to do that properly is to have it be powered
by anger, and I really don’t want to reward players for getting
angry. Without Force Lightning, I have a game where you
have to be clever and fi gure out how to use the environment
to destroy your enemies. I didn’t want to bring in MODERN
WARFARE where you look at the person you want to die until he
dies. To many games are fi ghting over that game mechanic and
I want to do something new.

-Patrick Miller

http://www.kickstarter.com/projects/1544851629/throw-trucks-with-your-mind

http://www.kickstarter.com/projects/1544851629/throw-trucks-with-your-mind

0
0

5
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

 h 005
H E A D S - U P D I S P L AY _ M a r c h 2 0 1 3

PURSUING IMPERFECTION
USING NEW TECH TO SIMULATE OLD VISUALS

Most consumers are
always clamoring for
higher-defi nition graphics,
but one relatively small
group is seeking just the
opposite. A dedicated
cadre of retro-gamers and
emulation enthusiasts
is perfecting the art
of simulating low-res,
standard-defi nition-style
graphics on today’s high-
defi nition LCDs.

“I grew up playing 2D games
with chunky pixel-art graphics
on glowing CRT displays,”
said Hunter Kaller, an
emulation hobbyist who blogs
at fi lthypants.blogspot.com.

“When I got into emulation in
the late ‘90s, I was shocked
at how different my favorite
games looked on high-
resolution displays, and was
shocked again when I made
the switch to modern LCD
displays. Nothing ever looked
quite right. Scanline fi lters
helped a bit, but when I saw
Xythen’s mock-ups for his
‘phosphor3x’ fi lter concept,
something clicked. I thought,
‘That’s how these games are
supposed to look.’”

The problem is that old
consoles output interlaced
video with a horizontal scan

rate of 15.75kHz, which today’s
monitors must convert, or
pscale, to their native 31kHz.
All that processing introduces
a number of artifacts, most
notably a lack of the distinctive
scanlines typical of a CRT.

Retro videophiles refer to
the low-res 15.75kHz video
mode old consoles use as
“240p”; while the signal is
technically interlaced, it only
ever draws to the odd or even
lines, never alternating. The
inactive lines remain dark,
which results in scanlines. The
scanlines, as well as other
traits inherent to CRTs, help
blend the raw pixels put out
by the consoles, resulting in

the soft but attractive—and
relatively unpixelated—low-res
TV graphics of yesteryear.

It’s surprisingly tricky
to reproduce this look on
modern displays. Gamers who
want to do so with their old
consoles typically process the
video signal with specialized
devices. Micomsoft’s XRGB
line of gamer-oriented upscan
converters changes 15.75kHz
signals to 31kHz, optionally
adding simulated scanlines.
Someone using a more
general-purpose upscaler
could add an SLG3000 scanline
generator to complete the

illusion. All told, you’re looking
at a few hundred dollars.

“I don’t have room for a
CRT and I still spend a lot of
time with the older consoles,”
said Matt Buxton, who writes
about retro videophile hardware
at VideogamePerfection.com.
“I didn’t want to buy a nice
fl at-screen TV and have to
compromise picture quality on
certain games, so some sort of
upscaling solution was clearly
needed. There’s the convenience
factor, too; my girlfriend and I
like to play co-op, and we might
go from 1080p LEFT 4 DEAD
on the PC to 240p SECRET OF
MANA on the SNES. It’s quite
convenient to be able to do that

on the same display with just a
few button pushes.”

PC-based emulators,
meanwhile, have long offered
mediocre scanline fi lters.
But recently, cutting-edge
emulators like Higan (formerly
bsnes) and RetroArch have
begun to harness the untapped
power of today’s GPUs. In 2010
a programmer called cgwg
created the most advanced
CRT shader to date, which
simulates the behavior of
actual CRT phosphors. The
result looks agreeably close
to a real CRT. “Cgwg’s shader
cleverly exploits LCD subpixel

behavior to approximate
the red, green, and blue
phosphor components even
at current typical resolutions,
but hopefully this won’t be
necessary once 4K displays are
widespread,” said Kaller.

Some users dial down the
CRT shader’s barrel distortion,
overscan, and other variables
to simulate a mythical “perfect”
CRT, but others seek even
more artifacts. Shay “Blargg”
Green created a set of fi lters
that simulates the look of RF,
composite, S-video, and RGB
video signals. “Part of my
nostalgia for playing games
was the unique look of each
console’s composite video,
and I was always curious
about why,” said Green.
“NewRisingSun fi gured out the
math and algorithm to simulate
composite video and shared it,
which motivated me to make
it practical in emulators. I had
NewRisingSun’s algorithm in
hand, the skills to do massive
optimizations to it, and the
vision of a clean real-time
NTSC fi ltering library.” As a
result, nostalgia purists can
enjoy emulated games with
authentic-looking dot crawl
and similar artifacts. Future
historians, too, could get a
better idea of what old games
looked like without needing
vintage hardware.

In a recent forum post,
Higan author Byuu laid out
his view of the road ahead. “In
order to properly mimic a CRT,
we need two major things fi rst:
much higher contrast (OLED)is
the most likely right now), and at
least double the DPI. And then
once we have that, we’ll need
someone to come up with the
algorithm. But yeah, right now,
we can’t make a fully convincing
replication.” The road to perfect
CRT simulation may be long, but
at least it has a very appealing
phosphor glow.

—Alexandra Hall

Left: Typical upscaled emulator output. Right:
Emulator output using cgwg’s CRT shader.

http://filthypants.blogspot.com
http://VideogamePerfection.com

0
0

6
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

Alexandra Hall: What came fi rst, the eye-tracking hardware or
the idea for Aquario?
Aditya Vijayakumar: We actually decided on the eye-tracking
device fi rst. In our Building Virtual Worlds (BVW) class we had
to make a fun game within one week, using only the Jam-O-
Drum, MaKey MaKey, or the eye tracker for input. We decided to
go with the eye tracker since it was a new platform introduced
this semester, and we would probably be the fi rst ones to make
a game for this system. We came up with different types of
gameplay that would work with the eye tracker but decided to
fi nally go with the swarm mechanic.

AH: How accurate is the tracker?
AV: Initially we were skeptical about using the eye tracker, since
we were worried about the accuracy and how it would actually
work. But we jumped at the opportunity to use a very unique input
device, and BVW is the best place to fail. We took one day to make
the initial prototype just testing the game with the mouse. The
game worked well, and to our amazement, it worked really well
when we fi rst tested it on the actual eye tracker. The cursor was
spot on. The system calibrates before you launch the game, so
the machine adjusts to different people’s eyes. The system also
takes care of head movements and eye blinks to a certain level, so
players can still blink and move their heads to a certain extent.

AH: Do you see much potential for eye tracking in games?
AV: I think there are a lot of possibilities to use the eye tracker as
an input device; we had several different types of games within
our class itself, all of which made use of the eye tracker with

different types of gameplay. At its current state I don’t think it’s a
commercially viable platform due to its high price tag and lack of
portability, but I believe that it will have a lot of gaming potential
when it overcomes these problems.

AH: What kind of challenges did you encounter?
AV: Making a game for the eye tracker was more of a design
hurdle. Programming was fairly simple since it was similar to
programming a mouse, but we found out a few things. The eyes
aren’t as stable as a mouse; your eyes automatically focus on
anything attractive even before you think. For example, if there is
a small pink box on a blank screen you automatically focus your
eyes toward that pink box. In mouse games, the person playing
the game sees the object, thinks what to do next, and then moves
the mouse based on what they were thinking. But when making
games for the eye tracker you need to keep in mind that the
person playing is going to see things before they think and then
decide where to look next. The eyes usually act as a way in which
your body receives input and you give signals to your hand or
other parts of the body to react based on what you saw. But when
programming an eye-tracking game we need to keep in mind
that the eyes act as both an input and output organ.

After analyzing these things we decided to make a game that
is both relaxing as well as attractive with a very simple goal,
evolve by increasing the size of your colony. All the player needs
to do is look at a point on the screen and the swarm will move
toward that point. We made the background a little dull, our
swarm white, and consumable organisms attractive colors so
they catch the player’s attention immediately.

006
E D U C AT E D P L AY _ M a r c h 2 0 1 3

IF ONE-BUTTON GAMES ARE STARTING TO FEEL A LITTLE COMPLEX AND ONEROUS, PERHAPS
EYE TRACKING WOULD BE MORE YOUR SPEED. GAME DEVELOPER CHECKED IN WITH ADITYA
VIJAYAKUMAR OF CARNEGIE MELLON, WHO IS ONE-FOURTH OF THE STUDENT DESIGN TEAM
BEHIND AQUARIO, A FLOW-LIKE GAME OF SWIMMING AND CONSUMPTION CONTROLLED
ENTIRELY BY EYE MOVEMENT.

Aquario
H T T P : / / A Q U A R I O E Y E G A M E . W E B S . C O M /
H T T P : / / W W W. I G F. C O M / P H P - B I N / E N T R Y 2 0 1 3 . P H P ? I D = 1 3 0 2

Release date: TBD; not many people have eye trackers,
and we’ll need to compose our own music

Length of development: Seven days

Budget: $0

Lines of code: Around 1,200, not including the DLL and
Unity wrapper

Fun fact: We consumed a lot of Fudge Cremes during
development just to keep happy

Team members: Hongsa “Sasa” Chen - Art, Liyue Shen
- Art, Keyin “Key” Wu - Sound, Aditya Vijayakumar -
Programming

http://AQUARIOEYEGAME.WEBS.COM/
http://WWW.IGF.COM/PHP-BIN/ENTRY2013.PHP?ID=1302

Game Design at VFS lets you make

 more enemies, better levels, and

tighter industry connections.

In one intense year, you design and develop great

games, present them to industry pros, and do it all in

Vancouver, Canada, a world hub of game development.

Find out more.
vfs.com/enemies

V
F
S
 s

tu
d

e
n

t w
o

rk
 b

y
 B

e
n

ja
m

in
 E

rd
t

http://VFS.COM/ENEMIES

mailto:JOB_PRO@KONAMI.COM
HTTP://WWW.KONAMI-DIGITAL-ENTERTAINMENT.COM/JOBS.PHP
mailto:KJPLA@KONAMI.COM

gj 009
G O O D J O B _ M a r c h 2 0 1 3

EDWARD BOUND
TRIPLE-A VET EDWARD DOUGLAS TALKS ABOUT FILM IN GAME

DEV, CANADA, AND WEARING MANY HELMETS AT HIS NEW STUDIO.

It’s not easy to transition
from triple-A to scrappy
indie, but Edward
Douglas’s multihatted
background in fi lm editing,
game cinematics, and
creative direction gave him
a little bit of an edge. Game
Developer caught up with
Douglas to ask him about
the Canadian dev scene,
working fi lm experience
into the game development
process, and his secret to
fi lling several roles at his
new studio, Flying Helmet
Games.

Patrick Miller: What’s your
game dev background, and
how’d you come to start your
own studio?
Edward Douglas: I’m a
storyteller, fi lmmaker,
and game designer from
Vancouver, Canada. I started
in fi lm and television as
an editor and an indie
cameraman (my fi rst movie
was Uwe Boll’s House of the
Dead!), then I joined Electronic
Arts’s Blackbox for a few
rounds of NEED FOR SPEED
as cinematics director. Later,
I worked at BioWare on MASS
EFFECT 2 and new IP dev, and
at Ubisoft on H.A.W.X. and the
RAINBOW 6 franchise at the
creative and project direction
level. I was always talking
with colleagues about doing a
small game of our own, and

the project crystallized for us
early in 2012, so we started
to put Flying Helmet Games
together. I felt like I was in my
own Ocean’s Eleven, recruiting
all my former colleagues and
friends to help us out.

PM: What’s your role at Flying
Helmet Games right now?
ED: We have a lot of trouble
defi ning titles at FHG! I call
myself creative director, and
we call Scott Penner lead
developer, because it’s better
than calling him lead designer/
character tech director/
programmer/writer! On any
given day I may do project
management, HR, company
strategy, level design, camera
and cinematic design, and
supervise music. The great
thing about starting out
in cinematics is that that
department touches every
other department in a game.

PM: The Canadian dev scene has
seen some big changes lately.
What’s the mood like among
devs in Vancouver right now?
ED: When I left Vancouver,
the city was booming. When
I returned fi ve years later,
Propaganda and Blackbox
were gone, Radical, Rockstar,
and Ubisoft were shutting
down, and EA and Microsoft
were drastically downsizing.
People are worried and looking
toward Montreal and even

Toronto, or just leaving the
country. But you also have a
huge population of experienced
developers hungry to make
games, so we’re seeing more
independent studios, like ours,
with fantastically experienced
developers. I’d say it’s a mix of
nervousness and excitement.

PM: I hear you have a few folks
with a background in fi lm; how
are they involved in the dev
process?
ED: Coming from a dev and
production background, I
knew how to make games,
but didn’t know much about
raising funds. One of the fi rst
partners we brought on was a
fi lm producer, Haydn Wazelle,
whom I had worked with in
my previous life when I shot
his fi rst feature. Publishers
are committing less to pitches
and risky IP, so his experience
with fi lm fi nancing channels
has been invaluable. However,
there’s a big learning curve
there for both of us; although
there’s a lot of similarities to
fi lm production, the differences
are vast, in part because
game business is constantly
evolving, while fi lm hit its stride
decades ago. One of the things
we’re doing is treating the
production more like a typical
fi lm production, where we know
there’s a defi ned start and end
date for the team. So many
studios balloon and lay off in

cycles around their games, and
it hits the news and makes the
business sound completely
chaotic, but this has been
standard operating procedure
in fi lm forever. We also have
been fortunate to get some
great team members from the
fi lm visual effects side.

PM: Your fi rst project aims
to use mobile devices to
create a tabletop board game
experience. Have you run into
any unexpected challenges?
ED: We are making a “tabletop
video game,” which uses a
combination of tablets and
smartphones to create a
“round the gaming table”
social experience. It’s not a
digital board game so much
as a video game where you get
the screen down away from
your face, so you can look your
opponents and teammates in
the eye. In-game storytelling
can really be the players
talking to each other, rather
than voiceover or reading
dialogue. We can have players
leading and instructing each
other, as well as players
keeping secrets or bartering.
We get to allow players to do
things that might seem unfair
in online games, because we
know the players can manage
themselves. (If you screw over
your friend next to you, watch
out because he might be your
ride home.)

0
0

9
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

Who Went Where

w MIKE BITHELL, LEAD DESIGNER AT BOSSA STUDIOS and creator of the indie
platformer hit THOMAS WAS ALONE, departed from Bossa at the end of
January to focus on his own projects. “[So] next Monday I’ll start a new
Unity fi le, and see where it takes me,” Bithell said.

w JAY WILSON, LEAD DIRECTOR OF DIABLO III, is moving on to a new project at
Blizzard after seven years helming the iconic franchise. “I’ve reached
a point creatively where I’m looking forward to working on something
new,” he wrote.

w BRIAN REYNOLDS, THE CHIEF GAME DESIGNER at social and mobile game
giant Zynga, is leaving the company. The former lead designer of Firaxis’s
classic CIVILIZATION II is leaving to “pursue other opportunities.”

w JARED SORENSON IS THE NEW VICE PRESIDENT of gaming at Plyfe, a self-
described “digital amplifi cation platform” that gamifi es various activities
in the web and mobile spaces. Sorenson previously occupied writing and
design positions at Turbine, White Wolf, and LucasArts, among others.

New Studios

w When THQ fi led for bankruptcy and auctioned its assets, well-regarded
DARKSIDERS STUDIO VIGIL CONSPICUOUSLY FAILED to fi nd a buyer. Enter Crytek.
On January 28 the German developer/publisher founded Crytek USA, the
company’s fi rst American studio, by hiring 35 developers from the former
Vigil studio, including Vigil general manager David Adams. “It would be
pretty much safe to say that this team will be working on online games,”
said Crytek CEO Cevat Yerli, adding that the new team at Crytek USA will
focus on “online games and kick-ass triple-A productions. It is going to be
quite a signifi cant investment for Crytek over the next fi ve years.”

w Four key developers from Sony Liverpool, which fi nished one fi nal
WIPEOUT game BEFORE BEING SHUTTERED BY SONY LAST AUGUST, have
launched a new studio called Sawfl y. The devs are in the midst of taking
on contracts from other companies, fi nishing up their new studio’s fi rst
game, a “cheeky, irreverent” game for publisher Ripstone, and pitching
a new property. Futuristic racers are not on their agenda for now.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
10

Organizers have revealed the fi nalists for the 13th annual
Game Developers Choice Awards, the leading peer-
based video game event celebrating the industry’s top
games and developers. The winners will be honored
at the Game Developers Choice Awards ceremony,
taking place on Wednesday, March 27, at 6:30 p.m. at
the Moscone Convention Center during the 2013 Game
Developers Conference in San Francisco.

Independent titles are heavily represented across multiple
categories this year, with games from that segment of the
industry being nominated alongside some of the year’s biggest
mainstream releases.

Overall, Thatgamecompany/Sony Computer Entertainment’s
visually and aurally stunning emotional adventure JOURNEY
leads with nods in six categories: Best Design, Best
Downloadable Game, Best Audio, Best Visual Arts, Innovation,
and Game of the Year. Arkane Studios/Bethesda Softworks’s
steampunk revenge epic DISHONORED is recognized in four
categories: Best Narrative, Best Visual Arts, Best Design, and
Game of the Year. Another leading nominee is Telltale Games’s
THE WALKING DEAD, a postapocalyptic adventure title based
on Robert Kirkman’s comic book series, honored in three
categories for this year’s awards: Best Downloadable Game,
Best Narrative, and Game of the Year.

The Game Developers Choice Awards also features three
Special Award categories, whose recipients were recently
announced. The 2013 Lifetime Achievement award is going to
Ray Muzyka and Greg Zeschuk, the co-founders of BioWare;
the Pioneer award is going to Steve Russell for SPACEWAR!;
and the Ambassador award is going to Chris Melissinos, for
his work curating the Smithsonian American Art Museum’s
“The Art of Video Games” exhibition. In addition, the fi rst-ever
Audience Award for the Choice Awards—open to all fi nalists—
opened for online voting in mid-February.

For more information about the 13th annual Game
Developers Choice Awards, visit its offi cial website. or
information about the 2013 GDC, visit its offi cial website. (GDC
and the Game Developers Choice Awards are owned and
operated by UBM TechWeb, as is Game Developer.)

2013 NOMINEES
GAME OF THE YEAR

Dishonored ARKANE STUDIOS/BETHESDA SOFTWORKS
The Walking Dead TELLTALE GAMES
Mass Effect 3 BIOWARE/ELECTRONIC ARTS
XCOM: Enemy Unknown FIRAXIS GAMES/2K GAMES
Journey THATGAMECOMPANY/SONY COMPUTER ENTERTAINMENT

BEST DEBUT

Humble Hearts DUST: AN ELYSIAN TAIL
Polytron Corporation FEZ
Giant Sparrow THE UNFINISHED SWAN
Subset Games FTL: FASTER THAN LIGHT
Fireproof Games THE ROOM

BEST GAME DESIGN

Dishonored ARKANE STUDIOS/BETHESDA SOFTWORKS
Mark Of The Ninja KLEI ENTERTAINMENT/MICROSOFT STUDIOS
Spelunky DEREK YU/ANDY HULL
Journey THATGAMECOMPANY/SONY COMPUTER ENTERTAINMENT
XCOM: Enemy Unknown FIRAXIS GAMES/2K GAMES

BEST DOWNLOADABLE GAME

The Walking Dead TELLTALE GAMES
Spelunky DEREK YU/ANDY HULL
Trials: Evolution REDLYNX/MICROSOFT STUDIOS
Mark Of The Ninja KLEI ENTERTAINMENT/MICROSOFT STUDIOS
Journey THATGAMECOMPANY/SONY COMPUTER ENTERTAINMENT

BEST TECHNOLOGY

Far Cry 3 UBISOFT MONTREAL/UBISOFT
PlanetSide 2 SONY ONLINE ENTERTAINMENT
Halo 4 343 INDUSTRIES/MICROSOFT STUDIOS
Call of Duty: Black Ops II TREYARCH/ACTIVISION
Assassin’s Creed III UBISOFT MONTREAL/UBISOFT

BEST HANDHELD/MOBILE GAME

Gravity Rush SCE JAPAN STUDIO/SONY COMPUTER ENTERTAINMENT
Hero Academy ROBOT ENTERTAINMENT
Sound Shapes QUEASY GAMES/SONY COMPUTER ENTERTAINMENT
The Room FIREPROOF GAMES
Kid Icarus: Uprising SORA/NINTENDO

BEST NARRATIVE

Spec Ops: The Line YAGER ENTERTAINMENT/2K GAMES
Mass Effect 3 BIOWARE/ELECTRONIC ARTS
Dishonored ARKANE STUDIOS/BETHESDA SOFTWORKS
The Walking Dead TELLTALE GAMES
Virtue’s Last Reward CHUNSOFT/AKSYS GAMES

BEST VISUAL ARTS

Borderlands 2 GEARBOX SOFTWARE/2K GAMES
Journey THATGAMECOMPANY/SONY COMPUTER ENTERTAINMENT
Far Cry 3 UBISOFT MONTREAL/UBISOFT
Dishonored ARKANE STUDIOS/BETHESDA SOFTWORKS
Halo 4 343 INDUSTRIES/MICROSOFT STUDIOS

BEST AUDIO

Journey THATGAMECOMPANY/SONY COMPUTER ENTERTAINMENT
Hotline Miami DENNATON GAMES/DEVOLVER DIGITAL
Sound Shapes QUEASY GAMES/SONY COMPUTER ENTERTAINMENT
Assassin’s Creed III UBISOFT MONTREAL/UBISOFT
Halo 4 343 INDUSTRIES/MICROSOFT STUDIOS

INNOVATION

Mark of the Ninja KLEI ENTERTAINMENT/MICROSOFT STUDIOS
Journey THATGAMECOMPANY/SONY COMPUTER ENTERTAINMENT
FTL: Faster Than Light SUBSET GAMES
The Unfi nished Swan GIANT SPARROW/SONY COMPUTER ENTERTAINMENT
ZombiU UBISOFT MONTPELLIER/UBISOFT

GAME DEVELOPERS CONFERENCE®

MARCH 25–29, 2013 MOSCONE CENTER SAN FRANCISCO, CA

DIVERSE FIELD OF
FINALISTS GRACES
2013 GAME
DEVELOPERS CHOICE
AWARDS

THE WALKING DEAD.

Learn more

http://www.playspan.com/gdc2013
http://www.playspan.com/gdc2013

http://www.wargamingamerica.com
http://www.wargaming.net
http://www.wargamingwest.net

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
13

gd 013
Game Developer Quality-of-life Survey
A checkup for the gAme industry ¶ “Game DeveloperS: How are you
DoinG?" tHat’S tHe QueStion we aSkeD approximately 1,000 of you at tHe
enD of 2012. we know tHat between tHe lonG HourS, freQuent layoffS,
anD cruncH pHaSeS, tHe Game inDuStry iS a notoriouS GrinD, anD wHile
we perform a yearly Salary Survey every april to cHeck tHe pulSe of
DeveloperS’ financial HealtH, we tHouGHt we’D Supplement tHat witH a
Quality-of-life Survey to See How you’re DoinG in wayS not meaSureD by
DollarS anD centS. are you SatiSfieD witH your pay? are you confiDent
in your current project? Do you want to be in tHiS inDuStry five
yearS from now? reaD on to finD out How your colleaGueS reSponDeD.

>>>
By Brad Bulkley and Patrick Miller

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
14

014 gd
q u a l i t y o f l i f e s u rv e y _ M a r c h 2 0 1 3

Typical schedules During a typical week,
17% of respondents work less than 40
hours, 58% work between 40-50 hours,
16% work 51-60 hours, 5% work 61-70
hours, 1.5% work 71-80 hours, and
0.75% work over 80 hours. Canadian
devs are more likely to work 50 hours or
less during regular development (87%),
compared to 79% in the U.K. and 72% for
the U.S. and Australia.

83% of developers have a flexible
schedule, while 17% do not. Job
dissatisfaction rates are much higher
among devs without a flexible schedule;
36% of those devs report feeling
somewhat or very unsatisfied with their
jobs, compared to 14.5% of those with
flexible hours.

57.8% of developers have the option to
work from home, and that correlates with
higher job satisfaction: 75% of people
who can work from home reported feeling
satisfied with their jobs, compared to 61%
of people who cannot. Of those satisfied
respondents, those who can work from

home were twice as likely to report feeling
“very satisfied” with their jobs compared
to those who cannot.

Working on weekends and/or holidays
appears to be rather common practice;
22% do this regularly, 31% do this only
sometimes, 36% only do this rarely, and
11% report never working weekends
or holidays. Interestingly enough,
working weekends and holidays does not
significantly affect job satisfaction levels.

Overall, devs’ typical schedules seem to
have a mildly negative effect on one’s social
life and family life; 3% report a very positive
impact, 21% a somewhat positive impact,
32% report no impact, 37% a somewhat
negative impact, and 7% report a very
negative impact.

Compensation and benefits When it comes
to compensation, 13% of developers feel
they are very well compensated, 35%
feel fairly well paid, 25% feel neutral,
19% feel fairly underpaid, and 8% feel
very underpaid. Unsurprisingly, feeling

adequately compensated strongly
correlates to job satisfaction.

42% of devs receive royalties or sales-
based bonuses. Devs who don’t receive
bonuses or royalties are 20% less likely to
report feeling any degree of satisfaction; 61%
of devs without royalties or bonuses report
feeling somewhat or very satisfied, compared
to 81% of those with royalties/bonuses.

Benefit coverage skews positive: 27%
of respondents feel very satisfied with
their coverage and 29% feel somewhat
satisfied, compared to 24% neutral, 10%
somewhat unsatisfied, and 10% very
unsatisfied. Satisfaction with benefits is
directly related to overall job satisfaction,
too: 85% of people who are very satisfied
with their benefits also report positive
job satisfaction, compared to 74% for
“somewhat satisfied” on benefits, 64% for
“neutral,” 47% for “somewhat unsatisfied,”
and 41% for “very unsatisfied.”

Motivation and perceived impact The vast
majority of devs are very confident about

Overall, are yOu satisfied with yOur current jOb?
29% of developers report feeling very satisfied with
their jobs, 39% are somewhat satisfied, 13% are
neutral, 13% feel somewhat unsatisfied, and 6% feel
very unsatisfied. Job satisfaction rates didn’t correlate
to developer location.

"Of the devs whO want tO stay, 90% Of them alsO repOrt pOsitive jOb satisfactiOn,
while Only 3% Of the devs that want tO stay repOrt negative satisfactiOn, which
indicates that devs will leave if they’re nOt satisfied."

somewhat
satisfied

39%

neutral

13%

somewhat
unsatisfied

13%

very
unsatisfied

6%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

very
satisfied

29%

jOb & career satisfactiOn

P
h

o
to

s
c

o
u

r
te

sy
 o

f
g

a
m

e
d

ev
el

o
P

er
s

c
o

n
fe

r
en

c
e™

their ability to have a meaningful impact on
a project: 40% rate their ability for impact
as very high, 35% as somewhat high, 15%
as neutral, 6% as somewhat low, and 4%
as very low. Interestingly enough, devs
with three to six years of experience are
represented in the “somewhat low” and
“very low” category at more than double
the rate of any other group, which hints at
problems of burnout.

When it comes to evaluating one’s
prospects for advancement within the
company, devs skew somewhat optimistic;
16% rate their prospects as very high, 26%
as high, 33% as neutral, 15% as low, and
11% as very low. However, respondents’
ratings on their prospects decrease
significantly after age 34; 47% of the “very
high” and “high” respondents are between
22-34 years old, compared to 29% for ages
35-44, and 24% for 45-54, which could
possibly reflect a need for devs to keep
current on their skill sets and/or devs
generally hitting an overall career ceiling
around their mid-30s.

