
T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E v o L 1 9 N o 3

M A R c H 2 0 1 2 I N S I D E : D E S T R o Y Y o U R v E H I c L E S !

Copyright © 2012 Intel Corporation. All rights reserved. Intel, the Intel logo, are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands are
the property of their respective owners. © 2012 Zombie Studios. All Rights Reserved. Image courtesy of Zombie Studios. † GPA refers to Graphic Performance Analyzers.

The Intel® Graphics Performance Analyzers (Intel® GPA) is a powerful graphics tool suite for

analyzing and optimizing your games, media, and other graphics-intensive applications. With Intel

GPA, you can conduct in-depth analysis from the system level all the way down to individual

elements, allowing you to maximize the performance of your applications.

DOWNLOAD INTEL® GPA FOR FREE »
www.intel.com/software/gpa

“Ultimately, the results of optimizations

we did with Intel® GPA tools made the

Blacklight*: Retribution experience better

and better for our players.”

— CHANCE LYON, LEAD DEVELOPER,
 ZOMBIE STUDIOS

ZOMBIE STUDIOS OPTIMIZES WITH
INTEL® GRAPHICS PERFORMANCE ANALYZERS

Intel® GPA† helps Zombie Studios
deliver Blacklight*: Retribution

GPA SYSTEM ANALYZER

• Quickly analyze game performance and
identify potential bottlenecks

• A heads up display (HUD) for real-time
performance analysis

• Create DirectX* state overrides and
conduct real-time experiments

• Triage system-level performance with
CPU and GPU metrics

• Game pause, step, resume

GPA FRAME ANALYZER

• Optimize graphics performance through
deep frame analysis of elements at the
draw-call level

• Support for Microsoft DirectX* 9/10/11,
Microsoft Windows* XP, Microsoft Vista* 7

• Make changes and see visual and
performance effects immediately

• Capture and share frames

GPA PLATFORM ANALYZER

• HW thread view of game showing
thread context

• Visualize performance of multi-threaded
CPU and GPU tasks

• Intel® Media Analyzer for real-time and
trace analysis

• Intel® OpenCL and browser profiling abilities

http://software.intel.com/en-us/articles/vcsource-tools-intel-gpa/?cid=sw:graphics332
http://software.intel.com/en-us/articles/vcsource-tools-intel-gpa/?cid=sw:graphics332
http://software.intel.com/en-us/articles/vcsource-tools-intel-gpa/?cid=sw:graphics332
http://software.intel.com/en-us/articles/vcsource-tools-intel-gpa/?cid=sw:graphics332

WHY
DON’T
YOU
PLAY?

© 2012 Research In Motion Limited. All rights reserved. BlackBerry®, RIM®, Research In Motion®
and related trademarks, names and logos are the property of Research In Motion Limited and
are registered and/or used in the U.S. and countries around the world. All other trademarks are
the property of their respective owners.

START PLAYING
blackberry.com/gamedeveloper

With all the tools and resources you need in one place, developing
games for the BlackBerry® PlayBook™ tablet has never been easier –
or more fun. Create rich, high-performance C/C++ apps and games
with the BlackBerry® Native SDK for Tablet OS.

http://blackberry.com/gamedeveloper

CONTENTS.0312
VOLUME 19 NUMBER 3

D E PA R T M E N T S

2 GAME PLAN By Brandon Sheffield [E D I T O R I A L]
 A Confident Fall

4 HEADS UP DISPLAY [N E w S]

Austin developers discuss the future of games, and the
origins of Kyoto's 1H1D!! show.

30 TOOL BOX By Mike de la Flor [R E V I E w]

Wacom Inkling

33 THE INNER PRODUCT By Remi Quenin [P R O G R A M M I N G]

The SPUs are Hungry!

38 PIXEL PUSHER By Steve Theodore [A R T]

The Happy Cog

40 THE BUSINESS By Kim Pallister [B U S I N E S S]

Copyfight

42 DESIGN OF THE TIMES By Damion Schubert [D E S I G N]

Random is Random

45 AURAL FIXATION By Damian Kastbauer [S O U N D]

It's About People

47 GOOD jOB By Brandon Sheffield [C A R E E R]

Q&A with Darren Hayward, who went where, and new studios

49 GDC NEwS By Staff [N E w S]

GDC special awards revealed

50 EDUCATED PLAY By Tom Curtis [E D U C A T I O N]

Deity

56 ARRESTED DEVELOPMENT By Matthew Wasteland [H U M O R]

How To Annoy Your Testers

P O S T M O R T E M

20 HALO: COMBAT EVOLVED ANNIVERSARY
Halo: Combat evolveD represented a watershed moment for the Xbox.
The design, multiplayer, and high-end graphics helped the game
become a cultural phenomenon. And so, to celebrate the original
title's tenth anniversary, Saber Interactive, 343 Industries, and
Certain Affinity all worked together on a remake. Saber took on the
brunt of the work, but even though the design and much of the code
was fixed in place, it was no walk in the park. From collision issues to
artistic choices, this postmortem is a primer on how to do a proper
HD remake of an already-HD game. By Andrey Iones

F E AT U R E S

7 CHEATING BEHIND THE CLOUD
Cheating is a problem in most online games, especially those with
synchronous play. Microsoft's Ferdinand Schober discusses how
you can implement a custom cheat-resistant cloud server to mitigate
cheating without paying for anything but programmer time. By
Ferdinand Schober

13 GET SMASHED!
The challenges of collision in open-world games are legion. When
players can go anywhere and do anything, you have to be ready
for anything. But in SaintS Row: tHe tHiRD, Volition wanted drivable
tanks to be able to crush objects, including other vehicles. Volition
programmer Victor Cepeda IV outlines the visual deformation
techniques from SaintS Row 1–3 to demonstrate how the team
conquered this problem. By Victor Cepeda IV

www.gDMAg.COM 1

http://www.gDMAg.COM

GAME PLAN // BRANDON SHEFFIELD

GAME DEvELOPER | MARcH 20122

a confident fall
knowledge-sharing, the rise of western game design, and the threat of ruining it all

Western games have taken over
the console game space, there
is no denying it. It was tough to
imagine this back in the late '80s
and early '90s, when the common
feeling was that all the best
console games came from Japan,
while Western companies churned
out poor licensed titles and jittery
platform games.

While Western companies may
have struggled to match the design
and vision of Japanese games on
the console in those early days, they
were simultaneously innovating
on the PC for as long as the format
existed. Quake might not have been
a huge leap over the graphics of its
PlayStation contemporaries, but
by the end of the '90s, the PC was
far and away the most graphically
advanced platform available. And it
was Western companies that were
pushing this graphical revolution.
Perhaps the variety wasn't there in
the design and direction yet, but the
tech was becoming peerless. And
as tech becomes more of a solved
problem, the focus turns to design.
When this happened in the West,
developers started to really push
forward in this arena as well. Games
like Halo proved that Western game
design and tech had married to
create a cultural phenomenon.

By the time Gears of War 3
came out, nothing in Japan could
match it visually, and that country's
industry has not, to date, caught up.
In 1990, would you have predicted
that uncHarted would be made in Los
Angeles, instead of Tokyo?

Helping Hand
» Even back then, there might
have been reason to believe in the
Western game industry. Starting
in 1988, game developers began
to meet to discuss the art of
game creation at what would later
become the Game Developers
Conference. Developers shared
their technical hurdles, and
design quandaries. In 1994, Game
Developer magazine was born,
sharing technical knowledge in an
even wider (and more frequent)

sense. In 1995, the organization
now known as the IGDA came
to be. Then in 1996, there was
Gamasutra. Western game
developers have been sharing
knowledge with each other in some
official forum or another for 24
years—and Eastern developers
have yet to catch up.

Ray Nakazato (former president
of lost odyssey developer FeelPlus,
now at THQ in Japan) agreed with
this sentiment in an interview we
conducted a couple years back. “I’m
worried about technology, Japan
is already quite behind, and will
be more behind,” he said. “A lot of
good technology is coming from
the States. You have (events like
GDC). I was a founding member
of CEDEC (Japanese development
conference put on by CESA, which
is akin to the ESA in the U.S.), and
I wanted to make it the GDC of
Japan, but CESA saw it differently.
So it became CEDEC. It’s modeled
after GDC, but it's very different.”

“Japanese people are not good
at speaking,” he adds. “They are
afraid of disclosing things, so all the
sessions are very vague and generic,
and all are sponsored sessions, or
academic. I think Japanese industry
people want to hear a lot of stuff
from people who are actually making
games, but they don't speak much,
so all they hear is the academia or
sponsored messages.”

CEDEC has gotten better, and
Japanese developers do talk in
a more casual sense about their
problems, typically over drinks
and the like. Still, official sharing
of information across companies,
and sometimes across teams
within companies, is often
frowned upon. This has led to
Japanese companies solving
problems individually, instead of
collectively, and falling behind
as a result. Western companies
rocketed forward, propelled by their
openness with each other.

Spring forward, fall back
» Why bring all this up now?
Because, for whatever reason, as

indies and new media developers
get more open, the big publishers
are getting more tight-lipped.
Though the developers of call of
duty, fallout neW VeGas, and even
draGon aGe leGends on Facebook
would have loved to share
postmortems and technical pieces
in this magazine, their publishers
put the kibosh on their efforts.

Some publishers have a “no
public postmortems” policy,
across the board, while others
are simply wary of sharing tech
secrets. Others are willing to
allow third-party published games
to have postmortems, but not
first-party. I would caution any
publisher or developer that is
reluctant to share (or in fact is
flat-out against the concept) to
learn from the above history.

Indie, social, and mobile games
are making great strides, as the
tools to support them get cheaper
and more robust. And they actually
make up a huge chunk of the
market. Indie game bundles are
selling in the millions of dollars,
and app developers on iTunes have
collectively made $4 billion (though
some of those are assuredly not
games). Zynga just went live with
its huge IPO.

Publishers may be concerned
that these burgeoning markets will
encroach on their sales, as they
try to buy their way into these
industries. Makers of games in
similar genres may be concerned
that revealing the “secret sauce”
will allow their competitors to
get an edge. And there may be
some truth to both of these. But
transparency is good for the
industry, and walled gardens only
isolate and compartmentalize.

If big publishers (and big
developers) want to succeed in this
rapidly-changing market, they will
have to learn what the Japanese
game industry is still trying to
catch up to; the more we help each
other, the better we all become.

—Brandon Sheffield
twitter: @necrosofty

UBM LLC.
303 Second Street, Suite 900, South Tower
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

w w w . U b M . c o M

SUbScription SerViceS

for inforMation, order QUeStionS, and
addreSS cHangeS
t: 800.250.2429 f: 847.763.9606
e: gamedeveloper@halldata.com

for digital SUbScription inforMation
www.gdmag.com/subscribe

editorial

pUbliSHer
Simon Carless e: scarless@gdmag.com
editor-in-cHief
Brandon Sheffield e: bsheffield@gdmag.com
prodUction editor
Jade Kraus e: jkraus@gdmag.com
art director
Joseph Mitch e: jmitch@gdmag.com
deSigner
Cliff Scorso e: cliff.scorso@ubm.com
contribUting writerS

Tom Curtis
Mike de la Flor
Remi Quenin
Kim Pallister
Damian Kastbauer
Damion Schubert
Victor Cepeda IV
Matthew Wasteland
adViSorY board
Mick West independent
Brad Bulkley microsoft
Clinton Keith independent
Brenda Brathwaite loot drop
Bijan Forutanpour sony online entertainment
Mark DeLoura thQ
Carey Chico globex studios
Mike Acton insomniac

adVertiSing SaleS

global SaleS director
Aaron Murawski e: amurawski@ubm.com
t: 415.947.6227
Media accoUnt Manager
Jennifer Sulik e: jennifer.sulik@ubm.com
t: 415.947.6227
global accoUnt Manager, recrUitMent
Gina Gross e: ggross@ubm.com
t: 415.947.6241
global accoUnt Manager, edUcation
Rafael Vallin e: rvallin@ubm.com
t: 415.947.6223

adVertiSing prodUction

prodUction Manager
Pete C. Scibilia e: peter.scibilia@ubm.com
t: 516-562-5134

reprintS

WRIGHT'S MEDIA
Jason Pampell e: jpampell@wrightsmedia.com
t: 877-652-5295

aUdience deVelopMent

aUdience deVelopMent Manager

Nancy Grant
e: nancy.grant@ubm.com
liSt rental Peter Candito
Specialist Marketing Services
t: 631-787-3008 x 3020
e: petercan@SMS-Inc.com
ubm.sms-inc.com

GAME DEvELOPER
MAGAzINE
www.GDMAG.cOM

http://www.GDMAG.cOM
mailto:gamedeveloper@halldata.com
http://www.gdmag.com/subscribe
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:jkraus@gdmag.com
mailto:jmitch@gdmag.com
mailto:cliff.scorso@ubm.com
mailto:wski@ubm.com
mailto:jennifer.sulik@ubm.com
mailto:ggross@ubm.com
mailto:rvallin@ubm.com
mailto:peter.scibilia@ubm.com
mailto:jpampell@wrightsmedia.com
mailto:nancy.grant@ubm.com
mailto:petercan@SMS-Inc.com
http://ubm.sms-inc.com
http://WWW.UBM.COM

http://firefallthegame.com

game developer | march 20124

\\\ The University of Texas at Austin
Department of Computer Sciences
hosted an event called Infinite
Resolution Zero Latency on January
25, wherein local developers and
other industry professionals took
turns prognosticating the changes
developers will see going into the
next generation. Most present
seemed to agree the mobile
space will greatly influence how
games will be made, played, and
distributed moving forward, though
they didn’t agree on how we’ll get
there.

“I actually really believe the
future is going to be handheld,
but handhelds won’t really be
handhelds anymore,” predicted
Greg Zeschuk, VP of EA and
general manager at BioWare
Austin. He detailed a scenario
where a consumer might place a
hypothetical “iPhone 17” on a table,
which would start a television. A
player would then use a virtual
controller that doesn’t need to be
physically touched. Zeschuk said a
point would come where handhelds
could significantly lessen the gap of
what can be done with a high-end
PC, citing a finite level of fidelity to
which games can actually be built.

Red Fly Studios’ director
of product development Mike
McShaffry is already working in
the mobile space, and shared his
thought that gaming will go the
way of mobile without sounding the
death knell of consoles as we know
them. A recent report stated that
the next Microsoft console would
perhaps be six times more powerful
than the current Xbox 360, and
McShaffry predicted it could play
part in failure of the system.

“I don’t want to try to make a
game that going to cost me $1.7
billion to make,” he explained,
noting the ease and low cost with
which developers can make a game
for iOS and Android devices. He
thinks that more quality games will
make their way to the mobile space,

amid concerns for staggering
development costs for future
Microsoft, Sony, and Nintendo
hardware.

Angst over these potential
production costs hovered over
smArtist principal Jon Jones’s
vision of how many will have to
reconfigure their studios to survive.
“As long as expensive plug in play
blockbusters are made, dumb
money will follow,” Jones said.
“Mistakes will be made, studios will
crumble, and layoffs will abound.”

Under these circumstances,
Jones predicted what he called
“mercenary studios” rising to
prominence. These specialized
studios will stay afloat doing
project-to-project contract work.
These boutique houses would be
a safer way to hedge a developer’s
bets against closures and other
calamities in the industry beyond
their control, he claimed. The fall
of such studios in the U.K. would
suggest otherwise, but his opinion
stands.

On the heels of Kinect title The
GunsTrinGer, Twisted Pixel lead
designer Dan Teasdale painted a
markedly more positive future for
next-generation game development,
predicting a Golden Age. He cited
his experience at Pandemic Studios
as an example of the negative view
of console transitions. He said the
studio failed to produce the amount
of content desired under the
schedule necessary.

“Every console transition you
learn a new set of skills,” Teasdale
said. “You basically relearn how to
makes games again. You’re learning
how to make this content that fits
exactly the console that you’re
authoring.”

This time around, Teasdale
claimed developers should be
able to break the cycle by learning
lessons from the past several years
of development. “This generation
we did something I don’t think
many people realized that we did,”
he continued, making a counter-
point to McShaffry’s bloated budget

concerns. “We started authoring
way above what the console can
handle. We have stuff like Zbrush
where we’re authoring millions and
millions of polys and breaking them
down.”

The significance of this for
the next generation of consoles,
according to Teasdale, is that
developers already have acquired
the skills to create those games. In
a rather bold statement, he claimed
the industry has had its Citizen
Kane moment.

“I think we passed that point a
few years ago without realizing it,”
he explained. “We have now defined
our tools, our skill-sets. A design
vocab was something people at
GDC panels would try and make ten
years ago. We have that now.”

Others also provided examples
of innovations and tools that are
still being developed and learned.
University of Texas computer
science professor Donald Fussell
described research students have
put into efficiency-related software
tools, such as a system checking
process called model checking.

“What we want to do is have
game [developers] be able to check
the consistency of the virtual
worlds that they are building while
they build them,” Fussell said. The
idea is with a push of a button to
allow developers to answer the
questions concerning various
states and the conditions for those
states in a kind of concurrent bug
checking.

No matter what view of the
future speakers presented, there
remained a constant strain of hope
and opportunity for developers
through the night. Whether
the industry moves along with
Teasdale’s proposed “Golden Age of
gaming,” or continues further in the
mobile and smartphone direction,
developers were relatively bullish
on the future of the industry.

—Gerren Fisher

a panel of experts discuss the pending console transition

Twisted Pixel's The GunsTrinGer.

headS-Up dISplaY

www.gdmag.com 5

the origins of kyoto's best chiptune party

\\\ A cozy 8-bit themed bar,
whose back corner substitutes
for an elevated stage, has over
the course of five years become
among the world’s most widely
respected venues for live
chiptune music.

Located in Kyoto, a stone’s
throw away from the historic
geisha district of Gion, Café la
Siesta has been host to Bit Shifter
of New York, Swiss Atari musician
STU, and Akira 8GB of Argentina.

Part of the allure of the
location’s 1H1D!!! live shows is
the mellowness of the vibe. The
clink of beer glasses and casual
conversation mingle with the
reverberating square waves. The
party gets its name (short for “1
hour, 1 day!”) from game creator
Takahashi Meijin’s reminder to kids
to limit their Famicom intake to
one hour per day.

“These machines have had a
profound impact on my life,” says
shopkeeper Master Kohta of the
old-school Nintendo consoles.
“I get a lot out of using them to
create music.”

The bar’s frequent nighttime
parties are set in motion by a
DJ set by Kohta, as listeners
in Japan and overseas join the
Ustream feed. Broadcasting his
shows has paved the way for
surprising collaborations. For
example, the freeware developer
Locomalito, maker of the side-
scrolling shooter HydoraH
alongside composer Gryzor87,
recently reached out to 1H1D!!!
over the web from their studio in
Andalucia, Spain.

This correspondence led to
the PC game’s Spanish-language
vocal track “Path of Scylla” being
arranged by Kohta and Siesta
regular BIG BROTHER. The remix,

featuring Japanese lyrics sung
by vocalist Asaka Tomoko, was
performed at the most recent
1H1D!!! live show.

As of this writing, the most
recent party witnessed Swedish
artist Nordloef, donned in a ski
mask, dreadlocks whipping
madly through the air, wielding
dual Game Boys. The performer
is perhaps best known for
reinterpreting the aesthetic of the
classic console through the lens of
punk rock.

It's easy to see how a gaming
device's signature sound can
capture an artist's imagination
when that sound is pushed in

unintended directions, as with
Nordloef's cover of Weezer's
"Buddy Holly". Many chiptune
musicians prefer not to have their
work confused with game scores,
but at Café la Siesta the historical
contexts of 8-bit are impossible
to ignore.

March's 1H1D!!! headliner,
Soichi Terada, is second only
to foam-suited chip-pop group
YMCK in elaborate style–he
wears a white mask reminiscent
of Noh theater and a Shinto
shaman's red hakama during
his multimedia "Omodaka"
performance.

Omodaka addresses the
audience through a guttural,
electronically distorted vocoder.
After introducing his band
members, which include a DS
Lite and PSP, he performs these
instruments next to a flat-screen
monitor that projects the image of
a rosy-cheeked enka singer. Game

hardware is put to use in conjuring
up a contemporary take on ancient
Japanese tradition. (Terada has
previously written music for the
ape escape game series.)

Other performances at Café
la Siesta have featured Hally, the
founder of influential chiptune

label VORC, and veteran game
composer Kimitaka Matsumae.
Even the sign outside is designed
by pixelJunkeden artist Baiyon.
These marks of legitimacy are
easy to appreciate among chip
music organizers in the West
who know what it takes to draw a
loyal crowd.

Five annual 1H1D!!!
compilations have been
published to disc, due to support
from local artists. You'll usually
see KAZ a.k.a.HIGE, Ben, Longfi,
USK of Portalenz, NTDSK, or
the ever-unpronounceable
NNNNNNNNNN at every show.
The participation of these Kansai

-area musicians, among others,
has been the key to Café la
Siesta’s success.

So if ever you find yourself
in Kyoto, do yourself a favor and
head to Café la Siesta, and let the
chiptunes begin.

—jeriaska

The Café la Siesta
interior.

http://www.gdmag.com

TTTToTo g getetettt i i invnvololveveveveveedd d cococontntntttaaaacact t t ususu a aaaatttt sasaleeees@s@ss@fmffmfmmmmooooododododododdodod o.o.orgrgrg. . .

FiFirereeelilil ghghght t t TeTeTeTeTechchchnonoololooogggggiess PPtytytyy Ltd.

wwwwwwwwww...ffffmodd..ooorg

EffEffEffEffffEffEffEffffEffEffEffEffEffE eeectsts sssssssuuuuuupupuppu pllplpllplplieiieieieieeieieieieieieeed d d ddd d bybybyyy

• New DAW inspired multi-track music and event editing interface

• Fully featured mixing desk with pro effects for mastering

• Create, add, edit and mix audio content live in game

• Integrated profiler captures game events and audio output

• Hardware control surface support, mixer snapshots, VCAs, sends,s, neneneststed events,
source control/mumultlttii ususererr cocc llaboration and more!

Introducing

See us at GDC 2012, Stall 1532

http://www.fmod.org
mailto:sales@fmod.org

WWW.GDMAG.COM 7

You’re at home, and you’ve just logged into the latest, greatest multiplayer FPS to come out of
BigAddictiveTimeSuck Studios. You’ve spent countless hours in multiplayer matches and maxed out your
character. You dumped more cash than you did on your previous vacation to Hawaii to upgrade your character
until he had more killing power than Arnold Schwarzenegger as the Terminator. Your win streak was flawless—
one more and you’ll be at the top of the leaderboard. You log into a server and are ready to kick some butt. Then
you get whomped by the first level-1 character with a wooden club.

F E R D I N A N D S C H O B E R

Welcome to cheating hell: You picked the wrong server. There is no
salvation. Your statistics are going to suffer. Kiss that flawless win
streak goodbye.

Multiplayer and MMO game functionality is now at a stage where
game developers are no longer investigating how to do it, but rather how
to do it more securely and efficiently. There are more online players, and
eSports, and in-game economies than ever. And those that are backed by
real money require more robust security than is typically implemented for
multiplayer games.

The current prevalent security approach is to have game servers
under full control of developers and publishers, either on a closed console
platform or in a datacenter. This limits the attack vector of cheaters
significantly, and it allows for much more secure play than leaving the
game server in the hands of the players. At the same time, it causes a
scalability bottleneck and an end-of-life support issue for games.

