
MARCH 2002

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N
L E T T E R F R O M T H E E D I T O R

Avast, Ye Mateyz

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Everard Strong estrong@cmp.com
Production Editor

Olga Zundel ozundel@cmp.com
Product Review Editor

Tor Berg tberg@cmp.com
Art Director

Audrey Welch awelch@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Daniel Huebner dan@gamasutra.com
Jonathan Blow jon@blot-action.com
Hayden Duvall hayden@confounding-factor.com
Noah Falstein noah@theinspiracy.com

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Beemania
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed WildTangent

ADVERTISING SALES
Director of Sales & Marketing

Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218
National Sales Manager

Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217
Senior Account Manager, Eastern Region & Europe

Afton Thatcher e: athatcher@cmp.com t: 415.947.6224
Account Manager, Northern California

Susan Kirby e: skirby@cmp.com t: 415.947.6226
Account Manager, Recruitment

Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225
Account Manager, Western Region, Silicon Valley & Asia

Craig Perreault e: cperreault@cmp.com t: 415.947.6223
Sales Associate

Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz
Advertising Production Coordinator Kevin Chanel
Reprints Stella Valdez t: 916.983.6971

GAMA NETWORK MARKETING
Senior MarCom Manager Jennifer McLean
Marketing Coordinator Scott Lyon
Audience Development Coordinator Jessica Shultz

CIRCULATION
Group Circulation Director Catherine Flynn
Circulation Manager Ron Escobar
Circulation Assistant Ian Hay
Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall
Executive Vice President & CFO John Day
President, Technology Solutions Group Robert Faletra
President, Business Technology Group Adam K. Marder
President, Healthcare Group Vicki Masseria
President, Specialized Technologies Group Regina Starr Ridley
President, Electronics Group Steve Weitzner
Senior Vice President, Business Development Vittoria Borazio
Senior Vice President, Global Sales & Marketing Bill Howard
Senior Vice President, HR & Communications Leah Landro
Vice President & General Counsel Sandra Grayson
Vice President, Creative Technologies Philip Chapnick

W W W . G A M A N E T W O R K . C O M

✎

T he issue of piracy has
plagued the software indus-
try since its earliest days.
Recent efforts by the FBI and
the U.S. Customs Service

(Operations “Buccaneer,” “Bandwidth,”
and “Digital Piratez”) to crack down on
software piracy rings has rekindled many
longstanding debates among developers
about what can and should be done
about the problem.

An all-too-prevalent sentiment among
game developers is that piracy is ultimate-
ly the publisher’s problem. Established,
successful studios enjoying generous royal-
ties are less likely to agree with such a
viewpoint, but for younger, unproven stu-
dios lacking a royalty plan, what real
motive exists to devote precious man-
hours to devising and implementing anti-
cracking technology just to put a few
more dollars in the publisher’s pockets?

As we know, the most critical point in a
game’s life cycle in terms of sales momen-
tum is the period just after a game’s
release. Staving off the (inevitable) crack
for even a few weeks can bolster total
sales figures for a given title — a number
a prospective publisher will be very inter-
ested in when you go shopping for your
next title.

Prevailing wisdom would suggest that
the most sound argument against soft-
ware piracy is that — like insider trading
or marrying your sister — it is simply
against the law. It doesn’t matter whether
you’re running an international ring
intent on directly funneling sales from
software makers, or you’re a lone kid
looking for the newest game, perpetrating
what you know to be a crime yet consider
to be victimless.

I know there are plenty of people work-
ing in this industry that first became inter-
ested in programming games for a living
in part because of lots of work they did
playing heaps (pirated) of games as kids.
That’s one of the great assets of our indus-
try: its homegrown roots and the sense of
intimacy and passion that such a heritage
propagates. But how did you feel the first
time you were working professionally on
a project, working day and night through-

out crunch mode, only to see the first
cracks of your game start showing up on
the Internet three weeks before you went
gold? Whether it was rage, pride, or some
strange combination of the two, at that
point you have to admit that pirating
games is neither just the publisher’s prob-
lem nor a victimless crime, because you
are the victim.
New Columns Debut. This issue marks the
debut of two long-overdue additions to
Game Developer’s monthly lineup of reg-
ular columns, to better incorporate more
information for all of our readers on a
monthly basis.

“Better by Design” is our new column
on game design, kicked off by veteran
game designer Noah Falstein. Noah’s got
an ingenious plan for the column, to
identify and build a set of practical game
design rules, or what he calls “The 400
Project” (you’ll have to see page 26 to
find out why), with an emphasis on prac-
tical applicability. Eventually, we want to
get lots of experienced game designers
sharing rules they have identified over the
years, thereby building a database of
proven game design rules and techniques,
which will enable everyone to make bet-
ter games.

The second addition is a column on
game audio, “Sound Principles.” This col-
umn aims to educate all game developers
on how we can get better soundtracks
into and out of games. Topics will range
from sound design and music composition
to audio programming and production
planning. Whether it’s created by an in-
house studio or a lone contractor, achiev-
ing great game audio is in many ways a
team effort. George “The Fat Man”
Sanger starts things off this month with an
article wryly called “The Unimportance of
Audio,” on page 28.

I hope these two new columns open up
exciting new avenues of discussion among
all developers, something there’s never
enough of to go around in a rapidly bur-
geoning industry such as ours.

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

2

Game Developer
is BPA approved.

Arakawa retires. Nintendo of America
has announced the retirement of presi-
dent Minoru Arakawa. 55 year-old
Arakawa, son-in-law of Nintendo Co.
Ltd. president Hiroshi Yamauchi, has
served as Nintendo of America’s presi-
dent since the subsidiary was formed in
1980. Tatsumi Kimishima, currently
president of Pokemon U.S.A. and chief
financial officer of the Pokemon Co., will
succeed Arakawa.

Activision acquires Gray Matter.
Activision has announced that it is exer-
cising its option to acquire the remain-
ing 60 percent of Gray Matter
Interactive Studios, creators of RETURN

TO CASTLE WOLFENSTEIN, for $3.2 mil-
lion in stock. Activision financed the
acquisition with an issue of 133,690
shares of common stock, but the com-
pany does not expect the deal to affect
earnings or revenue guidance during fis-
cal 2002 or 2003. Key members of the
Gray Matter team, including studio
head Drew Markham, have signed
employment contracts with Activision
and will remain with the studio.

Acclaim posts positive results.
Acclaim reported a 61 percent jump in
quarterly profits. Revenues for fiscal Q1
increased from $72 million last year to
$81 million this year. Profits increased to
$17.4 million from $10.8 million in the
same period last year. Though the results
were in line with analyst expectations,
Acclaim raised its guidance for the cur-
rent quarter as well as the fiscal year.

Acclaim attributed much of the good
turn to successful internal titles for next
generation consoles; 23 percent of the
quarterly revenues came from Gamecube
titles, despite the fact that the console
shipped just two weeks before the close
of the quarter.

The company followed the good finan-
cial news by announcing the appoint-
ment of a new president and chief oper-
ating officer. Acclaim has tapped former
NBCi.com president Edmond Sanctis to
take on the role and oversee all of the
company’s North American operations.

Eidos reports loss. Eidos saw a disap-
pointing 44 percent drop in the quarter
ended September 30, forcing the compa-
ny to report a second-quarter net loss of
$16.1 million.

Eidos had banked on two major titles
in the holiday run-up, but new versions
of WHO WANTS TO BE A MILLIONAIRE?
and COMMANDOS didn’t live up to the
company’s expectations. Eidos is hoping
for better returns on next-generation
console versions of the titles and an
upcoming Winter Olympics title.

Eidos also announced that it will
change its year-end during the current fis-
cal year to June 30, to help the company
better forecast fiscal year results by put-
ting the sales-heavy Christmas season in
the middle of its tracking period.

SEC questioning Take-Two’s
accounting. A story in Barron’s maga-
zine reports that the Securities and
Exchange Commission has asked
videogame publisher Take-Two Interac-
tive to explain some of its accounting
procedures. Specifically, the company has
been asked to shed light on its account-
ing of certain impaired assets and one-
time charges.

According to Barron’s, the SEC asked
Take-Two’s chief financial officer why its
books place high carrying values on cer-
tain impaired assets, how its one-time
charges complied with accounting rules,
details on its 90-and 120-day payment
terms, and an accounting of cash pay-
ments on its receivables.

There was no evidence that the SEC’s
enforcement division is investigating
Take-Two, but the letters suggest concern

over its accounting for revenues and
expenses, citing researcher John Gavin,
who obtained the SEC’s letters.

Infogrames makes financial moves.
Infogrames is making moves to cut its
debt and simplify its shareholding struc-
ture. The company timed nearly 25 per-
cent of its outstanding debt through a
buyback of more than 2 million convert-
ible bonds. Infogrames also sold 8 mil-
lion of its own shares in exchange for
$50 million worth of convertible bonds
issued by its U.S. division (Infogrames
Inc.) and $50 million in cash.

Shareholders also made moves to sim-
plify the company’s structure with the
approval of a plan to merge with its
main shareholder, Interactive Partners.
Infogrames will pay 15.23 euros per
share to buy out Interactive, which
owns 19 percent of Infogrames’ capital
and 30 percent of its voting rights. Both
moves could potentially serve to refocus
interest on Infogrames as a possible
takeover target. q

m a r c h 2 0 0 2 | g a m e d e v e l o p e r4

I N D U S T R Y W A T C H
T H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e r

Eidos’s COMMANDOS 2 failed to capture the flag.

J

G A M E D E V E L O P E R S C O N F E R -
E N C E 2 0 0 2
SAN JOSE CONVENTION CENTER

San Jose, Calif.
March 19–23, 2002
Cost: $195–$1,950 (early-bird discounts
available)
www.gdconf.com

P L AY I N G W I T H T H E F U T U R E :
D E V E L O P M E N T A N D D I R E C -
T I O N S I N C O M P U T E R
G A M I N G
ESRC CENTRE FOR RESEARCH ON INNOVATION

AND COMPETITION, UNIVERSITY OF

MANCHESTER

Manchester, England
April 5–7, 2002
Cost: variable
www.digiplay.org.uk/cfp.php

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

XX

A s audiences become more
and more sophisticated
about computer graphics,
fractal noise and proce-
dural wood-grain textures

can no longer guarantee gushing reviews.
Darkling Simulations’ Darktree 2 is the
latest edition of the popular tool for
artists who want to develop complex,
multi-layered shaders that transcend the
commonplace of current CG. Darktree 2
offers users a broad palette of procedural
textures, many of which will already be
familiar to 3D artists. The program’s main
virtue, however, is the ability to drive the
parameters of one procedure with the out-
put of another. By feeding the results of
these chains of procedures to the texture
channels and shading parameters of an
object, Darktree 2 can create sophisticated
and sometimes startling effects ranging
from highly realistic natural surfaces to
animated pyrotechnics to flat-shaded car-
toon renderings (Figure 1).

Darkling refers to networks of shading
procedures as Darktrees. Darktrees can
be exported as plug-in materials, which
Darkling calls Simbionts, and used in any
of several 3D packages. Simbionts act as
rendering proxies, representing Darktree
shading networks to the host programs
as custom materials. Simbiont plug-ins
are available for 3DS Max (3.x and 4.x),
Lightwave (6.5 and 7), Animation
Master 8.5, and Truespace 5.

Darktrees can also be exported as bit-
maps or 2D animations in a wide variety
of formats and at any arbitrary resolution.

Making Connections

F rom a computational point of view,
Darktrees are linked series of textur-

ing algorithms: in essence, programs,
similar to Renderman shaders. Indeed,

programmers may find it useful to under-
stand Darktree 2 as a graphical front-end
to a streamlined Renderman-like lan-
guage. Fortunately for artists, however,
the experience of working with Darktree
feels nothing like creating code.

Darktrees are represented as flowchart-
like diagrams of connections between
procedures, analogous to electrical
schematics (Figure 2). The nodes in the
diagram are procedural components that
generate, manipulate, or composite tex-
ture and parameter data. The wires trans-
mit colors and parameter values from one
procedural to another. Although it takes a
good deal of skill to create truly useful
shaders, the mechanical aspects of laying
out Darktrees are very simple and will be
grasped quickly by anyone capable of
mastering Visio or CorelDraw.

Darktree users work on a grid of regu-
larly spaced sockets. A single root socket
at the left side of the grid contains a
Darktree shader, a Swiss army knife super-
set of the Blinn, anisotropic, and clearcoat
shaders found in most 3D packages. To
build the Darktree network, users drag
and drop icons representing various pro-
cedures from a component library onto
the sockets in the grid. The node icons
contain thumbnail previews, making it
easy to see what each node contributes to
the tree. Once components are placed on
the grid, users can connect inputs and out-
puts easily by pointing and clicking.

Darktree’s GUI is sufficient for the task
of creating shaders, though in some ways
it lacks refinement. The only important
drawback to the interface is how the
forced data-typing and the rigidity of the
layout can make it awkward to share

components between two branches of a
Darktree. Since so much of the power of
the shading network paradigm lies in its
ability to coordinate effects in multiple
channels (for example, aligning features in
a bump map with those in a color map),
anything that inhibits sharing is more than
an annoyance. On the balance, however,
the interface does a good job of managing
the complex task of shader building.

I’ve Got Algorithm

D arktree 2 offers an impressive
library of more than 100 compo-

nents for building shaders. The fact that
the package includes 10 different kinds
of 3D noise textures gives some indica-
tion of the depth of the toolset. This
large library of procedures is an extreme-
ly potent resource for building shaders.
The program also includes a large library
of complete Darktrees, allowing new
users to learn by example, but the
absence of a master reference for the
components is a disappointment.

The core of the component library is a
collection of more than 50 procedural
texturing components. Standbys such as
fractals, clouds, and grain are all present,

Darkling Simulations’
Darktree 2

by steve theodore

m a r c h 2 0 0 2 | g a m e d e v e l o p e r6

P R O D U C T R E V I E W S
T H E S K I N N Y O N N E W T O O L S

FIGURE 1. Darktree offers flat-shaded textures
as well as the familiar photorealistic options.

S T E V E T H E O D O R E | Steve is an animator and character designer at Valve Software,
where he works on online titles such as COUNTER-STRIKE and the upcoming TEAM FORTRESS

2. He can be reached at stevet@valvesoftware.com.

as are a number of new procedurals
many artists won’t have seen before.
Unique standouts include Tech, a com-
plex of overlaid trace lines reminiscent of
a circuit board; Manhattan, an array of
randomized rectangles suitable for metal
plating; Venation, which produces a
polygonally fractured surface like frac-
tured glass; and Scratches, a 3D array of
randomly oriented strokes that can be
curved, tapered, and randomly colored.

Artists interested in the far reaches of
procedural shader creation will also find
a wealth of components for recombining
and manipulating textures. Darktree
offers a large selection of compositing
operators, analogous to Photoshop’s level
modes. A sizeable library of mathemati-
cal functions allows sophisticated control
for blending textures and parameter tun-
ing. Modifier nodes can reprocess base
texture components for effects ranging
from spatial distortion to color shifting
and even tile creation. Finally, a number
of utility components provide access to
external data: anything from imported
bitmaps to audio files and animation
timers can be used to drive parameters
within a Darktree.

Twiddling the Knobs

E very component in a Darktree is
highly customizable. The interface

for editing individual components is sim-
plistic, but functional. Double-clicking on
a component icon opens a modal editing
dialog. Feedback is fairly fast when
adjusting component parameters, even on
relatively anemic machines. However,
working with only the single, smallish
view swatch in the parameter window
can feel like working through a peephole.
3DS Max–style spinners and text boxes
handle numerical parameters, and a
clever click-drag swatch control lets users
edit HSV values gesturally without open-
ing a color picker. Parameters can also be
controlled by global variables called
Tweaks. These Tweaks are exported
when Darktrees are used as plug-in
shaders and can be changed or even ani-
mated in the host program’s material edi-
tor. Unfortunately, tweaked parameters
in a given component can’t be edited
from the edit window — Tweaks are
treated as properties of the Darktree
itself, so altering them requires a trip to
the top level of the Darktree.

Who, How, and Why

D arktree 2 is a powerful tool. Artists
willing to make a reasonable invest-

ment of time in experimentation will be
well rewarded. For game developers, the
utility of the program depends largely on
the task at hand. Cinema teams and
sprite artists should definitely consider
Darktree 2 unless they already use Maya
or Softimage XSI, which include similar
functionality out of the box. Modelers
creating characters for real-time games,
however, are unlikely to find it a com-
pelling purchase: the Darktree shaders
are irrelevant to real-time games and
without a method of converting solid
procedural textures into UVW-mapped
textures, the Darktrees are only an elabo-
rate method for producing fill patterns.
Level designers who don’t work with UV
surfaces, on the other hand, should get a
lot of value out of rendered Darktree
bitmaps. Overall, Darktree is a tool with
great potential and is definitely worth
investigating.

w w w . g d m a g . c o m 7

FIGURE 2. Darktree users build procedural shaders with an easy-to-use flowchart-like interface.

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

STATS
DARKLING SIMULATIONS

Los Alamos, N.M.
(505) 672-0640
www.darksim.com

PRICE
$495 ($125 upgrade from version 1)

SYSTEM REQUIREMENTS
Windows 98 or 2000; 500MHz processor;
minimum 128MB RAM

PROS
1. Powerful tool for creating custom proce-

dural shaders.
2. Large library of texturing components.
3. Generates high-quality bitmaps.

CONS
1. Needs master reference to shading

components.
2. Rigid editing interface.
3. Sharing components between shading

channels difficult.

DARKTREE 2 XXXX

RELIABLE SOFTWARE’S
CODE CO-OP 3.2

by johnathan skinner

C ode Co-op is a simple-to-use and
affordable version-control system by

Reliable Software. Geared toward small-
to medium-sized projects, the server-less
system maintains a full, up-to-date copy
of a project database and updates check-
ins over a LAN or even through e-mail
for remote development (using Microsoft
Outlook). This makes it most useful for
teams that have people in several differ-
ent locations or that use sometimes-
connected machines such as laptops.

Code Co-op is available for Windows
95/98/NT 4/2000/XP and has a quick
and simple installation and setup. It has
an easy-to-use GUI, direct integration
with Microsoft Visual Studio, and an
optional command-line interface. Some
of the GUI layout is a little strange, but it
has lots of good tool tips and helpful
message boxes that make it easy for users
to figure out pretty much everything
without needing to refer to the documen-
tation. I am impressed by the help docs,
though, as they are well written and
include lots of clear and relevant screen-
shots. The tutorial guides you through
setting up your first project. Technical
support is also available via e-mail, and
Reliable responds quickly. The company
is also known to post new fixes for bugs
within a few days of finding the problem.

