
T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E v o L 1 8 N o 3

M A R c H 2 0 1 1 I N S I D E : D E A D N A T I o N P o S T M o R T E M

http://www.seapine.com/gamebook

P O S T M O R T E M

13 HOUSEMARQUE'S DEAD NATION
 Marrying a twin stick shooter with the Zombie genre was a perfect

match. So much so that Housemarque's enthusiasm for the project
resulted in ever increasing feature creep. What was supposed to be
a small-scale downloadable title was starting to look like a full-on
retail game.

 By Harri Tikkanen and Ilari Kuittinen

20 FIRAXIS' SID MEIER'S CIVILIZATION V
 When the team began work on CIVILIZATION V the technology for the new

 game was not yet in place. This forced them to run a development
 plan that put design and engineering on separate but simultaneous
 tracks. It wasn't until the final year of CIVILIZATION V's almost four
 year production that the two came together to create a new CIV game
 that was as pretty to look at as it was forward-thinking in its design.

 By Dennis Shirk

F E AT U R E S

7 TENSION MAPS
 Ideally, by the time a game ships, it's various systems should be in a

state of careful balance. Of course, during development, systems will
need to be cut or modified and the closer a game is to its ship date
the riskier those changes can be. Here, designer Simon Strange pres-
ents a decision making approach for identifying and defining low-risk
design changes.

 By Simon Strange

26 RED MEANS BOOM!
Putting exploding barrels in your game should be pretty simple,
right? Well, not quite, as this anecdote from behind the scenes of
BULLETSTORM illustrates.
By Arcade Berg

D E PA R T M E N T S

 2 GAME PLAN By Brandon Sheffield [E D I T O R I A L]

Surprise! Your Game Is Canned

 4 HEADS UP DISPLAY [N E W S]

Cowclickification, Japanese game market woes, and Nathan Fouts'
Developer Notebook.

28 TOOL BOX By Seth Gibson and Damian Kastbauer [R E V I E W]

Autodesk Maya 2011 and BaseHead 2.5

32 DESIGN OF THE TIMES By Soren Johnson [D E S I G N]

 Water Finds a Crack

35 THE INNER PRODUCT By Dave Cowling [P R O G R A M M I N G]

Idle Threads

39 PIXEL PUSHER By Steve Theodore [A R T]

Blink of an Eye

43 AURAL FIXATION By Jesse Harlin [S O U N D]

 Three Erroneous Conceits

44 THE BUSINESS By Kim Pallister [B U S I N E S S]

 A War of Attrition

46 GOOD JOB! By Brandon Sheffield [C A R E E R]

 Manveer Heir Q&A, Who Went Where, and New Studios.

48 EYE ON GDC [G D C]

2011 GDC Classic Game Postmortem Lineup

50 EDUCATED PLAY By Jeffrey Fleming [E D U C A T I O N]

 Richard Flanagan's FRACT

56 ARRESTED DEVELOPMENT By Matthew Wasteland [H U M O R]

To The Writer

CONTENTS.0311
VOLUME 18 NUMBER 3

WWW.GDMAG.COM 1

http://WWW.GDMAG.COM

GAME PLAN // BRANDON SHEFFIELD

GAME DEVELOPER | MARCH 20112

SURPRISE! YOUR GAME IS CANNED
SO YOUR BIG GAME IS CANCELLED. WHAT THE HECK DO YOU DO NOW?

UNTIL LAST WEEK, I WAS
narrative director for
a mid-tier budget, big
publisher-backed original
IP for retail Xbox 360
and PlayStation 3. Then,
suddenly, one executive
shuffle later, projects
were getting canned left
and right, mine among
them. It’s happened to
nearly everyone in the
industry, but it’s the first
time for me, so I’ll delve
into this a little bit.

WELL, THAT SUCKS!
» Nobody saw it
coming—the game’s alpha
was approved and paid
for, response from the
publisher was positive,
and all our ideas were
really coming together.
The story made sense
and had a flow to it. All
gameplay elements
existed in the alpha,
and our unique look was
showing through. Five
days after that, word came
down that it was over.
Ultimately, it came down
to publisher finances,
there was nothing anyone
could do about it, and
frankly I don’t even blame
the publisher. Still, one
can’t help but think—what
if we’d put a little more
effort in? What if we’d
worked longer hours, or
made our ideas more
obvious in the alpha build?
Would it have helped?
Doubts and misgivings are
difficult to avoid.

The game took a lot of
calculated risks, which for
NDA reasons I obviously
can’t divulge—did those
risks keep us afloat
longer, or did they kill us
prematurely? Will I get
to see these risks taken
eventually in some other

game, and burn at my
missed opportunity?
These questions are
unanswerable, but
always lurking in the back
of my mind.

Luckily, nobody’s
losing their job over
this—the team absorbed
all its core members into
other projects, and life
goes on. As an external
contractor though, my
journey with this team
has ended. It was a good
group we had, with solid
ideas, crazy work ethic,
and a willingness to take
a stab at something new.
I suppose everyone feels
that way about their
teams, don’t they?

WHAT NOW?
» When you’ve put
months of your life
and much of your
brainpower into one
project, it’s difficult to
derail. I keep thinking
of things I could do to
make the story better,
the characters more
believable, the subtext
more subversive. Since
this does no particular
good for anybody,
I’ve got to redirect my
thoughts to something
else. And that’s one of
the silver linings to a
project cancellation—if
you do have other
ideas, a canceled game
is obviously a huge
disappointment, but it’s
also a weight lifted. To
make this magazine run
and also be narrative
director on a decent-
sized game, I made
myself work some crazy
hours. Essentially, I
never stopped. That may
be a bad example to set
in an industry plagued

by crunch, but I wasn’t
actually crunching in
either job per se—I was
crunching in life, by
doing two full-time jobs
simultaneously.

Suddenly, I find
myself with reams of
free time. No weekly
meetings, no deliverables,
no misunderstandings to
clear up, and no critical
issues to think through.
But the energy remains.
I still need to “do,” and to
“create.”

I’ve talked a lot in these
pages about the merits
of smaller-scale teams
and development, so I’m
going to put my money
where my mouth is, and
work on a few iPhone and
XBLIG projects I’ve been
considering for some time.
There’s something to be
said for working at your
own pace, on a project
that’s very much your
own, even if the financial
rewards are uncertain.

TALENT BLEED?
» I outlined all this so
explicitly because I think
my experience is not
unique. When a project
you’re passionate about
slips away from you,
the passion doesn’t go
away. The need to create
remains, and must be
channeled somewhere,
or be lost. I think this
experience is what turns
a lot of modern-day
developers away from
the traditional publisher-
backed game industry.
This is good for players,
because they get more
varied experiences across
more platforms—but
it’s bad for traditional
game developers and
publishers, because they

may lose some of the
people that will fight for
risk and new experiences
in traditional games.

I’m certainly not
saying I won’t work
in a traditional game
development setting
again—I most likely will,
when the opportunity
presents itself. There are
certain kinds of narrative
experiences that are
difficult to put forward
with a small team, and
those ideas still intrigue
me. But there are persons
for whom rest and repose
hold only limited appeal—I
think many game
developers feel this way,
and it’s what pushes us to
keep creating and make
the games we make. For
all of you out there who
may have recently lost
your job, had your game
canceled, been scaled to
half-time, or anything of
that nature, I urge you to
find out what you really
want to express, and find
a way to make it happen
for yourself, even if that’s
not within games.

Rather than looking
at this as a time to
mope and feel sorry for
oneself, the best thing
to do is to work on those
smaller or weirder games
you’ve had floating
around in your head,
write that screenplay,
code that application, or
finish that novel. That’s
my challenge to myself,
and to those of you in
similar situations, I pose
the same challenge. Let’s
see what we can come
up with before we get
back to the big grind, if
indeed we ever do.

—Brandon Sheffield
twitter: @necrosofty

United Business Media
303 Second Street, Suite 900, South Tower
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

W W W . U B M . C O M

SUBSCRIPTION SERVICES

FOR INFORMATION, ORDER QUESTIONS, AND
ADDRESS CHANGES
t: 800.250.2429 f: 847.763.9606
e: gamedeveloper@halldata.com

FOR DIGITAL SUBSCRIPTION INFORMATION
www.gdmag.com/digital

EDITORIAL

PUBLISHER
Simon Carless l scarless@gdmag.com
EDITOR-IN-CHIEF
Brandon Sheffield l bsheffield@gdmag.com
PRODUCTION EDITOR
Jeffrey Fleming l jfleming@gdmag.com
ART DIRECTOR
Joseph Mitch l jmitch@gdmag.com
PRODUCTION INTERN
Tom Curtis
CONTRIBUTING EDITORS
Jesse Harlin
Steve Theodore
Kim Pallister
Dave Cowling
Soren Johnson
Damion Schubert
ADVISORY BOARD
Hal Barwood Designer-at-Large
Mick West Independent
Brad Bulkley Neversoft
Clinton Keith Independent
Brenda Brathwaite Lolapps
Bijan Forutanpour Sony Online Entertainment
Mark DeLoura THQ
Carey Chico Independent

ADVERTISING SALES

GLOBAL SALES DIRECTOR
Aaron Murawski e: amurawski@think-services.com
t: 415.947.6227
MEDIA ACCOUNT MANAGER
John Malik Watson e: jmwatson@think-services.com
t: 415.947.6224
GLOBAL ACCOUNT MANAGER, RECRUITMENT
Gina Gross e: ggross@think-services.com
t: 415.947.6241
GLOBAL ACCOUNT MANAGER, EDUCATION
Rafael Vallin e: rvallin@think-services.com
t: 415.947.6223

ADVERTISING PRODUCTION

PRODUCTION MANAGER
Pete C. Scibilia e: peter.scibilia@ubm.com
t: 516-562-5134

REPRINTS

WRIGHT'S MEDIA
Ryan Pratt e: rpratt@wrightsreprints.com
t: 877.652.5295

AUDIENCE DEVELOPMENT

TYSON ASSOCIATES Elaine Tyson
e: Elaine@Tysonassociates.com
LIST RENTAL Merit Direct LLC
t: 914.368.1000

GAME DEVELOPER
MAGAZINE
WWW.GDMAG.COM

http://WWW.GDMAG.COM
mailto:gamedeveloper@halldata.com
http://www.gdmag.com/digital
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:jfleming@gdmag.com
mailto:jmitch@gdmag.com
mailto:amurawski@think-services.com
mailto:jmwatson@think-services.com
mailto:ggross@think-services.com
mailto:rvallin@think-services.com
mailto:peter.scibilia@ubm.com
mailto:rpratt@wrightsreprints.com
mailto:Elaine@Tysonassociates.com
http://WWW.UBM.COM

http://twofour54.com

HEADS-UP DISPLAY

gAmE DEvELoPEr | mArcH 20114

\\\ Building upon his
popular social game satire
Cow Clicker, Ian Bogost
has launched a Cow
Clicker platform offering a
programmable API, a new
Facebook game, an iPhone
app, a Moogle search
engine, and more.

Initially designed as a
parody of shallow social
games and launched
last July, Cow CliCker
“challenges” users to click a
virtual cow every six hours
to earn clicks and publish
their accomplishment onto
their Facebook feed. Players
can then spend those clicks
to buy custom premium
cows and in-game items.

The game has since
taken off and convinced
more than 50,000 people
to click over 50 breeds
of cows at least 5 million
times.

Game designer,
professor, and author

Bogost says he’s realized
through this success that
people want “as many
opportunities as possible to
click a cow every six hours.”

Thus he’s expanding
the Cow CliCker Platform
to include a Cow CliCker
Connect web-widget that
allows content publishers
to “cowclickify” their
properties by integrating
clickable bovines into their
sites, and a programmable
Cow CliCker API allowing
developers to build
their own cow clicker
applications.

“It’s called
cowclickification—the
application of cow clicking
mechanics to non-cow
clicking applications,”
Bogost explains. “Now
everyone can graze on
the sweet grasses and
step in the pungent
pies of Cow CliCker’s
pasture. Businesses can

employ new cow clicking
mechanics such as
clicking a cow to distract
customers from the vapid
pointlessness of their

products and services.”
To show the Cow

CliCker API in action, the
developer announced a
new Cow CliCker Blitz

puzzle game on Facebook,
a Cow CliCker MooBile
iPhone app (Mac App Store
edition forthcoming), and
a Moogle search engine
enabling users to search
the web by clicking on their
own virtual cow.

He announced that
companies will be able
to “moonetize” their
cowclickified application
with an upcoming app store
called The Stockyard, which
will provide a hub “where
developers and businesses
can publish their
cowclickified applications,
and where eager cow
clickers can find new
opportunities to click.”

Bogost adds, “Moove
over gamification, it’s time
for gamoofication. The Cow
CliCker platform is here to
turn your marketing and
branding initiatives into a
thunderous stampede of
clicks!” —Eric Caoili

cowclickification rising

japanese retail falling

Co
w

 C
li

Ck
er

 B
li

tz

\\\ A report from Japanese
Famitsu publisher and
research firm Enterbrain
found Japan’s retail video
game market declined 9
percent in 2010 to ¥493.66
billion ($5.94 billion),
down from ¥542.64 billion

($6.53 billion) in 2009,
according to a translation
on Andriasang.com.

The drop marks the third
year in a row of Japanese
video game retail decline.
Falling hardware revenues
drove the 2010 decline, as

the category fell 18.9 percent
year-on-year to ¥175.59
billion ($2.11 billion),
according to the report.
Software sales dropped 2.5
percent to ¥318.08 billion
($3.83 billion).

Nintendo’s DS line
of handhelds led game-
specific hardware sales
with nearly 3 million units
sold, followed closely by
Sony’s PSP line with 2.9
million units.

The Nintendo Wii led
home console unit sales
with 11.2 million units,
followed by PlayStation 3
(1.6 million) and Xbox 360
(209,000).

Portable games topped
the software charts, as
Pokemon Co’s September
2010 release PokeMon BlaCk
& white for DS sold 4.9
million units during the year,
and Capcom’s PSP game,
Monster hunter PortaBle
3rd, sold 3.5 million units
after just being released on
December 1.

While Japanese video
game retail revenues
continue to shrink, Japanese
consumers seem to be
spending more money in
emerging game markets
such as mobile and social
gaming, and using devices
such as PCs, phones and

smartphones for gaming,
much as in the West.

In November last year,
Japanese mobile social
network operator and game
creator DeNA reported a
216 percent year-over-year
jump in its second quarter
sales to $336.4 million.

The sales marked rapid
growth for the firm, which
acquired U.S.-based mobile
game company Ngmoco
for up to $403 million last
year. DeNA’s mobile social
network, Mobage-town
(MobaMingle in the West),
reportedly has over 20.5
million registered users.

—Kris Graft
Monster hunter portaBle 3rd

http://Andriasang.com

Japanese Retail Game maRket Down

www.gdmag.com 5

designer's notebook: nathan fouts
\\\ As the artist, designer, and primary coder behind Mommy’s Best Games, Nathan Fouts has the freedom to create an
index of visual obsessions that both disturbs and delights in equal measure. As seen in titles like Weapon of ChoiCe, Shoot
1Up, exploSionade, and the upcoming Grapple BUGGy, his hand-drawn art presents game players with an efflorescent riot of
aberrant biology. Here we get a look at some of Fout's early design sketches from Weapon of ChoiCe and Grapple BUGGy that
show an Albertus Seba-like fascination for organic forms.

http://www.gdmag.com

GET IN THE GAME at HTTP://GAMETREETV.COM/COMPETITION

TM

ENROLL | COMPETE | DOMINATE

http://GAMETREETV.COM/COMPETITION

All systems are fundamentally in one of three states: growth, decay, or
equilibrium.

For a video game, which can be viewed as a system of systems, growth and decay both happen
during development. As systems are added, removed, and adjusted, the game more and more resembles
its final shape. By the time you ship, your game is (hopefully!) at equilibrium.

Of course, designers cannot simply tweak and tune game systems on a whim. The target equilibrium
point (the final state of the game’s systems) needs to be identified fairly early on, so that individual
systems (and their supporting assets) can be locked down during development. This is a very practical
way to reduce risk and manage a project. Unfortunately, this tends to create an antagonistic relationship
between a designer’s ability to effect change and the amount of development time left. This reduces
the designer’s ability to work on game systems during the latter half of the project, which can be very
frustrating.

Over the last few years, I’ve developed a system for identifying and defining low-risk design changes.
My goal is to allow design changes during the majority of a project instead of being forced to lock down
design elements early on. By identifying low-risk options in a systematic way, using charts and visual
aids (which I discuss in parts 2 and 3), I have been able to describe to producers and publishers in
advance exactly why certain changes pose little to no risk to the project’s long-term stability. This has
afforded me almost twice as much time for fine-tuning our game’s core systems, which has resulted in
better, and more balanced, more polished products.

S I M O N S T R A N G E

WWW.GDMAG.COM 7

http://WWW.GDMAG.COM

GAME DEVELOPER | MARCH 20118

P A R T 1 D E F I N I N G T E N S I O N
))) The key concept is “equilibrium tension.” A system in equilibrium feels
the effect of many sub-systems, but each “pull” is balanced by an inverse
“pull” of equal magnitude. In the simplest cases, this means two sub-
systems opposing one another’s effects, but in most cases a combination
of sub-systems must be considered. This is exactly analogous to the force
diagrams you might have drawn in physics classes.

Imagine a brick resting on a table. The gravitational force on the brick is
exactly opposed by the table, so the brick remains in motionless equilibrium.
(See Figure 1.) Now imagine your left hand on the left side of the brick. If
you press on the brick, the brick will slide to the right. (See Figure 2.) If you
use both hands, one on either side, and apply an equal amount of force, you
can re-establish equilibrium. (See Figure 3.) The point is that the brick can
remain in equilibrium with any magnitude or combination of forces, so long
as each force is counteracted by other forces.

This does not mean that all equilibrium states are the same! The
“squeezed” brick can absolutely feel the tension from your two hands. In the
same way, you can make significantly different experiences within a video
game by changing the “tension” on that game’s equilibrium state.

Imagine our brick as a playable character in a simple 2D platform game.
A player could move the brick left or right, jumping over small obstacles to
progress through the world. If the player puts the controller down to take
a break, nothing would happen to disturb the brick, just as you might have
removed your hands from the physical brick and left it lying on the table.

Now let’s add a sub-system, and start throwing fireballs from the right
side of the screen every three seconds. The fireballs are a new force which,
if unbalanced, would “push” the brick out of equilibrium. To balance this
force, the player must simply “push” back by jumping over the fireballs as
they appear. So long as the player jumps properly, the game remains in the
same equilibrium as before. The difference is that the player is now actively
working to balance the game’s equilibrium. The more we demand of the
player, the more tension we place on our equilibrium state.

Let’s look at a few examples of how tension might be increased or
decreased in some well-known games, without passing judgment in regard
to whether this increase or decrease would be a good thing.

P O R T A L
))) The central system in PORTAL can be boiled down to “Where do I place the
blue portal?” and “Where do I place the orange portal?”

Not every surface in PORTAL is smooth enough for the player to open
a portal through. Since the possible solutions to each room increase or
decrease with the number of possible portal locations, reducing the number
of smooth walls makes the solution more readily apparent to the player. So

fewer smooth walls equals lower tension.
As PORTAL exists now, there is no penalty for creating more portals than

necessary. But if we were to track the number of shots used in each room—
by limiting the gun’s ammo, or simply telling the player that we expected
them to be more prudent (16 shots / 8 expected)—players would become
aware of each shot as a resource to be managed. Managing more resources
means higher tension.

M E G A M A N
))) MEGA MAN games have always included difficult jump sequences. In
most cases, missing a jump means you have to start the sequence over
again. But in a few spots, missing a jump means instant death. Jumps
always provide opportunities to progress through the level but jumps
over spikes or pits also offer an opportunity to fail the
level entirely.

Spikes and pits have absolutely no consequence on
a successful jump, as they are simply an extra harsh
penalty for failure. Reducing these cases allows players
to master the tricky jumps without fear of penalty. This
changes the aggregate angle of the jump “tension” and reduces the player’s
fear of failure. Less fear equals lower tension.

MEGA MAN games have always been moderately difficult due to tricky
jump timing, instant deaths, and limited attack options. But there have never
been strict time limits within individual stages. Simply adding a countdown
clock would give players yet another way to fail, increasing the tension of
every action in the game. Time limits mean higher tension.

A L I E N S V S . P R E D A T O R
))) Rebellion's 1999 PC game ALIENS VS. PREDATOR had some wonderfully
austere levels, in which only a handful of enemies would appear. The clever
twist—nearly unprecedented for a FPS at the time—was that enemies were
randomly distributed, and their locations were reset whenever you loaded
or re-loaded the level. This meant that while you could learn the geography
of the level, you never knew when or from where the enemies would be
coming. This was a dramatic departure from the norm, and was a big part of

AvP’s reputation as a very scary
game. Unpredictability equals
higher tension.

Another innovation in AvP
was the asymmetrical balance
between the three characters.
Predators and Marines each had
a suite of powerful weapons,
but they were all strictly limited

by ammunition. This forced the characters to constantly guess which sort
of threat they would be facing at any moment, and to switch weapons
accordingly. The Alien, on the other hand, had no equipment, ammunition,
or other limiting factors at all. Aliens were always working at 100 percent
effectiveness. This cognitive simplicity was a big source of the appeal for
playing as the Alien. Fewer gameplay choices means lower tension while
playing as an alien.