To address scalability, an increasing number of developers and
publishers are turning to cloud environments to host servers for
multiplayer games. Pushing servers into the cloud has multiple
benefits. First and foremost, it virtually eliminates capacity planning;

with a new game, it’s often very difficult to estimate a concurrent player
count, which frequently results in unused server capacity. Secondly,
unlike in single datacenters, appropriating new servers in the cloud is
easy, and it is no challenge to absorb even the most significant player
spikes over the lifetime of a game (see Figure 1). Finally, it also frees up
constrained development resources that could be used more efficiently
elsewhere. Overall, hosting servers in the cloud can significantly reduce
running costs of multiplayer and MMO games, especially if strong player
fluctuations are expected during the game's lifetime.

Because of these benefits, moving to the cloud seems like a great
proposal for most development studios. But what if you are a small studio
that has to reduce costs? What if any sizeable datacenter is a no-go, and
even using a cloud service is outside your reach? What if you want to
provide your players with the ability to host their games securely for end-
of-life scenarios, when you have to stop ongoing support of a game? The
answer you may often hear is that “without servers under authoritative
control, it’s impossible to guarantee cheat-resistant gameplay."

Here I will show you a different approach: If you are willing to spend
engineering effort, it’s possible to build a cheat-resistant peer-to-peer

http://WWW.GDMAG.COM

GAME DEVELOPER | MARCH 20128

multiplayer system that requires no datacenter
resources. It is effectively your own private,
cloud-like system.

D E S I GN B A S I CS
/// When designing a new system like this, you
should start by taking a closer look at which
security and anti-cheating guarantees you
need. Independent of game type or mode, the
following guarantees are essential for a cheat-
resistant design:

1. Strong player identities.
Players should not be able to participate in
multiplayer gameplay without presenting
strong proof of identity. Such identities
should be a scarce resource. Strong
identities can be used to uniquely identify
cheaters and punish them if needed.

2. Message integrity and authenticity.
Any type of message between players
needs to be protected from modification
and replay attacks. Fur thermore,
message authenticity should be verifiable.
Without these guarantees, cheaters can
assume other identities and manipulate
messages. Depending on the type of
game, message confidentiality may also
be essential to cheat-resistant gameplay.

3. Gameplay verifiability.
Gameplay actions need to be verifiable.
Given a set of star ting conditions
and actions, a game client should be
able to determine if all actions were
valid and which f inal outcome is
expected. Verifiable gameplay allows
the identification of current and past
cheating attempts.

If a system provides these guarantees, it can
provide cheat-resistant gameplay. Guarantees
1 and 2 can be implemented in a peer-to-
peer system, and they map directly to cheat
resistance. Guarantee 3 is not required in a
client-server model because all game logic can
be pushed into the trusted server, but in a peer-
to-peer system, we need to be able to verify the
actions of other peers, since they are untrusted.
How to achieve this in a peer-to-peer system is
not immediately obvious: By definition, a peer-
to-peer network has no single arbiter. It may
therefore seem futile to even attempt to create a
cheat-resistant peer-to-peer system.

However, in virtually all games, the vast
majority of players will fall into one of three
categories: players who choose the game for
its challenge and would not consider cheating;
players who are participating in a friendly
game with their friends; and players who exploit
glitches if they are easy and risk free—like
item-duplication glitches—but don’t actively
participate in cheating. In other words, when
you look at a larger sample set of players, the
honest players will be in the majority. We can use
this to our advantage by using the power of the
combined player base.

But how do we do this? Democracy! We’ll build
a voting system, which is something you may
already have seen on a small scale in multiplayer
sessions. Let’s assume that any given player is
a cheating player with a probability of 1/c, which
(as noted before) is rather small for most games.
When we look at a group of n players, the chance
of picking a group that consists of only cheaters
is (1/c)n. For large n and c, the probability of
having a group of cheaters decreases quickly. A
vote in a large group of players should therefore
be dominated by honest players, as cheaters
should be the minority. To be more precise, the

probability p that 1/x of the players in a group of
n are cheaters is p = (1/c)n/x. This probability has
to be low to ensure an honest outcome for most
votes. Once we have identified 1/c for a game,
we can tune the number of players (n) such that
we have a satisfactory probability p for a value
of x. This allows us to determine a minimum
group size for gameplay verification. The value
for x should always be greater than two to keep
cheaters in the minority.

In practice, the exact group size may be
hard to calculate because c has to be estimated.
However, for any sizeable group of players
(typically more than five), it is safe to assume
that there are more honest players than
cheaters. As a result, for any vote on game
actions, a majority of the votes should come to
the same honest (i.e., non-cheating) outcome.
In this group, we will always be able to identify
cheaters with one or more votes, as non-majority
votes are highly likely to be cheating attempts.

A voting system like this is very powerful, and
it will hold true as long as less than half of the
player base is cheating. In practice, voting could
even identify cheaters in environments where
they are the majority, as long as not all cheaters
are using a very similar cheating method. Simpler
games are more likely to have identical cheating
methods. If cheaters use different methods, they
will disagree on the outcome of a vote and the
largest matching vote would still be the vote of
honest players.

P E E R-TO - P E E R D E S I GN
/// With the basics for gameplay verification in
place, the first design challenge for our peer-
to-peer system is authentication. As mentioned
before, cheat-resistant systems need strong
player identity. Without strong player identity
we cannot leverage the power of the combined

FIGURE 1: Concurrent player count (solid
line) vs. server allocation (dotted line).

With a single datacenter, overallocation of
servers is needed. Fitting available server

resources to the player curve requires
constant tweaking. In contrast, the cloud

can be fit tightly to the player curve.

player base—cheaters may just create zombie
accounts to swing votes in their favor.

Depending on your platform, you may already
have the tools to solve the authentication and
identity problem. Current game consoles provide
you with a basic player identity (or profile) and an
accompanying authentication system. You can
use this identity and any exposed authentication
tokens for your own purposes. Similar
functionality exists for most mobile platforms as
well as desktop systems. If you’re developing on
a platform that does not provide this functionality
or you choose not to use it, you’ll need to create
your own authentication system. The core issue
to consider here is how to provide secure user
authentication under all circumstances; multiple,
well-known authentication protocols exist for
such purposes (and it’s unwise to design your
own). It’s important that user identities are also
a constrained resource. For an example system,
we will assume that user accounts are tied to
game keys and that a secure login server is
needed to start any multiplayer session. The
login server will also provide a verifiable identity
token for later use. We’ll call this first peering step
[Authenticate] .

Once we have a set of authenticated players,
we now need to construct a peer-to-peer mesh.
The main security challenges here are integrity
and efficiency. We want only authenticated
players to connect, and any new players should
find other players as quickly as possible. To join
a peer-to-peer network, a new player needs to
know at least one other active peer node. The
distribution of such initial peers should be the
final step during player authentication. Either
the authentication system keeps a list of active
peers and selects a suitable subset for the new
player, or a handoff to a dedicated peer-to-peer
tracker or dictionary occurs. The tracker is also
responsible for verifying that peers are still
connected to the network and providing updated
peer selections when more connection points are
needed. For security purposes, the peer selection
shouldn’t be predictable; otherwise, cheaters
may be able to create cheating clusters in the
network. In our example system, we assume we
have a small set of trackers available. These will
provide known, valid peers to any new peer with
a valid authentication token. We’ll call this step
[GetInitialPeers].

A centralized tracker will still require some
datacenter resources. However, unlike the
client/ser ver design, it’s very lightweight.
A tracker only handles client lookups and
infrequent pinging, and it scales to very large
numbers of concurrent players without any
significant investment in hardware. Even better:
at the end of life of a game it can be handed
off to the fanbase, keeping the most vocal and
hardcore fans happy well after the game’s shelf
life has expired. An alternative to a centralized
tracker is a peer-to-peer tracking system that

keeps localized routing data on every peer in
the network.

Nex t, we need to provide message
authenticity and integrity guarantees. For
this, all communication between peers has
to be pair wise encrypted. Each new peer
connection should star t with a security
handshake that establishes an encryption
protocol and secret encryption key to ensure
that all further communication is encrypted.
Encryption provides additional confidentiality
and digital signatures, and sequence numbers
can provide further integrity and protection
from replay and message injection attacks. For
either option, each peer will have to keep one
or two keys per active connection. To prevent
unauthorized peers from joining, the handshake
also needs to verify the authentication token.
In our example system, we can satisfy these
requirements by first using TLS to select a
unique encryption key. We then use this key
in symmetric AES encryption with CBC as a
block cipher mode for pairwise communication.
As a final step, we verify the identity of a peer
through the authentication token that was
provided by the login server. If it is invalid, the
connection is terminated. Let’s call this step
[SecurePeerConnect] .

This step has to be repeated for each peer
node that joins the gameplay session. In addition,
peers that drop from the network for any reason
need to be replaced. (In our example system,
a peer has to contact the tracker to retrieve
replacement peers).

G A M E PL AY V E R I F I C AT I O N
D E S I GN
/// Now that we have a robust peer-to-peer
system design, let’s look at how to handle
gameplay and voting.

The design of the gameplay propagation
system will depend on the game type. In
traditional multiplayer games, like FPS or strategy
games, gameplay messages only propagate
between a limited set of players, and the
game state is transient. Gameplay data, except
updates to the player’s profile, does not persist
longer than a short single gameplay session. In
contrast, MMO games have to propagate game
updates amongst a very large set of players and
need a persistent game state.

V E R I F Y I N G T R A D I T I O N A L
M U LT I PL AY E R G A M E S
/// The two biggest problems here are
finding peers for gameplay verification, and
synchronizing gameplay effectively. While it’s
possible to perform synchronous updates and
verification without any form of peer-to-peer
structure, it's much simpler to use a two-tiered
peer-architecture design. Here, we divide the
peers into trusted and regular peers. A small set
of trusted peers from the overall peer population

will serve as the arbiters and manage the other
peers. Trusted peers—or supernodes—have
proven over time that they are trustworthy and
very unlikely to be cheaters, so their resources
and trustworthiness can be used in the overall
verification system. In our example system, we
keep this trust information on the trackers.

Let’s start by first picking and assigning
at least one supernode to each existing game
mode (say, deathmatch vs. capture the flag). For
redundancy, multiple supernodes are preferable,

WWW.GDMAG.COM 9

FIGURE 2: Simplified dataflow between an authentication
system, and supernodes (red) and peers (blue).
Gameplay and authentication flow is shown as a solid
line, verification flow as a dashed line.

FIGURE 3: Event flow for a standard peer.

http://WWW.GDMAG.COM

and the number of supernodes per game mode
should also be scaled according to popularity. When
new players join the peer-to-peer network, we now
modify [GetInitialPeers] so they are first routed
to the supernodes for their game type instead of to
regular peers. Supernodes then divide new peers
into gameplay groups and provide the peer set to
the joining peer.

A gameplay group is the traditional set of
players in a gameplay session. Additionally, new
peers are joined to the supernode as a voting
peer and may be called upon at a later point to
vote on game actions. We call both join actions
[GetSecondaryPeers]. All voting actions are handled
through a dedicated connection, which is different
from the gameplay connection. Each verifying
peer is connected to at least one supernode, and it
should never verify its own gameplay sessions.

Gameplay actions are now executed and
verified as follows: When a peer performs a
game action, its peers in the same session are
updated directly in the same way traditional
game clients would be. We call this action
[U p d a t e G a m e P l a y] . In addition, the peer
sends its action and relevant game state to the
supernode. The supernode forwards verification
information to a set of verification peers and
requests a vote. This set of peers can be across
different game modes, but should never be in the
game session they verify (see Figure 2). Each
verifying peer executes the action and returns
with one vote. The supernode can then confirm or
reject the gameplay action to the gameplay peer.
We call this action [VerifyGamePlay] .

It may not be possible to verify all gameplay
actions in all session types due to constrained
network resources. A set of peers with very
limited network bandwidth will not be able to
duplicate all game actions without impact to
general game flow. Fortunately, we can often
rely on the game flow for such scenarios. In
nearly all games, cheating attempts are not
singular events, but have long-lasting impacts
on the game state. Therefore, even verifying only
high-risk game actions or a set fraction of game
actions can effectively reveal cheating attempts.

Verif ication cannot be performed as
quickly as a local gameplay action. In addition
to verification time, it requires at least one
round-trip each between the gameplay peer/
supernode and supernode/voting peer. Peers
can work around this delay by opportunistically
executing gameplay actions before a vote is
complete. All gameplay actions are temporarily
accepted, but they are not committed until
a vote is confirmed. For this, the peer keeps
an action history to roll back any action that
is rejected at a later point. It is not desirable
to have rollbacks during a game session, but
they are expected to be very rare. Specifically,
rollbacks should occur only during a cheating
attempt. At the point of a cheating attempt,
players will prefer a rollback rather than

continuing with a cheated game state, even if it
impacts continuity. We call this rollback action
[StateRollback].

Once a supernode rejects a gameplay update,
it can also isolate the offending peers and react
appropriately. The reaction can vary from removing
the cheating peers from the gameplay session and
marking the cheating attempt on their profile, to an
immediate ban from the network.

It is important that supernodes are verified on
a regular basis to detect any malicious behavior.
When multiple supernodes are assigned to one
game mode, they can arbitrarily verify each
other’s behavior and the voting results that are
sent to the peers. If a cheating attempt is found,
the offending supernode can be reported to the
authentication service. Here, it can be removed
from the list of trusted peers.

M A S S I V E LY M U LT I PL AY E R G A M E S
/// These can use the same voting design
(see Figure 3), but gameplay updates need
to be extended to take persistent game state
storage into consideration. As a result, different
segmentation of supernodes is needed. Instead
of segmenting supernodes by game modes, the
MMO game world is segmented into chunks,
which represent game areas. The number
of chunks will be static in most games. One
supernode can handle multiple chunks, but
each chunk should have at least two supernodes
assigned to it (see Figure 4). When players move
into a chunk in the gameworld, they transfer to
one of the associated supernodes. A chunk to
supernode mapping can either be provided by
the tracker, or negotiated amongst supernodes.

The supernodes of a chunk and all connected
peers keep its game state. Like in the previous
design, game actions are executed and voted on.
Similar to before, peers should not vote on actions
in their own chunk to reduce the incentive for
cheating. Players are less likely to cheat if it does

not affect them directly.
In a system where all data is stored on peers,

a high peer churn can cause issues. Therefore,
you should always ensure that game information
is updated in a shared database in addition to the
game state that is held on supernodes. Updates
can be performed asynchronously from each
supernode and merged into a time-stamped
game state in the shared database. This shared
database could itself be a peer-to-peer system,
single system, or a cloud-based solution.

Multiple copies of the same game state and
a large population can significantly reduce the
need for frequent backups. By requiring at least
two supernodes per chunk, we can ensure basic
redundancy. Further redundancy is provided by
connected peers, as they also keep parts of the
game state. When peers leave, the supernode
can provide the needed game state to new
peers. When a supernode has to be replaced,
the secondary supernode can be used for
bootstrapping. If a conflict in states of multiple
supernodes is detected, it is treated similarly to
a mismatch in a game update vote.

Not relying on a shared database will work
as long as sufficient supernodes and peers
are present. As a result, during the early, high-
population period of a game (as in Figure 1) the
shared database will only provide an auxiliary
service. As time progresses and player numbers
drop, the shared database will increase in
importance. It becomes essential when chunks
only have one supernode. It then serves to
bootstrap any chunks that have lost their last
supernode or are devoid of peers and supernodes.

At this point, you should have a good
understanding of how to design a cheat-resistant
peer-to-peer system that requires minimal
dedicated server resources. The outlined design
should serve as a guide in implementing your
own solution; however, some corner cases
were left out due to space constraints and will
require additional design effort. Still, you should
already see that it is possible to create a cheat-
resistant peer-to-peer network that is highly
scalable and requires little to no server capacity.
Once designed and implemented, you can use
and benefit from such a system across all your
games. Why bother with capacity planning when
your players can take the load for you?

FERDINAND SCHOBER is a software development engineer

in Microsoft’s Advanced Technology Group. He is an old-

school RPG player and has been in the game industry

for over five years, focusing on security and networking

across different platforms. Ferdinand worked on a breath of

projects ranging from the Windows 7 multiplayer platform

to security testing on the GEARS OF WAR and HALO franchises.

He also spent time working on academic research in cloud-

based cellular malware detection and entertainment

security analysis. You can find him on Xbox LIVE and most

social media sites.

GAME DEVELOPER | MARCH 201210

FIGURE 4: Segmentation of MMO game world into chunks.
Each chunk contains multiple supernodes (red) based
on client population (blue). Chunks do not need to be of
equivalent size in the game world.

http://twofour54.com/gaming

http://red5studios.com/jobs

Volition's SaintS Row: the thiRd

One of Volition’s goals for SaintS Row: the thiRd was
to exaggerate exciting and dramatic moments to create a
wholly over-the-top experience. For vehicles, this meant
one-button drifts, new aircraft, and above all, improved
deformation. Players needed to see the fronts of their
sports cars bashed several feet in after a 100mph collision,
and be able to glance back from their tank at the trail of
mangled cars in its wake. And while some of the techniques
described here may only be necessary for games that
feature a mixture of on-foot and vehicle gameplay, we hope
that many of the challenges, shortcuts, and pitfalls will be
relevant to those tackling similar deformation problems.

V e hi c l e c o lli s i o n i n e a r li e r S a i n t S R o w T i T l e s
/// In order to move toward our deformation goals, it was
first necessary to simplify our method of representing
vehicle-collision geometry. In SaintS Row 1, vehicles used
the somewhat naive approach of having collision geometry
that very closely matched the visual geometry, including
detailed interior and trunk geometry. An example of this

collision geometry can be seen in Figure 1. This high-quality
model proved computationally expensive during collisions.
Additionally, systems like our water simulation functioned
better when dealing with simple, broad shapes.

In an effort to address both of these issues, SaintS Row 2
added the concept of "simple collision." As the name implies,
simple collision was a vastly simplified version of a vehicle's
collision geometry that was used in addition to the old collision
model, then referred to as “complex collision.” Figure 2 shows an
example of simplified collision. As you can see, this simplified
collision is only a broad, mostly convex shape without any
interior collision. The vehicle’s simple and complex collision
models overlapped each other, colliding with mutually exclusive
subsets of object types. Larger-scale physics interactions, such
as vehicle-vehicle or vehicle-world collisions, were handled with
the simple collision model, whereas smaller scale collisions,
such as vehicle-bullet or vehicle-ragdoll, were handled with
the complex collision layer. While this double-layered system
provided performance and interaction benefits, it would be
unfeasible for our planned vehicle deformation.

www.gdmag.com 13

V i c T o r c e p e d a i V

Continued on Page 15

http://www.gdmag.com

BOOTH #
NH1638

Powering projects from

and many others...

All logos and trademarks are the property of their respective owners.

Umbra 3 is available for free evaluations
from umbra3.com. Full technical support
is given during your evaluation. UMBRA3.COM

UMBRA 3 RENDERING OPTIMIZATION
Render more complex and visually striking
worlds by cutting down CPU and GPU
processing times by optimizing critical
parts of a game such as rendering, audio
and game logic. Umbra middleware auto-
matically generates portals for game scenes
in pre-process taking away tedious manual
work from artists. The generated data is
used at runtime to perform fast and
effi cient visibility queries.

By eff ectively determining what’s visible
and what’s not, Umbra 3 helps you to
render visually stunning worlds running at
smooth framerates. Integrating Umbra 3
into any type of game engines is easy.

Umbra 3 middleware is available for all
major console and mobile platforms.

http://umbra3.com
http://UMBRA3.COM

www.gdmag.com 15

U ni f y i n g t h e C o lli s i o n M o d e l
/// It was important for us to change a vehicle's physics geometry so that it
accurately reflected any damage it received. This deformation would need to
be applied both to the simple and complex collision layers to keep the two
aligned, lest we cause issues with phantom object-specific collision lingering
after deformation events. Since the methods we had been discussing and
prototyping would likely require subdivision of a vehicle’s collision model,
using our old two-layered system would have required subdividing two
different layers of vehicle collision and linking their corresponding pieces
to make sure any deformation was synchronized. Neither vehicle artists nor
programmers wanted this level of complexity in the collision geometry, so
we began to investigate the feasibility of unifying our collision model.

We were already discussing the removal of complex collision at this
point; it was time consuming for artists to create, required additional
memory, and caused significant CPU performance hits in various types of
collisions. The added headaches complex collision would have caused our
proposed deformation system cemented our desire to get rid of it, but we
needed to make sure we could do so without significant repercussions.

The two primary objects that collided with vehicle complex collision were
ragdolls and bullets. Ragdolls were actually an easier case, because the main
reason they needed to collide with complex collision was so they would behave
properly when inside a car (interiors were modeled only in the complex collision).

In SaintS Row 2, while it was occasionally neat to see a corpse bounce
around in the rear seat of a convertible you had just commandeered with
lethal force, it was common for the ragdoll to jitter through unnatural
positions as the physics system did its best to handle all the constrained
bones being thrown around in a tight enclosure. In fact, animation had
already taken umbrage with this behavior and was leaning toward an
animation-driven solution for corpses in vehicles. This fit in perfectly with
our plans: If shooting a passenger in a vehicle would no longer result in them
ragdolling, there was no need for interior collision geometry.

s ho ot ing a B U ll e t t h r o U gh a s olid C a r
/// Bullets proved to be a more complicated problem. Like ragdolls, they
primarily collided with a vehicle’s complex layer; in this case, a vehicle’s interior
collision geometry or, more specifically, the absence of interior collision
geometry. The sheer number of vehicles and frequency of gunplay in SaintS Row
makes it critical that weapons be able to fire through windows and open doors to
hit enemies. However, the solid “simple collision” shapes didn’t have any holes
or open areas for the bullets to go through. Fortunately, bullets in SaintS Row
are simulated with raycasts, and there was already a mechanism in place for
rejecting early hits in case of breakable materials or penetrating bullets.

Exploiting this system, the “shooting through a solid car” problem was
solved by calculating the number of windows or open doors the bullet ray
would intersect upon collision with a vehicle, and then conditionally allowing
the bullet ray to penetrate the vehicle. Since these doors or windows had no
representation in our simple vehicle collision, this intersection test was done
separately from our physics world. Depending on the number of windows or
doors the raycast hit, we would do the following:

0 hits: The bullet hits the car where dictated by the car’s simple collision.
1 hit: This case was the most complicated because sometimes the bullet
would hit a human in the vehicle, and there were also a variety of issues
related to firing through the window of a partially open door. Ultimately,
we decided to both damage the vehicle and cancel the collision. However,
we would cancel any ground-hit VFX to prevent dust explosions from
clipping through the floor of a car when shooting at it through a window.
If you carefully examine this case in the shipped version of SaintS Row:
the thiRd, you may notice minor visual oddities, but they’re subtle
enough that the vast majority of players won’t pick up on them.
2+ hits: the bullet goes through the vehicle, shattering any windows it
intersects.

Continued from Page 13

http://www.gdmag.com

This approach allowed us to simulate bullets going through our otherwise
solid simple collision, and it removed the final blockade toward a system
where all vehicle collision was represented by a single simple model.

D e fo r m a b l e C o lli s i o n P i e C e s
/// With this new model in place, we were ready to start prototyping different
methods of deformation, and though we had a variety of ideas for potential
approaches, time and complexity concerns drove us to prototype the simplest
solution first, which ended up working so well we eventually shipped with it.