Boasting a reasonable price tag of
$145 per user, Code Co-op is well suited
for a small development team. It also
saves you the cost of purchasing a server
machine. One really nice thing about the
server-less model is that you control
when the project database is updated.
You know those times when you need to
check out and edit a single file, but then
discover that someone else has already
made a change to it? You’d need to pull
down the latest version of the entire proj-
ect and recompile it just to change a sin-
gle line. Code Co-op cures this headache
by keeping an entire copy of the project
database on each development station,
allowing team members to update it any-
time they’re ready.

But the server-less model does have its
drawbacks. While Code Co-op does
maintain a full version history for both
text-based and binary files, a project with
hundreds of megabytes of binary
resources (such as art or sound files) all
under source control is going to fill up
everyone’s hard drives really quickly.
However, for projects with only a few
binary files and mostly just code under
source control, Code Co-op should work
quite well.

Code Co-op’s lack of administrative
options may make it less than ideal for
larger development teams (more than
about 10 people using source control).
The only permission control available
changes a user to an observer (in which
case he or she cannot make changes to the
project). Typically, a small team wouldn’t
need anything beyond that, but a larger
team often needs more advanced options.

Reliable Software’s Code Co-op 3.2 is
an excellent version control system for a
small development team. A free 31-day
full-featured trial version is available for
download from Reliable’s web site.

XXX | Reliable Software
www.relisoft.com

Johnathan Skinner has been a profes-
sional game programmer for five years,
starting with TETRISPHERE for Nintendo
64. He is currently working at Relic
Entertainment on its upcoming game,
IMPOSSIBLE CREATURES.

HOUSE OF MOVES’
DIVA 1.7

by john bunt

I t’s the day after our big mocap shoot,
and I have to fix a run animation

wherein the actor’s right leg is longer
than his left. Unfortunately, when we
captured the move, nobody noticed that
the actor’s right-ankle marker had slid
down by two inches. This small error is
big enough to create a glaring limp in the
run; and even worse, the same problem
exists in 50 other files.

All 50 files contain an average of 300
frames. The marker must be adjusted for
every single frame on every single axis in

relation to every other body marker for
every one of their axes. Depending on
how many editors assist, the process
could take days of tedious work resulting
in data that will still look bad.

Not anymore. After a year of editing
motion data with archaic tools that kept
me staring at my monitor till my eyes
bled, I was introduced to Diva 1.7. Diva
is a stand-alone motion capture anima-
tion processing tool developed by the
mocap pros at House of Moves for their
own in-house editing, and now it’s being
offered as a commercial product.

With Diva, it took me five minutes to
write a simple script to reposition the
misplaced ankle marker (relative to the
foot markers) and batch-process the
adjustment on thousands of frames over
all 50 files. What normally would have
taken days to accomplish, I alone com-
pleted in minutes using Diva. Best of all,
the data looked great; much better than
if I had manually adjusted the marker at
every frame.

Built from the ground up to edit
motion capture animation, Diva elimi-
nates the frustration of working with
older suites of motion capture software
that typically ship with mocap hardware
systems. It addresses the most common
problems of motion capture, such as fil-
tering jittery noise and filling gaps in
data. The data-editing tools are
extremely accurate, providing several
variables for fine-tuning.

Diva also includes a flexible, open-
architecture scripting language to handle
the unexpected. You don’t need to be a
programmer to write scripts in Diva,
because the help files and tutorials are so

XP R O D U C T R E V I E W S

m a r c h 2 0 0 2 | g a m e d e v e l o p e r8

FIGURE 3. The Diva interface displaying sec-
ond figure data (in purple) in the 3D Perspec-
tive view and in the Graph view (dotted line).

intuitive. Not unlike MEL script for
Maya, Diva’s HSL scripting language
allowed me to customize Diva’s operations
and assign them to customizable toolbar
buttons. Diva also comes equipped with
several default scripts to execute most of
my daily editing operations.

Right out of the box, I was able to use
Diva with my unique data and marker
sets. In addition, Diva easily accommo-
dated my pipeline, as it supports every
major mocap file format, including
marker (.CSM, .C3D, .TRC) and skeletal
(Acclaim, .BVH, .HTR). Additionally,
Diva exports a proprietary .HDF file for-
mat similar to a 3DS Max or Maya
scene, containing all objects such as
markers, bones, rigid bodies, and solvers.

I was especially impressed with Diva’s
Second Figure feature (Figure 3), which
allowed me to edit data and compare it
side-by-side to the original data (the sec-
ond figure). This took the guesswork out
of whether or not I had over-filtered or
wrongly edited. I could view the second
figure data in Diva’s 3D Perspective and
Graph views and had the option to
restore any original data at any time over
a selected range.

There’s no doubt that Diva is a versa-
tile program that has made a huge break-
through in animation. You no longer
have to be intimidated by working with
motion capture data. Diva’s price tag of
$3,995 is well justified when you consid-
er how much time and money you’ll save
by not having to hire extra motion edi-
tors to work all those extra hours.

XXXXX | Diva 1.7 | House of Moves
www.moves.com

John Bunt is the director of motion
capture at Blur Studio, an animation stu-
dio in Venice, Calif.

PHYSICS FOR GAME
DEVELOPERS
BY DAVID M. BOURG

reviewed by jeff lander

A s you all know, creating a modern
game is a complicated process

requiring a dedicated team with a great
wealth of expertise. It’s no longer suffi-

cient for a programmer to know how to
display an image on the screen. Program-
mers on game projects are required to
have knowledge of 3D graphics, advanced
artificial intelligence techniques, high-level
mathematics, and enough physics to scare
an out-of-work aerospace engineer. If your
company doesn’t have the luxury of being
able to hire one of these rocket scientists
to create the physics in your game, you
may be asked to design the physics sys-
tem. If you are like me and have forgotten
most of your high school and college
math and physics lessons, you have some
relearning to do.

There’s quite a bit of material out
there. My oldest physics book is from
1952 and still very useful. However, fig-
uring out how to apply various exercises
and examples to game problems can be
difficult. Most academic physics books
weren’t written with the needs of a mod-
ern action game in mind.

Physics for Game Developers by David
Bourg is designed specifically for the game
developer who is creating a physical simu-
lation. The book contains pretty advanced
stuff; it’s not Game Physics for
Mathematical Imbeciles. It assumes the
reader is pretty comfortable with
trigonometry, matrix mathematics, and
the basic principles of physics. This base
assumption is necessary, since there’s quite
a bit of ground to cover on the topic.

The book does a very good job of
jumping into the basics of Newtonian
physics and how it applies to actual
game development issues. The physics of
particles and rigid bodies make up the
bulk of the work. It tackles difficult-to-
explain topics such as basic force appli-
cation, inertia tensors, and collision
response in a clear and practical manner.

This foundational section is followed
by specific application cases that are
directly relevant to game developers. The
chapters on projectiles, ships, and cars
contain interesting information that pro-
grammers will find useful. The sections
that follow are on the actual creation of
a game simulator, making use of the
knowledge in the prior chapters.

Abundant sample code segments also
differentiate this title from most physics

books. The code in the book is clearly
written and well commented, making it
immediately useful. The book’s web site
also hosts sample applications that are
referenced in the text. However, these
applications are not the book’s strong
point. While the actual routines from the
book are well commented and written in
a portable C++ style, the Direct3D appli-
cations used to show off the techniques
are not nearly as good.

There are some small problems with
the book itself, as well. Numerical inte-
gration issues are discussed and a variety
of approaches are described, but the
examples mostly use Euler’s method, and
the stability problems that can arise are
avoided by careful tuning of the simula-
tion parameters. For any actual game sit-
uation, numerical stability is a major part
of the simulation creation process. As
this can be a very frustrating part of the
development of a physics system, a more
realistic and broader discussion would
have been more helpful to readers. While
the sections on applications are interest-
ing, they tend to gloss over the issues.
For example, vehicle physics is discussed,
although connecting multiple rigid bodies
into a system is not discussed beyond a
brief mention of springs. This informa-
tion would be critical to creating a realis-
tic driving simulation. Also, the section
at the end dealing with mass-and-spring
systems is really just a bare overview and
not terribly useful for anything other
than the most simple of effects.

As these are all more advanced issues,
I certainly hope that the series will con-
tinue into a second volume. For the expe-
rienced game developer who is looking to
learn about physical simulation, this title
will provide a good, solid, and practical
foundation.

XXXX | Physics for Game

Developers | O’Reilly | www.oreilly.com

Jeff Lander is the founder of Darwin
3D, a graphics programming consultancy
on a secluded beach in sunny California.
A former Game Developer columnist, he
missed us so much that he’s back already.
E-mail him at jeffl@darwin3d.com.

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

w w w . g d m a g . c o m 9

Y uji Naka joined Sega in 1984
as a programmer, and put a
new face on gaming with the
1991 debut of his creation,
Sonic the Hedgehog. As pres-

ident and CEO of Sonic Team, a member of
the Sega Group, he recently oversaw the
development of SONIC ADVENTURE 2 for
Gamecube, as well as some of the
Dreamcast’s most innovative titles, such as
PHANTASY STAR ONLINE and that simian
rhythm-action classic, SAMBA DE AMIGO.
What goes on inside the heads of people
who put monkeys and maracas together for
the masses? We caught up with Naka-san
recently to find out.

Game Developer. What do you think is the
single biggest difference between the Japanese
and the Western approach to game design?

Yuji Naka. Game design depends entirely
on the gamers who are playing them. I feel
that people from Western countries prefer more challenging
games than the Japanese do. This affects our approach to
game design.

GD. What are some of the fundamental considerations for
designing successful, enduring game characters?

YN. I think that the best characters are always born from a
necessity in the game. For example, in the SONIC THE HEDGE-
HOG series, we needed a character that could not only run very
fast, but who could also protect itself — thus, Sonic the
Hedgehog was born. Another important element in character
development is that the game itself also has to be fun to play.

GD. What was the first game you ever worked on? When did you
realize that you wanted to develop games for a living?

YN. The first game I ever worked on was GIRL’S GARDEN for
the SG-1000 console. [This was a game about a girl in a garden
who must pick a flower for a boy, all the while overcoming the
challenges of the garden, including getting stung by a bee.] I
was in my third year of high school when I decided I wanted to
work in the game development business. But honestly, at the
time, I did not know that I would ever be able to develop
games.

GD. How do you determine what you think your game-playing
audience will find fun and engaging? Do you do focus testing, rely
on your experience, or just make what you know you would have fun
playing?

YN. Although there are a number of factors, including con-

sumer tests, which contribute to our decision to
create a game, I believe the best tactic is always
to believe in your idea and follow your own
instinct. When you do that, everything else will
adjust accordingly and fall into place. It has
been my experience that this approach usually
results in the most successful games.

GD. Besides the games that Sonic Team works
on, what sorts of games interest you the most right
now, and how do they influence your work?

YN. I am currently most interested in titles
from Nintendo. Although every gaming experi-
ence has its influence on the player, our aim is to
create truly original works that are unlike any
other game.

GD. SAMBA DE AMIGO captured many people’s imag-
inations. Actually, I don’t know how we made it so
long without any games that combined monkeys
and maracas. How much interest do you have in
exploring alternative input devices for games in the
future? Are they nothing more than the occasional

novelty for a single game, or are they the real future of immersive
interactive entertainment?

YN. I believe that the fun elements in games can be greatly
enhanced with the use of various peripherals, such as the mara-
cas in SAMBA DE AMIGO. In the future, I plan to create more
interesting peripherals, and I am currently considering various
possibilities that I can’t discuss at this time.

GD. PHANTASY STAR ONLINE surprised a lot of people with how well
executed a real-time multiplayer online console game could be.
What do you think people will be doing with game consoles and
their Internet connections in five or 10 years?

YN. In five to 10 years, I believe that about half of all games
will be connected to the network without having to set any-
thing up — it will be seamless. In five to 10 years, Internet
gameplay will largely depend on game creators and whether or
not the online component is integral to the gaming experience. I
would like to create games that explore new ways of using the
network.

GD. What did you think the first time you saw Sonic on a non-
Sega console?p

YN. Sonic the Hedgehog celebrated his 10th anniversary this
year, and Sonic has been saying that he wants to run on new
hardware platforms. Thus, he started to run on Nintendo
Gamecube the year of his 10th anniversary. I feel very deep
emotion about this. I consider it to be one of the most histori-
cal events in the game industry. q

Yuji Naka: Sonic Success

m a r c h 2 0 0 2 | g a m e d e v e l o p e r10

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | j e n n i f e r o l s e n

SONIIC THE HEDGEHOG creator Yuji Naka

I N N E R P R O D U C Tj o n a t h a n b l o w

Q uaternions are a nifty
way to represent rota-
tions in 3D space. You
can find many introduc-
tions to quaternions out

there on the Internet, so I’m going to
assume you know the basics. For a
refresher, see the papers by Shoemake or
Eberly in For More Information. In this
article we will look closely at the tasks of
quaternion interpolation and normaliza-
tion, and we’ll develop some good tricks.

Interpolation

W hen game programmers want to
interpolate between quaternions,

they tend to copy Ken Shoemake’s code
without really understanding it (hey,
that’s what I did at first!). Ken uses a
function called slerp that walks along the
unit sphere in four-dimensional space
from one quaternion to the other. Because
it’s navigating a sphere, it involves a fair
amount of trigonometry, and is corre-
spondingly slow.

Lacking a strong grasp of quater-
nions, most game developers just accept
this: slerp is slow, and if you want
something faster, maybe you should go
back to Euler angles and all their nasti-
ness. But the situation is not so bad.
There’s a cheap approximation to slerp
that will work in most cases, and is so
brain-dead simple and fast that it’s
shocking. Shocking, I tell you.

What Slerp Does

S lerp is desirable because of two main
properties; any approximation we

formulate would ideally have the same
properties. The first, and perhaps most
important, is that slerp produces the

shortest path between the two orienta-
tions on that unit sphere in 4D; this is
equivalent to finding the “minimum
torque” rotation in 3D space, which you
can think of as the smoothest transition
between two orientations. The second
property of slerp is that it travels this
path at a constant speed, which basically
means you have full control over the
nature of the transition. (If you want to
add some style, like starting slowly and
then speeding up, you can just spline
your time parameter before feeding it
into slerp.)

So here’s our approximation: linearly
interpolate the two quaternions compo-
nentwise. That is, if t is your time param-

eter from 0 to 1, then x = x0 + t(x1 – x0),
and similarly for y, z, and w.

One might wonder how that could
possibly be a worthwhile interpolation
when the right answer is so much more
complicated. Let’s take a look at why
that is.

Figure 1 shows a two-dimensional
version of quaternion interpolation.
Slerp walks around the edge of the unit
circle, which is what we want. Linear
interpolation results in a chord that cuts
inside the circle. But here’s the thing to
realize: Normalizing all the points along
the chord stretches them out to unit
length, so that they lie along the slerp
path. In other words, if you linearly
interpolate two quaternions from t = 0
to t = 1 and then normalize the result,
you get the same minimal-torque transi-
tion that slerp would have given you.

The linear algebra way to see this is
that both the great circle and the chord
lie in Span(q0, q1), which is a 2D sub-
space of the 4D embedding space.
Adding the constraint that
Length(Interpolate(q0, q1, t)) = 1 reduces
the dimensionality to one, so both paths
must lie along the same circle. And both
forms of interpolation produce only a
continuous path of points between q0

and q1, so they must be the same.
If q0 and q1 lie on opposing points of

the sphere, the chord will pass through
the origin and normalization will be
undefined. But that’s O.K. — unless
you’re doing something wacky, you don’t

Hacking Quaternions

w w w . g d m a g . c o m 13

FIGURE 1. A two-dimensional picture of
quaternion interpolation. The blue circle is
the unit sphere; the two yellow vectors are
the quaternions. The red arc represents the
path traveled by slerp; the green chord
shows the path taken by linear interpolation.

J O N A T H A N B L O W I Jon (jon@bolt-action.com) would like

you to know that the Slimelight in London is a horrible nightclub

that really isn’t any fun.

want your quaternions to be more than
90 degrees apart in the first place
(because every rotation has two quater-
nion representations on the unit sphere,
and you want to pick the closest ones to
interpolate between). So the normaliza-
tion will always be well defined.

Thus the normalized linear interpola-
tion and the slerp both trace out the
same path. There is a difference between
them, though: they travel at differing
speeds. The linear interpolation will
move quickly at the endpoints and slowly
in the middle. Figure 2 shows a graph of
the worst case, 90 degrees.

The function graphed in Figure 2 is
roughly

where α is the original angle between the
two quaternions. I figured this out just
by drawing a 2D graph like Figure 1,
where one of my vectors is the x-axis (1,
0) and the other one is (cos α, sin α).
Then I just wrote an expression for lin-
early interpolating between them by t,
and then finding the resulting angle by
tan–1. This rather simplistic approach is
valid for two reasons. First, since all the
action happens in Span(q0, q1), we can
just take that 2D cross section out of 4D
space; studying it in isolation, we see the
entirety of what is happening. Second, on
the resulting 2D unit circle, because the

set of all possibilities for the two unit
vectors is redundant by rotational sym-
metry, we can choose one of the vectors
to be anything we like; I chose (1, 0) to
simplify the math.

Casey Muratori of RAD Game Tools
is the first person I know of who consid-
ered linear interpolation of quaternions
as a serious option. He investigated
numerically and found linear interpola-
tion, when properly employed, to be
quite worthwhile. Casey has eradicated
all slerps from his code for Granny 2.

Augmenting Linear
Interpolation

T he linear interpolation is monotonic
from q1 to q2, so if you are doing an

application where you’re binary search-
ing for a result that satisfies some con-
straint, using the linear interpolation
works just fine. If your quaternions are
very close together (less than 30 degrees,
say), as you have when playing back a
series of time-sampled animation data,
linear interpolation works fine. And if
you have some number of different char-
acter poses (like an enemy pointing a gun
in several different directions), and you
want to mix them based on a blending
parameter, linear interpolation probably
works fine.

Linear interpolation won’t work if you

need precise speed control and wide
interpolation angles. But maybe we can
fix that.

Perhaps we can make a spline that can-
cels most of the speed distortion. Looking
at Figure 2, can we concoct a function
that, when multiplied against the curve,
causes it to lie much closer to the ideal
line? The way I chose to visualize this
was with a cubic spline that tries to pull
the distortion function onto the diagonal.
Figure 3 shows a cubic spline with the
equation y = 2kt3 – 3kt2 + (1 + k)t, where
the tuning parameter k = 0.45 has been
graphed against the plot of Figure 2.