Devs are fairly enthusiastic on their
current project overall; 30% report their
level of motivation as very high, 34% as
somewhat high, 19% as neutral, 12% as
somewhat low, and 6% very low. Motivation
correlates strongly with job satisfaction,
too; 65% of people who are very satisfied
with their jobs also feel very motivated, and
60% who are very unsatisfied are also very
unmotivated. We’re inclined to think that the
correlation is a two-way relationship; higher
job satisfaction means more motivation, and
more enthusiasm for the project itself leads
to higher job satisfaction. Also, 70% of devs
report that they enjoy the types of games

they’d compare to their current project,
and of that group, 75% report positive job
satisfaction ratings (compared to 55% of
devs who report positive job satisfaction
ratings despite not enjoying the comparable
types of games); in other words, it’s
important to find devs who are already
interested in the kind of games your studio
is trying to make.

Employer and career satisfaction 23% of
developers expect layoffs after shipping
their current project. Layoff expectations
connect fairly strongly with job satisfaction
rates, too; people who don’t expect layoffs
are more than twice as likely to be very
satisfied with their job. But the fear of
layoffs appears to be more prominent
than actual layoff rates; for the sake of
context, our 2011 Salary Survey respondents
reported an actual layoff rate of 13%.

Devs are largely split over their future
at their current company; only 55% say
they want to be working at their current
company in five years. Of the devs who
want to stay, 90% of them also report
positive job satisfaction, while only 3% of
the devs that want to stay report negative
satisfaction, which indicates that devs will
leave if they’re not satisfied. When it comes
to devs’ future in the industry, however,
they are a little adamant; 89% report that
they want to remain in the game industry
in five years. However, the majority of
these devs are on the younger end of the
spectrum; 92% of devs under 35 want to
stay there, compared to 83% of devs 35 or
older. Also, devs are split on whether to
advise a friend or family member to join
the industry; 62% say yes. ga

m
e

de
ve

lo
pe

r m
ag

az
in

e
0

15

In total, we collected
1,051 web survey
respondents, referred
via a Gamasutra news
post, Twitter, and word
of mouth, over a period
of approximately one
month (starting early
December 2012 and
ending early January
2013). The survey
consisted of 40 multiple-
choice questions, and
participants were
free to answer only
the questions they
deemed relevant to
their development
background. The
demographics of the
respondents broke down
as follows:

Age: 4% of
respondents are 21
years or younger, 69%
are 22-34 years old,
23% are 35-44 years,
and 4% are 45-54.

Experience: 9%
of respondents have
less than one year of
game development
experience, 16% have
1-2 years, 32% have 3-6
years, 18% have 7-10
years, 14% have 11-15
years, and 7% have 16-
20 years.

Management: 46%
of respondents are in
a managerial role, and
54% are not.

Location: More than
half of all respondents

are located in North
America (approximately
50% in the United
States and 13% in
Canada), followed by
roughly 16% in Europe,
with the remainder
roughly equally
distributed across Asia,
Australia, and New
Zealand, and Central
and South America.

Discipline: 45% of
respondents say their
primary dev role is
programming, followed
by 21% design, 13%
production, 12% art,
5% QA, and 2% audio.
The remainder of the
write-in responses
mostly consists of

indie developers
responsible for several
roles. Interestingly, dev
discipline isn’t strongly
correlated to any of
the survey’s notable
findings; we’re all in
this together.

Studio size
and type: 7% of
respondents are
individual independent
devs, 19% are teams
of 2–5 people, 14% on
6–10, 18% on 11–30 ,
9% on 31–50, 7% on
51–80, 5% on 81–100,
8% on 101–150, 4.5%
on 151–200, 5.5%
on 201–300, and 3%
on teams of 300+.
36% of respondents

characterize their
studios as “small
indie,” 25% as
“established indie,”
25% as “publisher-
owned,” and 14% as
“first-party.”

Game platforms:
46% of respondents
work on boxed home
console/PC games,
36% on downloadable
games, 20% on social
games, 17% on
browser games, 35%
on mobile (smartphone/
tablet), and 10% on
handheld console
games. (Respondents
were encouraged to
check all categories
that applied.)

Demographics & methoDology

gd 015
q u a l i t y o f l i f e s u rv e y _ M a r c h 2 0 1 3

P
h

o
to

S
c

o
u

r
tE

Sy
 o

f
G

A
M

E
D

Ev
EL

o
P

Er
S

c
o

n
fE

r
En

c
E™

INDEPENDENTS SHIP TRIPLE-A
QUALITY WITH UNREAL ENGINE
Huge congrats to Alexander Bruce on the critical reception for
his debut game, Antichamber, which instantly topped Steam
charts. Built and shipped using the Unreal Development Kit
(UDK), the free edition of Unreal Engine 3, Antichamber has
won more than 25 awards, including the coveted prize for
Technical Excellence at the 2012 Independent Games Festival.

Don’t forget! It’s always been free to use UDK until you’re ready to deploy a commercial product for PC, Mac or
iOS. Even after the one-time $99 studio fee, Epic doesn’t take a royalty until you pocket $50,000.

Come talk with Epic at the Game Develop-
ers Conference! We will be hosting indie
drop-in hours at our expo suite, North Hall
#BS322. Please check unrealengine.com
or facebook.com/UnrealEngine for further
details. Those interested in making an ap-
pointment are invited to email licensing@
epicgames.com.

Our game development competition, Make Some-
thing Unreal Live, will be back at the Gadget
Show Live consumer show in April 2013. Student
teams working with UDK will rapidly build new
PC experiences around the theme of “Mendelian
inheritance: genetics and genomics.” Thanks to
our MSUL 2013 partners, the Wellcome Trust and
Staffordshire University, as well as mentor studios:
Climax Studios, Lucid Games, Ninja Theory and
Splash Damage.

Come see Epic at upcoming industry events: Game Developers Conference (March 25-29, San Francisco,
CA), Gadget Show Live (April 2-7, Birmingham, UK), East Coast Game Conference (April 24-25, Raleigh, NC)
Email licensing@epicgames.com for appointments and sign up for our newsletter at unrealengine.com.

© 2013, Epic Games, Inc. Epic, Epic Games, the Epic Games logo, Unreal, Unreal Engine and UE3 are trademarks or registered trademarks of Epic Games, Inc. in the United States of America and
elsewhere. All other trademarks are the property of their respective owners. All rights reserved.

http://unrealengine.com
http://facebook.com/UnrealEngine
mailto:licensing@epicgames.com
http://unrealengine.com
mailto:licensing@epicgames.com
mailto:licensing@epicgames.com

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

40–60 HOUR
WEEKS

32%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
52%

CRUNCH TIME
61–80 HOUR WEEKS

0
17

gd 017
q u a l i t y o f l i f e s u rv e y _ M a r c h 2 0 1 3

Crunch intensity and duration Crunch times vary rather wildly,
according to the survey respondents; 7% report working crunch
schedules less than 40 hours/week, 25% work 40–50 hours, 27%
work 51–60 hours, 20% work 61–70 hours, 12% work 71–80 hours,
and 10% work 80+ hours. These schedules rarely last more than
four months; 29% report crunch cycles that last less than a month,
30% 1–2 months, 23% 3–4 months, 7% 5–6 months, 3% 7–8 months,
2% 11–12 months, and 3% more than a year. (One wonders at what
point a yearlong crunch cycle is simply considered a typical work
week.) We found that simply having crunch cycles was enough to
dent reported job satisfaction, though the duration doesn’t seem to
affect that factor. Interestingly enough, 38% of devs who regularly
work less than 40 hours and 32% of devs who regularly work 41–50
hour weeks do not see their hours increase during a crunch cycle,
compared to 25% for devs with 51–60 hour weeks and 7% for 61–70
hour weeks. Essentially, the longer your regular working schedules
are, the more likely you are to work even longer hours during crunch,
not less—something to keep in mind next time you’re asked to work
longer hours during normal dev cycles in order to avoid crunch
later on. Also, crunch cycles happen for all types of games at about
the same rates; it doesn’t matter whether you’re making console
games or social games, you’re still equally likely to end up in crunch.
Location doesn’t correlate strongly with crunch duration or intensity.

Crunch impact Asked to measure the impact crunch cycles have
on their social and family life, 1% of devs respond that it has a very
positive impact, 4% report a somewhat positive impact, 17% see no
impact, 50% see a somewhat negative impact, and 28% see a very
negative impact. In general, devs start reporting a negative impact
on their social/family lives when crunch schedules exceed 50-hour
weeks. Crunch cycles also have very widespread effects on devs’
physical health; 9% report a large impact, 33% report a moderate
impact, 40% report minimal impact, and only 18% report no
impact; certainly something worth considering, especially in light
of how important benefits packages are for job satisfaction.

DURINg THE MosT INTENsE sTagEs of DEvElopMENT, How MaNy
HoURs DID yoU woRk DURINg a TypICal wEEk?
Typical crunch schedules vary rather widely, with just about
52% of devs falling between 40- to 60-hour weeks and about
32% putting in 61-80 hours or more.

aRE yoU CoNfIDENT IN yoUR MaNagEMENT’s
abIlITy To lEaD THE CURRENT pRojECT?
Overall, devs report confidence in their

current project’s management.

SOmEWHat
cOnfidEnt

32%

nEUtRal

16%

SOmEWHat
UnSURE

16%

vERy
UnSURE

10%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

vERy
cOnfidEnt

26%

MaNagEMENT
Confidence in management Developers skew somewhat
confident in their current project’s management,
with 26% reporting they are very confident, 32%
somewhat confident, 16% neutral, 16% somewhat
unsure, and 10% very unsure. (Considering just
under half the respondents to the survey identify
themselves as part of the management team,
we thought we’d point out that respondents in
managerial roles are 15% more likely to report
confidence in management.) A whopping 91% of
respondents who are very confident in management
also report positive job satisfaction, so it’s clearly a
very important factor for retention and morale.

Management’s satisfaction Managers are twice as
likely to be satisfied with their jobs, more likely to be
allowed to work from home (56%, compared to 29%
of non-managers), more confident the product will
be good (75% compared to 61% of non-managers),
and half as likely to report a very negative impact on
their family and social life during normal dev cycles.
25% of managers spend over 12 hours per day at
home, compared to 14% of non-managers. Overall,
it sounds pretty good to be in management, though
they are more likely to regularly work weekends and
holidays (59% compared to 41% for non-managers).
Only 30% of managers never work weekends or
holidays, so if you want those managerial perks,
you’ll have to pay for it.

61–80 HOUR
WEEKS

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
18

018 gd
q u a l i t y o f l i f e s u rv e y _ M a r c h 2 0 1 3

very
confident

somewhat
confident

36%

neutral

16%

somewhat
unsure

11%

very
unsure

6%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
31%

product performance
& quality

Game quality Developers are largely
optimistic about the quality of their
current project; 31% report they are
very confident and 36% are somewhat
confident, compared to 16% neutral, 11%
somewhat unsure, and 6% very unsure.
88% of developers that report being
confident in their game’s quality also
report positive job satisfaction.

Critical and market success When we
ask developers about their perception of
their last project’s success in the market,
they are a bit less optimistic; 25% say
they considered it to be very successful,
31% somewhat successful, 23% neutral,
13% somewhat unsuccessful, and 8%
very unsuccessful. They did better with
the critics, however; 28% report that their
last project was very well received, 37%
fairly well, 25% neutral, 8% fairly poorly,
and 2% very poorly. We were somewhat
surprised to see that the estimations of
critical success and market success were
relatively close to each other. This could
be because critics are accurately reporting
product quality (and evaluating games with
standards similar to those the public uses
to make purchasing decisions), or because
their reviews have a strong effect on sales,
or possibly a combination of the two.

Connecting workload to success
Developers on 51- to 60-hour work weeks
are the most likely to report their last
project as a market success (64%), followed
by devs on 40- to 50-hour weeks (60%),
61–70 (50%), 71–80 (43%), and less than 40
hours/week (38%). 70% of devs who never
work weekends or holidays report having
successful projects, compared to only 43%
who worked weekends/holidays at any
frequency. Also, about 60% of motivated
teams had successful projects, compared
to 40% for unmotivated teams.

Late to the party Game development is
a chronically late business. Only 49% of
developers say their last project shipped
on time, while 33% made it less than six
months late, 11% between six months to a
year late, and 8% shipped over a year late.

Survey takeaways Overall, these survey
results point to a consistent pattern: Poor
product quality and performance is connected
to low motivation, morale, and excessively long
hours. From our perspective, these statistics
stress the importance of effectively managing
a project’s scope and workload throughout
development; long, intense crunch cycles
appear to be symptoms of flawed project
scoping, planning, and management.

are you confident that your current project will be good?
Developers are largely confident in the quality of their current project.

taking the indie dev pulse

With so many experienced developers
deciding to start their own studios
after one too many layoff cycles, we
thought we’d ask: How are the indies
doing?

Indie devs have half the market
success rate of other devs. 34% of
indies (both individual developers
and small independent studios) have
successful projects, compared to
70% for publisher-owned studios
and 65% for first-party studios.

Indies are far more likely to work
less than full-time. 28% of small
indies work less than 40 hours per
week, compared to 6% of first-party
devs, 10% for publisher-owned devs,
and 15% for established indies.

Small indies are having the best
of times and the worst of times. On
one hand, small indie developers
are far more likely to be able to
work from home (81%, followed by
56% from first-party devs), they’re
the most confident in their current
project’s quality (36% of “very
confident” responses were from
small indies, followed by 30% from
first-party devs), and they report
that their job has the least negative
impact and greatest positive
impacts on their family and social
life than any other dev studio type.

On the other hand, they’re more
likely to regularly work weekends
or holidays (36% of devs who
regularly work weekends/holidays
are small indies, followed by first-
party devs at 19%), and they report
the highest rate of dissatisfaction
with benefits and compensation.
Also, small indies have the lowest
reported rate of shipping on time
(39%); publisher-owned studios ship
on time 59%, and both first-party
studios and established indies ship
on time 49% of the time.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
19

gd 019
q u a l i t y o f l i f e s u rv e y _ M a r c h 2 0 1 3

“ Console game development has always
been great. But the social/web space I now
work in sucks—I only do it for the money :-(
”

“ I’ve basically stepped out of mainstream
game production into indie games and
education. I’ve taken a pay cut but I work
at home and really enjoy the people that
I choose to work with. The projects are
rewarding and I’m learning new things. I
believe that education is a great way to stay
in touch with the new generation of people
entering the industry and a perfect way to
keep in touch with the wonder of working
within an incredible industry.”

“ I’m not sure this survey fits self-employed
indie devs. I’m not sure I’ll make it as an
indie dev but after half-a-dozen work-
induced mental breakdowns at a triple-A
developer before being made redundant and
left unfit for full-time/proper work I don’t
have much choice anymore. I’ll probably be
dead in 18 months. Thanks industry. Thanks
a bunch.”

“ Been wanting to get into the industry since
early high school and it did not disappoint. I
love this industry.”

“ I co-own and manage production for a
studio that does not have ongoing forced
overtime. We successfully deliver projects
on time and on budget, so it can absolutely
be done without the workplace hostility,
harassment by management, and lack of
basic project management skills I’ve seen at
previous studios.”

“ My current title is game designer. I got
into this after years of art and animation
work. I’m a pretty creative person. Recently
I’ve been tasked with gathering data,
analyzing the data, creating graphs, reports,
scheduling tasks, and tracking work. I have
no fucking clue what I’m doing. Somehow my

job description and task are not in sync, and
the work I’m doing is well outside of my skill
set. Yay for my job.”

“ When I look around the office and notice
that there are no older people working at the
company, it’s easy to understand why. The
pace at which we work is going to burn you out
until you either have a heart attack or leave.”

“ Let’s stop the crunch and the abuses.”

“ My company hasn’t had a real crunch in
two years, a testament to better working
conditions through good management.”

“ I would attribute unreasonably long work
hours, over many years, to the recent onset of
multiple, serious health problems for me. This
includes incredibly painful repetitive-stress
injury to both my hands, as well as back and
neck problems that will require surgery.”

“ Got bought by a large publisher. The Eye of
Sauron has moved and now we have producers
everywhere making us quantify everything. I’m
very concerned that this will stifle creativity and
push ‘polish’ out so far it gets cut.”

“ While my work demands aren’t high, the
product is served to a very base audience
who doesn’t expect anything. A large part of
my office’s work is in free online gambling.
It’s very frustrating providing a product to
a user who is solely interested in winning
money, and has no interest in the content
you’re trying to provide.”

“ This is a hard job.”

“ I would like to see improved maternity
benefits for women in the game industry.
It would be a good way to reach out to the
female minority.”

“ It would have been nice to have an industry
mentor growing up.” gd

vox populi

In addition to the survey questions, we left an open comment space for the respondents to comment
on the industry (or the survey) however they liked. Here are some of the responses.

http://enchantjs.com

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
2

2

022 *
T E X T G A M E R O U N D TA B L E _ L e i g h A l e x a n d e r

>ingold

[leigh alexander] Why do you think there seems to be so
much new interest in making and playing text games?
[jon ingold] I think it’s pretty unsurprising, given the
amount of writing and reading we’re all doing on the Internet these
days. That’s why Inklewriter is pitched the way it is: clean, simple,
Twitter-like for sharing, Tumblr-like for creation. Inklewriter lends
itself to making chatty, conversational pieces, and we’ve seen a lot
of that—people using interactivity not to make a game, but to play
out an argument they might have otherwise been written up on a
blog (like Emily Gera’s recent thing on Kotaku comments: writer.
inklestudios.com/stories/bpfh).

I think people get puzzled by the difference between interactivity
and games: Games are hard things to make, with fiddly rules and
balancing, and most games you invent tend to fall apart because
there’s an easy way to win, or not enough choice. Inklewriter
doesn’t really support game-making, exactly: You can’t make any
rules. But it’s uniquely good at exploring cause and effect—which is
to say, telling stories. And everybody loves stories.

[leigh alexander] How does the mobile and tablet space
contribute?
[jon ingold] I think the key thing is that mobiles and
tablets mean we’re all using computers more often, and more
casually. Remember when it used to be rude to check your texts
during a meal? Now it’s normal to tweet, and not just amongst
the computer-savvy crowd. Portable computing means we’re all
chilling out around technology a bit more, and trying things we
maybe otherwise wouldn’t have tried.

I saw a real example of this over the holiday season, when my
mother sat down and read one of my interactive stories. She’s never
been able to before, because anything done on a computer is terrifying
to her. But on an iPad, she felt totally safe. So there’s tablet computing,
expanding the size of the audience by one, at least.

[leigh alexander] The accessibility of creation tools like
Inklewriter helps democratize the craft of interactive fiction. What
challenges does the tools space need to overcome to keep reaching
more people?
[jon ingold] I think the biggest challenge with developing
a tool is resisting the urge to get all baroque on its ass. There’s
always that extra niche feature that would be so cool if it were
there—but every feature you add to a tool changes the way the tool
presents itself to new users, and changes a user’s perception of
what the tool is for. So add five cool niche features and your tool
might start to look like it’s for making fiddly, avant-garde things
only. On the flip side, make it too simple and straightforward-
looking, and no one will imagine it’s capable of anything more.

So as tool creators we have to keep returning to our users and
saying, what are these people like? What do these people care
about, and what don’t they care about? What message do we want
to send them about what they should be doing?

[leigh alexander] In terms of Inklewriter’s potential,
what are some things you hope to see people start doing with it?
[jon ingold] The question floored me for a moment, and
then I realized that we think about Inklewriter’s potential more in

terms of who the people are than what the people do. Interactive
stories have been boxed in, forever really, by the constraints
that the form puts on who can do the actual writing, but I think
Inklewriter can change that, at least a little, and let completely
untechnical people come in and write something excellent. For us,
the goal is about getting writers with unusual, rich, and diverse
perspectives to invite us into their worlds.

[leigh alexander] Why is it a good time for people to
develop or renew an interest in text games?
[jon ingold] When I started writing IF, a few hundred people
on the Internet cared: A few hundred would play your game, and would
discuss the ideas of game, puzzle, and story design, and maybe 10 of
those were clever—or loud—enough to set the prevailing wind.

Now, if you write a piece of IF, you can get thousands of
readers. You can get all sorts of feedback and discussion. You can
choose between five or six ways of writing stories, all with different
affordances and paradigms, and have big arguments over which is
best. You don’t need to learn too much that’s technical (except for
writing, I suppose).

But more than that: There’s an optimism and a curiosity around
interactive text. When I wrote my first game, I’d try to explain the merits
of interactive stories to people and heads would shake. Now, they turn.

>plotkin

[leigh alexander] You’ve been making acclaimed text
games for as long as I can remember, but from where I sit there’s an
explosion of interest in making and playing them that seems new.
What factors do you think create this resurgence?
[andrew plotkin] We have a big recent interest in “indie
games” and “art games”—which can each mean several things,
but text games and narrative-focused games play well under either
banner.

Within that, or maybe next to it, we have a lot of designers
trying small experimental games. Text is great for solo work; it’s
great for rapid production of tiny games. If you’re working in a
well-understood interface model, there is probably an off-the-shelf
tool for you—as you note—so you can skip building a framework
and go straight into your content. That’s very attractive, and game
designers are realizing it.

We have a gigantic wave of nostalgia for anything 15 or 20 years
old. (Seriously, the last three iOS games I installed were KarateKa,
riven, and Lost treasures of infocom. Okay, three of the last
four, anyhow.)

Also, there’s just momentum in tools and communities. If a bunch
of people start trying a particular kind of game, it gets attention, and
more people start both playing and creating in that genre. This has been
building in slow motion in the IF world for several years—Inform 7 was a
big boost—but it applies equally, and I think more rapidly, in other kinds
of choice-based and text-based games.

[leigh alexander] You were able to fund Hadean
Lands via Kickstarter, are a believer in open-source tools, and
will launch on iPhone; meanwhile crowdfunding, openness, and
mobile opportunities are some of the most relevant trends to indie
game creation in general right now. What should other creators of
interactive text learn from you?

[jon ingold] longtime text-game author (Fail-SaFe, all

RoadS), now spearheads interactive fiction innovations

at Cambridge, Uk-based inkle. notably, inkle's new

choice-oriented iF tool, inklewriter (inklestudios.

com/inklewriter), is one of the more prominent new

tools designed for the kind of accessibility needed

to democratize a once-niche art form. Follow him on

twitter via @joningold.—
≥
≥

http://writer.inklestudios.com/stories/bpfh
http://writer.inklestudios.com/stories/bpfh
http://inklestudios.com/inklewriter
http://inklestudios.com/inklewriter

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
2

3

 * 023
T E X T G A M E R O U N D TA B L E _ L e i g h A l e x a n d e r

[andrew plotkin] Oh, geez. I don’t know if I can answer
that. None of those trends are simple answers, and I don’t know if
I’ve found the right path through any of them.

[leigh alexander] Was your fundraising lightning in a
bottle, or do you see a wider commercial opportunity for creators of
interactive text on mobile?
[andrew plotkin] My Kickstarter project was definitely a
thing of its moment—in relation to Kickstarter’s history and mine. It
got attention for being notably successful, but the stakes for “notably
successful Kickstarter” have moved way, way up. And I deliberately
offered a wider range of work than just “IF on mobile.”

Really, Kickstarter successes don’t signpost commercial
opportunities—commercial successes do that. It’s the new
games and the interest in new games which should be drawing
everybody’s attention.

[leigh alexander] There are an increasing number
of uniquely accessible tools arriving to help new developers make
choice-oriented or hypertext-style games. This brings more creators
to the medium, but also seems to suggest a shift away from the
traditional text parser and its associated strengths and challenges.
What are your thoughts on that?
[andrew plotkin] My thoughts are ambivalent, as you
might expect! On the one hand, people tend to lump the games
together. More interest in any of these forms is more interest in all
of them, and that’s good for me.

But on the other hand, people tend to lump the games
together—and parser IF does have its own strengths! You can do a
lot of things with a menu system, but you can’t graft it onto a game
like ZorK—or shade, or spider and Web—and expect it to play out
the same way. You need to design your game to fit the model. So I
have to worry about whether players are going to wind up just not
very interested in the games I want to make.

The sensible answer is “Make the games first, then decide.” I
realize this. But I indulge in a little worry anyhow.

[leigh alexander] Would you agree that IF is less “niche”
than it was 10, even five years ago? How has the community changed?
[andrew plotkin] IF is still “niche,” but niche-ness is
much less niche these days! Niche is practically mainstream. Or at
least, people are much more willing to poke their noses in.

>anthropy

[leigh alexander] You’ve become a big advocate for
Twine because of its accessibility. How do tools like that help you in
your mission to help motivate new voices in game development?
[anna anthropy] Twine works for three big reasons: It’s
free, it’s not programming, and finished stories are webpages you
can plunk onto the Internet. That solves the three big historical
barriers to nonprofessionals who want to get involved in game-
making: the cost, the skill barrier, and distribution. All of these
are huge deterrents. In our society it’s middle-class men who are
given the most opportunities in tech fields—who can afford to go to
college, who aren’t weeded out by a famously sexist culture—and
ultimately those are the people who end up best-equipped to deal
with the barriers to game-making in the traditional way.

[leigh alexander] What does it mean that there’s now a
community for individually voiced outsider art?
[anna anthropy] It means amazing art all the time. This
morning I played a game about wandering a surreal psychosexual
dream world while taking a nap next to a hot older man on an
airplane. There’s a game like this every week. Last week it was
someone’s interactive memorial for his brother who had just died,
and a game about someone’s experience as a bisexual woman
being shamed by an online lesbian community. It’s hard for even
me to keep up with. I’ve thought about retiring my blog; the
videogame community I’ve always wanted is blossoming around
me, and it looks so different from the mainstream. Here’s a face
of videogames whose architects are women and queer people,
speaking in a thousand voices.

[leigh alexander] How have you seen the audience and
opportunity for interactive text evolve in recent years?
[anna anthropy] A few years ago “interactive fiction”
was an insular group of (highly literate) nerds sitting around and
making games about each other. That interactive fiction scene was
very inward-looking: It was all about parser-based stories—you
type what you want to do, the game responds—which meant that
huge barriers to accessibility still existed, both for creators (making
a game for a parser is programming) and for players (the language
that the game understands is hidden, and has to be learned,
presumably from other players).

Interactive fiction now, with hypertext at its center, is outward-
looking and outward-expanding. Hypertext is immediately
accessible to people who haven’t spent the time to learn the
vocabulary of the games status quo.

[leigh alexander] Do you think increasing interest
in making text games (presuming you agree such a thing exists!)
reflects more audience appetite for storytelling and more
sophisticated themes?
[anna anthropy] Hypertext retains the purposeful,
deliberate ambiguity that makes text games a place suited toward
exploring themes like social interaction, identity, sex, feelings—all
the stuff mainstream games seem so poorly equipped to tell us
about. Twine’s explosion was a sure sign that people have been
wanting to find ways to interrogate these themes through games,
but they weren’t able to find a means.

[leigh alexander] What do text games do that other
games can’t, and what do you think traditional developers should
learn from the current IF community?
[anna anthropy] How about: Don’t be such fucking
cowards. While mainstream games like spec ops: the Line and
hotLine miami are tiptoeing up to the idea that maybe violence
is something we should be worrying about while continuing to let
the player inhabit the role of an armed dude acting out fantasies
of violence, Twine games are talking about identity, alienation,
abuse, sexuality, dysphoria, sexual assault, depression, self-
discovery, loss, and D/s dynamics in the cyber-future. Look at
these games and be ashamed of how small you’ve allowed your
world to become.

[andrew (zarF) plotkin] is among the most beloved and

longest-serving authors in the iF community, creator

of popular titles like SpideR and Web and Shade, among

numerous others, in addition to his many contributions

to the community's tools and infrastructure. in 2010

he made headlines when he raised over $31,000 via

kickstarter for the creation of his next game, hadean

landS, an impressive demonstration of the strength of

the iF community and of the gratitude for his work. —
≥
¥

G A M E D E S T I N A T I O N :

B L A C K B E R R Y 1 0

 © 2013 Research In Motion Limited. All rights reserved. BlackBerry,® RIM,® Research
In Motion® and related trademarks, names and logos are the property of Research In
Motion Limited and are registered and/or used in the U.S. and countries around the
world. Used under license from Research In Motion Limited. All other marks are the
property of their respective owners.