Our solution for the physics side of deformation was to subdivide the
vehicle’s collision to include a variety of deformable collision pieces (DCPs).
These pieces corresponded to areas of the vehicle we wanted to be able to
bash in, and their collision could be turned off when a sufficiently damaging
event occurred. Since we could already build vehicles with dislodgeable
components, prototyping this approach required no new pipeline support
(though we did modify the pipeline once we settled on this approach).

figure 3 shows one of our early prototypes. The front of the car is
colorfully subdivided into different pieces, all of which could be knocked off to

change a vehicle’s physics. Iterating with various patterns, we found that the
removal of smaller pieces had almost unnoticeable effects on the character’s
interaction with the vehicle, so we moved toward coarser subdivisions with
fewer pieces, eventually settling on the pattern seen in figure 4. This pattern
features only three pieces on the front and back sides of a vehicle, one for
each corner and a central piece. While this reduced number of pieces made
things simpler from a pipeline and simulation standpoint, we were still
concerned about visual fidelity.

li n k i n g V i s u a l a n D P h y s i Cs D e fo r m at i o n
/// While we had no system for physics deformation in previous SaintS Row
games, our artists had still been pushing the limits of what could be done
with visual deformation without diverging so far from the physics geometry
that the disparity was obvious. figure 5 gives an example of the difference
between a SaintS Row 2 vehicle and its fully deformed state.

To accomplish these deformations, the artists built a deformed copy of the
visual geometry of any parts of the vehicle they wanted to deform (any part not
duplicated into the deformed copy wouldn’t deform in-game). When a vehicle
was first deformed during play, we would allocate it a set of morph weights that
matched the number of vertices. Each weight was only a byte long, but this
was not a trivial amount of memory given our 10–20K verts on a car, so we
tried to be careful about what cars deformed in an effort to keep memory usage
under control. When a collision or other damage event occurred on the vehicle,
we processed a “deformation sphere” on it, which deformed morph weights of
vertices within a radius of the sphere’s center with declining severity for points
further from the center. The vertex shader associated with vehicles would then
take these weights as a parameter and interpolate between the deformed and
undeformed vertex positions for the two models the artists had built.

This deform target system for handling visual deformation had no hard
limits in terms of the amount of visual deformation allowed, so we decided
to keep it mostly intact, only extending the amount of deformation built
into the models and adjusting our morph weight system to tie in the DCPs
described above. For the first adaptation, the vertices on the front and back
of deformable vehicles often differed by 1–2.5 feet from their undeformed
position, whereas the vertices of a deformed model previously differed by
only a few inches from their undeformed counterparts.

We didn’t realize the second adaptation—linking visual deformation with
the removal of DCPs—was necessary until we tried and failed to use the
vehicle damage events to drive both visual and physics deformation. Our first
mistake was making DCPs use a hitpoint system, where their hitpoints were
gradually worn down through multiple collisions, while visual deformation
caused by the deformation weights was not cumulative. Instead, only the
most extreme deformation value of all relevant deformation events was
used. However, even after revising DCPs to use a damage threshold (where a
certain amount of damage had to be done in one event to remove the DCP),
we ran into trouble; while visual vehicle deformation happens as a gradient
process, the removal of a DCP is one discrete event.

It makes sense to see the front of your car gradually get more bashed
in as you experience more and more extreme collisions, but if you set your
DCP removal threshold at enough damage to do 50% visual deformation,
the visual difference between a front end that’s 52% deformed and one
that’s 48% deformed is minor, though their physics differences are as
far apart as possible in this system. The above example is exacerbated if
applied to two adjacent DCP sections because, though they are deformed
similarly, one has physics geometry and one doesn’t. Additionally,
because deformation is applied in spheres, the visual geometry
overlapping a DCP could be deformed substantially by a collision, even if
that collision wasn’t with the DCP in question.

Considering the above issues, plus the possibility of other undiscovered
ways for the DCPs and visual collision to get out of sync, we decided to
explicitly link the two in the following fashion: Each DCP has both a maximum
deformation value any of the verts within it can reach before being removed,
and a minimum value for every vertex associated with it after it’s been

figure 1 figure 2

figure 3

figure 4

figure 5

game developer | march 201216

removed. These values are not the same, and the gap between them helps
with the 48/52% problem above.

Conceptually, you can think of it as being impossible to deform a
vert associated with a DCP anywhere between 35 and 60%. (The actual
lower value varies based on positioning; I’ll go into that in greater depth
later.) Once a vertex is deformed more than 35%, all vertices in that DCP
jump to >60% deformed (though we try to preserve some of the previous
deformation proportions to prevent the vertices from looking too uniform)
and the DCP is removed.

From a player’s standpoint, this dead zone isn't noticeable, because any
impact significant enough to cause >35% deformation is severe enough that
causing 60% deformation isn’t unreasonable. From a visual standpoint, there
is still the problem that 34% deformed regions would have the exact same
physical geometry as undeformed regions. Fortunately, players are trained
to expect a certain amount of hovering as characters in video games can
rarely press themselves directly against visual geometry (such as a wall or
other barrier), so being unable to force the character to touch the vehicle's
visual collision isn't out of the ordinary. Also, the difference between two
inches of hovering and twelve inches of hovering, while noticeable if you’re
looking for it, was unnoticed by virtually anyone outside the vehicle team. It’s
worth noting that clipping looks much worse than hovering, so while there is
minor clipping in fringe cases, like a character’s hand going through a part of
the hood when running into a 60% deformed vehicle at a diagonal, we mostly
opted to go with increased hovering instead.

I previously mentioned the variable threshold for when visual
deformation causes a DCP to be removed. This is necessary to avoid
discontinuous jumps in the amount of visual deformation caused on the
front of a vehicle. If the deformation limits described above were strictly
enforced, then every vertex corresponding to a part of the car missing a
DCP would have a minimum deformation of 60%, whereas every vertex in
a neighboring part of the car with a DCP present would have a maximum
deformation of 35%, meaning there would be a significant visual disparity
on the boundary between these two regions. Our solution was to have
each vertex compute its maximum deformation threshold by taking
into account the distance from its two nearest DCPs. Figure 6 gives an
example of how the deformation threshold would vary across vertices
with the center DCP missing. As you can see, the vertices are 100%
deformed near the center of middle DCP, and they become less deformed
as they near the side DCPs until they reach the threshold of 35%.

Our first pass at this visual deformation system saw CPU spikes of
20ms, so we had to heavily optimize all the per-vertex code. We rearranged
our vertex buffer so that reading through it was cache friendly, used SIMD
commands to process 4 vertices at the same time, and made a deformation
job system to process different parts of the car on different threads.
Ultimately, we were able to get the processing time down to something that
barely registered on performance readings.

Having resolved these issues, we were able to create a deformation
system that allowed for a wide range of visual deformation and link it to a
physics system that was simple, yet provided sufficient support so as to not
undermine the visuals. Now it was time to turn our attention to tanks.

P r e v i o u s At t e m P t s At C A r- C r u s hi n g v e hi C l e s
/// We had wanted vehicles that could drive over other vehicles in earlier
SaintS Row games (especially the monster trucks in SaintS Row 2), but our
efforts were frustrated by our vehicle wheel model. The SaintS Row series
uses the Havok physics engine and a heavily modified version of its vehicle
kit for our vehicles. Havok simulates wheels by casting a wheel shape at the
ground and placing the wheels wherever the cast hits, solving the eventual
position of the wheel and the resulting suspension forces from there.
There are lots of good reasons for this approach, ranging from improved
CPU performance to improved contact with the ground. One important
consequence, though, is that the wheels themselves don’t interact with other
objects in the simulation except to push up off of them.

This is rarely an issue with most vehicles, as the wheels are encased in
wheel wells, so nothing would directly collide with a wheel anyway. However,
when we began making vehicles with wheels large enough to potentially drive
over cars, the lack of proper wheel collision became problematic. When working
on monster trucks for Saints Row 2, we realized that, while large wheels would
allow us to drive over large obstacles like cars, they would also allow stationary
monster trucks to be lifted up by smaller cars that drove at them. The root
problem was that the wheels were purely reactive to the geometry near them
because they were simulated by linear casts. Also, while wheels could exert
forces on cars beneath them, the linear cast would have already moved the
monster truck’s wheels to be above the smaller car by that point. Additionally,
while the wheels of the monster truck would exert some force on the car
underneath, it wasn’t enough to keep the smaller car from driving completely
under the monster truck. Adding vehicle-collision geometry that overlapped
with the wheels “solved” this problem, but at the cost of almost completely
removing the monster truck’s ability to drive over cars.

After this disappointing result, we decided to try simulating vehicle
wheels with rigid bodies as opposed to linear casts. This approach was
fraught with a variety of handling issues related to excess friction, and we
eventually reverted to our non-ideal-linear-cast-with-overlapping-collision
approach to ship SaintS Row 2.

“ t h e t hi r d ” t i m e ’ s t h e C h A r m
/// SaintS Row: the thiRd offered us another go at this vehicles-crushing-
vehicles problem (although this time the story called for tanks instead of
monster trucks), and we now had both more development time and a more
refined deformable collision system.

As we approached the problem of tanks crushing cars, we drew
inspiration from two sources. The first was Radical Entertainment’s
PRototyPe, which created the feel of a tank rolling through crowded city
streets, even if the resulting visual and physics deformation weren’t up to
the standards we wanted; however, that shouldn’t be taken as a slight to
PRototyPe, as I think its trade-offs were quite reasonable given the role of
vehicles in that game. The second source of inspiration was various YouTube
videos of tanks running over vehicles. In both PRototyPe and videos we
watched, we noticed that tanks seemed to go through vehicles much more
than they went over them. This approach presented a way to circumvent the
various issues we encountered when implementing monster trucks.

Our most important goal with this approach was to make a tank interact
with a vehicle as if it were a speed bump. PRototyPe gave us the idea of

www.gdmag.com 17

Figure 6

Figure 7

http://www.gdmag.com

knocking all the wheels off a vehicle when it was being crushed by a tank,
which helped, but cars lying on the road without wheels were still tall
enough to cause problems for tanks. This is where our DCP system comes
in, as it made sense that a tank would be able to crush them because
DCPs represent areas of a car that can be deformed. However, we only had
six pieces in the front and back of a vehicle up to this point, so we added
additional center pieces (that could only be removed through crushing)
as well.

Our eventual DCP breakup for a standard vehicle is highlighted in light
blue in Figure 7. As you can see, the vast majority of a vehicle’s collision
consists of DCPs, leaving only a “chassis” piece at the bottom which looks
not unlike an elongated speed bump. We then removed DCPs whenever they
would collide with a tank’s geometry, which resulted in our tank driving
through them as if they weren’t even there and interacting only with the
lower “speed bump” section of the vehicle. This successfully gave the feel we
were hoping for. However, as was the case with DCPs when we used them for
collisions, their binary nature meant we only ever had coarse control of the
physics geometry. And, as with removing the DCPs from collision, we paired
this coarse geometry with a high-quality visual model to convince players of
a car’s deformation.

V i s u a l D e Fo r m at i o n Fo r ta n k C r u s hi n g
/// As was explained in the section about visual deformation for collisions,
the SaintS Row vehicle-deformation system uses a set of morph weights to
interpolate between deformed and undeformed versions of a collision model.

Because the deformation caused when getting crushed by a tank is very
different from the deformation caused by getting T-boned, we knew we would
need to extend this model somehow. However, we wanted to do this without
requiring vehicle art to build another damaged version of the vehicle. We’ll
first discuss the case of 100% crushed vertices because, once we arrive at
that, we could just linearly interpolate between it and the uncrushed position
for intermediate values.

Our initial approach was to crush vertices all the way down to a “crush
height,” which artists would set per vehicle. And while this flattened the visual
geometry as intended, it did so by taking all the vertices above the crush height
and placing them in the same plane, creating an unrealistically smooth and
jumbled mess. Our next attempt fared better, as we introduced a “crush factor”

to determine how close to the crush-height vertices on the vehicle it would be
crushed to.

As an example, say a vertex is at height 5ft with a crush height of 1ft
and a crush factor of .75. The vertex would be translated down 4ft to match
the crush height, but since the crush factor is .75, it’s only translated down
4 * 0.75 = 3ft. Using this system ensured that proportions of different areas
above the crush height were maintained, and it kept the crushed vehicle from
degenerating into a perfectly flat mess. However, our results were still too
smooth, so we decided to enforce a minimum level of collision deformation
to accompany any crushing deformations. This allowed visual crushing
to benefit from the geometric noise and damaged normal maps used for
collision deformation, completing our 100% crushed visual.

Now that we knew what we wanted our crushed model to look like,
the next question was how to arrive at the appropriate per-vertex crush
percentages. We wanted every vertex underneath a tank to be 100% crushed
and then to have a continuous falloff from there, so we projected the tank’s
bounding box onto the vehicle being crushed and made the strength of
crushing morph weights inversely proportional to the distance from this
rectangle. (Note that technically, it wasn’t exactly a projection because a
projection of a box wouldn’t always guarantee us the rectangle we wanted for
performance reasons, but it was conceptually almost the same.)

Naturally, we were concerned about the cases where the high-fidelity
visual deformation would look out of sync with the lower-fidelity DCPs,
especially the central DCPs, which were particularly large and spanned the
width of the car (as was seen in Figure 4). So, we built our pipeline to be

able to support an arbitrary
number and arrangement
of central DCPs, and we only
went with our arrangement
of two for prototyping.
However, when we began
demoing deformation to
the development team,
no one noticed any of the
problem cases. As it turns
out, people rarely jump out
of their tank to run around
the vehicles they just
crushed, and the remaining
DCPs usually approximated
the visual geometry close
enough that any collisions
between pursuing cars and
crushed cars didn’t look
awkward.

In essence, our strategy
for both tank and collision
deformation is similar:
create a simple framework
of DCPs to support a high-
quality visual-deformation

system, and link them where needed. Hopefully, demystifying the various
parts of our approach and explaining the rationale that engendered them will
help you jump-start your own deformation systems.

V i C t o r C e p e D a i V has been a programmer at Volition for nearly four years, working

primarily on the physics, handling, and audio for Saints Row vehicles. He can be reached at

Victor.Cepeda@volition-inc.com.

game developer | march 201218

The author would like thank Justin Miller for his work on the art side of iterating
deformation, Jeremiah Zanin and Shawn Lindberg for their physics advice, and Scott
Kircher and Jason Lowe for their help figuring out the rendering side of things.

mailto:Victor.Cepeda@volition-inc.com

ADVERTISEMENT

When Gearbox Studios’ 2009 game Borderlands landed, it took
everyone by surprise. The critically acclaimed title looked unlike
any previous Gearbox release, and immediately distinguished
itself as a groundbreaking Unreal Engine 3 powered game with
its unique concept art visuals and innovative gameplay. Now the
development studio is pushing Unreal Engine technology even
further with an ambitious sequel.

“As a studio, we’ve been using Unreal technology for about eight
years now,” said Steve Jones, technical director on Borderlands
2 and Gearbox Software. “So we’ve bene� tted from a growing
institutional knowledge of Unreal Engine 3 and how to best
leverage its features and updates to support our goals for our
games. The new Unreal Content Browser has really made a
positive di� erence for us in the development in Borderlands
2 – so much so that it would be di� cult to imagine being where
we are today without it. The o� cial integration of Scaleform was
a very welcome addition, as well.”

Jones said many of the improvements the studio has made to its
rendering pipeline aren’t “visible” – they’re behind-the-scenes
optimizations that reduce the cost of rendering things in their
concept art style. This allowed the team to spend extra memory
and performance budget in other areas, which ultimately
resulted in gameplay enhancements, including more enemies
on screen, better weapon visuals, and more “badassery” across
the board.

“The Unreal Engine’s material system enabled our artists to add
a signi� cant of amount richness and depth to the materials used
on the guns,” explained Jones. “Unreal Matinee is extremely
valuable not just for in-game cinematics, but also as a critical
part of our pre-visualization process. Very early on in develop-
ment, we were able to identify new features we wanted to bring
to the game, and Matinee was used to rapidly develop in-game

proof of concepts that enabled the team to quickly evaluate
ideas with minimal development cost.”

 Gearbox employed Unreal Kismet extensively throughout the
game, and Jones said that it’s the � rst stop for designers seeking
to add interactivity and life to the game world in a fast, � exible,
and powerful manner. Jones’ team was also able to make use of
UE3’s networking support to create co-op gameplay in the huge
open world environments of Borderlands 2 without cutting back
the amount of enemies and loot available.

“In Borderlands 2, we pushed the presentation and gameplay
of our enemies, action skills, guns, and missions (to name a few
features) far beyond the � rst game,” said Jones. “This is made
possible by really leveraging what Unreal Engine 3 o� ers for a
development environment, as well as the extensibility it o� ers
licensees to tailor it to our particular needs.”

Throughout the development process, Gearbox utilized Epic’s
Unreal Developer Network (UDN) extensively. Jones said UDN
is an irreplaceable resource, a gathering of experts on UE3
technology assisting developers across a wide spectrum of
issues encountered with game development.

“UDN has been helpful in a variety of ways, including initial
framework planning, collaboratively working through an
issue, proactively sharing solutions, and even documenting
problems other people haven’t encountered yet,” said Jones.
“It’s an environment that fosters continuously sharing knowl-
edge and we all bene� t from that. All of the other licensees and
Epic personnel contributing to UDN and its mailing lists are a
fantastic resource for getting questions answered.”

 According to Matt Charles, producer of Borderlands 2 at Gearbox,
the team had lofty goals heading into this second installment.
Charles said one of the biggest challenges facing the team was
meeting such high expectations – including their own – since
the success of Borderlands. The team took time to re� ect on the
original game before writing its own recipe for fun in the sequel.
For the team, a desire to keep things fresh and avoid stagnation
was important, but they also realized that Borderlands presents

a large enough world that they could explore in many
possible ways.

During pre-production, Gearbox spent time looking at fan
and press feedback on the original game, which resulted in
some very real and positive changes to the sequel such as
the new mini-map on the HUD. In addition to expanding on
character growth paths, the team also added more richness to
the game’s missions.

Aside from its signature art style, open world environments,
and those interesting characters, Borderlands is known for its
massive amount of weapons. This time around, Gearbox has
focused on bringing more personality to each gun, more dis-
tinction between manufacturers, and creating cooler visuals.

Gearbox has managed to showcase just how far UE3 can be
pushed with the right art direction and creativity at the helm.
PC, Xbox 360 and PlayStation 3 gamers will be in for a wild
ride with Borderlands 2.

UPCOMING EPIC ATTENDED EVENTS

Please email licensing@epicgames.com for appointments

© 2012, Epic Games, Inc. Epic, Epic Games, Gears of War, Gears of War 3, Unreal, Unreal Development Kit, UDK, Unreal Engine, UE3, and Unreal Tournament are trademarks or registered trademarks of Epic Games, Inc. in the
United States of America and elsewhere. All other trademarks are the property of their respective owners.

W W W . U N R E A L . C O M

Canadian-born Mark Rein is vice president
and co-founder of Epic Games based in Cary,
NC. Epic’s Unreal Engine 3 has won Game
Developer magazine’s Best Engine Front Line
Award eight times, including entry into the
Hall of Fame. UE3 has won four consecutive
Develop Industry Excellence Awards. Epic is
the creator of the mega-hit “Unreal” series

of games and the blockbuster “Gears of War” franchise. Follow @
MarkRein and @UnrealEngine on Twitter.

BORDERLANDS 2 PUSHES
NEW BOUNDARIES
WITH UNREAL ENGINE 3
TECHNOLOGY

GDC 2012
San Francisco, CA
March 5-9, 2012

Gadget Show Live
Birmingham, UK
April 10-15, 2012

mailto:licensing@epicgames.com

PUBLISHER
Microsoft Studios
DEVELOPER
343 Industries/Saber
Interactive Inc./Certain
Affinity Inc.
RELEASE DATE
November 15, 2011
PLATFORM
Xbox 360

G A M E D A T A

GAME DEVELOPER | MARCH 201220

WWW.GDMAG.COM 21

/// When Microsoft/343 Industries approached Saber with a proposal to work on the remake of
the original HALO: COMBAT EVOLVED, it was an opportunity that we couldn’t miss. Prior to this project
Saber had never worked on a major franchise, so we were looking forward to a new experience.
We also have a lot of team members who are hardcore fans of the game (well, I guess most game
studios can say this) who immediately got super excited. We didn't know much about the scope or
the intended goals of the project, but we immediately assigned a team of artists to put together
some initial concept pieces which demonstrated some of the potential visual improvement ideas,
and within a week we were on a plane to Seattle to discuss the opportunity.

It turned out that 343 was looking for a complete remake of the original game, which needed to
come out on the 10th anniversary of the original HALO's release. We would have just over a year to
work on the project.

We spent the next few days brainstorming ideas and fleshing out the pillars of the project. What
Microsoft Studios and 343 Industries wanted to do was a “true remake”—keep the original gameplay
intact, but upgrade all the visual aspects of the game, making it look and feel like a true next-gen AAA
title, and add a few new features that would make for a “better package” overall. This included things
like co-op over Xbox LIVE, Kinect support, Skulls and Terminals, and the “toggle feature,” which would
allow switching between the old (Classic) and new (Remastered) visuals in real time. This feature
proved to be very useful since it allowed comparing, in real time, the differences between the old and
the new. People have great memories of the original game and think it looked great—and it did, 10
years ago. Toggling between the views helps players appreciate the improvements made to the game.

Every visual element was going to be remastered, including level geometry, textures, lighting,
characters, weapons, vehicles, special effects, cinematics, and UI. The music audio would also be
redone (only voiceovers remained unchanged). In terms of content, doing this in a year sounded
like a crazy idea, but Saber and 343 believed that with proper planning it could be pulled off.

Obviously we were not making an original game from scratch, so we could rely on a lot of design
decisions that made HALO: CE so successful. Very early on in the production cycle we established
the list of assets we needed to build, and created a schedule to track the progress. In that sense
the project was very predictable, since the scope of experimentation was relatively limited—we did
not have to go back and forth on level flow, game mechanics and design issues, try different types
of AI, balance weapons, or work on the story. All those decisions were already made. However, the

http://WWW.GDMAG.COM

GAME DEVELOPER | MARCH 201222

fact that we had to keep the gameplay
intact imposed some important
limitations and constraints. For
example, it was decided not to
change any of the in-game sandbox
animations. Even though they
look very dated and low-quality by
modern-day standards, replacing the
old handmade keyframe animations
with new mocapped ones was too
risky, because it would have affected
AI, and generated too many bugs
which could not be addressed given
the short production timeline.

W H A T W E N T R I G H T

1 / overall engine solution.
The first production issue we had
to resolve was the overall technical
approach that wou ld sati s f y
two goals: retaining the original
gameplay, and allowing our artists
and designers to achieve AAA visuals.
We considered various solutions.

The first idea was to use the
Saber engine and just reimplement
the game, including AI behaviors,
animations, gameplay mechanics,
weapons, vehicles, and all the other
components. This way we would be
able to give the artists the tools they
were familiar with, and we could rely
on the AAA visuals and technologies
our engine supported. We quickly
discarded this option since we would
never be able to recreate the gameplay
exactly—that was simply impossible,
even if we had unlimited time.

The second idea was to use the
original game, port the PC version to
the Xbox 360, and then start adding
rendering features one by one.
This would allow us to preserve the
original gameplay, but it would have
significantly limited the feature set
we could support for the visuals. After
all, we wanted to use all the bells and
whistles such as multiple shadow-map
light sources, the lighting solution,
materials and textures, particle
systems, and many other components.
Also, if we went down this road we
would have to create art production
pipelines based on what HALO: CE used,
and train our artists to use them. This
would have taken a very long time, and
our artists would have their hands tied
because they would not have access to
all the features, tools, and plug-ins that
Saber developed over the years.