R O C K B A N D
))) ROCKBAND’s core gameplay has never really
changed. That’s actually an important principle
of the franchise, because they want to sell
additional tracks to customers, and breaking
backward-compatibility would be a big deal. But
the RB games have managed to change in other

significant ways, all of which are excellent examples of maintaining system
equilibrium at different levels of tension:

Failure. RB1 forced players to fail if they missed too many notes. RB2
allowed quick games to be played in a special “no fail” mode, but separated
those sessions from “real” RB2 sessions. LEGO ROCKBAND weakened the
impact of failure by allowing failing players to save themselves. RB3
introduced a menu option which simply turns off failure at no penalty.

Group composition. RB1 forced bands to keep essentially the same
members in every session. RB2 allowed players to lead multiple bands, but
locked your selected band once you moved past the main menu. RB3 allows
a group to seamlessly change bands at any time, and to add or remove
players mid-song.

Achievement/Trophy criteria. In order to get all achievements, RB1 required
players to master each instrument, expected all players to play at expert
level, and required playing with multiple local players. RB2 required players
to master each instrument, and even asked players to play for seven hours
without pausing or disconnecting controllers. RB3 rewards you for playing in
practice mode, gives rewards at every difficulty level, and tracks individual
progress in every song (so you can fail or excel independently of your group).

ROCKBAND has clearly been moving toward lower and lower tension states.
Some people consider that an improvement, while others are less happy
with the change. But Harmonix has done an excellent job of adjusting
its games without breaking their core equilibrium, and has done so by
managing player tension levels.

The point of all these game-specific examples is not that these design
elements necessarily make the games any better or worse. The point
is that all of these proposals do nothing to break the equilibrium of the
game’s established systems. The game might be more challenging, more
frustrating, or less compelling, but it would mechanically be the same game.
I’m not trying to evangelize creating games with more or less tension—that
question needs to be addressed by each game’s individual design team. I’m
simply posing that by thinking in terms of tension and system equilibrium,

we can identify design opportunities which do not threaten the stability of
the project but still impact the player’s experience in significant ways.

P A R T 2 D R A W I N G T E N S I O N D I A G R A M S
))) I’ve made a point that some system-level changes in your game can be
made with minimal risk, and I’ve identified a few examples of such changes.
But how, exactly, does one go about separating equilibrium-preserving
changes from equilibrium-destroying changes? Without a formal process to
repeat these results, it’s meaningless to simply point out examples. To that
end, I’ll share my step-by-step process of drawing a Tension Diagram.

1. Identify as many sub-systems as possible.
2. Identify as many player actions as possible.
3. Link sub-systems together.
4. Link player actions to the sub-systems.
5. Identify missing sub-systems and player actions.
6. Repeat steps 3–6.

For this exercise, I’m going to create a Tension Diagram for DOOM 2. DOOM 2
is pretty primitive by today’s standards, but the limited systems will assist
in our completion of the diagram. If you’re already familiar with DOOM 2, you
may want to perform steps 1 and 2 on your own without looking at my list.
You’re welcome to use online resources and so forth.

D O O M 2 ’ S S U B - S Y S T E M S
FPS fundamentals: levels, time counter, visibility, health counter, ammo
counters, armor counter, projectiles, item collection, enemy spawning, victory
condition(s), difficulty settings, load game, save game, and deathmatch.

Enemies: Soldier, Sergeant, Nazi, Heavy Weapon Dude, Imp, Demon, Specter,
Revenant, Mancubus, Arch-vile, Cacodemon, Pain Elemental, Lost Soul, Hell
Knight, Baron, Cyberdemon, Arachnotron, and Spiderdemon. Each enemy
has the following sub-systems: movement, health, attack, aggro. Because
the game supports deathmatch, we add “enemy player” to this list, though
enemy players have more sub-systems that NPC enemies.

WWW.GDMAG.COM 9

FIGURE 4 (Left) shows the linking
sub-system for Health in DOOM 2
while FIGURE 5 (Right) shows the
linking sub-system for Visibility.

http://WWW.GDMAG.COM

GAME DEVELOPER | MARCH 201110

Weapons: Fist, Berserk Fist, Chainsaw, Pistol, Shotgun, Chaingun, Rocket
Launcher, Plasma Gun, and BFG9000.

Environment: Doors, locked doors, moving columns, crushers, acid floors,
and exploding barrels.

Collectibles: Health shard, stimpack, medkit, armor shard, armor vest,
ammo, soul sphere, megaarmor, megasphere, invulnerability, night goggles,
backpack, berserk, invisibility, map, radiation suit, and keycards.

DOOM 2’s player actions: Four-way movement, turn, strafe, run, open door,
shoot, and change weapon.

Linking sub-systems: Health (see Figure 4). For no particular reason, I’ve
started with Player Health at the core of my diagram. I listed all the sub-
systems which interact with Player Health, and then arranged them flow
chart-style around that mechanic. There are four sub-systems which decrease
health, and seven which increase health. Of course, most of those systems
have more subtle effects, which we also need to represent. In this starting
diagram, moving to the right means
increasing health while moving to the
left means decreasing it.

Three items (health shard, soul
sphere, and megasphere) directly
increase health, so they lay to
the immediate right. Stimpacks,
medkits, and berserk only increase
health up to 100 percent, so in some
cases, they don’t increase health
as well as the first three items
mentioned. To indicate this, those
items are represented as mostly
pulling against Player Health, but
also partially pulling against the
reduced maximum health for those
items.

Armor does not increase or
decrease Player Health, but it
does mitigate damage, which I
have represented by allowing it to
“pull” on the four damage sources.
Invulnerability (and to a lesser
extent, Rad Suit) play a similar role.

Linking sub-systems: Visibility

(see Figure 5). When I use the term “Visibility,” I literally mean what can
be seen. There are three sub-systems which manipulate visibility: light,
obstacles (such as walls), and aggro. Light affects whether the player can
actually see something in front of them, and it is affected only by Goggles.
Doors and walls block line of sight as well as prevent enemy aggro. Similarly,
unspawned enemies cannot be seen.

So around Visibility, we have two orthogonal groupings of systems. Though
they do not interact, they are linked by a common metric.

A D D I N G P L A Y E R A C T I O N S
))) All of the player’s movement options allow us to circumvent obstacles
such as walls and doors. Moving eventually leads us to victory as we navigate
each level. Moving also allows us to avoid enemy projectiles (see Figure 6).

Shooting can (hopefully!) reduce the enemies around us, at the expense
of ammunition. I could complicate the diagram by taking into account
how efficiently each weapon combats each type of enemy, but that’s not
strictly necessary, and would require overlapping lines or a 3D model. Since
enemies in DOOM 2 did not have any sort of resistance system, all weapons
work reasonably well against most enemies.

A R E W E M I S S I N G A N Y T H I N G ?
))) This diagram does not include any systems from the story, theme,
menus, or taunts, and it ignores player expectations which might have
been built-up from an overexposure to the original DOOM. Those all have
an important place, but they generally do not impact the central system
mechanics that we are considering here. In fact, you can look at Raven
Software’s excellent HERETIC to see how a nearly identical system design can
spawn a game with an entirely different feel.

P A R T 3 I S O L A T I N G V A R I A B L E S
))) I’ve explained my ideas concerning system equilibrium, tension, and

DOOM 2.

DOOM Map.

WWW.GDMAG.COM 11

how to diagram the relationships between them. We’ve looked at a few
specific examples of how adjusting one sub-system necessitates an inverse
adjustment in another sub-system in order to maintain equilibrium. So
how does this analysis allow a designer to anticipate and minimize risk,
especially the sort of risk that tends to follow design changes made late in
development?

To dig into that, we need to consider how tension on each sub-system
affects a player’s experience. Let’s take a look at the completed diagram of
DOOM 2’s sub-systems, and make some observations:

1. Player Health is the sub-system under a great amount of
tension.

2. Enemy and Player Health are linked through a wide variety of
sub-systems.

3. Victory is relatively low-tension, compared to the rest of the
sub-systems.

4. Visibility is relatively low-tension, and the Night Vision
Goggles are probably the most obvious outlier on the
diagram.

This means that changing the way health is gained or lost would undermine
nearly every system in the game, and changing the behavior or treatment
of enemies would be nearly as bad. Adjusting either one of these systems
is exactly the sort of gigantic change that producers try to avoid by forcing
designers to lock down systems as early as possible.

The tension around victory is interesting; it seems to say that defeating
enemies (and thus defending your health) is a more driving goal than
actually completing the level. In fact, playing DOOM 2 without a story or level
progression (that is to say, deathmatch) was arguably the best part of the
game. The tension diagram helps the designer to understand that the story
and linear progress are less significant to the product than the moment-to-
moment systems of attack and defense.

The visibility system—as evidenced by the tension diagram—was a
fairly forgettable element in the overall experience of DOOM 2. As a designer
during production, I might try to get the system cut entirely, or find a way to
work it into a more central part of the experience.
Consider how Looking Glass approached this in its
original THIEF games.

Scientific researchers talk about isolating
variables in order to test them without
interference from other effects. Creating a
tension diagram for your game’s systems
will help you to identify those systems which
are isolated, and are generally safe bets for
redesign at any point in the project. That said,
if you do have a larger systemic problem such
as “the game is too hard,” “the AI is cheating,”
or “I don’t know what I should be doing to
improve my skills,” then a tension diagram can
be an invaluable tool for determining what sub-
systems might be at play, and help you to make
those higher-risk design changes in as mindful a
way as possible.

Of course identifying safe changes is
only half the battle—designers also need to
communicate the scope of their adjustments
effectively to programmers, artists, producers,
and clients. The visual nature of Tension
Diagrams helps here as well, since diagrams are
easy to digest and easy to talk about. Engineers
appreciate the compartmentalization of sub-
systems, and producers love enumerating the

number of pieces under revision ahead of time. Best of all, a diagram like
this fits on a single page—so people will actually read it!

P A R T 4 A R T V S . S C I E N C E
))) Science is a collaborative process. Data must be carefully recorded, and
experiments must be reproduced by independent teams. One person or one
experiment can go awry, but over time, the collaborative nature of science
accounts for all errors.

Art, on the other hand, is an intensely personal process. Art is driven
by emotion and expression, and the value of art is determined for each
individual on a case-by-case basis. Trends can appear over time, but art is
fundamentally unconstrained by convention, process, or interpretation.

Game design is fascinating because it is equal parts art and science. It’s
dependent upon creative solutions to very difficult technical problems. Every
good game contains both wholly derivative elements cribbed from other
games, and unmistakably unique systems which have never been seen before.

At many times, the artistic impulses of game design exist in direct
conflict to the scientific principles of what is already known. Because of
this, many designers are marginalized, become rampaging tyrants, or find
themselves isolated at critical moments.

My process for discussing sub-systems in terms of tension diagrams
is deeply scientific because it begs for reproduction and refinement. But it
does not, at the end of the day, offer any solutions to the design problems
we all face. Rather, it focuses our artistic efforts on well-constrained
elements in an effort to provide freedom to our artistic expression while
simultaneously providing guidance through structure.

Will this process help you? I sincerely hope that it will. Game designers
are very much in need of some common processes by which we can compare
and contrast our efforts. Have you experimented with some similar process?
Have you tried to create sub-system diagrams in the prototyping stage? I
would love to expand upon this discussion with all who have read this.

S I M O N S T R A N G E has been designing console and PC games since 1998. His favorite

words include lemma, moccasins and zombie. Read his blog at strangedesign.typepad.com.

FIGURE 6 Shows DOOM 2's linking
sub-systems with the addition of

player actions.

http://strangedesign.typepad.com
http://WWW.GDMAG.COM

W W W . E P I C G A M E S . C O M

UDK PUTS
MORE MONEY IN
YOUR POCKET
We demonstrated what is possible with Unreal Engine 3
on mobile devices with the award-winning Infi nity Blade,
which took the iTunes App Store by storm in December.
We also released iOS support for the Unreal Development
Kit (UDK), which brought the fi rst UDK-powered App,
Chicken Coup, to the App Store in February.

Developed by Trendy Entertainment, Chicken Coup is like
a cross between Angry Birds and Flight Control. Trendy has
even released the full source materials for the game so
that UDK developers can use it as an example of how to
build a puzzle game for iOS.

We recently modifi ed the terms of the UDK license by
increasing the revenue threshold for royalty payments.
Under the new license agreement, developers don’t pay
any royalties until their total revenue exceeds $50,000
(US). Beyond that developers keep 75 percent of each
dollar they receive and Epic receives 25 percent.

The fi rst step to taking a UDK game commercial is to pay
a $99 (US) fee at www.udk.com when it’s time to start
realizing fi nancial benefi t; typically, this is when a game
is about to go on sale. Prior to that point, you can use
UDK for free. This is a one-time license fee for your entire
company for an unlimited number of games and apps
across multiple platforms.

Having such a large royalty threshold makes it possible for
developers to use UDK to establish themselves fi nancially,
keep overhead low and leverage the latest game
engine technology.

Let’s look at some real-life examples to understand what
this means to a developer looking to establish themselves
using UDK. These examples assume you’ve paid the UDK
commercial licensing fee of $99 and your digital store
keeps 30 percent of gross revenue, so the most you’re ever
seeing on a $1 sale is 70 cents. We noticed some people
on our forums were confused and thought our percentage
was applied to the price paid by end users. It is not. We
only take a percentage of the portion of the revenue that
you receive. In retail terms, this would be known as the
“wholesale” amount as opposed to the “retail” amount.

Example 1: You release an app with a retail price of $7
and it sells 10,000 units. The total retail sales are $70,000
but your digital store pays you the wholesale amount
of $49,000. Therefore, you owe Epic no royalties as you
have not crossed the $50,000 threshold for revenue yet,
so your total cost for using this world-class game engine
technology has been $99 and you’re on your way to
establishing yourself as a professional game developer.

Example 2: You sell 15,000 copies of your $4.99 app. The
total sales in the store are $74,850. You receive $52,395 of
this as your revenue. Subtract the $50,000 threshold and
multiply the remaining $2,395 by 25 percent and you owe
Epic a sum just shy of $600 with your total cost of using
UDK in this situation being under $700. You’ve kept 71
percent of the total money paid by end users and Epic has
only received one percent.

Example 3: Now you’re cooking. You sell 30,000 copies
of your $4.99 app for total app sales of $149,700. In this
situation, you’d be paying Epic $13,697.50 and keeping
$91,092.50 of the $104,790 paid out by the app store.
That means you’d be keeping approximately 61 percent
of the sales earned by your game and Epic would earn
nine percent.

Once you go beyond these numbers you’re likely on
your way to becoming an established developer and we
can work with you to transition to a full Unreal Engine
3 source code license with support so you can take
your business to the next level. We have surprisingly
economical licensing plans to suit nearly any size of
project and budget. In addition, a source code license
opens up the possibility of exploring a larger variety of
platforms made possible by having Unreal Engine 3 source
code including: PC, Mac, Xbox 360/XBLA, PlayStation 3/
PSN, Sony’s Next Generation Portable (NGP), iOS
and Android.

Simple math shows that it’s realistic to build a business
with our technology. Epic is committed to regularly
releasing free, updated versions of UDK. These updates
give the community access to the underlying technology
used to build Infi nity Blade, Bulletstorm and
 Gears of War 3.

If you haven’t tried Unreal Engine 3 yet, please check out
the latest UDK release. There’s nothing to lose. If you’re
ready for the next step, contact us.

ADVERTISEMENT

Canadian-born Mark Rein
is vice president and co-
founder of Epic Games based
in Cary, North Carolina.

Epic’s Unreal Engine 3
has won Game Developer
magazine’s Best Engine
Front Line Award four times
along with entry into the

Hall of Fame. UE3 has won three consecutive Develop
Industry Excellence Awards.

Epic is the creator of mega-hit “Unreal” series of
games and the blockbuster “Gears of War” franchise.

Follow @MarkRein on Twitter.

BY Mark Rein
Epic Games, Inc.

UPCOMING

EPIC ATTENDED

EVENTS

E3 Expo
Los Angeles
June 7-9, 2011

GDC
San Francisco
Feb. 28-Mar. 4, 2011

Please email: mrein@epicgames.com for appointments.

© 2011, Epic Games, Inc. Epic, the Epic Games logo, Gears of War, the Powered by Unreal Technology logo, Unreal, Unreal Engine, Unreal Kismet and Unreal Matinee are trademarks
or registered trademarks of Epic Game Games, Inc. in the United States and elsewhere. All other trademarks are the property of their respective owners. All rights reserved.

http://www.udk.com
http://WWW.EPICGAMES.COM
mailto:mrein@epicgames.com

www.gdmag.com 13

H a r r i T i k k a n e n a n d

i l a r i k u i T T i n e n

Three years ago, after the release of
our PlayStation Network exclusive Super StarduSt Hd,
we began discussions with our senior producer at SCEE,
Phil Gaskell, regarding what we could do next. The hope
was to make a Commando/total Carnage-inspired twin
stick shooter, again for PSN. Our “rumble in the jungle”
idea turned into a zombie-infested apocalypse, as Phil
suggested that the game should feature the undead. We
went nuts over this idea, so it was quickly agreed that
this was the direction to go!

We got into the prototyping after finishing off DLC
work on Super StarduSt Hd in the summer of 2008. The
prototype used low fidelity art, with cubes representing
the zombies that roamed the streets—our main goal was
to prove that the core shooting mechanism was fun. The
big change in twin stick controls from Super StarduSt Hd
was the addition of a separate button to shoot while using
one stick to aim, rather than just using a single stick to

http://www.gdmag.com

game developer | march 201114

aim and shoot simultaneously. The prototype
convinced Sony that we had a solid foundation,
and we began preproduction in autumn.

As usual, plans started small but easily
got out of hand. As a project, DeaD NatioN grew
larger during its second year of development
as we (both us at Housemarque and Sony)
wanted to implement co-op gameplay and a
deeper upgrading system. Early user testing
also suggested that players would like a story
element, so we added a light storyline to frame
the gameplay progression. We also extended the
scoring system to further motivate score hunters.

As a whole, we have great interest and love
both for twin stick shooters and for zombies. It
was a no-brainer for us to combine two of our
greatest loves together. Without further ado,
let's delve a little deeper.

W h a t W e n t R I G h t

1 /// PublIsheR RelatIonshIP. Sony as a
publisher was one of the best “what went right”
elements we had. After Super StarDuSt HD, Sony
had great trust in us. They put forth a lot of effort
promoting DeaD NatioN whenever possible, from
regular trailers to a live action one, and frequent
PlayStation Blog postings.

Sony also arranged user testing sessions
for us, which provided lots of insights early on
in development. Also, we found a very extensive
closed beta test to be really useful as it
generated tons of very good PR (players talking
to each other later on) and feedback which

helped us iron out bugs and tweak gameplay
further. We were given plenty of time to work on
DeaD NatioN without being forced to cut many
corners, or jam fixes in.

2 /// onlIne co-oP and MetaGaMe. One of
the most important “late process” features
we decided to add was also one of the most
important. Some of us were really hoping for
online co-op, and originally we thought that we
would only have time to implement the feature as
DLC after the game’s release, if at all. Developing
the feature required a lot of man hours from our
coders, and we had to hire a new multiplayer
programmer to make the dream a reality. We think
it was well worth it. Matchmaking was included for
quick online co-op games, and there was also, of
course, co-op with specifically selected friends.

Another major online feature is the
metagame, which doubles as the extended
leaderboards. The metagame is essentially a
detailed scoring system, and shows “progress
reports” for anyone tracking how well their own
country is doing compared to other nations
around the world. People are also matched
against their friends in addition to their
countries, but the country the player represents
is also matched against the other countries of
the world. The metagame adds one extra layer of
depth. We have more plans for the metagame to
make it even more interesting in the future.

3 /// tWIn stIck GaMePlay. Since we felt we
really understood twin stick controls quite well,

we definitely wanted to use the control scheme
for DeaD NatioN. It takes a bit of time to adjust
for players who are unaccustomed to it, but it’s
very powerful, and allows precise action and
aiming without auto-aim or cheated correction
to player’s aim.

Gameplay required a lot of time for us to
adjust and tweak, as we didn’t want DeaD NatioN
to work and act like a simple action shooter but
to have a more realistic feel, more than just
button smashing (although how realistic can
a zombie game really be?). We went by the old
game development axiom “Easy to play, but
difficult to master,” and we think we succeeded.
It takes only a few minutes to get used to the
controls, but from there, you’re exploring,
adjusting to the situation and threat level, and
finding a way to counter the hordes of zombies.
With this in mind, we also included the ability to
almost fully remap your controller. The scoring
system in the game is also quite deep and, like
the gameplay, takes time to master and requires
that you know what you’re doing at all times.

4 /// enGIne and technoloGy. Our in-house
Housemarque engine has never let us down,
and with the PlayStation 3, we’re able to draw
even more power from it. There’s no point for
us to even consider any other engine solutions.
DeaD NatioN with fully dynamic lighting and
shadows is a good example of what we can
draw from the PlayStation 3. Although we had
a really solid engine that we used for Super
StarDuSt HD, we were able to squeeze even

Continued on Page 17

www.gdmag.com 15

http://www.gdmag.com

SCOTLAND. SUCCESS LIKES IT HERE.

To see what we can do for your business, visit www.sdi.co.uk/nessie

We’ve got quite a reputation for invention, innovation

and creating some unbelievable stuff. MRI scanning.

Radar. The microwave oven. Whisky. It’s a long list.

And it’s still growing. That’s why companies are doing

business in Scotland. Our passion for success and

hunger to win, combined with our world-class academic

institutions, outstanding research and superb facilities is

fi nancially irresistible. Scotland could be your next great

discovery and the ideal place to develop new products

and expand your business.