Images courtesy of SHADOWGUN, by MADFINGER

It’s where your
game belongs.
BlackBerry® 10 o� ers a powerful and
easy platform for game development.
It’s integrated with major development
tools and leading game engines,
including Unity, Marmalade and Shiva
3D. Plus, the leading BlackBerry 10
hardware produces a visually stunning
and incredibly immersive gaming
experience that really lets your
masterpiece shine.

Learn more
developer.blackberry.com/games

http://developer.blackberry.com/games

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
2

5

 * 025
T E X T G A M E R O U N D TA B L E _ L e i g h A l e x a n d e r

[leigh alexander] Who are some IF makers you are
excited about these days?
[anna anthropy] porpentine ~ merritt kopas ~ maddox
pratt ~ kim moss ~ j chastain ~ madamluna ~ lydia neon ~ kitty
horrorshow ~ christine love ~ jonas kyratzes

≤ Memorial: http://www.theautumnalcity.org/Memorial.html
≥ CYBERQUEEN: http://aliendovecote.com/uploads/twine/

LD25/CYBERQUEEN.html
¥ Reset: http://www.lifeinneon.com/games/reset.html

>kennedy

[leigh alexander] Why do you think there seems to be
so much new interest in making and playing text games, and how does
the mobile and tablet space contribute?
[alexis kennedy] Technologically, there have been
attempts in the past to extend literature—hypertext, interactive
fiction—but the gap between the page and the screen was just too
wide for mass adoption. Now readers are accustomed to text on a
screen, thanks to mobile devices and e-readers, and to the degree
of interactivity that comes with it. Even if you’re just reading a
Kindle book, you can share or search for phrases from right there
in the interface, and that comes to seem natural. So it’s easier to
extend or colonize the borders of fiction.

Culturally, it’s the mainstreaming of geek. The success of big
fantasy and SF franchises, and the tsunami of casual gaming,
means that acceptance of game-like activities is filtering out
through the demographics.

[leigh alexander] The accessibility of creation tools like
StoryNexus helps democratize the craft of interactive fiction. What
challenges need to be overcome in the tools space to keep reaching
more people?
[alexis kennedy] The big barriers are “how the hell do
I get started?” and “what in the name of God have I done?” Choose
Your Own Adventure-esque branching path narrative is great for the
first, but deadly for the second: It’s easy to get started, but it’s also
very easy to write yourself into a thousand-branch hole. Programming
languages (e.g., ChoiceScript or Inform) are the opposite—a big initial
learning curve, but a saner experience once you get started. Tools like
StoryNexus find a safe route between the two.

A secondary issue—but one that’s important as the space grows
commercially—is distribution. You need some sort of mediating
technology to read an interactive story. The web is good for this, but
finding a way to earn revenue from interactive writing can be hard,
compared to the well-established channels for content publishing
elsewhere. StoryNexus is trying to bridge this gap, too.

[leigh alexander] It seems the text space these days is
geared largely at moving away from the parser—and the accessibility
barriers associated with it—and toward interactive reading and choice-
based interfaces. What opportunities might this present for designers
and game developers?

[alexis kennedy] The traditional text-game approach is

a question-and-answer dialogue—”OK, what do you do now?”—and
largely a synchronous one. We haven’t seen much of what happens
with asynchronous and out-of-band gaming. On the StoryNexus
front, this could mean characters who occasionally email you and
ask for a response, or a virtual life where you experience weekly
events, or a serialized story. Above all, it means digestible games
that can be consumed in small chunks—that occupy the same
niche as web comics, perhaps. In turn, this means wider audiences
and more room for experimentation.

[leigh alexander] It seems you’ve focused for some time
on the social experience around interactive storytelling. Who do you see
as the audience for gaming in this way, and what does the community
element add to what a lot of people view as a solitary pursuit?
[alexis kennedy] The immediate act of reading is a
solitary one, but the context of reading is a shared one, especially
when we’re reading about imagined worlds. Doyle, Tolkien,
Pratchett, Rowling—all of these attracted passionate fans who
wanted to revel in the shared world together, solving the mysteries,
arguing over the characters, or just being in the space. That’s
what community gives a text game—other people to energize and
validate your own experience.

[leigh alexander] Why is it a good time for people to
develop or renew an interest in text games?
[alexis kennedy] The technological and cultural
changes I mentioned above have led to an upsurge in text games—
particularly in creative toolsets, which in turn means the range of
titles is expanding beyond SF, fantasy, and horror. It’s the indie-
gaming revolution in miniature.

But in some ways, literature is more like gaming than most other
creative forms. Through an accident of technology, games have a strong
family resemblance to film, but film is a much more passive medium
than literature. The plot in a book doesn’t advance until you turn the
page. Books and games are both demanding, participatory forms.

>short

[leigh alexander] What does the IF space have to teach
other developers?
[emily short] A vocabulary of interactive narrative. Authors
in this space have spent a lot of time, experimentation, and virtual ink
on the topic of what player participation does to a story. We have a
lot of examples, and a lot of conversations about, games that convey
their meaning through mechanics; environmental storytelling, and
stories that are partly about how the reader chooses to discover
them; complicity, ethically challenging choices, expressive choices,
choices that turn out to be meaningless in retrospect, choices that
don’t change the events of the story but revolutionize the way you
understand that story. Being steeped in all those techniques is a great
craft advantage, whether you’re writing something text-based or not.

This is not to say that there’s no sophisticated thinking about
narrative in triple-A games—of course there is. But IF has been
a very productive venue for experimentation. I recommend the
Failbetter blog and the Inkle studio blog, as well as the IF Theory
Reader, as sources.

[leigh alexander] Have you seen the opportunity and

[anna anthropy] indie powerhouse anna anthropy's recently

published book, rise of the Videogame zinesters,

is something of a manifesto for game creation as

individual self-expression, and the accessibility

and flexibility of choice-based text-game creation

tool twine makes her a big fan. since she started

encouraging friends and allies in the indie community

to try making twine games, a vibrant homebrew community

has sprung upînotably, there's a passionate and —
≥
¥

http://www.theautumnalcity.org/Memorial.html
http://www.lifeinneon.com/games/reset.html
http://aliendovecote.com/uploads/twine/LD25/CYBERQUEEN.html
http://aliendovecote.com/uploads/twine/LD25/CYBERQUEEN.html

OUR [ANIMATORS]
LEAP FIRST

JOBS.UBISOFT.COM

CONNOR
18Th CENTURy’S AMERICA
professional assassin

JONAThAN COOPER
UBISOFT MONTREAL
animation director

http://JOBS.UBISOFT.COM

 * 027
T E X T G A M E R O U N D TA B L E _ L e i g h A l e x a n d e r

audience for interactive text evolving in recent years?
[emily short] Absolutely. We’re seeing traditional
publishers becoming interested in interactive ePubs and interactive
narrative that goes beyond just adding some footnotes or
multimedia features to a traditional text, transmedia projects that
incorporate several different kinds of production and might include
an interactive text component, and Twine and other text games
produced by indie communities who never considered themselves
part of the “interactive fiction” community.

Several things have happened: One, the barrier to entry of
writing some kind of interactive story is as low as it’s ever been,
and it’s easier than ever to make those stories available to readers.
It sounds ridiculous now, but 10 years ago we used to have
despairing conversations about how we’d never reach a bigger
audience because it was economically infeasible to put interactive
fiction in a box at a store.

Two, IF has benefited a bit from the rising visibility of indie
games in general, which means we have more contact with
adjacent but not identical genres and it’s easier to get people
who might not be longtime text-adventure devotees to play text
work. And that also makes a difference to what IF authors think of
writing, not for technological reasons but for cultural ones.

[leigh alexander] The accessibility of new creation tools
helps democratize the craft of interactive fiction. What challenges
need to be overcome in the tools space to keep reaching more people?
[emily short] Communication about what tools already
exist, and better development into spaces that are genuinely
unexplored, instead of recreating the same old thing. I regularly get
email and messages from people saying something like “Oh, hey,
I’m making a CYOA tool. Wouldn’t it be great to be able to write your
own choice-based games?” and I feel a little bit guilty writing back
with a list of all the tools that I know are already in that space. (And
I’m sure I don’t know every single thing in the field.)

Polish and style. A creative tool is this incredibly intimate thing.
It becomes an extension of the creator, almost an extra limb. As
important as any technical capacity is how much the tool appeals
to the user, how naturally it fits. Not every interactive narrative tool
is going to appeal to every user, which is a strong reason to have a
rich ecology of tools. But a lot of creators are put off by form-factor
issues that the tool creators might not have considered at all.

Community. Any kind of sophisticated tool needs a support
community, people to give advice to novices and help them over the hills.

Good examples. Any new interactive storytelling platform or tool
badly needs at least one cool, compelling work to help new users
understand what that platform is capable of. Launch without that,
and it’s a lot harder for people to understand why they should care

or what the affordances of the tool will be.
Publicity. Some of these tools are marketed as game-creation

tools exclusively, even though they’d be interesting to people who don’t
think of themselves as traditional gamers at all, much less traditional
game designers. There are lots and lots of applications for interactive
narrative—educational, literary, journalistic, or nonfictional—and
continued growth requires that we reach across cultural divides.

[leigh alexander] Do you think other companies will
start consulting or looking to hire text and conversation game writers?
[emily short] That’s already happening. I get asked on
a fairly regular basis for referrals to people with interactive text
experience.

[leigh alexander] What are your thoughts on the current
state of the IF community?
[emily short] The biggest point is that there is no longer
“an” IF community. In the early 2000s, that phrase mostly referred
to the set of folks writing and playing parser-based text adventures
and talking about them on Usenet. Now there are a lot more folks
involved, and they’re not all talking through the same venues. There
are Twine authors and ChoiceScript authors who are coming from a
different background and social community than a lot of the Inform
and TADS, Hugo, ADRIFT, or Quest authors.

Another point is that IF doesn’t all look the same any more. I
used to hear a lot of complaints about how IF in, say, 2008 looked
the same as it did in 1982—blocky text in a little console window—
and that conveyed all kinds of negative things about production
quality. No matter how much narrative sophistication or improved
programming there might be under the hood, that little window of
blocky text was suggesting to potential players that they were still
looking at ZorK.

Now, though, we’re seeing IF that looks like Guilded Youth, like
Living Will, like howling dogs, like maybe make some change, or Ex
Nihilo, inkle’s Frankenstein novel, or StoryNexus’s Zero Summer.
Some of those are beautiful, some are provocatively frenetic or
disturbing, but they’re not identical.

≤	Guilded Youth: http://ifdb.tads.org/
viewgame?id=1dytdvtbgxuwfx0h

≥ Living Will: http://ifdb.tads.org/viewgame?id=cwblhzdjih48v94
¥	howling dogs: http://ifdb.tads.org/

viewgame?id=mxj7xp4nffia9rbj
µ maybe make some change: http://change.textories.com/
∂ Ex Nihilo: http://ifdb.tads.org/

viewgame?id=m5vqmisz4y38o5tz

[alexis kennedy] Failbetter games is founded on a legacy

of passion for interactive stories; the studio is

best known for its massive choice-driven online role-

playing story Fallen london, but it also plays host to

the storynexus platform, a browser-based story-game

creation tool that even enables writers to monetize

their work and build community around it. Ceo alexis

kennedy has long been attracted to the junction of

game design and writing. —
≥
¥

[emily short] the work of renowned iF pioneer emily

short has tended to focus on plausible interaction

with artificial characters; her company, little text

people, was acquired in recent years by linden lab

in part because of her leading work in the field of

social simulation.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
2

7

http://ifdb.tads.org/viewgame?id=cwblhzdjih48v94
http://change.textories.com/
http://ifdb.tads.org/viewgame?id=1dytdvtbgxuwfx0h
http://ifdb.tads.org/viewgame?id=1dytdvtbgxuwfx0h
http://ifdb.tads.org/viewgame?id=mxj7xp4nffia9rbj
http://ifdb.tads.org/viewgame?id=mxj7xp4nffia9rbj
http://ifdb.tads.org/viewgame?id=m5vqmisz4y38o5tz
http://ifdb.tads.org/viewgame?id=m5vqmisz4y38o5tz

Sheridan’s innovative, intensive digital media
programs of er a great opportunity to gain the
skills needed for careers in many exciting, highly
competitive industries.

Sheridan of ers programs taught by passionate,
industry-savvy faculty in f rst-rate facilities, all
backed by Sheridan’s world-class reputation
in arts education.

■ Bachelor of Game Design

■ Bachelor of Interaction Design

■ Game Level Design (post-grad program)

■ Game Development – Advanced
Programming (post-grad program)

Visit us at booth #321 at the Game Developers
Conference in San Francisco, March 25 – 29, 2013.

APPLY TODAY AND TAKE
THE FIRST STEP TOWARDS
YOUR FUTURE!

CREATE
YOUR
FUTURE.

sheridancollege.ca

Kristian Howald

Xiaoyu Wang

Lexi Young

Tim Golem

http://sheridancollege.ca

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
2

9

i 029
T I M SW E E N E Y I N T E RV I E W _ B r a n d o n S h e f f i e l d

TIM SWEENEY INTERVIEW \\\\\\\\\\ SOMETIMES WE REACH
GREATNESS BY STANDING ON THE SHOULDERS OF GIANTS—
AND ANYONE WHO HAS EVER MADE A GAME WITH THE
UNREAL ENGINE KNOWS THAT TIM SWEENEY IS JUST SUCH
A BEHEMOTH. HE WROTE A QUARTER–MILLION LINES OF
CODE IN THE ORIGINAL UNREAL ENGINE, AND THOUGH HE’S
FOUNDER AND CTO OF EPIC GAMES, HE STILL ACTIVELY
CODES EVERY DAY.

It’s a curious exercise to think about where the industry would be today
if not for the Tim Sweeneys and John Carmacks of the world. Luckily, we
work in an industry where most of our legends are living, working, and
still pushing us forward. Many of them are shuttered away from the world,
either working diligently on their next project, or shielded from the press by
concerned public relations staff.

As luck would have it, I caught Sweeney in Taiwan after giving a talk,
unencumbered by handlers or hangers-on, and was able to have a candid
discussion with him about the future of game consoles, code, and, as it
happens, John Carmack.

What does it take to be fi ve years ahead of the game industry, so you can
have tools ready when the developers need them? What problems do we
still have to solve? Who will be the guardians of triple-A games, as much of
the world moves to web and mobile? Sweeney doesn’t have all the answers
—but whom better to ask? ›››

THE OLD
GUARD

P
H

O
TO

 C
O

U
R

TE
SY

 O
F

EP
IC

 G
A

M
ES

 [Brandon sheffield] Let’s start
off with a big sandbox question.
What do you see as the next
big thing the industry needs
to tackle graphics-wise and
computationally in games?
 [Tim sweeney] Oh, wow. The
industry’s advancing on a bunch
of fronts simultaneously. One is
just advancing the state of the
art of lighting technology. We’ve
really added to that with sparse
voxel octree global illumination
stuff—basically, technology for
real-time indirect lighting and
glossy reflections.

That’s really cool stuff, but
it’s also very expensive and only
suited for the highest-end GPUs
available, so having a family of
solutions for that that scales

all the way down to iPhone with
static lighting is a big priority
for Epic—the ability to go to a
game that scales in a dramatic
factor from low-end to high-
end. We’re really concerned—I
think it’s our number-one
priority, really—with productivity
throughout the whole game
development pipeline, because
we’re looking at companies like
Activision spending $100 million
developing each new version of
Call of Duty, and that’s insane!

We can’t afford that sort of
budget, so we have to create
games with fewer resources.
Any way we can tweak the
artwork pipeline and the game
scripting pipeline to be able to
build core games more quickly

with less overhead is better.
We put a lot of effort into visual
scripting technology to greatly
improve the workflow.

 [Brandon sheffield] It does look a
lot more intuitive for a less tech-
savvy person.
 [Tim sweeney] With Unreal
Engine 4, we really want to be
able to build an entire small
game on the scale of angry
BirDs without any programming
whatsoever, just mapping user
input into the actions using a
visual toolkit. This technology
will be really valuable.

We’re also expanding the
visual toolkit for everything: for
building materials, for building
animations, for managing
content when we have a huge
amount of game assets. We’re
just greatly simplifying the
interface so that it’s basically
as easy to use as Unity.

On one hand, you have the
Unreal Engine having by far
the largest and most complete
feature set of any engine, but
also with Unreal Engine 3 it
was a big, complicated user
interface. With Unreal Engine
4, the effort is to expose at
the base level everything in a
very simple, easy-to-use, and
discoverable way and to build

complexity on it so that the user
can learn as they go without
being terrified by it in the form
of a huge, complicated user
interface. That’s a problem all
applications have to deal with
nowadays. If you look at an iPad
app that does 90% of what the
world needs really easily, versus
a Windows version of the app
for something like Photoshop—I
spent an hour and couldn’t
even figure out how to draw a
picture in Photoshop; it’s that
bad. (laughs) There is a lot to do
there and a lot to learn from.

 [Brandon sheffield] Going back
to voxels, I’ve always been kind
of fascinated by them because
they’re less expensive with
higher fidelity potential, but you
can’t texture them and you can’t
really animate them well. Do you
ever foresee a future in which
that might be possible? It would
be a total industry shift away
from triangles, but…
 [Tim sweeney] It’s clear now that
voxels play a big role in the future.

[Brandon sheffield] Certainly for
lighting, right?
 [Tim sweeney] Well, that’s just
one way we’ve been finding
to use them effectively. [John]
Carmack did a big write-up

0
3

0
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

030 i
T I M SW E E N E Y I N T E RV I E W _ B r a n d o n S h e f f i e l d

Epic citadEl.

FortnitE.

C
arm

ack.

p
h

o
To

 C
o

u
r

Te
sT

y
o

f
G

d
C

We came into 3D
game development
really seat-of-the-
pants. When id
Software created
Doom, I looked at
that and said, ‘Oh my
god; they’ve invented
reality. I’m giving up
as a programmer. I’ll
never be able to do
that.’ But, over the
next few years, as
they started to build
Quake, I started to
think, ‘Hmm, maybe
I can figure out this
texture-mapping
stuff.’

about voxels and the virtues of
sparser representations of the
world. It seemed crazy to me at
the time, but now it’s becoming
clearer that he had a lot of far-
ranging insight there.

The thing about voxels is
they are a very simple, highly
structured way of sorting data
that’s easy to traverse. Whereas
any other form of data, like a
character stored as a skinned
skeletal mesh, any time you

want to
traverse it,
you have to
do a gigantic
amount of
processing
work to

transform it into the right space.
You need to figure out what
falls where and rasterize it or
whatever, but voxels are just
efficiently traversable. I feel like
there’s a big gap.

The data representation
you want to use for rendering
your scene differs greatly from
the representation you want
to use for manipulating your
scene and basically moving
objects around and choosing
how they interact. It’s not clear
which representation wins.
In the sparse voxel-oriented
approach, one neat thing is
we can update it dynamically;
as objects move around, we
can just incrementally change
those parts of the voxel octree
that are relevant. You can
figure out the extreme edge
case of the algorithm, so that
instead of the voxel octree
being fixed with its orientation
to space, all you have to do is
align it to screen and arrange
it objectively so you’re seeing
a 2D view of this voxel octree,
whereas the other dimension is
your z dimension.

You basically have this
projective voxel octree, stick
everything in the entire scene
into it, every frame, and then
that unifies all of these screen
space techniques like screen
space ambient occlusion with
the large-scale world effects
that we’re using with the
sparse voxel octrees. Imagine
rasterizing your entire scene
directly into a representation
like that—using that for real-
time lighting and shadowing
and then rendering that result
out the frame buffer. It’s hard
to say whether that has merit;

that’s an algorithm where you
need 20 or 30 teraflops as
opposed to one or two.

[Brandon sheffield] It seems
like we’ve gone so far in the
polygon direction that it would
take a significant spend and a
lot of research to try to push in a
different direction.
 [Tim sweeney] Yeah. Polygons
are nice for representing your
scene that the idea that you can
go with this smooth, seamless
mesh that has nice properties
like being planar… I have a hard
time seeing the world moving
away from that. And if you think
about something like a skeletal
animated character, trying to
represent data like that in a
voxel representation would be

hopelessly inefficient. Say you
have two fingers and want to
animate them independently,
but they’re close enough that
they probably share some
voxels in common; you want a
polygon representation so these
objects can be independent
and move independently with
no relationship between them.
So I think polygons ultimately
will always be our working
scheme representation,
but our rendering scheme
representation is where you’re
seeing a lot of this innovation.

You can really look back and
say, a-ha! The industry started
inventing these techniques five
or six years ago with screen
space techniques like ambient
occlusion, and now we’re

starting to realize that, instead
of just doing that in screen
space, you can also do it in
a voxel representation of the
world. They have in common
this very regular structure
that’s easy to traverse. I think
we’re going to see enormous
innovation in these areas over
the next 10 years because, with
DirectX 11, you now have all
this power of general-purpose
vector computing hardware,
and you can use a few teraflops
of performance in traversing
an arbitrary data structure.
In the previous generation,
we had to rethink everything
in terms of pixel shaders and
vertex shaders, and that rules
out most of these techniques.
So the next few years are ga

m
e

de
ve

lo
pe

r m
ag

az
in

e
0

3
1

Gears of War 3.

C
arm

ack.

i 031
T I M SW E E N E Y I N T E RV I E W _ B r a n d o n S h e f f i e l d

p
h

o
To

 C
o

u
r

Te
sT

y
o

f
G

d
C

000 f
C O L U M N _ J a n u a r y 2 0 1 3

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
3

2

MARCH 18-21, 2012
SAN JOSE
CONVENTION CENTER

SUPERCHARGE YOUR GAME DEVELOPMENT SKILLS
NVIDIA’s GPU Technology Conference has expanded to include cutting edge mobile and game
development sessions. Spend time with Valve, Gearbox, and NVIDIA’s game development
engineers in a friendly, fun and collaborative environment. Come learn fi rst-hand about the
benefi ts of a partnership with NVIDIA and walk away with the latest development techniques!

Register at www.nvidia.com/gtc. Use 10% discount promo code GM10GDM.

Thank you to
our sponsors:

Check out all o
ur open positio

ns at

We're currently looking to fill these positions:
Product Lead Mobile EngineerGame Analyst

 w
oog

a.co
m/job

s

Prepare for the adventure of a lifetime!Prepare for the adventure of a lifetime!
See your game ideas come to life in Berlin.

http://wooga.com/jobs
http://www.nvidia.com/gtc

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

going to be very interesting. I
suspect that a lot of developers
will look at this from different
perspectives and come up with
entirely new techniques that
we’re not anticipating now.

 [Brandon sheffield] What do you
think about Carmack’s solution
to textures with id Tech 5,
where every texture has to be
specifically drawn?
 [Tim sweeney] It’s a neat idea
that’s kind of the extreme
Carmack way of doing things,
the brute-force, completely
general solution to the
problem. Some artist is going
to want to customize any
particular part of an object,
and that makes it really
easy to go in and paint over
and customize any part of a
scene to an arbitrary degree.
That is certainly the general
solution, and it’s a very brute-
force algorithm that gives
you regular performance
regardless of scene complexity,
and gives you regular
performance for streaming,
which is really important.

I personally tend to be on
the other end of the spectrum,
which is that, rather than going

at everything brute force, we
want procedural authoring
techniques to enable content
developers to build small enough
content and then amplify it by
instancing, reusing, scaling,
rotating, and customizing objects
with minimal amounts of work.
In Gears of War, you see that
the same mesh was used maybe
20 times in different places. I
think those techniques tend to
be the best solution to the overall
game development productivity
problem because we want to go
and create games with minimal
effort. Although they’re not as
flexible, they do give you the
greater amplification of both data
and development effort, and, to
me, that is always going to be a
really desirable property.

You can envision the two
ideas being combined. The
thing that’s awesome about
Carmack’s megatexture
approach is that it gives you
the freedom to customize
everything. The drawback to
it is it gives you the cost of
everything being customized,
even if it’s not, because you
have to store everything
uniquely. What I would like
to do is basically represent

the world in some sort of
hierarchical, wavelet-inspired
way so that data layers that are
zero or haven’t been changed
relative to their base aren’t
stored at all, and therefore
don’t incur any cost.

The idea is that you want
to build a cool door façade and
use it in 10 different places, and
in three of those places you go
in and do a custom thing on
top of it. You’re storing the data
there, but you’re only incurring
the cost for the areas where
it’s actually being customized.
Similarly, the idea with wavelets
is you can paint at multiple
resolutions and you can do
perturbed geometry at multiple
resolutions, so you might have
a beautiful car mesh that’s
used in a bunch of places; then,
in some places, you have it
wrecked because you destroyed
the high-level vertices or the
lower-level detail versions of it,
but the rest of the content is still
there. So, with a little bit of data,
you’ve made a really interesting
procedural modification to an
object that already exists. I
think nuanced techniques like
that will win in the long run
because they give you the full
customizability of the Carmack
approach without the full cost of
using it everywhere.

 [Brandon sheffield] I feel like
there aren’t really a lot of
companies that are taking
such a long-term view of
things—thinking five, 10, or 20
years ahead technology-wise,
especially in games and also
in terms of business models.
Epic is thinking about that
with Unreal Engine 4, but also
with InfInIty Blade being
the company’s most to-scale
profitable game. How have you
been able to take this view,
where a lot of others aren’t
thinking past what they’re going
to put out next year?
 [Tim sweeney] Well, being both
an engine developer and a
game developer forces us to
think further ahead. Our big
success with the engine came
in the third generation, and that
was because everybody else
had just been finishing their
previous-generation games,
while we’d been building Unreal
Engine 3 three years prior
to Microsoft or Sony actually
choosing their hardware for

the generation. So we had this
enormous investment that we’d
already built up, and as soon as
the industry moved over from
that we were ready for it and
everybody else was years behind.
That gave us a huge advantage.

We’ve been doing that
informally all along—really
trying to think ahead—but that
experience made it an explicit
and clear part of our strategy.
We need to stay ahead of the
rest of the industry so we can be
there with tools and technology
when people need them. People
don’t realize they need them
until they need them. So we
must realize they’ll need them
three years before they need
them, so that we can actually
build them. That’s been the
challenge.

We have great relationships
with the hardware companies—
Intel, Nvidia, and Apple. With the
pure hardware manufacturers
like Intel and Nvidia, we can
talk about our roadmap with
them and they can talk about
their roadmap with us three,
four, or five years out, and we
can really line everything up.
It’s what’s necessary. We have
to start thinking of technology
developers like Epic, Crytek,
and Unity a lot like the hardware
industry thinks of itself. When
Intel ships a CPU design like
the new Sandy Bridge or
whatever, it first envisioned
that architecture seven years
ago. They had to, because
that’s their development cycle
and they have to go through
this long series of processes
to develop that from scratch
to ship. We need to have a lot
more engine development work
in the pipeline. UE4 was in
development simultaneously
with UE3 for three years or more,
plus a longer research cycle than
that in advance. It’s just necessary
for survival and continuing to lead
the industry forward.

 [Brandon sheffield] So it was a
conscious choice to be ahead of
the game with Unreal Engine 3,
but earlier, when you realized
people needed your technology,
was that a tipping point and a
change in Epic’s mindset? Were
you initially envisioning it as this
service, essentially, that was
going to be sold to people, or was
it like, “No, we need to build this
game, and this is what we need

0
3

3

i 033
T I M SW E E N E Y I N T E RV I E W _ B r a n d o n S h e f f i e l d

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

to build it; so we’re going to go
that direction.”
 [Tim Sweeney] We came into 3D
game development really seat-
of-the-pants. When id Software
created Doom, I looked at that
and said, “Oh my god; they’ve
invented reality. I’m giving up as
a programmer. I’ll never be able
to do that.” But, over the next
few years, as they started to
build Quake, I started to think,
“Hmm, maybe I can figure out
this texture-mapping stuff.”