So in the end we realized we had to
combine the two approaches—use the

original game engine for gameplay,
and somehow marry it with the Saber
graphics engine and toolset.

Imagine you are tasked with
putting the mighty 8-cylinder, 7-liter
engine of a 1963 Cadillac DeVille into
the body of a modern stylish Audi
A7, and making the engine take the
inputs from all those state-of-the-
art sophisticated electronics. Both
pieces are amazing and feature
great engineering—but they are
also deeply incompatible. This is how
Saber initially felt about marrying
the original HALO: CE game code with
Saber’s own rendering engine and
toolset—however, this seemed like
the only viable solution.

Having thought more about it, we
realized that this approach is similar
to how our physics engine interfaces

with Havok—the physics world is
represented within the Havok engine,
and then the important pieces of
information, such as object positions,
velocities, and collision information,
are transferred over from Havok into
our game world through an interface
layer. Following the same principles,
we decided that we could create a
proxy object for every game entity
in the HALO world, and transfer the
“vitals” from a HALO simulation
into the Saber engine. These vitals
included camera position, animation
data, various game events (such as
start/stop events for special effects),
audio events, and more.

The advantage of this approach
was that we did not touch the
underlying game logic at all—it
was merrily running on a dedicated

hardware thread, and the “only” thing
we had to do was provide proper
visualization of the game logic within
our engine.

One of ou r eng i ne leads,
Roman Lebedev, was tasked with
the implementation of the basic
“stitching” of the HALO and Saber
engines, and within a couple of
months he was able to build the
game platform to where we could
run around the levels, shoot the
guns, and kill the Covenant. The
artists could go ahead and build the
game assets right away, relying on
the entire toolset—the assets were
exported directly into the game, and
all the features existing in Saber
engine were readily available for
creative use.

HALO: COMBAT EVOLVED
ANNIVERSARY's remastered

visuals (top) compared to the
original's (bottom).

www.gdmag.com 23

2 / online co-op solution.
One of the additions to the featureset
of the original game was online
co-op. Halo: CE supported only
split-screen cooperative play, and
initially Saber was doubtful that an
addition of such a major feature was
possible. Split-screen co-op support
in the original game meant that most
game systems such as AI and game
events were already “made aware”
of two players existing in the game
world, but synchronization of the
game worlds across the network
was a challenge. In our own games,
Saber uses dead-reckoning-based
synchronization schemes which rely
on extrapolation of the game world
states. Implementing such a system
for Halo annivErsary was very risky
since every single game entity would
have to be synchronized—and that
seemed like too much work for the
available time frame.

Greg Hermann, the technical lead
on the project on the 343 side, and
someone with a deep understanding
of the original Bungie technology,
came up with an elegant approach.
The original Halo: CE game engine
was built using a deterministic
solution. In other words, given a
certain game state and a series
of inputs, the game would behave
exactly the same every time you run
it. So theoretically after the initial
synchronization of the game worlds
on two consoles running the game in
online co-op, only the inputs needed
to be synchronized —and then the
simulation would continue in sync.

This concept seems simple on
paper, but considering the complexity
of the game engine and all the things
that can break this determinism,
Saber did not believe this would work.
We ran the initial tests and almost
immediately ran into desyncing
issues which seemed to prove that
this approach was bound to fail. Greg
was adamant that the solution was
viable, however, and he analyzed
the nature of some of these desync
issues. It turned out that most of
them were related to a few features
from the PC port of Halo: CE which
were introduced after the release
of the original Bungie version. After
those few features were switched
off (Greg’s change list affected over
40 source files, so it wasn’t exactly
a simple effort), we were able to run
the game deterministically—until

we ran into other causes of non-
determinism. However, these initial
tests proved the concept to be viable,
and we ran with it. Roman built a suite
of tools that recorded the game states
in runtime and compared it, frame by
frame and bit by bit, on two consoles
running the game in online co-op, and
whenever the simulations diverged
he had to find the cause of the issue
and make the fixes. So even though
it wasn’t exactly a smooth ride, the
solution worked, and in hindsight it
was the only approach that allowed
us to support the feature.

3 / visual targeting/art direction.
Saber was very fortunate to have
Microsoft’s Ben Cammarano as the
art director on the publisher side. For
such a high-profile franchise as Halo it
was critical to stay consistent with the
original creative vision while working
on our numerous art improvements.
Ben traveled multiple times to our
St. Petersburg office and spent long
hours with Saber’s lead artist Dmitry
Kholodov, working out the art strategy
for annivErsary. He also served as
a central point of communication
between Saber and the 343 franchise
team, and provided the overall art
direction for the project. During his
very first visit to Saber he established
the four visual pillars of the franchise
(heroic vistas, iconic imagery
and characters, clean and vibrant
aesthetics, and visceral action) which
helped guide our art team.

Ben suggested a simple yet
effective tool to communicate the
vision within the production team, as
well as to the upper management. He
suggested the use of visual targets,
or VTARs, which were pieces of
concept art that we created for game
environments. Saber certainly used
concept art to establish reference
visuals on prior projects, but that was
more for inspiration purposes than for
direct guidance. For Halo annivErsary
we developed a different approach.
Since Saber was high-resing the
original game, we took screenshots
from a number of key vantage points
in every level from Halo: CE and did
paintovers that showed how those
areas could be improved. These
visual targets established lighting,
texturing, environmental effects such
as rain or fog, and overall mood. We
showed these pieces to Ben and the
franchise team, and they allowed

us to agree on the art direction well
before the levels went into modeling.

This process may sound simple,
but we were never able to put it
to such a great use before Halo
annivErsary. In the past when our
concept artists created inspirational
art pieces, their value was relatively
l imited since the actual level
geometry was changing during the
game design phase. For annivErsary,
however, the level geometry was
pre-established by the framework
of the original game, so the concept
artists could focus on ideas on how
to make it look great. Having learned
these lessons on annivErsary, we
found an efficient way to utilize our
sketch artists for level concepting
for the original games we're working
on. Once the low-res level geometry
is finalized, we take screenshots
of a number of key areas and have
the artists do pretty paintovers,
which can be referred to by level and
lighting artists as they go ahead with
their high-resing work.

4 / successful vertical slice.
Saber went through a number of
vertical slices in the past on other
projects, but the one we had on Halo
annivErsary was probably the most
valuable. Even though we didn't have
to experiment with gameplay or game
mechanics, there were plenty of
things that needed to be proved out.
Basic engine stitching technology,
online and split-screen co-op, and art
and cinematics production pipelines
were all established during the first
few critical months. In addition to that,
we were able to find our stride with our
overall approach to modernizing the
sights and sounds of the game.

Visuals were certainly the focus
for the entire Halo annivErsary
project. We knew that the game
would be judged based on how
we performed on the art side. The
initial feeling was that the art of
the original game could be updated
freely to maximize the visual impact.
Prototyping the vertical slice level
(Truth and Reconciliation) it was
decided to improve the skies by
repositioning the planets and the Halo
ring to ensure their perfect framing
for the most important viewpoints,
changing the color of the planets to
make them look more interesting,
and changing the lighting. We spent a
fair amount of time trying to achieve

Early planet placement and color vs.
correct planet placement and color.

Differences in original geometry and
Saber geometry. Saber artists needed
to update collision meshes for new
assets. Red beacons also marked
geometry height differences.

http://www.gdmag.com

GAME DEVELOPER | MARCH 201224

those goals, and the final visuals
were indeed great. However, after
careful consideration and review with
the franchise team it was decided
that maintaining the universe of the
original game was key, so we had
to make a course correction and
revert all those heavenly bodies to
their original places. The same logic
was applied later on to other art
improvements—the things could be
improved visually, but the universe
had to remain the same.

Not only did this consistency to
the original universe remain true to
the creative vision of HALO: CE, but
also it became a critical decision
for the Toggle feature—imagine the
planets and the ring shifting positions
when the players activated the Toggle
feature going back and forth between
Classic and Remastered modes. This
would have ruined the consistency of
the game worlds.

5 / listening to the early
community feedback.
// 343 first showed the game at E3
2011 behind closed doors, and then
continued presenting it at various

industry events such as Comic-Con
and Gamescom. When the first pieces
of the game hit the internet, fans
immediately commented on things.
Obviously the game was not fully
done at the time, and some trailers
and screenshots contained some
placeholder or incomplete assets—
but it was great to listen to the early
vibe of the community and focus
efforts on improving the assets that
were getting the most attention.

Because the game was developed
against such a challenging schedule,
sometimes placeholders stayed in
builds longer than anticipated, or
issues were given lower priorities by
Saber and the franchise team—but
the fans always picked up on them
right away. One great example is the
assault rifle. Saber originally used the
assault rifle from HALO REACH as the
rough-in for ANNIVERSARY’s version.
However, once the gun was already
implemented into the game we
realized that the design of the assault
rifle changed from HALO: CE to HALO
REACH. The changes were relatively
small—but they would have been
very noticeable to the hardcore fans.

So we decided that we had to use
the version of the assault rifle from
HALO 3 as the starting point. The gun
was reimplemented into the game
and was included into the official
trailers that were released online.
To my surprise, our lead engineer
Roman (who also became a hardcore
expert on the HALO universe through
the course of development) showed
me a post by a fan that said we had
accidentally used the third-person
version of the assault rifle for first-
person view. These versions looked
very similar—but they still were
different. Amazingly enough, neither
Saber nor 343 noticed this prior to
the trailer—but thanks to the tip from
one of the fans (and watchful Roman
who noticed the post online), we
caught the issue and fixed it.

There were other instances where
early feedback from the fans helped
improve the game. Saber came up
with some great designs for the
floor textures used in Forerunner
structures—unfortunately, they
were not fully consistent with the
overarching philosophy of Forerunner
culture, so we ended up fixing them.

Ben and the franchise team were
actually the ones who picked up on
that first, but Saber was reluctant
to make the change since it would
require a significant amount of work
and we just did not believe it was that
important—but listening to the fans
helped Ben win the argument.

W H A T W E N T W R O N G

1 / collision issues.
// Handling collision issues turned
out to be a massive headache for the
production team toward the end of
the project. Some of these problems
actually came up during the vertical
slice phase, but because on a typical
game project collision issues are
very easy to fix we did not pay much
attention to them. We were wrong.
There were all kinds of collision
issues, each of which had to be dealt
with using a unique strategy.

Because the original game
code remained intact, the entire
game world simulation, including
AI, shooting mechanics, object floor
placement, vehicle driving, and basic
player collisions were handled by
the original game code, using the
original HALO: CE geometry, which
was obviously very low resolution.
Imagine, for example, a beach section
in a level such as Silent Cartographer,
which was modeled with a handful
of polygons, and was pretty flat.
In HALO ANNIVERSARY, that area was
made using a high-resolution mesh
with a smooth surface profile that
deviated a lot from the original.
However, the enemies, the player,
and the vehicles that moved on that
beach handled their collisions using
the original mesh, and therefore
sometimes they were standing
halfway into the ground, or floating
in thin air. Weapons that enemies
dropped sometimes also got stuck in
the air, or fell through the ground and
disappeared (but the HUD markers
“Press X to pick up the weapon”
remained on-screen). When players
tried to move along the wall to stay in
cover, sometimes they would bump
into invisible collisions (if walls in
the original game were in front of the
walls in the remake), or sometimes
players could walk through the walls
and see through geometry (if the
original walls were behind the ones
in the remake). Sometimes the player
was trying to snipe the enemy and Original boulder.

Saber boulder where we combined natural
elements and embedded Forerunner

structures.

From a distance the geometry issues
could be hidden.

www.gdmag.com 25

his bullets hit invisible objects, and
sometimes a player was apparently
shot through the walls.

At some point, our test team had
generated over a thousand bugs on
collisions alone—and we all realized
that we couldn’t delay tackling the
issue. It was clear that we couldn’t
make the remastered geometry match
the old one exactly in every inch of the
game world—it would immediately
make the graphics look low-res. We
also knew that we could not afford to
go through the entire game and adjust
the geometry, because it was simply
too much work for the time we had.
Yet we could not ship the game with all
those collision bugs.

Saber’s initial suggestion was to
build additional collision geometry
that would “hug” the remastered
geometry, and run all the collision
detection using that—this makes
collisions work in a typical game.
343, however, mentioned that this
would change the stated goals of
keeping the original gameplay intact.
We also realized the impact this work
would have on what we called “secret
areas”—the areas players would not
normally go into during a regular
playthrough, but which can be
accessed using some tricks. An area
on the hilltops of Silent Cartographer,
or the areas on the periphery of Guilty
Spark are examples. There are many
more of those areas in the game,
and there is no real list that details
them all. Apparently fans of the game
spend years of their lives trying to
break the boundaries of the original
game, and every now and then there
are discoveries of new secret areas
and ways to access them. 343 and
the franchise team were adamant
that maintaining access to those
areas was important because we just
couldn’t take them away from the
fans. Unfortunately that meant that
we couldn’t add “Saber collisions”
whenever we wanted to fix the bugs.

Saber’s proposed solution was
to create a list of different types of
collision issues and address them
using different techniques. The most
benign type of collision was weapons
falling from dead enemies—these
were purely visual bugs, but even
very slight variations in old and new
terrain meshes made the weapons
disappear underground. So we
decided to use the “combined polygon
soup” of old and remade geometry,

effectively landing the weapons on
the higher of old and remade floors.
This completely removed “weapons
falling through the ground” bugs,
but sometimes weapons continued
to float in the air. It was decided
that if the weapons floated above
the ground by less than a certain
threshold it was not really noticeable
to the players, and in other places we
had to bring the remastered terrain
closer to the original. To make the
process smoother, we built tools for
the artists that helped them visualize
the height differences between the
original and remastered geometry—
and then they went through the
entire game and made the fixes.

This process also ensured
that our remade terrain and floors
matched the originals more closely,
and now neither the player nor the
enemies were floating, or stood
waist-deep into the ground.

For “player seeing outside of
the world through the walls” bugs
we couldn't really adjust the wall
geometry easily, because it would
make the wall profiles very flat and
low-res when viewed from the side,
so in this case we had to rely on
“Saber collision geometry.” But then
we could only do it in places where
we were sure there were no secret
areas around (and this caused heart
palpitations at 343, because there
were no guarantees there).

There were some special objects
where we had to really think outside
the box to come up with a solution.
For example, giant boulders on the

beach of Silent Cartographer were
originally modeled with a couple
dozen polygons, and there was just
no way we could high-res them while
keeping the remastered geometry
close to the original—either it looked
like a smooth and round natural
boulder, or it was a low-resolution
10-year-old object. Our level art lead
Petr Kudryashov came up with an
idea—what if we turned that boulder
into a Forerunnner-made object?
That allowed us to end up with high-
resolution visuals and still maintain
the original shapes.

All in all, once we started to
address the collision issues seriously
we were able to find solutions that
worked. Unfortunately many of those
solutions required a lot of reworking
of the assets and levels that were
already done, and caused a fairly high
number of bugs that needed to be
fixed. Understanding the importance
of the problem during vertical slice
would have saved a lot of time.

2 / secret areas.
// At the beginning of the project
nobody thought about these hard-to-
access places from the original game.
For a typical game, developers simply
restrict access to those areas, and
don’t need to worry about high-resing
additional art or work on performance
issues related to seeing giant
sections of the levels. Unfortunately
for AnniversAry we did not have
that luxury—the franchise team
established that those areas were
an integral part of the game and they

had to be maintained in the remake
(this was a very foreign concept to
the dev team, and we had to reinforce
it many times for the artists).

Similar to collisions, this was
identified relatively late, so we had to
deal with the consequences. The test
and franchise teams were tasked with
cataloging the known secret areas,
and Saber began working on possible
solutions. Because these secret areas
were ofttimes on the boundaries of the
normal playing sections, they served
as backdrops, and the artists modeled
them as such. For example, the hilltops
in Silent Cartographer looked great
when viewed from a distance, but if we
allowed the player to go there, it looked
like a mess; the player was standing
shoulders-deep in the ground, he was
walking through the geometry, and
there were massive performance
problems because visibility was not
controlled and the player could see
almost the entire level.

 Saber artists quickly realized
that they could not model those
areas to work both as backdrops and
playable areas because the modeling
techniques are just so different.
So we all had to make a tough
decision to only address collision
and performance issues, and leave
the art mostly as-is—after all, those
areas did not look that great in the
original game either.

3 / streaming issues.
// Saber had a solid audio streaming
solution as part of our TimeShift
engine, and we were working on

Up close, Master Chief is
shoulder deep in geometry.

http://www.gdmag.com

©2012 MAGIC PIXEL GAMES, ALL RIGHTS RESERVED

VISIT US AT WWW.MAGICPIXELGAMES.COM

ENGINEERS, ARTISTS, DESIGNERS

WE’RE HIRING!

We craft original games.

We love what we do and we want your help.

http://WWW.MAGICPIXELGAMES.COM

www.gdmag.com 27

texture streaming for quite some time
to increase our texture budgets. This
tech was ready by the time we started
to work on the project, but we had
never used it in a major game release.
Texture streaming is one of those
technologies that is very dependent on
the overall state of the project. Until you
have your levels, assets, and textures
mostly done, memory requirements
optimized, audio integrated, and
engine stable enough to start testing
with DVD emulation, it’s very hard
to evaluate the quality of texture
streaming. Unfortunately, when all
those components are ready, the game
is close to being done and there is very
little time for testing and tuning. That
was when we started to pay close
attention to texture streaming and
realized there were quite a few issues.

Basic texture streaming worked
like a charm, but many special cases
presented problems. Whenever
we had to load massive volumes
of textures such as in levels or
checkpoints, toggling between Classic
and Remastered views, or changing
camera position abruptly before,
during, and after the cinematics,
there were texture streaming issues.
We realized that on average it takes
about 5 to 7 seconds to load all the
needed textures from DVD, so either
we showed an image with low-res
textures, or we had to block the game
execution, preload the textures, and
then continue rendering. While the
game was loading textures we would
show a black screen that faded into
the game. This simple idea became
a generator of various bugs, starting
from compliance issues (can’t show
black screens for longer than 5
seconds) to synchronization issues
in online co-op to keeping the picture
and audio in sync for cinematics.
Things got worse when we integrated
in-game audio and started to test in
emulation. Because we did not have
audio and texture streaming balanced,
sometimes it took up to 25 seconds to
load all the high-resolution textures.

Unfortunately the only solution
was to fix all these issues one by one,
and do a lot of balancing, and this
was one of the areas of the project
that required quite a significant
amount of crunch time.

4 / lighting solution.
// For a long time Ben mentioned
the need to improve our lighting

solution, especially for outdoor
environments—but unfortunately
there was never enough time to
give it serious consideration. At the
beginning of the project Saber was
focused on engine stitching and
building the game platform. Then
came various high-priority integration
and performance issues. We simply
couldn't find the time to work on
lighting solution improvements.

However, midway through the
project, while working on our first
public demo (The Silent Cartographer
level which was shown at E3), our
rendering leads decided that we just
had to find the resources and make
the push—Halo levels were massive,
and combined both indoor and
outdoor sections in a single scene, and
our existing tech did not handle it that
well. The root cause of the problem
was traced to how we set up ambient
lighting. Our artists simulated global
illumination by placing multiple local
lights in the scene, which was fairly
time-consuming. And if that worked
well for indoor environments, it
wasn’t very practical for large outdoor
sections. So our tech group suggested
a solution to simulate ambient lighting
using a simple six-direction control
which allowed us to set up lighting
coming from different angles in the
environment.

Th i s s i m p l e to o l w o r k e d
surprisingly well, and it was quickly
integrated into our engine and tools
pipeline—but unfortunately this
all happened late in the project, so
to achieve a consistent look for all
the levels the lighting artists had
to go back and adjust levels that
were already done and approved.
Considering the lighting artists were
already stretched very thin, this
unexpected volume of work wasn’t
a welcome surprise. Still, the efforts
really paid off and we managed to
improve the quality of our lighting
quite a bit.

5 / cinematics.
// Saber and 343 decided to handle
Halo anniversary cinematics using
a real-time in-game solution (as
opposed to prerendered movie
playback). Saber had a robust
timeline-based technology to allow
for quick manipulation of special
events, mocap data, and other
components, and we did not expect
to run into production issues here.

Early on it was decided that we
could explore a good degree of
creative freedom to improve upon
the experience by enhancing camera
angles and adding more action and
characters around the main events
in the scenes. Saber was going to
replace all character animations with
mocapped data and add finger and
facial animation.

Ha nd l i ng mo cap f or H a lo
cinematics was the first challenge we
had to overcome. Because the game
was using the original voiceovers,
we had to record mocap animations
and facial performance to perfectly
match the timing of the original
game. To achieve that, we played
video clips of original cinematics shot
on a large screen at a mocap studio,
and the actors were acting out the
scenes trying to match the timing.
We knew it was the only solution,
but it was difficult for the actors to
match the voiceovers perfectly. We
ended up manually tweaking a lot of
facial animations to ensure proper
lip-sync—but we were not too happy
with the final results.

Saber has an automated tool that
renders all game cinematics offline
every night after the daily build is
compiled. The tool is invaluable for
detailed cinematics analysis; we can
play the latest renders of cinematics
in a video player and analyze them
in detail. Because the project was
done so quickly, however, we didn't
really have time to sit back and do a
careful evaluation of the cinematics
until after we hit Alpha—and then
we started seeing all sorts of issues
which were exposed thanks to
this tech. Streaming issues, audio
syncing glitches, animation bugs, lip-
sync—all these problems resulted in
over 300 bugs, which were entered
into the database at a critical point
of the project. In addition to technical
bugs, after a careful review with Ben
and the rest of the franchise team we
realized that sometimes we went too
far with our attempts to improve upon
the original experience. For example,
by using a real-life female mocap
actor for Cortana and having the actor
play out Cortana’s emotions we made
the holographic model “too dramatic.”
Yes, the animations were perfectly
smooth, but that exaggerated
emotions being acted out affected
the “artificial computerized feel”
of Cortana’s character in the game.

Because it was too late to go back to
the mocap studio, our animators had
to combine the original key-framed
animations with the new ones to
achieve the desired results.

Looking back I think most of
cinematic issues were caused by
a lack of proper preproduction and
early analysis of the results of this
particular area of the project. In the
end, adding more animators and
working closely with the Microsoft QA
team helped solve most of the issues.

h a p p y a n n i v e r s a r y !

// Overall, Halo anniversary was a
very smooth ride. Even though the
timelines were short, the fact that
the scope of experimentation was
limited primarily to engine tech and
art helped reduce risks. The core
decisions made at the beginning of
the project helped focus the team on
the important issues. The production
team assigned by 343 made
communications easy. Our producer
Dennis Ries did a phenomenal job
championing the project within
Microsoft and to the press, and got
a ton of frequent flier miles shuttling
between Seattle and St. Petersburg.

The initial decision to make a
complete overhaul of the game art
that didn’t stop short at just adding
better materials, throwing in a couple
of shadowmap lights, improving UIs,
and adding the achievements really
paid off. The addition of new exciting
features such as online co-op, toggle
for Classic/Remastered, Skulls and
Terminals, and Kinect made the
offering even better. Halo anniversary
went on to get multiple “Best of E3”
nominations and awards (which is
unusual for a remake), and many
players and reviewers alike praised
the game as “the best remake ever
made.” This was our original (though
unstated) goal and Saber is very
proud of having accomplished that.
Working on a top franchise with a
great production team taught us a
lot of lessons which made the studio
stronger in many respects.

andrey iones is COO and founder of Saber

Interactive, and has almost 20 years of

experience in the game industry. He started

by working on technology for pre-rendered

graphics for major titles published by

Activision and Electronic Arts in the '90s, and

has a PhD in computational geometry.

http://www.gdmag.com

DOWNLOAD INTEL® GRAPHICS PERFORMANCE
ANALYZERS FOR FREE at www.intel.com/software/gpa

Intel® Graphics Performance Analyzers (Intel® GPA) are a suite of graphics analysis tools that help

game developers make fast games run even faster. Intel GPA was developed with game developers

in mind, using your feedback to ensure the tools work the way you do. And because Intel GPA is fas

and easy to use, you ll improve ef ciency and save time, getting your game to market even faster.