Scotland.
Famous for the
Loch Ness Monster
and digital expertise.

http://www.sdi.co.uk/nessie

www.gdmag.com 17

more out of our proprietary tech and added
significant enhancements to performance
during development.

Our toolsets are also very quick (and
familiar), and they allow us to tweak and build
levels in real time, instantly seeing changes
without crossing our fingers and hoping for
the best. The improvements we made to our
tools as the project went along greatly helped
development run smoothly.

5 /// Audio And Atmosphere. Considering
our co-operation with AriTunes in the past with
Super StarduSt Hd, he was our top choice for
implementing audio design and music for dead
NatioN. With his expertise and skill, we were able to
really liven up the visual atmosphere we had built.
Full surround sound really makes people squirm in
their chairs as they mow down zombie hordes.

W h A t W e n t W r o n G

1 /// timinG of releAse. As the dead NatioN
project progressed from napkin notes, to proper
project papers, to code, and finally to a running
product on the PlayStation 3, zombie games
grew and rose from their graves like mushrooms.
When the dead NatioN project started, we hadn’t
heard from zombie games for ages! By the time
dead NatioN was going gold, we were already
battling against hordes of zombie games, both
large and small.

Even though ours was the first zombie
twin stick shooter released during 2010 on
the PlayStation Network, it was also the third
zombie-themed top-down shooter in total, so
reviewers were getting tired of zombies in video
games. Because of the theme of the game, some
overlooked its more unique aspects, and seemed
not to dig deep enough to find out what made
dead NatioN different from the others. Oddly
enough, dead NatioN was sometimes compared
against full-priced zombie games instead of other
downloadable games.

On the other hand, timing was both good
and bad for us, due to the amount of active
zombie activity both in and outside of games.
Even though some were getting tired of the
whole zombie genre, the success of the newly
launched The Walking Dead TV series helped to
reignite interest in our shuffling pals. We were
also lucky that there weren’t any comparable
titles released on the PSN during the past 12
months or so before our game finally came out.

2 /// estimAtion of the scAle of the project.
We underestimated the scale of the project,
especially as it grew iteration by iteration toward
a larger, longer, and more complex game. At the
beginning of production, the game was supposed
to have more survival elements with a greater
emphasis on looting and procedurally generated

levels for exploration. Eventually, we were able to
create a more ambitious and complex title with
more features than we originally had hoped to
include in the game.

We stuck with the original idea for fairly a
long time, testing the creation of procedurally
generated levels, but found that we wouldn’t
be able to complete the development of the
level generation system within our schedule or
resources. Even though the system had taken us

quite a long time and a lot of effort to implement,
we decided to scrap it in favor of ten individually
designed, tuned, and polished levels.

Originally our upgrades were more geared
toward a simpler item drop-based system, but
after multiple iterations, we made a move toward
a monetary upgrade system. The new system
allowed players to make more choices with their
hard-earned game currency, and made room for
an upgrade path to suit individual playing styles.

in these prototype screen shots, the exclamation
marked cubes mean that zombies have noticed
the player and are attacking. the question mark
indicates an alerted status during which they will
become agitated and attack based on the player's
proximity or noise.

Continued from page 14

http://www.gdmag.com

GAME DEVELOPER | MARCH 201118

3 /// TOO MUCH CONTENT FOR A DOWNLOADABLE
GAME. In hindsight, our levels should have
been smaller in scale. After all, we had a fairly
small team for the game we were making, but
we still wanted to make a title that would take
hours to play through, with lots of replayability.
As gameplay changed toward a more tactical
direction, and as we increased emphasis
on necessitated use of different items and
weapons, we realized too late that we should
have made the levels shorter and used the
saved time to create even more variation and
unique gameplay moments within the game.

As the amount of content required per
level increased exponentially, we decided to
outsource some of the level assets. Luckily,
the whole outsourcing process was very
straightforward and eased up some of the
production pressure toward the end of the
project. Sony helped us find some really
good outsourcing companies—Pearl Digital
Entertainment and Virtuos—and they proved to
be very resourceful and experienced.

4 /// TUTORIAL SHOULD HAVE BEEN BETTER.
Probably the biggest feature we didn’t polish
enough was a proper tutorial section. We
managed to cram in a lightweight system
with simple overlay text, which suggested to
players what they should do to progress in the
beginning of the game. It was relatively easy to
ignore tutorial messages, and this made DEAD
NATION a bit hard to get into for some players.

Unfortunately, the importance of the
weapon upgrade system and use of items wasn’t
emphasized enough. One of the key aspects

of the game is crowd control of a vast number
of zombies, so a player who doesn’t fully use
all available options will find the game much
more difficult than it was designed to be. When
players realize how to properly use items and
the environment to their advantage, the game
rewards them with deeply satisfying gameplay
moments and feelings of accomplishment.

5 /// ALPHA TO MASTER CANDIDATE CHAOS.
Although we passed Alpha with relative ease, we
were stuck in Beta much longer than anticipated,
and were unable to progress to Master Candidate
submission due to a couple of missing non-
critical features and assets. We also got stuck in
the Master submission phase for quite a long time
due to localization bugs and the large number of
languages the game needed to support.

The online co-op mode was really the only
major feature that gave us a hard time. Originally
we were planning on only including offline co-op,
as online would require much more time to do

properly, but in the end, we felt we needed to get
online co-op in for the launch.

C O N C L U S I O N S

/// We’re pleased with what we were able to
achieve with DEAD NATION, and hope to continue
updating and adding new features alongside the
downloadable content.

At the moment of this writing, we can’t
know for sure how DEAD NATION will fare on the
PlayStation Network in the long run, but we’re
really pleased with the initial reception. Thanks
to all our fans, and thank you for reading the
DEAD NATION postmortem.

HARRI TIKKANEN is creative director of Housemarque,

and ILARI KUITTINEN is CEO. The rest of the team also

contributed to this article. Both Harri and Ilari have been

in game development since the early 90s and they

co-founded Housemarque in 1995. The company is the

oldest game development studio in Finland.

DEVELOPER Housemarque
PUBLISHER Sony Computer Entertainment Europe
PLATFORM PlayStation Network
RELEASE DATES November 30, 2010 (North America), December 1, 2010 (Europe)
TEAM SIZE AT THE BEGINNING OF THE PROJECT 4
TOTAL TEAM SIZE AT THE END OF THE PROJECT 12
R&D TEAM RESOURCES USED ON THE PROJECT 50 percent
NUMBER OF ZOMBIE TRANSPORT BOXES ORDERED TO THE OFFICE 1
TEAM MEMBERS ON SUMMER HOLIDAY 3 (in mid-December at the time of writing
this article
NUMBER OF ZOMBIES AT THE DEAD NATION RELEASE PART Y 43
NUMBER OF CONFIRMED SEVERED LIMBS AT THE RELEASE PART Y (WITH PHOTO
CONFIRMATION) 1
TOTAL NUMBER OF ZOMBIES KILLED WORLDWIDE AFTER LAUNCH, AS OF DECEMBER
2010 Over 300,000,000

http://intel.com/go/ssd

GAME DEVELOPER | MARCH 201120

D E N N I S S H I R K

ALMOST FOUR YEARS AGO, JON SHAFER LAID OUT HIS VISION FOR THE
NEX T ITERATION OF SID MEIER’S CIVILIZATION TO OUR PROTOT YPE
TEAM (WHICH CONSISTED OF JON, SEVEN ARTISTS, AND THE UBER-
MODDABLE CIVILIZATION IV ENGINE). SOME OF THE MORE EXCITING
FEATURES PROPOSED AT THE TIME INCLUDED SWEEPING CHANGES
LIKE ONE UNIT PER TILE, HEXES, COMPLEX FULL-SCREEN LEADER
ENVIRONMENTS, AND A NEW SCALE INVOLVING MORE UNITS ON-SCREEN
THAN WE’VE EVER DISPLAYED BEFORE IN A CIVILIZATION GAME.

On the engineering side, the excitement surrounding the creation of a
new engine to accommodate these systems had an amazing effect. The
entire engineering team had the opportunity to create something unique,
built from the ground up for Civilization V. On the art side, the team was
challenged to create a completely believable world, and to produce leader
scenes composed of fully fleshed-out characters greeting players in their
native languages. We were setting out to create a completely new Civ
experience, which got the team excited to bring the design to life. It’s been a
long road from prototype to final product, and as the vision was implemented,
the challenges of delivering new concepts built on a new engine started to
present themselves—but never in the places we expected them.

W H A T W E N T R I G H T

1 /// CLEAR BOUNDARY BETWEEN GAMEPLAY AND ENGINE. Two of our major
goals for the project were to support ambitious new gameplay changes (one
unit per tile, hexes, and so forth), and to elevate our target for the visuals.
The first priority was obvious. We were going to need to create an entirely
new graphics engine to take advantage of features we wanted to use
from Direct X 11. Given our schedule, this plan meant that our new engine
wouldn’t come online until 18 months before release—far too late for us to
start testing these gameplay ideas.

Our solution was to enable a parallel development track for gameplay
using the existing CIVILIZATION IV engine as the graphics component. We

WWW.GDMAG.COM 21

http://WWW.GDMAG.COM

GAME DEVELOPER | MARCH 201122

needed to keep a very clear interface between gameplay and the engine so
that we could do a quick swap of engines without having to halt development
on either side. In the end, we were able to run gameplay with both engines for

a few months as the swap took place, which
ensured as seamless a transition as possible.
Once we had everything back together in
the new engine, we already had a game that
had been refined for almost two years in its
CIVILIZATION IV incubator.

2 /// OUR WONDERFUL , WONDERFUL
FRIENDS. In January of 2009, our engineering
team was still hard at work creating a
completely new engine, including a custom
renderer, for CIVILIZATION V. Broad testing
across many different hardware platforms
was something we had identified as a risk
early on. As many of you may already know,
PC development is tricky, to say the least.
You can test on 500 different combinations
of hardware, but once you release the game
to millions of fans, your careful testing has a
tendency to go out the window.

ATI, Intel, and nVidia were all instrumental
in making sure this risk was minimized. Intel
brought an engineer on-site to assist our
graphics team with optimization for the new
Core series of processors, and provided us

with Sandy Bridge hardware. nVidia sent an engineer to work directly with us
to implement its 3D solution, as well as help us optimize for the hardware. ATI

not only helped us with optimization, but also provided us with cutting-edge
AMD systems for testing. Both nVidia and ATI made sure that we had enough
video cards for the entire team so we could test on both older and newer
hardware in-house, and most importantly, both gave us access to their
amazing compatibility labs. This was instrumental in minimizing hardware
compatibility issues when we launched.

That’s not to say there weren’t problems. As with any new engine, there
were issues that needed correcting once we released the game into the wild,
and our venders were there with us, constantly updating their drivers, and
continuing to make the end-user experience better with each iteration.

3 /// CO-LOCATING SUB-TEAMS. One of the new tactics we employed on
this project was the co-location of our entire project team. From the start,
the whole team sat on the same side of the building to increase ease of
access to all teammates. Further, each smaller discipline—such as concept
artists, modelers, animators, and the like—shared offices. Not only did we
group certain disciplines together, we also clustered together people that
frequently interacted with each other. For example, the lead designer, lead
programmer, and lead artist shared an office. A graphics programmer was
paired with certain artists to ensure that the group’s technical needs were
met and that the artists followed protocol. This daily face-to-face interaction
improved communication among team members. Access to quick answers
from coworkers sitting close by allowed the team to problem solve and
overcome obstacles in a timely manner, which helped us reach our goal.

Office culture is defined by the people who work in a certain setting. One
department or office may have an overall culture, but if you look beneath
that, groups who sit together frequently form their own microcosmic tribe.
In a video game company, you often find a clear dividing line between artists
and programmers. When all artists sit on one side of the building and all
programmers on the other, tensions can build between the two disciplines.

PUBLISHER
2K Games
DEVELOPER
Firaxis Games
NUMBER OF DEVELOPERS
50 full-time, 6 contractors
LENGTH OF DEVELOPMENT
3 years, 3 months
RELEASE DATE
September 21, 2010
SOFTWARE
Visual Studio, 3D Studio Max,
Perforce, multiple in-house
tools
PLATFORM PC

By simply arranging the office by project, the walls between artists and programmers begin to break
down and communication improves. Instead of setting disciplines against each other, aligning people
by project tends to reduce tribal behavior, encouraging people to be loyal toward the project they are
working on rather than to the discipline they are working within.

Furthermore, there are other benefits that go largely unnoticed, such as informal conversations
that naturally happen in an office setting throughout the day. What may start as an offhand comment
can lead to incremental adjustments. Information and knowledge is often shared unofficially among
those individuals who sit together. Decisions are made in these day-to-day interactions and are often
not passed on formally because they sprung from casual conversation. Therefore, by allowing team
members to sit among one another, we avoided redundancy and unnecessary backtracking as decisions
became formal throughout the course of a day, a week, and a project.

4 /// EXPERIENCED AND DIVERSE ART TEAM. We had an experienced art team with a diverse
skillset, which allowed us to solve problems quickly and effectively. At the outset, strong generalists
were able to concept, model, and prototype their ideas quickly. This gave us a tremendous amount of
flexibility to test concepts without a huge expenditure of man hours, and allowed the game designers to
have a good idea of the visual direction we were taking early in the project.

Creating a unique title like CIVILIZATION requires a different perspective on iconography and problem
solving. We had an advantage in that the majority of our artists had worked on previous iterations of the
series and had good ideas to build upon. The interface lead incorporated many of the lessons learned
from the console development of CIVILIZATION REVOLUTION. The concept artist had spent much of his career
learning the costuming and design from different eras in history, and took the opportunity to show off
his vast knowledge.

We also benefitted from having members of the team that had been lead artists at Firaxis in the
past. These were artists who could be relied on to meet deadlines, be mature in conflict resolution, and
be responsible with large aspects of the game. The project's art director had a wise and seasoned group
of advisors upon whom he relied upon to point out mistakes and to lend a hand to help fix them. They
were also understanding of the conflict between visual direction and needs of the game design, keeping
morale high when compromises needed to be made.

Complementing the learning from this seasoned group were the junior artists. Their excitement level
about being in the games industry, and getting an opportunity to work on a franchise as important
as CIVILIZATION, also helped motivate the team during production. The passion and creativity of artists
desiring to make their mark gave our interface exciting illustrations of the icons as well as the memorable
landscape of our game.

We also had a strong variety of people that came from other art disciplines. We had an artist with
a film background, one that had studied industrial design, and another that came from traditional 2D
animation. Combining this diversity to achieve a singular goal made this a fun team to work with, and
they were also effective at fitting the history of civilization into a single game.

5 /// IF ONLY THERE WERE ZOMBIES. When Jon Shafer originally laid out his plans for the modding
systems in CIVILIZATION V, everyone on the team was excited by the prospect. With past versions, modding
was extremely popular with our hardcore fan base, but most of our casual players never even knew that
many of these epic mods existed. Enter Shaun Seckman, our modding lead. The systems he created
and implemented will forever be used as an example of what we need to have in any game where we
consider modding to be important.

The system we designed allows any person playing the game to search for and download mods
directly into the game. There’s no restarting, no technical knowledge needed, and it’s simple to use.
Marry this with the tools that we created, like the standalone World Builder, and suddenly anyone can
become a scenario designer. As a result, our download numbers for mods have already surpassed the
million mark, something we could not have imagined when we released the game. Special kudos need
to go out to GameSpy and their Special Projects team. They provide the back-end server infrastructure
that makes it all possible.

W H A T W E N T W R O N G

1 /// CLASH BETWEEN DESIGN CHANGES AND COMPLETING EXPECTED FEATURE SET. CIVILIZATION IV:
BEYOND THE SWORD was as fleshed out a CIVILIZATION title as one could hope for. Expectations for a new
version of the game would be extremely high, especially among our hardcore fan base. Since this was
the fifth iteration of CIVILIZATION, our team came to the drawing board looking to do something profoundly
new with the series. Our vision for CIVILIZATION V included many risky changes that would require a
significant amount of new tech, and an even larger role for design and gameplay than in past versions.

WWW.GDMAG.COM 23

http://WWW.GDMAG.COM

The design radically changed three of the four
types of victory from previous versions, and while
this was exciting to us on paper, the challenges
of designing and balancing it were numerous
considering the schedule we had to keep.

One unit per tile was perhaps the biggest,
most noticeable change. Whereas a player in
previous versions would work with large stacks of
units, one unit per tile was more about expanding
the tactical game to make it more interesting
and engaging. While I think we succeeded in this
concept, the time commitment to this system
needed by our design team was fairly costly,
and it had a very real impact on the other core
components of the game. An entirely new AI
system also had to be created, and while great
strides were made, we underestimated the time
needed to make such a large system work in a
consistent, competitive manner.

The reality is that the more we focused
on brand-new systems to create a brand-new
experience, the more we had to trim systems
that players had come to expect from previous
versions. We ultimately had to focus on making
sure our core systems and new concepts were
working well, sacrificing some of the less critical
features. Some of our hardcore fans have been
disappointed by the lack of certain features, but
this prioritization has given us a solid foundation
to build on, and we’re restoring or improving most

of that functionality and more, as we continue to
support the game moving forward.

2 /// OUR EXTERNAL DESIGN TEAM WAS NOT
BROUGHT ONLINE UNTIL VERY LATE IN THE
PROCESS. During CIVILIZATION IV's development,
we utilized an external design group called
“Frankenstein,” which was primarily made up of
some of the most hardcore fans of the series who
know the game inside and out. Once they received
NDAs, we passed them regular builds, and they
provided extensive gameplay testing and feedback
to the design team. For CIVILIZATION IV, we strongly
believe that the working relationship between the
Frankenstein group and our team was one of the
key reasons for its success.

For this reason, we set up a new team with
community veterans from the previous team,
along with some new additions, and Jon started
working with them early in the original CIVILIZATION

V prototype process. At this point, we were still
delivering builds that used the CIVILIZATION IV engine
married to Jon’s new game core. Because the
engine had already been released DRM free, there
were no issues pushing out regular builds to our
external testers. The issues cropped up when the
new engine was finally ready to make its debut.

When we were finally ready to move the
game core to the new engine, our DRM solution
(via Steam) was not yet approved, nor was

it integrated into the build system. Because
this was a brand-new technology, there was
significant work needed to get it to a place where
we felt comfortable allowing the builds to start
propagating out to our testers. The unfortunate
thing is that the implementation took close to two
months. Two months with no new builds going out
to our external gameplay and design team. Two
months with zero feedback. For a game that needs
a tremendous amount of balance to perform well
over the course of a 12-hour session, this was a
painful process to go through.

Ultimately, we did get the external team back
on track, but the lost time could not be recovered.
Thankfully, Frankenstein is filled with possibly the
most dedicated people on the planet. CIVILIZATION,
for them and for us, is something that can never
be left “as is.” They’ve never stopped working,
and continue to provide invaluable feedback that
makes CIVILIZATION V a better game, even post
release. As we march through the DLC process,
we’ve put in place an aggressive patch schedule
that allows us to incrementally improve almost
every core mechanic of the game.

3 /// CRITICAL POSITIONS WERE STILL MISSING
E N T E R ING P R OD U C T ION . To day ’s ga me
development environment is heavily focused on
the multiplayer component. Facebook is huge
and MMOs are going strong. As a result, finding

WWW.GDMAG.COM 25

qualified networking programmers has become akin to spotting a unicorn
in your backyard. One of the biggest challenges we had to overcome was
not having a staffed-up multiplayer team until well into production. We were
fortunate to have a solid example with CIVILIZATION IV, but the amount of
gameplay changes coupled with a completely new engine meant that much
of it had to be coded from the ground up.

This is an area where 2K QA and our internal QA team and engineers
adapted very well. With the compressed timeline, we had to put together an
aggressive testing schedule to get multiplayer functioning well and ready to
ship. Once we had core functionality set up, the multiplayer play sessions
became extremely important. We organized a strike team composed of our
networking engineers and two gameplay engineers to float around the office
during the sessions. This way, as individuals ran into out-of-sync issues, we
were able to identify the exact nature of each problem, correct the problem,
and deploy new builds quickly.

While this successfully got us to a point where we were able to ship
the game, the multiplayer experience was lacking many features that were
present in previous versions of CIVILIZATION. We absolutely do not consider
CIVILIZATION V’s multiplayer to be a “closed book,” and as with other aspects of
the game, we are continuing to improve the experience to meet our standards,
as well as those of our fans. And for the record, I think our engineering team
still holds the edge for “games won” over 2K QA. I’m not, of course, including
the last session where I was knocked out in 30 turns by a horsemen zerg.

4 /// INDUSTRIAL AND MODERN ERAS WERE NOT AS POLISHED AS THE FIRST
HALF OF THE GAME. Because of the amount of attention the new combat
system demanded, a significant amount of time was spent fine-tuning and
iterating this concept throughout the early eras of the game. As changes were
made, new games were started and concepts were tested. The problem this
introduced is that CIVILIZATION by its very nature is a long and involved game.
The time requirements to test a game like this are significant. You cannot just
test a single system, you have to constantly test to make sure the system
works throughout the length of an entire game. What may work wonderfully for
the Ancient era may not work as well for an Industrial or Modern era. While we
do have the ability to start a game in the Modern era, for purposes of balance
and gameplay, there is no substitute for playing through a full game.

Ultimately, there ended up being a large disparity between the amount of
playtime invested in the first half of the game versus the time spent testing
the second half of the game. When you’re early in development, each new
build had the potential to break earlier saves, so testers frequently had to
start over from scratch, not always able to complete a game before the next
build would rear its head. Because of this, there are some imbalances that
were not revealed until the game made it into the hands of our fans. It really
reinforced the notion that above all, we have to find a way to make sure that
save file compatibility from build to build is always maintained. This can be
really difficult when you’re in the middle of design, but we learned a hard
lesson about what can result from this.