Because both the distortion curve and
our compensating spline have an average
value of t and are approximately comple-
mentary, when we multiply them togeth-
er we get a function that is approximate-
ly g(t) = t2. We want g(t) = t, so we’ll
divide the cubic spline by t. Fortunately,
since the spline passes through the origin,
it has no d coefficient; so dividing by t
just turns it into a quadratic curve:
y = 2kt2 – 3kt + 1 + k.

So now, if we’re linearly interpolating
two splines that are 90 degrees apart, we
find t� = 2kt2 – 3kt + 1 + k, and use t� as
our interpolation parameter. We get
something very close to constant-speed
interpolation (I will quantify how close
in a little bit). However, if we reduce the
angle between the input quaternions, we
get something that’s less accurate than
the original t.

That’s because, by defining its slope at
t = 0 and t = 1, I concocted this spline
specifically for the worst-case scenario.
That’s where the k parameter comes in:
it’s a slope-control mechanism. To get this
spline to compensate for distortion across
the full range of quaternion input angles,
we want to adjust the tuning parameter
as some easily computable function of the
angle between the two quaternions.

Well, taking the dot product of two
quaternions gives us cos α, the cosine of
the angle between them. I started playing
around with simple functions of cos α
until I found something reasonable.
Basically, we want a function that is 1
when cos α = 0, and that is near 0 when
cos α = 1. After some experimentation I

tan
sin

(cos)
−

+ −
1

1 1
t

t
α
α

I N N E R P R O D U C T

m a r c h 2 0 0 2 | g a m e d e v e l o p e r14

FIGURE 2 (left). Worst case of lerp speed variation. The green line represents the ideal result
produced by slerp; the red line represents the distorted result produced by lerp. The error
between these two functions should be measured vertically, so they are more different than they
may appear at first. FIGURE 3 (right). The compensating cubic spline, k = 0.45, shown in yellow
atop the graph of Figure 2.

landed on k = 0.45(1 – s cos α)2, where
s = 0.9 for now. To cursory visual inspec-
tion, this gives pretty good results across
the full range of α from 0 to 90 degrees.

These numbers are in the right neigh-
borhood, but because I just made them
up, they’re not going to be as close as we
can get. So I wrote some code to do hill-
climbing least-squares minimization. The
initial distortion function has an RMS
error of about 1.6 � 10–2 when averaged
over all interpolation sizes (the worst
case, graphed in Figure 2, has an RMS
error of 3.234 � 10–2). The minimizer
gave me the following values:
k = 0.5069269, s = 0.7878088, yielding
an overall error of 2.07 � 10–3, which is
about eight times lower than we’d started
with (see Listing 1).

But while I had been aligning things by
eye, I noticed that if I gave k a high
value, I got results that were close to
exact from t = 0 to t = 0.5, but diverged
after t = 0.5. So I wrote an interpolator
that only needs to evaluate t from 0 to

0.5. If you pass in a t higher than 0.5, it
just swaps the endpoints of interpolation.
Running the optimizer on this, I got
k = 0.5855064, s = 0.8228677, overall
error 5.85 � 10–4 — a reduction of more
than 27 from the original. We incur
another small cost to gain this accuracy,
an extra if statement.

You can probably do better than these
numbers; my methods were ad hoc, and
there are many possibilities I haven’t
explored. I should also give a few warn-
ings. For example, the if statement I just
mentioned introduces a slight disconti-
nuity at t = 0.5; you can fix this discon-
tinuity by shifting the midpoint away
from 0.5, but this wasn’t important for
my needs.

So we can interpolate pretty quickly
now, but we end up with non-unit
quaternions. We probably want unit
quaternions, so how do we normalize
without doing a really slow inverse
square root operation?

Normalization

T o normalize any vector, quaternions
included, we want to divide the vec-

tor by its length. The squared length of
some vector v is cheap to compute —
it’s v�v — so we need to obtain
and multiply the vector by that.
Division and square-rooting are pretty
expensive, though.

We can compute a fast by using
a tangent-line approximation to the func-

tion. This is like a really simple one-step
Newton-Raphson iteration, and by tun-
ing it for our specific case, we can
achieve high accuracy for cheap. (A
Newton-Raphson iteration is how spe-
cialized instruction sets like 3DNow and
SSE compute fast inverse square root).

The basic idea is that we graph the
function , locate some neighbor-
hood that we’re interested in, and pre-
tend that the function is linear there. A
linear function is cheap to evaluate.

So, we want to approximate
. We are interested in vectors

whose lengths are somewhere near 1,
meaning f(x) = 1, which means x = 1. So
we are going to focus on the neighbor-
hood x = 1, as you see in Figure 4. To get
the line, we just take the derivative of f,

, and evaluate it at 1:

An equation that says “locally, a func-
tion is approximately its value at some
point plus its first derivative extrapolat-
ed over distance” is:

We evaluate this at x = 1 to get

Now for the last trick: we want to rep-
resent the squared length of our input
vector, which we’ll call s, as a value in
the neighborhood of 1, so we can plug it

f x f xf x() () ()1 1 1 1
1
2

+ ≈ + ′ = −∆ ∆ ∆

f x x f x xf x() () ()+ ≈ + ′∆ ∆

′ = −f ()1
1
2

′ = −
−

f x x()
1
2

3
2

f x x() = 1

1 / x

1 / x

1 / v v⋅

I N N E R P R O D U C T

m a r c h 2 0 0 2 | g a m e d e v e l o p e r16

FIGURE 4 (top). In green, the function
in yellow, its tangent line at x = 1.

FIGURE 5 (bottom). The length of an approxi-
mately normalized vector (yellow), versus the
squared length of the input, when using the
naive tangent line approximation. The green
line indicates the ideal result.

f x x() /= 1

LISTING 1. A function that splines t to compensate for the distortion induced by lerping.

float correction(float t, double alpha, double k, double attenuation) {

double factor = 1 - attenuation * cos(alpha);

factor *= factor;

k *= factor;

float b = 2 * k;

float c = -3 * k;

float d = 1 + k;

double t_prime = t * (b*t + c) + d;

return t_prime;

}

into our new linear function. We say
s = 1 + ∆x, and thus ∆x = s – 1.

That is all we need. When we plug
∆x = s – 1 into our approximation, we
get

Simplified, this says:

For as wide of a neighborhood as the
inverse square root is well approximated
by a tangent line, this extremely fast
computation will give us the factor to
normalize a vector. Figure 5 graphs the
vector lengths we get when we use this
computation to normalize. As long as we
start with a vector whose length is near
1, we get results that are fairly accurate.

For some applications, accuracy in a
narrow range is all we need. If you are
reconstructing quaternions from splines,
as one might do in a skeletal animation
system that stores animation data in a
small memory footprint, you can ensure a

maximum length deviation during the
spline-fitting process (inserting extra
keyframes to alleviate any problems).
Then at run time you just evaluate the
splines and pump the coefficients into this
one-step normalizer, and you can be
assured that the results are good.

On the other hand, this isn’t good
enough to use blindly on the results of
quaternion linear interpolation. We can
see that, during our worst-case interpola-
tion from (1, 0) to (0, 1), the closest we
get to the origin is (1/2, 1/2), which gives
us a squared vector length s = 1/2. So for
good results after lerping, we need a fast
normalizer that produces good results all
the way through the interval from s = 1/2
to s = 1.

Retuning the Tangent
Line Approximation

W hen we linearly interpolate quater-
nions, we get a chord that cuts

through the unit sphere; that is, the result-

ing length is always less than 1. So we
don’t need our linear approximation to be
accurate above 1. We can, in effect, slide
the graph of Figure 5 to the left a little bit,
making our approximation more effective
for shorter vectors.

Also, if we are going to permit some
small amount of error � in our result, it
probably makes sense to allow results in
the range 1 � �, instead of just 1 – � as in
Figure 4. So we can scale the approxima-
tion by some small factor. This roughly
doubles the zone of good results.

But this still doesn’t cover the full range
from 1/2 to 1. A simple solution would be
to just check the value of s, and if it is too
low, just compute the answer the slow
way. For most applications, wide-angle
interpolations will be extremely rare, so
the speed hit will be small. But if you need
to be faster than that, there are some
hackish things we can do.

I wrote some code that repeatedly
applies the fast normalization, tuned by
some optimization parameters, in order to
achieve the least error across the interval
we are interested in. Running the numeri-
cal optimizer on this yields xoffset =
0.959066, scale = 1.000311, and a root-
mean-square error of 2.15 � 10–4. This
loop only iterates at most three times over
the interval we care about, so you can re-
phrase the loop as a small series of nested
if statements, which are mostly never
descended into (see Listing 2).

Sample Code

This month’s sample code implements
fast linear interpolation and renor-

malization, as well as the numerical opti-
mization code that computes the best
parameters. Download it from
www.gdmag.com. q

f s s() ()≈ −1
2

3

f s s() ()1 1 1
1
2

1+ − ≈ − −

I N N E R P R O D U C T

m a r c h 2 0 0 2 | g a m e d e v e l o p e r18

LISTING 2. A fast normalizer.eached.

inline float isqrt_approx_in_neighborhood(float s) {

const float NEIGHBORHOOD = 0.959066;

const float SCALE = 1.000311;

const float ADDITIVE_CONSTANT = SCALE / sqrt(NEIGHBORHOOD);

const float FACTOR = SCALE * (-0.5 / (NEIGHBORHOOD * sqrt(NEIGHBORHOOD)));

return ADDITIVE_CONSTANT + FACTOR * (s - NEIGHBORHOOD);

}

inline void fast_normalize(float vector[3]) {

float s = vector[0]*vector[0] + vector[1]*vector[1] + vector[2]*vector[2];

float k = isqrt_approx_in_neighborhood(s);

if (s < 0.83042395) {

k *= isqrt_approx_in_neighborhood(s);

if (s < 0.30174562) {

k *= isqrt_approx_in_neighborhood(s);

}

}

vector[0] *= k;

vector[1] *= k;

vector[2] *= k;

}

F O R M O R E I N F O R M AT I O N
Eberly. David. “Quaternion Algebra and Calculus.”

www.magic-software.com/Documentation/
quat.pdf

Shoemake. Ken. “Animating Rotation with
Quaternion Curves.” Computer Graphics Vol.
19, No. 3 (July 1985).

A R T I S T ’ S V I E Wh a y d e n d u v a l l

A n industry friend of mine recently pointed out
that some projects appear to have everything
they needed to produce a visually stunning game,
but somehow fail to deliver in the end. The walls
in the faultlessly rendered dungeons ooze with

displacement-mapped translucent
slime; the hair on your character’s
chest moves realistically, as the icy
winds of the Nether Kingdoms blow
around him. The Warrior Princess
who’s about to crush you like a
squealing man-worm has buttock
movement so perfect in its execution
that even Jennifer Lopez would be
reduced to tears. Despite all of these
features, however, the game world is
missing something, and is somehow
less than the sum of its beautifully
crafted parts. Why? What magical
ingredient has been overlooked?
Well, needless to say, there are lots
of possibilities, but one area often
ignored and seldom addressed explicitly is that of focus.

What do I mean by focus? I’m not referring to the kind of
focus that relates to lenses, focal length, depth of field, and so
on. While these effects are great in prerendered work, they don’t
really have a place in the real-time rendered world of games at
present. To explain what I mean by focus, it is worth consider-
ing some of the ways in which we make sense of what we see.

Chameleons Have It Easy

N ot only does a chameleon have the ability to adapt the pig-
mentation in its skin to match its surroundings, but it can

also move each of its eyes independently, which gives a
chameleon the ability to look at more than one thing at a time.
This, you may have noticed, is in stark contrast
to the way we humans see things. We are limited
to analyzing a scene one area at a time.

While you’re sitting there reading this arti-
cle, you may want to pause for a second and
glance around at your surroundings. Go ahead
— it’ll help me illustrate something useful. For
the sake of argument, let’s say that you’re read-

ing this article in a crowded cell somewhere in Central
America. (I don’t care how you got there, I’m just glad your
cellmates subscribe to Game Developer.) There’s a prison
guard sitting at a table to your left, building a church out of
spent matches. To your right, a large hairy man is asleep on

the top bunk; as he snores, his
impressive moustache rises and falls
to the rhythm of his breathing.

With just the briefest of glances,
you have been able to establish
many details about your location.
Looking straight ahead, you are
conscious of most everything that’s
in front of you, as your field of
view covers almost 180 degrees.
But this apparent visual awareness
is deceptive.

Look up again, this time straight
ahead. You will most likely perceive
a large amount of detail that
includes most of the things in front
of you, but how much of what

you’re seeing is in sharp focus? The answer: Very little. Staring
at the center of this page, you’ll notice that all but a few words
are actually out of focus. Peripherally, you can see the shapes of
the paragraphs, and you’ll even be able to perceive the size and
spacing of the words, but only the words immediately sur-
rounding your point of focus will be completely discernable. As
this example illustrates, humans have a very small area of high
visual acuity.

So, going back to our jail: what you may have thought was a
brief glance to your left actually consisted of a rapid set of eye
movements, taking in the guard, his table, and his spent-match
church. When you looked to the right, you established that the
sleeping man was hairy, that he had a significant moustache,
and that said facial hair moved in time with his breathing.

w w w . g d m a g . c o m 21

H A Y D E N D U V A L L I Hayden started work in 1987, creat-
ing airbrushed artwork for the games industry. Over the next
eight years, Hayden continued as a freelance artist and lectured
in psychology at Perth College in Scotland. Hayden now lives in
Bristol, England, with his wife, Leah, and their four children,
where he is lead artist at Confounding Factor.

FIGURE 1. Chameleon’s eye.

Focus

You build this level of visual detail by
combining the information accumulated
from tightly focused areas that were
observed one at a time with the less pre-
cise, but far wider perception of every-
thing within the field of view.

The Attention Span of
an Adolescent Fruit Fly

A ttention spans are naturally affected
by a wide variety of variables.

Logically, you’d expect a 16-year-old to
lose interest in a lecture about the history
of coal in northern Czechoslovakia more
quickly than if he were listening to a
stand-up routine by his favorite comedian.
Visually, however, we’re all pretty much in
the same boat when it comes to attention
spans. As I outlined with the preceding
example of the prison, we construct a
visual impression of the world around us
through focusing on a sequence of small
areas, where we observe each area for a
very short period of time.

As far as the distribution of these
brief spells of concentration goes, track-
ing the associated eye movements illus-
trates the areas of a scene that are
important to the viewer. Figures 2 and 3

show a girl’s face and the corresponding
eye tracking showing the way a viewer
might register her face.

Our eyes are rarely still for more than
a few seconds, and it is our eyes’ contin-
ual movement that builds up a detailed
picture of our surroundings and lets us
keep track of any changes, thus reducing
the likelihood that we’ll walk in front of

a truck as we attempt to cross the road.
So, what use is any of this information

to the videogame artist, who’s already
struggling under the burden of reproduc-
ing a two-headed skeletal dragon in fewer
than 47 polygons?

Understanding the mechanisms of how
we perceive the world can help an artist
be more successful building the game
environment, use resources more effec-
tively, and create drama and atmosphere
that enhances the gaming experience.

Giving Good Face

P erhaps the most obvious fact that
arises from looking at the distribu-

tion of eye movements in Figure 3 is the
amount of time we spend looking at the
eyes and mouth. Naturally, when we
look at someone, we concentrate on the
features that communicate emotions
most readily to us, and the eyes and
mouth have the ability to transmit vast
amounts of information very rapidly.
Even from a photograph, we can infer a
great deal about the subject.

The expressions in Figures 4 and 5 are
perhaps slightly caricatured (exaggerating
expressions in a game is often helpful),
but it is still immediately obvious that the
man pictured is angry or disgruntled,

A R T I S T ’ S V I E W

m a r c h 2 0 0 2 | g a m e d e v e l o p e r22

FIGURE 2. A girl’s face. FIGURE 3. Eye tracking.

FIGURE 4. Grumpy man. FIGURE 5. Sad lady.

whereas the woman is either sad or concerned.
The amount of time we spend creating convincing facial

expressions in a game is often quite limited. Together with poor-
ly executed textures that make characters look like their features
have melted, many games overlook the importance of faces. Of
course, exactly how important faces are depends entirely on the
kind of game one is making. The more a character speaks, and
the more time spent on screen in close-up, the more time a play-
er will spend examining a character’s face.

Purely in terms of polygon
count, it is common sense to spend
considerably more of the overall
game budget for a character on the
face than on exquisitely detailed
boots, for example. One of the
many characteristics that distin-
guish a high-quality animated film
from its disposable made-for-TV
counterpart is the effort that goes
into conveying emotion through a
character’s expressions, rather than
just relying on the script.

Game budgets and schedules
being what they are, outside of the
cinematics, many game artists
content themselves with the kind
of facial animation that makes
Schwarzenegger’s Terminator look
like Jim Carrey when it comes to expression. While facial
expression may have no direct bearing on gameplay, it affects
the overall quality of the gaming experience as it relates in par-
ticular to story and characterization. Exactly how much time
can be spent in this area is always a question of resources, how-
ever, and will depend on the individual project.

Feed Me with a Spoon

T he world we create for our game, no matter how detailed
and convincing, is going to be presented to the player

through the medium of the screen. Virtual reality headsets
have (mercifully for those of us with unruly hair) not yet
staged a comeback of any significance, and the rectangle of
our TV or monitor remains the display method of choice. This
being the case, even though a player can adjust the viewpoint
and examine the world as he or she sees fit, it is always viewed
within this frame, and that is where focus begins once again to
play a part.

While linearity in a game is often berated as the evil nemesis
of quality gaming, no matter how complex a web of dynamic
plot adaptation algorithms you employ, your characters will
encounter significant locations in your game one at a time. It is
in these distinct locations that games can often squander their
carefully crafted visuals. A poorly executed setting can fail for a
number of reasons, and it is worth remembering that it’s not

simply the visual impact that will suffer as a result. Game flow,
plot development, creation of tension, and atmosphere are all
equally at risk. Figure 6 shows an example of a scene with too
much detail.

Take, for example, a game that drops players into an unfa-
miliar environment where a great deal of information (visual
or otherwise) bombards them relentlessly as they wander
around trying to discern what they should be doing. This
problem comes down to bad design, but visuals within a game

often compound the problem by
either being unorganized or trying
to create a richly detailed world
that ends up being confusing
because of this detail.