Auto Club Revolution* and In
Making your game faster, fa

© 2012 Eutechnyx. All Rights Reserved. Image courtesy of Eutechnyx. Copyright © 2012 Intel Corporation. All rights reserved. Intel, the Intel logo, are trademarks of Intel Corporation in the U.S. and other countries. *Other names and br

“Intel® Graphics Performance Analyzers proved key
bottlenecks and other issues with Auto Clu

– DR.
 EUTECHNYX CHIEF TE

http://www.intel.com/software/gpa

pers

fast

er.

ntel® GPA†

aster.

es and brands are the property of their respective owners † GPA refers to Graphic Performance Analyzers.

Intel® GPA System Analyzer
Learn whether your game is CPU- or GPU-bound.
Quickly analyze game performance and identify
potential bottlenecks.

 A heads-up display (U) for real-time performance analysis
 Create irect state overrides and conduct real-time e periments
 riage system-level performance with CPU and GPU metrics
 Game pause, step, resume

Intel® GPA Frame Analyzer
Optimize graphics performance through deep
frame analysis of elements at the draw-call level.

 upport for Microsoft irect * , Microsoft indows* P,
 Microsoft* Vista, 7
 eep analysis of individual draw calls
 Make changes and see visual and performance effects
 immediately
 Capture and share frames

Intel® GPA Platform Analyzer
Visualize performance of your application’s
tasks across the CPU and GPU to ensure the
software takes full advantage.

 thread view of game showing thread conte t
 Visualize performance of multi-threaded CPU GPU tasks
 Media Analyzer for real-time and trace analysis
 Intel® OpenCL and browser pro ling abilities

To learn more about Auto Club Revolution, visit:
autoclubrevolution.com

key in identifying
Club Revolution*.”
DR. ANDREW PERELLA
F TECHNICAL OFFICER

http://autoclubrevolution.com

TOOLBOX

game deveLOper | march 201230

R e v i e w b y M i k e d e l a F l o R

Wacom

Inkling

The Inkling consists of a combined
receiver and flash drive device
about the size of a small box of
paper clips and a pen. Both the
receiver and pen are stored in a
sturdy carrying case that doubles
as a mini-USB-powered charging
station and docking platform.

The Inkling requires some
assembly straight out of the box. The
rechargeable nickel-metal-hydride
pen battery has to be installed
and the pen slipped into its slot in
the case so that both the pen and
receiver can be charged. Included is
the Inkling Sketch Manager software,
which is needed to calibrate the
Inkling and work with sketches.

The Inkling’s receiver is also a
drive, which means that it must be
ejected to avoid damage and not
just yanked out from the USB port.
Once ejected, the Inkling may be
clipped onto paper or a sketchbook.
Afterwards, you can just turn on
the receiver and pen and begin
sketching. The Inkling uses
ultrasonic and infrared signals to
track the artist’s strokes and record
sketches to the drive. As a result,
Wacom cautions that the Inkling
may not work well in direct sunlight
or near ultrasonic noise sources.
However, in normal office or studio
environments, and even outdoors,
the Inkling worked well.

The Inkling’s pen has a similar
feel to other Wacom pens, though
it looks different because of the
battery compartment. The main
difference between the Inkling’s pen
and an Intuos or Cintiq pen is that
the Inkling’s actually uses real ink.
The Inkling’s pen should be gripped
about an inch above the tip so as to
not obstruct signals between the
pen and receiver. This is a bit higher
than other Wacom pens, and it could
prove awkward for some artists.

Sketching is a personal
business, as artists have different
sketching styles and media
preferences. However, the Inkling
limits artists to ink, which may
be a deal breaker for those who
prefer pencil. The ink cartridges
provided with the Inkling are
standard ballpoint pens. Artists who
sketch with ink almost never do it
with ballpoint pens, which tend to
glob up and smudge, skip, provide
little control, and would be akin to
sketching with a BIC or Paper Mate.
Wacom would do well to provide
artists with options for different pen
types in the future.

Before discussing the Inkling’s
performance further, it’s important
to emphasize what it is and isn’t. The
Inkling is designed to digitize rough
sketches, such as the preliminary
drafts of game characters, while

away from the computer and still
provide the artist with editable file
formats. The Inkling is not designed
to produce final drawings, and it
will not replace an Intuos or a Cintiq
tablet—at least not yet.

The Inkling should be calibrated
before sketching, which involves
selecting the receiver’s position
on the paper, selecting the paper
size, and calibrating the pen’s
sensitivity. Assuming all goes well
while working with the Inkling,
the resulting digitized sketches
are acceptable (albeit rough)

facsimiles of the original sketch.
Nonetheless, regardless of how
closely one adheres to the Inkling’s
best working practices, it too often
produces sketches that have
misaligned or missing strokes. And
since there is no way to predict
where these problems will occur,
this is a constant hazard when
working with the product.

Road test
» Further evaluation of the Inkling
reveals that it works best with a
loose, sketchy style that favors
many overlapping strokes which
produce tone and texture. This
appears to somewhat compensate
for missing or misaligned strokes.
The Inkling does not work well with
a more structured sketching style,
such as straightforward line art.

An impressive feature of the
Inkling is its ability to create layered
sketches. To create a new layer while
sketching, simply press the new
layer button on the receiver and
continue sketching. When the sketch
is previewed in either the Inkling
Sketch Manager or with any of the
designated programs like Illustrator,
the file will contain layers.

I found that any nudge or bump
of the receiver could frequently
cause gross stroke misalignments,
rendering the digitized sketch

PRIce

› $199

sYstem ReQUIRemeNts

› windows 7, vista, or XP (SP3,
32 bit, or 64 bit versions), Mac oS
10.4.0 (or later), adobe Photoshop
or adobe illustrator (CS3 or later),
and autodesk Sketchbook Pro or
Sketchbook designer (2011 or later)

PRos

1 Can sketch with pen on paper
2 innovative workflow
3 layered sketches

coNs

1 Misaligned strokes
2 Finicky pressure sensitivity
3 Sensitive to environment

Wacom Inkling
www.wacom.com

FIgURe 1: the Wacom
Inkling is an innovative

product that aims to allow
artists to sketch on paper

away from the computer,
but the only thing the
Inkling can do at this

point is digitize very rough
sketches.

From the artZ tablets of 20 years ago to the modern Intuos and Cintiq tablets today, Wacom has provided millions of artists with
innovative tools that make working with computers feel natural. In late 2011 Wacom began shipping the Inkling, a new product
that gives a glimpse into what the future may hold. It’s a radical departure from the desktop digitizing tablets in that it allows
artists to sketch away from the computer but still produce digital sketches.

http://www.wacom.com

TOOLBOX

WWW.GDMAG.COM 31

useless. This is particularly annoying
because you won’t notice these
serious misalignments until you
view the sketch digitally. To minimize
this problem, the receiver should be
clipped onto several sheets of paper
to create a snug grip. Avoid excessive
jostling while sketching.

The Inkling boasts 1,024 levels
of pressure sensitivity, which means
that it should render strokes of

perceptible varying thickness. In
practice, however, the Inkling did
not perform well in this area. The
first problem is that ballpoint pens
are not designed to create strokes
of different thickness. Thus, there is
no visual feedback while sketching
as to what the stroke thickness
will look like in the final digitized
sketch. Second, the only software
in which there is any indication of
varying stroke widths is in Autodesk
SketchBook Pro, but even then the
line widths were nowhere close to
1,024 levels. Further, only when
the sketch was opened directly
with SketchBook Pro, bypassing
the Inkling Sketch Manager, were
varying line widths noticeable. When
exported to Photoshop or Illustrator
via the Inkling Sketch Manager

there were little or no varying stroke
widths visible in the sketches.

SKETCH MANAGER
» The Inkling Sketch Manager has
three main functions when it comes
to the sketches. First, it organizes and
displays all sketches as thumbnails.
Second, it exports the sketches to
other programs, such as Photoshop.
Third, you can use it to edit layered
sketches by hiding, merging, and
deleting layers. In general, the Inkling
Sketch Manager does its intended job,
but the software appears unfinished.
The user interface has a dated 1990s
feel to it and usability is poor. For
instance, the Inkling Sketch Manager
has a feature that plays back a sketch
as a movie, but there is no way to
export the movie, making the movie
feature somewhat pointless. So what
is the point of the player? It would
have been preferable for Wacom to
focus on polishing the Inkling Sketch
Manager instead of adding extra
gimmicks.

Arguably, the best way to use
the Inkling is directly with Autodesk
SketchBook Pro, bypassing the
Inkling Sketch Manager entirely.
SketchBook Pro can open the
.wpi Wacom file format (in which
the sketches are saved) and the
SketchBook Pro brush engine does
a better job of parsing the stroke
data, resulting in smoother, better-
looking sketches. In addition, when
an Inkling sketch is opened with
SketchBook Pro, the sketch will take
on the properties of the current

document and that of the selected
brush. Even if the target platform
is Photoshop, it’s still better to go
through SketchBook Pro than the
Inkling Sketch Manager.

The obvious drawback to using
just SketchBook Pro and bypassing
Inkling Sketch Manager is that
strokes will not be converted to
vectors if the target application is
Illustrator. For that task, the Inkling
Sketch Manager is necessary.
However, when exporting to
Illustrator, the resulting vector
drawing is unimpressive: line widths
and quality are poor, lines are often
so densely packed with control
points that editing is impractical,
and the resulting file sizes are
extremely large for vector files.

All criticism aside, the Inkling is
a remarkable and innovative tool,
but the technology has not matured
enough to make the Inkling practical.
At this time, the Inkling is probably
not a realistic addition for busy
pipelines. It would be much simpler
to scan a sketch or to use Illustrator’s
Live Trace to convert the scanned
sketch to vectors. However, the
Inkling is a welcome reprieve from
being tied to a computer, and with
further development, it could change
how artists work in the future.

MIKE DE LA FLOR is a freelance medical

illustrator, instructor, and writer. He’s the

co-author of the recent title Digital Sculpting

with Mudbox: Essential Tools and Techniques

for Artists as well as other CG titles.

FIGURE 2: The image on the left is a scan
of a very quick sketch for a creature idea
rendered with the Inkling’s pen. On the
right is the Inkling’s digitized sketch
opened with Autodesk SketchBook Pro.
At first glance, the sketch on the right
looks pretty good; however, on closer
inspection, the misaligned strokes, gaps,
and missing strokes become obvious.
Also, the line quality in the original is more
subtle than in the Inkling rendition.

FIGURE 3: The Inkling Sketch Manager software is used to calibrate the Inkling and manage
sketches. While the software does its job, it has an unfinished feel to it. Further, SketchBook
Pro does a better job at parsing the Inkling sketches than the Inkling Sketch Manager.

http://WWW.GDMAG.COM

http://www.igda.org/join

WWW.GDMAG.COM 33

THE INNER PRODUCT // REMI QUENIN

MAXIMIZING SPU EFFICIENCY ON FAR CRY 3

PRELIMINARY NOTES
» The provided code samples are written in
pseudo C/C++, and may not be functional as
is. They are here as a reference to illustrate the
given explanations.

All AtomicXXX() functions stand for the
corresponding “XXX” atomic operations. The
functions are considered available on both
SPUs and PPU. In both cases they operate on
references of main RAM variables. That means that
dereferencing an EA in the argument list on SPU
will just pass the corresponding EA to the function.

Be aware that writing
structureEA->m_SomeMember on an SPU will be
compiled as simple pointer arithmetic. It will be
resolved as a reference EA of this member. This
means that passing the statement to an atomic
function on SPU is perfectly correct.

Types such as “u32” stand for “unsigned 32
bits” value.

Finally, some SDK functions may have different
signatures for the PPU and SPU. Even if some code
samples should build on both the PPU and SPU, only
one version is shown for readability.

PPU SCHEDULING
» In order to allow task scheduling on the PPU,
a scheduling engine must be in place. Since that
isn’t the topic of this article, I won’t describe the
techniques we’re using on FAR CRY 3. But I will
assume that a task dispatcher is available and
running on the PPU. The dispatcher should own
a collection of threads and be able to retrieve
waiting tasks from a shared container (typically
lock-free). Scheduling a PPU task is as simple as
pushing a task into this container.

LOW CONTENTION CIRCULAR
POLLING JOB CHAINS
(LCCP JOB CHAINS)
» Our job system is based on SPURS jobs,
because they provide input/output data
pipelining and don’t waste too much of the
precious SPU local store memory, leaving 234KB
for user code and data. Jobs can be launched
using job chains. This type of SPURS workload is
based on a command buffer. Typically you insert
a collection of jobs into the command buffer and
then launch once it’s filled.

We are using SPURS job chains in a different
way in order to provide instant launch. Our job
chain command buffer is filled with JumpToSelf
(J2S) commands. This command blocks the job
streamer in an active state. Our command buffer
is also made circular, by inserting a “Jump to

THE SPUS ARE HUNGRY!THE SPUS ARE HUNGRY!
The FAR CRY 3 PS3 engine is extremely SPU-intensive, with over 60 different job types and 1,000 job instances executed each
frame. Much development effort has been spent optimizing the scheduling and execution of SPU jobs—in particular in reducing the
scheduling load on the PPU. This article will describe some of the techniques used in the FAR CRY 3 scheduling system APIs, which
manage each of the dependencies and synchronization paths that a PS3 game needs: SPU job(s) to SPU job(s), SPU job(s) to PPU
task(s), and SPU job(s) to RSX command buffer. Please note that all listings will be available at www.gdmag.com/resources.

FAR CRY 3

http://www.gdmag.com/resources
http://WWW.GDMAG.COM

GAME DEVELOPER | MARCH 201234

THE INNER PRODUCT // REMI QUENIN

first” as its last entry. Launching a job is just a
matter of replacing a J2S by a “job” command.
The job streamer will immediately launch
the associated job and move to the next J2S
command. The job itself will overwrite a J2S at
the command buffer location used to launch it.
The slot can then be reused when a full cycle
of the circular buffer has been performed. This
scheduling technique requires some code
execution both at schedule time (to insert the
job command), and also at execution time on
the SPU (to overwrite the job command).

This means that the SPU job scheduled with
this technique needs to embed this additional
code and execute it at start-up. We provides a
library that embeds the cellSpursJobMain2()
job entry point, and performs those tasks
automatically before calling an alternate entry
point implemented by the end user. A programmer
who wants to schedule a job through the system
only needs to link against this library and rename
its cellSpursJobMain2 entry point.

So far we need the data you'll find in code
sample 1 (again, available at www.gdmag.com/
resources). You’ll notice that the command
buffer size is marked as optional. In FAR CRY 3,
all job chains have the same size, defined with a
compile time constant. This optional data will be
omitted in the code samples we're referencing
going forward. The algorithm we have at this
point may look like code sample 2—but there are
still two major issues that need to be addressed
before we continue coding.

The first is the prevention of buffer overrides.
Our command buffer can easily be filled faster
than it is emptied by the job streamer. Since
it is circular, we could face the case where
our insertion point has reached the position
currently processed by the streamer. In such a
case, the command at insertion index is not a
J2S, but rather a pending job: We need to wait for
this job to execute before reusing the slot. But
while waiting, we can face the opposite situation,
in which the job streamer has completely
emptied the command buffer and has reached
the very same position. If the job at that position
has not started yet, nothing would prevent
the streamer from rescheduling it (and the
subsequent jobs). This example demonstrates
the need for a technique to prevent the job
streamer from processing part of the command
buffer in which there are already jobs that have
not started yet.

Our solution is to slice the command buffer
into “guarded chunks.” Each chunk is a collection
of (n) adjacent slots in the command buffer, for
which we are keeping a count of pending jobs.
Each time we schedule a job from a new chunk,
we initialize an associated counter to the number
of slots it contains. Each job will decrement the
counter of its chunk upon execution. By simply
forbidding the scheduling index to enter a busy

chunk (by checking that its counter is not 0) we
can solve the buffer override problem.

For instance, let’s say we have chunk (n) and
chunk (n+1), and the position index for insertion
is pointing to the last entry of chunk (n). This
last slot is necessarily a J2S because, as the
rule states, we cannot enter a busy chunk. So
when we entered that chunk, all slots were J2S;
and all unused ones are necessarily still J2S.
Consequently, the job streamer cannot go further
than this slot. As soon as chunk (n+1) is free
(i.e., its counter reaches 0), we know that all of
its slots are filled with J2S. We can safely reload
the chunk (n+1) counter, increment the position
index (i.e., enter chunk (n+1)), and insert our job
in the last slot of chunk (n).

We still have one more issue to consider here.
Our job chain is meant to be shared by all PPU
threads that want to schedule a job. Therefore,
the scheduling algorithm accessing the job
chain shared data (the insertion index and
the guard indexes) must be thread-safe. Also,
when dealing with the chunk frontier, we must
ensure that the index and the guard counter are
updated together, atomically. Even though the
PS3 is capable of 128-byte atomic operations

on a full cache line, the SDK API only provides
helper functions for 32-/64-bit atomic operations.
Packing the insertion index and guard indexes
into a single 64 bits will enable us to use those
simple functions, while saving some space in our
data structures. Our updated data structures are
now as shown in code sample 3.

We could also have some optional data in here.
To figure out which bits to update in the m_guards
variable we need to know how big the command
buffer is, and how many chunks we have. With
this information, cmdBufferSize/chunkSize
gives us the chunk count; 48 bits / chunkCount
gives us the number of bits per chunk, and
the insertionIndex%chunkSize gives us the
chunkIndex. Again, in FAR CRY 3, all those variables
are compile time constants and so will be omitted
from further code samples. We are using a 1024
slot command buffer sliced into four chunks of
256 slots. So our 48 bits are divided into four
counters of 12 bits. We just need to pass the guard
index to figure out which bits to update.

See the updated algorithm in code sample
4. You’ll notice that the concurrency is handled
with a typical local copy-local update-atomic
exchange loop. If you are not familiar with lock-

http://www.gdmag.com/resources
http://www.gdmag.com/resources

www.gdmag.com 35

free algorithms, just see the for(;;) bloc as a
critical section secured by a lock.

The second major problem we have to face
is the unnecessary preemption of SPUs due
to active polling. Our job chains are always
running, and a J2S command is like a while(1);
statement for the job streamer. Such a statement
is consuming CPU, keeping it busy doing nothing.
SPURS includes mechanisms to prioritize
workloads of the same priority on a given SPU
against a workload blocked on a J2S. But a
workload with smaller priority will never get a
chance to update.

To solve this problem, we are using the
“contention” properties associated with a SPURS
job chain. This property lets us specify the
number of SPUs associated with the job chain,
and can be changed on the PPU as well as SPUs.
All we have to do is to keep track of the number
of pending jobs for a given job chain. When it
is below the number of available SPUs, we only
need to adjust the contention accordingly.

When scheduling a job, we increment the
counter and adjust the contention to Min(numSPU,
pendingJobCount). When a job starts execution,
it decrements the counter and makes the
same adjustment. But this method causes a
concurrency problem: We cannot update our
counter and the contention in a single atomic
operation. We have to perform two different
steps: Increase the counter, and then change the
contention. Between those two steps, several
other jobs may have either started execution or
have been scheduled, changing the contention.
A solution is to append an “operation counter” to
the pending job counter in a single 64 bit field.
Each time the counter is changed, the operation
counter is incremented. We can now perform a
post contention-change read of the counter, and
compare it to the pre contention-change read
of the counter. If both are equal, the contention
change is validated; if not, it needs to be
performed again. Our updated data structures and
algorithm now look like code samples 5 and 6.

And here we are! We now have a thread safe
LCCP job chain that launches a job as soon as it
is scheduled! On Far Cry 3, we have an additional
layer of management, to automatically create or
select a job chain depending on the affinity and
the priority we want to have for the job. This layer
automatically creates JobSchedulingData and
JobExecutionData and fills their appropriate fields.

Scheduling SPu JobS
From the SPu
» It is quite common for SPU jobs to have
some dependencies on other SPU jobs. For
instance, data generation tasks are often split
into different jobs with a last job to merge the
results into a final buffer. Such dependencies
can be handled in a single job chain using a SYNC
command. But this is not possible with our job

chains. In these cases it would be interesting to
be able to schedule the “merge” job directly from
the last “generation” job, enabling us to treat any
kind of SPU-to-SPU dependencies directly from
the SPU. It would also enable our job scheduler to
operate without PPU intervention.

You may have noticed in the code samples
that there is not a single pointer dereference. We
are always accessing (set or get) values using
an atomic operation using the effective address
in main RAM. That means that this code can run

on the PPU as well as on SPUs! Atomic operations
take an EA on the data they need to change, and
directly change it in the main RAM (actually,
changing the full cache line).

That’s it; we can now schedule a SPU job from
the SPU! All you have to do is to retrieve (through
a DMA, or directly from your job input data)
a JobSchedulingData associated with the job
you want to schedule. Simply call the schedule
function on it. Congratulations! You are now able
to manage SPU-to-SPU dependencies!

Scheduling SPu JobS
From the rSX
» On Far Cry 3 we have a lot of rendering jobs
that are performed to help the RSX. Some of those
jobs take RSX-generated data as input. This means
that they need to be launched only when the RSX
reaches a given point in its command buffer. We
need a way to schedule those jobs directly from
the RSX. There are 3 different ways to do this.

Interrupt Handler One way is to use an interrupt
handler with the cellGcmSetUserHandler() and
cellGcmSetuserCommand() functions. This will
insert a command into the provided RSX command
buffer. When the RSX reaches this command it will
generate an interrupt on the PPU, which will call
the corresponding handler. You can then schedule
all the jobs you want from this callback. This
simple mechanism has a drawback: It has a high
cost on the RSX as well as on the PPU. If called just
once or twice per frame then its simplicity makes

it worth the performance cost. But when you start
launching tens of jobs per frame, an alternative
technique should be used.

Polling Job chain The second method uses a
dedicated polling job chain. This kind of job chain
has a small command buffer. The first slot is
set to J2S, the second to the job. The job chain
is started at schedule time on the PPU, and the
job streamer stays blocked on the J2S. This
J2S can be overwritten at any time with a NOP,
enabling the job streamer to advance to the next
command and launch the job. Writing a 64-bit
value in the main RAM from the RSX is perfectly
possible as long as the buffer is allocated in
RSX-mapped memory. For example, using the
cellGcmInlineTransfer() function will do the job.
The downside of this method is that it involves
some polling. If we don’t want to waste an SPU
to do this polling, we have to set a low priority
on the job chain and a contention of one. The

Scheduling a job takes about 2,000 cycles, and the job
typically starts its execution in 10us. Waiting PPU threads
(using passive synchronization) are usually woken within

50us. Since jobchains are shared, we use only four of
them. All of the features only cost an additional 7KB of SPU

code in each job, and take around 2us for execution.

http://www.gdmag.com

GAME DEVELOPER | MARCH 201236

THE INNER PRODUCT // REMI QUENIN

RSX-scheduled job will only get a chance to be
executed when an SPU becomes idle.

Workload flag The third method is to use the
“workload flag.” Each SPURS instance has a
workload flag that can be associated to a single
workload. SPURS PPU threads will take care to
start this associated workload as soon as this
flag is set to 1. We can create a job chain filled
with our RSX-scheduled jobs, and associate
it with the workload flag. Then we can add a
cellGcmInlineTransfer() to the RSX command
buffer that will overwrite the workload flag. The
downside of this method is that we can have only
one RSX-scheduled job chain at a time, because
there is only one workload flag. However this
associated job chain can be set as high priority,
which means that the associated jobs will start as
soon as the workload flag is set.

RSX SCHEDULING:
THE SWITCH OF MIND
» The implementation details of FAR CRY 3 won’t
be disclosed in this article, but the described
methods above say it all. We are using both the
polling job-chain and the workload flag method to
schedule numerous jobs from the RSX. Examples
of RSX triggered jobs are edge culling, shader
patching, and deferred lighting. But scheduling
many jobs from the RSX raises an issue we
had not foreseen. The PPU frame and the RSX
frame are not in sync, but both units are now
scheduling many SPU jobs. When both units try
to launch a large batch at the same time, we may
experience serious SPU contention. The problem
started to appear for us when we moved the
scheduling of our first batch of deferred lighting
jobs onto the RSX. Those jobs were competing
with culling jobs for much of the time.

Then we realized that scheduling some of our
rendering jobs from the PPU, and others from the
RSX will always create this kind of issue. At this
point we decided that we would schedule all of our
rendering jobs from the RSX. This makes a lot of
sense: The SPU is used as a GPU coprocessor in
that situation. It is completely natural to schedule
those jobs directly from the RSX directly instead of
going through unnecessary steps on the PPU.

SCHEDULING PPU TASKS
FROM THE SPU
» As introduced in the first section, we assume
that PPU tasks can be scheduled by simply
pushing them to a shared container. This
container (a simple queue) should be lock-free,
which means it can be operated with simple
atomic operations using effective addresses.
This container can be manipulated from an
SPU simply by passing its EA. If the container
methods PushBack() and PopFront() only
operate on their members through atomics,
no DMA or transfer is required. Given those

prerequisites, scheduling a PPU task is as simple
as retrieving its EA on the SPU, and pushing it on
to the lock-free container. (See code sample 7.)

In some cases we don’t really want to
schedule a complete PPU task, but rather execute
a quick update on the PPU as soon as possible—
to enable an update of several variables spread
across the engine, for example. This prevents
dozens of nasty DMA operations following a chain
of pointers to finally update a single Boolean
variable. That kind of update can be executed
through a high-priority PPU tasks workload. This
workload is a second lock-free queue, which can
be consumed by all regular PPU threads, but also
by another very high-priority thread. This thread
is sleeping most of the time on a SPURS event,
and when awakened it empties this secondary
workload before returning to sleep. When an SPU
wants to execute this type of task, it pushes it
into this second workload, and sets the SPURS
event. (See code sample 8.)

The downside of this method is that the high-
priority thread, when awakened, will preempt
another running thread. This will cause a thread
switch and will probably trash the code and data
caches. Using too many of those high-priority
callbacks will have a non-negligible impact on the
overall PPU performance. The system should be
used with care and only for very specific use cases.

SYNCHRONIZING PPU AND SPUS
» One last feature we're missing is a simple
way to synchronize the SPUs and the PPU. We
can differentiate two types of synchronization:
passive and active. A passive synchronization
puts the waiting PPU thread to sleep until the
waiting condition is satisfied (i.e., the job(s)
we are waiting for, is (are) done). An active
synchronization is performed by polling the
condition until it is satisfied. The passive
synchronization allows the system to give the CPU
to another thread, which maximizes the overall
occupation. However it suffers from slow response
time. The active synchronization wastes some CPU
cycles but has an excellent response time. So both
techniques have their pros and cons. Depending
on the situation, one will be more appropriate than
the other, but both are necessary.

Active synchronization is quite easy
to perform using an atomic counter. Each
job that needs to be synchronized can be
launched through a synchronization object,
which internally holds this counter. It will
be incremented for each job scheduled and
decremented by the job itself when it terminates.
At any time, a PPU thread can read the counter
to calculate how many jobs are still executing or
waiting for execution. (See code sample 9.)

Passive synchronization is a bit harder. In
addition to the counter, we add a pointer to a
SPURS event flag. When a job decrements the
counter to 0, it will set the event, waking up any

PPU thread sleeping on it. But this method has
associated multithreading issues: Manipulating
the counter and the event flag is not done
atomically. A lot could happen between the
counter update and the event flag update. To make
sure that the event flag stays in a correct state, we
absolutely need to reset it on the PPU if it has been
set by an SPU. But the counter could reach “0”
many times while scheduling a batch of jobs. For
example, consider the case where jobs terminate
faster than we are scheduling them. We need a
way to enforce the following pattern: An SPU that
decrements the counter to 0 will set the event flag
only if a wait operation is in progress on the PPU.
That way, we will ensure that the corresponding
reset will be performed on the event flag from the
PPU. Packing a flag with the counter in a single
64-bit field is a solution. Each time a PPU thread
performs a wait it sets the flag, and then waits
on the event. The last SPU job decrementing the
counter to 0 will see if the flag is set or not, and
will only set the SPURS event flag if necessary. In
this case a reset needs to be performed by the
waiting PPU thread, since it has raised the waiting
flag. (See code sample 10.)

CODE TILL YOU SPU
» The techniques described in this article are
just the foundation upon which we can build a
complete job scheduler. The FAR CRY 3 scheduling
system lets the user create a complete
dependencies chain, mixing SPU jobs, PPU tasks,
and an RSX command buffer, while providing
APIs to synchronize to any step of the scheduled
execution. One great advantage of the system
is its ability to freely mix up jobs with different
affinities and priorities, which is impossible to
do with a single job chain. By bringing a layer
of abstraction between the actual job and the
SPURS workload, we can freely mix in some
properties that are usually bound to the SPURS
workload to a new type of workload.

Finally, I could not end this description
without providing a few figures. Scheduling a job
takes about 2,000 cycles, and the job typically
starts its execution in 10us. Waiting PPU threads
(using passive synchronization) are usually
woken within 50us. Since job chains are shared,
we use only four of them. All of the features only
cost an additional 7KB of SPU code in each job,
and take around 2us for execution. Overall, all
these systems have allowed us to hit a mean
80% of active SPU usage, while reducing PPU
latencies and wait times to zero.

The author would like to thank Jeremy Moore for his assistance

in editing this article.

REMI QUENIN is the technical architect of FAR CRY 3 at Ubisoft

Montreal. He acts today as a multithreading and platform

expert in the studio, and has 10 years experience in the game

industry. Remi can be reached at remi.quenin@ubisoft.com.

mailto:remi.quenin@ubisoft.com

37W W W . G D M A G . C O M

V
F
S
 stu

d
e
n
t w

o
rk

 b
y
 B

re
n
d
a
n
 B

o
y
d

VFS prepared me very well for the volume

and type of work that I do, and to produce

the kind of gameplay that I can be proud of.

DAVID BOWRING, GAME DESIGN GRADUATE

GAMEPLAY DESIGNER, SAINTS ROW: THE THIRD

”

“

http://WWW.GDMAG.COM
http://www.seriousgameuniversity.com
http://vfs.com/enemies
http://www.unityworkshop.com

PIXEL PUSHER // STEVE THEODORE

GAME DEVELOPER | MARCH 201238

THE HAPPY COG
If you're a dinosaur fan—and the grand traditions of game industry nerddom suggest you probably are—you may have seen those
diagrams that show how the first lungfish that made their way out of the Devonian ooze gave rise to family upon family of ever more
exotic and specialized creatures. The proper name for this kind of family tree is cladogram. If you're interested in the evolution of the
games business—and again, you should be—it might serve you to reflect on our own cladogram.

THE HAPPY COG
WHERE DO YOU FALL ON THE SPECIALIST VERSUS GENERALIST DEBATE?

In the 1980s, there were only a handful of jobs. Programmers wrote code,
designers designed games, and artists made bitmaps. As time rolled on,
however, each job became more and more specialized. Nowadays, it seems
like everybody has a compound title: technical animator, cinematic camera
artist, or environmental effect specialist. Big AAA teams have people whose
only job might be placing lights, adding secondary animation to hair, or
optimizing shaders for a particular platform. It's easy to spend the bulk of
your professional life in a subspecialty of a specialist role.

A lot of us find the complexity of the modern cladogram a bit
disheartening. Like the dinosaurs, in larger teams, we've evolved to fill a
variety of exotic niches—and sometimes have adapted ourselves into a
corner. Explaining to friends and family what, exactly, we do verges on the
impossible. Mentally toting up the value of your individual contributions to a
finished game is often humbling. Parceling out the work so finely is not very
gratifying to the artistic ego, and (as many big team veterans will privately
admit) it doesn't seem very hospitable to great art, either. To top it all off,
many specialist jobs are just boring—just ask anyone who's spent the last
year applying custom UVs for waterfalls, say, or tweaking constraints on
physics props, or cleaning up mocap five days a week.

THE PIN FACTORY
» The discontents of hyperspecialization aren't unique to artists. Technical
pigeonholing and emotional disconnection from work were already old news
when Charlie Chaplin made Modern Times in the thirties. Since everybody
loves to grouse about it, it's worth pondering why this kind of organization is
so common. It must be good for something ... but what?

The classical explanation for our troubles goes back to the works of Adam
Smith, the enlightenment philosopher and granddaddy of modern economics.
Back in the 1770s, Smith pointed out that traditional blacksmiths took a
long time to make pins. The task, he said, required 18 distinct steps, and
a solitary pin maker could barely be expected to make more than one pin
per day. However, by breaking up the steps into distinct jobs and assigning
specialists to them, productivity was increased enormously: a small factory
with 10 people could crank out thousands of pins per day. This specialization,
which economists call the division of labor, was one of the cornerstones of the
Industrial Revolution and, with it, modern life.

Game studio executives aren't usually experts on 18th-century social
theory, but most of them embrace the division of labor even if they don't
use the term. It's the standard way things get done in the modern world.
Specialized work, broken down into clearly defined tasks and processes, is
efficient. It allows workers to concentrate on a small number of key skills,
rather than mastering many. Specialized workers don't have to constantly
pause to reacclimate themselves between jobs, which most of us have been
through when revisiting an obscure corner of Max or Maya for the first time
in months. Specialization puts work into the hands of people who know the
details intimately. Responsibilities are clear, so it's easy see who's doing
what (and how well they're doing it).

From a manager's perspective, the division of labor has another key
advantage: it makes managing a lot easier. Individual people, with all their
strengths and weaknesses, are tricky to manage and use effectively.
Narrowly-defined roles, on the other hand, are easier to fill and to manage.
For example, deciding whether animator X is up to the task of rigging the
new alien octopus-thingy is a tough task for a busy lead. It's hard to know
what's necessary and whether X has the technical skills. Perhaps animator
Y has a better handle on the expressions and constraints side, but isn't as
talented a keyframer; or maybe X doesn't like to work with other people's
rigs and insists on going it alone. When these kinds of considerations start
to pile up, many managers can conclude that passing the task off to a
dedicated character rigger seems like the better option.

Finally, narrowly-defined roles are easier to fill. It's a lot easier to specify
your needs in terms of widgets rather than fully-rounded human beings.
"We need two more lighting artists to make sure we can get the E3 demo
finished" is easy. "Our new hires have to find the right balance between
ambient and direct lighting, have a good eye for shadow composition,
and know how to make good compromises between performance and
aesthetics" is hard. You can see this principle at work in the job postings on
Gamasutra. Look at the difference in verbiage between the specialist hires
and the ads from smaller teams that need all-rounders. Specialists can be
easier to find (just do a keyword search on LinkedIn!) and less risky to hire
than good generalists, for the same reason it's easy and cheap to find a
plain-vanilla cell phone than it is to pick the perfect smartphone with dozens
of features.

LEVEL 10 DRUDGE
» This all adds up to a pretty straightforward observation: Over time, teams
tend to get more specialized and jobs become narrower. For those of us
actually doing the work, this isn't always pleasant or fulfilling. Adam Smith
saw that one, too. He wrote in The Wealth of Nations:

“The man whose whole life is spent in performing a few simple
operations ... has no occasion to exert his understanding or to exercise
his invention in finding out expedients for removing difficulties which
never occur. He naturally loses, therefore, the habit of such exertion, and
generally becomes as stupid and ignorant as it is possible for a human
creature to become.”

Things aren't quite as dire for us—most of the time, anyway. Even
so, the division of labor, for all its benefits, can result in jobs that are
economically efficient and completely humdrum at the same time.
Moreover, there are times when the needs of the company and the needs
of your own career don't align very well. The company may be happy with
a reliable, competent button-pusher cranking out content, but even if you
can handle the boredom, you don't want to become so dependent on a
narrow job niche that you wind up obsolete. For your own protection, decide
how you want to fit into a world in which the division of labor and all of its
accompanying irritations is a fact of life.

pixel pusher // steve theodore

First and foremost, you need to figure out your own
tolerance for a narrowly defined role. Some people are
natural specialists. If you enjoy the pleasures of really
mastering a tightly-defined job, you can embrace the division
of labor. Having expertise in a marketable specialty can be
very rewarding both personally and financially. Specialist jobs
tend to be more technically defined, which can make the job hunt
less stressful–though art hiring always involves subjective tastes
preferences. The range of opinions on, say, good ragdoll setups or a
well-tuned particle system is a lot narrower than the range of opinions
about a character design or a cinematic scene. Last but not least,
specialist jobs tend to generate communities of like-minded artists
from across the business, which allows specialists access to the all-
important grapevine where jobs are informally aired long before they
show up on Gamasutra.

If you're a specialist, grooming your specialist credentials is a key
part of your career. Don't leave your professional profile up to chance
(or to your willingness to do the tough jobs other people on the team
avoid!). Embrace your identity as an expert. Get involved with online
communities that cater to your trade, from Animation Mentor to
techartists.org. Even if you're not much of a networker, you can pick
up invaluable comparative knowledge about how your job is done on
other teams and with other tools. A solid strategic understanding of
your specialty (not just your current job!) is the defining difference
between being an expert and a low-skilled software jockey. Without
it, you risk becoming dangerously dependent on one workflow or one
company's ways of doing things.

Staying in touch with fellow specialists across the industry
is also critical for navigating the current and future market
for your skills. MEL scripters, for example, had better keep
an eye on the demand for Python; level designers
who specialize in Hammer need to know how many
companies are using the Source engine; and so on.
Examples can be multiplied, but the principle is always
the same: don't let yourself become so specialized that you can prosper
in only one environment. When you embrace the division of labor, you
are exposed to the ongoing churn of technical and business change. Plan
accordingly.

On the other end of the spectrum, of course, there are many artists who
actively resist the idea of focusing on a narrow niche. Some want the kind
of creative control that comes with owning something from start to finish.
Some get bored without a steady supply of new and novel challenges.

If you're one of these committed generalists, you need to recognize
how this influences your job prospects. Thriving as a generalist is hard
work in large teams, since it requires keeping up with more than one set
of skills. Most successful switch-hitters maintain a steady stream of
nights-and-weekends solo projects, since the workplace often subtly—or
not so subtly—tries to push them into narrower roles. Above all, though,
generalists have to keep pushing their visual art skills. Artists with a
technical focus can get by on their expert knowledge and tech savvy,
but successful generalists need to let their portfolios do the talking. It's
tough to compete with dedicated specialists across the board: Being able
to sculpt and animate is impressive, but you may be competing with
talented sculptors and practiced animators. Pick projects and subjects that
showcase your versatility as well as your skills.

A broad skillset steers you toward different kinds of companies. Big
teams hire more specialists, partly because they have deeper pockets
and partly for all the organizational reasons we outlined earlier. Smaller
companies are more hospitable to generalists, since they can't afford to
maintain a stable of experts for every contingency. Indie, mobile, and web
development have fostered a mini-renaissance for disaffected artists
tired of toiling anonymously in the AAA salt mines. There are some options

for generalists at bigger companies as well, but they won't come on the
generic production line. Prototyping groups, firefighting teams that provide
emergency support to projects on a deadline, and in-house training are all
roles where generalists thrive in big organizations.

There's no “correct” balance between the need for autonomy on the one
hand and the pleasures of mastering a craft on the other. Besides personal
inclinations, the right answer can also change with circumstances. The
stimulation and excitement of small-team life may also seem like perpetual
insecurity to a new parent. The fun of diving deep into a new specialty may
run out when there's not much left to learn and the future starts to look like
an endless repeat of the past. Even the most laser-focused specialists need
to respond to the market for what they do. Even the most agile generalists
can't do everything equally well.

The unchanging constant is the need to think hard about what you
want to achieve in your career. Know what kind of work makes you happiest
and most productive, and know what you're good at and where your
weaknesses are. Keep an eye on the market for your strengths. But above
all, don't leave it up to chance; the inner logic of division of labor wants to
turn you into an anonymous, interchangeable, and ultimately disposable
widget on an assembly line. If you don't make some deliberate decisions for
yourself, the system will make them for you.

Steve theodore has been pushing pixels for more than a dozen years. His credits include

Mech coMMander, half-life, TeaM forTress, counTer-sTrike, and halo 3. He's been a modeler,

animator, and technical artist, as well as a frequent speaker at industry conferences. He’s

currently the technical art director at Seattle's Undead Labs.

Quetzalcoatlus was one of
the most highly specialized

dinosaurs ever—paleontologists
believe it was evolved to prey

only on the eggs of large
dinosaurs. Of course, its

success was dependent on
the presence of a lot of large

dinosaur eggs, so it could not
survive on its own.

www.gdmag.com 39

http://tech-artists.org
http://www.gdmag.com

HEADS-UP DISPLAY

COPYFIGHT
AN INVESTIGATION INTO WHETHER COPYRIGHT LAW IS STILL SERVING ITS INITIAL PURPOSE

While these actions were laudable,
it’s worth pointing out that the
protests were largely taking issue
with implications of the proposed
bills’ heavy-handed methods
for enforcement of copyright
violations. There was very little
discussion about whether the
copyrights they aimed to protect
were effectively serving their
purpose in the first place.

PURPOSE OF COPYRIGHT
» A commonly held misconception
is that copyright’s sole purpose is
to protect the creator of original
works. This is one purpose, but
copyrights, like patents, seek to
balance the benefit to creators
given by a limited-time monopoly,
against the good done for society
as a whole when those works are
created. The limited monopoly
is granted, as stated in the U.S.
Constitution, in order to “promote
the Progress of Science and useful
Arts,” and should go as far as is
necessary to serve that purpose.

The history of copyright dates
back to 17th-century England, and
protections that were afforded
book authors and printers. In the
18th century, the United States
established copyright protection.
In both cases, limited periods of
monopoly were granted.

COPYRIGHT HAS LOST ITS WAY
» Copyright, especially in the
United States, has tipped heavily
in favor of the rights-holders, and
away from the societal good that
it’s meant to serve in the first place.

The laws have become
distorted by what William Patry, in

his book How to Fix Copyright, calls
the “piracy-industrial complex.”
Drawing parallels with Eisenhower’s
military-industry complex, he
describes the copyright industry’s
need to further the justification of
its own existence through an ever-
growing specter of pirates.

By inciting a moral panic about
entertainment industry jobs lost due
to theft of copyrighted materials,
these industries are able to lobby for
further control over their markets
and for public funds to go toward
their enforcement. However, the
data proving impact of copyright
violation, especially in terms of jobs
lost, is tenuous at best.

The time has come to admit
that the current system of
copyright isn’t serving society in
the way it is supposed to. There
are several issues with the way
copyright stands today:

Terms are too long: Copyright
in the USA today is granted for a
period of 120 years or 70 years
from the death of the author. It is
absurd when keeping in mind the
goal, which is to incite the creation
of more original works. It’s hard
to imagine that a would-be auteur
somewhere is refusing to create
because his work may fall to the
public domain many decades after
his demise. Worst still, as terms
have expanded, they’ve done
so retroactively, as though they
could somehow further encourage
creations from authors long-since
dead. As Patry put it in his earlier
Moral Panics and the Copyright
Wars, these authors aren’t
composing, they are decomposing.

One size fits all: Further
aggravating the issue with
lengthy terms is the fact that
different media may have different
timescales over which the majority
of their investments are recouped,
and after which they become
obsolete. This is especially true
with a technology-related medium
like video games. For example,
lengthy copyright terms interfere
with the ability to make copies of
decades-old games for purposes
of historical preservation, which is
something that will become even
more problematic as DRM-protected
works fade into history.

Benefit to rights-holders, not
creators: Because copyright often
ends up in the hands of publishers,
distributors, or other gatekeepers,
it doesn’t always benefit creators.
Certainly, creators are usually
compensated in exchange for those
rights, but it leads to situations
where, for example, works
unpublished for lack of commercial
interest may sit dormant, with the
author unable to access them for
self-publishing.

Not backed by objective data:
All of the copyright legislation
enacted in recent history has
leaned heavily on moral panics and
industry-influenced data. There
are many cases where objective
assessments were done and
ignored because they didn’t back up
the copyright industry’s position.
(Two examples of such data are the
Rappaport report on Copyright Term
Extension: Estimating Economic
Value reported to US Congress in
1998, and the Gowers Review of
Intellectual Property done in the UK

in 2006, both of which concluded
that term extension does not result
in the creation of new works. In both
cases the data was largely ignored.)

Abuse of the system: With the
advent of the Digital Millennium
Copyright Act, a safe-harbor
provision was provided to protect
service providers from liability
provided they responded quickly to
notifications of allegedly infringing
material. This was certainly a useful
exercise that allowed services such
as content portals or app stores
to function. However, since the
easiest path to take in reacting to
such requests is to just remove
the material, that is sometimes
the path taken. Getting the content
reinstated can often be an uphill
climb. This provides an incentive
to abuse the system, but with no
likely repercussion for doing so.

For example, after Atari issued
takedown requests on a number
of indie titles resembling some
of their retro arcade hits in late
2011, there were accusations
that Atari’s relationship with Apple
allowed the titles to be taken down
without opportunity for rebuttal or
independent evaluation. Whether
Atari was in the right is not the
issue. The issue is that actions were
taken without transparency and
opportunity for recourse. Without
transparency and opportunity for
recourse, especially for independent
developers without means to seek
legal help.

WHY SHOULD YOU CARE?
» Creators and innovators in
all creative arts, including video
games, should benefit from the

The start of 2012 saw a lot of news around the issue of intellectual property and copyright. At the forefront was the protest over
SOPA and PIPA, two pieces of proposed legislation that had heavy backing and support from entertainment industry associations like
the RIAA and MPAA, and of course, the game industry’s ESA.

In late January, SOPA and PIPA seemingly became “dead letter” legislation as political support for them waned, following protests
that included participation from online heavyweights such as Google and Wikipedia. This, together with the collective protest of
thousands of citizens, gave many of the politicians supporting these bills pause.

COPYFIGHT

THE BUSINESS // KIM PALLISTER

GAME DEVELOPER | MARCH 201240

HEADS-UP DISPLAY

investments they make and risks
they take. Copyright should serve
that end. However, it’s clear that the
current system of copyright has
been distorted to serve the creators
less than the gatekeepers to which
they end up beholden.

SOPA, PIPA, ACTA, and legislation
that will undoubtedly follow them
risk giving additional control to
gatekeepers, while potentially
reducing the visibility you might
have into processes by which
your games are assessed against
any copyright violation claims.
In addition, they might place
additional burdens upon your
business if it in any way serves
as a host of content (user-created
content, for example).