5 /// LAYOFFS AND THE OBVIOUS EFFECT ON MORALE. You cannot
underestimate the effect a layoff has on team morale, especially when
it lands in the final weeks of Beta. The realities of last year’s recession
unfortunately touched our team when we were at our busiest, trying to
finalize all the features and submit our Gold candidate. We lost some critical
team members. It’s a situation that you can’t possibly prepare for.

Dev teams become a tight-knit group three years into the making of a game,
so there is lost productivity as people adjust to friends having lost their jobs.
Bouncing back from this was challenging, but to the team's credit, we were able
to regroup and refocus on the work that needed to be done. In the end, through
some very hard work and extra help from our other development team, we were
able to hit our street date and deliver a quality game. So, I suppose this can be
considered both a What Went Wrong as well as a What Went Right.

M O R E S E T T L E R S !

/// We’re incredibly proud of what we accomplished in CIVILIZATION V. We
overcame significant challenges in production to ship a critically acclaimed
game on time, and one that is both completely moddable (with more
content arriving every day, and DLL source code on the way), and that has
introduced CIVILIZATION to a new generation of players. We’re aware of the high
expectations of our fan community and are glad that overall, they feel we’ve
delivered another great CIV game. We’re committed to supporting the game
as we move forward and are thankful for the support and feedback from the
community in that effort.

DENNIS SHIRK joined Firaxis in 2005 and was the lead producer for SID MEIER’S CIVILIZATION V.

http://WWW.GDMAG.COM

A r c A d e B e r g

game developer | march 201126

why we used red barrels in b u l l e t s t o r m instead of green.

We’re trying really hard to make an awesome and innovative
game with Bulletstorm. There’s no shooter out there like it,
and to support that idea, I want to discuss the process of one
of our most groundbreaking features.

e x p l o d i n g r e d B A r r e l s
\\\ I know, I know, it sounds crazy! But tests have shown that they work,
and people “get the idea.” You shoot them, and they go boom! In fact, we
tried something else at first ...

It seems like it’s a game development curse. Pretty much every action
game has red barrels that will explode if you shoot them. One could easily
argue that going with the tried and proven way shows the developer's lack
of imagination, to go with the tried and proven way. As it turns out, it’s
not that simple. This was our first stab at trying something different with
barrels instead of going with the cliché.

g r e e n B A r r e l s !
\\\ Not only was it somewhat refreshing because it wasn’t playing along with
the stereotype, it also made sense as far as the story goes. You see, there’s
actually a valid reason for the barrels to be green in the world of Stygia in
Bulletstorm. The city Elysium is protected by a gamma filter from deadly
storms. This creates a massive amount of toxic waste that is stored and
contained in ... barrels! Those barrels are stored underground, but there’s a
catch: the toxic waste causes people to get sick, die, and mutate if they survive
exposure. You’ll get to meet these folks when you play the game.

We had the green barrel for a long, long time. We’re talking years here
(in fact, the first time they appeared was in a level that was cut early in
development—see Figure 1). It worked because everyone who had tried the
earlier versions was a mid to hardcore gamer, so they were pretty quick to
test things out and basically shoot at everything. But as the game started
to actually resemble something like its final form, it underwent a lot of
testing and prototyping, and a lot more people got their hands on it.

Don’t get me wrong, the old barrel used several tricks to make it look
explosive in spite of the color. For example, it featured windows revealing
the contents—a mass of waste that looked very unstable and dangerous.

Also, the use of black and yellow stripes along the edges signaled “warning”
in a very classic manner. (See Figure 2.)

Most people realized that the barrel was dangerous and interactive after
looking at it. And almost all players eventually figured out how to use it and
what its attributes were. The issue is that we want people to immediately
understand all that. The player shouldn’t be required to invest time and dedicate
brainpower toward deciphering the barrel’s purpose: it should be obvious right
away! There’s a lot of stuff going on simultaneously in Bulletstorm, so it’s
vital for us that the player be able to quickly read the environment and act
accordingly. This is especially true since you can also leash and kick objects,
so barrels can be flying all over the place. There’s no time to analyze objects on
a detailed level, so the shape and color have to be enough.

And I must admit, there were quite a few people who didn’t pay attention
to the barrels at all. They were completely ignored by some players, and
none of them guessed or assumed that they were explosive.

Why not? Because they weren’t red. Everyone knows that only red
barrels are explosive! It became apparent for us that the most efficient way
to communicate their purpose was to make them red.

Red not only makes them more obviously explosive, it also helps them
stand out from the environment and background. There’s already a lot of
green and yellow in the world, so using a completely different color for the
objects we want you to see makes sense.

o n l y r e d W i l l d o
\\\ “Just make it red” seems like a straightforward approach (see Figure 3),
but apparently it wasn’t as simple as I imagined. I’ve done some research
into the process of how we reached the “final red barrel” look. Barrels aren’t
my main area of expertise, so I had to check with the rest of the team.

I asked Karolina, our art producer, to show me a picture of both the old
and new ones. She sent me a picture with several different barrels, and when I
inquired why there were multiple variants, the story finally broke loose.

Looking at the picture she sent (Figure 4), there are four different
versions. One would assume that the barrel to the right is the one that got
made, considering the circle and the check mark? But nooo, guess which
one finally made it into the game?

why we used red barrels in b u l l e t s t o r m instead of green.

www.gdmag.com 27

I bet you guessed wrong. The correct answer is “none of them.” Number four was the intended
barrel, the one the team decided on after a meeting. That change would only require a new texture.

So the very first try was to change the texture of the original barrel, making it red and adding some
flammable symbols. It was quick and easy. But then our artists suggested that we change the model
as well, “while we’re at it, anyway.” They had new and cooler ideas than way back when, apparently.
Normally, you can’t just say, “Let’s redo this,” but they saw the opportunity and grabbed it! And
somehow, production allowed it.

This would mean they made either of the two left most barrels, right? Wrong again.
It ended up being almost in the shape of the two barrels left with some minor tweaks, and the

texture was a mix between the flame logo from the left most one and the window from its neighbor,
instead of the grating. (See Figures 5 and 6.)

People may ask us, "Why not just make a regular barrel and paint it red? What’s the deal with all the
details like the handle, wheels, grating, and so on? And the new barrel is even more “sci-fi” than the old
one! What gives?" There are a couple of reasons for it.

First, we want it to look like it works for its intended purpose. Amusingly, some say that it’s too
“unrealistic,” but to be honest, the whole shape is based on a weird kind of Japanese fish canister that
one of our artists found while exploring the vast universe known as the Internet. Admittedly, that one
is made out of plastic; our barrel is metal.

However, the main reason is because it looks cooler! While it resembles a regular barrel in its basic
cylindrical shape, Bulletstorm is meant to be a joyride, and we want everything to be interesting! The
worst thing that could happen for us as developers would be if players got bored with it. We don’t want
people to play our game and talk to their friend the day after and say, “Oh, the game was awesome, but
man, the barrels were extremely dull looking.”

In addition to barrels, we have other explosive objects, one of them being trash cans. These incinerate
trash with something like a built-in futuristic furnace. What’s funny is that even after we’d changed the
old barrel, the green trash can remained green for a few more months. I don’t know why. Maybe we kept
clinging to the hope of having something green explode. Nevertheless, we later changed it to red as well,
making sure to use a unified and intuitive visual language in our game. Is it red? Yeah. Well then, shoot it!

I’m glad I’m a game designer and not an artist when it comes to finding the best match of shape, logos, and colors. For me, “red cylinder” is enough.
Regardless, the artsy people did a great job in the end, as now everyone expects the barrels to blow up—and they do!

I never expected that I’d be writing an article about the barrels in our game, but then again, the topic is one that’s been brought up in the industry since
the dawn of time. We tried not doing red barrels, but as the old adage goes, the customer is always right!

A r c A d e B e r g is a game designer on Bulletstorm and People Can Fly’s community manager. He legally changed his first name on his 18th birthday. It’s no surprise that he later started

working on games.

FIgUre 1 FIgUre 2 FIgUre 3

FIgUre 4

FIgUre 5 FIgUre 6

http://www.gdmag.com

TOOLBOX

game deveLOper | march 201128

Game artists know that
there are three sure things in
life: death, taxes, and Autodesk’s
release schedule. The 2011
version of Autodesk Maya is
chock-full of new and updated
features, including a long awaited
user interface overhaul, so let’s
take a look at some of these
features and find out if 2011’s
beauty is more than skin deep.

In The BegInnIng
» As the new Qt framework-based
UI is the most obvious update and
the new feature that users will
encounter first, let’s start there.
In addition to the new carbonized
look, which Autodesk claims will
help reduce color bleed from the
UI to the viewport, Qt brings a new
level of UI customization to Maya.
Some elements can now be torn off
and docked in new locations and
other elements can be resized by
dragging. Have you ever needed to
pull out the Attribute Editor just a
little further to see that super long
attribute name? Well, now you can!

Several individual windows
have also been updated. Those
that rely on custom shelves will
love the new options provided by
the updated Shelf Editor. New icon
formats, including GIF and JPG,
are supported, and individual icon
elements such as background
color and transparency can be
customized. Maybe it’s time to hire
that full-time icon artist you’ve
been considering! 2011 also
includes a new File Browser, which
allows users to set bookmarks,
manage projects, and even set
file options such as referencing
and namespaces. Speaking of
namespaces, Maya 2011 includes a
new Namespace Editor that allows
users to view and manage a scene’s
namepaces, as well as manipulate
the contents. Overall, Autodesk
wasn’t content to just make the

new UI more attractive; they’ve also
made it more functional as well. That
said, it will take some time to adjust
to the new layout.

Do My LITTLe Turn
» Now for some of the new
modeling features in 2011. Past
versions of Maya may not have been
at the top of most artists’ list when
they were discussing preferred
modeling packages, but Autodesk
has been taking great strides to
improve that perception.

The first major modeling feature
is Export To Mudbox. Many studios
have probably scripted their own
interop pipelines by now. Even
so, Autodesk’s solution is pretty
slick. Tell Maya where Mudbox is
located, select some objects, hit File
> Export To Mudbox, and Mudbox
launches with your selection in
view. Interoperability is a big theme
for 2011, and this feature is a
shining example.

2011 ships with many other
compelling additions to the
modeling palette, and while space
constraints keep us from discussing
them all, there are a few that stand
out. The first two are extremely
useful transformation tools:
Arbitrary Scale and Object Level Soft-
Selection. Arbitrary Scale scales an
object along one of several presets
outside of the standard defaults,
including a “Custom Axis” option.
This option derives a scale axis from
a selected component’s orientation.
This remains in effect until a new
axis is selected or the axis is reset
to one of the defaults. Object Level
Soft-Selection takes Maya’s existing
soft selection paradigm and applies
it to transforms, allowing multiple
objects to be transformed with a
falloff, which is great for adding a
random—but not TOO random—
element to object placement.

Another feature to receive
expanded functionality is Transfer

Attribute. For 2011, Transfer
Attribute adds topology-based
transferring for identical meshes.
No more having to fear the loss of
component-based information due
to component re-ordering by other
packages.

Last but not least, Autodesk
throws a nod toward 2D packages
with the inclusion of Bezier Curves.
If you’ve ever used Photoshop, you
know what to expect. Click to set an

anchor point, drag to pull tangents,
and switch into component mode to
edit. Simple, effective, and familiar,
what more could one want?

LIke To Move IT, Move IT
» Animation has been Maya’s
bread and butter since its
inception, and 2011 continues that
tradition. Autodesk has taken an
“if it ain’t broke, make it better”
approach to animation tools, thus
many of the familiar standbys
have received major overhauls.
Let’s start by taking a look at the
updated Graph Editor. Again, the
list of changes is too extensive to
describe fully, so I'll focus on some
of the more impactful features.
First up, two features from Maya’s
modeling toolset come to the
animation world: Pre-Selection
Highlighting and Pick-Walking. Both
curves and key-frames can be pre-
selected, though they tend to work
better with curves.

In future versions, it would
be cool to see tangents display in
pre-select mode, but this is a great
start. With keys selected, the left
and right arrows can be used to
pick-walk along the parent curve.
It’s a small feature, but animators
will wonder how they ever got by
without it. Again, it would be cool to
see some additional functionality
here. Perhaps the up and down
keys could be used to cycle
between all the displayed curves?
In any case, it’s encouraging to see
workflow concepts shared across
disciplines.

Maya 2011 simplifies Graph
Editor work further with the
addition of new display modes
and filters. Tired of looking at all
those overlapping curves? Set your
second monitor to portrait mode,
enable Stacked Curve display, and
enjoy squint-free curve editing.
Need to compare those curves
to curves on another character?

AuToDesk

Maya 2011
R e v i e w b y s e t h g i b s o n

PrICe

› $3,495

sysTeM reQuIreMenTs

› Microsoft windows vista business
(sP2 or higher), Microsoft windows
XP Professional (sP3 or higher),
Microsoft windows 7 Professional
operating system. intel Pentium 4 or
higher, AMD Athlon 64, AMD opteron
processor, AMD Phenom processor. 2
gb RAM. 4 gb free hard drive space.
Qualified hardware-accelerated
opengL graphics card.

Pros

1 new features are genuine workflow
enhancers

2 interoperability with other Autodesk
packages is much improved

3 native PyMeL

Cons

1 some new features could use
additional functionality

2 new Ui will take time to adjust to
3 some features may not be used by

specialists

AuToDesk
Maya 2011

Autodesk, inc.
111 Mcinnis Parkway
san Rafael, CA 94903
www.autodesk.com/maya

http://www.autodesk.com/maya

Individual channels can now be
pinned in the Graph Editor, leaving
you free to select other objects
safely while keeping your original
selection in view. Furthermore,
2011 provides the ability to filter
specific attributes. For future
versions, a bit more granularity
would be appreciated (rotateX vs.
rotate), but even this initial offering
is quite useful.

Character technical directors
will find that the Paint Skin Weights
tool has also gone through some
major changes, but all for the
better. Sort By Hierarchy has been
replaced by a proper tree view,
though the old Flat display also
remains available. Fixing minor
errant weighting values is less
painful, as influence weights
can now be displayed as a color
gradient instead of simple black
and white. Wondering where that
last .01 bit of weighting is? Set the
left side of your gradient to neon
green, and never again hunt for
those weight spikes. 2011 also
includes a 3ds Max-style Interactive
Binding tool complete with preview
volumes, as well as support for
dual quaternion skinning. Weighted
meshes now have the option of
being linear, DQS, or blended, which
can be painted on using Paint Skin
Weights. The end result is skinning
that’s quicker to set up and easier
to edit than in any previous version
of Maya.

For cinematic animators,
Maya 2011 borrows a few pages
from MotionBuilder with the
addition of the Camera Sequencer

and Time Warp Effects. Fans of
MotionBuilder’s Story Tool will feel
right at home with both of these
features. The Camera Sequencer
provides a quick way to block
camera shots and sequences
independent of the timeline,
similar to Trax, while Time Warp
Effects allow a scene’s timing to be
controlled by a single animation
curve. Rounding out the cinematics
toolset is the option to display
Time Code in scene, either as a HUD
widget or in the time and range
sliders.

Of all the new feature sets in
2011, animation feels the most
polished, with some minor room
for improvement. Hopefully the
community will adopt these new
features, give them proper trials by
fire, and provide Autodesk feedback
for future versions.

Rolling YouR own
» While Python has been available
in Maya since version 8.5, many
users have been asking for a
proper object-oriented scripting
solution. This came in the form of
a project called PyMEL. Lack of
official support was a sticking point
for adoption by many developers.
Autodesk heeded the community’s
feedback and has now included
PyMEL with 2011. This is one of the
most significant scripting updates
since the inclusion of Python.
Porting existing pipelines does take
time, but it’s time well spent.

If PyMEL’s inclusion weren’t
enough to keep technical artists
on their toes, Maya’s adoption

of Qt provides yet another new
development paradigm: Qt UIs can
be scripted using helper libraries
such as PyQt or PySide; likewise,
tool developers can create Qt UIs
in their custom Maya API plugins.
As Autodesk states, “The use of
Qt is fairly transparent,” and this
is for the most part true. Custom
UIs may exhibit minor differences
on first run, but usually nothing
show stopping.

The addition of PyMEL is as
significant as the addition of Python
itself. Autodesk has a long history of
integrating community-developed
features, and this one was an
excellent choice.

PRaise The new oRdeR!
» With Maya 2011, Autodesk
has stated loud and clear that
they’re not content to rest on their
laurels. We've been hearing about
things like Maya/MotionBuilder

convergence and improved
interoperability for a bit now, and
if Maya 2011 is any indication, the
future is bright indeed! Granted,
switching to 2011 in the middle of
development may not be the best
plan, but if the project is at a stable
point, it’s time and effort well
spent. Studios should allow time for
users to gain a solid understanding
of the new features and how best
to leverage them. A 30-day free
trial of Autodesk Maya 2011 is
available at: www.autodesk.com/
mayatrial. As cliché as it sounds,
there really is something in Maya
2011 for everyone, so whether
your studio is looking to update
its existing software or switch to
a new package, this application
should be at the top of your
shopping list.

seTh gibson is a technical artist at

Microsoft Game Studios.

www.gdmag.com 29

The dark interface is intended to provide better contrast with the user's viewport image.

http://www.autodesk.com/mayatrial
http://www.gdmag.com
http://www.autodesk.com/mayatrial
http://www.finalbuilder.com/game

TOOLBOX

In Sound Design, the
challenge is often finding the
right sound or combination of
sounds to represent—either
realistically or with abstract
emotional impact—the
drama unfolding on-screen.
This quest for the secret
ingredient to sell the moment
with an appropriate and
engaging sound is rife with
challenge and uncertainty at
the onset.

Bring the noise
» The fundamental aspect of all
sound design is, put simply: sounds,
or the building blocks of sound that
are used to create new sounds.
The most common way to interact
with a growing library of sound
files is through the use of a Digital
Asset Management system. While
everyone is familiar with the ability
to navigate files using the search
functionality provided at the folder
level by your operating system,
audio-specific solutions come with
additional features to further enable
the creative process.

If you can think of an audio
asset management system that
organizes and navigates files similar
to the way iTunes manages music,
then you’re most of the way toward
understanding how a specialized
tool can help in this process. With a
bit of extra pipeline for editing and
manipulating the source files, this
combination of searchability and

functionality forms the basis for
the BaseHead SFX Database for PC
and OS X.

The installer comes zipped in a
slim 692kb file directly from www.
baseheadinc.com. An initial 30-day
trial is available and, once you
decide you can’t live without it, a
license and CodeMeter CMStick can
be purchased online to continue
use. Inside the re-skinnable
interface, a jump to the preferences
will allow you to specify an already
existing database location, your
external wave editor of choice
for file editing, as well as other
description, playback, and workflow
tweaks to help speed up usage.

this is import(ant)
» Several fields of metadata are
selectable to be imported along
with your sound files, and used with
BaseHead’s search capability; things
like bit rate, sample rate, file type,
channels and so on (see Figure 1).
BaseHead also supports editing the
universal broadcast WAV description
metadata field.

In addition to the metadata
embedded within your files,
BaseHead parses the file names for
possible descriptions, or keywords.
It’s here that the strength of file
naming pays off, especially in
cases where time has been spent
to include relevant information
such as a naming standard across
different types of content.

I imported a large collection of

around 80,000 files from several
libraries and waited patiently
while the program slowly digested
the information. It eventually
stopped responding and after
force quitting and re-opening the
program I found my collection
only partially imported. I changed
strategies to the drag and drop
methodology and selected multiple
folders and dropped them on the
Import window. After all this was

done I found that I had created
many duplicate file entries in the
database, which were quickly
dispatched using the “Remove
Duplicate Database Entries” feature.

Find Your Bliss
» When it comes down to quickly
parsing a massive library of sounds,
a content management system lives
and dies on it’s ability to quickly
refine a search into a resulting
list of appropriate potentials. With
BaseHead, the flexibility is at your
fingertips. All entries are sortable
by column header including any of
the metadata fields you specified
on import.

Each of the three fields in
the Search Bar (see Figure 2) is
configurable, including arguments
or Booleans for advanced look-up
techniques and a chronological
history of searches for each
field. Keywords can be further
augmented by using general
expressions such as “-metal” to
remove descriptions with the word
metal in them. There is also a
handy visual logic connector that
goes above and beyond simple
search and the ability to hack away
at the forest of files is made easier
by this extended functionality.

One of the handy tweaks in the
preferences allows you to limit the
number of records returned by a
search. This speeds up the return of
relevant information, and puts you
two clicks away from more records

game deveLOper | march 201130

Figure 1 optional database fields.

Figure 2 search bar.

Basehead inc.

Basehead 2.5
R e v i e w B y d a m i a n k a s t B a u e R

http://www.baseheadinc.com
http://www.baseheadinc.com

if your initial batch of results feels
too limited. Also of note is the ability
to randomly select a file, for those
situations when your creativity
needs an oblique jumpstart strategy.

Work FloWing
» Once you’ve narrowed down your
selections, you can listen to and
skip around inside of an individual
file using the Waveform Window
(see Figure 3). It’s not uncommon
for a sound effect library file to
contain multiple takes or samples,
which makes visually skipping
around within the file extremely
helpful when identifying sections for
later use. These individual sections
can be highlighted in the waveform
view and then added to the Tag List
(see Figure 4). The Tag List is like an
intermediate clipboard where you
can assemble sounds in preparation
for a mass export to your Digital
Audio Workstation (DAW).

Support for all the major audio
editors makes it easy to get your
audio from BaseHead over to your

DAW of choice. The developer has
gone a long way toward making this
part of the process as brain dead
simple and error free as possible
in order to keep the creative
flow going. The names of files or
sections of files in the Tag List
can be appended when exporting
to your DAW with additional Pre
or Post-Descriptions to help keep
things straight once you enter the
multitrack domain.

Back to the Future
» The online manual comes in
handy for addressing several
unique circumstances such as how
to disable the Windows Bing sound
that plays when pressing enter on
any search, workflow speedups, and
additional hot keys. It’s important to
note that version 2.8 of BaseHead
has recently been released and
that the company will be showing
version 3.x of BaseHead at this
year's GDC. The upcoming version
promises additional features such
as batch filename, a completely

new GUI design, labeling and color-
coding, and VST plug-in support.

end oF the road
» When you find yourself faced with
a steep descent into the mouth of
cavernous silence, you need every
tool at your disposal to mount the
journey onward. Before settling
on the course ahead it’s good to
feel prepared. While BaseHead
comes with some quirks that can
confound you on your sound design
expeditions, there are still plenty
of reasons to give it a shot in your
creative pipeline. That random button
just might help you out of a tight spot
when you least expect it.

damian kastBauer is a freelance

technical sound designer working with Bay

Area Sound. He is the co-founder of the

Game Audio Podcast and writes a series

of articles on audio implementation at

DesigningSound.org.

Figure 3 Waveform window.

Figure 4 tag list.

Price

› $259.00

sYstem reQuirements

› Windows, OS X

Pros

1 Flexible and powerful search
functionality

2 Exporting files to a DAW works
smoothly

3 Waveform Window makes auditioning
intuitive

cons

1 Occasionally unresponsive when
importing or searching large data
sets

Basehead inc.
Basehead 2.5

BaseHead Inc.
20413 Hamlin St.
Winnetka, CA 91306
www.baseheadinc.com

www.gdmag.com 31

http://DesigningSound.org
http://www.gdmag.com
http://www.unityworkshop.com
http://www.baseheadinc.com

Many players cannot help approaching
a game as an optimization puzzle. What gives
the most reward for the least risk? What
strategy provides the highest chance—or even
a guaranteed chance—of success? Given the
opportunity, players will optimize the fun out of
a game.

Games are so complex that it is difficult to
anticipate exactly how players will optimize a
game until after release, once thousands bang
away at it and share their ideas with each other
online. Often, designers don’t even understand
their own games until they finally see them in
the wild.

A phrase we used on the Civilization
development team to describe this phenomenon

was “water finds a crack,” meaning that any hole
a player can possibly find in the game’s design
will be inevitably abused over and over. The
greatest danger is that once a player discovers
such an exploit, she will never be able to play
the game again without using it; the knowledge
cannot be ignored or forgotten, even if the player
wishes otherwise.

Civilization 3 provides a simple example
with “lumberjacking”—the practice of farming
forests for infinite production. Chopping down
a forest gives 10 hammers to the nearest city.
However, forests can also be replanted once the
appropriate tech is discovered.

This set of rules encourages players to have a
worker planting a forest and chopping it down on

every tile within their empire in order to create an
endless supply of hammers. However, the process
itself is tedious and mind-numbing, killing the fun
for players who wanted to play optimally.

tank-Mages and infinite city sleaze
» One of the dangers of players looking to
optimize a game is that a single dominant
strategy will emerge that drowns out all others.
In the MMO world, the shorthand term for this
predicament is the “tank-mage”—a reference
to Ultima online, in which certain hybrid class
builds could both wear heavy armor and cast
powerful damage spells. This character served
as both the damage absorber (the “tank”) and
the damage dealer (the “mage”), displacing most

design of the times // soren Johnson

game developer | march 201132

Water finds a crack
This is what games are for. They teach us things so that we can minimize risk and know what
choices to make. Phrased another way, the destiny of games is to become boring, not to be
fun. Those of us who want games to be fun are fighting a losing battle against the human brain
because fun is a process and routine is its destination. —RAPH KOsTeR, A THeORy Of fun

Civilization iii.

How player optimization can kill a game's design

www.gdmag.com 33

other possible character builds. Almost every
MMO has experienced some version of the tank-
mage as players try to find the optimal build for
all situations.

The Civ series has its own version of the
tank-mage: the strategy of spamming settlers
for “infinite city sleaze” (or ICS), a bane of the
franchise since the beginning. The essential
problem is that 50 size-2 cities are more powerful
than 5 size-20 cities as a number of bonuses are
given out on a per-city basis. For example, every
city gets to work its home tile for free, which
means that a size-2 city works 3 tiles with only 2
citizens (1.5 tiles per citizen) while a size-20 city
works 21 tiles (only 1.05 tiles per citizen).

The problem is that while ICS makes beating
the highest difficulty levels trivially easy,
handling 100 cities is a management nightmare.
Players who pursued this strategy—or even less
extreme versions of it—were always aware that
they were breaking the game, but they often
simply couldn’t stop themselves.

Armed with knowledge from the earlier
versions of the game, we were able to counter
ICS ahead of time with Civ 4 by adding a per-city
maintenance cost that scaled with the total
number of cities. Thus, building too many cities
too early crippled a player’s economy, killing ICS
at long last.

The reason to kill tank-mages and ICS is that
a single, dominant strategy actually takes away
choice from a game because all other options are
provably sub-optimal. The sweet spot for game
design is when a specific decision is right in some
circumstances but not in others, with a wide grey
area between the two extremes. Games lose their
dynamic quality once a strategy emerges that
dominates under all conditions.

UndervalUing Time
» When presenting players with a choice,
games typically pair a specific reward with a
certain level of risk. When gamers discover that
one play style offers a trickle of rewards for little
or no risk, they will inevitably gravitate toward
that degenerate strategy.

In other words, players will trade time for
safety, but they risk undervaluing their own time
to the point that they are undermining their own
enjoyment of the game. A classic example is the
skill system from Morrowind, which rewards
players for repeating any activity. Running into
a wall for hours increases the Athletics skill
while jumping over and over again increases
the Acrobatics skill. Many players couldn’t stop
themselves from spending hours doing mindless
activities for these cheap rewards.

Another example of players undervaluing
their own time comes from growth, production,
and research overflow in the Civ series. Every
turn, cities produce food, hammers, and
beakers, filling up various boxes. Once these

boxes are full, new citizens, buildings, units, and
technologies are created.

For example, if a civilization produces 20
beakers per turn, and Writing costs 100 beakers,
the technology will be discovered after 5 turns.
However, if the same civilization produces 21
beakers per turn, the box for Writing will contain
105 beakers at the end of 5 turns. In that
situation, after Writing is discovered, the extra
5 beakers are thrown away so that the box will
be empty when the player starts researching
Alphabet on the next turn. Players quickly
realized that when they came close to finishing
a tech, they could adjust their tax rate so that
no beakers would be wasted (because those
beakers are all potential gold at a different rate).

A similar dynamic exists with food and
hammers for city growth and production. In this
way, the game’s rules encourage players to visit
every city every turn to rearrange their citizens
to ensure no food or hammers will be lost. This
micro-management is actually a somewhat
interesting sub-game, but clearly not how the
designers want the players to be spending their
time, as it completely bogs down the game.
We solved this in Civ 4 by simply applying the
overflow food/hammers/beakers to the next
citizen/unit/building/technology.

Players who adopt this strategy often
refer to the game as being heavy on “micro-
management” because they can no longer resist
playing the game without squeezing every last
drop out of their cities. The problem is even

worse in multi-player as gamers who don’t micro-
manage their cities will always fall behind in the
race for more growth and production.

The designers don’t want people to play
this way; nonetheless, the rules inadvertently
encourage it. Again, designers often don’t
understand their own games as well as
the players do. The problem with a gamer
undervaluing her own time is that, while the easy

rewards may feel good at first, eventually the
amount of time required will slowly seep away
the fun per minute, until the game begins to feel
like a grind.

good exploiTs?
» Designers can also go too far trying to remove
all exploits from a game. Often, the right choice
depends upon the game’s context. Does the
exploit drown out all other play styles, or is it a
fun, alternative way to play? Does the degenerate
strategy create an endless grind, or is it a quick
shortcut for players who need a little help?

The famous endless free lives trick from
Super Mario BroS.—in which the player bounced
a turtle shell repeatedly against a block staircase
for long strings of 1UPs—was actually not a bug
but a feature the team included. In exchange
for mastering a small dexterity challenge,
players can quickly mine all the free lives they
need to progress in the game. Discovering and
abusing a hole in a game’s design can be a fun
experience—giving the player a unique sense of
mastery—as long as the exploit doesn’t ruin the
game for the player (or the player’s opponents).

If possible, designers should provide the
ability to turn an exploit on or off, giving the
players control over their worst instincts. For
example, most games with save/load functionality
can be abused by players to improve their odds;
an RPG in which smashing a box produces random
loot can be reloaded as many times as necessary
until the best possible weapon or armor appears.

With Civ 3, we introduced a feature that
preserved the game’s random seed in the save
game file, guaranteeing that individual combats
would play out the same way regardless of how
many times the player reloaded the game. No
longer were players tempted to reload every
bad combat result, which could slow the game
to a crawl.

However, the community response was not
what we anticipated. Although some players
appreciated that they were no longer tempted
to reload combats, many others were frustrated
that one of their old tricks disappeared. Indeed,
some angry fans actually felt that the game was
cheating on them by always reproducing the
same combat result!

We solved this problem by turning this feature
into an option on game start. Players who want
the chance to reload a particularly unlucky roll
can use the old exploit, but the game, by default,
discourages this work-intensive strategy.
Ultimately, the designer can’t go wrong putting the
player in control of his or her own experience.

soren Johnson is a designer/programmer at EA2D, working

on web-based gaming with strategystation.com and Dragon

age LegenDs. He was the lead designer of CiviLization iv and

the co-designer of CiviLization iii. Read more of his thoughts

on game design at www.designer-notes.com.

Morrowind.

http://strategystation.com
http://www.designer-notes.com
http://www.gdmag.com

Developers helping developers
www.igda.org/join

http://www.igda.org/join

WWW.GDMAG.COM 35

THE INNER PRODUCT // DAVE COWLING

IDLE THREADS
SHOW THE DOOR TO LOAD-HIT-STORE

IF YOU’VE DONE MUCH WORK ON THE XBOX 360 OR PLAYSTATION 3, YOU
may have heard how important it is to minimize load-hit-store (LHS)
performance penalties. LHS is an issue that particularly affects in-order
processors, and the PowerPC core(s) driving these consoles are no exception.

LHS is trivial to explain in principle: if you try to read back and make use
of data from a memory location to which you have very recently written,
your hardware thread will flush and you will sit idle for a while. (If you’re
wondering why you would ever read something back that you only just
wrote, the practical examples will help to illustrate many of the situations
where this can happen.)

For those who don’t know the nitty-gritty, here’s a more in-depth explanation
of what’s going on under the hood: When you write to memory, your store goes
directly to the L1\L2 cache via a store queue. This is not an instantaneous
operation; it can take on the order of tens of cycles for the store queue to flush
and for your write to make it to cache. If you try to read that data back and
make use of it before it has reached the cache, your thread will flush (sit idle)
for around 40 cycles—this is the load-hit-store penalty. Once that flush has
completed, the instruction pipeline is “rewound” to the instruction that caused
the LHS, and execution commences again. This time around, the data is likely to
have reached the cache, so it can be fetched and used successfully.

OKAY—WHY SHOULD I CARE?
» If you don’t consider yourself someone who writes performance-critical
code, you may be ready to skip this article (assuming you even read this far).

Here’s the thing: despite being easy to describe, many of the situations
where LHS issues appear are fairly non-intuitive, and they’re certainly not
limited to “low-level” code. The good news is that once you understand the
basic mechanism of the issue and some of the common pitfalls, you should
have a good sense for whether the code you’re writing is likely to suffer from
this problem. Better yet, in many cases, you should be able to make minor
adjustments to greatly reduce LHS impact or even eliminate it altogether. I
have made incredibly slight changes to code to eliminate LHS and seen that
code double or triple in speed.

With such easy performance gains on the table—gains that can be
achieved at a relatively low cost and without a need for complex code
changes—why wouldn’t you care?

IDENTIFYING LOAD-HIT-STORE ISSUES
» There are a few useful tools available for identifying existing LHS issues
in your codebase. On the 360, you have PIX, trace dumps, and the PMCPB
performance counters. On the PlayStation 3, you’ve got the pipeline analysis
output and LHS performance counter tracking within the SN Tuner.

These tools are all well explained in their respective system documentation,
and space (not to mention NDAs) prevents a more in-depth discussion here.

Of course, regardless of platform, you have another tool at your
disposal: your finely honed engineering sensibilities! Take a look through
the practical examples, and then try eyeballing some familiar code in your
codebase; there’s a good probability you’ll turn up issues without the help of
any additional fancy analysis tools.

PRACTICAL EXAMPLES
All the examples below are based on real-world issues I’ve come across in

various codebases. Many of the code examples I provide are somewhat
contrived, but this is to get the idea across in as concise a way as possible, not
because you have to write contrived code samples to generate LHS issues!

TYPE CASTING
» Type casting is the most frequently cited example of how to generate a
load-hit-store issue easily on a PowerPC core. PowerPC is unable to move
data directly between different register types (from integer to floating point,
say, or from floating point to VMX). Instead, the data has to be written from
one type of register to memory and subsequently read back from memory
to a register of the destination type. Yikes—LHS! Remember, this applies to
implicit casts just the same as for explicit casts (see Listing 1).

The easiest way to avoid this class of LHS penalty is to think carefully
about the type of your variables and try to avoid the sorts of casts that will
require data to take a round trip via memory.

In some cases, it can be advantageous to keep two representations of the
same piece of data around if it will allow you to avoid casts (see Listing 2).

HAMMERING MEMBER VALUES
» It’s all too easy to forget when you write something like this ...

while (++m_opCount < limit)
{
 DoSimpleOperation();
}

... that what the compiler “sees” is:

while ((this->m_opCount = this->m_opCount + 1) < limit)

{

 DoSimpleOperation();

}

The pointer dereference should be a clue here. In almost all cases, the
compiler will shy away from loading an object’s member variable values
to temporary registers for a number of discreet operations prior to storing
them back “into” the object. Instead, the compiler will just update the value
where it sits in memory. Thus, you end up reading back a value on loop
iteration n that you only recently wrote to memory in loop iteration (n-1).

In our example, if DoSimpleOperation() completes in relatively few cycles,
the chances are good that on successive loop iterations you will suffer LHS stall
penalties since m_opCount is being read from memory so soon after being written.

The simple solution for many of these cases is to briefly decouple the
member variable into a locally instantiated variable that the compiler can
keep in a register.

int localOpCount = m_opCount;

while (++localOpCount < limit)

{

 DoSimpleOperation();

}

m_opCount = localOpCount;

http://WWW.GDMAG.COM

THE INNER PRODUCT // DAVE COWLING

GAME DEVELOPER | MARCH 201136

L I S T I N G 1

int i_dist = GetDistance();

float f_dist = 12.0f * i_dist; // Implicit cast of i_dist int->float (type promotion)

std r11, 50h(r1) // Store our integer value i_dist off to the stack

lfd fr0, 50h(r1) // Reload value directly back from the stack into a float register

fcfid fr13, fr0 // Convert from integer to floating representation - LHS!

L I S T I N G 2

for (int i_index = 0; i_index < 100; ++i_index)
{
 float f_dist = 12.0f * i_index; // Implicit cast - LHS!

 DoSomething(f_dist);

}

This code could change slightly and avoid the LHS:

for (int i_index = 0, f_index = 0.0f; i_index < 100; ++i_index, f_index += 1.0f)

{

 float f_dist = 12.0f * f_index; // No cast - no LHS!

 DoSomething(f_dist);

}

L I S T I N G 3

void LHS_NightmareAverted(float* __restrict p_ptr0, float* __restrict p_ptr1)

{

 *p_ptr0 = 5;

 *p_ptr1 = 10;

 *p_ptr0 += 7;

}

*p_ptr0 = 5;

*p_ptr1 = 10;

li r11,105.7 // Load immediate value 10

*p_ptr0 += 7;

li r10,125.7 // Load immediate value 12 (aka 5 + 7)

stw r11,0(r4) // Store value 10 to p_ptr1

stw r10,0(r3) // Store value 12 to p_ptr0

L I S T I N G 4

// Explicity storing some general purpose register (GPR) values to the stack

stw r12,-8(r1) // Link register

std r30,-18h(r1) // Integer register 30

std r31,-10h(r1) // Integer register 31

stfd fr31,-20h(r1) // Float register 31

// Using a utility function to store Link register and GPRs 28 and above

bl savegpr28lr

Bad Parameter ChoiCes
» It’s a good idea to have a solid understanding of the calling convention
for your target platform. This will help you determine in which situations the
compiler will use registers to transfer parameter data between functions,
and in which situations it will be forced to use memory for this transfer.

float f_health = 3.5f;

float f_healthAdjusted;

// Compute adjusted health into f_healthAdjusted.

DoHealthCalculation(f_health, &f_healthAdjusted);

if (f_healthAdjusted > 2.5f)

// ...

From the Xbox 360 and PlayStation 3 PPE ABIs, we know that simple float
parameters will be passed as registers and that float return values will
also be returned in a register. What about the float pointer? The pointer
value will be passed in an integer register, but DoHealthCalculation()
is clearly required to use that value to store the computed result to a
location in memory. By now, it should be clear that when we try to use
f_healthAdjusted once the health calculation function has completed, we’ll
be loading from memory and making use of a value that was only very
recently written.

Knowledge of the calling convention informs us that making a simple
change to DoHealthCalculation() to return the computed value rather than
store it to a provided address will eliminate the LHS condition here:

f_healthAdjusted = DoHealthCalculation(f_health);

Pointer aliasing
» Pointer aliasing is a subject worthy of its own article. However, a simple
example can illustrate how hamstrung the compiler can become at avoiding
LHS unless you help it out.

void LHS_Nightmare(float* p_ptr0, float* p_ptr1)

{

 *p_ptr0 = 5;

 *p_ptr1 = 10;

 *p_ptr0 += 7;

}

Okay, so where’s the LHS here? Let’s look at the disassembly to see what’s
going on:

*p_ptr0 = 5;
li r11,5 // Load immediate value 5
stw r11,0(r3) // Store value 5 to p_ptr0

*p_ptr1 = 10;

li r10,10 // Load immediate value 10

stw r10,0(r4) // Store value 10 to p_ptr1

*p_ptr0 += 5;

lwz r11,0(r3) // Read back contents of p_ptr0

addi r9,r11,7 // Add 7 to contents - LHS!

stw r9,0(r3) // Store sum back to p_ptr0

At first glance, it’s hard to understand why the compiler is bothering to read
back the value recently stored in memory at p_ptr0 just to add another 7 to
it and store it back to p_ptr0 again.

But from the compiler’s point of view, there is no alternative. There is
nothing that says p_ptr0 and p_ptr1 can’t point to the same spot in memory.

(Pointer aliasing can loosely be described as just this situation—when two
or more pointers point to the same memory location, those pointers are said
to alias each other.)

If it’s possible that the pointers do point to the same location, you can
see why the compiler has to reload the value stored to p_ptr0. It has no idea
whether the store to p_ptr1 was also a store to p_ptr0, so the only option is
to reload and be safe.

What we need is a way to tell the compiler that the pointers won’t ever
alias. Fortunately, we have a mechanism to do this: the restrict keyword
(see Listing 3).

In this modified code, armed with the additional knowledge that the
pointers don’t alias, the compiler is smart enough to just generate two
immediate value stores.

It’s important to recognize that the restrict keyword is not something
that the compiler can sanity check. It is often described as a “promise” that
you make to the compiler. You promise that the pointers won’t alias and, in
return, the compiler can perform instruction re-ordering and optimization
that it couldn’t otherwise do. If you break that promise, nasty things are
very likely to happen.

array alloCations on the staCk
» Even smart compilers seem to be very bad at optimizing locally
instantiated small array use into discrete registers. Instead, everything
goes via the stack, so reading and writing these array elements can lead to a
large amount of LHS stall penalties.

enum locations
{
 INSIDE = 0,
 OUTSIDE,
 INTERSECTING,
 MAX_LOCATION
};

int locationCount[MAX_LOCATION] = { 0 };
for (int i = 0; i < numberOfPointsToTest; ++i)
{
 int location = INTERSECTING;
 if (PointIsOutside(point[i]))
 {
 location = OUTSIDE;

 }

 else if (PointIsInside(point[i]))

 {

 location = INSIDE;

 }

 locationCount[location]++;

}

Clearly we are interested in tracking three independent values: how many
points are inside, how many are outside, and how many intersect. Choosing
to use a locally instantiated array to track this is asking for trouble. The
compiler is more than likely to keep that array on the stack, which leads to
problems with this line:

locationCount[location]++;

You can see that this translates to the sequence “read value from memory
that was only recently written, increment the value and write the value back
to memory” for each successive loop iteration.

In this case, the code would benefit from being re-written thusly:

www.gdmag.com 37

http://www.gdmag.com

THE INNER PRODUCT // DAVE COWLING

GAME DEVELOPER | MARCH 201138

int locationInside = 0;

int locationOutside = 0;

int locationIntersecting = 0;

for (int i = 0; i < numberOfPointsToTest; ++i)

{

 if (PointIsOutside(point[i]))

 {

 ++locationOutside;

 }

 else if (PointIsInside(point[i]))

 {

 ++locationInside;

 }

 else

 {

 ++locationIntersecting;

 }

}

Having discrete integer variables rather than an array is far more likely to
persuade the compiler to keep those values in-register, bypassing writes
and reads from memory, and eliminating the possibility for LHS.