With the first generation
of Unreal Engine, we went in
not really intending to build
an engine so much as build a
game, and the engine was a
byproduct of that effort. Then
we were a couple of years into
development when a couple of
developers caught us up and

said they wanted to license
our engine, and we were like,
“Engine? What engine? Well, I
guess we have an engine.” The
whole engine business at Epic
was a completely customer-
driven idea. As it’s evolved, it’s
become a much more serious
effort. More than 40 people are
contributing code to Unreal
Engine 4. That’s a huge effort.
It’s a team worldwide who
works for customers providing
support and developing
features in Japan and Korea
and China and Europe.

We’re creating a real
significant global business,
working closely with all of
the hardware companies to
determine the roadmap as
much as we can. Roadmaps
then line up with working with
customers to work out various
conflicting requirements
between different markets and
desires. It’s a very serious,
real business now, completely
different than it was a few
generations ago. I wrote a
quarter-million lines of code
on Unreal Engine 1—I wrote
about 80% of the code myself.
What could I do now being one
person out of 40?

 [Brandon Sheffield] That makes
me curious—how much day-to-
day coding do you actually get
to do?
 [Tim Sweeney] I spend at least
a few hours a day, but right
now I’m not critical path on
anything like I was on Unreal
Engine 1. My schedule is too
unpredictable to contribute to
that, but I really try to stay on
top of it and talk with all the key
guys who are architecting the
major systems.

 [Brandon Sheffield] It seems
like in some companies—this
is especially a Japanese
problem—people get pushed up
and out of doing stuff and into
having meetings about doing
stuff instead. It’s good you’ve
avoided that.
 [Tim Sweeney] Yeah, we’ve really
put a lot of effort into making
sure our key folks at Epic are
able to do what they are best
at. There are some world-class
programmers at Epic who
are never going to be leads
because they are far more
valuable at inventing new ideas
than coordinating the efforts of
the people who do that. There’s
a very different set of talents
required for leadership versus
more individual contribution. It’s
very important that you recognize
the distinction between the two
and realize what each person is
really best at.

 [Brandon Sheffield] Of course, it’s
also important to compensate
accordingly if you really need
someone in that non-leadership
position.
 [Tim Sweeney] Some of Epic’s
most valuable people aren’t in
leadership roles.

 [Brandon Sheffield] These days,
it feels like there are not very
many people trying to push
graphic fidelity forward. There
are a lot of people who are more
concerned with business models
and things than they are with
graphical fidelity and stuff. Do
you feel some kind of pressure to
push graphics in the next phase
of game evolution? There’s you,
there’s Crytek, DICE, possibly
id… Who else is going to fight for
graphics over convenience?
 [Tim Sweeney] Well sure, if you
look at EA’s DICE studio with
BattlefielD and Activision
with Call of Duty, they’re

certainly making major
investments in graphical
quality. I think that’s a general
goal of the major Western
developers—at least developers
of major shooter franchises—to
really push the graphical line.

It’s an interesting distinction;
when you talk to Asian
developers, the overall focus
is more on maximizing the
customer experience than on
maximizing the graphics. A lot
of the companies out here are
decades ahead of us in that area;
every day they look at the stats of
what users are doing, whether
they’re getting stuck, what things
they’re buying, what things they’re
not enjoying. They gather massive
amounts of data and use it to
tweak the games constantly and
make it better on a daily basis. I
think both of those methods have
merit, and the ideal would be to
do both of them.

I think that’s going to be
the interesting thing that
happens when you see Western
companies trying to move their
big game franchises into a
free-to-play model worldwide
and coming into contact with
the Asian companies who
are moving their free-to-play
games to the West; you get this
big clash of production values
versus customer experience
optimization. That’s going to
push everybody to improve
significantly. That’s going to be
quite an arms race because
it means we need to learn
different ways of making our
games. We can’t come up with
this grand vision for Gears of
War, spend three years building
it, and then see if customers like
it. I’m exaggerating; we actually
put a lot of effort into playtesting
and getting customer feedback
up front, but it’s nothing like
the scale of what happens in a
game maintained by Tencent,
for example.

 [Brandon Sheffield] I feel like,
over the last five years, many
companies have dropped the
graphical fidelity and stopped
trying to push graphics and have
left it to the realm of blockbuster
guys. Riot can make League
of Legends look good enough,
then have [such] a fantastic user
experience that it doesn’t matter.
So I wonder if you consider
yourselves guardians of graphics
technology for the future, keeping

graphics moving forward because
you’re trying to push the console
makers, to some extent, through
the chipsets they may have?
 [Tim Sweeney] Well, Epic’s engine
programmers and our artists
really take it as a matter of
pride that we want to have the
best-looking stuff available,
bar none, on every platform.
If we’re building a high-end
PC game or a next-generation
console game, we want to
have the best graphics quality
possible with however many
teraflops are available. If we’re
building an iOS game, we want
that to be the prettiest iOS
game. With every generation,
the number of things you need
to do right to succeed with your
game increases. It can’t just be
a beautiful game; it also has to
be a super fun game. It has to
have great multiplayer. It has
to have great sound and great
controls. Now we’re adding
all of the user experience
maximization on top of that.
It’s just getting more and more
challenging to build a game,
and we need to respond to that
by growing in team size and
really staying on top of all that
the industry is trying to do. In
the future, we can’t just give up
pushing graphics. That’s not
and never has been an option.

 [Brandon Sheffield] If Epic were
the last company—if Unreal
Engine 4 or 5 or whatever were
the last high-graphic push in
games—would you continue
pushing forward graphically if
there were no competition?
 [Tim Sweeney] Sure. We always
want to outdo ourselves
regardless of where the
competition is. The main goal
is not to increase graphical
quality by just throwing more
money at the problem, but to
do it intelligently by building
better schools and technology
that make it possible to do that
efficiently. We’ve been very
much focused on not competing
by brute force all along. i

Brandon Sheffield is director of
Oakland, California–based Necrosoft
Games, and editor emeritus of
Game Developer magazine. He has
worked on over a dozen titles, and is
currently developing two small-team
games for PlayStation Mobile. Follow
him on Twitter via @necrosofty.

0
3

4

034 i
T I M SW E E N E Y I N T E RV I E W _ B r a n d o n S h e f f i e l d

B
o

r
d

er
la

n
d

s 2.

http://www.fdg2013.org

0
0

3
6

0
3

6
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

036 pm
p o s t m o rt e m _ M a r c h 2 0 1 3

0
0

3
7

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

pm 037
p o s t m o rt e m _ M a r c h 2 0 1 3

B Y K E V I N B R U N E R

Telltale is a bit different from your typical
game company. We bring some of the best stories
from TV and film and make episodic “story” games
from them. We do our own licensing, design,
development, publishing, and marketing, all under
the same roof. We also tend to make product
decisions together as a studio. We are independent,
but bigger than “indie.” All of this brings a very
unique set of challenges with it, which makes this
postmortem a bit different as well. At Telltale,
working with external partners and figuring out
what “playing a story” means is just as important as
slinging DMA packets around and writing code that
controls what each CPU core is doing.
 We want to make games that let people
immerse themselves within an actual role in stories
like they never have before. We’ve had a fair bit of
success in attracting some well-known licenses, but
our roots are in graphic novels, reaching all the way
back to Sam & Max and Bone. We were thrilled at
the opportunity to tackle something as rich as The
Walking Dead and work with Robert Kirkman. By
now, our series has won more than 80 Game of the
Year awards and has been widely recognized as a
groundbreaking achievement in the industry, but it
certainly wasn’t an overnight success! ›››

0
3

8
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

W H AT W E N T R I G H T

PARTNERING WITH SKYBOUND In early 2011 we reached out
to The Walking Dead creator Robert Kirkman and his production
company Skybound to discuss adapting his award-winning comics
into a Telltale series. We were not going to pitch a game that was
about killing zombies. Instead, we were going to pitch an episodic
“story game” that focused on the thing we felt made his books
so compelling: normal people adapting to impossible situations.
The game we pitched was focused on dialogue and character
development, and was to be incredibly cinematic and seriously
emotional. We wanted people to connect with the characters and
role-play like they never had before. There were certainly much
more obvious takes on a zombie genre game, which made us a
little nervous. Our pitch was probably not what they were expecting.
Luckily, they were familiar with some of our previous work, so they
took the meeting.

When we met with Robert and the other folks at Skybound, they
were very impressed by our vision of what a WALKING DEAD game
could be. They understood how such an approach, if successful,
would capture a much deeper sense of what made the comics so
successful. Most importantly, they saw a special opportunity and
were willing to take this risk with us.

In the end, Robert Kirkman and everyone else at Skybound
were (and are!) amazing partners. Even as the television show
was becoming a runaway hit, they always made time to ensure we
had the feedback and support we needed. One of the best things
Robert did early on was introduce us to his friend Gary Whitta
(screenwriter of Book of Eli and After Earth). Robert trusts Gary,
and Gary really understands what makes THE WALKING DEAD
unique and special. Consequentially, Gary joined the team relatively
early as our story consultant. As a gamer himself (he was editor-
in-chief of PC Gamer for many years), his integration was easy and
his impact immediate, making valuable contributions to the season
story and design. Gary helped push us further toward the darker
and more dramatically diffi cult aspects of THE WALKING DEAD.
When considering some of the trickier or more heart-wrenching
parts of the story, such as letting the player choose to kill Duck or
not, Gary would often be the one evangelizing the “you have to let

the player go there” angle. Eventually, he dove in even deeper and
wrote the script for the fourth episode.

LEARNING FROM PAST PROJECTS Many game companies
“reset” at the end of a project. They choose to start a new engine,
or pursue a new game mechanic or control system, and choose
to tackle completely new problems. At Telltale, we intentionally
evolve our processes and technology without resetting them.
We carefully take what has worked in the past and add layers to
it instead of reinventing it. The same tools used to create THE
WALKING DEAD can still load and play the entire Telltale catalog.

Telltale has always aspired to make our unique experiences
truly compete with more traditional genres such as FPSs and
RPGs. Over the years, with each series, we’ve challenged ourselves
to make “playing stories” more compelling and push the envelope
as to what it means to “play a story.” In addition to the fundamental
writing and design tasks, each series has tried to tackle specifi c
aspects of this larger agenda. We’ve had some great successes and
a lot of lessons learned along the way.

Very early on with SAM & MAX, we were simply fi guring out
the formidable challenges involved in designing, producing, and
publishing digital adventure games on an episodic schedule.
Later, with a series like WALLACE & GROMIT, we challenged
ourselves to move past traditional “point and click” and embrace
the console controller. STRONG BAD’S COOL GAME FOR ATTRACTIVE
PEOPLE was the fi rst regularly scheduled episodic game ever
simultaneously released on consoles and PCs. POKER NIGHT
AT THE INVENTORY had characters dynamically telling jokes
and stories while reacting to the player and the cards. It also
introduced our fi rst online features with its unlockable TEAM
FORTRESS 2 items. Back to the Future enabled us to examine how
to make our games less obtuse and more accessible, reaching
wider audiences and more platforms. With JURASSIC PARK,
we experimented with alternate control schemes and playable
characters, and tried making fast-paced action sequences. Most
importantly, we learned ways to keep the pacing of the story
moving along while staying interactive and keeping the player
engaged. Along the way, each series allowed us to refi ne our
episodic production pipeline and tools, and become a much more
signifi cant (and successful!) self-publisher.

038 pm
P O S T M O RT E M _ M a r c h 2 0 1 3

0
3

9
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

We’ve never been content to be a
boutique game developer/publisher. In
innumerable ways, THE WALKING DEAD
is the result of eight years of continuous
exploration and evolution. This process
not only informed us while creating
THE WALKING DEAD, it also gave us
the confi dence to take the even more
ambitious risks you see in the fi nished
game, such as…

THE “NO GOOD CHOICE” GAME
MECHANIC Going in, we knew that in THE
WALKING DEAD you’d be confronted with
awful choices, not much time to consider
those choices, and then have to deal with
the fallout of those choices. We did spend
some time exploring integrating choice
into more traditional game mechanics,
but things didn’t start to really gel until we
decided to go “all in” on choice. As a studio,
we wholly embraced the idea that the game
would allow narrative opportunities if they
were plausible to the player. However,
it wasn’t a simulation: We would still be
handcrafting the “spine” of the story, and if
a narrative option seemed plausible within
that context, we committed ourselves to
letting the player explore it.

A great example of this is a critical
moment in the third episode. One member

of your party, a woman named Lilly, suddenly
and deliberately shoots another member of
your party, ostensibly to ensure the ultimate
safety of everyone. The initial idea for this
section of the game was that zombies would
then immediately drive the group back into
their RV, which would force the player to deal
with Lilly’s actions in those close, inescapable
quarters. As the details of that interaction
came into focus, it became clear how strongly
we felt about the idea of abandoning her
at that moment. This was a moment we
simply had to allow the story to play out both
ways (she stays or she goes). We felt that
empowering the player in critical moments
like this was far more satisfying than giving a
blanket good or evil ranking.

We also discovered that smaller, more
intimate details often worked much better
for us than giant, sweeping, branching
opportunities. For instance, it’s often more
interesting to let the player slight or insult
NPCs than it is to let the player outright
steal all their belongings or completely
betray them.

Sometimes there were great initial story
ideas, but they included some plausible
choices that didn’t lead to interesting
places. For example, in episode two, we
really wanted different characters (not just
Mark) to end up as the St. Johns’ victim

depending on how you played, but when
we explored allowing him to play a more
signifi cant role, and even perhaps survive,
he just wasn’t adding anything good to the
story. He became a sort of vestigial story
problem in an otherwise really good part of
the game. In these cases, we had to punt.
Often though, we would keep working until
we had moments where all possibilities
were compelling and producible. It was
most exciting when we created moments
where all possibilities felt equally
compelling and intriguing. These made the
choice taken and the choice not taken just
as important to the player.

Other games have certainly explored
choice and branching narrative before,
though most of those games have used
player choice as a subset of a larger
gameplay mechanic. They typically had
rather binary player choices such as good
or evil, light side or dark side, etc. which in
turn drove various AI and NPC systems. We
felt strongly that a statistics-driven AI and
NPC system would not be able to deliver
the kind of experience we envisioned.
Instead, our system tracks every choice a
player makes at a very detailed level and
then makes that information available to
designers. They use that information to
create narrative-driven logic that controls
the content and subsequent choices that
are offered to the player. Our version of
choice isn’t emergent from a system, but a
carefully crafted bespoke experience driven
by narrative possibility. This is what we
mean by “tailored narrative.”

EPISODE DIRECTORS MAKE EVERYONE
A STORYTELLER Beginning with JURASSIC
PARK we introduced the idea of individual
episode directors. An episode director
is akin to the fi lm director of a movie.
They work very closely with the writers,
designers, and production departments
to craft a vision of how the episode will
unfold for the player. The director chooses
the combination of narrative tools that are
used to create each moment in the fi nished
game. Their job is to leverage lighting,

Caption

040 pm
p o s t m o rt e m _ M a r c h 2 0 1 3

0
4

0
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

color, music, sound effects, composition, pacing, and contrast to
make the best interactive experience they can, and then they have
to communicate and drive that vision through to the completion of
the episode. Having someone dedicated to interpreting the script
and design of each episode in this way encourages everyone to
approach their work from a narrative context first. It transforms
everyone in the studio into a storyteller.

In this model, sound designers aren’t simply creating a room
ambience anymore; they are contributing to a beat in a story in
conjunction with their director. A modeler is creating environments
for specific moments instead of generic simulations. Lighting
setups change over the course of the episode based on narrative
structure instead of the simple ticking of a clock. The artistic
process isn’t driven by a simulation anymore, and instead serves
the narrative context the player will experience.

The episode director isn’t a position at Telltale; it’s a role that is
filled based on each episode’s unique circumstance, and a director
needs to have passion for the license, the characters, the script, and
the interactivity. We have opened this role to anyone in the studio,
from any discipline, so long as they have a clear vision for what
their episode will be, and the support and confidence of the team
to execute it. So far, we’ve had directors come from writing, design,
art, programming, and cinematics. (We haven’t yet had any directors
from marketing or finance, but the door is open!)

Bringing Players TogeTher There are deliberately no
right or wrong choices in The Walking DeaD. We didn’t set out to
make a game you could win or lose. We wanted to expose difficult
and interesting possibilities to players and reward them whatever
they chose, while still leaving the choices not taken as a lingering
possibility. The path not chosen should feel as important as the one
they did choose. For instance, there is an opportunity to steal food
from a stranger’s car in the second episode. Some might choose to
steal the food in order to survive; others might view that as a loss of
one’s humanity.

We wanted to enable the player to see where they stood
compared to the rest of the world. So, at the end of each episode

of The Walking DeaD, we presented a statistics screen that
shows five critical decisions the player made, and how their
choices compared to other players. Exposing this to players
transformed a single-player experience into a platform for
social commentary, and encouraged players to discuss their
motivations and experiences with each other. It also encouraged
players to reconsider their choices and try replaying the episode
from a different perspective. Although The Walking DeaD isn’t a
multiplayer game in the traditional sense, it certainly inspires a lot
of conversations between friends and communities.

In addition to the five stats displayed at the end of each episode,
the game also tracked dozens of other decisions players made. We
were able to use this to help us understand what types of decisions
were most interesting to players and reinforce those moments
in subsequent episodes. In fact, at the end of episode four, we
added an additional statistics screen showing what combination
of survivors were joining you for episode five, and how your group
compared to everyone else playing.

Creating a compelling narrative “possibility space” for a player
is significantly more rewarding when players are able to see the
bounds of that space and compare their place in that space with their
family and friends.

W H AT W E N T w r o n g

CasTing is hard Casting has always been tricky for us, and as
we keep ratcheting up the drama in our games, the bar for our
actors keeps rising as well. The Walking DeaD had particularly
tricky casting challenges. Our leading characters were a southern
black professor and an eight-year-old girl, in addition to a large
and diverse supporting cast. They certainly were not your typical
video game fodder.

We had so many auditions that were more caricature than
character. Of the actors who were able walk the line between too
generic and overly stereotyped, there were few voices that matched
the way we imagined our characters. Of the few actors left that we

0
4

0
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

Caption

did like, many of them were unavailable, too
far away, or over our budget.

We initially cast the voice of the main
character, Lee, from this compromised
field, and proceeded to record the first
episode. When we got the first group of
lines back, we knew we were in trouble.
Lee just didn’t have the range and
personality that the game demanded,
and now we had a large production team
waiting instead of implementing. We
needed a new Lee, and fast.

Luckily, one of our cinematic artists
suggested an actor he was a fan of: the
eminently talented Dave Fennoy. We tracked
him down, and he was able to quickly get us
an audition. Once we heard him, we knew
he was what we needed. Dave is not only a
fantastic voice talent, but an amazing actor
who created a Lee that was much more
nuanced and dynamic than we had hoped.
Dave gave us confidence and allowed us to
push the character of Lee even further.

Clementine, the eight-year-old girl who
is with you throughout the game, was also
a casting challenge. She is not a precocious
stereotyped kid, but a smart young lady who
is desperately trying to make sense of a
world turned upside down. Finding any adult
actress to voice a young girl is challenging,
but finding one that could portray a complex
character like Clementine was especially
difficult. We went through another arduous
casting process before finding the amazing
Melissa Hutchinson.

The Stranger, the ultimate villain at
the end of the game, was also particularly
difficult to cast. We needed the character to
have a kind of quiet insanity. Once again, we
cast and fully recorded what turned out to
be the wrong actor. Literally the night before
the schedule required we start recording, we
found Anthony Lam—the creepy, quiet insane
voice we were looking for. Fortunately, he was
able to record immediately the following day.

Those lines were being fed into the game as
fast as they were recorded.

We need to get better at casting. As
our games are becoming increasingly
more sophisticated and dramatic, they are
requiring more diverse and skilled actors.
Fortunately, for The Walking DeaD we
were mostly able to find the great actors we
required in time, but just barely.

The challenge of defining and
communicating the essence of our
characters in ways that provide talented
actors the tools they need in a game
context has proven to be a daunting and
difficult task. Our actors rarely get to
perform with one another—we usually
record their parts individually—which
makes it hard to offer them context or
insights into their character’s motivation.
Also, we’re finding that directing the
performances during the actual recording
sessions is itself a specialized skill set that
we need to improve.

Remaking episode two While we were
focusing intently on episode one, episode
two was quietly coming to life in the
background on its own.

When we went “all in” on choice, it
changed how episode one became fun and
engaging. As these things were changing,
we were iterating at what seemed like light
speed, tweaking interfaces and adding
features like “choice notifications,” on-
screen inventory, panic meters, and more.
We were intensely critical of everything, and
we were finding fantastic new ways to make
choice compelling.

When we finally got episode one to a
good place, episode two had already been
written, recorded, and was partially into
production. When we were able to compare
episode one and two, they felt radically
different. Episode one had all this really
cool new stuff that wasn’t being exploited

in episode two, and episode two felt kind of
“old Telltale” by comparison. So we decided
we just couldn’t move forward with the
version of episode two we had.

We gathered a large group of writers,
designers, producers, and directors offsite
at a local hotel conference room and spent
two days hammering out a new direction
for the episode that exploited and even
advanced everything that was feeling so
great about episode one. Though some
large elements such as locations, principal
characters, and story beats remained,
nearly all of the dialogue needed to be
rewritten and then rerecorded. We were
super enthused by the new design, but we
were already behind schedule, leading to…

massive schedule compRession
With a monthly episodic game company,
the schedule is king and constantly looms
over everything we do. Just imagine if you
tuned in for the last episode of The Sopranos
and there was a screen saying “Sorry, we
didn’t get it done. Come back later!” All the
recasting and retooling that happened early
in the series took a lot more time than we
had anticipated. By the time episode one
really came together, our series launch
date was upon us, and as they say, the
show must go on! Episode one launched
with a much better reception than we could
have dreamed.

Unfortunately, now we were further
behind schedule than we had ever been
before. To make matters worse, we had a
huge rewrite of episode two to complete
before we could restart production on
it. While the new episode two script
was completed at breakneck speed
and recorded as quickly as possible, we
considered what could be done to get
back on track. We ended up basically
putting nearly everyone in the studio onto
the project.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
4

1

caption

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
4

2

042 pm
p o s t m o rt e m _ M a r c h 2 0 1 3

We have always been a multi-project studio, so we’ve never
really had everyone working on the same game at the same time,
and figuring out how to best divide production responsibilities
among such a large group was tricky. We broke the action sections
of the game (such as the zombie attacks) out into their own strike
teams, while a different group owned the dialogue-driven parts. All
in all, the studio quickly turned out some amazing content, but we
were still weeks behind on episode two, and our schedule was still
getting stretched out as far as it possibly could.

In the end, episode two ended up in customer’s hands nine
weeks after episode one was released. Though this was an
amazingly short time given the circumstances, customers were
understandably anxious, and didn’t hesitate to let us know it. Our
forums and Facebook pages were swarmed with people demanding
their episode, and we didn’t do an adequate job of communicating
what was happening.

By keeping the whole studio focused on The Walking DeaD, we
were able to make up most of the time. We wrapped the series just
a few weeks short of its originally planned completion date.

Backend servers and dLc The Walking DeaD was our first
game in which each episode was delivered as DLC instead of
individual executables. This required a new “in-app” store, new
content licensing code, and new download managers. That’s a lot
of “new,” and furthermore, each platform had its own unique DLC
quirks and complexities. iOS even required us to implement our own
content delivery network! DLC also presented an entirely new QA
process from simply staging content on partner networks, installing
and uninstalling individual episodes, and controlling the licensing
status of content on all our test accounts. We had a lot to learn
about DLC.

In addition to DLC, the game was also the first to send telemetry
back to the Telltale servers so we could present the choice statistics
at the end of the episode. We created a new REST API specifically to
handle this data, which required new code both on the web servers
and in the game engine itself.

Both of these changes were substantial, and they ended up
being a lot of work to bite off with an important title like The Walking
Dead, but we felt that the game would suffer significantly without
these features.

When we launched, the game was incredibly well received, and
our servers were quickly overwhelmed with the volume of hits they
were receiving. When the servers stopped responding to the game,
it would cause noticeable delays at the Press Start screen and at
some save points during the episode. For the first few days, we
actually ended up throwing incoming data away and serving a stock
reply while we frantically brought more servers online.

On Xbox and PlayStation, the system handled the download
of new episodes for us, but on iOS, the application also had to
download the content for the user. This required a download
manager, which turned out to have many more problems in the real
world than we anticipated. Mobile devices tend to have significantly
more network connection problems than PCs or consoles, and
we just weren’t able to simulate the wide array of real-world
circumstances we would encounter. Unfortunately this meant that
too many iOS players had to suffer with us as we pored through
our server logs, download code, and test cases to finally get the
download manager as robust as it needed to be.

Bugs, Bugs, Bugs Between the compressed schedule, the new
DLC model, and the work required to launch on many platforms,
we ended up with a lot of bugs.

The worst of these was related to our save game “rewind”
system, which allowed the user to rewind the story an earlier
point in the game. Since most of the episodes didn’t exist when
the system was implemented, we didn’t have the test cases
required to ferret out the edge cases that occurred in the real
world. Unfortunately, that meant that some players lost their
save data and had to replay the game from the beginning, which
is about the worst thing that can happen to a player in a choice-
based episodic game. Another bug caused the “generate random
choices” dialogue to appear when in fact no random choices
needed to be generated, which just made the players who were
anxious about losing their save data even more worried.

In addition, each platform had its individual list of bugs, as
well as the usual permutations of hardware-specific PC bugs,
which made it very difficult for us to communicate solutions to
the player. We found that many angry customers had to navigate
a complex maze of information to find their solution. Even the
best-intentioned users often ended up advising other users with
solutions that worked in their context, but might be disastrous in
another context. For example, some users would “tweak” their
data to recover a save game, and other users might try a similar
strategy, but end up destroying their save data. Obviously the root
of the problem is the buggy system itself, as users should never
have needed to attempt any of these things in the first place.

Though we’ve aggressively patched these issues and
resolved most of them, you can’t really unring a bell. There are
still small content bugs left in the game, and players are too
often left with an impression that the game is buggy. All we
can do at this point is continue to patch, and take what we’ve
learned from this experience to ensure bugs like this don’t
happen in the future.

The WaLking devs For the last eight years, Telltale has been
manically committed to the idea that interacting with characters
and stories could be some of the best game experiences ever.
We’re convinced that stories are not just for cutscenes—stories
can be the game themselves. The Walking DeaD is our example
of the state of the art, but we’re confident that we can make
playing a story even more compelling. We’ve also been equally
committed to episodic games, smaller games, and cheaper
games. And now we’ve built a studio that has matured to the
point of being able to create a Game of the Year while staying
true to these goals.