Most artists I know who work
in games gaze at astounding pixel-
feasts such as Shrek or Final
Fantasy: The Spirits Within and
fantasize about the not-too-distant
future, when it will be games that
are pumping out that kind of qual-
ity on the screen. No one knows
when this dream will become a
reality, but when it does, the fact
will remain that a game has to
accommodate a player, whereas a
movie only has to satisfy a specta-
tor. Players need to understand

their locations far more than a spectator, as they have to navi-
gate them successfully, completing tasks and/or fighting enemies
on their way. A huge amount of detail can detract from game-
play if it is dispersed without any regard for focus.

Consider a small child learning to eat. Present him simultane-
ously with a bowl of mashed potatoes, a bowl of fruit puree,
and a cup of milk. Now hand him a spoon and step back. What
is going to happen? In all likelihood, the child will eat very small
amounts of food and will have a great deal of fun distributing
the rest around the room.

Now make the creakingly obvious metaphorical leap to the
player, new to your game, who is presented with an unfamiliar
world of characters, locations, dialogue, weapons, and so on,
and is expected to negotiate them successfully. It’s true that
like a child, the player needs to learn through experimentation,
with failure being an inevitable part of that experience. It’s
also true that the fun of splattering food around the room has
a certain value associated with it. But if the goal is to eat, com-
plete the meal, and be nourished, then supervised feeding, one
spoon at a time, delivers results.

I’m not trying to make an argument for reducing games and
their visuals to simple pedestrian journeys that require very little
thought as the player is handed each stage on a plate. I am try-
ing to suggest that each location within the game should facili-
tate exploration, plot development, and so on, through the care-
ful presentation of information, visually or otherwise.

m a r c h 2 0 0 2 | g a m e d e v e l o p e r24

A R T I S T ’ S V I E W

FIGURE 6. Too much information.

I Understand It, But Is It Pretty?

So, I’ve outlined some reasons for considering the way in
which a scene is constructed with regard to its function

within the game, but the idea of focus is also relevant on a
purely aesthetic level. In this respect, the following two areas
are worth considering: composition and lighting.

Composition

Composition is an area that can easily be overlooked. As a
game is not static and the artist does not control the play-

er’s movements, the camera is out of his control in many cases.
In film, the work of people like Ridley Scott illustrates how
composition can be effectively employed in a moving scene; but
still, these camera moves are constrained by the director, unlike
in a game. Therefore, introducing the player to a new area
through a cutscene or along a specifically designed route can be
the best compromise available. In doing so, features that are
important or attractive can be given prominence in the frame
using a scene’s best assets to maximum effect.

Lighting

Much has been written about lighting in games, but in this
particular context it is worth noting that the use of light

within a scene is perhaps the most effective way of focusing the
player’s attention. Whether it is simply the aesthetics of a particu-
lar location that benefit from lighting that picks out its most
attractive features, or whether some more practical function is
served (such as highlighting puzzle items or exits), a player’s eye
will be drawn to areas of light, in the same way that it will be
drawn to areas of movement. With this in mind, contrast is a
vital tool which not only allows the artist to control the focus,
but to add drama. A bright light shining from within the next
area can look inviting if the player’s current location is dimly lit.

Conversely, heading for an opening that
leads into relative darkness can build appre-
hension quite effectively (see Figure 7).

The Payoff

Until we reach the point where the
power of the platforms for which we’re

making games removes the technical
restraints that hold us back as artists and
designers, creating visuals for a game is
always going to be about making the most
of what we have available. Drawing the
player’s attention to certain areas of each
environment and putting them together in
such a way that they are both clear in their
purpose, as well as visually impressive, can
be tricky. The payoff, however, is a much

smoother gaming experience, with less time wasted in frustrating
and fruitless wandering around a level, as well as visuals that are
focused on impressing the player with detail where it will be the
most effective. q

w w w . g d m a g . c o m 25

FIGURE 7. Heading toward darkness.

m a r c h 2 0 0 2 | g a m e d e v e l o p e r26

A t the 2001 Game Devel-
opers Conference,
LucasArts’ Hal Barwood
gave a talk called “4 of
the 400.” He presented

four rules of thumb for game designers,
out of the (arbitrarily) 400 or more rules
out there. As a friend and former co-
designer of Hal’s, I was intrigued enough
to suggest we put together a project to
try to glean more of the 400, and this
new column represents the first time the
results of that intention see print.

Our objective is to compile a list of
practical rules that can be applied to
help create better games, not just
abstract observations of similarities
among designs, or academic theories
with no basis in the craft of game
design. For each of these columns, we
will include some kernel of design
knowledge that you can implement right
away and improve by some measure the
design of your games.

The format for a rule is shown below,
with a sample rule — “Provide clear
short-term goals” — to get us started.
Each rule will have five components, out-
lined further below. Until there is an
existing database of these rules, it will be
harder to list rules that it trumps, or is
trumped by, but over time such cross-ref-
erencing will become easier. For this
month, I’ve referenced other rules that
should be pretty obvious to most game
designers.

1. Each rule should be stated in a concise,
imperative statement and paragraph:

Rule: Provide clear short-term goals.
Always make it clear to players what
their short-term objectives are. This can
be done explicitly by telling them direct-
ly, or implicitly by leading them toward
those goals through environmental cues.

This avoids the frustration of uncertain-
ty and gives players confidence that they
are making forward progress.

2. The rule’s domain of application. This
includes both its hierarchy — for exam-
ple “a rule about rules,” “a rule about
the development process,” or just “a
rule about games themselves” — and
genre, for example, “applies only to
RTS games or online games.” This
month’s rule is a basic rule of game
design and applies to all games directly.

3. Rules that it trumps (over which this rule
takes precedence). It trumps the rule
“emphasize exploration and discovery,”
because players should not have to dis-
cover their short-term goals. If discovery
is warranted, it should be to discover the
tools or information needed to achieve
the clear, short-term goals, not to discover
the goals themselves. It also trumps “pro-
vide an enticing long-term goal,” as it is
more important to have players know
what to do next than to know simply that
they have to kill the evil wizard/save the
world/rescue the princess.

4. Rules that it is trumped by. It is
trumped by the rule “make the first play-
er action in a game painfully obvious.”
However, often that first obvious action
in a game — read the paper, click on the
wise old man, shoot the monster —
should trigger an explanation of the first
short-term goal beyond that.

5. An example or two from well-known pub-
lished games where this rule is observed.
When Hal Barwood and I designed INDI-
ANA JONES AND THE FATE OF ATLANTIS, we
gave the player explicit goals throughout
the game by having the supporting char-
acters guide the objectives. The initial
theft of an artifact by a Nazi agent led the
player (in the role of Indiana Jones) to
Madam Sophia, who in turn presented
Indy with his next objective, and so on.
One short-term goal, such as “convince
this character to give you an artifact,”
often triggered conversation with the
character that led to the next goal, like
“find the lost Dialogue of Plato.”

Shigeru Miyamoto uses clear, short-
term goals throughout all of his games.
In SUPER MARIO 64 he uses explicit
goals such as characters or signs that
tell you how to move, jump, or swim,
which are adjacent to appropriate
obstacles. Other goals are implicit ones,
as when you’re left to explore the land-
scape at the beginning of the game with
a large castle dominating the landscape
and a drawbridge leading right to it. He
also uses strings of floating coins to pick
up as implicit goals that help lead the
player into attempting jumps and using
catapults or cannons pointing toward
the coins.

More recently, Bungie’s HALO does an
admirable job of using the landscape
itself and suggestions from both an AI
companion and fellow Marines to chan-
nel players toward the next short-term
goal. q

The 400 Project

n o a h f a l s t e i n

N O A H F A L S T E I N | Noah is a 22-year veteran of the game
industry. You can find a list of his credits and other information at
www.theinspiracy.com. If you’re an experienced game designer
interested in contributing to The 400 Project, please e-mail Noah
at noah@theinspiracy.com (include your game design background)
for more information about how to submit rules.

B E T T E R B Y D E S I G N

Even if you’re not your company’s
“audio guy,” our new monthly game
audio column will give you practical
audio tips and ideas on how you can
influence your games to have great
soundtracks.

T here are more important
things in the world than
sound for games. The smell
of bread. Game design.
Gas in the car. Surfing.

Dating. War. Prayer. Fishing trips.
Often the worst audio happens when

we forget how unimportant audio is. A
sure sign that a band’s performance is
going to be awful, for instance, is if you
happen to catch the band members talk-
ing about the upcoming show as “the
most important gig of our lives.” Run
from that one. Don’t even take the free
tickets.

We have other sayings in the music
business that reflect and amplify this wis-
dom. On The Muppet Show, George
Burns once advised Rolf, the piano-play-
ing dog, to “play like you’re not getting
paid.” We often find it helpful to use the
phrase, “It’s only sound, it’s not like
there are any lives at stake.”

However, I never trust a philosophy
that isn’t traveling with its equal oppo-
site. “Haste makes waste” must be coun-
tered by “A stitch in time saves nine.”

Therefore, I am compelled to state
with equal conviction that there is noth-
ing in the world more important than
sound for games, if for no other reason
than because it’s my chosen line of work,
and I’m certainly not in it for the money.

Perhaps this apparent contradiction is
best reconciled by thinking that anything
worth doing is worth doing right, but it’s
only by delving into the work that we
slowly figure out what “right” is. As we
spend more and more years learning to
do something, we discover a basic truth:

if we understand any one thing thorough-
ly, we can understand everything. I chose
audio, you might have chosen software
engineering or level design, somebody else
might have chosen automobile racing.

What do we know after all those years
of experience? We learned that consider-
ing audio either completely unimportant
or completely all-important leads to mas-
sive screw-ups.

Problems that arise when we think audio
is not important:

• Tools don’t get developed to allow for
efficient sound creation and integration.

• Audio doesn’t get onto the produc-
tion timeline.

• A friend-in-a-band gets hired to do
the audio.

• There’s no sound specifications for
play-testing, therefore audio is not play-
tested.

• Enough of this, you’ve heard it all a
million times.

Problems that arise when we think too
much of our audio:

• We get the highly unattractive “Most
Important Gig of Our Lives” syndrome.

• We spend so much on licensed
“famous-person music” that the budget
only allows for a small quantity of music
— which is then repeated and repeated
and repeated and repeated.

• When a producer doesn’t take
chances, good musical “accidents” and
innovation are impossible.

• Out of fear and theory rather than
ears, we hire musicians and sound design-
ers from the TV and film industry, who
must then learn interactivity on the fly.

• Overblown audio budgets can
(although I’ve only seen it once) break a
project.

• Insane and elaborate interactive
music-integration schemes can die half-
ripe on the vine.

• Over-attention to audio can create
very unbecoming situations. I once heard

a good friend and a great producer brag
about how he had thrown away two-
thirds of the soundtrack to a game. Even
if that two-thirds was substandard, I bet
the player would have welcomed it after
the 20th hour of gameplay.

By simultaneously holding the impor-
tance and the unimportance of audio in
our minds, we can lean into the art of
audio for games with every ounce of our
earnestness, and not a bit of that atten-
tion will be wasted. We can take control,
but still take chances. The audience hears
it and feels it, we improve our skills and
hone our tools, knock out our producers,
blow away the investors, and perhaps
even show our ideas and our work to
thousands of players. We can raise the
level of excellence of our industry, our
community, and our craft. I feel like I got
to do it a couple of times on titles such
as LOOM, WING COMMANDER, and THE

7TH GUEST. I think Jeremy Soule did it on
TOTAL ANNIHILATION, Michael Land did
it on THE DIG, Peter McConnell did it on
GRIM FANDANGO — there are a bunch
more, and I hope that you’ve been on, or
are going to be on, one of the teams that
is responsible for one of these beautiful
products, or better yet break new ground
with a future team and project. It feels
really good, and sometimes there’s money
in it. q

N E X T M O N T H : Aaron Marks,
author of The Complete Guide to Game
Audio, talks about audio mastering for
games.

The Unimportance
of Audio

S O U N D P R I N C I P L E S t h e f a t m a n , g e o r g e a l i s ta i r s a n g e r

T H E F A T M A N |
George Sanger is Game
Developer’s audio advi-
sor. Visit his one-of-a-
kind web site at
www.fatman.com.

m a r c h 2 0 0 2 | g a m e d e v e l o p e r28

A s game developers, we are
continuously challenged
to create richer and richer
game worlds. Whether we
are developing a 16-player

multiplayer game, or a 10,000-player per-
sistent world, making richer game worlds
efficiently means we must be increasingly
intelligent about how we distribute the
ever-changing state of our game objects.
This problem is further complicated by
the diversity of the network connection
characteristics of each player.

In this article, I’ll describe a technique
for managing the distribution of object
state using an encapsulation mechanism
called an object view. Object views pro-
vide a means for managing the distribu-
tion of object state on a per-object basis
that is flexible and transparent to the
game object. In order to describe what
they are and how they are used, we’ll
also peer into the workings of a distrib-
uted-object system designed for multi-
player games.

Net Profit, Net Loss

A s with many other areas of comput-
ing, some of the most significant

problems inherent in distributing simu-
lations have to do with resource man-
agement. In the case of networking, our
primary concerns are with the limita-
tions of the game clients and especially
the nasty problem of controlling band-
width utilization.

For most subscription-based massively
multiplayer (MMP) games, bandwidth
limitations are not based upon physical
limits; rather they are based upon band-

width costs. This means that proper band-
width management translates into real
dollars in a very big and measurable way.

Other techniques, such as those for
masking lag and smoothing movement,
are also essential for creating great multi-
player games. But for these to be effec-
tive, accountability must be had in the
underlying implementation for the band-
width limitation, whether constrained
artificially or by the physical medium
itself. After all, the bits have to actually
arrive at their destination before they can
do any good. Proper bandwidth manage-
ment isn’t just a networking problem, it’s
a whole-game problem.

But what does all this accountability
have to do with object views? Before we
get into the nuts and bolts of object
views, let’s talk a little about why we
need them.

So Many Objects,
So Little Time

A t Monolith, we have been using
object views as a fundamental con-

struct in the development of our distrib-
uted-object system. A distributed-object
system is a game system that manages
the housekeeping chores related to the
distribution of object state. It is the prin-
cipal user of the relevant-set creation
mechanisms, which in our implementa-
tion are provided by the world represen-
tation (see Figure 1). Relevant sets are
collections of objects whose state changes
need to be distributed immediately (if not
sooner) if we are to ensure that a remote
client’s view of the simulation matches
the actual state of the simulation. The

topic of relevant-set generation is so large
that it warrants its own separate discus-
sion, so I won’t be delving into it very
much here.

In multiplayer games, we generally asso-
ciate a connected player-client with a sin-
gle, player-character-centered view of the
simulation. Each client only needs to ren-
der a limited portion of the game world at
any one point in time. Consequently, the
state of all the game objects that are rele-
vant to the rendered portion of the simula-
tion must be up-to-date.

Direct data management vs. RPC.
Distributed-object system implementa-
tions for both games and distributed sim-
ulations typically manage distribution of
object state data rather than simply pro-
viding a general-purpose remote proce-
dure call (RPC)-based mechanism. Why?
The answer is rooted not only in our fun-
damental need to make the best possible
use of the available bandwidth, but also,
as we will see later, in our need to design
a system that makes it as simple as possi-
ble for us to specify exactly how we want
the component parts of our game objects
to be distributed.

The responsibilities of a distributed-
object system are conceptually quite simple:
1. Obtain a relevant set of objects for a

client.
2. For each object in the relevant set, dis-

tribute any state that has changed
since the last time that object was dis-
tributed to that client.

3. Repeat the preceding steps for each
client.
As simple as the system seems concep-

tually, the devil really is in the details.
Even if we are strictly using visibility-

Distributing Object State for

Networked
Games Using Object Views

N E T W O R K I N G

m a r c h 2 0 0 2 | g a m e d e v e l o p e r30

r i c k l a m b r i g h t

w w w . g d m a g . c o m

based relevance determination, the full
relevant set for a given client at any
instant can be enormous. As an exam-
ple, consider what happens when you
direct your player-character to stroll up
to the top of a nearby hill. As you crest
the hill, the number of visible objects is
likely to increase dramatically. Unfor-
tunately, the amount of available band-
width remains somewhat constant over
time, so the distribution of objects in
the relevant set must be managed care-
fully, using prioritization techniques that
allow the most important state to be
sent immediately and the less important
state to be transmitted as soon as possi-
ble thereafter.

Multiplayer game objects. We’ve dis-
cussed that a key functionality of the dis-

tributed-object system is identifying, pri-
oritizing, and selecting game objects from
relevant sets, restricting the set of game
objects to only those that need to be dis-
tributed. But only some of the compo-
nents from a given object will need to be
distributed. What are these components?
To answer that, let’s take a look at a sim-
ple game object.

Figure 2 shows the basic component
parts of a simple game object that you
might find in a generic multiplayer game.
The object consists of three major groups
of component items:

• Visual and display-related items.
These are component items related to the
visual state of the game object, including
movement and position information.
They very much need to be distributed.
For player-character objects, this includes
values that may only be displayed on a
HUD (heads-up display) of the player
controlling that character.

• Game logic and AI-related items. These
are component items related to the game
state of the object. In a purely server-
based simulation, these items would sel-
dom (if ever) be distributed to clients,

Ill
us

tr
at

io
n

by
 C

la
ud

ia
 N

ew
el

l

R I C K L A M B R I G H T | Rick is director of online technology for Monolith Productions
in Kirkland, Wash., where he is leading an amazing team of developers working on a soon-
to-be-announced massively multiplayer title. In his copious spare time, he enjoys composing
ambient and trance music, and teaching Python to his twin sons.

31

but could be distributed to a trusted enti-
ty, such as another server.

• Housekeeping items. These are com-
ponent items, such as reference counts
and pointers to internal structures. They
are not distributed.

As our player-character roves around
within the simulation, it will encounter
new game objects, spend a little time
hanging around near them, leave the
area, and very likely reencounter many of
the same game objects sometime later on.
Since we only want to be sent updates
for the items that have changed since the
last time we encountered the object,
something will have to remember the
state that the object was in the last time
we encountered it. To complicate mat-
ters, one client may have very different
distribution requirements from another
client for the same object. This is where
object views come in.

Object Views

An object view is an instance of a
custom class that knows how to

access one or more components of a
game object and track any changes to
those components. Every object view is
attached to a game object, and every
object view also has a remote counter-
part that is attached to a game object
with a similar set of components. As

changes occur to
the states of the
tracked compo-
nents, the object
view is responsi-
ble for communi-
cating those
changes to its
remote counter-
part. The counter-
part is then
responsible for
applying those
changes to the
game object to
which it is
attached.