WHAT CAN YOU DO?
» People are busy, and game
developers especially so. Still, there
are some relatively low-bandwidth
ways you can contribute toward

improving the future of copyright.
1. Get informed: There are a few

online resources worth spending
some time reading. The Wikipedia
entries on SOPA, PIPA, and ACTA
are a start. The Khan Academy has
an excellent briefing available on
YouTube. Those looking for a meatier
background on the subject would
do well to read William Patry’s How
to Fix Copyright. Another good book
recently published is Uncensored
by Hunter Walk and Eric Ries.

2. Exercise your rights as a
citizen: Write your representatives
to express your opinion on the
subject, especially when any of
these bills come up for a vote. SOPA
and PIPA have been shut down for
the time being, but they’ll surely
emerge in another form. The threat
of repercussions in the form of votes
lost has shown to be a remarkable
force against the corrupting
influence of lobby dollars.

3. Start the conversation on

copyright reform: We need to reboot
copyright. Copyright needs to serve
the purposes for both creators and
society for which it is crafted. This
starts with objective, evidence-
based conversations about policy.

4. Support organizations doing
the freedom fighting: Support
organizations like the Electronic
Frontier Foundation and Creative
Commons, even if it’s only a fraction
of what you spend on content
bought through gatekeepers.

5. Blow the whistle on abusers.
We are fortunate enough to work
in an industry where many of the
consumers of games care about
the people that create them. For
this reason, the gatekeepers fear,
more than they care to admit, the
possibility of negative publicity that
comes with abuse of power. When
such abuses do happen, help shine
the light on them.

There are those that advocate
for the outright abolition of

copyright. I’m for reform, not
abolition. Copyright serves a
purpose. As this goes to print,
my friends at Spry Fox have filed
a copyright suit against 6waves-
Lolapps for what appears to be
a legitimate grievance. This is
exactly the purpose copyright
law is supposed to serve, and the
method by which it was intended
to be resolved. If an independent
two-man game developer can seek
justice through the legal system,
is it not reasonable to expect that
large media corporations might do
the same, rather than doing it at the
taxpayers' expense?

KIM PALLISTER works at Intel doing game

industry forecasting and requirements

planning. When not prepping the world for

super-cool hardware, he blogs at www.

kimpallister.com. His views in this column

are his and do not reflect those of his

employer.

GAMA11_GDmag_halfpg_GCG_F.indd 1 6/10/11 4:32 PMWWW.GDMAG.COM 41

http://www.kimpallister.com
http://WWW.GDMAG.COM
http://www.kimpallister.com
http://www.gamasutra.com

GAME DEVELOPER | MARCH 201242

RANDOM IS RANDOM
A DESIGNER’S LOVE/HATE RELATIONSHIP WITH THE DICE ROLL

LUCK VS SKILL
» Randomness is considered a
cornerstone of games. In fact, few
items better symbolize games than
dice, the history of which goes
back at least 5,000 years, to an
ancient Backgammon set found
in the Burnt City excavation site in
Iran. But even the ancients could
get past randomness. Chess, a
game that emerged from the sixth
century as perhaps the finest
game design of all time, has no
randomness whatsoever beyond
deciding which player should go
first.

In the absence of randomness,
games are entirely about skill,
which means that the debate
between skill and luck goes back
at least 1,500 years. That game
design distinction also happens
to be one of the few that actually
have a legal definition, as well–
whether your game is considered
to be a game of skill or a game
of chance determines whether
players can bet money on it on a
Vegas gaming floor.

A game without a significant
luck element is almost entirely
skill-based—and most of the video
games played professionally, like
STARCRAFT and TEAM FORTRESS II,
have little or no luck component.
Both hardcore electronic and
strategy board gamers tend to
eschew too much luck in their
games. Two board game classics,
Diplomacy and Puerto Rico, have
extremely limited luck components.

What's not obvious is that
the converse is not necessarily

true: Games with heavy chance
elements may also have strong
biases toward skill, provided that
skill can be used to make sense out
of the chaos being thrust upon the
game. Magic: the Gathering has a
huge luck component to it, primarily
based on the cards you draw, and
this random component allows new
players to have a fighting chance

against more experienced players.
That said, pro Magic players go to
great lengths to assemble decks
designed to reduce this element
of chance as much as is humanly
possible.

RANDOM IN SOLO PLAY
» In some games, randomness
is a necessary design element.

In particular, many single-player
games are particularly hard to
design without some random
element to it, whether it’s the AI, or
the challenges faced within. One
of the most common examples is
randomizing the initial board state.
This is done in games as casual
as Solitaire and MINESWEEPER, or
as hardcore as CIVILIZATION. The
randomness is a huge part of why
these games can be replayed
hundreds or thousands of times
(and conversely, many modern
games that abandon randomness
for tightly scripted experiences
have little or no replayability at all).

But this randomness also can
present the player with wildly
variable problem sets. CIVILIZATION
on the hardest difficulty is
(at least for me) pretty much
impossible without a favorable
initial world set up. Conversely,
a straight game of Klondike
solitaire has a pretty good chance
of being completely unwinnable
from the moment cards are dealt.
Still, there are opportunities for
the enterprising designer—there
are versions of both Solitaire and
Mah Jongg available online that
promise to present a winnable
problem to the player.

The psychology of a known
solvable game of solitaire is,
as a designer, interesting to
contemplate. Once you know the
game is solvable, is the player more
likely to replay a vexing board?
Does the game feel more like a true
skill-based game at this point?
Or does removing most of the

DESIGN OF THE TIMES // DAMION SCHUBERT

RANDOM IS RANDOM
A simple die roll can be one of the single most vexing tools in the designer’s repertoire. Rolling dice is fun. Landing double-sixes is
a lot of fun. Seeing big critical hit numbers pop across a big bad boss monster’s head is deeply satisfying. And yet, the experienced
designer knows that— much of the time—the dice are his enemy. This is tragic, of course. Most game designers, at the core, love
absurd amounts of dice rolling.

There are few ways to get a room full of RPGers more excited than to bring back the fond memories of the Rolemaster Critical Hit
Tables, where simple acts like trying to climb a ladder might result in accidentally dropping your sword and removing your own arm.
The sheer magic and hilarity of events like this is transcendental. They're stories that will be described to other gamers for years.
However, passing that point and actually playing further as a one-armed Paladin is often only fun in retrospect.

www.gdmag.com 43

unwinnable boards make the game,
on average, trivial to beat?

The DownsiDe of RanDom
» Imagine if you swung your sword
and did 10 points of damage with
every swing, every second. This
would very quickly start to get
stale and monotonous, so game
designers find ways to add variance
to the system—making the damage
range from 5 to 15 points instead, or
adding in random hits and random
misses, occasional chances for
critical hits.

One streak of bad luck can make
this all fall apart. If random rolls are
truly random, it’s entirely possible
that our hypothetical swordsman
might hit for 5 or 6 point every
time—hypothetically halving his
DPS in this example. Even worse, if
his opponent is having the opposite
luck, she might have triple his DPS,
even if they both have the same
sword and skill. Furthermore, on
the next fight they might have
exactly the opposite results. The
end experience would feel—well,
random. So much so that it would
feel like player skill had no role in
the fight whatsoever.

Streaky behavior constantly
has to be controlled for in games.
In MMOs, its somewhat common to
give a raid monster an enhanced
critical attack that does so much
damage (or has some other
dehabilitating effect) that the
tank has to do extra trickery, or
the healing brigade has to drop
non-stop healing in a never-ending
chain. These powers that are
extremely devastating if they
happen once become unsurvivable
if the boss happens to land 2 or 3 of
these in a roll. Designers then have
to go in and put in cooldowns, or
otherwise manage the randomness
to keep the fight survivable.

RanDom is RanDom
» One casual takeaway is that
randomness is more fun when it
breaks in the player’s favor. Critical
hits are fun—and streaks of them
are giddy fun—but rolling misses is
not. This is a useful insight, but still
an oversimplification—especially as
these reward events get rarer.

As an example, it’s decidedly
hard to make loot both very rare,

and reliably drop. Take the odds of
dropping a Phat Purple from 1 to
1,000 to 1 in 10,000, and you’ve
increased the odds that some player
will get unlucky and never see the
item. On the flip side, a one in a
million chance of hitting the jackpot
ceases to be rare when you have
more than a million players pulling
the lever more than a billion times.
The jackpot is going to drop, and
some lucky players are going to get
multiple bonuses. Players will see
the streaks, and perceive that your
random number generator is broken,
even when it’s working as designed.

On top of it all, in a true
random system—each player’s
rolls are truly independent. If I’ve
flipped a coin 19 times and gotten
heads every time, the odds that
the 20th will also be a head is still
exactly fifty-fifty, even if players
might feel differently. Similarly,
without artificially mucking with
things under the covers, there is
no guarantee that multiple players
playing the game won’t get lucky
and strike it rich, either flooding
the economy or bankrupting the
house as a result. There’s also a
chance that the event will fire so
rarely that its existence is a mere
myth to the playerbase, which
may or may not be a bad thing.

when RanDom isn’T
» Is true randomness a good idea
at all? Designers may find that true
randomness is not well understood
or is often misinterpreted. True
randomness can, for example, give
you the same loot 13 times on
15 boss attempts —it’s unlikely,
but entirely possible. And while
designers love to roll dice, it’s more
important to provide something
resembling a predictable player
experience.

This is actually trickier than
it seems. The human brain is
designed to seek patterns, and
instill order, logic, or superstition on
what it sees. Need for greed rolls in
MMOs perfectly show the failures in
psychology here: The player won't
notice a full night of loot drops
being distributed evenly, but will
glom onto the fact that his party
mate managed to win 3 things in a
row. The player will utterly discount
when he’s rolling well if his party

mates are rolling better than him.
And the average player is only
subtly aware that larger party sizes
decrease the odds that he’ll win any
given roll.

Still, there are ways to give
the illusion of randomness, while
still finding ways to keep the math
under control. One option is to give
the loser bonuses that improve
their odds of winning the next
roll, which evaporates when you
finally land the roll. This not only
potentially solves the problem, but
also rewards perennial losers with
some fun, ludicrously large rolls to
brag about.

Another way to approach the
problem is by removing successful
rolls from the probability space.
Imagine that your 1d100 die roll
is represented by a randomly
shuffled deck of cards with those
numbers on them. When you
choose a number, remove that
card from the deck. Once the last
number has been chosen, all cards
are shuffled back together and are
selectable again. This approach has
several benefits to it, the least of
which being that a 50% chance of
success is, over time, pretty much
guaranteed to be 50%, and win
streaks will almost certainly be
counterbalanced over time.

There are pitfalls. Mechanics
such as these can be leveraged
and potentially exploited by a
savvy player. An experienced card
counter knows to adjust his game
once he knows the blackjack deck
is disproportionately full of face
cards –at that point, the deck is
no longer truly random. This may
not be something that has to be
stopped, and may actually be a
design opportunity. Strategy in
deckbuilding games like Magic
the Gathering and Dominion
heavily leverage awareness of
what remains in your deck, and
the designers of both games have
learned to embrace this and give
players tools with which to further
finesse these possibility spaces.
It turns out that if random is fun,
cheating that randomness is even
more fun.

RanDom conclusion
» Five card draw is a game that
is, at its core, a pretty random

experience. The odds that you will
get a good hand are pretty low, and
whether your hand is better than
your neighbor’s is pretty much a
total crapshoot. The only cards that
are excluded from the possibility
space are the cards that you’ve
drawn. The odds of two players
having great hands (i.e. a full
house beating a straight flush) are
pretty low. The game is, effectively,
entirely about bluffing.

Texas Hold’em is a lot less
random. Each player’s random
elements are reduced to two cards,
plus the undrawn cards in the river.
Because of that pool of shared cards,
there is a high correlation between
the quality of players’ hands; if you
are close to a flush, the cards in
the river mean that other players
are also within sniffing distance.
Conversely, if there are three 8s in
the river and you have the fourth,
the possibility space of how your
opponents can compete with you
shrinks to nearly nothing. The game
still has strong random elements,
but these random elements can
now be managed and strategized.
This design element is a key reason
why Poker recently took the world
by storm.

So is randomness good or
bad? The answer is that, like many
things, randomness is an element
of a designer’s toolbox that can
be used for good or evil, and can
dramatically change the tenor of the
game. Some poker players lament
how Texas Hold’em puts a premium
on math and probabilities over the
skill of bluffing. Conversely, some
strategy gamers refuse to play any
game with more than a negligible
amount of randomness. The answer
will be different for each game. It’s
up to the designer to figure out
how to wrangle that randomness
in a way that he can guarantee
an interesting and challenging
experience to the player.

Damion schubeRT is the lead systems

designer of Star WarS: the Old republic

at BioWare Austin. He has spent nearly a

decade working on the design of games, with

experience on Meridian59 and ShadOWbane

as well as other virtual worlds. Damion

also is responsible for Zen of Design, a blog

devoted to game design issues. Email him at

dschubert@gdmag.com.

mailto:dschubert@gdmag.com
http://www.gdmag.com

http://gdc.gamespot.com

WWW.GDMAG.COM 45

DAMIAN KASTBAUER // AURAL FIXATION

IT'S ABOUT PEOPLE
THE GREAT GAME AUDIO COMMUNITY

LEVELING
» In what has become a yearly
pilgrimage, the San Francisco GDC
brings together a community of
people centered around the pursuit
of sharing and gaining knowledge
that might otherwise be lost in a
sea of search results. The singular
magic that happens when like-
minded people get together and
rally around a single pursuit cannot
be contained within the confines
of sessions and exhibit halls. Even
the conversations in the hallways
comprise some of the finest and
most relevant thinking between
both professionals and hopefuls.

Whether you're just starting
in games or running in the same
circles year after year, it's important
to know where you stand in
relation to others. Taking part in
the largest conglomeration of Bes
and Wannabes in the industry is
a fantastic way to see the levels
of skill, dedication, and talent that
exist, and helps to frame your
passion. People who are working
(and want to be working) in games
are only a handshake away. Most
are hungry to be either recognized
or validated for their hard work,
and taking the time to get to know
someone is what it’s all about.

CONNECTED
» It should come as no surprise
that people in the game industry are
well connected. Through years of
company jumping, project shipping,
and studio closings there is now a
web of relationships in the industry
that lies like a blanket over the
conference. At times it can feel a

bit like a class reunion, and that is
definitely one of the great things
about coming back year after year.
There is a danger in that familiarity,
though, if it keeps people from
reaching out to newcomers. Part of
our responsibility as professionals
in the community is to be part of a
supportive network for people who
are interested in learning the art

of our craft. While sessions often
provide a one-sided conversation
between the presenter and the
audience, it's the interaction outside
the sessions that allows for sublime
moments of inspiration.

There comes a time during
those conversations when it's no
longer cool to keep talking shop; I'm
the worst at this. I’m always the last
one to let go of any conversation
about game audio. I can happily
ramble on endlessly about freakish
details and solicit strangers for
their perspectives on esoteric audio
intricacies for days on end ... that
is, until I realize that there is more
to life than cool tricks and industry

secrets. It's amazing what you can
find out about a person if you ask.
I find that it's easy to forget simple
conversational technique while
steeping in the geekery. Balancing
the fine art of conversation with
the intense desire to learn can be
a struggle when you're surrounded
by so many intelligent people. Don't
forget to be human.

ONLINE
» When the conference is over, the
ecstasy of communication doesn't
have to be! Here are a few other
places where you can engage the
game audio community:

IASIG, G.A.N.G., and the IGDA Audio
SIG continue to be communities
dedicated to furthering the art of
interactive sound and music. Through
initiatives, conversations, working
groups, and in the forums, these
entities give you a place to exchange
ideas. Becoming a member gives
you the opportunity to volunteer
your time and energy to accomplish
something greater than you could on
your own—instead of just sitting on
the sidelines.

A looser-knit band of sonic
surgeons can be found over at
GameAudioForum.com, where
discourse has been ongoing
since 2006. I've seen this
community, which has a steady
mix of professionals and hopefuls,
provide intelligent perspectives
and supportive feedback, since
its inception. Whether wrestling
with implementation, showing off
accomplishments, or musing on
the state of the industry, its open
door policy allows for valuable

insight from a caring and varied
community.

For those of you who have
discovered the singular oddity
that is Twitter, it should come as
no surprise that the conversation
over there never stops. Whether
you see it as an interwoven fabric
of friendships, cult of personality,
or something else entirely, the
game audio community is well
represented. Just search for the
#GameAudio hashtag to find a
steady stream of game-audio
related articles, video, and
conversation topics that routinely
spark a lively debate.

OFFLINE
» Don't think I’m advocating for a
Neanderthal's life, all blinking pixels
and wide eyes on the wild frontier.
There's plenty of community outside
the box if you know where to look.
While game audio may be in short
supply where you live, there's a good
chance that a pocket of independent
game development is just around
the corner. The IGDA has chapters all
over the world that exist “to advance
the careers and enhance the lives
of game developers by connecting
members with their peers, promoting
professional development, and
advocating on issues that affect the
developer community.” I've always
seen my local chapter meeting as a
melting pot of enthusiasts coming
together to celebrate games and
discuss the hard work that goes into
making great ones ... which sounds
strangely familiar.

“Big City, Bright Lights,
Cool Cool People, Big City.
Everybody I know can be
found here.” —Spacemen 3

DAMIAN KASTBAUER is a technical sound

design outlaw and confused chocolatier

who can be found musing on game audio

at LostChocolateLab.com and on Twitter @

LostLab.

IL
LU

ST
RA

TI
ON

 B
Y

KE
LS

EY
 K

RA
US

IT'S ABOUT PEOPLE
It's amazing. People are amazing. It always comes right back to that for me ... I love a challenge as
much as the next person, but when it's all said and done, my biggest takeaways from any project
are the relationships I formed and experiences I had working with others. The ability to collaborate
and create with people means that the accomplishments will be greater than when setting out
alone. When creative thinkers and resolute problem solvers apply themselves, there “ain't no
mountain high enough” and no task too formidable. This is what leads me to the Game Developers
Conference every year—meeting up with old friends, and engaging new folks in the game audio
conversation. That's where some of these discussions start, but it doesn't have to be the end. Read
on for ways to keep the conversation going throughout the year.

http://GameAudioForum.com
http://LostChocolateLab.com
http://WWW.GDMAG.COM

http://www.gdcvault.com

Good JoB Hired someone interesting? Let us know at editors@gdmag.com!

H i r i n g n e w s a n d i n t e r v i e w s

Game developer | march 201247

A Hayward Soul
Codies Qa professional makes His way to design

whowentwhere
After one year of leading Disney
Interactive's games business, Bungie
and Wideload cofounder Alex Seropian
has left the company altogether.

Andrew Graham, one of the key
designers and programmers for the
Codemasters-developed Micro Machines
series, has joined a handful of other
Codemasters veterans at U.K. mobile
studio Kwalee.

Brink developer Splash Damage has
hired veteran programmer Marc Fascia,
who previously worked at Ninja Theory,
as its new technical director. The
company has also hired the FIFA series'
former senior development director Griff
Jenkins as its new studio production
director.

Susan Panico, senior director of the
PlayStation Network in North America,
has left Sony Computer Entertainment
after more than 17 years with the
company.

new studios
Eat Sleep Play cofounder David Jaffe
has left the company to found a new
developer in San Diego.

Innovative Leisure is a new L.A.-based
video game company led by former Xbox
man Seamus Blackley, which combines
the talents of 11 Atari development
superstars who will make games for the
iPad under publisher THQ.

Yasuhiro Wada, formerly a producer
at Marvelous Entertainment and the
creator of long-running farming game
series harvest Moon, has formed a new
company called Toybox in Japan.

Brandon Sheffield: How difficult was it for
you to bust out of QA? Was that indeed your
intention?
Darren Hayward: I’d been trying to land a
development job for 12 months or so before
I got a position with the design team in the
Racing Studio. It feels like it’s getting harder
and harder to break into design, with a lot
of experienced designers in the industry
already, and a constant trickle of talented
graduates looking to take up entry-level
positions. It’s difficult to communicate to
employers why they should choose you over
the mountain of other candidates that will
inevitably apply for a design role. A solid,
varied portfolio is a good start, and it can’t
hurt to pick up QA experience while you wait
for an opportunity.

BS: Do you feel the job situation is
particularly difficult in the U.K., with many
studios shuttering and many talented
people looking for work?
DH: It is, and it looks like it’s only going to get
more difficult. There aren't many big studios
left in the U.K., and as you say we've lost a
few in recent years. There are new start-ups,
but it takes time to build job opportunities.
It's easy to see why so many people are
emigrating to places like Canada, especially

with the tax breaks and better wages out
there.

BS: Did you apply externally as well as
internally?
DH: It was getting to the point where I didn’t
think I’d get the opportunity at Codies, so I
was looking elsewhere. It’s not easy to make
the transition from QA to design, so I was
keeping my options open. There are a lot of
developers around here, and I got a great
offer from another company—but once I
was almost out of the door, I was offered a
spot on the racing team. I couldn’t turn down
the opportunity to contribute to the design
of AAA games at a company I’d had a blast
at for nearly 5 years, so I ended up staying.
I’m happy to say I’m really enjoying myself
so far!

BS: How have you found the transition? Do
you find yourself thinking about design
from a test-driven perspective?
DH: Always. How will QA try to break our new
mode? Does this message meet platform-
holder guidelines? You’ve got to think about
these sorts of questions for all your features.
If it breaks in-house, it’ll break out in the
wild for sure. That’s not to say we don’t try to
innovate and bend the rules as much as we
can, but from a production point of view if a
feature gets to QA and it’s not going to work,
it’s expensive to tear it up and start again.

BS: What, to you, makes a good test
environment?
DH: Communication with the development
team is absolutely critical. I’ve seen testers
waste days working tirelessly on buggy
areas of a game, only to be told that fixes
were already on their way in a new build.
Luckily we’ve got development QA working
in the studio here, as well as a full team
of experienced testers on the campus in
another building. This means we can keep
everyone in the loop about what should work
and when, as well as allowing for a speedy
build delivery process.

Darren Hayward worked in Codemasters’ QA department for many years, but dreamed of
doing design. That path is less clear than it once was, and he found himself applying outside
of as well as within the company. Ultimately, he landed a design job in Codemasters’ Racing
Studio, and we quizzed him on the transition.

mailto:editors@gdmag.com

http://gdmag.com/subscribe
http://bit.ly/gdmag_ios

Ne w s aNd iNformatioN about the Game de velopers CoNfereNCe® serie s of e veNts www.GdCoNf.Com

GDC AwArDs honor Missile CoMMAnD CreAtor, First
AMenDMent GAMe lAwyers, wArren speCtor

game developer | march 201249

The 12th Annual Game
Developers Choice
Awards have revealed
the recipients of
three of its Special
Awards—the Pioneer
Award, given to
developers for
creating breakthrough
video game genres
or concepts, the
Ambassador Award,
given to those who
have helped the game
industry advance to a
better place, and the
Lifetime Achievement
Award.

pioNeer
» the pioneer Award
celebrates individuals
responsible for developing
a breakthrough
technology, game concept,
or gameplay design at a
crucial juncture in video
game history, paving
the way for the many
developers who followed
them.

this year's honoree,
Dave theurer, began his
trailblazing career in
the video game world in
1980 with the release of
Missile CoMMand, a seminal
trackball-based shooter
that was a milestone in
early interactive games.

Following on from this
in 1981, theurer created
the timeless vector-based
tube shooter TeMpesT,
which inspired a slew
of other innovations in
arcade video games and
was an early title to use 3D
perspective in gameplay.