STACK FRAME TEARDOWN
» When you enter a function, the compiler will often choose to store
off to the stack some combination of the general-purpose integer and
float registers, freeing them up for use within the body of the function.
Sometimes you can see this happening explicitly, register by register, at the
start of your function, and sometimes the compiler will make use of a utility
function to perform the stores (see Listing 4).

When you exit the function, those values that were stored off need to
be read back from the stack and placed into the correct registers, so the
general register state on exit is the same as on entry.

If you’re not spending much time in the function, you can see that
there’s a chance of encountering LHS during the stack frame teardown (or
more correctly, subsequent to the teardown, when you come to use any of
those values that were recently read back).

In many cases, this form of LHS can be hard to avoid. The one thing to
consider, particularly when the called function is small, is more aggressive
inlining. If the function is inlined, you’ll be removing the need for the
additional stack setup and teardown.

CASCADING LHS
» In some situations, you just can’t eliminate LHS entirely. What you can
do is use your knowledge of the mechanism of LHS to minimize the impact .

float LHS_Cascade(const int* p_ptr)

{

 static const float weights[] = { 0.1f, 0.2f, 0.25f, 0.45f };

 float sum = 0.0f;

 for (int i = 0; i < 4; ++i)

 {

 float f = static_cast<float>(p_ptr[i]);

 sum += f * weights[i]; // LHS!

 }

 return sum;

}

int d[4] = { 12, 45, 34, -17 };

float sum = LHS_Cascade(d);

Okay, we already know that float to int casting is a terrible thing, but let’s

assume in the situation above that there just isn’t any alternative, and also
that the compiler hasn’t gone ahead and unrolled that loop automatically.
Do we have a means to reduce the impact the LHS might have? We know
the loop will iterate four times, and on each loop iteration, we are going to
encounter an int to float cast and a subsequent operation which will incur
a LHS penalty. Sum total LHS penalty is therefore 4x (single LHS penalty).

How about this approach, essentially an unrolled version of the simple loop:

float LHS_Cascade(const int* p_ptr)

{

 static const float weights[] = { 0.1f, 0.2f, 0.25f, 0.45f };

 float f0 = static_cast<float>(p_ptr[0]);

 float f1 = static_cast<float>(p_ptr[1]);

 float f2 = static_cast<float>(p_ptr[2]);

 float f3 = static_cast<float>(p_ptr[3]);

 float sum = f0 * weights[0]; // LHS!

 sum += f1 * weights[1];

 sum += f2 * weights[2];

 sum += f3 * weights[3];

 return sum;

}

We’re going to incur an LHS penalty when we use a cast value for the first
time, but we know that penalty will cause the thread to flush for sufficient
time so that our remaining cast values should be safe to use without
penalty. Sum total LHS penalty here is therefore 1x (single LHS penalty)—or
a mere 25 percent of the cost of the original code!

"FALSE" LOAD-HIT-STORES
» I’ve included mention of false LHS here for completeness. There’s really
very little you can do about this issue except in particularly contrived
examples—if this is your remaining LHS concern, you should be sleeping
soundly at night!

False LHS occurs because the hardware that checks for LHS occurring
is lazy! Rather than checking the full address from which data was read, it
checks only the low n bits. On some CPUs, for example, only the low 12 bits
are checked; so if you read from an address 4k away from an address that
was just written, you will suffer the LHS penalty despite the fact that there
was no “true” collision.

HIT THE LOAD, JACK
» I hope the practical examples above have given you a sense of the
potential that LHS behavior has to infest your codebase (and the potential
for easy optimization that awaits the enthusiastic engineer).

Although LHS penalties can be considered a low-level issue, they are often
easy to avoid using simple, high-level changes to your code in tandem with
a broad appreciation for the underlying mechanism. What’s not to love about
simple optimizations, especially when they can improve performance on more
than one target platform?

One final word of caution: I think it’s important to remember that fixing
LHS is not a panacea for poorly performing code. Agonizing over every last
LHS penalty is no substitute for proper algorithmic optimization or L2 cache
management or, in many cases, deciding that function foo() occupies such
a tiny fraction of your frame that time spent on optimization might be better
spent on making a nice strong pot of coffee.

DAVE COWLING has been coding games professionally for 17 years. He is currently the studio

technical director for Neversoft Entertainment. At his age, effective optimization is one of a

dwindling number of fun activities that doesn’t leave him feeling sore the next morning.

pixel pusher // steve theodore

Blink of an EyE
Using Film Editing tEchniqUEs oUtsidE oF cinEmatics

GDCs ComE anD Go, BrinGinG with thEm a nEw Crop of talks By visitinG hollywooD luminariEs—anD,
inevitably, mixed feelings from the developers in the audience. Whether it’s fanboy enthusiasm or defensive grumbling,
our industry can never quite free itself from the coils of sibling rivalry when it comes to the movie business.

Of course, that relationship has changed over the years. When Pixel Pusher first pondered the perilous
partnership of film and games (see "Beg, Borrow, Steal," Game Developer, May 2004), we noted how deftly
the first incarnations of the Call of Duty franchise borrowed cinematic conventions in our low-fidelity
medium. Fast forward seven years, and the sophistication of game cinematics has become truly jaw-
dropping, even for those of us who work in the business. Pat yourselves on the back, gamers, it’s been a
long haul from the goofy 8-bit slideshows of Zero Wing to the moody psychodrama of DeaD SpaCe 2.

We’ve assimilated a lot of the production values of cinema, but we haven’t always made them truly
our own. We’ve become very adept at mimicking the high style of Hollywood within the confines of
fixed-camera cinematics. Once the black bars retreat and the player takes over, though, we don’t
always show the same degree of finesse. So this month, we’re going to take a quick look at some of
the ways in which basic cinematic techniques can work in an interactive setting. Much of this will
be familiar to animators and cinema directors, but there’s a lot that environment artists and level
designers can learn from the Hollywood editors’ book of tricks.

CahiErs Du CinÉma
» Film school grads and movie buffs divide the world into two main camps with impressive French
names (remember to learn these, you can irritate your friends by dropping them at parties). “Mise-
en-scène” is, literally, the “stuff in the scene.” In a movie, that’s the actors, sets, and action of the film.
In our world, it’s “content”—the actual stuff of the game world. The other half of the film vocabulary is
“montage”—the assembly of images that connect the individual scenes into a larger narrative. In other
words, the editing.

Effective storytelling requires both content and edits. The best looking models and animation can’t grab
an audience effectively without good camera
work and well-timed cuts. Until recently, game
design orthodoxy has tended to keep the
player’s point of view locked into a single
“shot” for long stretches of time. Though
there are a few notable exceptions (alone
in the Dark, for example, and later the
reSiDent evil series), games generally avoid
sudden cuts while the player is in control. Game
cameras don’t always behave in any case, and
sudden jumps in perspective can easily confuse
players (See Figure 1).

 In the last few years, though, many games
have started bridling at the tyranny of the fixed
camera. As open world games have become
popular, the need for cameras to switch between
vehicular and foot travel has accustomed
players to quick transitions in perspective.
Brawlers and melee-based adventure games
are increasingly willing to enhance the impact
of big moves with zooms and cuts, and in the

post-gearS of War world, even shooters have begun to loosen up their points of view. Most importantly,
games of every genre routinely include short vignettes where the camera focuses on an important
landmark or a scripted event—moments which are “cinematic” in their use of camera and cuts but
which don’t necessarily involve animation or dialog. With all this going on, basic familiarity with the
language and conventions of film editing is good for level artists and animators, as well as for the
cinematics team.

fiGurE 1 the Resident evil series (above and far right) is the
most famous early example of a game that tried to mimic
cinematic camerawork in an interactive game.

www.gdmag.com 39

http://www.gdmag.com

pixel pusher // steve theodore

game developer | march 201140

Film Theory 101
» The basic job of a montage is to break the flow of time. When the camera
is rolling, time unfolds naturally at 24 frames per second (don’t patronize
us, Angelenos, we’re solid at sixty hertz! Nyah nyah). A sudden cut to
another camera allows the editor to break the flow of time and space in the
service of the story. Consider this classic film-school example: Two cops are
riding in a car, talking to each other. Then (a second shot) we see the same
car pull up in front of a building and the cops get out. Next (a third shot), we
see them knocking on an apartment door. Finally (a fourth shot), we see
somebody answer the knock and open the door from an angle that lets us
see both the cops and the interviewee (See Figure 2).

We’ve all seen variations on this sequence hundreds of times—so many
times that it’s easy to miss how much is going on in those simple cuts. The
most obvious effect is time compression. In “real life,” the trip from the station
to the suspect’s apartment is probably twenty minutes, rather than twenty
seconds long. Likewise, parking the car and walking up a few flights of stairs
would take long enough to bore most audiences. Of course, we’re also expected
to know that almost no time passes between the knock and the opening door.
The edit breaks the flow of time and asks the viewer to fill in the gaps.

 This seems entirely natural to us, as heirs to a century of cinematic
tradition. It’s not “natural” at all, though. It’s a learned set of conventions.
In many parts of the world, it took several years for new audiences to
assimilate the way films casually violate the ordinary laws of time and
space. I once knew a woman who used to drive a truck around rural India,
showing movies projected on the sides of buildings in remote villages. She
recounted having to constantly stop the film to explain to her audiences
how to understand the sudden leaps from place to place and time to time.

Interestingly, some types of edits are much easier even for completely
untrained audiences. Apparently even first-time film viewers grasp the
typical “three camera” dialog setup (alternating close-ups of two actors
conversing with longer shots of both of them seen from farther away). This
seems to be because the actors’ faces help teach the audience what to
expect. As each actor delivers a line and looks to the other for a reaction,
their expression is telling the viewer “the next important thing is over here,
where I’m looking.” The cut, rather than surprising the viewer, actually fulfills
the audience’s subliminal need to see “what’s next.” This is how first time
viewers manage to grasp it so easily.

The key lesson here is that cuts can’t just happen for no reason (unless
you’re Michael Bay). To justify breaking the continuity of the shot, you need
to prepare the audience for a change. This is even truer for us, since we have
to preserve the player’s sense of agency and control.

Roy Thompson’s indispensable book Grammar of the Edit catalogs
criteria that film editors use to weave coherent stories out of sudden jumps
in time and space. It’s a great introduction to a complex subject that also
offers a lot of good advice to game artists, whether we’re storyboarding
animations or setting up camera vignettes in a game level. While the book is
far too rich to sum up neatly, here are a couple of the highlights.

inFormaTion
» Thompson’s first, and most important, principle is the question: Does
a cut add something to the viewer’s understanding of the scene? In film
terms, this is usually a plot point: a close-up of a newspaper headline, a
close-up of an antagonist in a crowd, or the ominous opening of a creaky
door. For level artists, the information in a camera cut might also be simple
navigational information (“Hey, that lighted door at the top of the catwalk
must be the exit from this level”) or tactical knowledge (“Hmm, why in the
world is the camera focusing in on those explosive barrels?”). Of course,
vignettes are also a good way to reveal plot points without fully animated
cinematics. A well-timed and framed close up of an important clue can tell a
lot of story much more cost-effectively than a fully animated cutscene can.

The flip side of this idea is to use cuts sparingly. Many level artists are
tempted to use vignettes just to show off their work—it’s hard to labor for

4

il
lU

ST
r

aT
io

n
 B

y
JU

an
 r

am
ir

ez

FiGUre 2 The conventions of editing make it easy for us to interpret these separate
images as a continuous story. although this sequence compresses time and space it
makes intuitive sense—at least to audiences who have been trained by years of movie
watching.

1

2

3

4

FIGURE 3 The “line of action” is a basic rule in
camera placement. in this example, you can cut
between any of the green cameras because they
all stay on one side of the character’s facing.
Cutting to the red camera on the other side of
the ‘line of action ‘ would reverse the character’s
apparent direction, confusing the audience’s
perception of the action.

www.gdmag.com 41

weeks on a beautiful panorama only to have
your players glue their eyes only to ground cover
and exit routes. That’s understandable, but it’s a
mistake; unless the cut really conveys important
information, it’s not worth the cost of pulling the
player out of continuity.

MoTIvaTIon
» Thompson’s second rule is that every cut
requires a “motivation”—a visual or aural cue
that explains to the viewer why the continuity
is broken. For example, when an actor hears a
noise off-screen and turns his head, the audience
already expects a cut that shows the source of
the noise. Without that motivation, the cut is
jarring; the audience may assume it represents a
lapse of time or shift in scene.

Motivated edits are the key to traditional
Hollywood camerawork. By preparing the audience
for the cuts before they happen, the cognitive cost
of all those shifts in perspective is lowered. Good
motivation is equally important for interactive
vignettes. In fact, it’s even more necessary,
because a game cut that disrupts the player’s
interactive control is more jarring than a movie edit.

Unfortunately, games don’t always pay enough
attention to the need to prepare the audience for
cuts before they happen. We’ve all seen games
that cut to a new camera setup when the player
enters a new room. Unfortunately, we’ve also seen
how often these kinds of cuts are triggered by
nothing but a character inching over the boundary
of a trigger volume. Think back to some of the early
Resident evils if you really want to understand the
need for motivated camera cuts!

The key to selling these kinds of transitions
is to capture the physicality of the motivation
before actually moving the camera. Ideally, the

player character should actually do something
that motivates the cut. Reaching for a door knob,
pushing a button, or turning to face a new threat are
all great physical ways to prepare the audience for
the break in continuity. It’s important not to forget
the audio either; when the camera is going to reveal
a new boss monster entering the fray, a battle cry
or a music cue that hits just before the actual cut
will prep the audience for the new revelation.

SpaTIal SEnSE
» One important motivation that games can
offer which films cannot is player action. The act
of pressing a button—say to switch between
views in a driving game or using the hat switch
in a flight sim—has a low “cost” for the viewer
because it’s intended to cause a cut. At the same
time, even intentional cuts can frustrate the
player’s intuitions about control, as veterans of
games as different as Metal GeaR solid, Red dead
RedeMption, and Madden 2010 can all attest. No
matter what you want to do with the camera, you
can’t confuse the players’ thumbs.

Film editors obviously don’t have this problem,
but they also have to worry about the audience’s
spatial sense. They use a principle known as the
“line of action,” which is basically the major axis of
a particular sequence. They try to always keep the
camera on one side of that line (See Figure 3).

For example, when you film two armies
marching into battle, you never allow them to
switch sides. Purists will even cheat the shots
that are right along the line of action just a hair
so that even an over the shoulder shot of the
left-hand army is moving slightly to the right on
screen and vice versa.

The line of action is an important tool for
keeping audiences clear about the physical space

in which the action unfolds. Our players generally
have a better spatial sense than movie audiences,
since they’re navigating 3D spaces under their own
power. However, they still have years of cinematic
training under their belts, through watching
movies. If you violate the line of action, you’ll
disorient players. So, if your player approaches the
door moving from left to right across the screen,
the reveal shot that triggers when the door opens
should respect that line of action.

FInal CUT
» Editing is the subtlest of all the cinematic
arts. As Thompson says, the best cut is one so
correct that it doesn’t feel like a cut at all. Though
games aren’t always known for subtlety, a lot
has changed in the last few years. Just compare
gameplay footage from say, GeaRs 2 with an old-
school TPS from 2003, and you can see how much
more “cinematic” gameplay is becoming. While the
vexing problems of control response aren’t going
to go away overnight, we have made remarkable
progress. And now that our cinematics are so
freaking fabulous, it’s especially important for
level art and animation to push the quality of our
interactive experiences equally far. In the process,
we’ll probably learn a few tricks we can pass back
to our Hollywood cousins to repay them for all the
wisdom we’ve borrowed over the years... although,
seriously, after Transformers 2, I don’t really feel
like I owe them anything.

STEvE ThEodoRE has been pushing pixels for more than

a dozen years. His credits include Mech coMMander, half-

life, TeaM forTress, counTer-sTrike, and halo 3. He's been

a modeler, animator, and technical artist, as well as a

frequent speaker at industry conferences. He’s currently the

technical art director at Seattle's Undead Labs.

http://www.gdmag.com

SEEING MUTANT ZOMBIES
THROUGH THE DARK IS GREAT.

SEEING VIDEO GAME TRENDS
BEFORE ANYONE ELSE IS BETTER.

GameSpot Trax reads the pulse of the gaming community for data to help predict real
world outcomes. Get reliable key performance indicators that help you see in the dark
and make better decisions. Email us at trax@gamespot.com.

mailto:trax@gamespot.com

jesse harlin // aural fixation

www.gdmag.com 43

Three erroneous ConCeiTs
Rethinking game audio

There is a Curious kind
of memory that we all
possess. I’m talking about
the long-term memory that
accumulates and exists
beyond the life of a single
individual. Carl Jung called it
The Collective Unconscious.
In animals, we call it
instinctive muscle memory,
and it’s what drives monarch
butterflies to the same
mating grounds generation
after generation. In business,
this collective memory is the
force that spreads common
practices and unquestioned
universal truths from one
professional to the next.

Unfortunately, universal
truths and long-standing best
practices are sometimes
simply obvious options that
are in need of reevaluations.
Game audio implementation
has a number of these
conceits which have passed
from company to company
through the migratory nature
of audio professionals, and
they are ripe for rethinking.

FooTFaiLs
» The first erroneous
conceit is the notion that
footsteps are important. As
far back as Pac-Man’s wakka-
wakka, we established the
notion that a character
in movement must call
attention to itself—and
loudly. But as games have
matured and increased
exponentially in their
complexity, we have clung
to this notion that all player-
related sounds are somehow
equally important.

Unless stealth is a
specific game mechanic,
most game protagonists jog
or run through the entirety of
their journey. From a purely
logical standpoint, running

is the loudest of human
locomotion, especially
when wearing combat or
moon boots, as many of
our characters do. However,
running—except during
exercise—is a symptom of
something greater. People
and game characters run
out of emotion, whether it’s
fear or anger or urgency.
When under the extreme
circumstances of a fight-or-
flight response (which a vast
majority of game interactions
are), the brain is focused on
threats and goals. Therefore,
the oncoming footfalls of
enemies are important
information regarding
changes to a threatening
environment. The player’s
footsteps, on the other
hand, are comparatively
unimportant information.

As loud as we usually mix
them, this creates an odd
cognitive dissonance. Non-
threatening footsteps—those
of players and companion
characters—might be

loudest to a microphone
attached to the game’s
camera in that situation,
but a game’s microphone
feeds information to the
player’s brain, which wants
to ignore superfluous noise
and focus on danger. As a
result, implementors can
treat footsteps like other
gameplay-critical data
and set volume ranges
differently for foley created
by threatening and non-
threatening characters.

WaiT For iT
» The second conceit is
that implementation timing
is tied to level designer-
authored events. It’s an
all-too-common practice
from gameplay designers
to set scripted events
throughout their levels,
while audio implementors
simply piggyback off of these
events. Unfortunately, while
this is easy and fast, the end
results often feel unrealistic
and “gamey.”

It’s a common scene: the
player is on a path through
the level when something
catastrophic explodes/
sinks/crashes and they’re
forced to change their plan
of attack. As the large event
is occurring, in-ear dialogue
is already chattering away,
directing the player with new
information. There are two
major problems with this.

First, these events
are frequently audio
showpieces. Lots of work
goes into designing satisfying
explosions and twisting-
metal sounds. Unfortunately,
the in-ear dialogue that
accompanies these scenarios
is often gameplay-critical
voice. Since gameplay-
critical voice trumps all other
sound and therefore often
triggers a dynamic ducking
system, the voice turns down
everything else at its expense.
This means that the audio
showpiece that took critical
design and implementation
time to create is ducked and
lost beneath dialogue which is
not tied via lip-sync to any of
the visuals.

Secondly, the character
giving the in-ear re-direction
comes across as unnaturally
omniscient. They seem
to know everything as it
occurs, instead of assessing
and reacting to situations
as believable storytelling
demands. The player’s
attention is divided in these
moments. Before they have
even processed the changing
landscape of their goals, their
primary source of reliable
information is drawing their
attention elsewhere.

The solution is as
simple as wait timers. By
using delays as part of the
scripted audio triggers, audio

is given space to breathe,
impress, and add drama
and pacing to showcase
moments that should be
memorable and exciting.

aCTion deTraCTion
» The final of the three
erroneous conceits is that
action sequences require
action music. Many games
continue to use music as
dramatic wallpaper. It occurs
in big sheets, covering wide
areas of gameplay with an
ever-increasing amount of
interactive music. But look
at some of the classic action
sequences from cinema, like
the speeder bike chase from
Return of the Jedi or the
car chases from Bullitt and
Ronin. What’s instantly clear
is that these are sequences
where sound design is given
center stage.

In these moments, music
frequently ducks out under
the first squeal of tires while
the sound effects are cranked
in the mix. The punch of fists,
the crunch of metal, and the
whoomp of explosions can be
used to create a soundtrack
that’s just as dynamic with
the orchestration of action-
oriented effects. Consider
alternate mix groups that
boost elements of the
sound effects beyond their
normal settings or a design
approach that focuses on
the impression that the
player's character and their
vehicle are being pushed to
the breaking point. Music is
an easy way to add a driving
sense of urgency, but it’s not
the only solution.

jesse harLin has been

composing music for games since

1999. He is currently the staff

composer for LucasArts.

http://www.gdmag.com

game developer | march 201144

Countless words have been devoted to the subjeCt of digital
distribution by game industry publications. What does it mean for game
developers and for the medium as a whole? Like any other disruptive
innovation, the advent of digital distribution has come with some growing
pains, as well as its share of winners and losers.

On the whole, digital distribution has been a boon for gaming. It’s
opened up channels for indie developers and those serving niche market
fare, enabled new business models, and increased the efficiency of the
supply chain, all while providing gamers with convenient access to a wider
variety of games across a broader mix of devices and platforms.

The current quintessence of digital distribution is Apple’s App Store,
which, together with the iPhone and iPad devices it services, have changed
the face of gaming remarkably since their introduction less than three years
ago. As a result, iPhone and iPad comprise a game market of significance,
with game-derived revenue likely to soon cross the billion-dollar mark. While
this is still smaller than the traditional console markets, when viewed from
the standpoint of potential profit margin (taking development costs into
account), it’s no wonder the App Store is the darling of developers.

Apple’s success has not gone unnoticed by makers of other platforms
and services. At CES this year, I counted no less than twenty different “App
Store"-like storefront services across countless devices and platforms.
There are the smartphone platforms from Microsoft, Motorola, Google,
and others; tablets from a large number of companies; smartTVs with

the capability to run games—all are offering their own app stores. If this
weren’t confusing enough, add to the mix the aggregators with their
catalog-within-the-store type offerings, as well as support within these
platforms for remote-gaming approaches from the likes of Onlive and Vudu.
It’s started to feel awful crowded.

app store fatigue
» The first assertion I’ll make is that I don’t believe consumers are going
to have the trust, patience, or incentive to maintain an ongoing commercial
relationship with every electronic device in their household. Even so, it appears
that many of those devices are going to go ahead and ask for one anyway.

As a result, there are likely to be winners and losers, as consumers
suffer app store fatigue and forgo some stores and services in favor of
others. (You can already see a hint of this today: Many readers may already
have two or more boxes in their living room that have a Netflix client,
though chances are they favor one of these for everyday use.)

The successful app stores are going to be those that best address a
number of factors, including offering a critical mass of games, how well
suited and/or differentiated the applications are to the platform, how well
the store helps users navigate which apps meet their needs and support
their device, and which offer the fewest hurdles between them and the
cash register (price, ways to pay, simplicity of purchase, and so forth).

Failed app stores are likely to either become either ghost towns (with

a war of attrition
App Store FAtigue And the Future oF digitAl MArketplAceS

The Business // Kim pallisTer

a lack of a critical mass of offerings) or flea
markets (with tons of generic apps, but few that
are noteworthy). These in turn may be less able
to court developers. Be wary of those touting
an installed base of platforms, but not sales
numbers for their app stores.

Those launching app stores will have to
think about how to get that customer in the door
for the first time, and then how to keep them. I
anticipate seeing lots of “Comes bundled with
$50 worth of App StoreBux” offers.

App store fatigue will likely plague
developers, too, who will be faced with a
huge choice of channels. Even with relatively
lightweight click-to-accept agreements, most
will not have the bandwidth to launch on every
platform and customize for services/devices.
This is already occurring, and in some ways is
playing out exactly as the PC download casual
games market did a few years ago. As it did
then, it will likely lead to the following:

\\\ Multi-platform development may
mean developing for the lowest common
denominator, allowing for titles to go to a
wider base of platforms, but decreasing
how well-tuned a title is to any given
platform.

\\\ There may be a rise of content
aggregator/distributors telling
developers “sign with me and I’ll get you
on a thousand platforms,” at the expense
of a good chunk of developer margin,
putting pressure on the critical mass
needed for viability.

\\\ Many developers will sit on the
sidelines for all but the proven app
stores. Those duped into thinking that
a platform will be big, if it then isn’t, will
potentially complain loudly about it.
Unsuccessful app stores have a “content
canyon,” with a few mega-hits that are
everywhere, and a glut of low-end fare,
but nothing in between.

Ultimately, competition is good, though it can
be painful. As this competition heats up, gamers
and developers will both be watching intently
and deciding which platforms and app stores
are actually going to be successful. One of the
deciding factors here will be developer tools,
though not the kind we usually think of.

Cry HavoC, and let slip tHe dogs of ...
CommerCe?
» In his 2010 GDC keynote, NGMoco’s Neal Young
pointed out his view of what it means to couple
business models like free-to-play with tools like
in-app purchases. He stated “For the first time,
the business model is in the hands of the game

designers,” adding that this was a fundamental
turning point for the industry. It was a prescient
observation, and at the time, I thought it was
limited to free-to-play, item-based sales business
models. In truth, it’s much more broad-reaching.

As app stores compete to woo consumers
into a relationship and developers to be their
first choice, the winners are going to, in part, be
determined by who can offer the best value for
consumers while offering developers the greatest
ability to extract maximum revenue out of their
consumer base. If those seem like conflicting
objectives, well, in some respects they are.

Finding the optimal point (or points)
between these two goals is going to require the
ability to innovate, and doing so requires the
ability to experiment. The tools and policies in
place for online commerce in these app stores
are going to determine the variety and rate of
experimentation. For example, can developers
try any price point, or are there fixed tiers? Can
they set the price, or does the platform owner?
Can one do bundles, gifting, giveaways, “golden
tickets,” or any other type of promotion?
Free with three cereal box tops? How about
pre-orders? A/B testing? Platforms will have
to balance giving developers the leeway to
innovate versus presenting consumers with a
confusing mess of business models, offers, and
potentially the introduction of risk.

In addition to the tools giving developers
the flexibility to innovate, there is an entire
category of tools and services to measure
the success of those experiments. Billing and
reporting tools offer transparency, granularity,
and timeliness of the data. What detail can a
developer get on sales data? How fresh or stale
is the data? What will the store’s position be
on the tension between user privacy versus
providing developers demographic information?
What of their approach to merchandising? Is
“shelf space” curated, democratized, or sold to
the highest bidder? What payment methods are
supported? Can developers see sales data per
territory? Over time? Per day? Per hour?

These are the tools with which developers
will compete, and platforms that give their
developers better tools will have an advantage
over those that do not. A complete free-for-all has
an adverse effect on the end-user experience, so
there’s a balance to strike. Still, one only has to
look at the speed at which new business models

and promotional experiments are emerging on
Apple’s platforms and compare it to the snail’s
pace at which traditional consoles have taken in
similar experimentation to see the contrast.

standing out in a Crowd(ed platform)
» A final element is the degree to which
developers can customize and tune their
applications to take advantage of platform
differentiators. The extent to which apps
take advantage of differentiators is going to
lead to a fulfilled or broken promise to the
end-user from the device manufacturer. For

example, if someone offered a tablet today,
and differentiated versus iPad by offering dual
thumbsticks in addition to a touchscreen, it
might be of interest to some gamers. However, if
all the games in the device’s app store were ports
from the iPhone/iPad, the takeaway might be
“Yeah it has thumbsticks, but no games support
them.” On the other hand, features targeting
specific platforms that are push-marketed or
store-filtered to users who have those platforms/
features could encourage greater co-marketing
opportunities for developers and device makers.
The apps that best translate a hardware
platform’s features into compelling experiences
will be promoted by platform vendors.

piCk your weapons
» So what’s a developer to do? As usual, the
answer is “it depends.” There is no one strategy
to rule them all. However, it’s pretty clear that
the platforms that provide developers with the
ability to differentiate and innovate with their
commerce will have an overall advantage. If,
as a developer, you feel comfortable making
that part of your game design and part of how
you do business, then evaluate those tools
and policies as part of your approach to the
platform. If, on the other hand, you prefer to
stick to making a game as a packaged piece
of media that someone else markets and
sells, then you may want to stick to traditional
consoles or other platforms that aren’t moving
as quickly in this direction.

kim pallister works at Intel doing game industry

forecasting and requirements planning. When not

prepping the world for super-cool hardware, he blogs at

www.kimpallister.com. His views in this column are his

and do not reflect those of his employer.

As app stores compete to woo consumers into a
relationship and developers to be their first choice,
the winners are going to, in part, be determined by
who can offer the best value for consumers while
offering developers the greatest ability to extract
maximum revenue out of their consumer base.

www.gdmag.com 45

http://www.kimpallister.com
http://www.gdmag.com

game developer | march 201146

good JoB

Hired someone interesting? Let us know at editors@gdmag.com!Heir Today, Gone Tomorrow
Ex-RavEn DEsignER DiscussEs His Big MovE To BioWaRE

Brandon Sheffield: After working at one game company for most of your
professional life, how did you decide when it was really time to move on?
Manveer Heir: I realized one day that the needs of me as a creative and
the needs of Raven as a business were no longer in-sync. Priorities shifted
at Activision, which meant Raven was going to help Treyarch out with
Call of Duty: BlaCk ops. Personally, having just worked on a first-person
shooter in Wolfenstein for the first four years of my career, I was ready to
do something completely different. Call of Duty is an amazing franchise,
but it wasn’t necessarily the right game for me to work on next since I was
burnt out on the genre.

I believe the most important thing in life is doing something you love
and are passionate about. I got into this industry so that I could get to
do what I love everyday. To work on something that I wasn’t personally
as enthused and passionate about would have been a disservice to my
amazing coworkers at Raven, the developers at Treyarch, and the fans of
Call of Duty, as well as violate my own ideals. So it just felt like the right
move to step aside and move on to the next chapter of my life. Clearly they
didn’t need me either, because everyone did a great job with BlaCk ops and
it has earned a number of Game of the Year nods.

BS: Were you worried about leaving Raven during a time when the job
market was constrained?
MH: I probably should have been, but I wasn’t too worried. I decided to
quit before having another job lined up, which most people would say
is a big no-no (and I would agree with them). However, I was looking for
very specific things in a job and decided that if I couldn’t find that job,

then I would go indie, live in my parents' basement, and make something
awesome with whatever money I could cobble together. There are enough
indie game ideas in my head that I was looking forward to trying that route
if needed. I thought doing that for a couple years would have scratched a
nice itch, and that I could always go back to the AAA industry if I wanted.
Fortunately, I found the right job that was the overall right fit for me, in the
right type of city, so now I don’t have to try to sneak girls into my parents'
basement while they sleep.

BS: How did you feel about coming in on a project for which fans have
extremely high expectations? Has that changed since you’ve actually
been working on it?
MH: Mass effeCt is one of my favorite current-generation games. I
absolutely love the franchise, which is a big reason why I came here, so
it’s a bit daunting. A number of my friends basically told me, “Don’t screw
Mass effeCt up,” when I told them where I was going and what franchise
I was working on. The truth is that I couldn’t possibly mess the game up
if I tried. There are far too many smart, talented people that would never
let someone like me mess the game up. And they’ve been working on it for
much longer than me. I’m just doing my small part to help make the game
be as best it can be. Now that we’ve formally announced the game and had
a teaser trailer go up, getting to read all the excited fans' comments really
helps keep you enthused about going to work and realize you’re a part of
something really special. So, if anything, I’m even more enthusiastic and
excited now that I’ve been here for a bit, because I’ve gotten a chance to see
all the amazing stuff the team is working on that hasn’t been revealed yet,
and see how psyched the fans are for the game.

BS: How does compartmentalization work at BioWare? At Raven, your
title was more generic, though Raven isn’t traditionally a company of
“designers.” Now that you’re a senior level designer specifically, does
this change things for you?
MH: Within the design department of BioWare’s Mass effeCt, there is a writing
team, cinematic design team, gameplay design team, and a level design team
(all this across two studios, in Edmonton and Montreal). At Raven, while I was
the lead designer, we were still only a team of twelve I think, mostly level
designers. Raven came from the old Quake days where designer meant level
builder. To answer your question, things are very different here, starting with
just the sheer size and breadth of the design department.

The biggest thing it changes for me is responsibility, management, and
day-to-day duties. Before, I was responsible for an entire department’s
performance. I had to make sure the department was on task, on schedule,
and helping them improve day to day, while helping to guide the high-level
vision of the game with the creative director. Most of my day was spent in
meetings with the creative director and other department leads trying to
fight different fires that came up. After that, it was evaluating work done
by other designers and trying to give them valuable feedback to help them
with their next iteration. In my last year at Raven, very little of my time was
spent in the game actually building levels or writing code. That’s basically
the deal when you are a lead: you enable others to do a great job, not
necessarily do the work yourself.

Manveer Heir got his start in the industry as an intern for BigHugeGames, but very quickly moved to a full-
time programming position at Raven, where he remained for five years. He went on to lead and help build
that company’s design department, but eventually his interests diverged, and he left the company without a
fallback plan. A few months later, he was at BioWare, now working as a senior level designer on Mass effeCt 3.

WWW.GDMAG.COM 47

H I R I N G N E W S A N D I N T E R V I E W S

whowentwhere

new studios
Following the collapse of Midway, a number
of former employees have formed Phosphor
Games to develop AWAKENED, which hopes to
build upon the now-defunct Midway title HERO.

Microsoft researcher Johnny Chung Lee, a
major contributor to the development of the
Kinect technology, has left the company to
join a special Google team.

Former EA Redwood Shores CTO Tim Wilson
and ex-Namco Bandai Games America VP of
online development Robert Stevenson have
joined cloud-based gaming company Gaikai.

Renowned alternate-reality game
designer and researcher Jane McGonigal
has signed on with Social Chocolate, a
new company dedicated to creating social
games based on psychology, neuroscience,
and sociology.

ESA senior vice president Kenneth
Doroshow, after working with the ESA to
battle a California law that aims to place
government control over video game sales,
has departed from the industry trade group.

MOTOGP 09/10 developer Monumental
Games announced the appointment
of video game industry veteran Nick
Wheelwright as CEO.

Rockstar London’s studio head, Mark
Washbrook, has resigned from the company
after working with Rockstar since 2005.

Former Activision and Electronic Arts
executive Kathy Vrabeck is leaving her latest
position as head of Legendary Pictures’
digital division, where since 2009 she’s been
responsible for activities including the film
company’s video game efforts.

Germany-based free-to-play browser game
company Bigpoint announced it has hired on
37 artists and developers from Planet Moon
Studios, whose talent joined Bigpoint’s San
Francisco development location.

Game industry veteran Rich Flier has left
marketing company Secret Identity to join
media production house Mothership as an
executive producer.

Now, I am much more hands-on and learning
some new skills as a senior level designer. I
haven’t done pure level design professionally
before, so I’m learning a lot of valuable skills
in terms of how to build levels, how to handle
technical constraints, and how to create high-
quality scenarios on schedule and budget. I
learn more each day, and I hope, that by the end
of it all, I’m producing work that everyone feels
is of the quality that the franchise deserves.
I have a great network of talented designers
around me to ask questions of and to help me
learn and grow each day.

I still get to do some of the stuff I was used
to doing as a lead. The real difference between a
junior and senior developer in any department
is that you expect a junior to need guidance and
assistance the whole way while you expect a
senior to seek out the answers and solve the
problems on their own. So I still get to solve
problems and improve processes, at a much
smaller scale, but at the same time, I get to build
content hands-on and learn every day. At the
end of the day, I know that we will succeed or
fail as a team and not individuals, so I try to do
my part to not let the team down and help catch
problems as they crop up during development.

BS: Not to peg you as “the race guy,” but
you and I have talked about race in games a
lot—how do you feel about racial portrayals
in games where it’s abstracted by aliens, or
when there’s a character creator, as in MASS
EFFECT?
MH: If it keeps the discourse of the subject
going, I’ll gladly be known as “the race guy.”
It’s too important a topic to drop off the radar
because it makes some people uncomfortable.
This is the point in the interview where I state
that my opinions are my own and do not
represent the opinions of Electronic Arts or
BioWare or minorities. I think, in general, games
that are willing to discuss mature themes, such
as race, in a fashion that gets people thinking
are good. If that means they abstract the race
discussion to alien races, instead of human
races, then that is fine. I think part of the reason
I like MASS EFFECT is that it deals with mature
themes in a respectful, honest, and interesting
way, but is still a AAA blockbuster. At the same
time, I think there’s still room for us to have
games that specifically talk about race directly,
instead of abstractly.

One of the games I was thinking about
making when I was considering going indie
would be what I would describe as Do The Right
Thing in video game form. Not that I was trying
to copy Spike Lee’s seminal work, but rather, I
wanted to handle the subject matter of race with
the honesty and introspective lens that Lee did,
but also take advantage of the fact that we are

an interactive, not linear, medium. I think there is
room in this industry for someone to do that, and
I think we’ll have a really interesting, amazing
experience if it’s executed well. I still want to see
and play that game. I hope developers in general
will start trying to tell new types of stories and
craft new types of experiences. It doesn’t have to
be revolutionary; incremental steps over time will
get us there. Then, we’ll have something totally
new and different to talk about and discuss as
a medium. So ultimately, any discussion of the
topic is valuable, but I’ll always want more, and
from more sources.

BS: A Do the Right Thing-style approach
sounds interesting, but how do you discuss
race in an emergent rather than explicit way?
Many attempts have been a bit heavy-handed,
rather than discovery-oriented. How do you
make sure it becomes more experiential?
MH: That's a great question and definitely
the challenge. I think you need the player to
experience the feeling, so that requires building a
world that is hostile, but not hostile in the way we
normally build our games. So if you had a game
where you could build your own character, maybe
certain color skinned characters would be treated
differently by NPCs or charged more at stores (or
even banned). Maybe certain factions and quests
aren't available to you in a RPG. I think creating
a world in which the player never quite fits in is
difficult, but necessary, to sort of keep the player
on edge about their role in the world; you never
want the player to feel fully comfortable. You
want them on edge, but in a very different way
than a survival horror game.

There have been plenty of games that
have let the player be multiple characters, so I
could see a game where part of the game you
are a minority dealing with whatever obstacles
the game has and part of the game where you
are a white man of stature, and all the barriers
that exist for the other character are lifted (and
likely traded for a different set of barriers).
That juxtaposition in gameplay opportunities,
whether it's where you can go, who you can
talk to, actual game verbs you can perform, or
the general demeanor of characters toward you
could provide an interesting dynamic in a game.
As you say, this is easy to do in a heavy-handed
way, so execution is of importance.

At the end of the day, I think making our
players think and consider more after playing a
game is far more interesting than what normally
occurs. I love when I play a game and I think
back to some of the decisions I made and how
that led to the outcome that I arrived at (RPGs
are great at this). Exploring the depths of a topic
as complex and challenging as race to me is
exciting, as well as daunting, which is exactly
why it is worth pursuing.

http://WWW.GDMAG.COM

ORGANIZERS OF GAME DEVELOPERS CONFERENCE 2011 HAVE REVEALED AN ALL-STAR LINE-UP OF GAME DEVELOPERS, FROM JOHN ROMERO (DOOM)
THROUGH WILL WRIGHT (RAID ON BUNGELING BAY) TO TORU IWATANI (PAC-MAN) AND BEYOND, PRESENTING POSTMORTEMS ON THE MAKING OF SOME OF
THE MOST FAMOUS VIDEO GAMES OF ALL TIME. THE SPECIAL ONE-OFF HOUR-LONG LECTURES ARE PART OF CELEBRATIONS FOR THE 25TH ITERATION OF GDC,
AND WILL ALL TAKE PLACE DURING THE MAIN CONFERENCE OF THIS YEAR’S SHOW. THE FOLLOWING 11 SPECIAL LECTURES WILL TAKE PLACE AT GDC 2011:

Tales of the Future

NE W S AND INFORMATION ABOUT THE GAME DE VELOPERS CONFERENCE® SERIE S OF E VENTS WWW.GDCONF.COM

GAME DEVELOPERS CONFERENCE REVEALS ALL-STAR CLASSIC GAME POSTMORTEM LINE-UP

GAME DEVELOPER | MARCH 201148

Prince of Persia
JORDAN MECHNER

\\\ Decades before it was
a Hollywood film with
tens of millions of dollars
and hundreds of people
working on its production,
PRINCE OF PERSIA was mostly
the project of a single
man. Jordan Mechner
rotoscoped the game’s
fluid and realistic character
animations, designed its
difficult puzzles, crafted
its thrilling sword-fighting
combat, and penned its
captivating story. He will
present a postmortem
discussion on the landmark
cinematic platformer.

Pac-Man
TORU I WATANI

\\\ More than just the man
who created and designed
PAC-MAN, Toru Iwatani
revolutionized an arcade
industry filled with space
shooters and PONG clones,
introducing a new kind
of game that was both
immediately accessible
and highly addictive. In this
session, Iwatani will share
how he created one of the
world’s most successful
and beloved arcade games,
centering around a circle
with a wedge sliced off.

Elite
DAVID BRABEN

\\\ When it launched over
25 years ago, ELITE amazed
science fiction fans with
its interstellar missions
presented with wireframe
3D graphics, eight galaxies

to explore, and thousands
of procedurally generated
planets. Co-creator David
Braben, a stalwart in the
video game industry and
founder/chairman of
Frontier Developments,
will discuss the genesis of
the space-trading sim that
went on to inspire titles like
EVE ONLINE, FREELANCER,
WING COMMANDER: PRIVATEER,
and many other sci-fi epics.

Another World/Out Of
This World
ERIC CHAHI

\\\ Released across more
than a dozen platforms
since its 1991 debut,
OUT OF THIS WORLD (a.k.a.
ANOTHER WORLD) has long
been a favorite among
critics and sophisticated
players, due to its cinematic
cutscenes and atmospheric
presentation. OUT OF THIS
WORLD’s creator Eric Chahi
will reveal his process
developing the innovative
game and building its
memorable scenes.

Marble Madness
MARK CERNY

\\\ Mark Cerny is a legend
in the games industry,
working as a consultant,
producer, and programmer
on hits like RESISTANCE,
RATCHET AND CLANK, JAK AND
DAXTER, SPYRO THE DRAGON,
and SONIC THE HEDGEHOG 2.
Before building that near-
incomparable resume,
though, he designed Atari’s
MARBLE MADNESS, the
addictive and maddening
arcade game that ate

scads of quarters as
players craved another
spin of its trackball. Along
with the game’s catchy
soundtrack and Escher-
esque graphics, Cerny will
share insights on how he
designed the classic title.

Doom
JOHN ROMERO

\\\ Few games can match
the ubiquity and legacy
of DOOM, the seminal
first-person shooter that
ushered in thousands
of mods, clones, and
successors. Programmer,
game designer, level
designer, and DOOM II final
boss John Romero will
deliver a postmortem
revealing never-before-seen
material, memorializing
its immersive but nerve-
wracking 3D environments,
networked multiplayer
deathmatches, Satanic
imagery and themes,
Barney WADs, exploding
barrels, and BFG 9000.

Pitfall!
DAVID CRANE

\\\ PITFALL! isn’t just one
of the most successful
and cherished releases
of the Atari 2600; it’s also
one of the progenitors
of the modern platform/
adventure genre. Industry
legend David Crane,
co-founder of Activision and
Absolute Entertainment
(A BOY AND HIS BLOB), will
reminisce about PITFALL!’s
vine-swinging hero Harry
and the breakthrough game
he famously designed

with just a blank sheet of
paper and 10 minutes of
brainstorming.

Populous
PE TER MOLYNEUX

One of the first god games
ever released, Bullfrog’s
POPULOUS beguiled players
with its premise of playing
as an all-powerful divine
being capable of shaping
the earth. POPULOUS’
always-entertaining
designer Peter Molyneux,
who went on to found
Lionhead Studios where he
helped create the game’s
spiritual descendant BLACK
& WHITE and popular RPG
series FABLE, will talk about
his work on the ground-
breaking (and -raising and
-lowering) isometric sim.

Bejeweled
JA SON K APALK A

\\\ As one of the most
popular puzzle games of
all time, BEJEWELED and
its spin-offs and sequels
are everywhere. The man
behind the addictive
match-three game, PopCap
co-founder and chief
creative officer Jason
Kapalka, will deliver a
postmortem talk about
designing the franchise
that’s seen more than 150
million downloads and sold
over 25 million copies.

Maniac Mansion
RON GILBER T

\\\ Cherished by adventure
game fans and reviled by
hamsters everywhere,

MANIAC MANSION was the first
adventure game LucasArts
developed on its SCUMM
(Script Creation Utility for
Maniac Mansion) platform—
the beloved scripting
engine used for subsequent
classics like SAM & MAX and
the MONKEY ISLAND series.
Ron Gilbert will talk about
his work on MANIAC MANSION,
touching on the game’s
multiple endings, point-and-
click interface, and oddball
cast of characters.

Raid On Bungeling Bay
WILL WRIGHT

\\\ Before he became a
household name with
gamers, Will Wright created
RAID ON BUNGELING BAY, a
helicopter action/strategy
title for the Commodore
64, NES, and MSX. The
unassuming game would
serve as the inspiration for
Wright’s much, much, much
more popular SIM CITY series,
as it was during his tinkering
with RAID ON BUNGELING BAY’s
editor that the designer
discovered building complex
cities was more fun and
had more potential than
destroying them.

All of the “classic
postmortem” lectures
will be held in the
largest possible lecture
halls at GDC 2011, and
attendance will be on a
first-come, first-served
basis. In addition, the
postmortems will all be
video recorded for free
post-show availability on
the conference’s GDC Vault
online service.

http://WWW.GDCONF.COM

www.gamasutra.com

the art and business of making games

GAM1011_Gama_Final.indd 44 1/18/11 9:33 AM

http://www.gamasutra.com

HEADS-UP DISPLAYEDUcAtED PLAY!

Jeffrey Fleming: FRACT has
a really fantastic look with
abstract, generative-looking art.
Did you use any procedural or
random techniques to create its
environments?
Richard Flanagan: The creative
process during the development of
FRACT was almost entirely
experimental, and the techniques
I used evolved along with
my understanding of game
development workflow and asset
management. My original hope
was to use the terrain editor built
directly into the Unity engine, but
I could not manage to produce
the angular and polygonal look I
was going for. In order to achieve
the harsh angular geography
seen in the FRACT beta, I used
the terrain generator found in
Cinema 4D, which when coupled
with a random seed and a series
of definable parameters, gave
me something closer to my initial
vision. These results, however,
still required a fair amount of
hand sculpting in order to behave
correctly within the world.

While some generative
systems certainly helped me
prototype and produce assets
quickly, building a relatively
cohesive world still required a fair
amount of time.

JF: How would you compare
the Unity engine to other
development environments that
you might have used?
RF: My experience with
other development systems is
relatively limited, with some time
spent in Blender Game Engine,
Unreal Editor, Adventure Game
Studio, and Game Maker, to name
a few. While I’ve seen inspiring
examples of great games developed
with these systems, they weren’t
the right tools for me at the time.

Unity surprised me, though, as
I never found myself completely
stonewalled by a development
hurdle. While many of my

workarounds were inelegant at
best, I still ended up with results
close to my original intent. I think
it’s a testament to Unity’s usability,
great documentation, and very
collaborative user community
that I managed to create the FRACT
beta in roughly three months of
full-time work.

JF: Sound is a big part of FRACT.
Can you tell me a bit about how
you created the game’s aural
landscape?
RF: For the sounds in FRACT, I
would record tones, pulses, or
sonic textures from a trusty old
analog synthesizer, sometimes
combining them with iconic
percussion samples from early
electronic music to sync up
with events in the game world.
In order to add some subtle
emotional inflection to many of
the sounds, I used a simple white
noise generator to lay the basis
for tonal shifts and crescendos.
Sound design for FRACT happened
in parallel to modeling and
animation, and even precedes
some puzzles. I am fascinated with
the principles of synesthesia and I
try, where I can, to build contextual
relationships between the sounds,
sights, and interactions found in
the world of FRACT.

Sound design is not only a
very integral element in the FRACT
beta, but also a major source of
inspiration. I have a very strong
emotional connection to my
initial discovery and exploration
of electronic music and sound
design, and I wanted to explore
some of these themes within a
game space. The FRACT beta hints
at how I would like to build creative
tools for the player to create sound
and music in non-intimidating
ways. I hope to explore this further.

JF: You don’t often hear analog
synthesis in games. What
synthesizer are you using to
generate FRACT’s tones?

RF: Analog synths really are
quite magical devices. While
the only synth currently
still in my possession is
an indestructible Yamaha CS-15, it
has proved quite handy on FRACT.
The Yamaha is only duophonic,
but still yields a remarkable
range of sound from expansive
soundscapes to percussive
squelches and bloops. A handful
of recordings and samples from a
Roland Juno-60 and a friend’s Korg
Monopoly also got mixed into a bit
of the sound design, along with
samples from Kawai R-100 and
Alesis HR-16 drum machines.

I must humbly admit,
though, some of the sound
was also produced with
analog modeling software,
including the Arturia Arp 2600
VST and the remarkably versatile
built-in synths found in Ableton
Live. Given an unlimited timeline

I’d build everything with these
dusty, temperamental machines.

JF: It was interesting to read on
your blog about how important
the study of typography was to
your development as a designer.
What might be a key lesson from
typography that game designers
should be considering?

RF: I think the best design is
achieved when it is able to
communicate a message or
experience to the user without
making them overtly aware of
how it is being achieved. Good
typography is especially capable
of this, combing both aesthetic
and purpose in a subtle but
powerful way.

Similarly, I think the gaming
moments that we remember
most fondly occur when we
forget the game design and just
get lost in the experience. It is in
these moments where gameplay,
mechanisms, presentation, and
feedback come together to show
just how powerful games can be as
a medium of communicating ideas.

While the methods in which
game design and typography
achieve their respective
communication pathways are
different, I think they are rooted

in a similar purpose. I’ve only
managed to scratch the surface
of typography in my work and
studies, but constantly refer
to it as a blueprint for good
communication design. And as an
aspiring game designer, I hope to
be able to apply these principles in
the games that I create.

—Jeffrey Fleming

FRACT

S T U D E N T g a m E P R O F I L E S

FRACT is An ATmospheRiC puzzle gAme inFused wiTh synApTiC gliTCh visuAls And A CRACkling eleCTRoniC pulse. we spoke wiTh RiChARd FlAnAgAn To
Find ouT how he CReATed This 2011 independenT gAmes FesTivAl sTudenT showCAse winneR.

w w w . r i c h a r d f l a n a g a n . c o m

gAmE DEvELoPEr | mArcH 201150

http://www.richardflanagan.com

enroll now

earn
your aa, ba, bfa, ma, mfa or
m-arch accredited degree
engage
in continuing art education courses

explore
pre-college scholarship programs

www.academyart.edu
800.544.2787 (u.S. Only) or 415.274.2200

79 new montgomery st, san francisco, ca 94105
Accredited member WASC, NASAD, Council for
Interior Design Accreditation (BFA-IAD)

*Architecture BFA degree program not currently available online.

Photo credit: Sungho Lee, Texture & Light Game Design Course

take classes online or
in san francisco

advertising

animation & Visual effects

architecture*

art education

fashion

fine art

Game design

graphic Design

illustration

industrial Design

interior architecture & Design

motion Pictures & television

multimedia communications

music for Visual media

Photography

web Design & new media

http://WWW.ACADEMYART.EDU

http://www.nyfa.edu

©
 2

0
1

1
 F

u
ll

 S
a

il
,

In
c

.

Game Art
Bachelor’s Degree Program

Campus & Online

Game Development
Bachelor’s Degree Program

Campus

Game Design
Master’s Degree Program

Campus

Game Design
Bachelor’s Degree Program

Online

fullsail.edu
Winter Park, FL

nää°ÓÓÈ°ÇÈÓxÊÊUÊÊÎÎääÊ1��ÛiÀÃ�ÌÞÊ	�Õ
iÛ>À`

���>�V�>�Ê>�`Ê>Û>��>L�iÊÌ�ÊÌ��ÃiÊÜ��ÊµÕ>��vÞÊÊUÊÊ
>ÀiiÀÊ`iÛi��«�i�ÌÊ>ÃÃ�ÃÌ>�Vi

�VVÀi`�Ìi`Ê1��ÛiÀÃ�ÌÞ]Ê�

-

Campus Degrees

Master’s

�ÌiÀÌ>���i�ÌÊ	ÕÃ��iÃÃÊ

 �>�iÊ�iÃ�}�

Bachelor’s

��«ÕÌiÀÊ����>Ì���

��}�Ì>
Ê�ÀÌÃÊEÊ�iÃ�}�

�ÌiÀÌ>���i�ÌÊ	ÕÃ��iÃÃÊ

��
�

 �>�iÊ�ÀÌ

 �>�iÊ�iÛi
�«�i�Ì

�ÕÃ�VÊ	ÕÃ��iÃÃ

,iV�À`��}Ê�ÀÌÃ

-
�ÜÊ*À�`ÕVÌ���

7iLÊ�iÃ�}�ÊEÊ�iÛi
�«�i�Ì

Associate’s

�À>«
�VÊ�iÃ�}�

,iV�À`��}Ê
�}��iiÀ��}

Online Degrees

Master’s

Ài>Ì�ÛiÊ7À�Ì��}

`ÕV>Ì���Ê�i`�>Ê�iÃ�}�ÊEÊ/iV
��
�}Þ

�ÌiÀÌ>���i�ÌÊ	ÕÃ��iÃÃÊ

��ÌiÀ�iÌÊ�>À�iÌ��}Ê

�i`�>Ê�iÃ�}�

 iÜÊ�i`�>Ê��ÕÀ�>
�Ã�

Bachelor’s

��«ÕÌiÀÊ����>Ì���

Ài>Ì�ÛiÊ7À�Ì��}Êv�ÀÊ
�ÌiÀÌ>���i�Ì

��}�Ì>
Ê
��i�>Ì�}À>«
Þ

�ÌiÀÌ>���i�ÌÊ	ÕÃ��iÃÃ

 �>�iÊ�ÀÌ

 �>�iÊ�iÃ�}�

�À>«
�VÊ�iÃ�}�

��ÌiÀ�iÌÊ�>À�iÌ��}

��L�
iÊ�iÛi
�«�i�Ì

�ÕÃ�VÊ	ÕÃ��iÃÃ

�ÕÃ�VÊ*À�`ÕVÌ���

-«�ÀÌÃÊ�>À�iÌ��}ÊEÊ�i`�>

7iLÊ�iÃ�}�ÊEÊ�iÛi
�«�i�Ì

>> GET EDUCATED

53W W W . G D M A G . C O M

GDP GE RHP TEMPLATE_GD 306 MKT.V5 2/9/11 2:18 PM Page 53

http://fullsail.edu
http://WWW.GDMAG.COM
http://mdm.gnwc.ca

>>
GE

T
ED

UC
AT

ED

54 M A R C H 2 0 1 1 | G A M E D E V E L O P E R

GDP GE LHP TEMPLATE_GD 306 MKT.V5 2/9/11 2:28 PM Page 54

http://www.ci.neu.edu
http://vfs.com/enemies

Downloa D anD Play the l atest stuDent Games!

Academy of Art University 51

Epic Games .12

Full Sail Real World Education 53

GameSpot . 42

IGDA . 34

Intel . 19

Masters of Digital Media . 53

NaturalMotion . C3

New York Film Academy . 52

Northeastern University . 54

Rad Game Tools . C4

Scottish Development International16

Seapine Software . C2

TransGaming .6

TwoFour54 .3

Unity Workshop . 31

Vancouver Film School . 54

VSoft Technologies . 29

COMPANY NAME PAGE COMPANY NAME PAGE

ADVERTISER INDEX

gd Game Developer (ISSN 1073-922X) is published monthly by United Business Media LLC, 303 Second Street, Suite 900 South, South Tower, San Francisco, CA 94107, (415) 947-6000. Please direct advertising and
editorial inquiries to this address. Canadian Registered for GST as United Business Media LLC, GST No. R13288078, Customer No. 2116057, Agreement No. 40011901. SUBSCRIPTION RATES: Subscription rate for the
U.S. is $49.95 for twelve issues. Countries outside the U.S. must be prepaid in U.S. funds drawn on a U.S. bank or via credit card. Canada/Mexico: $69.95; all other countries: $99.95 (issues shipped via air delivery).
Periodical postage paid at San Francisco, CA and additional mailing offices. POSTMASTER: Send address changes to Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. CUSTOMER SERVICE: For subscription
orders and changes of address, call toll-free in the U.S. (800) 250-2429 or fax (847) 647-5972. All other countries call (1) (847) 647-5928 or fax (1) (847) 647-5972. Send payments to gd Game Developer, P.O. Box 1274,
Skokie, IL 60076-8274. Call toll-free in the U.S./Canada (800) 444-4881 or fax (785) 838-7566. All other countries call (1) (785) 841-1631 or fax (1) (785) 841-2624. Please remember to indicate gd Game Developer on
any correspondence. All content, copyright gd Game Developer magazine/United Business Media LLC, unless otherwise indicated. Don’t steal any of it.

>> GET EDUCATED

55W W W . G D M A G . C O M

GDP GE RHP TEMPLATE_GD 306 MKT.V5 2/9/11 3:01 PM Page 55

http://WWW.GDMAG.COM
http://www.gamecareerguide.com
http://www.gamecareerguide.com
http://www.gamecareerguide.com

ARRESTED DEVELOPMENT // MATTHEW WASTELAND

gAME DEVELOPER | MARcH 201156

To The WriTer
A GAme Studio mAnAGeS itS Hollywood Guy

hey, misTer WriTer!
» Thanks for sending over the
latest revision of the game script
right on schedule! Late last week
I circulated your draft among an
elite, select group of the team—call
it the “brain trust”—of thirty-seven
leads, senior employees, and
basically anyone else at the studio
who has an opinion about dialogue,
story, films, or games. These folks
sacrificed their weekends to go over
your script very carefully, and would
now like to give you some feedback.
Don’t worry, none of it is bad!

Pacing
» One of the biggest concerns
is that the scenes seemed to run
long. I know you come from the film
world where you can do anything
you want, but it’s different here
in games. Our primary objective
should be getting the cutscene over
as quickly as possible. You have to
imagine the player there with his
finger on the "skip" button. All he
wants to do is get on with it so he
can join the Cyber Police and cap
bad guys in a dark and gritty future.

Also, we wanted really deep,
three-dimensional characters, but
we aren’t getting any sense of that
from this script. Sergeant Guts in
particular just seems like a cliché
to us. His personality should have
layers and complexity.

The nurse
» Now, I know we discussed
this character in a lot of different
meetings, the nurse who cares
about all the death and so on, but—
how can I put this without sounding
bad—the female presence here
just seems to distract from the, you
know, military feel we’re going for.

Don’t get me wrong, we all love
extremely strong female characters
(I myself keep one around at home,
if you know what I mean, ha ha
ha!), but the nurse just seems a

bit too, well, to hear the team talk
about it, she’s just too much of a
character. The fact that she does
something important runs counter
to our idea that the player should
be the only one doing anything. We
call this concept “fantasy.”

Nobody wants her cut entirely,
of course—she needs to be around
so it’s not like a total bro-fest—but
if she could just show up for a
moment and then just disappear,
we think that would be best. We
don’t need like an arc or anything
for her. She can be there to ensure
there’s women around and prove
that we aren’t sexist or anything.
Then she can drop out of the story
and let the real stuff happen—the
battle to save mankind.

The melodrama
» Which brings me to my next
point. One of the other items that
came up time and again was
that we need to studiously avoid
melodrama. By “melodrama,” we
mean anything that’s emotional
or in any way breaks the hard,
unsentimental atmosphere we’re
talking about creating here. Again,
this is a serious future that is dark
and gritty, where the survival of
the human race is at stake. There’s
no room for any of that schmaltzy
stuff about being sad, will I ever see
you again, etc., nor should there
be any humor. Funny situations
are just going to detract from the
serious atmosphere.

We’re all really into military
shows here—we watch a whole lot
of them—and the ones that are just
sort of documenting what’s going
on are really the ones we like the
most and want to go for. You know,
cinéma vérité kind of stuff. We
want to take that approach to telling
the story we have here. Imagine
things as they actually are when
the player enlists with the Cyber
Police to save the world.

Not that any of this really
matters—I mean, nobody’s going to
watch the cutscenes anyway. I don’t
mean to sound down on your work
or anything, I’m just stating a fact.

all of The dialogue
» Some of our guys had problems
with the way the lines were written.
Generally speaking, we’re worried
that they just aren’t “cool” enough.
We’re also concerned that some
of the lines are a bit difficult to
understand. While this is a violent
military-themed game that caters
to the hardcore (and lets them pwn
noobs), we do want everyone to be
able to enjoy it, so you need to write
lines that clearly explain everything,
even to, say, a soccer mom.

Here’s an example: we’re just
assuming players know what
“tangoes” are. With just a quick,
small change, you could rewrite the
line to be: “Tangoes—that means bad
guys!” I’m not trying to tell you how
to do your job or anything, but just
suggesting something along those
lines. As the writer, we trust you to
come up with something cool there.

The sTory
» Our last point of feedback has
to do with the way the story “wraps
up” at the end. It’s like all these plot
threads sort of come together and
are just resolved. Not only does

that not really leave the door open
to sequels, which is important, but
we also think it’s too obvious of a
storytelling device. We don’t want
players to think a story is being told
to them. It should feel more like real
life, like a real war.

In real war, you don’t get
closure. War is just one thing after
another with very little logic to
it. That’s really what we’re trying
to capture in our storytelling:
gritty, dark chaos that’s hard and
unsentimental.

Well, that’s it for the feedback.
I’d say it’s pretty targeted and
actionable, so I think a revision
wouldn’t be too difficult in the next
couple of days. By the way, have
you seen that new TRON movie? It’s
pretty good about giving you the
plot in a way that kind of sounds
like there’s a whole other world out
there and you don’t really follow it,
but you sort of do follow it at the
same time. You know what I mean?
You should watch that movie and
you’ll see what I’m talking about.
We should make our script more
like the TRON script.

Thanks for the good work and
we’ll be in touch soon!

m a T T h e W W a s T e l a n d writes

about games and game development

at his blog, Magical Wasteland (www.

magicalwasteland.com).

http://www.magicalwasteland.com
http://www.magicalwasteland.com

“In Homefront, we aimed to present the player with an authentic vision of an
occupied America. NaturalMotion’s Morpheme empowered our animators to
create believable characters that our audience could connect with, to help us
convincingly portray the human cost of war.”
David Votypka, Creative Director/GM Kaos Studios

RELEASED MARCH 8th 2011

www.naturalmotion.com

http://www.naturalmotion.com

http://www.radgametools.com/telemetry

	Contents��
	Postmortem��
	Housemarque's Dead Nation���
	Firaxis' Sid Meier's Civilization V���

	Features��
	Tension Maps��
	Red Means Boom!���

	Departments���
	EDITORIAL - Game Plan
	NEWS - Heads Up Display
	REVIEW - Tool Box
	DESIGN - Design of the Times
	PROGRAMMING - The Inner Product
	ART - Pixel Pusher
	SOUND - Aural Fixation
	BUSINESS - The Business
	CAREER Good Job!
	GDC - Eye on GDC
	EDUCATION - Educated Play
	HUMOR - Arrested Development