The distributed-object system itself is
designed to interact with object views,
not game objects. How the object view
interacts with each game object is strictly
a contract between the object view and
the game object. The distributed-object
system only distributes object views.

To access the game-object components
(given a reference to a game object) effi-
ciently at run time, each object view
instance is created with full knowledge of
which components of the game object it
needs to track and how to access them.
Hence, implicit in the nature of the
object view is the notion of a binding to
the game-object components that the
object view will track.

The abstraction from the game object
that the object view provides to the dis-
tributed-object system is one of its most
significant benefits. An object view and

its counterpart can each be bound to a
different type of object and still

communicate with each other
for managing state distribu-
tion. This eliminates the
requirement to use identical
objects on both the client
and the server. For us, this

was an important design consider-
ation, since our client-side objects

differ significantly from their serv-
er-side counterparts.

Object view operations. Figure 3
shows how object views interact
with game objects and the distrib-
uted-object system at a high level.

Note that there is a one-to-many rela-
tionship of object views to game objects
on the server, and a one-to-one relation-
ship on the client. In client/server archi-
tectures, servers maintain connections to
many clients, but the client typically has
only one connection to a server.

The object view functions as a local
proxy that remembers the state of each
game object’s distributed components
from the last time it was distributed to a
particular client. Since state distribution
will only occur when game objects are
relevant to a client, the state of each
object view is potentially unique.

When an object enters the relevant set
for a client, the distributed-object sys-
tem first locates the client-specific object
views for that game object, creating a
new one if one does not already exist.
Newly created object views on the serv-
er represent objects that will need to be
created and fully initialized on the client
before they can be rendered.

N E T W O R K I N G

m a r c h 2 0 0 2 | g a m e d e v e l o p e r

FIGURE 2. A simple game object.

FIGURE 1. Major game components involved with object state distribution.

World
Representation

Relevant Set

Distributed
Object
System

Networking

Client

Visual/display-related items

Game logic/AI-related items

Housekeeping items

32

Either way, the process of determining
exactly what state updates are needed
and how the determination is made is
strictly a contract between the object
view and the game object. In order to
ensure that the object view is granted the
flexibility it needs, the distributed-object
system requires every object view to pro-
vide two basic operations: pack-to and
unpack-from.

The pack-to operation is called when
the object view needs to be provided an
opportunity to distribute its state. The
object view determines whether or not
any state updates are required, and is
then responsible for marshaling those
updates directly into the transmission
buffer, packing them as tightly as possible
in the process. Only the sending object
view and its receiving counterpart on the
other end of the connection can be trust-
ed to understand the format of this data.

The object view’s unpack-from opera-
tion is called up when state updates are
received. This is typically a simple process
of analyzing the received data and apply-
ing the updates to the appropriate com-
ponents of the target game object. This
also turns out to be a great time for an
object view to provide event notifications
to the game object — or to anywhere else

in the game — whenever one
or more specific components
are updated.

A third basic operation
that each object
view should pro-
vide is solid diag-
nostics. Object
view operations are
deliberately mysteri-
ous to the rest of the
system components, and
only the object views themselves
may understand the format of the
data they utilize to communicate state
updates. Because of this, marshaling
errors will have downstream effects that
can be difficult to debug without good
diagnostics.

Tracking state changes. When it comes
time to distribute the state of the game
object, each object view will need to
determine whether the components it is
tracking have changed since the last time
the pack-to operation was called. This
requires the object view to remember
something about the previous state of
those components. There are a variety of
techniques that the object view can utilize
to track state changes; invasive techniques
require special support from the game

objects,
whereas game

objects operate
obliviously to noninva-

sive techniques.
The determination of which tracked

components have changed state will nor-
mally take place during the pack-to oper-
ation, and while the game object remains
relevant for a client, the pack-to opera-
tion for its views will be called frequent-
ly. For this reason, the pack-to operation
must be very efficient.

The most straightforward technique is
for the object view to maintain its own
copy of the game object components that
it is tracking. If sufficient memory is
available and the tracked items can be
compared very efficiently, this noninva-
sive mechanism is hard to beat. Since the
exact previous state of each variable is
always available, the object view can be
certain that it is only distributing state
that differs on the target.

Adding a change counter to the game
object is an evasive technique we have
found particularly useful. We use this for
complex objects that are tested frequently
but whose state changes relatively infre-
quently. Each object view also has a
change counter, and each time the state is
distributed the view’s counter is set to the
current value of the game object’s count-
er. By comparing the two counters, a very
fast check can be made to see if any new
changes have occurred. This technique
could be used as an optimization for any
object that is tracking more than a few
items, but it does require that each game
object be modified to ensure that its
change counter is updated every time any

N E T W O R K I N G

m a r c h 2 0 0 2 | g a m e d e v e l o p e r34

O.V.

O.V.

O.V.

DObs

Server
Game
Object

Server
Object
Views

Server
Distributed
Object
System

O.V.DObs

Client

O.V.DObs

Client

O.V.DObs

Client

(Network)

Client
Game
Object

Client
Distributed
Object
System

Client
Object
Views

FIGURE 3. Object views in action (client/server).

of the tracked components are updated.
Another invasive technique that we

have seen utilized involves maintaining a
bit set of change flags. This technique
requires that the game object be
designed to manage a bit set that is
stored with the game object itself. Each
bit in the set corresponds to a distrib-
uted component part. The object view
keeps its own copy of the bit set and
checks to see if its own copy matches
that of the game object during the pack-
to operation, in order to determine
which component parts have changed.

Unfortunately, this technique suffers
from three drawbacks. First, you must
ensure that the corresponding bit is set
every time a distributed component vari-
able is updated. Second, if a
component switches back
and forth between a small
set of states, then there is a
significant chance that a
value marked as changed
would be sent to the target
object even though it actual-
ly switched back to being in
the same state as the target.
This process wastes band-
width. The third drawback
is the most serious. The
“changed” component bits
on each object need to be
cleared as soon as possible
for optimal distribution, but
they can only be safely
cleared when state has been
distributed to all clients.
Because of that fact, this
technique is really only
practical for small-scale sim-
ulations where all clients
need to be kept continuously up to date
with the current state of all game objects.

Directionality. In client/server architec-
tures we normally don’t distribute object
state from clients to servers for game
objects other than the player-character
object. Having multiple clients send com-
peting updates to the same game object
on a server might seem like a very strange
thing to do in your game, but it might
make complete sense for others, especially
in peer-to-peer architectures. Though we

tend to be quite security-paranoid when
developing MMP games, there are no
hard-and-fast rules. If sufficient safe-
guards are in place, any client could man-
age state updates and distribute those
updates to a server or to other clients.

Complex objects. Game objects are typ-
ically hierarchical in nature. Any game-
object component may itself be an object
with its own component parts. This
makes managing access to the items
slightly more complicated than dealing
with, for example, a set of items that are
primitive types. You can generate or
manually create custom object views for
every game object and access each of the
subcomponent items directly, one at a
time. But if the same constituent objects

are used as subcomponents in a wide
variety of game objects, it is possible to
implement your object views in a way
that allows you to reuse a lot of code. To
do this, you will need to create object
views for the full range of component
item types used by your game objects.
This includes all object types and primi-
tive types. Once this is done, complex
objects can be managed by creating hier-
archical object views that mirror the
component hierarchy of the object.

Lifespan of an object view. Over the
course of time, a player will potentially
encounter tens of thousands of objects in
a large simulation. A server would need to
maintain all the object views permanently
for every game object if it wanted to avoid
the expense of re-creating them. This is
memory-intensive not only for servers, but
also potentially for clients as well.
Fortunately, this problem can be handled
fairly effectively using an active cache of
object views. Old object views are then
automatically purged from the cache over
time if the game objects they track are not
reencountered for extended periods.

Using Object Views

A t the instant an object
view needs to be cre-

ated, a perfect opportunity
exists to make some intelli-
gent decisions. By checking
the connection characteris-
tics of the client, the distrib-
uted-object system can select
an object view that is tai-
lored for supporting specific
clients. This also means that
clients with unique commu-
nications requirements could
conceivably coexist in the
same game environment,
sharing the game objects
with clients that have com-
pletely different communica-
tions requirements. This
could, for example, allow a
client on a handheld device
to share the game world
with clients connected via a
PC or game console.

Multiple object views, movement, and
predictive contracts. The game objects in
the preceding examples had only one
object view bound to them. This was
strictly for simplicity. In fact, the ability
to divide the distribution responsibilities
for an object’s components into multiple
object views is a powerful feature.

One use of multiple object views is for
prioritizing game-object state related to
movement. Because of its visual impor-
tance, movement-related object state is

N E T W O R K I N G

m a r c h 2 0 0 2 | g a m e d e v e l o p e r36

usually distributed at a higher priority
than any other object state.

When the distributed-object system
creates or selects the object views for a
game object, it utilizes a priority associat-
ed with each view to determine the initial
order in which the object view set will be
processed. By giving movement-related
components their own object view and
giving movement-related object views
highest priority, movement-related infor-
mation for all of the objects in the rele-
vant set can be distributed first.

Object views are also natural places to
handle prediction. In addition, managing
movement prediction in the object view
makes it possible to utilize different pre-
dictive contracts for clients with differing
connection characteristics. For example,
you could utilize a prediction technique
for a client on a modem connection that
was completely different from one with a
broadband connection simply by select-
ing the appropriate type of object view
when one needs to be created.

Name that tuning. Previously I men-
tioned that one of the reasons that we
want our distributed-object system to
manage distribution of our state data was
because of our need to design a system
that would let us easily specify how we
want our game objects to be distributed.
Applying distribution attributes to the
data is necessary if we are to help tune
how object state is distributed at run time.
Tuning is a critical responsibility that is
shared between the relevant-set mecha-
nism and the distributed-object system.

To try to maintain a steady flow of
traffic through the network, a measured
allotment of bandwidth is calculated for
each cycle. If a cycle exceeds its allot-
ment, that affects the bandwidth allot-
ment for the next cycle. When allotments

are exceeded,
the relevant-
set mechanism
must trim the
set of objects to
those that it
determines are
the most urgent
to distribute. If
the relevant-
set mechanism
undercompen-
sates (that is,
provides an
excess of objects to distribute)
for the available bandwidth on that
cycle, the tuning support mechanisms of
the distributed-object system and object
views come into play. This also holds
true when bandwidth is being underuti-
lized. In this way, the two systems work
together continuously to make optimal
use of bandwidth.

The ability to tune how an object’s
state is distributed at run time is very
important. By providing some specific
information about how we want each
game object to be distributed, we should
be able to tune the system for optimal
distribution. Here are some useful attrib-
utes that an object view can use for tun-
ing how individual components, or
groups of components, are distributed:

• Priority. A distribution priority can be
set for each component item to designate
which items are more important to dis-
tribute. When an object view is faced
with needing to reduce the amount of
bandwidth being consumed, it can select
from the highest-priority items. As long
as the object remains in the relevant set,
lower-priority items will eventually be
distributed during later cycles.

• Reliability. The ability to specify
whether or not a component item’s state
should be distributed reliably (guaran-
teed) or if it can be distributed unreliably
(not guaranteed), is a significant tuning
option. When eligible for distribution,
unreliable items will only need to be sent
once. Delivery of the state update is never
confirmed, so item state will not be pres-
ent in case of a delivery failure. This
attribute can have a great impact on over-

all bandwidth utiliza-
tion in times of signifi-

cant packet loss, but it
must be used carefully. It
is typically used for items
that change very frequent-
ly and when a missed
update has minimal
impact. An object view
could also choose to set
the reliability attribute
conditionally at run time.

• Group. Some compo-
nent items will need to be

distributed as a unit with others. The
group attribute specifies that on a given
cycle, unless all the member items of the
group can be distributed, none should be
distributed.

• Direction. For object views that sup-
port bidirectional state updates, the
direction attribute can ensure that an
object view only works in one direction.
For example, the object view for a play-
er object might need to be bidirectional
when it connects to the client represent-
ed by that object, but unidirectional
when distributing state belonging to a
“foreign” player representing a different
client. This can also be a security con-
sideration on a server, preventing
hacked clients from using bidirectional
object views illegitimately.

• Initialization only. Components such
as object IDs that will not change during
the lifetime of the object can be tagged
with the initialization-only attribute. After
the initial distribution, these items will not
need to be tracked by the object view,
resulting in greater processing efficiency.

You should also provide a declarative
means of assigning attributes to the dis-
tributed components of the game object.
Ideally, this is part of the definition of
the game object itself. A custom scripting
language capable of defining game
objects can build distribution-attribute
assignments directly into the language
itself. UnrealScript, for example, provides
a replication statement, where delivery-
related attributes can be specified for
individual items of the class. In our own
implementation, these attributes are
assigned when the game object is defined

N E T W O R K I N G

m a r c h 2 0 0 2 | g a m e d e v e l o p e r38

A C K N O W L E D G E M E N T S

I would like to thank Ryan O’Rourke and Jeremy

Friesen for their immense contributions in the

subject area during the development of our

own distributed-object systems, and for their

assistance in reviewing this article.

using an internal compilation tool that
generates source code for both the game
object and its object views.

Where dragons dwell. Until a reliable
transport protocol with predictable
delivery is available over the Internet,
simulations with time-critical delivery
requirements will continue to use unreli-
able protocols, such as User Datagram
Protocol (UDP).

Many complications can arise when
object state is distributed using unreliable
communications. Ideally, we want to use
our limited bandwidth for transmitting
only the most recent state of our game
objects. Retransmission, due to packet
loss, of old packets containing old state
is a very poor way to solve the problem.
Here too, object views have proved to be
a very useful tool. In addition to their
component-tracking responsibilities, they
can also keep track of the success — or
failure — of the delivery of state infor-
mation to their remote counterparts.

How do they do this? I’ll leave the
answer as an exercise for a rainy day.

The View, the Proud . . .

I n this article, I’ve discussed how
object views can be utilized as part

of a distributed-object system to help
encapsulate management of the distribu-
tion of object state. We also looked at

how they can be used in the implementa-
tion of a distributed-object system.

At Monolith, we have found object
views to be a very valuable tool in the
implementation of our own distributed-
object system. Object views have provid-
ed us with an extraordinary amount of
flexibility, allowing us to create simple-
yet-elegant solutions to a variety of the
problems we needed to solve. q

w w w . g d m a g . c o m 39

F O R M O R E I N F O R M AT I O N

Frohnmayer, Mark, and Tim Gift.

“The TRIBES Engine Networking Model.” In

2000 Game Developers Conference

Proceedings. pp. 191–207.

www.gdconf.com/archives/proceedings/

2000/frohnmayer.doc

Lambright, Rick. “Intelligent and Efficient

Multi-Player Networking” (LithTech

Development System 3.0 Whitepaper).

www.lithtech.com/general/pdf/

IntelligentMult-Player.pdf

Lipkind, Ilya, Igor Pechtchanski, and Vijay

Karamcheti. “Object Views: Language

Support for Intelligent Object Caching in

Parallel and Distributed Computations.” In

Proceedings of Object-Oriented

Programming, Systems, Languages, and

Applications (OOPSLA ‘99). pp. 447–460.

www.cs.nyu.edu/vijayk/papers/

view-oopsla99.pdf

LithTech Inc. LithTech Development System

Programming Guide, Version 3.1. Kirkland,

Wash.: LithTech Inc., 2001.

Sweeney, Tim. “Unreal Networking Architect-

ure.” Epic MegaGames, 1999.

http://unreal.epicgames.com/Network.htm

O ne of the art pipeline
issues we’ve sought to
resolve in developing
AGE OF MYTHOLOGY is
reducing or eliminating

the time it takes for artists to see their
content in-game. On previous games, the
delay between an art revision’s completion
and its appearance in-game could range
from hours to days. This delay meant that
reviewing the in-game look for a particu-
lar art asset could take a long time. By
creating a system where the artist can
review in-game revisions in near real time,
we’ve made the art creation and in-game
review process significantly faster and sim-
pler. In order to achieve this, we set about
integrating our own game engine directly
into Discreet’s 3DS Max.

In the first of this two-part series, I’ll
discuss the issues and problems that have
to be solved in order to integrate a
Direct3D-based game engine into 3DS
Max 4. I’ll demonstrate how this is
accomplished using a sample Direct3D
model exporter and viewer running
inside Max. In the second part of the
series, I’ll examine the same issues and
problems in integrating a Direct3D-based
game engine in Alias|Wavefront’s Maya
4, and discuss the trade-offs between
implementing both systems. Throughout
this article, references to Max will be
equally applicable to Maya, except for
those cases where the discussion involves
specific Max SDK programming.

Regardless of whether we’re integrat-
ing with Max or Maya, there are three
main issues that have to be resolved in
order to integrate a game engine into the

modeling package: getting the game
engine, or at least the in-game renderer,
to run in a viewport; determining how
and when the game viewport should be
updated with the in-game view of the
scene; and obtaining keyboard, mouse,
or other input to the game when running
in the viewport.

The largest of these challenges is likely
to be getting the game to the point of
running as a plug-in for Max (or Maya)
in the first place.

From Game to
Game Plug-In

E ven if your game engine runs flaw-
lessly as a stand-alone executable,

three main challenges await in order to
make it able to be run inside a Max
viewport (Figure 1). The largest of these
tasks is converting the game engine into
a Windows Dynamic Link Library (DLL)
so that it can then be converted into a
Max plug-in.

Making the conversion of the game
engine a two-step process — first into a
DLL, and then into a full-fledged plug-in
— significantly simplifies the debugging
process. This allows you to make sure
the game functions properly as a DLL
first, and, with that completed, worry
about getting the game to run in the
viewport within Max.

The actual conversion of the game

engine into a DLL requires changing var-
ious compiler options as well as replacing
the WinMain function. In an executable,
WinMain typically contains a message loop
that drives the processing of Windows
messages and the game itself. Now that
the game is running as a DLL, a separate
thread will be needed to drive that pro-
cessing. The accompanying source code
project, SkinnedMeshDLL (available
from the Game Developer web site at
www.gdmag.com), is a version of the
Microsoft Direct3D sample .X file viewer
program SkinnedMesh, converted from a
stand-alone executable into a DLL
(Figure 2).