Fortunately for us, it looks like we’ll have an opportunity to
continue exploring the space. Our game based on DC Comics’s
Fables is well under way, The Walking DeaD has a second
season in the works, and many new properties are seeking
out Telltale in hope of working with us to make a game.
Stay tuned! pm

Kevin Bruner is the CTO and co-founder of Telltale Games. He has been
passionate about story in games since playing Infocom text adventures as
a kid. He has been working in games for nearly 20 years. When not making
games, you can find him playing hockey (badly).

http://www.microsoftentertainmentjobs.com

CONNOR
18Th CENTURy’S AMERICA
professional assassin

JONAThAN COOPER
UBISOFT MONTREAL
animation director

CONNOR
18Th CENTURy’S AMERICA
professional assassin

JONAThAN COOPER
UBISOFT MONTREAL
animation director

vAAS MONTENEgRO
TROPICAL PARAdISE

sociopath

RAPhAEL PARENT
UBISOFT MONTREAL

lead gameplay programmer

JOBS.UBISOFT.COM

OUR [PROgRAMMERS]
ARE INSANELy gOOd

http://JOBS.UBISOFT.COM

TONGUE TAIL BEEF RIBS MEATBALL TURKEY
Bacon ipsum dolor sit amet prosciutto fl ank pork loin t-bone
bresaola sausage leberkas rump. Filet mignon kielbasa swine,
ribeye boudin turkey bresaola jowl shoulder. Strip steak frankfurter
brisket tenderloin pork salami kielbasa turkey ground round
sausage fi let mignon chuck. Shankle hamburger venison turkey
tenderloin pastrami ribeye doner ham hock bacon ham meatball
strip steak. Bresaola sirloin turducken pork loin bacon leberkas
sausage fi let mignon shank tri-tip ground round corned beef
tongue spare ribs. Pork chop bacon boudin meatball frankfurter
venison bresaola.

Short ribs fl ank frankfurter chuck pancetta. Brisket shank
sausage corned beef cow shankle shoulder kielbasa hamburger
rump fi let mignon short loin turducken jowl frankfurter. Beef ribs
venison chicken, rump sirloin doner ham jowl. Doner pancetta
capicola meatball strip steak. Bresaola sirloin turducken
frankfurter ham hock. Pancetta ham chuck spare ribs cow turkey
sausage ball tip. Meatloaf capicola ball tip hamburger strip steak,
turducken pork bresaola.

Venison cow bacon meatloaf kielbasa. Meatloaf doner pancetta
corned beef pastrami fi let mignon fl ank. Bresaola doner tri-tip,
pig tenderloin rump tail boudin ground round. Andouille shankle
turkey boudin. Brisket ribeye tenderloin pork belly fatback beef
drumstick spare ribs leberkas frankfurter shoulder turducken
boudin sausage.

Capicola prosciutto venison ham, meatball brisket ham hock
turducken chicken spare ribs turkey. Meatball ham hock fl ank beef
ribs. Meatball drumstick corned beef pastrami pork loin venison.
Swine rump fl ank hamburger jowl andouille chuck ribeye fi let
mignon. Tail ball tip ribeye, salami hamburger chuck tongue bacon
capicola. Leberkas pig hamburger chicken.

Prosciutto pork fl ank kielbasa meatloaf short ribs doner
biltong. Hamburger chuck pig kielbasa. Capicola boudin fl ank
ball tip short ribs, ground round hamburger pig pancetta pork
chop pork shoulder chicken short loin. Pig kielbasa tail, ham hock
tenderloin ball tip beef drumstick strip steak meatloaf spare ribs
sirloin fl ank. Brisket jowl meatball ham, kielbasa venison strip
steak hamburger shoulder swine pork chop bacon tail biltong.

Pastrami bacon jowl frankfurter meatball salami, ribeye
shoulder pork loin doner pig chicken. Kielbasa turkey doner ball
tip boudin strip steak fatback pork meatloaf ham hock fl ank. Ball
tip pork loin doner, bresaola short loin turducken boudin swine
cow leberkas chicken. Cow drumstick sirloin, ball tip salami
boudin leberkas ham fi let mignon beef ribs. Turducken pancetta
tail pastrami. Sirloin shoulder turkey chicken corned beef meatball
strip steak. Bresaola sirloin turducken.

Pork brisket cow pork chop. Swine pork belly ham hock doner
capicola, ribeye strip steak pastrami biltong shoulder fi let mignon
bresaola salami tri-tip chicken. Leberkas pancetta sausage
prosciutto drumstick pork chop salami, ground round tenderloin
beef venison fl ank sirloin capicola. Ball tip beef kielbasa tri-tip.
Ham shankle prosciutto bacon, leberkas andouille jowl shank.

Bresaola meatball doner biltong, salami short loin spare ribs
venison sirloin tri-tip chicken turkey pork belly shank tail. Boudin

pastrami andouille, hamburger t-bone turducken turkey meatloaf
short ribs pancetta chuck. Salami strip steak fl ank capicola
leberkas, pork belly tri-tip ribeye jowl meatloaf t-bone pancetta
turkey beef ribs. Brisket short ribs shoulder, sirloin swine tri-tip
shankle. Jowl pig beef biltong prosciutto, rump andouille sausage
fl ank jerky drumstick boudin spare ribs.

Ground round corned beef meatball pancetta pork chop tri-tip
spare ribs bacon strip steak jerky kielbasa rump pork belly. Cow
pork belly turkey, sirloin pancetta tenderloin prosciutto andouille
t-bone jerky chicken doner. Ribeye bacon ham drumstick rump.
Filet mignon hamburger turducken ball tip pork chuck spare ribs,
venison pork loin leberkas meatball. Bacon ipsum dolor sit amet
prosciutto fl ank pork loin t-bone bresaola sausage leberkas rump.
Filet mignon kielbasa swine, ribeye boudin turkey bresaola jowl
shoulder. Strip steak frankfurter brisket tenderloin pork salami
kielbasa turkey ground round sausage fi let mignon chuck. Shankle
hamburger venison turkey tenderloin pastrami ribeye doner ham
hock bacon ham meatball strip steak. Bresaola sirloin turducken
pork loin bacon leberkas sausage fi let mignon shank tri-tip ground
round corned beef tongue spare ribs. Pork chop bacon boudin
meatball frankfurter venison bresaola.

Short ribs fl ank frankfurter chuck pancetta. Brisket shank
sausage corned beef cow shankle shoulder kielbasa hamburger
rump fi let mignon short loin turducken jowl frankfurter. Beef ribs
venison chicken, rump sirloin doner ham jowl. Doner pancetta
capicola meatball strip steak. Bresaola sirloin turducken
frankfurter ham hock. Pancetta ham chuck spare ribs cow turkey
sausage ball tip. Meatloaf capicola ball tip hamburger strip steak,
turducken pork bresaola.

Venison cow bacon meatloaf kielbasa. Meatloaf doner pancetta
corned beef pastrami fi let mignon fl ank. Bresaola doner tri-tip,
pig tenderloin rump tail boudin ground round. Andouille shankle
turkey boudin. Brisket ribeye tenderloin pork belly fatback beef
drumstick spare ribs leberkas frankfurter shoulder turducken
boudin sausage.

Capicola prosciutto venison ham, meatball brisket ham hock
turducken chicken spare ribs turkey. Meatball ham hock fl ank beef
ribs. Meatball drumstick corned beef pastrami pork loin venison.
Swine rump fl ank hamburger jowl andouille chuck ribeye fi let
mignon. Tail ball tip ribeye, salami hamburger chuck tongue bacon
capicola. Leberkas pig hamburger chicken.

Prosciutto pork fl ank kielbasa meatloaf short ribs doner
biltong. Hamburger chuck pig kielbasa. Capicola boudin fl ank
ball tip short ribs, ground round hamburger pig pancetta pork
chop pork shoulder chicken short loin. Pig kielbasa tail, ham hock
tenderloin ball tip beef drumstick strip steak meatloaf spare ribs
sirloin fl ank. Brisket jowl meatball ham, kielbasa venison strip
steak hamburger shoulder swine pork chop bacon tail biltong.

Pastrami bacon jowl frankfurter meatball salami, ribeye
shoulder pork loin doner pig chicken. Kielbasa turkey doner ball
tip boudin strip steak fatback pork meatloaf ham hock fl ank. Ball
tip pork loin doner, bresaola short loin turducken boudin swine
cow leberkas chicken. Cow drumstick sirloin, ball tip salami
boudin leberkas ham fi let mignon beef ribs. Turducken pancetta

f 000
C O L U M N _ J a n u a r y 2 0 1 3

VENISON FILET MIGNON CORNED BEEF
TONGUE TAIL BEEF RIBS MEATBALL TURKEY

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
4

5

{5}
tips for better
playtesting
CASUAL DEVELOPER ARKADIUM’S BEST PRACTICES
FOR PLAYTESTS

{P}
Playtesting is one of the most important elements in the game development
process. When you see someone from outside the studio actually sit down and
play your game, you’re able to better understand how accessible, usable, and
appealing your game is. These are not things you want to evaluate after your game
is released to the public. Therefore, data collected from playtesting can be an
invaluable tool for mitigating risk and giving your game its best chance at success.

However, there are many ways that playtesting can go wrong, so it’s important
to establish a process that you’re confi dent in, and to improve it over time. At
Arkadium, our playtesting process is a collaboration between game design and
marketing, and typically involves inviting players to our offi ce. We believe that the
best practices we’ve identifi ed over time may be helpful to your team as well, so
we’ve boiled them down to these fi ve tips for better playtesting.

Editor’s note: This article was originally posted on Gamasutra. You can fi nd the original version here: http://bit.ly/V892GG

 045
C R O S S - P L AT F O R M _ V I N S T. J O H N

http://bit.ly/V892GG

046
C R O S S - P L AT F O R M _ V I N S T. J O H N

{1}
RECRUIT YOUR TARGET PLAYER
When designing your playtest, you should
be keenly familiar with the type of player
your game is for. While your game may
appeal to a larger audience, it’s a mistake to
“design for all.” We fi nd it helpful to identify
personas for our target audience—for
example, “Jane, 25-34 years old, owns an
iPhone”—and try to recruit players who
closely match that description.

SOME QUESTIONS WE ALWAYS
CONSIDER WHEN RECRUITING
ARE:

}} How old is our intended
audience?
}} Is the intended audience
predominantly male, female,
or split?
}} What device or platform is
our game targeting? (Don’t
recruit players if they’ve
never played a game on that
platform before.)
}} Does your game assume
any prior knowledge from the
player?

The last point is often the most important.
If you’re developing a sequel to a popular
fi rst-person shooter (FPS), you might
assume that most of your players have
played the fi rst game, or perhaps a similar

FPS. In this case, it would make sense
to recruit playtesters who are already
familiar with the basics of FPS games, and
solicit feedback on the elements that are
unique to your game. If you’re developing
for a casual audience, however, you may
actually want the opposite. We often fi nd
that it’s imperative to test our game with
players who have never played a game’s
predecessors, especially when testing the
game’s tutorial or a game that’s meant for
more casual players.

 Every time we have a playtest, we
strive to have some new playtesters who
have never tried out our game before. This
guarantees we have a fresh set of eyes
providing feedback every time, even if we
also invite returning players to playtest
something new. We also have a policy
against recruiting friends of our employees
for playtesting. While their feedback can
be very valuable in a pinch, we fi nd that
when they know someone personally who
has worked on the game, people have a
tendency to want to love it more than they
would otherwise, which can drastically
skew the data.

 Of course, it can be diffi cult to fi nd
and recruit playtesters who closely match
your target persona. There are likely online
communities—some related to your game,
for instance—that are full of players who
would love a chance to visit your offi ce
and provide you with feedback. However,
while your biggest fans will be eager to
help, they tend to be more informed and
more engaged with your games than the
average player. If you only collect feedback
from your biggest fans, you’re much less
likely to hear about the problems that new
players face on Level 1, and much more
likely to hear about how great Level 10 is.
We supplement our pool of playtesters

by recruiting on sites like Craigslist,
FindFocusGroups.com, and Meetup.com.

{2}
TEST YOUR TEST BEFORE YOU TEST!
Before your testers arrive, set aside some
time for everyone on your team involved in
the playtest to do a run-through. Testing
your playtest will ensure things run as
smoothly as possible, by ironing out the
kinks ahead of time and getting the whole
team on the same page.

Test your players’ experience from
the moment they enter your door. Visiting
playtesters should be greeted by someone
when they enter, or at least fi nd a sign-in
sheet. Every detail matters to create a
comfortable experience. You may have a
state-of-the-art usability lab and great
refreshments, but it won’t matter if the
building’s front door is locked! Is all of your
technology working? Check your speakers,
mouse, keyboard, and Internet. You don’t
want to have to call IT during a playtest
because you forgot to install a plug-in that
your game requires to run.

Brief all playtesting helpers on your
process. At Arkadium, the whole team
can get involved in playtesting. Everybody
involved in the process is briefed that day
on the goals of this playtest, what we hope
to learn, and the process we’re using

{3}
TAKE THE PRESSURE OFF The concept
of playtesting is still new to some game
developers; for the average human being, it is
completely foreign. Your playtesters may be ga

m
e

de
ve

lo
pe

r m
ag

az
in

e
0

4
6

Arkadium Games.

http://FindFocusGroups.com
http://Meetup.com

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
4

7

 047
C R O S S - P L AT F O R M _ V I N S T. J O H N

unsure of what to expect, and that uncertainty
can have a negative effect on your test
results. Make your playtesters comfortable
so they can focus on playing your game and
you’ll get much better feedback.

Be sure to tell your moderators to
segregate themselves from the game
during the test. We assure players, “We’re
testing the game, not you,” and that we are
hoping to fi nd areas where they struggle or
get confused, because we want to improve
the game. We don’t want our players to be
afraid of giving honest (negative) feedback,
so we always stress that we are observers,
not designers, and are here to listen to any
and all criticisms.

Our observers sit back and let the
playtester play the game with very little
interference. However, we fi nd it helpful
to encourage the playtester to think out
loud during their experience, to help us
understand their point of view.

Recording the test for the rest of
the game’s team to watch later is also
helpful. Because most people don’t play
video games in front of a note taker and
a video camera, we fi nd it’s important to
put a player’s mind at ease about these
elements and explain to them why they are
helpful. Players usually enter our offi ce
not knowing what to expect, but leave
understanding what a playtest is and why
we conduct them.

{4}
ROCK THE SURVEY You’ll almost always
want to ask your players some questions

after they’re done playing. Try to predict
these questions ahead of time and put
them in survey form so that you collect the
same set of data for every playtester. If you
have any spontaneous follow-up questions,
you can ask them when they’re done taking
the survey.

A carefully worded, highly focused
survey can make sharing your playtest
results with the team much easier. Focus
on questions that directly address the goals
of your playtest. Leading questions like
“Was the tutorial confusing?” are much
less helpful than questions that test a
player’s knowledge, like “Please describe
what the green button does in this game.”

If your playtesters are newcomers to
your game or genre, they are probably
unfamiliar with many of the terms and
conventions that your team may take
for granted—plan accordingly by using
plain, descriptive terms in your questions
whenever possible. Our surveys always
include some basic player profi le questions
like “What games have you been playing
in the last month?” to give us context. In
addition, every multiple-choice question
includes an optional space for written
explanation.

{5}
ANALYZE IN AGGREGATE After a
playtest, you’re going to have survey
results and notes from many different
playtesters and observers. Compile that
data quickly and share it with your team
in aggregate, without offering analysis or

drawing conclusions. Analyze the results
as a group, and start on the aggregate
data—your game designer may have seen
one player who thought the game was too
easy, but is that what everyone else saw?
If all the other players said the game was
diffi cult, then you know that “too easy” is
not a trend. If you like you can still return
to that playtester’s feedback afterward
and address it as a special case. Analyzing
your data in aggregate fi rst will guarantee
that your entire team benefi ts from the
full playtest.

Once you’ve got your data compiled,
don’t just forget about it! Identify the issues
that your playtest has brought to light
and prioritize your next steps. The data
you collect during your playtest—which
can include anything from the player’s
emotional state, to the number of failed
attempts to click a button—should always
help you draw conclusions and come away
with action items for your team. If your
data is inconclusive, consider revisiting the
structure of your playtest and survey for
next time.

These are the best practices we’ve
developed at Arkadium’s New York
headquarters, and they have helped us
implement recurring playtesting in a
consistent and reliable way. Of course,
we’re always improving our process, and
what works well for us might not suit the
needs of your studio. If you fi nd any of these
tips helpful, or have a different way of doing
things, let us know.

Vin St. John is the marketing manager at Arkadium.

Schedule your meeting now: www.havok.com/physics

Havok’s leading middleware technologies include:
Havok Vision Engine • Havok AI • Havok Animation • Havok Behavior • Havok Cloth • Havok Destruction • Havok Physics • Havok Script

Check out Havok’s new tech at GDC

The next generation of Havok Physics
is here...

Faster run-time performance. Reduced memory footprint. Built for next-gen platforms.

http://www.havok.com/physics

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

t 049
T O O L B OX _ N o e l L l o p i s

INTRO TO PARSE Parse is a scalable
server backend intended for mobile
platforms, although it also supports
desktop and web platforms. In order
to interact with the server, Parse
exposes a REST (Representational
State Transfer) API, which means you
can do everything just by doing HTTP
requests. But since sending raw HTTP
requests is cumbersome and ugly, they
provide native API wrappers for a lot of
platforms (and different languages). That
means that you can write client code by
simply calling functions in your native
language, and those functions will get
translated to HTTP requests and sent to
the server, which parses the response
and returns the data to your code. Parse
also provides a top-notch web-based
dashboard to manage all your apps,
change settings, view and edit data,
users, and so on. I can’t stress enough
how well done this dashboard is, and
how easily Parse lets you manage and
debug your applications.

The Parse backend offers four major
feature categories: Data, Social, Push,
and Cloud Code.

Parse Data is the core of Parse; it
lets you store data in a big database,
access it, and modify it from any device.
You can do the kind of queries you’ve
come to expect from a relational
database, and you can even browse and
query it through the web dashboard. The
client API takes care of presenting the
fi elds in each table as a dictionary, which
makes working with the database much

0
4

9

Parse is a scalable

t 049
T O O L B OX _ N o e l L l o p i s

Like many game developers out there, I went for many years without ever touching the dreaded server. I wrote shaders,
parallelized code on SPUs, and optimized cache misses, but I was lost as soon as the conversation turned to relational
databases. But as the times changed and I started making games on iOS, I was eventually forced to dive into the server
backend waters. I’m still not an expert, but I learned enough along the way to write simple server backends for my games
with MySQL and PHP.

Unfortunately, there’s a big difference between writing simple server backends and creating a robust, scalable backend
with advanced features that could support a top-selling iOS app. That’s where Parse comes in: It allows developers to
create a scalable server backend with very little server experience. Parse is so simple, I could have used it even before I
knew what a SELECT command did.

PARSE

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

simpler than through SQL statements. On iOS, all you would have
to do to update (or add) a new record to the GameState table is:

PFObject* gameState = [PFObject objectWit
hClassName:@”GameState”];
[gameState setObject:[NSNumber
numberWithInt:score] forKey:scoreKey];
[gameState setObject:player.name
forKey:playerNameKey];
[gameState setObject:[NSNumber
numberWithInt:player.actionPoints]
forKey:apKey];
[gameState save];

Their API documentation is very comprehensive and well done.
Between their samples and reference, it takes no time to fi gure out
how to use all the different functions.

Parse Social is mostly a fancy name for user management;
you can create users, verify their login, and manage their login
info (send confi rmation emails, links for forgotten passwords, and
all that boring bookkeeping that you would have to implement
otherwise). Anyone who’s had to implement that from scratch will
appreciate having it ready out of the box. You can also let your users
log in using their Facebook or Twitter information.

Logging in an existing user is as simple as:

[PFUser logInWithUsernameInBackground:m_
username.text password:m_pw.text
target:self selector:@selector(handleUser
Login:error:)];

Parse Push is used for delivering push notifi cations—handy
for games that use a turn-based multiplayer mode, an in-
game messaging or item-trading system, or anything else for
which players would expect to receive a notifi cation. Writing the

notifi cation server code
yourself isn’t too diffi cult,
but it’s not trivial either. You
can start with something like
EasyAPNS, which is open
source, but you would still
have to hook it to your game
code, and it only works for
Apple push notifi cations.
So having Parse Push from
the start would save a lot of
time, and because it’s not a
platform-specifi c solution,
your notifi cations can reach
users in different platforms.

Cloud Code is a slightly
different feature from the
others; it lets you actually
run code on Parse’s own
servers. This is crucial for a
lot of games where simply
storing and restoring data
isn’t enough. Most games

will at least want to do some kind of validation to make sure the
state they’re receiving from the client is valid. The main downside
of Cloud Code is that, for now, it only runs JavaScript code, which is
not everybody’s language of choice.

PLAYING WITH PARSE I’ve only used Parse for a couple
of prototypes for turn-based multiplayer games with push
notifi cations, so I can’t comment fi rsthand on how well it scales,

but an impressive number of apps and games use their service, so
it’s good to know that there are full products out there now using it.

From a development point of view, implementing Parse was
as easy as they make it sound. In a few hours I had user creation,
login, messaging, and push notifi cations working. That’s hard to
beat, especially when the alternatives to Parse would be rolling
your own from scratch (which, if you want to make it really
scalable, requires some serious server tech know-how), or using
Amazon Web Services or Google Apps. If you use the latter you
would get scalability, but you would still have to write a lot of the
server code.

PARSING PRICING Parse has three tiers: Basic, Pro, and
Enterprise. Basic is completely free as long as you don’t go over
some limits, so it’s great for development and prototyping; Pro
costs $199/month and has somewhat higher limits; and Enterprise
prices aren’t quoted, so you’ll need to contact them to fi nd
something that fi ts your needs.

This is the main (and unfortunately huge) downside of Parse:
Pricing seems reasonable for paid, small, “boutique” games and
apps, but costs can get completely out of hand very quickly for free
games with lots of users. A lot of mobile games these days are free
with in-app purchases, so they rely on having lots of users (and a
relatively small amount of revenue per user). These are the games
that need highly scalable backends, but this is where Parse’s
pricing becomes prohibitive.

For example, the free tier is limited to 1 million API requests
per month. It may sound like a lot initially, but it’s extremely
limited. That’s only about 33K API requests per day. If each user
does 50 API requests (and when counting every login and action in
the game, that’s a pretty conservative estimate), that means you
can only have about 600 daily active users. Beyond the 1 million API
requests, you’re going to be paying 7 cents per API request (yes,
you read that right). So each user beyond the 600 free ones is going
to cost you $3.50 per day in API requests alone!

The Pro tier isn’t much better: 15 million API requests per
month is about 10K users, which is very low for most moderately
successful free games. Beyond that limit, you’ll be paying 5 cents
per API request, which is extremely expensive. Push notifi cations
are equally limited and can also rack up huge bills, in addition to
the charges for API calls. All of that is on top of the $199/month
you’re paying for the Pro tier.

Another drawback of Parse is that prices can change at any
time, like they did last year, taking it from a very reasonable price
even for high-volume applications to its current rates. I would hate
to build my successful game around it, just to fi nd out a couple of
months after launch that rates have doubled. At that point you’re
also tied to their API and data model, so migrating to a different
service could be quite costly. I would feel better about signing up
with them if they guaranteed to maintain or reduce your rates after
you sign up.

NOT FOR PARSIMONIOUS DEVS Parse is absolutely fantastic
for prototyping, because you get so much from the start and you
can safely use their Basic tier for free. It will also help you to
structure your code in a way that works well with server requests.
Later in development, you can decide whether to leave it in, or
replace it with your own custom server code. Paid games with a
very small number of users can also benefi t from their Basic and
Pro tiers. If your game’s player base is in the medium-to-large
range, however, you’re probably better off looking for another
provider or doing it yourself. t

Noel Llopis is a game industry veteran turned indie-game developer. He avoids
violence in his games and instead relies on creativity and sharing. His latest
games include CASEY’S CONTRAPTIONS and FLOWER GARDEN.

0
5

0

050 t
T O O L B OX _ N o e l L l o p i s

storing and restoring data
isn’t enough. Most games

0
5

0

Parse
https://www.parse.com

C L I E N T A P I S

iOS and OS X (ObjC), Android (Java),
Windows Phone 8 and Windows 8 (.Net),
HTML5 (JavaScript)

P R I C E

Basic tier is free; Pro is $199/month,
Enterprise, call for pricing

P R O S

1] Easy to implement
2] Prototyping with Basic account is free
3] Great web dashboard

C O N S

1] Projects can quickly outgrow Basic
and Pro tiers

2] Cloud Code limited to JavaScript
3] Pricing rates subject to change

isn’t enough. Most games
will at least want to do some kind of validation to make sure the
state they’re receiving from the client is valid. The main downside

Pro tiers. If your game’s player base is in the medium-to-large
range, however, you’re probably better off looking for another
provider or doing it yourself. t

Noel Llopis is a game industry veteran turned indie-game developer. He avoids
violence in his games and instead relies on creativity and sharing. His latest

 FLOWER GARDEN.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e isn’t enough. Most games

will at least want to do some kind of validation to make sure the
state they’re receiving from the client is valid. The main downside
of Cloud Code is that, for now, it only runs JavaScript code, which is
not everybody’s language of choice.

PLAYING WITH PARSE I’ve only used Parse for a couple
of prototypes for turn-based multiplayer games with push
notifi cations, so I can’t comment fi rsthand on how well it scales,

provider or doing it yourself

Noel Llopis is a game industry veteran turned indie-game developer. He avoids
violence in his games and instead relies on creativity and sharing. His latest
games include CASEY’S CONTRAPTIONS andCASEY’S CONTRAPTIONS andCASEY’S CONTRAPTIONS FLOWER GARDEN and FLOWER GARDEN and

0
5

0

3] Pricing rates subject to change

https://www.parse.com

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
5

1

t 051
T O O L B OX _ Pa t r i c k M i l l e r

SETTING UP THE PVR 2 Until relatively recently, if you wanted
to capture video from a game console onto your PC, you’d need
to install an expansion card (the Blackmagic Intensity Pro, for
example) into one of your PC’s PCI-E slots and connect the console
to that card’s video input ports—which meant that laptop owners
were out of luck.

With a capture box like the Hauppauge PVR 2, however, you can
simply plug your console into the PVR 2’s HDMI-in port, plug the
PVR 2’s HDMI-out port to your TV, and plug your PC into the PVR 2’s
USB 2.0 port, meaning that you can pass the video signal through to
the TV and play on the TV while outputting video to your PC to record
it—no PCI-E slots or desktop PCs necessary.

RECORDING AND EDITING The recording process itself is pretty
easy: Just install the recording software, tweak your recording
parameters to your liking, and click Record in the PC software or
press the handy button on the PVR 2 box itself.

The PVR 2 can record video from sources with HDMI,
component, composite, or S-video outputs, though the HDMI
features don’t work on devices with HDCP DRM, so you can’t
capture PS3 video through HDMI. (A PS3 component video
cable is included.) You can choose from a variety of standard
broadcast resolutions (both interlaced and progressive-scan) and
framerates, though 1080p captures will only be recorded at 25 or
30 frames per second even if the source is 50 and 60 frames per
second, respectively.

t 051
T O O L B OX Pa t r i c k M i l l e r T O O L B OX _ Pa t r i c k M i l l e r T O O L B OX

framerates, though 1080p captures will only be recorded at 25 or
30 frames per second even if the source is 50 and 60 frames per
second, respectively.

Capturing and streaming video is a hot topic among many devs these days, and with good reason. Whether you’re a
scrappy indie responsible for putting together your own QA setup (and cutting your own trailers for PR purposes), or
you just want to fi nd out how to build your game’s online presence with Let’s Play videos on YouTube and channels
on live-streaming sites like Twitch.TV, it’s worth doing a little DIY research in the fi eld for yourself. In order to do that,
you’ll need a video capture kit.

HAUPPAUGE HD PVR 2
GAMING EDITION

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
5

2

052 t
T O O L B OX _ Pa t r i c k M i l l e r

Data box:
Hauppauge HD PVR 2
Gaming Edition
Hauppauge Computer Works, Inc.
www.hauppauge.com/site/products/
data_hdpvr2-gaming.html

P R I C E

$170

S Y S T E M R E Q U I R E M E N T S

2.0GHz multicore CPU, Microsoft
Windows (XP SP3, Vista, 7, or 8), display
with HDMI input, 512MB RAM, 220MB
free hard disk space, optical drive (for
software installation)

P R O S

1] Easy to confi gure, record, and edit
2] Supports HDMI passthrough
3] Package includes software and

necessary cables

C O N S

1] HDMI passthrough requires connected
PC to be on

2] Included software is very basic
3] PS3’s built-in DRM prevents user from

recording via HDMI

One of the PVR 2 Gaming Edition’s key features is its “no-delay HDMI passthrough,” which
allows you to play your game on a TV while sending video to your PC without using a separate
HDMI splitter. According to the Hauppauge tech team, the “no-delay” passthrough adds about 4
milliseconds to the video display time, which is fairly negligible but worth noting for acutely lag-
sensitive uses. Also, if you leave your console plugged into the PVR 2 and your PC isn’t on, you’ll
just get a black screen, which is annoying.

You can edit your footage with the included ArcSoft ShowBiz video editing software. ShowBiz is
limited, to say the least; you can add transitions and string clips together, but if you have anything
else, like iMovie or Adobe Premiere Elements, you’re better off using that. Note that the recording
software will save your recordings either as AVCHD (.TS and .M2TS) or MP4, so make sure your
intended video editor can handle the formats you’re trying to edit before you start capturing.

Also included in the software set is a streaming video app called StreamEez, which can output
to channels on Twitch.TV or Ustream. If you’re looking for a no-nonsense way to start streaming,
it’s not bad, but compared to dedicated third-party apps like XSplit and FFSplit, which allow you
to juggle multiple layouts and A/V inputs and use custom overlays, StreamEez is rather lacking.
Unfortunately, the PVR 2 doesn’t support any streaming apps besides StreamEez as of this writing.

GOTTA CAPTURE ‘EM ALL All in all, the PVR 2 is an easy way to start capturing your own game
footage, though it’s not without its shortcomings. Compared to its closest competitor, the Roxio
Game Capture HD Pro ($149), the PVR 2 is a bit more expensive and its software isn’t as good, but
its ability to downscale video on the fl y (so you can play at 1080p but record at a lower resolution)
is pretty handy. t

Patrick Miller is the editor of Game Developer magazine. Follow him on Twitter via @patthefl ip.

http://www.hauppauge.com/site/products/data_hdpvr2-gaming.html
http://www.hauppauge.com/site/products/data_hdpvr2-gaming.html

Wala AlhadadGil Weinstock

enroll now

earn

your aa, ba, bfa, ma, mfa or

m.arch accredited degree

engage

in continuing art education courses

explore

pre-college art experience programs

www.academyart.edu

800.544.2787 (u.S. Only) or 415.274.2200

79 new montgomery st, san francisco, ca 94105

Accredited member WASC, NASAD, CIDA (BFA-IAD, MFA-IAD), NAAB (M.ARCH)

Acting degree program is not available online.

Visit www.academyart.edu to learn about total costs, median student loan debt,

potential occupations and other information.

Study Online Or in
San FranciScO

acting*

advertising

animation & Visual effects

architecture

art education

art History

fashion

fine art

Game design

graphic Design

illustration

industrial Design

interior architecture & Design

Jewelry & metal arts

Landscape architecture

motion Pictures & television

multimedia communications

music Production & sound

Design for Visual media

Photography

Visual development

web Design & new media

http://WWW.ACADEMYART.EDU
http://www.academyart.edu

Simplygon is used by industry-leading developers including

AniPark, Avalanche Studios, Cryptic, CCP Games, Doobic Game

Studios, Epic Games, Funcom, Giant Interactive, IMC Games, Nexon,

Pearl Abyss, Piranha Games, Quantic Dream, RealU, RedGate Games,

Reloaded Studios, Joymax, Neowiz, XLGames, Wemade Entertainment.

Simplygon is the leading tool-chain middleware for

automatic optimization of 3D-game content and Level

of Detail. By replacing tedious and time-consuming

manual work, Simplygon offers the benefits of LODs

but without the drawbacks of increased production

time and development cost.

www.simplygon.com

http://www.simplygon.com

 ip 055
i n n e r p r o d u c t _ D a v e Wi l k i n s o n

Debug Doom by watching its top players at work

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
5

5

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

stuDying speeDrunners

Whether you’ve just written your first “Hello, World!” or you’ve been programming since the
punch-card days, you know that we all make mistakes as a necessary part of the learning process.
Sometimes we catch those mistakes in time, and other times those mistakes end up lingering
in the final shipped product, becoming part of the game whether we like it or not. In this article,
we’re going to dissect a few bugs found in Doom, id Software’s seminal first-person shooter—bugs
that would be very easy to miss if it weren’t for the devoted speedrunners who exploited them to
move significantly faster than its developers intended.

Speedrunning doom For the uninitiated: Speedrunners are players who specialize in playing through games as
quickly as possible. Naturally, they’re concerned with looking for any strategy that allows you to move faster, whether
they’re engine-wide exploits or specific paths through certain levels. We’re going to focus on a bug in Doom that is a
speedrunner’s dream: a simple glitch in the movement code that allows us to move much faster than intended.

This has broad implications. Moving faster means jumping higher and farther (you can’t jump in Doom, but a
faster speed still lets you cross wider gaps than normal—see Figure 1). Some levels intend you to go out of your
way to find a switch to raise a bridge, for instance. With a trick that lets you move faster, you might be able to

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

cross the gap without the platform, which means skipping much of
the level.

We will look at three movement bugs in particular:
• Strafe 40: Moving forward while also strafing in either

direction will allow you to move 28% faster.
• Strafe 50: Moving forward while also strafing in either

direction and also toggling a feature that interprets
turning as strafing allows you to move 41% faster.

• Wallrunning: Moving along a wall of a particular
orientation will move you at almost twice the normal
speed.

Go watch a few Doom speedruns (you can find a few at the Speed
Demos Archive: http://speeddemosarchive.com/Doom.html). Pay
careful attention to the direction the player tends to face. Most of the
time, the player is not running in the same direction they are facing,
but at a slight diagonal. Essentially, they are moving both forward
and sideways at the same time by pressing two movement keys at
once—in a modern first-person shooter, this would be like pressing
W and A simultaneously. In Doom, when you use both movement
keys while running, the game erroneously moves your character at
128% the normal speed. This is called the strafe 40 glitch.

Knee-Deep in the CoDe Let’s now investigate why these
particular bugs happen. Doom is written in C, which is a very
low-level programming language, meaning it is designed for
speed rather than programmer comfort. This was a very common
language for games in the ‘90s, since the language was designed

to allow you to write very optimized code and push the limits of the
technology of the time. With that in mind, I have pulled out relevant
pieces of the actual source (https://github.com/id-Software/Doom)
with very little changes to make the code more clear.

Turning our attention to the Doom source: There are several
functions that deal with moving the player. The gist of them is that
for each frame, the game decides how to move the player before it
draws the screen. The game looks at which keys are pressed, and
if the “walk forward” key is down, it will update the player’s position
to move them forward. It may then look at handling collisions and
projectiles, but we’re going to focus on the movement part.

In order to trigger the strafe 40 bug, all you need to do is move
forward and strafe at the same time. We can find out why this happens
in Listing 1—refer to the P_MovePlayer function. The cmd element
holds the distances to move per frame. cmd>forwardmove and
cmd>sidemove contain the distances to travel, either ahead of the
player or to the side of the player, respectively. It will set an on-ground
value to “true” if the player’s z position (their distance from the ground)
matches that of the floor the player is currently over. Therefore, it only
wants to move if the player is in contact with the ground.

Given that the player is on the ground, the code checks to see
if the player is due to move forward (cmd>forwardmove will
be non-zero) and then calls another piece of code that simply
repositions the player to reflect that movement. It does the same
thing for a strafe, except in a different direction.

From here, we can see the mistake. We can move forward or
strafe independently, and it would work as expected. However, if
we move forward and strafe, the player will thrust forward, and
then afterward, thrust sideways. From the perspective of the game,
these two movements are done at the same time, because both
are performed before the screen is drawn and the enemies react.
Therefore, the actual speed is given by the sum of the vectors; that
is, the length of the hypotenuse as illustrated in Figure 2.

Of course, there are many ways to repair this bug and handle
movement more correctly. One way would be to determine the
angle of the movement and always use the same distance instead
of positioning the player twice. Instead of moving in the player’s
direction and then moving again in another direction for the strafe,
simply calculate the movement angle (around 50 degrees for
walking and strafing), and P_Thrust only once in that direction.

Notice that the code does not account for which direction you are
strafing. This is because of a naive optimization: The distance (in the
code, this is the cmd>forwardmove * 2048) you give to P_Thrust
can be negative to move in the opposite direction. For the fix, you will
have to account for the direction in which you are strafing to get the
correct angle, but now you always give a positive distance.

Fixing StraFe 50 To understand how to exploit the strafe 50 bug,
we have to look at how it decides cmd>forwardmove and cmd
>sidemove. These values determine how many units the player will
travel per frame in each of those two directions. The flaw is that you
can artificially affect these values by having the game accidentally
count two different keys as movement during a single frame.

Basically, you tell it to move you to the right… twice, and it
diligently listens to you. For this, let’s look at the input handling
code and the function G_BuildTiccmd in Listing 2.

We can see the familiar cmd>forwardmove and cmd
>sidemove at the bottom; this chunk is the code that determines
those, and we’re going to explore how it translates the player’s
keypresses into in-game values.

In Doom, you can strafe one of two ways: Either you use a modifier
key that causes your “turn left” and “turn right” keys to change
function to “strafe left” and “strafe right” while it’s depressed, or you
assign dedicated strafe key for each direction, which works the same
way as the A or D keys on most modern games.

With that in mind, look at the code. By the “Section 1”
comment in Listing 2, we see that the game looks to see if that
strafe toggle is held. Depending on whether the toggle is held or
not, Doom either stores the cmd>angleturn, which tells the

0
5

6

056 f
i n n e r p r o d u c t _ D a v e Wi l k i n s o n

Figure 1: Speedrunners
can take advantage of
the movement speed
glitches to cross the

gap between these two
platforms (shown from

two different angles).

(LeFt) Figure 2: adding the vectors for the forward movement and side-stepping
movement illustrates the effect of the strafe 40 bug. (right) Figure 3: illustrating
the effect of the strafe 50 bug.

50
 u

/s

64
 u

/s

40 u/s

50
 u

/s

71
 u

/s

50 u/s

http://speeddemosarchive.com/Doom.html
https://github.com/id-Software/Doom

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
5

7

f 057
i n n e r p r o d u c t _ D a v e Wi l k i n s o n

LISTING 1 Dissecting the strafe 40 bug in the player movement code

void P_MovePlayer (player_t* player) {
 ticcmd_t* cmd;
 cmd = &player->cmd;

 // Turn the player
 player->mo->angle += (cmd->angleturn<<16);

 // Do not let the player control movement
 // if not onground.
 onground = (player->mo->z <= player->mo->floorz);

 // Move the player forward, if allowed
 if (cmd->forwardmove && onground)
 P_Thrust (player, player->mo->angle, cmd->forwardmove*2048);

 // Move the player sideways, if allowed
 if (cmd->sidemove && onground)
 P_Thrust (player, player->mo->angle-ANG90, cmd->sidemove*2048);
}

LISTING 2 The Doom code responsible for the strafe 50 bug

void G_BuildTiccmd (ticcmd_t* cmd) {
 boolean strafe;
 int speed;
 int forward;
 int side;

 // We are strafing if a strafe key is pressed
 strafe = gamekeydown[key_strafe];

 // Is the run key pressed?
 speed = gamekeydown[key_speed];

 // The distances we are moving are initially zero
 forward = side = 0;

 // Determine distances to move
 if (strafe) {
 // (Section 1)
 // If the strafe toggle is on, interpret moving left and right
 // as strafing left and right.
 if (gamekeydown[key_right]) // Strafe right
 side += sidemove[speed];
 if (gamekeydown[key_left]) // Strafe left
 side -= sidemove[speed];
 }
 else {
 if (gamekeydown[key_right]) // Move right
 cmd->angleturn -= angleturn[tspeed];
 if (gamekeydown[key_left]) // Move left
 cmd->angleturn += angleturn[tspeed];
 }

 if (gamekeydown[key_up]) // Move forward
 forward += forwardmove[speed];
 if (gamekeydown[key_down]) // Move backward
 forward -= forwardmove[speed];

 // (Section 2) Strafe right
 if (gamekeydown[key_straferight])
 side += sidemove[speed];

 // Strafe left
 if (gamekeydown[key_strafeleft])
 side -= sidemove[speed];

 // (Section 3) Cap speed
 if (side > forwardmove[speed])
 side = forwardmove[speed];
 else if (side < -forwardmove[speed])
 side = -forwardmove[speed];

 cmd->forwardmove += forward;
 cmd->sidemove += side;
}

P_MovePlayer function above to turn
the given degrees before drawing, or it
completely ignores the turning and instead
strafes by adding a distance to move
(affected by whether or not run is enabled)
to the variable side, which is initially zero.

So: We know that when we have the
strafe toggle on and we press the right
arrow key, it will handle that as a strafe
to the right and add some distance to the
variable side. Now take note of the “Section
2” comment in Listing 2: This code happens
independently of the strafe toggle. If you
also press the strafe right key, this code
will add even more distance to the current
value (Note: side+=sidemove[speed]
is the same as writing side=side+
sidemove[speed] in C). That means if
we press the dedicated strafe right key and
we also press right while the strafe toggle is
on, then we will effectively strafe twice!

Interestingly, the programmer doesn’t
seem very optimistic about the code; if
you look at the “Section 3” comment in
Listing 2, you’ll notice that the speed of
side movement is capped to the maximum
speed you can run forward. However,
since strafing was intended to be slower
than running forward at only 40 units
per second, this code incorrectly caps
the sideways strafe speed to 50 units
per second! Figure 3 shows how our
movement is now calculated. Since this
does not interfere with the strafe 40 bug we
investigated earlier, we just found a way to
make it more effective.

Even though this bug seems more
severe and tricky, it’s far easier to solve
than strafe 40—all you need to do is put
the code in Section 2 into the else block
after Section 1, such that the normal strafe
is only considered if strafe toggle is off.
Alternately, if you want to allow for strafe to
be pressed by the dedicated strafe key even
if strafe toggle is on, just fix the code in
Section 3 by capping the player’s sideways
movement speed to the proper maximum
strafe movement speed (40 units per
second). You will now not be able to do any
better than the original strafe 40.

FaSter than rocketS:
WaLLrunning If you thought the strafe
40 and strafe 50 bugs were handy for
speedrunners, this next one is even bigger:
When you encounter a wall of a particular
orientation, running against this wall
propels you to nearly twice the already-
quick strafe 50 speed.

In the last two sections, we have
looked at the code that handles input and
determining the player position. There is
nothing left to discover in this code that
would yield this bug, so we’ll need to look
elsewhere. Specifically, we must shift our
focus away from how a player moves, but
what stops them from moving.

In the real world, we know that an
object in motion stays in motion until it

All the best players
come here.

Scotland.
Famous for golf
and innovative
games development.

We’ve got quite a reputation for invention, innovation
and discovery. And it stretches way beyond Highland
Games, the bicycle and golf. We were the first to
award a degree in Computer Games Technology and
our pioneering games work ranges from the creation
of Grand Theft Auto to Bloons and Quarrel. The fact is,
Scotland is one of Europe’s top games development
locations. We have a growing hive of creative and
talented games developers and our universities are

developing new and converging technologies across
a range of platforms.

Above all, our people are dedicated, committed and
passionate for success. And this passion, combined
with our world-class academic institutions, outstanding
research and superb facilities make Scotland financially
irresistible. We can develop your products and help
shape your business. And that’s what makes Scotland
such a popular place to live, work and play.

To see what we can do for your business, visit www.sdi.co.uk/games

SCOTLAND. SUCCESS LIKES IT HERE.

http://www.sdi.co.uk/games

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
5

9

059 f
i n n e r p r o d u c t _ D a v e Wi l k i n s o n

Figure 4: Wallrunning lets
you survive the run through

this moat, which is much
faster than beating the level

in the intended manner.

interacts with another body. In the virtual world, we cannot always
exactly recreate this phenomenon, but we can simulate this idea by
making use of very simple collision-detection algorithms.

We start with a moving object with some sort of trajectory. In
the movement code above, we determined the new position of
the player, so the trajectory is simply the line drawn from the old
position to this new one. With this trajectory, all we must do is
check if this line intersects an object or a wall, which just requires
some basic algebraic geometry.

So what happens when the moving object hits a wall? It may
seem reasonable to say that the wall impedes your movement,
so you end at the intersection of your trajectory and the wall. You
stop dead, so to speak. However, an action game developer wants
the player to always feel like they are moving, and a dead stop
wouldn’t produce that effect, so the game needs to simulate some
momentum. But how do we want to model this? What happens
when you hit a wall at an angle?

In Doom, if you run into a wall at an angle, you don’t stop so
much as slide along it. The wall cannot contain all of the energy,
and so you keep a bit of your velocity and move along the wall
only coming to a stop as the result of friction. As you may be
able to gather, there are a lot of factors that determine how far
you slide and in which direction, while avoiding the proper, yet
computationally expensive physics calculation proves to be a
tricky problem.

Let us now review the code in Listing 3. The reasoning behind
this bug has been, within the speedrunning scene at least, a bit of a
mystery, so let’s figure out why this happens.

To put the prior code in perspective, Doom goes through two
stages before it renders. The first stage is the one we have reviewed
for the strafing bugs. In this stage, Doom determines the new
positions of all objects, including the player. The next stage will then
review all of these trajectories and determine final placements of
objects due to collisions. This is the stage we are concerned with now.

Check out the P_XYMovement function in Listing 3.
This piece of code handles the update of the player’s x and y
coordinates, which correspond to the player’s position with
respect to the floor. The remaining z coordinate, handled
elsewhere, is the player’s height. The function computes the
momentum of the player and uses this to see if the player will
collide with walls or objects using the P_TryMove function. As
you can see, if the player cannot move to the given position, it
will call P_SlideMove, which will move the player to a position
along the wall given their current momentum.

Can you spot the mistake? Hint: It has to do with the purpose of
the loop itself. It seems that the programmer was very pessimistic
about the collision detection code, and decided that when the
player is moving very quickly, the collision detection function
P_TryMove should be called twice: Once at half the distance, and
then again for the rest. The idea is that this improves correctness
since you will be less likely to skip over smaller triggers. (Ironically,
this attempt to avoid one bug caused another one.)

This is a problem because the “xmove” and “ymove” variables
are divided in half to ensure the loop runs twice, however, the P_
SlideMove function receives the untouched original momentum
structure in “mo.” Therefore, when running full speed (strafe 40)

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
6

0

060 f
i n n e r p r o d u c t _ D a v e Wi l k i n s o n

against a wall where both collision checks
will fail, P_SlideMove is called twice
with equal momentum. Essentially, this
means you are moving twice.

This can actually break the game
quite well. In Figure 4, we see a level that
contains a large amount of toxic blood. You
can think of the level as a castle surrounded
by a toxic moat. The red waste in this
screenshot causes you a lot of damage,
because it’s supposed to keep you from
skipping the castle that comprises most
of the level. However, wallrunning allows
the player to move so quickly that they can
reach the other end with just enough health
to survive to the exit. They essentially bypass
the entire level as it was intended.

There is more strangeness in play here;
it just so happens that if the player and
the exit were reversed in this level, the bug
would not trigger. That’s because this bug
only occurs when the player is moving in two
of the four cardinal directions. Take a look
at the code and see if you can spot why—
again, it is all about that if statement in the
loop. That if statement only checks to see if
the momentum is greater than half of the
maximum, so it will only call P_TryMove
and P_SlideMove twice when moving
quickly either north or east, since the
other directions would be represented by a
negative value. In the level shown in Figure
4, the bug worked because the player was
moving north to the exit for the entire length
of the toxic moat.

We could all see ourselves making this
kind of mistake, and would probably never
imagine that it would shatter world record
times on certain levels. All you need to do
to fix this is to either give P_SlideMove the
correct momentum, or ensure that it is
never called twice.

Hey, not too rougH We should not
dwell on these failures; as you can see,
it was some of the best programmers in
the biz who made these mistakes. All of
us are capable of writing code and only
considering one case at a time (“Does
moving forward work? Good. Does
moving sideways work? Awesome.”),
and never considering somebody will
mash all of the keys at once. And on the
bright side, sometimes, our bugs make a
speedrunner’s day! ip

Dave Wilkinson, commonly known as wilkie,
is a systems researcher who seems to
break more code than he writes. In his free
time, he runs the open-source game coding
competition (http://osgcc.org) to introduce
game development to students.

LISTING 3 Analyzing the Doom code responsible for determining
object placement

void P_XYMovement (mobj_t* mo) {
 int xmove;
 int ymove;

 // Cap movement in all directions
 if (mo->momx > MAXMOVE)
 mo->momx = MAXMOVE;
 else if (mo->momx < -MAXMOVE)
 mo->momx = -MAXMOVE;

 if (mo->momy > MAXMOVE)
 mo->momy = MAXMOVE;
 else if (mo->momy < -MAXMOVE)
 mo->momy = -MAXMOVE;

 xmove = mo->momx;
 ymove = mo->momy;

 do {
 // Divide fast movements into two steps
 if (xmove > MAXMOVE/2 || ymove > MAXMOVE/2) {
 ptryx = mo->x + xmove/2;
 ptryy = mo->y + ymove/2;
 xmove /= 2;
 ymove /= 2;
 }
 else {
 ptryx = mo->x + xmove;
 ptryy = mo->y + ymove;
 xmove = ymove = 0;
 }

 if (!P_TryMove (mo, ptryx, ptryy)) {
 // We collided with a wall, slide against it
 P_SlideMove (mo);
 }
 } while (xmove > 0 || ymove > 0);
}
 else {
 if (gamekeydown[key_right]) // Move right
 cmd->angleturn -= angleturn[tspeed];
 if (gamekeydown[key_left]) // Move left
 cmd->angleturn += angleturn[tspeed];
 }

 if (gamekeydown[key_up]) // Move forward
 forward += forwardmove[speed];
 if (gamekeydown[key_down]) // Move backward
 forward -= forwardmove[speed];

 // (Section 2) Strafe right
 if (gamekeydown[key_straferight])
 side += sidemove[speed];

 // Strafe left
 if (gamekeydown[key_strafeleft])
 side -= sidemove[speed];

 // (Section 3) Cap speed
 if (side > forwardmove[speed])
 side = forwardmove[speed];
 else if (side < -forwardmove[speed])
 side = -forwardmove[speed];

 cmd->forwardmove += forward;
 cmd->sidemove += side;
}

http://osgcc.org

http://GAMECAREERGUIDE.COM
http://GAMECAREERGUIDE.COM
http://GDCONF.COM
http://GAMASUTRA.COM/JOBS

PROVE ITAre you awesome enough?

Find us at GDC

www.ccpgames.com/jobs

With offices in

Atlanta, Silicon Valley, Reykjavik,

Newcastle, and Shanghai

©
2

0
12

 C
C

P
 h

f.

http://www.ccpgames.com/jobs

®

©2013 Blizzard Entertainment, Inc. All rights reserved. World of Warcaft, Diablo, StarCraft and Blizzard Entertainment

are trademarks or registered trademarks of Blizzard Entertainment, Inc., in the US and/or other countries.

We are actively recruiting a new age of visionaries for key positions spanning a variety of skill levels

across our game development and Battle.net teams.

Software engineerS:

Server | automation | toolS | r&D | ConSole | riSk SyStemS

SeCurity | Java | engine | uSer interfaCe | gameplay | graphiCS

3D environment artiStS | 3D CharaCter artiStS | teChniCal artiStS

game DeSignerS | uSer interfaCe DeSignerS | uSer experienCe DeSignerS

JobS.blizzarD.Com

ur.blizzarD.Com

follow us on twitter: @blizzardcareers

®

®
®

http://Battle.net
http://JOBS.BLIZZARD.COM
http://UR.BLIZZARD.COM

IS HIRING AT GDC
Want to join the studio behind

consecutive blockbuster hits?

Email us at jobs@infinityward.com

to meet up at the conference.

www.infinityward.com/jobs

mailto:JOBS@INFINITYWARD.COM
http://WWW.INFINITYWARD.COM/JOBS

Visit: about.king.com/jobs

King.com is the 2nd largest games developer on Facebook, with an
audience of over 50 million. Now taking mobile by storm!

We’re looking for fun, talented people to join our European games
studio teams.

Roles:
Business Intelligence
Business Management
Developers
Graphics/Game Artists
Product Management

Locations:
London
Stockholm
Malmö
Bucharest

We have other great roles in Europe & San Francisco.
Full relocation can be provided. Talk to us at GDC 2013 in
the Career Pavilion or apply online.

http://King.com
http://about.king.com/jobs

http://SLEDGEHAMMERGAMES.COM

We are ArenaNet, creators of Guild Wars 2®, which has sold over 3 million units since
launch! We make online worlds and love shaking up the industry and we’re looking for
kindred spirits with drive, talent, and passion.

Visit our job openings page at www.Arena.net. We may be searching for you.

We’re always searching for new talent.

©2010–2013 ArenaNet, LLC and NC Interactive, Inc. All rights reserved. Guild Wars, Guild Wars 2, ArenaNet, NCSOFT, the Interlocking NC Logo, and all
associated logos and designs are trademarks or registered trademarks of NCSOFT Corporation. All other trademarks are the property of their respective owners.

http://www.Arena.net

http://www.techexcel.com

0
6

9
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e
0

6
9

0
6

9
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

As an artist, one of the most amazing things for me in the current tech generation is the
concept of shaders. No longer do we describe surfaces merely by fl at images that already
incorporated the majority of the lighting. Our materials are vastly richer, with per-pixel
lighting that’s much more dynamic. Shaders have the biggest impact on the visual defi nition
of the current generation of real-time graphics.

But the programmable pixel and vertex pipelines are capable of much more than just
calculating normal map and specular contributions. The wide array of things you can do with a
pixel is now at the fi ngertips of a much broader audience, including the visual content creators
themselves, who fi nally have a chance to become the architects of their own tech. From
animated wet surfaces in the MODERN WARFARE ship level to heightmap-based vertex and up-
aligned blending popularized by UNCHARTED 2, shaders have further driven the visual splendor
that is this generation of games, albeit at a price: We needed more textures and VRAM to
defi ne a single surface, and more people to make the assets that made the games look good.

When I come back to the games that I used to enjoy fi ve or 10 years ago, I’m amazed at
just how crude the technology was back then: the resolutions, the poly counts, the effects.
Yet somehow I and millions of other people who played those games managed to enjoy them
on all levels, including visually, and I think it’s because people are dazzled by beauty, not just
cutting-edge tech.

The visual world around us is infi nitely complex, and we can never have enough resources to recreate
every single process that shapes the world around us. (The image by Zhu Haibu on page 70 illustrates
this point rather vividly.) Trying to distill what makes reality feel real and feel beautiful is key in balancing
the quality of your art with the amount of time required to produce it.

This logic and small personal fi ndings in my own work led me closer to the concept of procedural
materials. For example, I kept noticing that you can get away with plywood, plastic, and metal having the
same base diffuse texture as long as you sell their specular properties or wear and tear correctly. Or
tileable textures diffuse at times could be just noise, if it wasn’t for the AO on top.

 pp 069
P I X E L P U S H E R _ A n d r e w M a x i m o v

DITCHING
DIFFUSE MAPS

 PRACTICAL IMPLEMENTATION OF PROCEDURAL
TEXTURING ON TODAY’S REAL-TIME TECH

069

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
7

0

070 pp
P I X E L P U S H E R _ A n d r e w M a x i m o v

Somewhere along that time I also stumbled
upon a shader implementation of an
interesting piece of old tech: gradient
mapping. All it does is take a grayscale
heightmap you provide, and paint it with
colors you assign to different pixel heights
(brightness values).

Figure 1: Gradient mapping.

For example, in Figure 1, all pixels with
brightness from 0.0 to 0.33 will gradually
transition from red to green, 0.33 to 0.66
will transition from green to blue, and
blue eventually to yellow. You’ve seen that
technology used in LEFT 4 DEAD 2 by Valve,
where it allows them to pack numbers
of blood splatter and detail onto a single
zombie texture, as well as to variably color
them at runtime.

Figure 2: LEFT 4 DEAD 2.

PROCEDURAL ENVIRONMENT I really
wanted to push this concept in a personal
project, in order to see how far you can
go with “procedural” materials even on
current-day tech, so I made a demo clip
called “The Desert” (see Figure 2).

Not a single surface here uses a
dedicated RGB diffuse texture. In fact,
I wanted to take it as far as manually
inputting only one texture per one type
of surface. (There were some other little
textures buried in the shader, but they
were just small grayscale masks stacked
together.) The main idea in this procedural
approach is separating surface volume
from surface detail (see Figure 3).

Figure 3: Breaking down the idea behind procedural
materials.

Generally, rocks in the same area will have
a similar geological origin, thus requiring
a similar diffuse rock texture component.
All objects in the same environment
usually accumulate identical types of dirt.
Objects made from the same materials
will generally wear, tear, and decay
similarly. Objects in a damp environment
will start growing a similar type of moss.
What differs is the diffuse texture pattern
and how this dirt, moss, wear, and tear
accumulate on a surface, which is governed
by a heightmap.

OPTIMIZING STORAGE OF HEIGHTMAPS
Now whether we import our heightmaps as
an alpha channel in a DXT5 texture, or use
a separate grayscale texture, we’ll still end
up using another 128kb for a 512x map. We
can stack three different heightmaps into
a single DXT1 texture and save about 43kb,
but there is a better way (see Figure 4).

Figure 4: Comparing memory usage between the two
approaches.

Normal maps’ blue channel hardly stores
any vital information, so why don’t we put it

to a meaningful use? You don’t even need to
recreate the blue channel in-shader; merely
replacing it with a neutral normal color works
fi ne in most situations. All in all, you’ll spend
two additional pixel shader instructions, which
is a puny price to pay for cutting the memory
footprint in half. This is why further on in this
article you’re going to see normal maps and
heightmaps listed as one single entity.

DAMAGE Now imagine you wanted to
vertex blend damage to your material, as a
lot of games do this day: Figure 5 explains
how we can do that.

Figure 5: Comparing memory usage for damaged
surfaces.

With this tech, you get your damage smartly
blended only where it could exist in real life:
on the most protruding parts of your surface
volume. Now you use half the memory, and
you get an opportunity to dynamically tile and
tweak the intensity and available range of
your damage, which will always be taken into
account in every kind of heightmap-based
blending further on. And you can change it
for every single material instance, creating
exactly the type of damage you need.

IIM
A

G
E:

 Z
H

U
 H

A
IB

O

0
7

1

 pp 071
P I X E L P U S H E R _ A n d r e w M a x i m o v

Figure 2: Still taken from “The Desert.”
http://www.youtube.com/watch?v=QtSbrIupviQ&feature=player_embedded

 Figure 8: Sample gradient map. Procedural damage demonstration.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
7

1

MULTITUDE Now imagine that we need
a bunch of similar surfaces for our level
(as we usually do): Figure 6 compares
the memory usage between the two
approaches. We save almost 50% with a
procedural approach, and if we also did a
damage pass for each of those textures,
we’d be looking at 488kb vs. 1576kb.

Figure 6: Comparing memory usage with multiple
similar surfaces.

Now, just how many different-but-similar
surfaces could we produce if we just keep

swapping the combination normal and
heightmap? Almost all of them, as it turns
out (see Figure 7).

Figure 7: Generating different materials by changing
just one texture.

How is that possible? In the beginning, we
said that the surface volume and diffuse
texture patterns were an integral part of
any material, but that doesn’t mean they
have to be separate entities. You don’t have
to strictly feed heightmaps to gradient
mapping. In fact, feel free to forget the term

heightmap, because from now on it’ll be a
part of a broader term: gradient map.

GRADIENT MAP Gradient map is your main
diffuse component, so you make it work as
such: Blend your depth info with AO and
every single texture pattern you might need,
and paint in all the details and accents, or
tweak surface values just like you would
with a regular texture. In fact, I created a
preview system in Photoshop that allows you
to see the fi nal material with all the normal
and spec contributions right inside your
Photoshop canvas immediately transforming
as you paint your gradient map on it.

The process is even easier if you’re
working with heavily photo-sourced
textures, because you can generate a
normal map and a heightmap from your
diffuse, then blend your grayscale diffuse
with your heightmap to create a gradient
map, thus keeping both your surface
depth and surface detail info. If you think

http://www.youtube.com/watch?v=QtSbrIupviQ&feature=player_embedded

Are you willing to have fun in the workplace and
change the future of the gaming industry in the world?

hr@peakgames.net

PEAK!
REACH THE
LET YOUR CAREER

COME AND JOIN PEAK GAMES!

Talk to us at

www.peakgames.net

mailto:hr@peakgames.net
http://www.peakgames.net

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
7

3

 pp 073
P I X E L P U S H E R _ A n d r e w M a x i m o v

about surface detail, it is still depth, just
on a much smaller scale, so the gradient
mapping function processes it greatly (see
Figure 8). Think of it as evaporating water
from juice or soup to create a concentrate.
Colors are water that we can spruce back
in at runtime.

The gradient map works as well as
the heightmap for blending, so no worries
here. You can even use it as an opacity
mask (for foliage, for example), as long
as you make sure that your background is
completely black, and your gradient has its
level pushed up so it doesn’t have any black
pixels. Just clip the opacity mask from
black pixels and that’s it.

Another amazing fact is that gradient
mapping works perfectly well even if you
use just your usual diffuse turned grayscale.
Figure 9 shows a comparison of a material

from Epic, and the same material only
with the diffuse map desaturated and put
through the gradient mapping function. See
for yourself: Do you think this difference
really warrants a whole diffuse texture for
this and every similar object?

The silver lining here is that you can
even use your diffuse textures as gradient
maps without any modifi cation, signifi cantly
trimming your GM production speed.

PROCEDURAL COLORS IN TILEABLE
TEXTURES VS. UNIQUELY MAPPED
TEXTURES As an artist, I was deeply
concerned with how this approach would
affect our color palette, but to my surprise,
four colors for a gradient map are more
than enough! I even had to create a lighter
version of the gradient mapping function
that just blends between two colors and

has no texture overlay. I’ve obviously used
it mostly for environment textures, which
are generally tiled, thus requiring certain
uniformity from their colors to make the
tiling seem unapparent, and that actually
works greatly to the advantage of gradient
mapping. If you’re working with tiled
textures a lot, you defi nitely want to try this
out. (And if you’re not working with tiling
textures a lot, how the heck do your games
even work?)

Also important to note: From an artistic
standpoint, good lighting, fog, and post-
processing greatly infl uence colors, usually
creating the broadest and most important
strokes. Your scene hardly ever is supposed
to be about every little piece screaming for
attention with a different color. Uniformity is
good in a lot of ways, and it is defi nitely not
something to be fi ghting with a lot of the time.

Examples of procedural
coloring.

Figure 9: Comparing diffuse
texture to two-point gradient-
mapped grayscale version.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
74

074 pp
P I X E L P U S H E R _ A n d r e w M a x i m o v

Now you don’t have to take my word for
what the textures should look like. To make
it fair, let’s analyze a real-life example and
see what makes a high-quality modern-day
texture (see Figure 10).

These textures are made in the good,
old RGB-diffuse-map fashion, yet you
can see that all that grunge and damage
is really just an additional layer on top
of the base textures. If you strip that
away, the textures have a of lot of shades
of pretty similar colors; it’s the overall
color tone and the brightness of each
pixel that describes them. I hope that
previous examples have convinced you
that “procedural” materials could do all
of that (red brick/white brick, dirty/clean,
damaged) in a matter of a few button
clicks, saving you a lot of production time
and memory as a bonus.

By now you probably think “Okay, what
about uniquely mapped stuff?!” Do not
despair: Valve has used it to create vast
varieties of undead hordes for LEFT 4
DEAD 2, and so can you.

You probably won’t want to gradient
map your main characters, but there’s
still a lot of mileage you can get out of
it. (Read all about it here: http://www.
valvesoftware.com/publications/2010/
GDC10_ShaderTechniquesL4D2.pdf)

The main hurdle is color variety; if
you need a lot of color in a single texture,
gradient mapping probably won’t suit your
needs. But hey, you can choose between
gradient mapping and diffuse mapping
and get the biggest bang for your buck.

RELINQUISHING CONTROL VS.
UNEXPECTED VARIETY Another tricky
thing for me as an artist was fear of losing
complete and utter control. Now I’m the
fi rst guy to be plain anal about every
little piece of my artwork; I’ll be carefully
planting old pieces of chewing gum and
cigarette butts on my textures in places
where most people won’t even bother. Yet
throughout my career, I have constantly
had to teach myself to choose my
battles wisely.

I don’t believe in things existing for
their own sake. Anything is only as good as
it performs its purpose, and the purpose
of details is to be suffi cient enough not to
break the illusion of the imposed reality, as
much as beginning artists think detail is all
there is. I was and probably still am a guy
who loves his details, yet I had to admit that
most players will never notice a difference
between gradient mapping and diffuse
mapping, just like all the professional artists
whom I’ve shown this environment to.

Only further down the road did I notice
just how much fl exibility I could get from this
system. Plants, rock, bark—it’s just a matter
of swapping the only texture and tweaking
the colors, diffuse patterns, damage, and
specular values. One moment you’re using
this texture as an orange canyon wall, and
the next moment that texture is already
blue and is a part of a cave. Your bark is
brown, but just turn it green, tile it more,
and you have a vine texture. Need more cold
color in your shadows? Just make them
appear in the cavities of your surfaces to
amplify the effect. Want it dirty? Just push
a button and determine how much. Mossy
or sandy, it’s all just a matter of a button
push. Procedural damage was another
unexpectedly awesome thing, since I could
reuse a single asset with different damage
tiling and intensity and create a whole lot
more variety than I could ever imagine doing
the old way. I could even paint my cracks
green and invert their intensity to create an
illusion of vines overgrowing assets further
in the distance.

As an artist I’ve come to love this
workfl ow. I can’t imagine not being able
to tweak any object’s color, diffuse noise
scale or dirt at my slightest whim. It’s
like working with bigger LEGO pieces.
Instead of modeling every part of our
levels individually, we can create a set of
modular meshes to work with, so why on
Earth shouldn’t we do it with our materials
and textures?

PROCESSING POWER VS. MEMORY
CONSUMPTION While “procedural” texturing
technology frees up a whole lot of memory,
it also requires additional processing power.
And as always with software optimization,
it’s a question of what you’ve got to spare.

The PS3 has just 256MB of VRAM, and
it shows: Even the most gorgeous games
sometimes put blurry textures right in
your face. Notice the dramatic texeleration
difference in characters and the background
truck in this The Last of Us screenshot. Yet
the PS3 has eight SPUs that technically
could be used to alleviate the issue by
implementing gradient-mapping shaders,
which would cut the diffuse texture footprint
in half or even by 3/4, which means we could
selectively increase texeleration on some
surfaces. The Xbox 360 has two SPUs and a
combined RAM/VRAM module, yet it’s still
half the amount of memory of an iPad.

Figure 10: Textures
from Uncharted 3 by
Melissa Altobello.

Viewport screenshot
of a LEFT 4 DEAD 2
character.

http://www.valvesoftware.com/publications/2010/GDC10_ShaderTechniquesL4D2.pdf
http://www.valvesoftware.com/publications/2010/GDC10_ShaderTechniquesL4D2.pdf
http://www.valvesoftware.com/publications/2010/GDC10_ShaderTechniquesL4D2.pdf

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
7

5

 pp 075
P I X E L P U S H E R _ A n d r e w M a x i m o v

With the desert environment, I didn’t
use diffuse textures at all, just a couple of
masks that are insignifi cant in terms of the
whole level’s memory footprint—so it would
be fairly accurate to say that I cut my texture
memory expenses in half by relying on this
technology. It’s also worth noting that to
create damage, I use in-shader normal map
generation from a grayscale mask, which
is a somewhat pricey operation (though
there are plenty of workarounds). Yet on a
modern-day PC, the environment you’ve
seen has no trouble doing 60+ FPS.

According to UDK’s custom node
instruction calculations, it would take us 13
instructions to replace a diffuse map with a
gradient map. I have fully functional shaders
that at 67 instructions provide full diffuse,
specular, gloss, masked opacity, and normal
functionality with only one texture sampled,
where the most basic classical analogs
clock at around 50 with three textures and
zero in-shader fl exibility. The most complex
version of the “procedural” shader is 158
instructions, and features vertex-paintable,
heightmap-based sand blending, as well
as two types of procedural “smart” damage
generation that are also both vertex-
paintable. These instruction counts are at
the very least comparable to the instruction

counts of Unreal Engine games materials
with similar functionality.

PRODUCTION COSTS When it comes
to production costs, there aren’t any
downsides to the procedural materials
approach: You’ll save a lot of production
time, and subsequently, a ton of money. If
I had to create every single diffuse map by
hand, I can assure you that the environment
you’ve seen would’ve been much smaller or
taken more time to produce.

It’s funny how when I explained this to
a more business-savvy person, the fi rst
question I got was: “So how can many
people can you replace?” This is defi nitely
not about replacing people; it’s about how
much more and how much faster you can
produce. There is always a lack of time in
our industry, and having a chance to free
some of it up for more important things is
an amazing opportunity that yields better
games and subsequently more profi t.

ONLY THE BEGINNING For me, there’s
no doubt that diffuse textures simply aren’t
as indispensable as we thought. Gradient
mapping carries enough information to make
your brain perceive surfaces as completely
believable, and that’s all there is to it. So if

there’s somewhere we can trim fat, it’s in the
diffuse texture. We can cut the workload and
reduce the technical constraints, all without
sacrifi cing visual quality.

If we as an industry want to keep moving
forward, we should not only advance the
quality of the product we produce, but
also the quality of the production process
itself. The industry slowly moves toward
becoming more “procedural”: We switched
from animating dudes being blown away by
a shotgun to simulating it; we have specifi c
tools to build trees, roads, terrain, or LoDs;
we no longer model every single piece of
our levels, but rather create a set of highly
modular LEGO-like pieces to build our
levels with; gameplay scripting in UDK is
now visual node-based editing—no more
writing code! All of this saved our industry
years of man-hours and millions of dollars
in production costs. And I believe that this
is something we should be doing with
materials. Give our artists bigger LEGO
pieces so they can dedicate themselves to
the bigger picture with no real loss in detail.
I would love to see next-gen engine creators
take that into account.

Technology is meant to be a tool to
achieve artistic results, so instead of
making us try to keep up with the crazy
amount of fi delity the next generation
is about to bring, let’s make it help us
concentrate on adding details and creating
real beauty where it would matter most. pp

Andrew Maximov is a senior environment artist
based in Montreal. His credits include ORDER OF
WAR, WORLD OF TANKS, NATURAL SELECTION II,
and MODERN COMBAT 4. Contact him at Andrew@
ArtIsAVerb.info.

do it yourself

I’ve prepared a package with all kinds of procedural materials for you to check out, as well as a
couple of example textures and meshes. There’s also a .PSD that makes for very smooth gradient
map production, as it allows you to preview your gradient mapping, normal, specular, damage,
and diffuse pattern infl uence right in Photoshop! I’ve made a little video that will hopefully make
things more visual for you [YouTube link]. You can grab the materials package here:

http://www.artisaverb.info/Desert/ProcMat_Demo.zip
http://www.youtube.com/v/a4TcnfX5c3Y?version=3&hl=en_US&rel=0

THE LAST OF US.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

http://www.artisaverb.info/Desert/ProcMat_Demo.zip
http://www.youtube.com/v/a4TcnfX5c3Y?version=3&hl=en_US&rel=0

http://gamechoiceawards.com

http://ADCONF.COM

078 d
D E S I G N O F T H E T I M E S _ J a s o n Va n d e n B e r g h e

V

PLAYER-ACTING
I’ve been looking into psychology and its applications in
game design over the past few years. It has been fun, and
it has improved my design skills signifi cantly, but when
I bring it up, people ask me this question so often that I
decided a few months ago that I needed to answer it once
and for all.

The question: “But, what’s it good for?”
Sometimes, the people asking this question are actually
curious. More often, the question is asked in a tone of
voice that I’ve come to call “interventionary”—a mix of “I
hope this doesn’t insult you, but…” and “You really need
to get over this fairy-tale stuff.”

For a long time, the inanity of that question really bugged me.
Why wouldn’t we want to understand a player’s motivation? Isn’t it
obvious? Then, about six months ago, I decided to actually answer
it for myself, and suddenly, the question didn’t seem so stupid.

Think about it for a second: Why is understanding human
psychology so deeply essential to game design? Asking myself
that question was pretty intimidating. We can talk in vague
terms about better player metrics and better playtesting and
better target player demographics, but are these things really
essential? As it turns out, the answer is “No, they’re not.” After
all, people designed great games long before anyone ever
worried about player metrics.

So what is essential about connecting psychology to game
design? After a month or two of brain-wracking, I managed to

fi nd my answer. It is this: Psychological models are the best
tools we have for showing game developers their empathy blind
spots. Those who learn to overcome these blind spots will, slowly
but surely, become better game developers.

I have a technique for doing this, something I call “player-
acting” (thanks to Mike Capps for more-bettering the name). It’s
straightforward in concept: Find your blind spots, and then learn
to enjoy the games that are loved by people with motivations in
your blind spots.

Let’s break this down.

WHAT IS AN EMPATHY BLIND SPOT? Pick a personality test.
A lot of people like the Myers-Briggs. I’ve recently become a fan of
the Big Five. Really, it’s almost irrelevant which theory you choose;
what matters is that it’s substantial. Pick something that’s backed
by long years of application, or by lots of scientists. Don’t use that
personality test you saw in the sidebar ad on that one website you
surf. Don’t use your colleague’s pet theory. That way lies madness.

Whatever test you pick, take it. Then, take your results and
reverse them.

Generally, personality tests rate you on a series of spectrums.
The Big Five, for example, will give you scores in facets like
“Adventurousness” and “Cautiousness,” where the Myers-Briggs
will score you on things like “Introvert/Extrovert.” So, if you scored
a high score in Adventurousness, you would reverse that score
(giving you something they call “Desire for Routine”). If you scored
Extrovert, you would reverse that to Introvert.

HOW TO CHECK YOUR DESIGN BLIND SPOTS

J a s o n Va n d e n B e r g h eJ a s o n Va n d e n B e r g h e

0
7

8
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e
0

7
8

NHL 13.

0
7

9
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

ILLUSTRATION: JUAN RAMIREZ

http://focalpress.com

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
8

1

d 081
D E S I G N O F T H E T I M E S _ J a s o n Va n d e n B e r g h e

The behaviors described by those reversed scores are your
empathy blind spots: human behavior that you will have to work the
hardest to understand.

Okay, cool! We know where our blind spots are. Great! But how
do we convert that knowledge into better design skills?

WHY YOU LIKE WHAT YOU LIKE In order to make sense of my
argument here, I need to fi rst establish this fact: Over the past few
years, research fi ndings have emerged that show that personality
tests like these can predict your game preferences with pretty
reasonable accuracy.

What this means is that if you want to understand why people
like a particular gameplay genre or mechanic, their motivation
profi le is an excellent source for that understanding. This idea
is built into this entire article, but it isn’t something that every
designer takes as granted at this point. (Yet.) If this is challenging
for you, I encourage you to take a look at Nick Yee’s Daedalus
Project, my own work on the Five Domains of Play, and the
research coming out of academia on this topic.

MAYBE... ASK? One approach to curing your empathy blind spots
is to fi nd people who have the personality traits you lack, and
interview them. This method may sound basic, but it works. It does
require a lot of listening, but you probably need practice in that
anyway, and this approach is especially fruitful when attempting to
overcome the initial “Why in the hell would anyone ever behave like
that?” question that designers so often ask themselves.

For example, if you are an introvert, go fi nd an extrovert, and fi nd
out what it is about being around other people that gets them charged.

If you can’t wrap your brain around the idea of spending actual
money on a free-to-play game, go fi nd someone for whom that is
not the case and ask them (with sincerity) what positive value they
are getting from that behavior.

If you can’t conceive that anyone would want to skip every piece
of backstory your game presents, then fi nd someone who does
that, and talk to them until you uncover the positive value that they
receive from their behavior.

Now, while this “just ask them” approach can get you a
certain distance, does it actually make you a better designer?
My experience is “not really.” That moment where you go “Huh!
Well, I guess that makes sense,” is easily forgotten, and, more
importantly, it’s not attached to a personal gameplay experience.
It’s a place to start, but we need something better.

WALKING A MILE IN YOUR PLAYER’S SHOES In order to really
empathize with the people in your blind spots, you’ll need to learn
to enjoy games for the same reasons that those people enjoy
games. I call this skill player-acting: the skill of playing a game
as though you were someone else. I don’t know the best way to
develop this skill, but I do know how I did it, way back when I was
getting started in this crazy career.

Early in my career, I was entranced by the various player-type
models (Bartle, Lazarro, and so on). I was blown away to fi nd
that there were gamers who were not like me. And yet, they liked
games! I was struck by the idea that, maybe, just maybe, the games
that I hated that other people liked weren’t simply terrible games
(and players who liked them “wrong”). Maybe, I thought, there was
another set of rules and values out there that those players were
living under!

However, I lacked any kind of practical understanding of what
those rules might be, because like much of the rest of the planet,
I had spent most of my life playing only the games that I preferred.
I knew next to nothing about what made the games I didn’t prefer
awesome. I had never played them.

This was way back in the Pliocene Epoch, before there was a
viable indie scene or anything resembling a Kongregate. I was at EA
Redwood Shores at the time, and they did have a thing called the IRC
(Information Resource Center). It was a well-shelved room, fi lled to
the rafters with games. There were books and movies and magazines

there, too, but the majority was nothing short of every major game
released during the previous decade, available for checkout.

One afternoon at lunch, I had an idea. What if I played all those
games—but instead of playing them as myself, I tried to play them
as if I were a different player type?

I launched into my “research” project with youthful abandon.
Being the obsessive-compulsive completionist I am, I started at “A,”
and over the course of roughly two years made my way through to
“Z.” I played good games, bad games, action games, puzzle games,
adventure games, sports games, kids’ games, outdated games,
new games, games for girls, games for boys, real-time and turn-
based strategy, PC, console… everything.

Does that sound like fun? It shouldn’t; just go to your local game
store and imagine what it would be like to play everything on the
shelf, without regard to your personal taste. Sure, you’ll fi nd some
fun stuff in there, but an awful lot of it is going to be off the mark
for you. This, of course, is the whole point.

This project was so not-fun, in fact, that I had to create rules to
force myself to play. I had to give everything I tried at least one solid
hour of play, no matter how bad or how buggy or how frustrating
it was. After an hour, if the game had shown me at least one thing
that was new to me (good or bad) or if I had some insight about the
kind of player who might enjoy this game, I had to play a second
hour. After that, I was on my own recognizance.

Many games got a solid two hours of play. A lot didn’t. I found a
lot of gems, one-hundred-percented a bunch of really good ones,
and struggled through a huge number of unfi nished disasters.

Most importantly, I played a lot of very popular, well-made,
high-production value games that I didn’t naturally like very much.
I’m not a sports guy, but I put a lot of time into MADDEN, NASCAR,
NHL, and so on. I had not spent much time with the BARBIE
franchise up to that point, I must admit, but there were a stunning
number of them on the shelf to plow through. I also wasn’t much of
a military shooter fan going in, but I sure was when I came out!

LAB RESULTS ARE IN While playing, I held all the models of player
motivation that I knew in my mind. Was this game catering to the
Achiever? The Socializer? What kind of person would like this game?

Slowly, game after game, I eventually started to perceive the
gameplay elements that were there for people who weren’t like
me. All the WWII games seemed to use the same few guns, which
made sense, but they put a lot of effort into making them feel a
particular way, which felt clunky and frustrating to me, but it was
consistently clunky and frustrating, in a way that I later learned
feels about right for those guns. Me, I didn’t care if it felt right—it
was a fantasy, right? Who cares if the guns feel realistic? Well, as
it turns out, a lot of people care.

Slowly, I increased my skills in playing games I wouldn’t have
otherwise played. And, gradually, at work and among my friends, it
became easier and easier to understand what people were getting
out of the crazy games they were playing. FINAL FANTASY fans
started making sense to me. MICROSOFT FLIGHT SIMULATOR didn’t
seem like such a stretch. I started to be able to enjoy wider genres
than I had before, because I could see their value.

PLAYER-ACTING HOMEWORK So, this is my point. Do you have
empathy blind spots? Hit the Flash games, the demos, and the
free-to-plays until you start to get your head wrapped around why
people like them. Play the fi ve-star earners in genres you despise.
Read the comments of fans of those games, and try to get into their
headspace. Break up your belief that other people are like you, and
become a better designer. And it’s also a great excuse to play a lot
of games. d

Jason VandenBerghe is a creative director at Ubisoft, which he has to admit
doesn’t exactly suck. You can read his intermittent blog and various scribblings
at www.darklorde.com. He can be reached by email at jason.vandenberghe@
ubisoft.com.

http://www.darklorde.com
mailto:jason.vandenberghe@ubisoft.com
mailto:jason.vandenberghe@ubisoft.com

0
8

2

ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

{ A D V E R T I S E M E N T } { A D V E R T I S E M E N T }
F

O
C

U
S

O
N

+ Sr. Network Engineer

+ Core Engineer

+ UI/UX Designer

+ Gameplay Engineer/
Designer

+ Data Analyst

+ Mobile Social Project Lead

Open Positions

Bringing Next Gen to Mobile

MunkyFun is comprised of both veteran game developers and some of the smartest
people from the social space. Some of our Munkies have been making games since
the 80s and MunkyFun as a company has been making mobile games since the early
months of the App Store. We bring console grade production values to mobile free-
to-play in order to provide our ever discerning gamers with a high quality experience.

MunkySee MunkyDo

Team play is big around these parts—especially when it comes to making great
games. We are proudest of our GameJams—a regular event that involves the whole
company movin' their desks into all new team formations (cells) in order to prototype
new games. Every morning, those games are presented to the team where we all SEE
what people are working on and give some feedback. Then the teams go off and DO! It
has led to some of our best games—coming from collaborations we never would have
expected! If something is not going in the right direction we nip it in the bud as early as
possible. Success comes from failing fast.

The Willy Wonka of Game Development

We work in a chocolate factory. Literally. It isn't still used as a chocolate factory but
some say if you lick the walls...there is still a hint of cocoa. We have not tried it. But you
are welcome to if you work with us. We do promise to provide chocolatey snacks.

Basically...

Our focus is on fun. We aren't traditional, we aren't stuffy, and we aren't afraid to
make mistakes.

Join us in the game development revolution where everyone is a designer and rapid
iteration is king.

MunkyFun is located in Historic
Jackson Square in the Heart of San
Francisco.

Connect with us at:

MunkyFun.com

@munkyfun

www.facebook.com/MunkyFun

http://MunkyFun.com
http://www.facebook.com/MunkyFun

0
8

3

ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

{ A D V E R T I S E M E N T } { A D V E R T I S E M E N T }

F
O

C
U

S
O

N

+ Programmers
 • Mid-Sr Level Engine
 • Mid-Sr Level Gameplay
 • Mid-Sr Level Network

+ Artists
 • Senior Environment Artist
 • Senior 3D Artist
 • Concept/UI Artist
 • Senior Technical Artist

+ Producers
 • Mid-Sr Level Producers

(Internal experience please)

we are looking for

Winner of multiple industry awards, including RPG of the Year for Star Wars:
Knights of the Old Republic II, and Fallout: New Vegas, Obsidian is dedicated to the
development and advancement of role-playing games for PC and console platforms.
Obsidian was founded in 2003 by industry veterans Feargus Urquhart, Chris Avellone,
Chris Parker, Darren Monahan, and Chris Jones who are best known for their work
on critically acclaimed classics such as Fallout and Planescape: Torment.

Located in Irvine, California, Obsidian is minutes from beautiful beaches and just
over an hour from the mountains and deserts. Irvine is home to excellent schools,
wonderful housing communities, and countless bike and hiking trails. Boasting
nearly year-round sunny weather, Orange County offers the tropical living you see in
movies filmed in Hollywood, only Irvine sits on the safe side of the San Andreas fault
- so when the big one hits, you and your family can explore the ruins of earthquake-
decimated LA (less than an hour's drive away - not counting vault-dweller traffic).

Obsidian is looking for YOU!

Obsidian Entertainment is always looking for creative individuals interested in
a challenging environment creating the best role-playing games in the world.
If making the next generation of role-playing games in a friendly, enjoyable
atmosphere is what you're looking for, we want to hear from you!

We’re currently working on one of the most anticipated RPGs of 2013, South Park:
The Stick of Truth, as well as the currently most funded video game on Kickstarter,
Project Eternity. We continually iterate on our own suite of RPG dedicated tools and
technology to evolve the RPG genre.

Obsidian Entertainment has the best of both worlds: cutting-edge projects of a large
studio combined with the family feel of a smaller company. We emphasize employee
development, while encouraging open communication both within and across projects.

Benefi ts at Obsidian

Being a part of one of the few remaining independent developers in the world creating
role-playing games is only the start! Obsidian offers many benefits to its employees:

• Competitive salaries.
• Immediate 401k with matching and no vesting periods.
• Complete comprehensive employee health coverage, including vision and dental.

Health coverage for family as well.
• Paid vacation, sick leave, holidays (including special company holidays) and an

additional week off during the December holidays.

Apply

If you think you have the chops (that is, experience, qualifications and passionate
desire) to create AAA role-playing games, send us a cover letter, resume, and samples
of your work (portfolios and demo reels, sample code, personal websites or anything
else that demonstrates your abilities) to:

jobs@obsidian.net

Obsidian Entertainment, Inc.
8105 Irvine Center Dr Ste 200
Irvine, CA 92168 USA

jobs@obsidian.com
www.obsidian.com

mailto:jobs@obsidian.com
http://www.obsidian.com
mailto:jobs@obsidian.net

http://GDCONF.COM

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
8

5

 af 085
A U R A L F I X AT I O N _ D a m i a n Ka s t b a u e r

062
af

A U R A L F I X AT I O N _ D a m i a n Ka s t b a u e r

THE PAINS OF BEING FREELANCE AT HEART

In the story “Jack and the Beanstalk,” a poor farmer’s son sets off for the big city to sell his family’s last cow in order
to provide for his aged mother. Along the way he meets a peddler who would have him trade his last cow for a handful

of magic beans, promising riches beyond measure and glory without compare. Berating Jack for allowing himself to
be swept up in a dream, his mother tosses the beans out the window, and from them spring a beanstalk leading to

adventure and opportunities. In my life working freelance, every year I take the risk and buy the magic beans.

PROMISE IN THE AIR As each
new year begins (and really,
after each contract ends),
I can see the landscape of
potential stretch out over the
forthcoming months. If I’m
lucky, this means that I’ve had
some conversations or heard
some whispers in the wind that
could one day bear fruit. We
all know that potential doesn’t
pay the bills, but the process
of turning potential into pay
is often about maintaining
a positive feedback loop
between people. I say feedback
loop because it is often this
discourse, this give and take,
in a relationship that helps
to grow strong roots between
friends or colleagues. For me, it
means that every conversation
is like planting the magic beans
or cultivating ideas which could
result in potential opportunities
given the right combination of
time, magic, and growth that
the relationship inspires.

This process entails more
than just talking, though;
these beans are the myriad
thoughts, conversations,
articles, and inspirations…
and not necessarily just the
ones related to game audio.
They are the kindnesses you
extend to others, the support
you offer to those in need, the

ability to speak or listen with
compassion and sensitivity
in a constructive way, or the
clarity to honestly express your
feelings in a nonconfrontational
way. Whether these exchanges
are with co-workers, mentors,
people within the community,
or just “regular” people, the
beans you plant by engaging in
these discussions continue to
grow throughout your career
(and life). They could be forum
posts lending a well-tuned ear
to someone just starting out,
a blog you create to educate
people on a technique or tool,
or simply a spirited discussion
between passionate people.

YOU HAVE TO BELIEVE Unlike
plants, there’s no telling how
much time you’ll need to grow
a new opportunity. It is the
unknown, unexpected, and
unforeseen machinations that
erupt from nowhere and inspire
growth, and that is powered by
your faith that the beans we
sow will grow into opportunity.
That is to say, it’s not entirely
up to the magic what will
come of the beans that have
been planted, but the beans
themselves and the positivity of
their cultivation.

It’s not uncommon to wait
years for a rare or exotic fl ower

to bloom, and much is the
same, in my experience, with
magic beans. Surrounding
yourself in an atmosphere of
constant gardening means
continually focusing on the road
ahead and giving attention to
the beans that you’ve planted.
(Think how many times have
you seen a blog, Soundcloud,
or tutorial started with the
best intentions only to fi nd
it overgrown with weeds a
year later with nothing but
the original post to show for
motivation.) It’s one thing to
plant a bean and another to
maintain and grow it. As a
freelancer, this is the same in
your professional relationships;
you must continue cultivating
new ones while exercising
special care and handling for
your existing ones.

BRING ALL YOUR DREAMS
TO LIFE It’s something I keep
telling myself year after year:
All of the time and effort I
spend sharing my passion
unconditionally will return
to me in the future (though
perhaps not as golden eggs,
magic harps, or sacks of
gold pieces). I feel that I have
experienced the direct result
of my efforts returned to me
when someone thanks me

for providing some guidance
or is enabled by some of my
frantic technical ramblings.
Whether it’s the fi nancial reality
of putting yourself in front of
people at conferences or the
emotion of working with a team
through the most diffi cult time
of development, every year I
go “all in” and roll the dice on
making the magic happen.

Seeing the fruits of that
labor is its own reward. It’s
the kind of thing that drives
me to work even harder
between contracts to keep up
the momentum on personal
or community projects, or
reconnect with people to hear
about what they’ve been up
to. This can’t be overstated,
because people are the one
constant in this industry. If
you invest your time in caring
about people, your investment
will always inspire magic in
your career. af

“You have to believe we are magic,
nothing can stand in our way. Don’t let
your aim ever stray.” —Olivia Newton-
John & Electric Light Orchestra

Damian Kastbauer is a wandering
minstrel of game audio, traipsing
across the land at LostChocolateLab.
com and on Twitter: @lostlab.

EVERY
YEAR I BUY
THE MAGIC

BEANS

http://LostChocolateLab.com
http://LostChocolateLab.com

0
8

6

086 b
T H E B U S I N E S S _ K i m Pa l l i s t e r

CRYSTAL BALLS
VS. OUIJA
BOARDS
GETTING BETTER AT PREDICTING THE FUTURE

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

In my role at Intel, I have an acute version of this problem. The
design cycles on silicon mean that we have to make decisions
four to fi ve years ahead of time about what games and other
applications are going to require, and then make very large bets
to prepare for that time. It’s not something we’ve perfected.
In fact, like anyone in this industry, we’re often wrong, and
managing the trade-offs and costs involved in correcting our
course is part of the challenge. Independent analysts don’t fare
much better, and are held with surprisingly little accountability
to their track record, at least beyond one or two quarters’ worth
of predictions.

That said, it’s important to try to gauge where things are
heading before investing in your business’s future directions. I
thought it might be interesting to review some of the methods
people use in making predictions, as well as some of the common
traps people fall into in trying to predict where things are going.

Personal litmus test (“That’s what I/my mom/my kid likes”): This
is probably the most common method of “prediction” that people
use, particularly when evaluating a consumer product, especially
games. Almost everyone in the business is a game player, so it’s
only natural to fi rst gauge the inspiration for a product opportunity,
or potential of a product in development, by your own personal
desire for that product.

This is a specifi c form of Forecast by Analogy (more on this
later), which I believe generally has great value. The analogy, in
this case, is in comparing one consumer to the target market
population, and there are a couple risks in doing this. First off,

the old saying “The plural of ‘anecdote’ is not ‘data’” applies here.
Secondly, the further one’s target market is from that anecdotal
example, the more room for error; assuming that kids in another
country or continent will like similar things to your children, for
example, could be quite a stretch.

Extrapolation: This is one of the more common forms of
forecasting, and we often see it employed in simple market
forecasts going out three to fi ve years from the present; sometimes
they’re just linearly extrapolated, and sometimes they’re based on
an exponential curve. The basic fl aw with this is so obvious that it’s
surprising how often it’s given undue trust: The forecast is entirely
based on the past performance of the factor we’re attempting
to predict! Markets and products don’t exist in a bubble. Past
performance is a factor, but only one of many. Meanwhile, markets
are infl uenced by so many outside forces that can cause an
infl ection point in that extrapolated line at any time that it is unwise
to lean too heavily on this method of forecasting.

The old adage “The only constant is change” is especially
true in the games business, where new platforms and
business models seem to materialize on a daily basis.
Despite this (or perhaps because of this), many in the
industry do a surprisingly poor job of attempting to
predict the ways in which the business will shift. The
results are painful, and clearly visible: canceled projects,
studio layoffs, and wasted investment results when
industry players big and small make bets based on a
fi xed worldview. As I write this, we’re heading out of the
last round of year-end retrospectives on top trends and
events of 2012, and heading into pre-GDC predictions
for 2013 and beyond. Looking back on those from the
previous year, it’s clear that we get these wrong as often
as right—perhaps more so. Can’t we do better?

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
8

7

 b 087
T H E B U S I N E S S _ K i m Pa l l i s t e r

Forecast by Analogy: This can take many forms beyond our
example above. It comprises any time a comparison is made to
a product, market, business model, or other market factor that
shares some common characteristics with another market. For
example, someone examining an all-you-can-eat subscription
business model for games might start by comparing with all-you-
can-eat subscription music services.

Cyclical models: There are numerous models that people
have used to describe a repeating pattern of how certain
market aspects behave over time. The Technology Adoption
Life-Cycle proposed by Joe Bohlen (and others) and later
improved by Geoffrey Moore (http://en.wikipedia.org/wiki/
Technology_adoption_lifecycle) is one oft-used model that is
useful in describing the characteristics of consumer adoption of
a technology or class of products. Daniel Cook’s Platform Power
cycle (http://www.lostgarden.com/2011/03/gdc-2011-game-of-
platform-power.html) is another great example that everyone in
games should read and consider.

The downside of applying models like this is that they don’t
always translate between markets, and even within a given
market, the rules change. For example, until recently, it was
generally agreed that consoles behaved according to a fi ve-year
life cycle. However, with the Xbox 360 and PlayStation 3 having
shot well past that point, it’s now clear the rules have changed—
though what they have changed to is still unclear.

Trend-infl uence: The idea here is to look at outside infl uencers
of fundamentals to the business you are evaluating—rising

development costs, or falling LCD display costs, for example—
and to apply some judgment as to the impact these will have.

Follow-the-money: While all the above will typically incorporate
fi nancial research, the techniques I refer to in this category
involve analyzing the specifi c fi nancials of individual players in the
market, and using that information to build scenarios of possible
outcomes. One can use fi nancial results of players in the market
as a trailing indicator of market performance and to speculate
as to next moves. Also, investments in the form of VC and M&A
activity can serve as an indicator as well.

Ultimately, all of these methods serve as tools to do various kinds
of scenario building. All of them have their place, but none of them
is perfect, especially if used on its own. Those attempting to make
predictions should use multiple methods to see how they agree,
compare with peers if possible, and most importantly, carefully
document all the inputs used and the assumptions made, and
revisit them regularly. Also, go back and visit past forecasts, asking
where you went wrong and how it can be improved. Nobody can
accurately predict the future, but we can better the odds of aiming
in the right direction. b

Kim Pallister works at Intel doing game industry forecasting and
requirements planning. When not prepping the world for super-cool
hardware, he blogs at www.kimpallister.com. His views in this column are his
and do not reflect those of his employer.

BECOME A LEADER

IN DIGITAL MEDIA
With digital media in mind from conception

to completion, the new CENTRE FOR DIGITAL

MEDIA features student apartments, project

rooms and classrooms all designed to inspire

creativity and collaboration. Located in Vancouver,

Canada the new CENTRE FOR DIGITAL MEDIA

ofers a full and part-time Master’s program

that focus on real-time, industry-facing

collaborative projects.

Learn more about our MASTERS

OF DIGITAL MEDIA PROGRAM at: www.thecdm.ca/gd

The future of work is at the

new CENTRE FOR DIGITAL MEDIA.

http://www.kimpallister.com
http://www.thecdm.ca/gd
http://en.wikipedia.org/wiki/Technology_adoption_lifecycle
http://en.wikipedia.org/wiki/Technology_adoption_lifecycle
http://www.lostgarden.com/2011/03/gdc-2011-game-of-platform-power.html
http://www.lostgarden.com/2011/03/gdc-2011-game-of-platform-power.html

http://e3expo.com
http://E3Expo.com
http://www.E3Expo.com

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
8

9

f 089
I N S E RT C R E D I T _ B r a n d o n S h e f f i e l d

FIRST KISS IS DEADLY Let’s think about a series
like DARK SOULS/DEMON’S SOULS. These games are
punishing, require rather exacting inputs from players,
and have somewhat fi ddly controls that require getting
used to. That sounds like a nice recipe for a failure stew.
So why did these games succeed?

One of the praises you often see from reviewers
is that the series reminds them of the glory days of
Japanese console and arcade games, which were built
with much the same recipe. It’s like a new love affair
with an old fl ame—the same problems as always, yet
sweetly, lovingly familiar. Japanese publication Dengeki
said of DEMON’S SOULS, “Fans of old-school games will
shed tears of joy.” IGN reviewer Sam Bishop echoed the
sentiment, saying, “Those that can remember the good
ol’ days when games taught through the highly effective
use of intense punishment and a heavy price for not
playing it carefully should scoop this up instantly.”

But what about people who didn’t grow up with that
experience? What about those who are more used to
frequent checkpoints, and the game providing a full
experience to blaze through in one go, rather than in
halting steps? For them, the game is a harder sell, which
is why Sony passed on publishing DEMON’S SOULS in the
West, and core-oriented niche publisher Atlus had to
step up and do it instead.

For DEMON’S SOULS, its link to the past helped it
succeed. But perhaps the reverse can also happen:
Our personal game heritages could, at times, make us
slaves to our past interests. For example, I tend to like
games that are interesting, but fl awed. To me, a glitch in
an otherwise super-polished CALL OF DUTY is extremely
glaring and illusion-shattering, but I’ll happily forgive
poor graphics and the occasional invisible wall in a game
like NIER, which stabs out in all directions with new
ideas. If a game tries hard to do something different,

I’ll forgive its faults—and if I want to be a designer who
makes games that are good at making money, this
preference for different-but-fl awed could hold me back
from making games with commercial appeal.

With this thought in mind, I decided to dissect my own
past as a player to see what infl uence it might have had
on my current interests.

LESSONS FROM THE TURBOGRAFX-16 My history
is a bit odd—I went from the 2600 and Intellivision
(which were already old when I got them, but they were
affordable!), to the TurboGrafx-16, which I saved up for
months to afford. And this is the console that informed
my early days as a player of games.

THE VALIS series, for example, is not very well known,
but I played it to death. It’s an action, platforming, hack-
and-slash affair that stars a high school girl, out to save
the world, with a sword taking on a horde of monsters.
Pretty standard fare for the 1990s.

You could jump, perform a sword attack, use magic
(and could power up both of these attacks), walk, and
roll. I replayed VALIS III recently, and I noticed something
about those rolls that may have infl uenced my current

They say you’re forever dating your fi rst love. Not literally, of course, but the early patterns set by your fi rst relationship,
and the relationships of your parents, tend to strongly infl uence how you approach love and relationships for many years to
come. I wonder: Is the same true for games? Do those early games we played in our formative years infl uence what we now
perceive as “good” and “bad” in interactive media? Do they infl uence how we design games? I submit that they may.

DEMON’S SOULS.

IL
LU

ST
R

AT
IO

N
: J

U
A

N
 R

A
M

IR
EZ

READ-ONLY MEMORIES
HOW DO YOUR EARLY GAME EXPERIENCES INFORM YOUR
DESIGN PREFERENCES?

I N S E RT C R E D I T _ B r a n d o n S h e f f i e l dB r a n d o n S h e f f i e l dI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I T B r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dB r a n d o n S h e f f i e l d_B r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l d_B r a n d o n S h e f f i e l dI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I T B r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I T B r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dB r a n d o n S h e f f i e l d_B r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l d_B r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l d_B r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l d_B r a n d o n S h e f f i e l d
I N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I T B r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l d

I N S E RT C R E D I T
I N S E RT C R E D I T

I N S E RT C R E D I T
I N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I T

I N S E RT C R E D I T
I N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I T

I N S E RT C R E D I T
I N S E RT C R E D I T

I N S E RT C R E D I T
I N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I T

I N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I T _I N S E RT C R E D I T_I N S E RT C R E D I T_I N S E RT C R E D I T_ B r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l d

I N S E RT C R E D I T_I N S E RT C R E D I T
_

I N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I T B r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l d
B r a n d o n S h e f f i e l d
B r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l d

B r a n d o n S h e f f i e l d
B r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l d

I N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dB r a n d o n S h e f f i e l dB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l d

I N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I T
I N S E RT C R E D I T

I N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I T
I N S E RT C R E D I T

I N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l d
I N S E RT C R E D I T

B r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l d
B r a n d o n S h e f f i e l d
B r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l d

I N S E RT C R E D I T
B r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l d

I N S E RT C R E D I T
B r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l d

B r a n d o n S h e f f i e l d
B r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l d

I N S E RT C R E D I T
B r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l dI N S E RT C R E D I TB r a n d o n S h e f f i e l d

http://GDCNEXT.COM

http://gamasutra.com

http://igf.com

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

GAME DEVELOPER
MAGAZINE

CONTRACTOR CORNER

0
9

4

the art and business of making gamesthe art and business of making games
gamasutra.com

Complete Art Development and Production!

CENTURION
Art Development

• USA Based Sales & Customer Support

• 3 Production Studios in China - (North) Beijing & (South)
 Ningbo

• Professional Project Managment & Production
 Communication

• Competitive Rates based on Overseas Production

• 3D - High Quality• 3D - High Quality Assets for Game Dev & CG Animation

• 2D - Concept, Design & Illustration - Production Concepts

• Keyframe Animation - 2D and 3D, Layout, Rigging &
 Weighting

 1-888-411-9336 or contact@centurionartdev.com www.CenturionArtDev.com - Online Portfolio -

S T U D I O S

www.forgestudios .comTai lored to your needs
Creat iv i ty & Innovat ionwww.supergenius-studio.com

To Art Outsourcing

A Genius Alternative

Specializing in the 5 disciplines of video game art production

http://www.supergenius-studio.com
mailto:contact@centurionartdev.com
http://www.CenturionArtDev.com
http://www.forgestudios.com
http://gamasutra.com
http://www.sharpshadowstudio.com
http://ARTBULLYPRODUCTIONS.COM
http://www.iLogos.biz
mailto:info@ilogos.biz
http://www.technicolor.com/GameServices

gd Game Developer (ISSN 1073-922X) is published
monthly by UBM LLC, 303 Second Street, Suite 900
South, South Tower, San Francisco, CA 94107, (415)
947-6000. Please direct advertising and editorial
inquiries to this address. Canadian Registered
for GST as UBM LLC, GST No. R13288078,
Customer No. 2116057, Agreement No. 40011901.
SubScription rateS: Subscription rate for the U.S.
is $49.95 for twelve issues. Countries outside the
U.S. must be prepaid in U.S. funds drawn on a U.S.
bank or via credit card. Canada/Mexico: $59.95;
all other countries: $69.95 (issues shipped via air
delivery). Periodical postage paid at San Francisco,
CA and additional mailing offices. poStmaSter:
Send address changes to Game Developer, P.O. Box
1274, Skokie, IL 60076-8274. cuStomer Service:
For subscription orders and changes of address,
call toll-free in the U.S. (800) 250-2429 or fax (847)
647-5972. All other countries call (1) (847) 647-
5928 or fax (1) (847) 647-5972. Send payments
to gd Game Developer, P.O. Box 1274, Skokie, IL
60076-8274. Call toll-free in the U.S./Canada (800)
444-4881 or fax (785) 838-7566. All other countries
call (1) (785) 841-1631 or fax (1) (785) 841-2624.
Please remember to indicate gd Game Developer
on any correspondence. All content, copyright
gd Game Developer magazine/UBM LLC, unless
otherwise indicated. Don’t steal any of it. Or else.

0
9

5
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

COMPANY NAME  PAGE #

ACADEMY OF ART UNIVERSITY  053
ACTIVISION  064 & 066
ARENANET INC  067
ART BULLY PRODUCTIONS LLP  094
ASOBO STUDIO  C2
BLIZZARD ENTERTAINMENT  063
CCP GAMES- NORTH AMERICA  062
CENTURION ART DEVELOPMENT  094
E3 ExPO  088
ENCHANT.JS INC  020
EPIC GAMES  016
FMOD BY FIRELIGHT TECHNOLOGIES  003
FORGE STUDIOS  094
HAVOK  048
ILOGOS  094
KING.COM  065
KONAMI DIGITAL ENTERTAINMENT CO LTD  008
MASTERS OF DIGITAL MEDIA PROGRAM  087
MICROSOFT CORPORATION  C3 & 043
MUNKYFUN, INC  082
NVIDIA CORPORATION  032
OBSIDIAN ENTERTAINMENT  083
PEAK GAMES  072 
PLAYSPAN INC  011 
RAD GAME TOOLS  C4

RESEARCH IN MOTION CORPORATION  024
SCOTTISH DEVELOPMENT INT.  058
SHARP SHADOW STUDIOS  094
SHERIDAN COLLEGE INSTITUTE OF  028
SIMPLYGON  054
SOCIETY FOR THE ADVANCEMENT            035
SUPERGENIUS  094
TAYLOR & FRANCIS GROUP LLC  080
TECHExCEL INC  068
TECHNICOLOR  094
UBISOFT PRODUCTION  
INTERNATIONALE  026 & 044
VANCOUVER FILM SCHOOL  007
WARGAMING AMERICA  012
WOOGA  032

IN ASSOCIATION WITH UBM TECH  PAGE #

APP DEVELOPERS CONFERENCE  077
GAMASUTRA.COM  092 & 094
GAME CAREER NETWORK  061
GAME DEVELOPERS CHOICE AWARDS  076
GAME DEVELOPERS CONFERENCE 2013  084
GDC NExT  090
GDC VAULT  095
INDEPENDENT GAMES FESTIVAL  093

ADveRTISeR INDeX For more information visit www.jointhegamenetwork.com

 gd 095
A d i n d e x _ M a r c h 2 0 1 3

http://www.jointhegamenetwork.com
http://GAMASUTRA.COM
http://GDCVAULT.COM
mailto:GILLIAN.CROWLEY@UBM.COM
http://KING.COM

0
9

6

096 ad
a r r e s t e d d e v e l o p m e n t _
M . WA S T E L A N D & M . U N D E r L A N D

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

It’s not like doing massive co-op is that complicated. It’s a new mode,
but building the levels or modeling some new vehicles is probably
the biggest thing. And it’s not like you’re building a brand-new game.
You just make the existing polygons, textures, and pixels appear in
everyone’s game at the same time and you’re basically done.

Anyone who has programmed before knows this isn’t a big deal.
All the actions in Wanderer are extremely simple. If the code for
moving and shooting is more than a few lines long they did it wrong.
Plus the netcode doesn’t have to be put in over the whole game.
There’s “code reuse,” which is a technique that lets you use the
same code in a lot of different places. I’m sick of the excuses here.

How do I know It? Someone asked how I know this. Well, I
know this because I made my own games for at least two if not
more of my computer programming classes in which I was the top
student (i.e., college level). If it would take the devs more than a
couple hours, well, then they have SPAGHETTI CODE and should
reprogram everything. The only reason they wouldn’t add it is if
they don’t actually care about the game. That’s right, I said it: The
lure of EASY PROFITS is leading Stolen Sun to take the loyal fans
for a ride.

Anyway, it’s not that I want massive co-op multiplayer
personally—I find most “gamers” these days are too stupid or
casual to play with. I just hate seeing game developers being so
LAZY, succumbing to greed, living like fat cats eating caviar, and
driving Bentleys. That’s the real truth here, everyone. They’ve given
in to GREED as all game developers do eventually. Remember
when Birth of the Titans decided to charge for the “expansion” even
though they had been doing FREE patches for over six months? Get
real, noobs. Anyone who isn’t blinded by BLATANT FANBOY BIAS
can see through that.

@BlueBaloo22 Well, clearly your college was in it for
the money just like the Wanderer devs if they gave
you a degree in computer science despite you clearly
not even understanding basic programming. Basically
everyone that plays Wanderer these days is going
to be connecting to the internet using cable, DSL, or
fiber to the home (FTTH). Not TCP-IP.

@LittlerFingers It’s clear that you’re not a coder at all,
since you can’t tell the difference between the game
code (which doesn’t need to support networking)
and the engine code (which does). In games like
this, most of the engine code is about rendering and
audio, so adding networking to that is nowhere near
as complicated. And once it’s in the engine, the game
functions just need a few new parameters (I bet you
don’t even know what those are) to hook into it.

Game desIGn Issues—or not I know some people on these
fine forums have said that massively co-op multiplayer would
change the tone of the game from something about a lonely
experience to something more like an MMO with people running
around, etc. Well, that’s easy too: Just have the characters
occasionally say a line about how weird it is seeing another person
around. It’s not like they couldn’t record more voices.

@SirMustache I’m not even going to bother
responding to this.

Again, I don’t care at all if this is implemented or not, I just don’t
want to see the programmers get away with being lazy and the
loyal fan community just accepting whatever they say because
they’re not educated enough.

Last Post before I ***deLete mY aCCount*** Look, anyone
who really cares about Wanderer needs to speak up about these
SLOTHFUL developers and not accept their pathetic excuses.
Everyone here should hold them ACCOUNTABLE and REFUSE to
support them anymore until they come clean and admit they’ve
been lying to us. I won’t accept anything less and do not plan on
returning to these forums until they do. Good day, all. ad

Matthew Wasteland writes about games and game development on his blog,
Magical Wasteland (www.magicalwasteland.com). Email him at mwasteland@
gdmag.com. Magnus Underland writes about games and other topics at www.
above49.ca. Email him at magnus.underland@gmail.com.

IL
Lu

st
r

at
Io

n
: J

u
a

n
 r

a
m

Ir
eZ

http://www.magicalwasteland.com
mailto:magnus.underland@gmail.com
mailto:mwasteland@gdmag.com
mailto:mwasteland@gdmag.com
http://www.above49.ca
http://www.above49.ca

IT’S HERE

2
Bink 2 Video has up to 6 times the quality than Bink 1
at the same bandwidth. It's also up to 3x faster due to it's SIMD
design (70% of all instructions are SIMD in a frame decode)
and perfect two CPU scaling. Available for Windows, Mac,
Linux, (or any x86 or x64 system), Xbox 360,
Playstation 3, PS Vita, iOS and Android.
www.radgametools.com 425-893-4300

http://www.radgametools.com

	Contents
	Postmortem
	THE WALKING DEAD

	Features
	QUALITY-OF-LIFE SURVEY
	INTERACTIVE FICTION RENAISSANCE
	THE OLD GUARD
	FIVE TIPS FOR BETTER PLAYTESTING

	Departments
	Editorial - Game Plan
	News - Heads Up Display
	Education - Educated Play
	Career - Good Job
	News - GDC News
	Review - Toolbox
	Programming - Inner Product
	Art - Pixel Pusher
	Design - Design of the Times
	Sound - Aural Fixation
	Business - The Business
	Editorial - Insert Credit
	Humor - Arrested Development