As his final title in
the game industry before
moving to a successful
career in enterprise
software, theurer designed
the cult, ground-breaking
arcade title i, RoboT. this
1983 arcade game, not

commercially successful
at the time, is legendary for
being the first commercial
video game with filled 3D
polygon graphics, as well
as the first video game
to feature camera control
options—and was years
or even decades ahead of
its time.

"it's very difficult to
find a game developer
who doesn't have a single
memory of Missile CoMMand
or his other classic,
TeMpesT," said Meggan
scavio, general manager
of the Game Developers
Conference. "we're
delighted to honor Dave
theurer for his work as a
designer which resulted
in shaping so many
developers' creative drive
in the genre."

ambassador
» the Ambassador Award
recognizes individuals
who have helped the game
industry advance to a
better place, either through
facilitating a better game
community from within,
or by reaching outside the
industry to be advocates for
video games to help further
the art form.

this year, the
Choice Awards Advisory
Committee voted the First
Amendment lawyers in
the historic U.s. supreme
Court case Brown v.
eMA as recipients of
the Ambassador Award.
Ken Doroshow and paul
M. smith led the legal
team that convinced the
Court that content-based
restrictions on games
are unconstitutional.
the landmark ruling
established First
Amendment rights for
those who create, develop,
publish, and sell video

games, and is incredibly
important to the past,
present, and future of
video games as a creative
medium.

Ken Doroshow is
senior vice president and
general counsel of the
entertainment software
Association (esA) in
washington, D.C. As the
esA's General Counsel,
Ken oversees all the
association's legal matters,
including litigation,
business affairs, and
intellectual property policy.

the lead external lawyer
on the case was paul M.
smith of Jenner & Block
llC, chair of the appellate
and supreme Court practice
and Co-Chair of the Media
and First Amendment,
and election law and
redistricting practices
at his firm. he has had
an active supreme Court
practice for nearly three
decades, including oral
arguments in 14 supreme
Court cases involving
matters ranging from free
speech and civil rights to
civil procedure.

"the dedication that
both Doroshow and smith
brought to the Brown v.
eMA case will forever make
them heroes to anyone
who understands the value
of this industry," added
scavio of the duo. "with

their legal teams, these
two lawyers advanced the
games industry in such
a way that developers'
livelihoods and intellectual
properties are protected."

lifetime
aChievemeNt
» with a career in games
spanning nearly 30 years,
warren spector has earned
a reputation in the industry
as a seminal designer and
a champion for the proper
execution of ideas in video
games.

his work on the career-
defining deus ex took place
while he was serving as
a partner at development
company ion storm and
running its Austin-based
office. Upon its release in
2000, deus ex received
wide critical and industry
acclaim and in 2009 was
named "Best pC Game of All
time" among a list of 100
other titles in PC Gamer
magazine.

in 2004 spector
left ion storm, and the
following year established
Austin-based video game
development firm Junction
point. Junction point
was acquired by Disney
interactive studios in 2007.
immediately following,
spector began leading
the design of disney epiC
MiCkey, which released
in 2010 and marked his
first title as part of Disney
interactive studios.

the game featured
spector's hallmark style of
choice and consequence
gaming, which he refers
to as "playstyle Matters,"
and was praised for its
unique storyline, charming
art design, and the tribute
it paid to 80 years of rich
Disney history.

since beginning

his gaming career at
steve Jackson Games
in 1983, spector has
played a key role when
it comes to redefining
genres. As a producer
and designer on titles like
tsr, inc.'s Top seCReT/s.i.
and MaRvel supeR
HeRoes, origin's award-
winning ulTiMa game
series, including ulTiMa
WoRlds of advenTuRe 2:
MaRTian dReaMs, ulTiMa
vii: seRpenT isle, and
ulTiMa undeRWoRld, as
well as looking Glass
technologies's critically
acclaimed sysTeM sHoCk,
spector demonstrated
his ability to open up new
avenues in the role-playing
arena and provide players
with a fresh gameplay
experience.

the lifetime
Achievement Award
recognizes the career
and achievements of a
developer who has made
an indelible impact on the
craft of game development
and games as a whole,
and warren spector, who
has earned a sterling
reputation as an innovator
able to merge the deep
gameplay elements of
multiple genres, stands as
a shining example of those
principles.

"warren, whose rarified
'big picture' thinking
and ideals have done a
great deal for the games
industry, exemplifies
the exact qualities that
a lifetime Achievement
Award recipient should
possess," said Meggan
scavio. "in presenting him
with this honor, we continue
a tradition of highlighting
individuals whose work
stands as a benchmark
for the next generation of
developers."

http://WWW.GDCONF.COM

S T U D E N T g a m E P R O F I L E S

EducatEd Play!

Tom Curtis: How did you all come
up with the concept for Deity?
During the early stages of the
project, most of our ideas focused
on creating a stealth game
emphasizing light and shadows.
The first playable prototype used
a third-person camera, where
the player had to manipulate
the environment's lights and
hunt guards holding flashlights,
but we settled on the isometric
perspective because we identified
a nostalgic charm attached to
it—it also removed the need for
additional camera controls.

TC: For a game of this scope,
Deity is surprisingly complex,
both aesthetically and in terms
of its stealth- and action-based
gameplay. Was this part of the
original intent? How did you
all coordinate/delegate the
workload to get everything done
on time?
We definitely [wanted] to make
Deity feel strategic, but our
main priority was to ensure that
the game was fun. Continuous
playtesting resulted in the team
making gradual improvements to
the mechanics and level design
that revolved around our central
ideas. Oftentimes, we would make

drastic gameplay changes several
days before milestones because
we realized that it just wasn't as
fun or engaging as we hoped. Most
of Deity's artistic inspiration came
from dungeon crawlers, and we
wanted to maintain that same gritty
look and feel that most of these
games feature.

The team would have an
in-depth meeting after each
milestone to decide what our
individual goals were for the next
project milestone. We would also
officially meet twice a week during
the times that our schedules
didn't conflict (conducting SCRUM-
like sprints so we could quickly
discuss our progress, problems,
and work plans).

Having to deal with schoolwork
and a full game project wasn't
easy for us, and we would often
have to endure unforeseen delays.
As such, most of our ideas and
concepts were planned with
scalability in mind. Our art assets
were reusable (environment
pieces were modular and tile-able)
and our gameplay features could
be cut.

TC: What games were your
greatest influences, and how did
they impact the final project?

Batman: arkham asylum and
assassin's CreeD were some of
our sources of inspiration for the
stealth experience. Being able to
swoop in and out and eliminate
your targets without being caught
was something we loved about
those games. The idea was to
bring a similar experience to
Deity: You had visible superiority
over your enemies, but your
movement and attack strategies
determined your success. We
wanted to deliver a unique
experience while preserving a
similar stealth feel; gameplay
mechanics and level designs
had to be constantly tweaked to
achieve that.

DiaBlo and torChlight had
an influence on our artistic and
interface design for Deity. Those
references helped us to identify
the potential camera viewing
problems inherent with our
viewing angle (tall objects and
walls had to be avoided) and we
gained a greater understanding
of darker, organic atmospheres.
The artists on the team did a
phenomenal job executing our
vision, and really made the game
stand out visually.

As for the controls, it
was initially modeled after a
combination of WorlD of WarCraft
and DiaBlo, but we realized that
the added complexity could have
been devastating for players who
were unfamiliar with those titles,
so we streamlined the controls
onto the mouse. This had a
tremendous effect on lowering the
learning curve, which led to non-
gamers picking up and enjoying
our game.

TC: Any lessons you took from
Deity's development?
One of the most important
lessons we took away from the
project was that developing an
engaging, polished game requires

teamwork. Being able to trust in
each of our abilities to deliver,
respecting personal schedules,
and valuing the opinion of every
team member was crucial to
improving productivity.

We learned to ask what
each of us could do and not to
impose tasks. The various roles
in the game’s production were
volunteered for, not assigned,
which led to every person putting
in amazing effort without being
compelled by others to work.

Deity has been the most
rewarding and successful project
for all of us on the team, and
a large part of what made that
happen was the synergy and
perseverance we managed to
uphold.

DEITY
There's no denying ThaT sTudenT projecT Deity has ambiTion. The game Takes cues from The likes of Diablo, assassin's CreeD, and batman: arkham asylum,
blending isomeTric acTion wiTh sTealTh-based sTraTegy. players work Their way Through a dangerous medieval casTle, all The while hunTing
guards, lurking in The shadows, and oTherwise escaping cerTain doom. Game Developer recenTly spoke To The digipen sTudenT Team behind The
game To learn more abouT iTs inspiraTion and origin.

h t t p : / / w w w . d e i t y - g a m e . c o m

www.gdmag.com 50

Developer/Publisher: DigiPen
Institute of Technology
Release Date: 16-Dec-2011
Platform: Windows PC
Number of Developers: 8
Length of Development: 15 months
Budget: $0
Lines of Code: Over 70,000 lines of
C++ code
Fun facts:
Everyday Value Slams @ Denny's
weekly consumption: 10
The Longest Day: 52 hours
Instant noodle packs consumed:
approximately 500

Team members
Ryan Chew
Caroline Sugianto
Christopher mingus
Ryan Hickman
michael Travaglione
Ying Liu
matt Frederick
aariel Hall

http://www.deity-game.com
http://www.gdmag.com

©
 2

01
2

Fu
ll

Sa
il,

 L
LC

Game Art
Bachelor’s Degree Program
Campus & Online

Game Development
Bachelor’s Degree Program
Campus

Game Design
Master’s Degree Program
Campus

Game Design
Bachelor’s Degree Program
Online

fullsail.edu

Winter Park, FL
800.226.7625 • 3300 University Boulevard

Financial aid available for those who qualify • Career development assistance
Accredited University, ACCSC

To view detailed information regarding tuition, student outcomes, and related statistics,
please visit fullsail.edu/outcomes-and-statistics.

Campus Degrees
Master’s
Entertainment Business
 Game Design

Bachelor’s
Computer Animation
Creative Writing for Entertainment
Digital Arts & Design
Entertainment Business
Film
 Game Art
 Game Development
Music Business
Recording Arts
Show Production
Sports Marketing & Media
Web Design & Development

Associate’s
Graphic Design
Recording Engineering

Online Degrees
Master’s
Creative Writing
Education Media Design & Technology
Entertainment Business
Innovation & Entrepreneurship*
Internet Marketing
Media Design
New Media Journalism
Public Relations*

Bachelor’s
Computer Animation
Creative Writing for Entertainment
Digital Cinematography
Entertainment Business
 Game Art
 Game Design
Graphic Design
Internet Marketing
Media Communications*
Mobile Development
Music Business
Music Production
Sports Marketing & Media
Web Design & Development

* Title IV federal student financial aid funding is not available
for this program. Full Sail has applied for approval to award
Title IV funds for this program and if granted, students will
be advised of the availability of such funds as applicable.

http://fullsail.edu
http://fullsail.edu/outcomes-and-statistics

PREPARING
NEW LEADERS
FOR THE
DIGITAL MEDIA INDUSTRY

MASTERS OF DIGITAL MEDIA PROGRAM
The Masters of Digital Media program (MDM)
is Canada’s premier professional graduate degree
program in digital media and technology. Offered
at Vancouver’s Centre for Digital Media, the program
includes internships and engages students in real world
projects where they gain valuable leadership experience,
hands-on training, and top industry connections.

Yasmeen Awadh
Tel: +1 778.370.1010
Toll Free: 1.855.737.2666

mdm.gnwc.ca
facebook.com/CentreforDigitalMedia
twitter.com/CentreDigiMedia

VISIT US SPEAK WITH AN ADVISOR

>>
GE

T
ED

UC
AT

ED

52 M A R C H 2 0 1 2 | G A M E D E V E L O P E R

http://mdm.gnwc.ca
http://facebook.com/CentreforDigitalMedia
http://twitter.com/CentreDigiMedia
http://www.howest.be
http://www.digitalartsandentertainment.com

enroll now

earn
your aa, ba, bfa, ma, mfa or
m-arch accredited degree

engage
in continuing art education courses

explore
pre-college scholarship programs

www.academyart.edu

800.544.2787 (u.S. Only) or 415.274.2200

79 new montgomery st, san francisco, ca 94105

Accredited member WASC, NASAD, CIDA (BFA-IAD), NAAB (M-ARCH)

*Acting and Landscape Architecture degree programs not currently available online.

Visit www.academyart.edu to learn about total costs, median student

loan debt, potential occupations and other information.

Photo credit: Joseph Taylor, Chris Haejin Chu

take classes online or
in san francisco

acting*

advertising

animation & Visual effects

architecture

art education

fashion

fine art

Game design

graphic Design

illustration

industrial Design

interior architecture & Design

landscape architecture*

motion Pictures & television

multimedia communications

music Production & sound Design
for Visual media

Photography

web Design & new media

http://WWW.ACADEMYART.EDU
http://www.academyart.edu

Learn to create the future of games with an Associate’s Degree in Game

Create Game Art

*Length of program and start dates are dependent on course of study and degree option. For more information on our programs and their outcomes visit www.la� lm.edu/disclosures.
©2011 � e Los Angeles Film School. All rights reserved. � e term “� e Los Angeles Film School” and � e Los Angeles Film School logo are either service marks or registered service marks of � e Los Angeles Film School. Accredited by ACCSC©2011 � e Los Angeles Film School. All rights reserved. � e term “� e Los Angeles Film School” and � e Los Angeles Film School logo are either service marks or registered service marks of � e Los Angeles Film School. Accredited by ACCSC

Learn to create the future of games with an Associate’s Degree in Game

A.S. Degree in Game ProductionA.S. Degree inA.S. Degree inA.S. Degree in Game Production Game Production
Start Living The Dream!

800.406.7485

 & VISUAL FX

THE EDUCATION EXPERTS IN

ACADEMY OF
INTERACTIVE ENTERTAINMENT
ACADEMY OF

 www.theaie.us
t: 206-428-6350 or 225-288-5227 e: uscampus@aie.edu.au

 GAMES, 3D ANIMATION

Now Accepting Applications
for Summer Semester

Limited Availability. Apply Now!

THE EDUCATION EXPERTS IN

 GAMES, 3D ANIMATION GAMES, 3D ANIMATION

>>
GE

T
ED

UC
AT

ED

54 M A R C H 2 0 1 2 | G A M E D E V E L O P E R

http://www.theaie.us
mailto:uscampus@aie.edu.au
http://www.designlafilm.com
http://www.lafilm.edu/disclosures

ACADEMY OF ART UNIVERSITY .53

ACADEMY OF INTERACTIVE ENTERTAINMENT54

EPIC GAMES . 19

FMOD BY FIRELIGHT TECHNOLOGIES 6

FULL SAIL REAL WORLD EDUCATION 51

GAMESPOT .44

HOWEST UNIVERSITY 3D SQUARE52

IGDA .32

INTEL . 28–29, C3

LOS ANGELES FILM SCHOOL .54

MAGIC PIXEL .26

MASTERS OF DIGITAL MEDIA PROGRAM 52

RAD GAME TOOLS .C4

RESEARCH IN MOTION .C2

RED 5 STUDIOS .3, 12

TWOFOUR54 .11

UMBRA SOFTWARE . 14

UNITY WORKSHOP .37

VANCOUVER FILM SCHOOL .37

COMPANY NAME PAGE COMPANY NAME PAGE

ADVERTISER INDEX

gd Game Developer (ISSN 1073-922X) is published monthly by UBM LLC, 303 Second Street, Suite 900 South, South Tower, San Francisco, CA 94107, (415) 947-6000. Please direct advertising and editorial
inquiries to this address. Canadian Registered for GST as UBM LLC, GST No. R13288078, Customer No. 2116057, Agreement No. 40011901. SUBSCRIPTION RATES: Subscription rate for the U.S. is $49.95 for
twelve issues. Countries outside the U.S. must be prepaid in U.S. funds drawn on a U.S. bank or via credit card. Canada/Mexico: $59.95; all other countries: $69.95 (issues shipped via air delivery). Periodi-
cal postage paid at San Francisco, CA and additional mailing offices. POSTMASTER: Send address changes to Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. CUSTOMER SERVICE: For subscription
orders and changes of address, call toll-free in the U.S. (800) 250-2429 or fax (847) 647-5972. All other countries call (1) (847) 647-5928 or fax (1) (847) 647-5972. Send payments to gd Game Developer, P.O.
Box 1274, Skokie, IL 60076-8274. Call toll-free in the U.S./Canada (800) 444-4881 or fax (785) 838-7566. All other countries call (1) (785) 841-1631 or fax (1) (785) 841-2624. Please remember to indicate gd
Game Developer on any correspondence. All content, copyright gd Game Developer magazine/UBM LLC, unless otherwise indicated. Don’t steal any of it.

>> GET EDUCATED

55W W W . G D M A G . C O M

http://WWW.GDMAG.COM
http://gdmag.com/subscribe

ARRESTED DEVELOPMENT // MATTHEW WASTELAND

GAME DEVELOPER | MARCH 201256

HOW TO ANNOY YOUR

TESTERS
T H E C O M P L E T E G U I D E

TESTERS
PART 1:
KNOWN ISSUES.
» Don’t read your bugs. Read only
the first five words of the bug, and
then route it to other people on the
team based on those five words.
Send back random bugs as fixed
without reading the bug. When
they’re returned open, send them
back as not a bug. Write “That’s a
known issue” on a bug and send it
back, thinking the tester will close
the bug because now you know
about it. Write “It works fine for me”
in the comments and send it back.
Write “It works fine for me” in the
comments and then sit on the bug
for the rest of the project.

 Let the bugs pile up in the
database for months. Then, when you
finally do get around to looking at
the bugs, throw up your hands and
say, “I don’t have time to deal with
these!” Afterwards, ask the testers to
do a full regression pass on anything
that’s open in the database.

 Tell the testers to come in early
so they can have a build report
ready by the time the rest of the
studio gets in. Don’t pay attention
to the build report. Waste time
getting builds that were indicated
as broken in the build report.

PART 2:
THE ISSUES.
» When the testers raise
performance issues, say “Well, duh,
we haven’t done the optimizations
yet. Wait until we do optimizations
to flag this as a problem!” Don’t
do any optimizations until the
last possible moment. When

the optimizations fail to fix the
performance issues and it’s too
late, say, “We should have been
testing this.”

When they raise compliance
issues, write, “That won’t be an
issue.” Forget that the discussion
took place when the game fails its
certification.

 "When they raise game balance
issues, tell the testers to stop
raising game balance issues.

PART 3:
THWART PROGRESS.
» Create an Achievement that
can be unlocked only by playing
the game actively for 300 hours.
Create Achievements that reward
completion on the hardest difficulty
setting in one sitting in a game with

one-hit kills and no checkpoints.
Don’t put in any debug commands
to unlock them.

Ask the testers to do a pass
through the full game progression,
in all modes and difficulty levels,
and then update the build with
a small code change as soon as
they’re done and ask for it again.

PART 4:
WORD GAMES.
» Call the QA team “the Q and A
team.” Ask them, “So you guys just
sit around playing games all day?”
Ask them, “So do you fill out, like,
a form or something when you’re
done?” Jokingly ask if they can
smuggle you a pre-release build
of so-and-so upcoming game—
they’ve definitely never heard that
one before.

Ask them if they watch
PlayStation Network’s "The Tester."
Ask if PlayStation Network’s "The
Tester" is what it’s like to test a
game.

When reviewing games,
assume that any bug found by a
tester is automatically being fixed
by someone. Ignore the idea that
hundreds of bugs could be found
and documented by the test team
and not fixed by the development
team. In your review of the game,
write, “I can’t believe the testers
didn’t catch this problem!” or, “What
were the testers doing over there?
Not their jobs, clearly.”

When someone says they’re
a tester, smile and tell them,
“Actually, testing is an important
part of the game development
process!” even though they
didn’t say anything to denigrate
themselves in the first place.

PART 5:
THE SHAKEDOWN.
» Get your bug numbers down by
reducing the number of testers.
Replace many of your testers
with outsourced testers. Make

the few testers you’ve kept try
to figure out what the bugs from
the outsource testers actually
mean. Make your in-house testers
retest the bugs written by external
testers.

Split hairs about the difference
between code and content. Say,
“At the end of the day, isn’t code
just another kind of content?”
Mention that the code and content
will be finalized at some point that
you cannot articulate right now.
Mention that the final spec of the
game is in a state of flux. Mention
that all the features that the
testers are testing could change
at any moment. Tell the testers
that all your documentation is out
of date and that there is no up-to-
date documentation on how the
game should actually work.

When you encounter a
particularly difficult bug, send it
back and tell the tester they must
be lying. Question the tester’s
testing methodologies. Question
the tester’s eyesight and ability to
perceive what actually happened
in the build. Accuse them of
flat-out lying. Challenge them to
reproduce the bug right in front
of your eyes. When they do, fume
impotently, but don’t ever credit
them, even in your own mind, for
exposing the holes in your grand
design.

M A T T H E W W A S T E L A N D writes

about games and game development

at his blog, Magical Wasteland (www.

magicalwasteland.com). Email him at

mwasteland@gdmag.com.

Sick and tired of the shaky foundation upon which your game rests? Lots of open
bugs in the database getting you down? Below, you’ll find our complete guide to
ensuring your game testers are just as miserable as you are!

http://www.magicalwasteland.com
mailto:mwasteland@gdmag.com
http://www.magicalwasteland.com

Copyright © 2012 Intel Corporation. All rights reserved. Intel, the Intel logo, are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands
are the property of their respective owners. © 2012 Zombie Studios. All Rights Reserved. Image courtesy of Zombie Studios. † GPA refers to Graphics Performance Analyzers.

The Intel® Graphics Performance Analyzers (Intel® GPA) is a powerful graphics tool suite for

analyzing and optimizing your games, media, and other graphics-intensive applications. With Intel

GPA, you can conduct in-depth analysis from the system level all the way down to individual

elements, allowing you to maximize the performance of your applications.

DOWNLOAD INTEL® GRAPHICS PERFORMANCE ANALYZERS
FOR FREE at www.intel.com/software/gpa

Intel® GPA System Analyzer
Learn whether your game is CPU- or GPU-
bound. Quickly analyze game performance
and identify potential bottlenecks.

Intel® GPA Frame Analyzer
Optimize graphics performance through
deep frame analysis of elements at the
draw-call level.

Intel® GPA Platform Analyzer
Visualize performance of your
application’s tasks across the
CPU and GPU.

“ Ultimately, the results of
optimizations we did with Intel
GPA tools made the Blacklight:
Retribution experience better
and better for our players.”

– CHANCE LYON, LEAD DEVELOPER,
 ZOMBIE STUDIOS

ZOMBIE STUDIOS OPTIMIZES WITH
INTEL® GRAPHICS PERFORMANCE ANALYZERS

Intel® GPA† helps Zombie Studios
deliver Blacklight*: Retribution

http://www.intel.com/software/gpa

http://www.radgametools.com

	Contents
	POSTMORTEM
	HALO: COMBAT EVOLVED ANNIVERSARY

	FEATURES
	CHEATING BEHIND THE CLOUD
	GET SMASHED

	DEPARTMENTS
	EDITORIAL- Game Plan
	NEWS- Heads Up Display
	REVIEW- Tool Box
	PROGRAMMING- The Inner Product
	ART- Pixel Pusher
	BUSINESS- The Business
	DESIGN- Design of the Times
	SOUND- Aural Fixation
	Career- Good Job
	NEWS- GDC News
	EDUCATION- Educated Play
	HUMOR- Arrested Development