The new DLL version of SkinnedMesh
exposes two functions: startGame and
stopGame. These start and stop the running
of the SkinnedMesh sample program,
respectively. startGame calls the helper
function createRenderWindow, which initial-
izes the Direct3D framework and creates
a thread (ThreadProc function) that will
drive the framework’s update function.
stopGame simply posts a WM_CLOSE message
to the Direct3D framework to tell it to
shut down. The DLL can be run using
the included unit test program
unitTest.exe (Figure 2).

Now that the game is being driven by
two threads — the one from the calling
application and the DLL’s own update
thread — care must be taken to make
sure that the game doesn’t try to shut

Integrating Your Game Engine
into the Art Pipeline, Part 1:
Integrating with

3DS Max

E N G I N E I N T E G R A T I O N h e r b m a r s e l a s

m a r c h 2 0 0 2 | g a m e d e v e l o p e r40

H E R B M A R S E L A S | Herb is a game programmer at Microsoft’s Ensemble Studios.
He is currently working on AGE OF MYTHOLOGY. In his spare time he’s building a molecular-
sorting interocitor, and wondering how much Xbox really does weigh. He can be reached
at herbm@microsoft.com all hours of the day and night.

down while still rendering, or resize the
rendering window in the middle of an
update. To guard against this, critical
sections have been added around the ren-
derer update, application shutdown, and
window resizing so that the application
doesn’t inadvertently try to destroy a
Direct3D resource that’s in use or use
one that’s already been destroyed.

For safety’s sake, the Direct3D device
creation has also been changed to inform
Direct3D that the application is running
in multiple threads. This flag can be
removed if the application is vigilant
about managing its own critical sections,
but it’s easy to forget and is added in for
completeness of the sample code. In prac-
tice, most games will need to handle their
own multi-threaded state with critical
sections anyway. In this case it should be
relatively easy to handle critical sections
around Direct3D API calls as well. Han-
dling this on the application side will
remove the need for the Direct3D thread-
ing flag to be passed during device cre-
ation, and can result in some speed
increase, as Direct3D won’t have to man-
age its own critical sections. It should be
noted, however, that this can cause seri-

ous messages from the debug version of
Direct3D relating to the fact that API
calls are being made from multiple
threads, even though the multi-threading
flag wasn’t passed. In this case, this is
perfectly fine and can be ignored.

The second issue that must be
addressed is global variables. When the
game ran as an executable, the global
variables were initialized when the exe-
cutable was loaded, the game ran, and
then the executable was unloaded when
the game ended.

Now that the game is converted to a
DLL, the game can be run multiple times
after being loaded. However, the global
variables are only initialized to default val-
ues during the initial loading. Because the
global variables are in an unexpected state,
the game’s shutdown code will need to put
global variables back into a known state
when the game shuts down so that the
next start-up of the game doesn’t crash.

The final problem is to make sure that
the main game window can run as a
child window. As most games run their
main windows as top-level, parentless
windows, window-creation flags, mouse
positioning, and input code may need to

be changed to take into account the fact
that the game window will be a child
window inside Max.

Once the game itself is running as a
DLL, the next step is to make the conver-
sion into a Max plug-in that can run in a
viewport.

Getting the Game In

C onverting the game DLL into a Max
plug-in is a relatively straightfor-

ward process of changing the file exten-
sion from .DLL to a recognized plug-in
type from Max (such as .GUP) and
adding a few well-known functions that
allow Max to load the plug-in correctly.
What kind of plug-in does this need to
be? That is the main question.

While Max 4 does add some support
for Direct3D 8, the support is only avail-
able in a few very specific places (Figure
3). Direct3D pixel shaders are only sup-
ported as textures in the material system
(ID3D8PixelShader), and a single vertex
shader is available in the modifier stack
(ID3D8VertexShader). Unfortunately, neither
of these will help us render a full object,
let alone an entire scene. There’s also the

w w w . g d m a g . c o m 41

FIGURE 1 (left). Composite screenshot show-
ing the three main interface components of
the sample integrated Direct3D viewer run-
ning in Max. (1) Direct3D viewport itself, and
its location in the extended viewport menu.
(2) Tools menu with Direct3D viewer and
game options. And (3) export options that are
used to display the model in the Direct3D
viewport.
FIGURE 2 (above). The Direct3D .X file viewer
running as a DLL can be started and shut
down repeatedly from the unit test application.

Direct3D graphics window
(ID3DGraphicsWindow) that Max uses for
rendering its ActiveShade viewport, but it
doesn’t expose any functionality that will
allow us to use it from our own plug-in.

Because Max doesn’t provide the
access required to use its own Direct3D
device, the game viewport will have to
manage its own Direct3D device and
window. This can be done by creating an
extended viewport (Figure 4). This
method will also simplify the Max inte-
gration because there will be no need for
Max SDK calls to be placed in the game
engine itself. All the Max integration can
exist as a very thin layer that loads and
starts the game DLL.

Max plug-ins that function as extended
viewports fall into the category of General
Utility Plug-ins (GUPs). These are plug-ins
with the file extension .GUP and are
loaded by Max at start-up. Once loaded,
the GUP will create and register the
extended viewport with the Max viewport
system, allowing it to be displayed in the
Extended Viewports list (Figure 1, #1).
Another benefit of GUPs is that they have
virtual free rein over Max and can access
just about any part of it. This property will
help later when we need to integrate into
the Max menu system (Figure 1, #2).

Converting the working game DLL
into a Max plug-in requires adding four
exported functions which allow Max to
verify the version of Max the plug-in
supports and to query the plug-in for the
types of interfaces supported (Listing 1).
The interface mechanism is similar in
some ways to the Microsoft Component
Object Model (COM). There are some

key differences, however. Whereas COM
queries for the type of supported inter-
faces and instantiates interfaces as needed,
Max queries for the number of supported
plug-in interfaces (LibNumberClasses) and
requests instantiation of a class-factory for
each interface in turn (LibClassDesc). Max
then uses the returned class factory to
instantiate instances of the actual plug-in.

The accompanying sample code con-
tains a project called SkinnedMesh, the
next evolution of the SkinnedMesh
DLL. This is the SkinnedMesh sample
code converted completely into a Max
GUP. It can be run by copying the
d3dviewport.gup into the plug-ins\ sub-
directory in the Max folder and restart-
ing Max. The viewport is available as
“Direct3D viewport” under the
Extended Viewports list available from
the Max viewport right-click context
window (Figure 1, #1).

The GUP start-up function
SkeletonGUP::Start (Listing 2) instantiates
and registers the extended viewport win-
dow used by the game. The game itself
isn’t started until the user selects the
Direct3D viewport in the Extended
Viewports list (Figure 1, #1), and Max
then calls the SkeletonViewWindow::
CreateViewWindow function (Listing 3)
which creates and runs the game.

When the user changes the viewport
from the Direct3D viewport to another
type of viewport, Max calls the
SkeletonViewWindow::DestroyViewWindow func-
tion (Listing 3). However, instead of
destroying the game window and all the
Direct3D resources, it is paused until
the user next invokes the viewport.

With the game running a viewport, the
next step is to get data from the Max
scene so it can be displayed.

Interacting with Max

U pdating the viewport can be done in
several ways. The simplest way

would be for the viewport to continually
look for Max scene changes and update
them in real time. Unfortunately, it’s
probably too slow to parse the Max scene
graph continually for new information.

An alternative is to update the view-
port only when it receives focus. This
can be fraught with problems, though,
as users may not want to reparse the
Max scene every time they want to
move the camera around in the in-game
view. Additionally, due to problems with
the Max input system, the viewport
window won’t be assured of getting
input focus messages (WM_SETFOCUS), caus-
ing additional problems. This could be
handled by looking for mouse messages
(such as WM_LBUTTONDOWN), but then you’re
back to the problem of determining
when users want to update the in-game
viewport as opposed to just changing
the in-game camera position. The best
alternative is to provide a user interface
in a menu or dialog box that the user
can use to alert the in-game view to
update itself with data from the current
Max scene.

In the accompanying sample code, the
user is provided with a new menu,
Direct3D Tools (Figure 1, #2). One of
the options in this menu is to update the
in-game viewport. When selected, users
are presented with a dialog box (Figure
1, #3), prompting them for what they
want to display in the viewport. Based
on the Direct3D Max .X file exporter,
this allows the user to export a single
frame or a complete animation into the
in-game viewport. This exporter Max
plug-in previously was its own plug-in,
but for use here it has been compiled
directly into the viewport plug-in. This
simplifies the management of the plug-
ins, because we can call its export func-
tionality directly without having to load
it separately or otherwise search for it.

E N G I N E I N T E G R A T I O N

m a r c h 2 0 0 2 | g a m e d e v e l o p e r42

Direct3D8

ID3DGraphicsWindow

GFX - Max Veiwpoint

Texture Mapping
(Texmap)

ID3D8PixelShader

Modifier Stack

ID3D8VertexShader

FIGURE 4. The game DLL manages its own
window and Direct3D device as an extended
viewport plug-in.

ViewWindow

MyViewWindow : public ViewWindow

win32 Window

Direct3DDevice8

FIGURE 3. Direct3D8 functionality is exposed
via the material texture mapping system, the
modifier stack, and the graphics window.

By reusing the Direct3D .X file exporter,
we write the scene data to a file and then
tell the game viewport to read it back in.
This provides a clean break between Max
and the game code, and as most games
already have file-loader code lying around,
there’s no reason not to use it.

Alternatively, the game viewport could
operate directly on the Max data struc-
tures or just use in-memory data struc-
tures to transfer the memory from the
exporter to the game. Either of these
methods can work just as well, but they
do require more new code to be written,
and they increase the amount of Max
code that can end up in the game code.

Although the standard and prescribed
Max SDK method for creating menus is to
use the complicated parameter block sys-
tem (PARAMBLOCK2), the menu that presents
the user with the option of updating the
viewport is a standard Windows menu.

While using PARAMBLOCK2 might be useful
in some applications, it’s overkill for the
simple level of menu integration we
require; another alternative would be to
use MaxScript in the menu and call into
functions exported by another plug-in.
However, by just using Win32, all the
menu code takes no more than a few
lines to create and handle in a single cen-
tralized location.

The menu code is inserted during the
start up of the GUP (Listing 2). The main
Max window is subclassed so that we
can handle the messages for the menu
entries we’ll create, and then the
SkeletonGUP::addnewMenus function creates
the menu and inserts it into the Max
main menu.

In creating these new menu entries, the
Win32 function SetMenuInfo is used to
associate a special tag value with each
menu entry. This is needed so that we
can handle our own menu entries during
the Windows WM_INITMENU and WM_MENUSELECT
messages. If the menu entries we added
were passed along to Max, it would
throw an assertion because it didn’t rec-
ognize the menu identifiers.

So now the user can select data from
Max and view it in the game viewport.
Interacting with the viewport itself
remains the final problem.

Getting Your Input

A s mentioned previously, Max has
problems getting all the Windows

input messages to an extended viewport,
and random messages such as “focus”
(WM_SETFOCUS) seem to disappear into the
abyss. Complicating this is the fact that
Max has its own set of accelerator
shortcut keys that need to be enabled
(EnableAccelerators) or disabled
(DisableAccelerators) as input focus
changes between Max and the game
viewport.

This message loss can be fixed to some
degree by subclassing the parent window
of the game viewport and triaging its
messages to help you figure out who has,
or should have, input focus. However, a
better alternative is to use DirectInput for
mouse and keyboard input. This is less of
a hack, but it still has some issues, as it’s
possible to continue to collide with
Max’s accelerator keys. Another method
altogether is to create a mode that locks
the input focus to the game window and
provides a more modal change between
being “in-game” and “in Max.”

E N G I N E I N T E G R A T I O N

m a r c h 2 0 0 2 | g a m e d e v e l o p e r44

LISTING 1. Plug-in registration functions required by Max.

__declspec(dllexport) const TCHAR*LibDescription(void)

__declspec(dllexport) int LibNumberClasses(void)

__declspec(dllexport) ClassDesc*LibClassDesc(int i)

--declspec(dllexport) ULONG LibVersion(void)

LISTING 2. GUP plug-in start-up code registers the new extended viewport window so that
it’s available to the user, and subclasses the main Max window to handle menu and other
messages.

DWORD SkeletonGUP::Start()
{

// create and register extended D3D viewport window

SkeletonViewWindow*skvw = newSkeletonViewWindow(this);

Max()->RegisterViewWindow(skvw);

// store off MAX root node

gpRootNode = Max()->GetRootNode();

gpcontext = this;

// setup window subclassing

HWND hwnd = MaxWnd();

gpMainWndProc = (WNDPROC) GetWindowLong(hwnd, GWL_WNDPROC);

SetWindowLong(hwnd, GWL_WNDPROC, (long) SubclassWndProc);

addnewMenus(hwnd, GetMenu(hwnd));

return GUPRESULT_KEEP;
}

Each of these systems has its trade-offs,
and the choice of which system is best will
depend on the amount of viewport inter-
activity that’s required and to what extent
the in-game viewport needs to act like just
another Max viewport. In the case where
the artist simply needs to view a model in
the in-game viewport to make sure that
the visual quality is acceptable, using the
Win32 input system and enabling and dis-
abling Max accelerator keys is probably
acceptable. On the other end of the spec-
trum, if the in-game viewport is being
used as a large-scale level editor, with the
artist or designer placing and editing
assets in-game in the viewport, then the
modal input system is a better choice. In
the end, there are a range of options and
combinations that could be used.

What about Max 3.x
and gMax?

M ax 3.x and gMax users can use these
same basic techniques, and code

only requires a recompile to run under
either program. This is because the level of
integration is very lightweight, and more
code sits on top of the Max framework
rather than integrating tightly into it.

Max 3.x will present more challenges,
however. Even though the code will work
without change, the Max 3.x input sys-
tem has even more problems than Max 4
does. Just like Max 4, this can be some-
what solved by use of DirectInput and/or
judicious use of subclassing of the win-
dows in the Max 3.x viewport hierarchy.
However, this may be more effort than
one wants to try to handle. A modeless
control window is an alternative, as is
the use of an input device, such as a joy-
stick, that can be read via DirectInput
and won’t interfere with the Max 3.x
input system.

Common Problems

F or development of Max plug-ins, the
retail version of Max is pretty unfor-

giving when it comes to handling excep-
tions and crashes; this can make debug-
ging a plug-in a trial-and-error process
involving copious numbers of trace state-

ments. The “debug version” of Max
offers a solution to this problem.

Unlike the retail version of Max, the
debug version includes symbol informa-
tion and some source code that enables
the debugger to provide a callstack that
significantly speeds the debugging
process. The debug version of Max is
available through the Discreet Sparks
developer program. Find out more infor-
mation at their web site:
http://sparks.discreet.com.

When you are actually running a
Direct3D-based game viewport, the game
often can’t successfully create a Direct3D
device, or it sometimes runs at only a few
frames per second when it should run
many times faster. Assuming that the
installed graphics card supports Direct3D
and the driver is up-to-date, the cause
often turns out to be a Max configura-
tion issue. While some graphics drivers
can run Direct3D and OpenGL or HEIDI
applications at the same time, some driv-
ers just can’t. Setting the Max Display
Driver to Direct3D in the Viewports tab
under Customize > Preferences will solve
the problem.

A somewhat related problem is that a
Direct3D-resource-hungry game can find
itself aggressively competing with Max
for driver and video card resources. This
can result in slowdowns, strange Max
error messages, or even crashes. If this

situation occurs, there’s little that can
be done except to scale back the
game’s own Direct3D resource usage.

Caveat Developer

I ntegrating a Direct3D-based game
engine into 3DS Max 4 is not an

insurmountable problem; there are
two main issues that have to be over-
come in order to achieve this, howev-
er. While Max 4 touts Direct3D 8
support, the support is not to the level
to be generally useful for develop-
ment. Also, due to the way that win-
dows input and focus messages are
handled, the Max input system could
potentially cause a lot of problems.

Next month, I’ll examine these same
issues in integrating with Alias|Wave-
front’s Maya 4, and discuss the trade-offs
between implementing both systems. q

E N G I N E I N T E G R A T I O N

m a r c h 2 0 0 2 | g a m e d e v e l o p e r46

HWND SkeletonViewWindow::CreateViewWindow(HWND hParent, int x, int y, int w, int h)
{

if (IsWindow(g_d3dApp.GetMainWindow()))
{

pauseRenderer(false);

return g_d3dApp.GetMainWindow();
}

return createRenderWindow(ghInstance, hParent, x, y, w, h);
}

void SkeletonViewWindow::DestroyViewWindow(HWND hWnd)
{

pauseRenderer(true);
}

LISTING 3. To save time, the viewport creation function only instantiates the in-game view-
port once. The in-game viewport is hidden in response to being destroyed, and reshown if it
already exists.

Discreet 3DS Max Developer Program

http://sparks.discreet.com

Microsoft Direct3D .X File Exporter for 3DS Max

http://msdn.microsoft.com/directx, in the down-

loads section under DirectX 8.1 SDK Extras.

F O R M O R E I N F O R M AT I O N

E very March, game develop-
ers from around the world
congregate in San Jose,
Calif., for the annual Game
Developers Conference

(organized by CMP Media, publishers of
Game Developer). In order to give read-
ers a better idea of what to expect from
this year’s conference, we caught up with
several different speakers from different
tracks to talk about their plans for their
sessions. This year’s conference takes
place March 19–23, with more informa-
tion available at www.gdconf.com.

Marc LeBlanc
Lead Designer, Visual Concepts
Game Design Tutorial: “Game Tuning
Workshop”

What’s unique about your workshop that
will make it a valuable two-day investment
for game designers? The workshop is
unlike anything else at the GDC. Partici-
pants will spend most of their time work-
ing in small groups, playing games, ana-
lyzing games, and solving game design
problems. It’s a unique opportunity to
stretch your game design muscles and
work with a lot of other smart people in
the field. We’ve got a very experienced
and talented faculty from all over the
game industry, and a relatively small stu-
dent-to-teacher ratio, about 15 to 1 (for
this reason, I encourage those interested
in the workshop to preregister for it, as
space is limited). And by the end, the stu-
dents have usually taught the faculty a
thing or two as well.

How do you begin to enumerate various
kinds of fun into aesthetic models for
group-discussion purposes, when people
tend to have varying opinions of what con-
stitutes fun? The whole point of the aes-
thetic-models approach we use is to

acknowledge the many kinds of fun that
are out there; not only do different people
like different games, but different people
are going to like different things about
the same game. If you start your game
design with a formal understanding of the
kinds of entertainment you’re trying to
provide, you have a much better chance
of hitting those nails on the head.

Are the techniques you present in your
workshop applicable to any game genre?
Absolutely. The workshop focuses on
game design models and techniques that
transcend genres and media. We try to
hit on a number of different genres in
our exercises, and sometimes we use non-
digital games, such as board and card
games, to convey ideas that exist in digi-
tal games as well.

Is the workshop just for game designers?
Game designers are definitely our primary
audience, but we welcome folks from all
disciplines. On many projects, design
responsibilities are often shared by
designers, producers, programmers, and
artists, and people in all of these roles can
benefit from the workshop.

How many years have you spoken at GDC?
Why do you choose to do so? This is my
fourth year on the GDC faculty. I enjoy
speaking, and I feel like I have something
to contribute. In this adolescent stage of
the history of games, I think it’s important
for people to contribute what they can.

Rob Fermier
Lead Programmer, Ensemble Studios
Programming Lecture: “Building a Data-
Driven Game Engine: A Case Study from AGE

OF MYTHOLOGY”

What will your session cover? The ses-
sion covers our experiences trying to
make a very strongly data driven RTS
engine for AGE OF MYTHOLOGY. It covers

the high-level data architecture of several
engine systems, such as UI and database
systems, and some real-world analysis of
how they worked, and more importantly,
how they didn’t work.

How does the data-driven system devised
for AGE OF MYTHOLOGY build on, or completely
depart from, the previous AGE games? The
previous AGE games had a strong data-
driven component, so AGE OF MYTHOLO-
GY’s engine definitely builds on a lot of
architectural principles from our earlier
games. AGE OF MYTHOLOGY takes it sig-
nificantly further, extending those notions
to almost every part of the game engine.
Because AGE OF MYTHOLOGY has been
rewritten from scratch, we were able to
be much more aggressive about being
heavily data driven — though of course,
it meant we had a lot more basic ground
to cover as well.

What were some of the challenges you
faced implementing a data-driven engine
that you’ll be sharing in your presentation?
In addition to the obvious technical and
schedule challenges, some of the more
interesting problems we ran into were
issues such as: How do you handle a steep
learning curve for exposing complex tools
to nontechnical creative staff? When data-
driven systems become highly complex,
how do you determine who is responsible
for fixing the bugs? What are some of the
security and hacking implications of
exposing powerful data-driven systems to
the end user? And I’ll look at how lever-
aging existing technologies like XML and
SQL can be a big benefit, and also how to
grapple with their limitations.

How many years have you spoken at GDC?
Why do you choose to do so? This is my
first year speaking at a full GDC, though
I did speak at a GDC Road Trip a few
years back. Participating in GDC as a
speaker is a great opportunity to share

m a r c h 2 0 0 2 | g a m e d e v e l o p e r48

c o m p i l e d b y j e n n i f e r o l s e n

Game Developers
Conference 2002 Preview

G D C P R E V I E W

development experiences with the rest of
the industry. Fostering good communica-
tion between all the development houses
in the industry can only help us all make
better games in the long run, and that’s
what it’s really all about.

Ian Baverstock
Business Development Director, Kuju
Entertainment
Business & Legal Lecture: “Mobile Phone
Games: Where Are They Now and Where Are
They Going?”

What will your session cover? It will
cover the current state of the mobile
game market and some speculation on
where I think the market is going. This
will be particularly from a developer’s
point of view.

After a year or so of serious attention
being paid to mobile gaming, do you see the
hype and reality getting closer or farther
apart? The reality is definitely getting
closer. I think that mobile gaming has
always been well served by realistic devel-
opers, as they didn’t have the dot-com
money to simply burn cash in the pursuit
of some nebulous future market. I think
the operators and other distribution chan-
nels are starting to focus on reality, and I
think that real consumer markets are
starting to shake down the business mod-
els that we’ll use for the next few years.
Having said that, the shakedown process
is definitely not over yet.

What do independent developers need to
know about approaching the mobile market
from a business standpoint? The main
thing is that it is very different from the
retail market — different consumers, dif-
ferent distribution models, and a very dif-
ferent price point.

How many times have you spoken at GDC?
Why do you do so? This is my first talk at

GDC, although I did talk at GDC Europe
last year. It’s a fantastic opportunity to
share ideas with some of the smartest
people in the business.

Albert Chen
Senior Level Designer, Factor 5
Level Design Lecture: “May Time Be with
You: Level Designing ROGUE LEADER” (with
Chris Klie)

What will your session cover? The session
will cover how the ROGUE LEADER level
design team managed to deliver levels in
nine months without sacrificing quality or
fun. We will highlight the changes we
made in our approaches to the design
process, level content creation, scripting,
and team organization.

What facet of level design remains the
most neglected by level designers? I think
that some level designers spend way too
much time focused on story or other non-
gameplay-related elements in their levels,
and not enough time developing, play-
testing, and refining gameplay. Yes, things
such as story and cutscenes are important
to a certain extent, but I believe some of
us have forgotten what we’re in the game
industry to do. If you want to make
movies, be a porn star.

How did the feedback cycle work for level
designers on such a short project as ROGUE

LEADER? We did peer play-testing among
level designers and invited people in and
out of the company to try the game. The
LucasArts testing crew also gave us very
important feedback and were fantastic
with cool suggestions and ideas. If you
want feedback from hardcore gamers,
you would do well to talk to testers.

How many years have you spoken at GDC?
Why do you choose to do so? This is the
first time I’ll be speaking at GDC. I feel
that because of the tight development

schedule, we were able to discover and
rediscover ways to make a level designer’s
life a little easier. If someone takes some-
thing away from our session and manages
to go home on time or spend less time in
crunch mode, this talk will have been
worth it.

Tetsuya Mizuguchi
President and CEO, United Game Artists (a
member of the Sega Group)
Game Design Lecture: “REZ: The Synesthesia
That Games Invite”

What will your session cover? My session
will focus on the concept of synesthesia
— the use of one stimulus to invoke
another. For example, in REZ, the musical
shooter, the music affects the game and
graphics, and the game and graphics
affect the music as you play. My session
will also explore the discoveries made
while translating new concepts and ideas
into groundbreaking games.

Tell us a bit about this concept of synes-
thesia. What inspired it? The concept of
synesthesia is the melding of the senses,
such as hearing sight or feeling sounds.
This concept and the art of Wassily
Kandinsky inspired me. I was motivated
to create REZ after a party I went to in
Europe in 1995. The sounds and the light
were all synchronized. I felt something. I
imagined orchestrating the sounds, lights,
and music. I thought that this would be
fun for a gamer.

How else would you like to see the inno-
vative use of audio expand into game
design? There are many ways to incorpo-
rate audio into games. One way to
expand the audio experience is through
peripherals. For example, the transvibra-
tor used with Rez allows the player to
feel sound through the peripheral in addi-
tion to hearing it as they progress

w w w . g d m a g . c o m 49

through the game.
How many years have you spoken at GDC?

Why do you choose to do so? I have spoken
at GDC twice. I choose to speak at GDC
because it is an event especially for game
developers. It is an opportunity to share
my experience and discoveries with other
professionals in my field.

Jason Della Rocca
Program Director, International Game
Developers Association
Sessions: Numerous IGDA-sponsored ses-
sions and events

[Editor’s note: The IGDA is an independ-
ent, nonprofit organization under man-
agement contract with CMP Media, pub-
lishers of ` and organizers of the Game
Developers Conference.] What are the
IGDA’s main goals for the conference this
year? We really want to further demon-
strate to the development community that
the IGDA is here for them and we are
helping to make a difference and effect
change within the industry. More impor-
tantly, we want developers to understand
that the IGDA is their association and
they need to leverage it and work togeth-
er to foster the industry. In part, the
IGDA is a means to actually do some-
thing once you leave the conference. So
many events I go to are great, but once I
leave it’s all over. In our case, you can
attend a panel on software patents, for
example, and then turn around and join
the IGDA’s committee dealing with this
issue, and actually contribute to making a
difference on an ongoing basis.

Tell me a bit about the two-day Academic
Summit. Warren Spector and Doug
Church, along with other Education
Committee members, have been doing a
lot of great work with the academic
world. The Summit is an extension of this
work and will focus on research relations
and game development and design curric-
ula. On the research front, a greater level
of collaboration would benefit both sides,
but progress is often marred by a lack of
respect and understanding; we will work
to build bridges. On the curriculum front,
we are seeing a growing demand for pro-
grams that teach the making and discus-

sion of games. Having the industry drive
curriculum discussions is only natural. I
am very excited for this summit and
expect great things to come of it — there
are a lot of great developers and pioneer-
ing academics involved.

How is the IGDA building on the Game
Developers Choice Awards, which debuted at
the show last year? We are doing our best
to maintain their level of sincerity and
not get caught up going the glitz-glam
route. We’re trying to build on the credi-
bility, respect, and honor of the awards.

What’s the hot-button issue for game
developers this year? There are lot of
things, many of which will be covered in
the IGDA’s track and other GDC sessions,
but I’d say there is an overwhelming
sense that developers are real underdogs
against publishers. Whether hype, truth,
or some combination thereof, there is a
perception of an uneven balance of
power. Several sessions are looking into
balancing things out.

Dave Ranyard
Senior Programmer, Team Soho, Sony
Computer Entertainment Europe
Visual Arts Lecture: “UI Case Study: THIS IS

FOOTBALL 2002” (with Andrew Hamilton)

What will your session cover? It covers
the development of the interface for THIS

IS FOOTBALL — WORLD TOUR SOCCER in
the U.S. — or, “the dirtiest job in
videogames.”

The interface for this game is big. And
I mean really big. Hundreds of screens
displaying all kinds of fascinating sport-
ing detail. And not only that, it comes out
in loads of different languages and has
different SKUs for different licenses.
Development of such a monster is a pain
in the, well, you-know-where. To alleviate
some of this, we built a system that
allows graphic designers to change the
look and feel of the interface without
programmer intervention. We built our
own Flash renderer for the PS2 so the
graphic designers can use Flash to design
and build the menus.

The session is a 50/50 split between
myself talking about the production of
this system, and Andrew Hamilton, a

graphic designer, discussing the trials and
tribulations of using it.

How does using Flash for PS2 affect both
development workflow and the finished
appearance of an interface? Graphic
designers like using Flash. They know
how to get the best out of it. They can
concentrate on making the product look
great instead of just acceptable. A good,
solid tool at the start of the tool chain
makes everyone’s life easier.

Flash plays to the PS2s strengths: the
PS2 is very good at is throwing loads of
polys around the screen. And its vector
graphics give the game a really nice TV
feel, without using loads of VRAM.

Do you see the “traditional” graphic
designer becoming more common in game
development? As our industry matures the
production values increase. With graphic
designers and new-media designers work-
ing to make DVD menus, web sites, and
CD-ROMs, videogames need to compete
with the best of these in production val-
ues not only in-game but “out-game” as
well. The next generation of videogames
needs to take this lead as they have done
in real-time 3D graphics.

Besides THIS IS FOOTBALL, what recent
games’ interfaces have impressed you, and
why? The TWISTED METAL: BLACK inter-
face has a very clever use of FMV for the
background stream and sets the feel of
the game fantastically. Though the inter-
face that has impressed the most recently
has to be GRAN TURISMO 3. It has superb
communication with the player, a must
for a menu system that has everything
from selecting which car you want to
analyzing the performance of your drive,
and industry-leading production values
that can be seen right through the game.

How many years have you spoken at GDC?
Why do you choose to do so? I attended last
year’s GDC, and I spoke for the first time
at GDC Europe last summer. I enjoyed
both experiences very much. GDC really
breaks down the barriers between com-
panies and development platforms, and
it is a good reminder that we are all part
of a big, exciting industry — something
I sometimes forget when I’m hiding in
the office. q

m a r c h 2 0 0 2 | g a m e d e v e l o p e r50

G D C P R E V I E W

m a r c h 2 0 0 2 | g a m e d e v e l o p e r52

t h o m a s e n g e l

W hen I think back to
the development of
STAR WARS: ROGUE

LEADER, the first
thing that comes to

mind is time — or rather the lack of it.
Never in the more than 13-year history of
Factor 5 have we had a project under
greater time pressure than this one.

Many might think that Factor 5’s histo-
ry reaches back only as far as 1996, when
the company moved to its current location
in San Rafael, Calif., just next to Lucas-
Arts and Skywalker Ranch.

In fact, Factor 5 was originally formed
out of an Amiga hacker group back in
Cologne, Germany. In the late 1980s, the
Amiga became very popular in Europe,
but it didn’t have any good action games.

It was a port
platform, but
the machine
deserved better;
our games,
including R-
TYPE and
TURRICAN, were
among the first
ones to really
push the tech-
nology unique
to the Amiga.

With the
Super Nintendo
and Sega
Genesis/Mega
Drive reinvent-

ing the console market worldwide, we
moved on to these platforms and got into
contact with LucasArts, Konami, and
Nintendo. During this time, Factor 5 made
SUPER TURRICAN 1 and 2 and MEGA

TURRICAN on the SNES and Genesis,
INDIANA JONES — GREATEST ADVENTURES

on the SNES, INTERNATIONAL SUPERTSAR

SOCCER DELUXE on the Genesis, and both
CONTRA 2 and ANIMANIACS on Game Boy.

When the Playstation arrived, we started
work on BALLBLAZER CHAMPIONS and STAR

WARS: REBEL ASSAULT 2 for LucasArts.
However, the 9-hour time difference be-
tween California and Germany soon
became a problem with CD-based projects.
The Internet wasn’t fast enough in the mid-
1990s to transfer so much data in any prac-
tical fashion. We always had to burn ver-
sions to a CD and send them via courier.

This situation could only go on for so
long until LucasArts asked us if we might
consider moving the company to the U.S.
They offered their help in legal matters,
and in May 1996 the American chapter of
Factor 5’s history began.

After finishing BALLBLAZER, we moved
on to our best-known title before STAR

WARS: ROGUE LEADER, the original STAR

WARS: ROGUE SQUADRON, released in 1998
for the Nintendo 64 and PC. With Episode
I heading to movie theaters soon after, STAR

WARS: BATTLE FOR NABOO was next, fol-
lowed by our final N64 game, INDIANA

JONES AND THE INFERNAL MACHINE.
Those who saw our Star Wars teaser

trailer at Space World 2000 might think

In-game screenshot of a scene during
the Battle of Endor. The Death Star
featured in the background is actually
a big sprite and not a 3D model.

T H O M A S E N G E L | Thomas is one of the founders of Factor 5 LLC and has been
working in the industry for more than 10 years. As Factor 5’s director of technology, his
focus has been on the technology behind the gameplay. He has been working on graphics
and sound engines, as well as complete games, since the Amiga days. He worked as
technical lead engineer on Factor 5’s latest game, STAR WARS: ROGUE LEADER.

STAR WARS
ROGUE LEADER:
ROGUE SQUADRON II

P O S T M O R T E M

w w w . g d m a g . c o m 53

G A M E D A T A

PUBLISHER: LucasArts
NUMBER OF FULL-TIME DEVELOPERS: 30

NUMBER OF CONTRACTORS: 2
ESTIMATED BUDGET: $3.5 Million

LENGTH OF DEVELOPMENT: 9 months
RELEASE DATE: November 8, 2001
PLATFORM: Nintendo Gamecube

DEVELOPMENT HARDWARE USED: GDEV &
1GHz PC, running Windows 2000

DEVELOPMENT SOFTWARE USED: SN Systems
for Gamecube, Slickedit, Maya

NOTABLE TECHNOLOGIES: MusyX 2.0
PROJECT SIZE: 14.2MB of source in 859 files,
in-game source data 6.4GB in 10,075 files

that STAR WARS: ROGUE LEADER was in
development continuously from then
until shortly before the launch. In fact,
most of the team was busy with STAR

WARS: BATTLE FOR NABOO and INDIANA

JONES until late 2000, so we didn’t really
get started with STAR WARS: ROGUE

LEADER until January 2001.
Hitting the Gamecube launch meant

being done mid-September 2001 — rough-
ly nine months for a 15-month project.

Fortunately, due to our work on the
Space World demo and our involvement
in the development of Gamecube’s audio
system, we already knew a lot of things
about Nintendo’s new platform. While
this gained us the invaluable advantage
of having a ready-to-use audio driver
and some experience on the Flipper
graphics chip, we still had many, many
things to test and try out — and pretty
much everything we did on the hardware
was a first.

It wasn’t long into the project before
six- or seven-day weeks became the
absolute norm for everybody on the
team. And these were not cozy eight-
hour days, either.

What Went Right

1. Think first. The need to come up
with a workable schedule seems

so obvious, and still it does not work out
in so many cases. For us, by far the most
important step was to come up with a
schedule that — even given all the time
pressures we were under — was
realistic. This included the overall
game concept as well as the details
of the technical realization. It was
absolutely essential to get level

designers, artists, and programmers
to talk to each other before final

decisions were made, and
to keep them talking to

each other for the
duration of the project.

At times communica-
tion broke down, but we
always managed to rescue
the situation quickly. Our
most important strategy
to maintain good com-

munication proved to be investigating
potential breakdowns in communication
at the earliest sign. On a technical level,
it was definitely a wise decision not to go
for totally new technologies, but rather
to employ technologies we were experi-
enced with and use the enhanced power
of the new-generation hardware to bring
everything to a new level. For example,
we used a simple height map to represent
planetary surfaces, a technique we
already had used in STAR WARS: ROGUE

SQUADRON and STAR WARS: BATTLE FOR

NABOO. Our familiarity with the technol-
ogy allowed us to concentrate on perfect-
ing it while avoiding potentially cata-
strophic delays in engine development.

2. C++ and other programmer
toys. Nothing beats a clearly

structured project from a program-
mer’s point of view, and using C++
can be a great tool
to achieve this.

We took the time to define up-front the
class hierarchies and other guidelines for
all the programmers working on the project.

Setting the basic concept for the game in stone
very early in the project and assigning clear areas of
responsibilities to each programmer introduced a clear structure,
and C++, with its protected class members and type checking,
helped greatly to keep the structure intact. Since the language
itself provided the tools to reinforce the structures defined in the
beginning, we were able to minimize the amount of work neces-
sary to maintain orderly source code. This freed up time for the
leads to attend to other tasks, and also helped a lot in bringing
down the number of reported bugs during testing.

Although we added it in the final month of the project, writing
our own virtual memory kernel on top of the OS was another
decision that proved to be very helpful in the end. One might ask
what virtual memory might be used for on a system that features
no writeable mass storage device such as a hard drive.

Dealing with Gamecube’s two-part memory architecture,
which has 24MB of “fast” (very fast, actually) RAM and
16MB of “slow” RAM that is pretty close to a small ROM car-
tridge in terms of access and speed, can be a bit of a hassle.
This is especially true if one has to make multiple subsystems
— implemented by multiple programmers — using the ARAM
at the same time. Using the main processor’s virtual memory
unit, we mapped a section of the ARAM area into the normal
address space. We ended up using this dynamic mapping system
to avoid having to deal with code overlays by moving code into
this virtual memory area, as well as to make access to data in
ARAM much easier and more flexible then with manual
ARAM DMA transfers.

The time implementing this system was well spent. The last
weeks of development saw a number of situations in which we
would have lost hours and hours implementing specialized
code, but instead the virtual memory system took care of all of
them nicely.

3. Scripts without scripts and other level designer
magic. The level designers where greatly aided by our

proprietary scripting language, CPunsh. CPunsh handles the
tasks of a classical scripting language without really being a lan-
guage in that sense. Rather then implementing a classical com-
puter language, we designed CPunsh as a drag-and-drop-based
system of virtual cards. Each card contains a collection of
instructions or decision points. The idea behind all this was that
we hire our level designers for their expertise in designing fun lev-
els, and not so much for their understanding of programming.

CPunsh’s design, while not perfect, in fact helped avoid a lot
of bugs in the scripts authored by the level designers and also
made them easier to debug if problems occurred. Another
bonus was that our level designers already knew the system. It
had been part of L3D, our in-house level editor, since STAR

WARS: BATTLE FOR NABOO. While we had to add some addition-
al features to support STAR WARS: ROGUE LEADER’s new AI sys-

tem and grander scope, the knowl-
edge that the level designers already

had accumulated while using the sys-
tem earlier proved to be of great help.

STAR WARS: ROGUE LEADER’s completely
rewritten AI system offered a whole new set

of possibilities to the level designers. On the N64 we always
had to be overly performance- and memory-conscious. Both
STAR WARS: ROGUE SQUADRON and STAR WARS: BATTLE FOR

NABOO used close to nothing else but enemies that were run-
ning along on predefined splines. This made it quite difficult for
level designers to control large quantities of enemies and also
make it seem as if the enemies actually would react to the play-
er’s actions. With STAR WARS: ROGUE LEADER, this system got its
long-overdue revamp. In this title, enemies are still guided by
splines, but most of the action is controlled by flocking and
other algorithms and is highly aware of the player’s actions.
The added creative freedom for level designers was truly a great
asset.

4.Art: Painting by polygons. One thing our work on
the original Space World demo really helped with was to

get a thorough understanding about the basic art requirements of
this title. The demo offered us a test run in terms of getting art-
work out of Maya into the run-time engine. Only the basic ani-
mation and geometry pipeline developed for the Space World
demo ended up in the final product, but this proved to be a key
asset in speeding up the development of the shader data path
later on, since we didn’t have to start entirely from scratch.

Both the programmers and the artists had a clear understand-
ing of what they wanted, and the specifications for geometry in
particular were clear long before the bulk of the team moved
over to the development of STAR WARS: ROGUE LEADER. This
technical groundwork, together with the exceptional work of
all the artists on the team, helped STAR WARS: ROGUE LEADER

achieve the visual quality one sees in the final product.
One of the strengths of Gamecube’s hardware is multi-textur-

ing. Using well-understood techniques for our geometry repre-
sentation and generation, we decided to concentrate our efforts
on the texturing aspect.

With respect to craft models, this was definitely the right
decision. The classic Star Wars designs don’t lend themselves
too well to the modern ways of compressing and refining geom-
etry representation, such as subdivision surfaces or NURBS,
due to their boxy and angular structures. To get accurate repre-
sentations of these models, we had to rely less on technology
and more on first-class modelers.

For the landscape, which was represented by a height map,
the texturing was the single most important aspect of all. Only
with multi-texturing was it possible to achieve the organic and
natural look we were going for. The landscape texturing con-
sists of multiple layers of repeating, general patterns. The trick
was to combine all these layers with what we called “mix-
maps,” a set of simple grayscale textures that defined how the

P O S T M O R T E M

m a r c h 2 0 0 2 | g a m e d e v e l o p e r54

different types of patterns were to be
combined. To add even more flexibility,
we also allowed the mixmaps and pat-
terns to be rotated against each other.
Besides offering good looks, the use of
mixmaps also gave the textures a small
memory footprint, since we could easily
hide the repetition of the patterns with
clever setups for the mix-maps. Bump
and detail maps finished off the effect.

All these texturing technologies were
integrated either into L3D, our in-house
level editor, or Maya’s shader controls.
This way, the artists and level designers
had an easy-to-use interface in which to
create all the texture artwork.

Some issues remain to be solved for
our next game. For example, there was
no fast and easy way for the artists to
preview their work on the real hard-
ware. Unfortunately things look quite
different on a PC monitor than on a
640�480 TV display, but we were still
pleased with the results.

5.Making some noise. With
regards to audio, we had a good

start. Factor 5 had an important role in

the development of Gamecube’s audio
hardware, and we developed the MusyX
audio system in-house. Because of this,
we were able to build the audio part of
STAR WARS: ROGUE LEADER on a solid,
fully understood API and tools.

On the creative side of things, it helped
a great deal to have access to the Lucas-
Arts and Lucasfilm archives. While a lot
of effects and post effects for voice
recordings had to be redone and
redesigned by our sound effects designer,
having access to this data was very
important in keeping things sounding
authentic. We are in the lucky position of
having two dedicated and very experi-
enced sound designers at Factor 5, assets
that can’t be overvalued if one has to
work on a tight schedule.

We also implemented a little tool that
allowed the sound effects designer to mix
the audio much like a sound designer in a
movie would do. Using this tool, the
sound designer is able to manipulate most
parameters of sound effects in the game
while the game is running. Since mixing
sound effects is as important as designing
their basic characteristics, this tool was

truly worth the work spent on it.
STAR WARS: ROGUE LEADER was the

first game ever to feature a Dolby Pro
Logic II (DPL2) surround sound encoder.
When Dolby showed us the results one
could produce using DPL2 while staying
100 percent compatible with the wide-
spread Dolby Pro Logic system, we were
truly amazed. Because we started with
such a solid audio base, we could invest
the time to develop our own DPL2
encoder for use on Gamecube.

What Went Wrong

1.Make data and coffee? Some
data conversion runs took forever.

Since everybody in the team to some
extent depended on the data conversion,
the impact of long data conversion runs
multiplied quickly.

There were multiple reasons for the
slow speed, most of which can be traced
back to two fundamental problems. First,
we did not implement a global-caching
system for converted data. Because of
this, multiple people would convert the
exact same data on their local hard

P O S T M O R T E M

m a r c h 2 0 0 2 | g a m e d e v e l o p e r56

LEFT. The Ison Corridor fight, featuring volumetric fog. TOP RIGHT. A Snow Speeder is busy “cabling” an ATAT. A physics simulation drove the cable's
movement. BOTTOM RIGHT. An X-Wing aproaches the grounded Star Destroyer on Kothlis. Great care was taken to get the water shaders just right.

drives while the converted data was actually already distributed
around in the company. For some data types, such as textures
and shadow maps, we later introduced caches on the server, but
a more global scheme would have helped greatly.

The second major problem had to do with interdependencies
between different data types and even program code. Inter-
dependencies between data resulted in rebuilding of a lot of
data, even if just small amounts of data changed. This could
have been avoided with a different setup for the data, and per-
haps by the introduction of some kind of linker for the data
conversion. All this never happened for this project. Nobody
had the time even to plan for something at the point when the
problem became obvious. From this we learned one thing: Do
not underestimate the amount of data one has to handle in a
game for the (now) current generation of game consoles.

2. Cutscenes. As we did in our earlier titles, we wanted
to avoid using FMV for cutscenes, to avoid breaking

the continuity and style of the game. The playback of these ani-
mations was handled quite elegantly by our standard run-time
animation system, which we used for all types of animation
throughout the game. The internal structure of this system
closely resembles Maya’s animation system, which made it very
flexible and straightforward to control from within that tool. It
also was really easy to use at run time. This is where the fun
ended, however, and things started to get ugly.

On the programming side, we had to spend a lot of time
organizing the data flow. We wanted to make the amount of
data to be loaded or kept in memory for cutscenes minimal,
which meant recycling data that was present in the level data
currently loaded. This sounds easier — and we fell for it, too —
as it is actually was. However, our main problem was that we
weren’t able to begin implementation of the cutscene playback
until pretty late into the project, and the programmers responsi-

ble for the task were confronted with a data structure that was
pretty much set in stone. This is the one area in which our
planning at the beginning of the project did not quite work out.

In addition, the animators could not start until relatively late
in the project. This was due to both the unfinished system imple-
mentation as well as their simply being occupied with other
tasks. This time frame put the animators under a lot of pressure.
To make things even worse, they had to suffer quite a bit under
the slow data conversion. The cutscene data included so many
cross references into other types of data that changing a cutscene
frequently meant rebuilding major parts of the data set.

Another thing that slowed us down was the fact that we
could only export part of a level’s data into Maya as a reference
for the animators to work with. In particular, the long
cutscenes in the Hoth level, featuring many close-to-ground
camera moves, presented a challenge, since the height-map
geometry export into Maya always used the lowest level of
detail and hence didn’t represent enough detail for such tight
corner moves.

Previewing music and sound effects for cutscenes proved to
be another hassle. The effects and music were triggered from
within Maya but could not be previewed there, which meant
going through the data conversion step each time we wanted to
test things.

More preview capability and a faster data conversion would
have solved our problems. It also wouldn’t have hurt to have
more time, a luxury we simply couldn’t afford this time around.

3.What’s that engine glow doing on the nose cone?
Little things can cause big problems when time is as

much a factor as it was with this project. The method we used
to add visual effects, like engine glows to the in-game craft mod-
els, introduced a high dependency between the code versions
used to edit new levels and preview models, and the model data

P O S T M O R T E M

m a r c h 2 0 0 2 | g a m e d e v e l o p e r58

The tunnel sequence of the fight for the second Death Star as seen in
L3D. The boxes are added to ease the culling process, while the
spheres control certain aspects of the gameplay like triggering of
events or lights.

An X-Wing modeled in Maya. We used tightly packed texture sheets
wherever we could to minimize the overhead introduced at run time due
to different material setups. It proved much faster to go for a more com-
plex global material setup than for multiple simpler ones.

itself. A simple change to the model within Maya could trigger
engine glow to appear in the completely wrong spot.

This made it close to impossible for the artists to judge
whether they actually did something wrong while exporting the
data or whether this was just one of the cases where everything
was actually in order and only the code version needed an
update. This situation was truly counterproductive in the last
weeks of production.

We will have to remove this dependency completely from our
next game’s data path. To some degree, this will be a side effect
of our effort to speed up the general data conversion by remov-
ing data interdependencies.

4.“I’ve got some new songs.” While we had pretty
good turnaround times getting completely new sound

effects into the game — as much as in-game material was con-
cerned — the data path and the way the music was linked into
the game did not allow for any fast preview cycles for streamed
or MIDI-based pieces of music.

Due to time constraints, we had been unable to implement
tools that would have allowed adding or changing pieces of
music without rebuilding the program code. Furthermore, most
pieces of music are triggered from scripts designed by level
designers, which meant we always had to coordinate three people
in the process: a programmer, a level designer, and the musician.

In the end we coped with the problem to some extent by sim-
ply setting up a schedule defining when a new music update
would be done. The musician was able to audit his score without
the integration into the game on a prototyping tool at any point
in time and with minimal turnaround times. The schedule made
the problem somewhat manageable for all parties involved, but it
was still a far cry from being a good working environment.

5. L3D: Trusted, proven and, well, a bit rusty. L3D,
our in-house level editor, had been around for many

years when we started STAR WARS: ROGUE LEADER. The good
thing about this was that the level designers knew the tool and it
had gone through a lot of iterations of improvements during the
development of STAR WARS: ROGUE SQUADRON and STAR WARS:
BATTLE FOR NABOO. But we also knew that it wasn’t exactly
designed to deal with data sizes as they regularly pop up with this
new generation of consoles. We simply didn’t have the time to
program a new tool, since level designers had to start their work
early. We just hoped for the best.

Some things got very slow as things got very large in terms of
memory. For the most part we could get things to a workable
level again by running the tool on relatively high-end systems.
Other things just had to be endured by the level designers. The
situation was far from perfect. Despite its shortfalls, however,
we couldn’t have made it without this old, trusted, and slightly
outdated tool. Still, a new, streamlined tool would have been
much faster and more user-friendly, which in turn would have
given the level designers more time to actually design things. As
a logical consequence, this is what we are currently working
on. With a bit more time on our hands for finalizing our next

title, we took the opportunity to take the things we learned
from L3D and rewrite a new tool from scratch.

Final Thoughts

I t was a ride. It was also a stressful, demanding period in all
of the team members’ lives, but still an exciting experience

that probably nobody on the team would have missed for any-
thing in the world — so long as it’s guaranteed not to be
repeated anytime soon.

Never have I seen a team so dedicated to a game project than
the STAR WARS: ROGUE LEADER team. Everybody had just one
aim: make the best game possible. Working in a small company
without any major bureaucratic overhead also definitely helped
to keep everybody going at full speed.

We couldn’t have done it without help, though.
The full and unconditional support from LucasArts was

essential in keeping everybody focused on the task. You don’t
want to worry too much about your relationship with your pub-
lisher when you have a plate as full with other tasks as we had.

Also, working on a tight schedule made having a good test
department all the more valuable. LucasArts’ test department
really supported us, even moving into our offices to further
optimize the process. Nothing beats the productivity resulting
from testers always being available on a moment’s notice.

Last but not least, we enjoyed the professional and dedicated
support of both Nintendo Technology Development and Nin-
tendo’s Software Developer Support Group. I can’t stress
enough how important their input was in getting us up to speed
on the new hardware.

Looking at the response the game has triggered so far, we seem
to have done a pretty good job. In the end, only time will tell
whether the game lives up to what people expected from it. q

P O S T M O R T E M

m a r c h 2 0 0 2 | g a m e d e v e l o p e r60

An ATST’s texture sheet and structural setup displayed in Maya. To get
as close as possible to the look of the animation in the movies, we
chose to use relatively complex animation setups for all major animat-
ed objects. The Gamecube’s hardware coped well even with large num-
bers of such objects, as can be seen in the Battle of Hoth level.

I n their desire to reduce
risks, some publishers
are driving a knife
into the heart of
our industry.

I can’t tell you how many
times I’ve met with publishers
who talk about “the thing”
or “the hook.” You see, a
marketing or sales
department gets the idea
that some single element
has made a particularly
popular game sell, and
that they’ve identified
that single element. They
know what the thing is.
DUKE NUKEM is a great
example of this. Many
of the marketing and
sales guys that I spoke
with had played the game,
and each believed that
they’d identified the one sin-
gle element that made it a suc-
cess. Some decided that it was that the
fact that the levels could be destroyed.
Others chose the wise-cracking humor
that Duke spat out during the game. The
point is, different people chose complete-
ly different things, each believing that
they’d identified “the thing” that was the
single reason for the game’s success.

And they were all wrong. It wasn’t just
one thing that made the game great.

Crediting a game’s success to a single
game element is analogous to the story of
the five blind men describing an ele-
phant: The first only touches the ele-
phant’s leg and says, “It’s a tree.” The
second touches the side and says, “It’s a

wall.” The third touches only the trunk
and says, “It’s a snake.” The fourth feels
the tusk and thinks it’s a spear, while the
fifth, touching an ear, says it’s a giant fan.
Each believes that he has described the
entire elephant, that he has discovered the
thing that an elephant is. But an elephant,
like a game, cannot be fully defined by
only one of its attributes.

Publishers need to get a better perspec-
tive on the one feature that is common to
all successful games. The thing that virtu-
ally all successful titles share is that they
are good games. No one game is all
things to all players, but every successful
game appeals to some large body of like-

minded consumers.
There is a group for

whom the game is outstanding,
players who are willing to make that

all-important decision to purchase the
product. Now the question we must ask
both publishers and developers alike is,
“How do we create these games? How do
we make something that has a chance at
being accepted by some portion of the
gaming community?”

The answer is simple: Make sure there
is always at least one person on the
development team who absolutely loves
the game being made. Find companies
that have created games that had the
attention to detail that can only come
from a true caring for the product. The
reason that DUKE NUKEM was great was
that the team cared about it. The reason
there were destructible parts in the levels
and you could play pool on the tables in
the bars was because they wanted to
make the game perfect, not because the
team was trying to fill in every possible

S O A P B O X l a r s b r u b a k e r

m a r c h 2 0 0 2 | g a m e d e v e l o p e r72

continued on page 71

Ill
us

tr
at

io
n

by
 P

et
er

 L
ac

al
am

ita

Let Developers
off the Hook

S O A P B O X

w w w . g d m a g . c o m 71

bullet point or check off items on a list.
Games, like all artistic creations, be they
music or movies or paintings, must be
built by people who care about them.
Publishers need to look for teams that
have done great work large or small. The
goal should be to find people who care.

In order to create great games, devel-
opers don’t need to focus on technology,
but on controls and the user interface.
Make sure that you like to play your
game, and then keep working on it until
you love it.

And I would tell a publisher to keep
looking for those teams that can make

great games, not just hit bullet points
and target system requirements. Great
programmers and great artists can build
on any system that you ask them to build
on. Just make sure that they know how
to care about what they’re doing.

There are stories of wonderful pub-
lishers who’ve given their developers the
time, resources, and trust needed to cre-
ate great products. Regrettably these sto-
ries are few and far between. Until there
is more agreement between developers
and publishers about what constitutes
truly great games and how to make
them, we will hear more and more sto-
ries about how a great game was reject-

ed by five or 10 publishers before some-
one could finally realize its potential. q

LARS BRUBAKER | Lars is currently the
CEO of Reflexive Entertainment Inc., a com-
pany he co-founded four years ago. During
this time Reflexive has created such titles as
SWARM, STAR TREK AWAY TEAM, ZAX: THE

ALIEN HUNTER, and RICOCHET. Previously,
Lars was producer and senior software
engineer at Logicware, where he designed,
produced, and programmed ASTROROCK and
produced and co-programmed DEFIANCE.
Before that, Lars worked at Interplay in roles
ranging from quality assurance to lead
programmer and producer.

continued from page 72

	02gameplan
	04indwatch
	06prodrev
	10profile
	13innerp
	21artview
	26betterby
	28soundp
	30f-lambri
	40f-marsel
	48gdcprev
	52postmort
	72soapbox

	return:

