
MARCH 2000

G A M E D E V E L O P E R M A G A Z I N E

L ast October in my column
(“Graphics Fly...Will Devel-
opers Fry?”) I said that
unless game developers are

willing to live with significantly
longer game development life cycles
in the future, there may soon be
shortfall between what games could
look like and what they will look like.
Tomorrow’s consumer hardware —
both PCs and consoles — will be so
powerful and capable of supporting
such realistic visuals, that (barring
some unforeseen technology that
solves this problem) it may take scores
of artists to satisfy the scene complexi-
ty requirements of the typical game.
Moore’s Law is writing checks that
artists may soon be unable to cash.

One hope that I put forward as a pos-
sible remedy was for better develop-
ment tools to help create and manipu-
late art assets. Those tools may or may
not appear, but even if they do, I’m
beginning to doubt whether they alone
will solve all of our problems.

If better tools alone don’t help, it’s
likely that companies will throw more
artists, modelers, and animators at the
problem. That solution might generate
some of its own problems, though. The
cyclical, project-focused nature of
game development implies crunch
periods and lulls over time. Some small
and medium-sized companies won’t
find it cost-efficient to keep a large
number of artists and animators on the
payroll year-round. (Not to mention
the fact that some small game develop-
ment studios want to stay small.) So
increasing staffs significantly might
not be the answer, either.

If sufficient tools don’t materialize,
and hiring an army of artists isn’t an
option, it seems that outsourced mod-
eling and animation is going to
become a much bigger part of our lives.

The film industry faced a similar
problem in the late 1970s after Star
Wars came out and ushered in the era
of big-budget, special-effects-laden
movies. Other movie studios wanted to
create the same high-quality effects
that Lucas had, but some came to the
conclusion that their core competency

wasn’t in the field of generating special
effects, and turned to visual effects
houses like Industrial Light & Magic.
The visual effects industry was born.

The game industry seems to be on a
similar trajectory. To adapt to the larg-
er content demands of tomorrow’s
games, it seems likely that many of
tomorrow’s projects will have to rely
on contracted work on a large scale.
You can already see the beginnings of
this shift. Motion capture studios such
as House of Moves and Locomotion
have done well by the game industry
and continue to thrive. Stock and cus-
tom 3D models by Viewpoint Digital
are used by scads of companies. And of
course you can’t overlook the hun-
dreds of individuals and small firms
like 3D Pipeline and Etribe Studio that
provide 3D animation services.

I think we’re just around the corner
from a consolidation in this portion of
our industry. Digital Domain and ILM
have already dabbled in some game
projects, and they’re in a good position
to capitalize on the growth of the game
industry. Unquestionably, some of
today’s smaller consulting companies
will grow and expand their offerings.
And although it’s more of a long shot,
imagine a large game company like
Electronic Arts spinning off segments
of its business into a full service visual
effects company, just as Lucas did with
Lucas Digital.

Managing the massive flow of assets
arriving from an outsourced army of
highly trained illustrators, modelers,
animators, video editors, and other
artists and creative technicians will
mean new challenges to the in-house
producers and art directors that opt to
send their art needs outside. It will
probably shake up the way companies
structure their art paths. The makeup
of some game studios might change,
weighting staffs more heavily with
programming and design talent. If
such events unfold, many of us will
feel the impact. ■

G A M E D E V E L O P E R M A R C H 2 0 0 0

4

P L A NG A M E

Roll Your Own ILM

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228 w: www.gdmag.com

Publisher
Jennifer Pahlka jen@mfgame.com

EDITORIAL

Editorial Director
Alex Dunne adunne@sirius.com

Managing Editor
Kimberley Van Hooser kvanhoos@sirius.com

Departments Editor
Jennifer Olsen jolsen@sirius.com

News & Products Editor
Daniel Huebner dan@mfgame.com

Art Director
Laura Pool lpool@mfi.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Mel Guymon mel@infinexus.com
Omid Rahmat omid@compuserve.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed id Software
Dan Teven Teven Consulting
Rob Wyatt Microsoft

ADVERTISING SALES

National Sales Manager
Jennifer Orvik e: jorvik@mfi.com t: 415.905.2156

Account Representative, Silicon Valley
Mike Colligan e: mike@mfgame.com t: 415.356.3486

Account Executive, Northern California
Dan Nopar e: nopar@mfgame.com t: 415.356.3406

Account Executive, Western Region
Darrielle Sadle e: dsadle@mfi.com t: 415.905.2182

Account Executive, Eastern Region
Afton Thatcher e: athatcher@mfi.com t: 415.905.2323

ADVERTISING PRODUCTION

Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Kevin Chanel

Reprints Stella Valdez t: 916.983.6971

MILLER FREEMAN GAME GROUP MARKETING

MarCom Manager Susan McDonald

CIRCULATION

Vice President/Circulation Jerry M. Okabe

Assistant Circulation Director Kathy Henry

Circulation Manager Stephanie Blake

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Pam Santoro

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

CEO/Miller Freeman Global Tony Tillin
Chairman/Miller Freeman Inc. Marshall W. Freeman
President & CEO Donald A. Pazour
Executive Vice President/CFO Ed Pinedo
Executive Vice Presidents Darrell Denny, John Pearson,
Galen Poss
Group President/Specialized Technologies Regina Ridley
Sr. Vice President/Human Resources Macy Fecto
Vice President/Creative Technologies Johanna Kleppe

h t t p : / / w w w. g d m a g . c o m M A R C H 2 0 0 0 G A M E D E V E L O P E R

New Products
by Daniel Huebner

A Character-Building Experience

THE MOTION FACTORY is readying ver-
sion 2 of its Motivate Developers Tool-
kit for shipment early this year. The
Motivate Toolkit is a real-time anima-
tion and behavior programming tool-
kit designed to enhance character real-
ism while cutting production time.

Motivate’s animation engines and
scripting language allow for easy cre-
ation of believable, interactive 3D char-
acters and environments. The system
includes development tools, an SDK,
server technology, and multiple run-
time engines. The redesigned core archi-
tecture for this version is compact and
modular, enabling developers to select,
replace, or omit parts of the system to
fit specific needs. Motivate 2 adds new
real-time articulated body dynamic sim-
ulation and expanded multi-platform
and Internet support. Developers can

also use the Motivate SDK to extend
and customize the system.

Optimized run-time engines are
available for Windows, Playstation 2,
Dreamcast, and Macintosh. The Moti-
vate 2 Developers Toolkit will be avail-
able sometime in the first quarter. A
complete package including all tools
and engines will be priced a $7,500
per seat, with a commercial run-time
distribution license fee of $50,000 to
$100,000 per title. Pricing for individ-
ual engine modules, including DLLs
and the SDK, run from $17,500 to
$50,000.
■ The Motion Factory

Fremont, Calif.

(510) 505-5151

http://www.motion-factory.com

More Power to the Modelers

TGS has released version 5 of Amapi
3D, its NURBS and polygonal modeler.
Improvements over previous versions
include dynamic geometry, new tools
for smoothing and deformation, new
display modes, and polygon reduction

technologies.
Amapi’s new

dynamic
geometry can
remember the
construction
history of
complex sur-
faces so that
the user can
dynamically
edit an object
by changing
its outline,
profile, or
structure.
Smoothing
tools in ver-
sion 5 offer
four unique
modes while
the new defor-

mation tools allow instantaneous
object bending, twisting, and taper-
ing. Amapi 3D also offers a 3D silhou-
ette display mode to simplify complex
scene management and speed the
modeling process. Amapi exports into
25 file formats, including new support
for NeMo, Cinema 4D, and Zap.

Amapi 3D 5 is available for Windows
95/98 and for Mac OS 8 and higher at
a list price of $399. Existing users can
upgrade for $199.
■ TGS Inc.

San Diego, Calif.

(858) 457-5359

http://www.tgs.com/amapi

Resoundingly Easy Facial Animation

LIPSINC has developed Echo, an auto-
mated character lip-synching system
for a wide range of animation packages
that reduces the entire process of lip-
synching to a single step in the overall
production schedule.

The basis of Echo is Lipsinc’s
VoiceDSP voice analysis system. Echo
uses this digital signal processing tech-
nology to analyze speech and automat-
ically output the proper mouth, jaw,
and lip position data in three dimen-
sions. Echo outputs flipbook, dope
sheet, and function curve animation
data for various animation platforms,
3D game engines, and multimedia
applications. Output data is generated
as a stream of precise morph targets
that accurately re-create lip-synched
animation.

Full and evaluation versions of Echo
for Windows 98/NT are available
though the Lipsinc web site. A techni-
cal support package is included with
each seat of Echo, and the company
also offers consulting to customize
Echo’s output. Licenses start at $10,000.
■ Lipsinc

Cary, N.C.

(919) 468-7005

http://www.lipsinc.com

New Products: The Motion Factory
continues to Motivate developers,
Lipsinc introduces Echo, and TGS
upgrades Amapi 3D. p. 7

Industry Watch: Mattel picks up
Stolar, Brazil gets tough on violent
games, while Bleem! and Sony continue
to duke it out in court. p. 8

Product Review: Jeff Lander checks
out Filmbox 2, Kaydara’s animation
manipulation package. Is it worth the
price of admission? p. 10News from the World of Game Development

7

Motivate 2 has redesigned its core architecture allowing devel-

opers to tailor the system to their individual needs.

B I T B L A S T S - I N D U S T R Y W A T C H

Industry Watch
by Daniel Huebner

MATTEL HIRES STOLAR. Former Sega of
America head Bernie Stolar will again
attempt to change the fortunes of a
struggling videogame power. Mattel has
announced that Stolar will be the new
president of Mattel Interactive and will
be charged with solving the problems
currently plaguing Mattel’s interactive
toys and software division, including
stemming the losses of Mattel’s troubled
1999 acquisition of The Learning Com-
pany. Stolar, who left Sega of America
after disputes with its Japanese parent
company over strategy for the American
Dreamcast launch, will be a key part of
Mattel CEO Jill Barad’s overall plan to
reshape the company. Mattel also
announced the retirement of CFO Harry
Pearce, who spent 24 years with Tyco
before joining Mattel in a 1997 merger.
Pearce’s departure is likely also related
to financial problems resulting from
The Learning Company acquisition.

FULL-TIME JOBS. In his keynote address
to the Macworld masses assembled in
San Francisco in January, Steve Jobs
reported that he is dropping the word
“interim” from his title and will become
Apple’s official CEO. In addition to
unveiling Apple’s new operating system,
OS X, Jobs announced that Apple is
investing $200 million in a partnership
with Internet service provider Mind-
spring to create a Macintosh-branded
ISP. The new ISP will be the default
Internet service on all Apple computers,
leading Jobs to speculate that Apple
could become one the world’s top
Internet companies. Unfortunately for
Macintosh gaming evangelists, a
demonstration of QUAKE 3: ARENA run-
ning on Apple’s new OS X promptly
locked up the system.

BRAZIL BANS SIX GAMES. In response
to a recent shooting in Brazil linked by
the media to videogames, Brazil’s
Justice Ministry issued an order ban-
ning several game titles. The ministry
labeled DOOM, MORTAL KOMBAT, REQUIEM,
BLOOD, POSTAL, and DUKE NUKEM as
being too violent for sale in Brazil.
Police were ordered to remove all
copies of the offending titles from store
shelves, and vendors failing to comply

have been threatened with a fine of
nearly $11,000 a day. “The games are
considered violent [and are] affecting
people who play them, particularly
children,’’ said a government spokes-
person. “[DUKE NUKEM] may have moti-
vated [alleged gunman] Mateus da
Costa Meira to stage the cinema shoot-
ing on November 3 in São Paulo.”
Brazilian police believe the shooter was
reenacting a scene from the game. The
ministry plans to issue a ruling in the
near future on other games considered
excessively violent.

GAMES.COM PREPARES FOR LIFTOFF.
Hasbro is gearing up to launch its
online games portal Games.com and
has chosen Go2Net as its technology
partner. Hasbro is looking to launch the
game service sometime in the middle of
this year, and plans to offer no fewer
than 50 titles encompassing Hasbro
properties such as Atari, Wizards of the
Coast, and Microprose. The majority of
the planned games will be multiplayer
Java versions of classic games like
Monopoly, Clue, and Battleship.
Go2Net will, under the terms of its
three-year agreement with Hasbro, build
the site and provide technology for
chats, messages, and community man-
agement. Hasbro will gain access to
games on or in development for
Go2Net’s Playsite gaming service, while
Go2Net acquires the rights to Hasbro’s
most popular games for use on a co-
branded site, as well as $7.5 million fee
from Hasbro. Hasbro plans to spend $60
million in the next year to launch and
develop Games.com, and hopes to
expand the site eventually to six sepa-
rate game channels focusing on family,
kids, arcade, game shows, sports, and
hard-core players.

BLEEM! BATTLE RAGES ON. The court
battle between Sony Computer Enter-

tainment and Playstation emulator
developer Bleem! took a turn when a
U.S District Court judge granted
Bleem!’s motion for leave to amend
and assert counterclaims against Sony.
Bleem! claims that Sony unlawfully
acquired, maintained, and extended
its monopoly in the videogame mar-
ket through a combination of anti-
competitive practices, including mis-
use of copyright, patents, and other
intellectual property. The judge also
blocked Sony’s request to modify a
protective order covering Bleem!’s
confidential business data. Sony had
sought access to source code as well as
reseller and customer information.
“Sony simply has no business
demanding this kind of proprietary
data from innocent third parties, par-
ticularly when it has no bearing on
the case whatsoever,” said Bleem! lead
attorney Jon Hangartner. ■

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w. g d m a g . c o m

8

GAMEXecutive Conference 2000

MONTEREY CONVENTION CENTER

Monterey, Calif.
March 7–8, 2000
Cost: $1,300–$1,900
http://www.gamexecutive.com

Game Developers Conference 2000

SAN JOSE CONVENTION CENTER

San Jose, Calif.
March 8–12, 2000
Cost: $200 and up
http://www.gdconf.com

NAB 2000

LAS VEGAS CONVENTION CENTER

Las Vegas, Nev.
April 8–13, 2000
Cost: $150 and up
http://www.nab.org/

conventions/nab2000

UPCOMING EVENTS

CALENDAR

REQUIEM: under fire in Brazil.

B I T B L A S T S - P R O D U C T R E V I E W

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w. g d m a g . c o m

10

Kaydara’s
Filmbox 2

by Jeff Lander

C reating animation for real-time
3D characters has become a
major ordeal. In the days when

character animation was based on
sprites, your characters would have ani-
mation loops of typically six to ten
frames in five to eight directions. You
needed a few people working in DPaint
or Photoshop, but the cleanup work

wasn’t too bad. Tools like DeBabelizer
made the job downright streamlined.

These days, however, smooth real-
time animation is the rule of the day. A
game such as Sega Sports’ NFL 2K con-
tains more than 1,500 animations, each
of which comprises anywhere from a
few frames to hundreds. This amount of
animation data is becoming increasing-
ly common and if you’re in charge of
making all those animations look right,
you’re going to be one busy little artist.
Whether you decide to have animators
create the motion for your characters or
you use some form of performance cap-
ture to generate the initial animation,
there is still a lot of work to be done.

Many producers are under the
impression that performance capture
provides game-ready animation in a
nice, clean package. Actual users of this
technology, however, know this is not
the case. Motion data needs to be
cleaned up, trimmed, and massaged to
fit your actual characters. Some of this
can be done by a performance capture
service provider, but there is always
some work that must be done in-house.

Likewise, producers may wish to save
money by using the same animation
for multiple characters in the game.

They may also want to blend multiple
animations together to create transi-
tions. Both of these things are possible,
but only by carefully manipulating the
animation data. Most professional ani-
mation packages allow you to work
with the animation data to some
extent, but as these packages also strive
to provide many other functionalities,
a modeling and animation program
may not be the best tool for the job.
ENTER THE FILMBOX.. Kaydara designed
Filmbox specifically to fill this role.
Animation manipulation is its specialty.
Filmbox provides a complete suite of
tools for capturing, creating, editing,
and blending animation data. It also
provides support for a variety of devices
for inputting motion data as well as
real-time playback and rendering
options. However, at its core, Filmbox
is about the motion.

When you first start up the program,
you will immediately notice it has a dis-
tinctly different feel, as you can see in
Figure 1. The interface clearly shows the
program’s SGI-based roots through its
nonstandard interfaces. Early on, I spent
quite a bit of time trying to find buttons
described in the manual. It turned out
that the buttons were at the bottom of a
scrollable window. It was not at all evi-
dent to me that the window could scroll
and it took me a while longer to figure
out how to scroll the window, as there
were no scroll bars. It turned out that
clicking the left mouse button plus shift
and dragging on the window was the
secret. Having used several SGI pro-
grams, learning these methods was not
a big problem for me, but for those of
us more accustomed to Windows appli-
cations, it can be a bit frustrating.
Fortunately, there is a Quick Reference
Guide that explains the various key-
mouse combinations and their func-
tions. However, unlike the previous ver-
sion of the program, there are no longer
quick-start tutorials. This plus the lack
of an index in the reference books can
make it intimidating to the beginning
user. The program also clearly prefers
running in 1280×1024 mode as things
seem to fit better. However, that was not
clear to me from the manual.
HOW DO I USE IT? Filmbox allows users
to import a great variety of animation
data. It supports the most thorough list
of animation formats that I have ever
seen. This includes the main motion
file formats such as .BVH, Acclaim,

Jeff is trying to figure out how to attach ping-pong balls to his cats to capture some
nice quadruped motion. So far, he is just getting scratched up. If you’ve got some bet-
ter moves, e-mail them to jeffl@darwin3d.com.

F I G U R E 1 . Filmbox’s IRIX-inspired interface may be intimidating to Windows users.

11

Character Studio, and
Motion Analysis’s .TRC,
among others. You can
also bring in animation
and models from 3D
Studio Max, Maya, Soft-
image, and Lightwave.
Once the animation is
imported, you can
manipulate it in many
ways.

One of the main prob-
lems with the use of a
performance capture
device is that it can cre-
ate too many keyframes
in the animation stream.
This is due to the fact
that a capture device
simply generates a key-
frame for every point of
capture every frame.
Much of the cleanup
work that a capture house does is
removing keyframes that are not need-
ed and eliminating spikes in the data
where the hardware had a glitch.

A typical motion file from a capture
session can generate so many keyframes

that it may be too much data storage
for your game. Using Filmbox, you
could resample the data from 30 frames
per second to 10FPS. But a more power-
ful option is to fit a Bézier curve to the
data and apply control points as need-

ed. This can reduce the
keyframes significantly
while retaining the
original curve of the
animation channel.
There are also tools for
spike removal, as well
as for time shifting and
curve scaling. These
tools go well beyond
any provided by stan-
dard animation and
modeling packages.

Another key step for
working with anima-
tion is applying the
motion to your charac-
ters. Filmbox has one
of the most intuitive
methods for making
this connection. Using
the Character tool (Fig-
ure 2), you create a link

between a logical “actor” created in
Filmbox and your own character model.
You can bring in your character from
any modeling package and relate the
joints in the character with the joints in
the Filmbox actor. This process is

F I G U R E 2 . The Character tool with motion applied.

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w. g d m a g . c o m

12

streamlined for biped characters but is
quite easy to set up for any character
hierarchy once you get the hang of the
process. Once this association is set up,
you can apply any motion to your char-
acter and start manipulating it.
BEYOND THE BASICS. Once you start dig-
ging deeper into the program, you will
begin accessing the more advanced fea-
tures. For one thing, you can set up a
great variety of constraints to the char-
acter. This includes the typical stuff
such as look-at, positional, degree-of-
freedom, and IK constraints. However,
there are also more sophisticated, world-
aware features such as a “floor contact”
constraint, which attempts to keep the
feet in contact with the floor, and an
“enforce gravity” constraint, which
keeps the hips between the feet. There
are also interesting options called “reach
hands” and “reach feet” constraints.
These attempt to get your character to
match the position of the hands and
feet of the actor, regardless of the
motion, which is useful when trying to
apply motion to characters of different
sizes. When the motion calls for a char-
acter to reach out and grab something
such as a door handle, you want the
character to hit that mark no matter
how large you make him. With these
constraints you can scale the motion up
and the actor will still hit the mark.

The package also includes a sophisti-

cated expression language which
allows you to create a complex mathe-
matical expression to control the ani-
mation, which appears to be more
robust than many similar expression
systems I have used.

Beyond working with motion, there
are tools to control the real-time play-
back of your performance such as real-
time camera animation and switching, a
robust set of lighting and shadow con-
trols, and texturing tools. Filmbox also
supports shape animation (Figure 3),
which I find very useful for facial ani-
mation and other deformation effects.
Like the skeletal animation system,

these effects can be completely con-
trolled through external input devices
such as MIDI controllers or even audio
files. You can also purchase the optional
Voice Reality module which will con-
vert an audio input into visemes auto-
matically, though it currently supports
only five visemes. There is also an
optional rendering module to display
your creation with a Cartoon Reality
Shader for real-time performances.

For anything you find lacking in
Filmbox there is the SDK extension sys-
tem which allows you to build your
own features into the package.
WHAT’S THE BOTTOM LINE? It would take
a user a vast amount of time to go
beyond scratching the surface of all of
Filmbox’s features. It’s a very robust sys-
tem for working with and manipulating
motion data. It is this robustness, how-
ever, that tends to narrow its usefulness.
Filmbox must work with an external
package for creation of the characters.
Users will need to have a fairly powerful
animation package to make Filmbox
really useful in production. For many
users, at the cost of many high-end
modeling packages an additional art
tool to manipulate the animation data
will be unnecessary no matter how
powerful it is.

That said, if your project requires you
to manipulate and adapt a great deal of
animation data and your regular art
production tool is not up to the task,
Filmbox will definitely provide you with
all the power you need. I am certain
that with the great number of anima-
tion-intensive titles coming along,
many will find this an indispensable
tool in their developer’s arsenal. ■

Kaydara Inc.
Montreal, Quebec
(514) 842-8446
http://www.kaydara.com

Price: Filmbox Animation:
$4,995; Filmbox Match-
move: $9,995; Filmbox
Motion Capture: $11,995;
Filmbox Online: $29,995

System Requirements:
Windows NT/2000 or
IRIX, 128MB RAM, fast
OpenGL acceleration
(suggested), 3D model-
ing/animation package.

Pros:

1. Sophisticated manipula-
tion tools for motion
capture and animation
data.

2. Ability to blend anima-
tions together to create
transitional moves.

3. Import/export plug-ins
for most 3D animation
packages.

Cons:

1. Nonstandard user inter-
face will take time to
learn.

2. Product is highly target-
ed to fill a very specific
role in production. May
not be useful to you
unless your project
requires a lot of anima-
tion processing.

3. Lack of tutorials and a
manual index can slow
learning curve.

Filmbox 2:

F I G U R E 3 . Shape animation aids deformation effects such as facial animation.

Excellent Very Good Average PoorBelow Average

b y J e f f L a n d e r G R A P H I C C O N T E N T

112,320 frames of animation. Each of
those frames needed to be drawn,
cleaned up, inked, painted, aligned
with the background, and finally shot
to film. Each of these steps required a
great deal of skill and patience on the
part of the artists involved.

Look at the job of the opaquer. This
person is responsible for receiving the
final cels from the ink department and
coloring them using opaque paint.
This job is essentially coloring in
between the lines using a paint-by-
numbers key known as a color model.
While it seems like a fairly straightfor-
ward — though repetitive — job,
opaquing was very time consuming
during the early years of animation.
Shamus Culhane, who was deeply
involved in the process at Disney for
many years, estimated that his
opaquing department could average
about 25 cels per day. At that rate, it
would have taken
his team 12 years
to opaque the cels
for The Jungle Book.
Clearly, the staff
for this Disney
classic worked
their little animat-
ed tails off.

Fortunately for
the animation
industry, comput-
ers have come
along. Through the
use of a digital ink
and paint system, a

single artist can opaque several hun-
dred cels in a single day. As an extra
benefit, the computer eliminates many
of the problems artists had matching
colors painted on various layers of
acetate. Painting an animated feature
is still a major issue in animation, but
the job has gotten much easier.

Enter the Next Dimension

In the digital world of 3D real-time
animation, I have some opaquing

problems of my own. Last month I
looked at methods for creating car-
toon-style rendering on 3D objects. I
was able to deal with creating the sil-
houette and material lines, however I
had yet to get the cartoon look for the
surface of the object. I suggested that I
would need to look to texturing tech-
niques to get that part of the job done.

You can see the situation I would
like to end up with in Figure 1. Given
one light shining on the model, I want
there to be a clear separation of the
light and dark halves of the model. A
classic model for illumination gets me
most of the way. I want the shade to be
a function of the surface normal and
the light position. In the Lambertian
reflection model, the brightness of a
surface position depends only on the
angle between the direction to the
light source, L, and the surface normal,
N. Mathematically, that would be

The dot product is taken between the
surface normal and the light source
direction and is multiplied by a diffuse
lighting constant. Since the dot prod-
uct will vary from 0 to 1, this would
just give me the basic Gouraud-shaded-

I k N Ld= •()

h t t p : / / w w w . g d m a g . c o m M A R C H 2 0 0 0 G A M E D E V E L O P E R

15

Shades of Disney:

Opaquing a 3D World

L ike many people who work with computer images, I am a huge fan of clas-

sic animation. The amount of labor that goes into creating an animated

feature film has always amazed me. Consider for example Disney’s The

Jungle Book. The film is 78 minutes long. At 24 frames per second, that’s

When not glued to his TV watching the Cartoon Network, Jeff can sometimes be found at Darwin 3D. Send him a message at
jeffl@darwin3d.com and we will slip it to him during a commercial break.

Light

N

F I G U R E 1 . A nice cartoon shading showing a clear delin-

eation between light and dark portions of the model.

F I G U R E 2 . A plain Lambertian reflec-

tion gives a Gouraud-shaded look.

ball look where the illumination value goes smoothly from
white to black as you can see in Figure 2.

What I need to create is a cutoff where the illumination is
“light” or “dark.” The ideal formula would be

where ε is the shading threshold. As I discussed last month,
I could compute the vertex colors at every vertex using this
formula. However, this wouldn’t get the desired results.
Graphics hardware interpolates the vertex color across each
triangle. Since the cutoff point could potentially occur in
the middle of a triangle, a simple interpolation would not
look correct.

It’s tempting to consider using environment-mapping
techniques to create the effect. Spherical environment-map-
ping calculates the ray from your eye that reflects off the sur-
face to the point that it strikes on a hemisphere around the
object. You can see this illustrated in Figure 3.

This technique is used to make
things look reflective, like shiny
metal. It’s also a method for creating
a specular highlight on an object. I
could create an environment map
that transitions from light to dark,
as seen in Figure 4, then apply that
to the object. This gives me exactly
the result I was looking for but has a
few problems. For one, the coordi-
nates are calculated from the eye
point. In order to get the look I
want, I will need to calculate the
environment map from the light.
This is possible, but kind of a pain.

The second problem is that if I
wish to change the shading thresh-
old or the number of in-between
values, I would need to recalculate
the environment map completely.
That would be a bit of a burden on
the CPU.

Using a Texture as a Lookup Table

A nother thing you may have noticed is that the map in
Figure 4 is a bit wasteful. The same color gradient is

repeated around the circle radiating from the center. Let’s
look again at the formula I am trying to reproduce. I know
that the dot product term will vary from 0 to 1. I can calcu-
late the value for I for each dot product from 0 to 1 and
store it in a table.

For example, suppose ε = 0.375. The table would look like
Figure 5.

Now I can take this table and convert it into a one-dimen-
sional texture (I know you’ve probably always wondered
how those could be used). I set up the 1D texture in OpenGL
with a couple of easy function calls that are almost identical
to their 2D equivalents.

glGenTextures(1,&m_ShadeTexture);

glBindTexture(GL_TEXTURE_1D, m_ShadeTexture);

// Do not allow bilinear filtering

glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glTexImage1D(GL_TEXTURE_1D, 0, GL_RGB, m_ShadeWidth, 0,

GL_RGB , GL_FLOAT, (float *)m_ShadeSrc);

You will notice that I turned off filtering. This is because I
actually want to get a banded, shaded look. If filtering were
on, the colors would be blended in a way that would not
look at all right for my purposes. Since filtering can slow
things down on some cards, this ends up being beneficial for
performance as well.

In order to use this new 1D texture, I simply need to cal-
culate the dot product and index that result into the table as
a texture-map coordinate. For an object that can rotate, the

I k N L

ShadeTable u k u

d

u
d

= •() <()

[] = () <()
=

∑

ε

ε
0

1

I k N Ld= •() <()ε

G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

16

Object

F I G U R E 3 . The spherical environment-mapping technique

can be used to make an object look as if it is reflecting light.

F I G U R E 4 . A cartoon environment map, transi-

tioning from light to dark.

1.0

0.0

ε = .375

F I G U R E 5 . A lookup table for

the given value.

vertex normal will need to be rotated by the
object matrix before the dot product is calculated.
The code for calculating the table index is given in
Listing 1.

This new lookup map is applied just like a nor-
mal texture map except for the fact that it is 1D
and requires only one texture coordinate. The
results of this process can be modulated with the
object’s surface color to get the final image. This
gives me a great deal of flexibility in how the shad-
ow is applied across the image. I can control the
cutoff level and the number of levels of shading
across the surface, and I can even add a highlight
by brightening the top of the table. To recalculate
the values, I only need to update the table — quite
a bit easier than the entire 2D texture map. The
table can be of any resolution your graphics card
can handle. If you use too few shades, the resulting
surface will appear very banded and blocky. I found
that for most objects, a 32-pixel table looks pretty
good. You can see a variety of shade tables and
their respective results in Figure 6.

I now have a fast and flexible real-time cartoon
renderer. The whole concept of using the texture-mapping
capabilities of 3D graphics hardware to apply arbitrary func-
tions across a surface is very powerful. You can create a very
complex and completely nonlinear shade table and then
apply it to the surface and let the hardware interpolate it.

Other Methods

Obviously I’m not the only person exploring the use of
non-photorealistic techniques for real-time rendering

in games. Sim Dietrich of Nvidia has been exploring the use
of hardware-accelerated transformation and lighting for
non-photorealistic rendering. Methods such as my use of the
normal and dot product require the CPU to perform calcula-
tions on each vertex. Sim’s goal is to minimize the use of the
CPU by using features found on Nvidia’s GeForce 256 GPU.

The GeForce 256 supports cubic environment mapping and
texture-coordinate generation. By using a cubic environment
map and the D3DTOP_DOTPRODUCT3 operation to generate texture
coordinates for the environment map, Dietrich can create a
cartoon rendering with very limited CPU impact. In addition,
by applying more rendering passes, he can add some texture
to the shaded part of the image. You can see some examples

of Sim’s work in Figure 7. On hardware that supports texture-
coordinate generation and features such as cubic environ-
ment mapping, these methods are definitely worth exploring.

Intel Goes to Toontown

Intel has been creating a variety of impressive technolo-
gies available to the game development community. They

have been working on a licensable real-time non-photoreal-
istic rendering algorithm as part of the Intel 3D Software
Toolkit that they are announcing at this year’s Game Devel-
opers Conference. The software allows you to specify line
settings such as thickness, color, and type. For the shading,
you can set the shadow cutoff level and brightness as well as
a highlight level and value. Intel has also been working on

G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

18

///

// Function: CalculateShadow

// Purpose: Calculate the shadow coordinate value for a normal

// Arguments: The vertex normal, Light vector, and Object rotation matrix

// Returns: An index coordinate into the shade table

///

float COGLView::CalculateShadow(tVector *normal,tVector *light, tMatrix *mat)

{

//// Local Variables //

tVector post;

float dot;

///

// Rotate the normal by the current object matrix

MultVectorByRotMatrix(mat, normal, &post);

dot = DotProduct(&post,light); // Calculate the Dot Product

if (dot < 0) dot = 0; // Make sure the Back half dark

return fabs(dot); // Return the shadow value

}

L I S T I N G 1 . Code for calculating the texture coordinates.

F I G U R E 6 . Some shade tables and results.

F I G U R E 7. This Nvidia cartoon rendering optimizes the

GeForce 256 architecture, minimizing CPU impact.

creating a variety of ren-
dering styles such as
sketch and pen-and-ink
to go along with the car-
toon rendering.

The 3D Toolkit will
integrate this renderer
with other 3D technolo-
gy such as the multi-reso-
lution mesh, subdivision
surfaces, and a skeletal
deformation system. The
package will be available
for use in a variety of
real-time projects.

A Word About Digital
Cinematography

Of course, even after
all this work, creat-

ing the rendered look for
your characters is only
part of the battle. You
also need to know how
to display them effec-
tively. In many real-time
3D games, the camera is
tied directly to the character. It bobs
along behind the character bumping
off walls (or going through them in
some cases) and wedges itself in places
guaranteed to block the thing you are
trying hardest to see. Camera control
has become a major part of the 3D
game creation process. Poor camera
operation and control is sometimes
enough to cause a game to receive a
poor rating in game magazines. Clearly
it’s time to start thinking about the
camera as an integral actor in the
scene. Perhaps games have matured to
the point that it’s time to look to film
production techniques and assign cine-
matographers to camera control in 3D
interactive games.

Not long ago, most cinematics in
games were created using traditional
filmmaking and animation methods.
These movies could break the immer-
sive experience by pulling the player
out of the action. These days, however,
it seems like more developers are creat-
ing their cinematic sequences using the
game’s real-time engine. This trend has
brought a variety of new problems with
it. Many of these games use pre-scripted
sequences for camera control to display
the action in a pleasing way. This is fine
for noninteractive sequences or dia-

logue trees. But if we want to have truly
interactive sequences that the players
can enjoy the way the project director
intended, we need to take a serious look
at the art of real-time camera control.

Consider the example of the action/
adventure game. Many of these games
use a tethered camera under complete
user control. Game designers must be
content letting the player manipulate
the camera in order to show the action.
Anyone who has played a game like
this knows it can be very difficult to
manipulate the character and the cam-
era at the same time. Many times the
player will get the camera into a “good
enough” position and continue with
the action, but this position will proba-
bly not be the best one for displaying
the action.

One alternative approach I have
seen is never to give players control of
the camera in the first place. This can
be frustrating to players as they may
have a different idea of what is impor-
tant in an interactive situation. Then
there are the hybrid methods which
yank control away from players to
show them something “dramatic.”
This can be jarring and totally pulls
players out of the interactive experi-
ence, leaving them no longer in con-

trol. It is clear to me that
the interactive medium
requires some fresh think-
ing about storytelling.

Filmmakers have been
telling stories with the
visual medium for a long
time now. They have cer-
tainly learned a few things
along the way. Out of
those experiences a certain
visual style has formed
that guides basic filmmak-
ing. I am not saying that
these rules are not or
should not be broken.
However, when they are
broken it is to achieve a
desired effect, not simply
out of ignorance of their
very existence. This cine-
matic style, sometimes
called continuity style,
describes shot framing and
staging methods that
enhance storytelling with-
out confusing audiences.

Next month, I’ll be look-
ing at methods for shoot-

ing an interactive story. Till then,
think about the best and worst camera
control you have seen in a game and
let me know about it. ■

G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

20

Traditional Animation
Culhane, Shamus. Animation from

Script to Screen. New York: St.

Martin’s Press, 1988.

This book is an excellent source for all

aspects of traditional animation — a

must-have for animators and pretty use-

ful for technical types. Covers everything

from the walk cycle to facial expressions

to starting your own studio. The only

book I know that describes how a dodo

bird walks.

Nvidia
http://www.nvidia.com

Sim Dietrich should have posted his doc-

ument and application for cartoon ren-

dering by now. If not, drop Nvidia’s

developer support an e-mail.

Intel 3D Software Toolkit
http://www.intel.com

Watch for a major announcement at the

Game Developers Conference, March

8–12, 2000.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

The Intel 3D Software Toolkit integrates a number of 3D technologies.

b y M e l G u y m o n A R T I S T ’ S V I E W

techniques with NURBS and other exot-
ic surfaces. Now, with Sega’s Dreamcast
flying off the shelves and the Japanese
launch of Sony’s Playstation 2 immi-
nent, the face of RT3D gaming is in the
process of being redefined. The hard-
edged polygonal appearance is becom-
ing a thing of the past, replaced instead
by the smooth-surfaced and highly
complex models that are, or will
become, the standard fare for the next
generation of RT3D platforms. Every-
thing comes with a price, though, and
to pay for this quantum leap in perfor-
mance, we as developers — and espe-
cially as artists — must reinvestigate
and possibly redefine our production
techniques. And nowhere is this more
apparent than in the construction and
surfacing of the creatures and charac-
ters that populate our virtual worlds.
This month, I’ll discuss some ways
artists can apply the latest technology
to create more complex and more scal-
able character geometry.

Polygonal character modeling has
long been the mainstay of RT3D gam-
ing. The techniques for creating a model
from the ground up, working only with
its vertices and faces, represents the sim-
plest, most straightforward method of
creating geometry. Since the inception
of RT3D development, it has been this
inherent simplicity that makes the
method so powerful. When the project
has a limited polygon budget, heavy
emphasis must be placed on polygonal
efficiency, and it is mandatory that the
artist get up close and personal with
each and every vertex in a model.

With the latest trends in hardware,
the scene complexity of RT3D games is
skyrocketing. Scenes in excess of

50,000 polygons are soon to become
the norm, and the pressure is on to cre-
ate increasingly realistic content. This
precipitates the need for greater com-
plexity in character models, which will
be sporting smooth organic surfaces. As
a result, the same simplistic polygonal
modeling techniques that were once so
effective now become handicapped by
their simplicity.

To understand the problem better,
let’s consider a character model that
has 5,000 polygons, with level-of-detail
(LOD) models comprising 3,000, 1,000,
500, and 300 polygons respectively.
That’s a total of almost 10,000 poly-
gons’ worth of modeling, just for a sin-
gle character. Imagine the work
involved in texturing and animating
this character. Now multiply that by

h t t p : / / w w w . g d m a g . c o m M A R C H 2 0 0 0 G A M E D E V E L O P E R

23

Skin Deep: Surfacing Strategies

for Real-Time 3D Characters

F or the past half-decade, the world of real-time 3D has been dominated by

the humble yet ubiquitous polygon. Animators and artists in the gaming

community have stood jealously by while their counterparts in the film

and entertainment industries have honed and perfected their modeling

Mel Guymon has been animating in the gaming industry for several years. When he’s
not at his desk pushing polygons, he can usually be found at the local Barnes and
Noble, slumming for reference materials. Mel can be reached at mel@infinexus.com.

Polygonal Method Surfacing Method

High-Resolution

Polygonal Model

LOD 1LOD 2

LOD 3 etc.

High-Resolution

Polygonal Model LOD 1 LOD 2 LOD 3 etc.
Art Path

Run-Time Application

Low-Resolution

Primary Control Lattice

Surfacing Process

Art Path

Run-Time Application

F I G U R E 1 . With the surfacing method (right) artists need only deal with a primary

control lattice, rather than multiple iterations of traditional polygonal models (left).

the dozens of char-
acters which could
potentially popu-
late a RT3D envi-
ronment and it
soon becomes
apparent that the
standard polygonal
methods for
manipulating
geometry rapidly
break down. To a
large extent, this is
due to the fact that
the modeling, tex-
turing, and weight-
ing techniques
(applying vertex
weights to a skele-
tal system) come
with an interface
that allows the
artist to work
directly with each
vertex. Clearly, to
avoid becoming
bogged down by
the sheer amount
of data involved,
we must augment
or replace the stan-
dard modeling
techniques with a
higher-level editing
method, one that
gives artists the
same degree of pre-
cise control with-
out mandating that
they work directly on the polygons.

The solution to this challenge is to
come up with a method that allows
artists to work with a low-detail control
object which overlays the polygonal
model. By working with this “primary
control lattice” to the exclusion of the
polygonal surface underneath, artists
can keep their work scalable and resolu-
tion-independent. As a result, each
aspect of character generation (model-
ing, texturing, and animating) becomes
more efficient, and regardless of the
model’s final complexity and/or the
number of LODs generated, the devel-
opment time can be kept to a mini-
mum (see Figure 1). So, if you think you
might be ready to step beyond the
bounds of standard polygonal charac-
ter-generation methods, read on for an
examination of the pros and cons of
several alternate techniques.

Surface Subdivision

T he subdivision method augments
the standard polygonal modeling

techniques by simply subdividing an
existing mesh to add complexity and
smooth out hard edges. This method,
shown in Figure 2, applies a modifier to
the object that alters the surface of the
model while leaving the original pri-
mary vertices intact. Information such
as UV coordinates, vertex colors, and
bone weights remain baked into the
model as the mesh tessellates, allowing
the modeler to work with a relatively
small amount of data compared with
the final result.
WORKFLOW. This method deviates the
least from the standard polygonal
method. First, the modeler creates a rel-
atively low-resolution polygonal model
(top left). This model becomes the pri-

mary control lat-
tice, and all of the
subsequent editing
will deal with the
vertices that make
up this surface. In
this case, the pri-
mary control lattice
is polygonal, and as
such, it will serve
directly as the low-
est level of detail
for the model.
Once the control
mesh is created, a
smoothing modifier
is applied, and the
number of itera-
tions used deter-
mines the final in-
game surface
complexity. A first-
order and second-
order iteration
smoothed model is
shown on the left,
and in the close-ups
on the right, the
vertices of the pri-
mary control lattice
can be seen.
ADVANTAGES. This
method is extreme-
ly straightforward,
and since normal
polygonal tech-
niques are used to
begin with, there is
almost no learning

curve. It is fast and easy to preview the
result within the editing software, mak-
ing it easy to iterate on the final result.
Additionally, the primary control lat-
tice for the mesh need not be overly
complex to get a good result; this
means a constant, relatively low over-
head for the number of data points the
artist has to work with. Finally, since
the subdivisions are totally procedural,
the smoothing algorithm can be
applied in-game rather than in the
editing software, with similar, pre-
dictable results. (See “Subdivision
Surface Theory,” January 2000, and
“Implementing Subdivision Surface
Theory,” February 2000, for detailed
information on this technique.)
DISADVANTAGES. First, because the prima-
ry control lattice is polygonal, the
amount of information that can be
stored in it is limited. In order to define

A R T I S T ’ S V I E W

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

24

F I G U R E 2 . The surface subdivision method requires artists to maintain only a

small amount of data to generate the relative complexity of the final result.

a curved surface, there needs to be at
least three vertices. This means that for
high-detail regions (such as a charac-
ter’s face), the control mesh still needs
to be fairly dense. Second, the variation
between levels of detail is severe. With
each new iteration of the smoothing
algorithm, the model’s complexity can
increase by a factor of four or more.
Finally, the in-game surface may be
constructed of uniformly irregular poly-
gons, such that optimal rendering tech-
niques (such as tri-strip rendering) are
not possible, forcing the model to ren-
der more slowly than necessary.
AVAILABILITY. The technique as shown in
Figure 2 was generated with the
MeshSmooth modifier in 3D Studio
Max 3, however similar functionality
exists in Maya Unlimited’s Surface
Subdivision tool and Softimage’s
MetaMesh Extreme. Regardless, as I
indicated above, the technique may be
done procedurally within the engine,
either at run time or as a post-process
on the data.

NURBS

W orking with NURBS (Non-Uni-
form Rational B-Spline) sur-

faces is a complete departure from the
polygonal method.
Long the mainstay
of Alias|Wave-
front’s modeling
suites, this surfac-
ing technique has
been gradually
making its way
into the standard
toolsets of many of
today’s editing
tools. A NURBS
surface is a polygo-
nal approximation
of an object’s vol-
ume as defined by
a set of analytically
generated curves.
These curves, or
splines, are further
defined by a set of
control vertices
that can lie either
on or around the
curve. As you can
see in Figure 3, the
number of control
points used is anal-

ogous to the number of exponents in
an algebraic equation. The more con-
voluted the curve, the higher order the
function is needed to describe it, and
consequently, the more control points
are required.
WORKFLOW. Modeling in NURBS surfaces
requires a mindset different from that
which one uses working with poly-
gons. Although the final result is polyg-
onal, at no time does the artist work
directly with the polygons involved. At
the most basic level, a NURBS surface is
assembled by constructing contour
curves of the object to be created (see
inset, top left). These contour curves
and the control vertices that define
them will serve as the primary control
lattice for the object (bottom left).
Once the contours are complete, a sur-
facing tool is used to stitch the curves
together. As in the previous example,
UV coordinates, lighting information,
and bone weights are accessed by mod-
ifying the control vertices in the prima-
ry control lattice. The resulting resolu-
tion-independent NURBS surface is
shown, followed by two resultant
polygonal equivalents.
ADVANTAGES. By far the biggest advantage
of working with NURBS is that the tech-
nique has been in existence for a rela-
tively long time. The tools have had

time to mature and there exists a large
user base of artists and animators who
are familiar with this editing technique.
Furthermore, though not as simple to
execute as subdivision surfaces, the
method is fairly straightforward, with
the better editing tools requiring only a
moderate learning curve. And although
there are currently engines in develop-
ment that will support NURBS shapes
running in real time, if your particular
engine requires polygonal models to be
used, applying a NURBS-to-polygons
modifier is a fairly uncomplicated pro-
cedure. Finally, if your engine does sup-
port NURBS, the on-the-fly nature of
the polygonal subdivision routines
makes it almost totally unnecessary to
generate LOD objects.
DISADVANTAGES. Since the curves that
make up a NURBS surface are analyti-
cal in nature, the resulting shape can
be computationally expensive to work
with. As a result, you may need a fair-
ly robust workstation to work with a
NURBS object of the complexity you
require. Additionally, because the
artist is not in direct contact with the
resulting polygonal surface, the level
of control over that surface is more
limited than in the previous case. The
surface regularity of the resulting
mesh can also be unpredictable,

depending on the
application. As
with the previous
technique, this can
make for less-than-
optimal rendering
performance.
AVAILABILITY. Again,
this example was
generated from a
3D Studio Max 3
tutorial, but similar
functionality also
exists within most
of the major edit-
ing packages.

Bézier Splines and
Patches

A Bézier spline
is a curve

defined by two or
more control
points, each of
which has two
points that control

A R T I S T ’ S V I E W

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

26

F I G U R E 3 . NURBS can eliminate the need to generate LOD objects, but can result

in unexpected surface irregularities and inferior rendering performance.

the tangent of
the curve into
and out of each
control point. A
Bézier patch is an
editable surface
defined by four
control points
and the edges or
curves in between
them. As you can
see in Figure 4,
the Bézier spline
can store a lot of
information in
only two control
points (top left).
This is because
the tangent con-
trols for each
point allow the
artist to refine the
curve further
without adding
additional points.
The same holds
true for a Bézier patch. Working with
patches, artists can exert a large degree
of control over the surface without
worrying about having to add addi-
tional control points to the mesh. (For
more information about Bézier curves
and patches, see “Implementing
Curved Surface Geometry,” June 1999,
and “Optimizing Curved Surface
Geometry,” July 1999.)
WORKFLOW. The resulting method is
somewhat of a mix between the two
previous methods. Just as in the
NURBS example, the object is first cre-
ated by a series of contour curves (top
center). However, these contour
curves must run in both the U- and V-
axes of the object. Where three or four
curves intersect to form a three- or
four-point shape, a patch can be
defined. Once the primary control lat-
tice is defined, a patch-surfacing mod-
ifier is applied to create the polygonal
equivalent of the object. As with the
first example of subdivision surfaces,
the number of iterations on the sur-
facing modifier controls the complexi-
ty of each patch, and ultimately the
complexity of the model. Unlike the
NURBS example, however, if the num-
ber of iterations is set to zero (no cur-
vature, shown on the model at lower
left), each set of three or four control
points defines a polygon that lies on
the surface of the model. As with the

previous two methods, editing the
vertices in the primary control lattice
enables the user to control UV coordi-
nates, vertex coloring, and skeletal
weighting. Along the bottom, the
number of iterations on the surface
increases from left to right. In the
detail inset at the top right, the ver-
tices and tangent handles of the pri-
mary control lattice can be seen.
ADVANTAGES. The patch approach offers
a fast and easy solution with the best
aspects of the previous two methods.
Having the tangent handles on each
control point is an extremely powerful
tool, allowing the artist to add defini-
tion and detail without compromising
the simplicity of the primary control
lattice. As a result, the data storage in
this primary control lattice is the most
efficient of any of the methods I have
discussed. Additionally, the polygons
constructed using this method are
extremely regular in appearance,
resulting in a mesh that is highly opti-
mized for rendering calculations. By
increasing the number of iterations on
the surfacing modifier, the complexity
of the resulting mesh rose smoothly,
yielding more control over the levels
of complexity in the model. Finally,
rendering routines for patch surfaces
are becoming more widespread in use,
and because of the regular polygonal
construction in the surface, they tend

to render faster
than their
polygonal coun-
terparts.
DISADVANTAGES.
The resulting
primary control
lattice requires a
little more fore-
thought to con-
struct, since it’s
possible to cre-
ate situations
where more
than four curves
intersect, pre-
venting the
shape from
becoming a
valid patch. This
can be extreme-
ly frustrating
when first learn-
ing the tech-
nique. Also, the
patch surfacing

method is relatively new, resulting in a
lower level of knowledge and experi-
ence in the development community
as a whole.
AVAILABILITY. The patch method in this
incarnation was demonstrated using
3D Studio Max 3. Somewhat similar
functionality can be found in Soft-
image 3.8 SP2.

Find the Method That’s Right for You

In the end, once I had experimented
with all three techniques, I decided

in favor of the patch-based method. It
has the flexibility and power required
for most character-based applications,
and the resulting surface model is opti-
mized for fast and efficient rendering.
Regardless of the method you choose,
however, the important thing to
remember is to try to minimize the
amount of data that artists have to work
with. This way, the time saved in data
manipulation can be spent on artistic
finesse and game play, which is really
what this whole show is all about. ■

A R T I S T ’ S V I E W

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

28

F I G U R E 4 . A Bézier patch can be created using only two control points (upper left),

with iterations on the surface increasing (at bottom) from left to right.

Special thanks to Kris Renkewitz, Wyeth

Ridgway, Dave Coathupe, and the folks

who put together the 3D Studio Max 3

tutorials.

Acknowledgements

b y O m i d R a h m a t H A R D T A R G E T S

Ubi Soft and Titus, Infogrames has
benefited from the interest of its
home capital markets in interactive
entertainment, using its financial
muscle to draw Gremlin Interactive in
the U.K., along with Accolade and GT
Interactive in the U.S., into its corpo-
rate web. Infogrames is a prime exam-
ple of the type of consolidation that is
taking place in the industry, and an
interesting study in how truly global
the industry has become.

History

T he outspoken Bruno Bonnell and
Christophe Sapet founded Info-

grames in France in 1983. Both were
computer engineers who had worked
in the electronics industry prior to
getting into the game business, and
like most engineers who follow the
game route, they were PC developers
first. Probably the turning point for
the company came in 1989 when it
became the first French company to
obtain a license to develop games for
Nintendo’s SNES console. It was a
piece of fortuitous timing, coming hot
on the heels of the explosive growth
of the SNES. However, the biggest
prize for any real game company
remained the lucrative North
American market.

In 1992, Infogrames established
I-Motion to build a presence for itself
in the U.S. Despite its successes, Info-
grames moved cautiously in its first
forays into the U.S. Initially, Info-
grames relied on Broderbund and THG
for distribution, and up until the mid-
1990s, more than 90 percent of the

company’s revenues were coming from
Europe. Europe was a safe haven for
Infogrames, and the U.S. market was
very difficult in the early 1990s. For
example, for many years Infogrames
was a notable developer of Game Boy
titles, and the company had carved a
nice niche for itself in this market in
Europe. In the early part of 1998, Info-
grames sold more than 130,000 copies
of its Game Boy title THE SMURFS, even
though it was at least four years old at
the time.

The North American Invasion

Co-founder Bonnell has gone on
record to say, “We have targeted

the U.S. market, and intend to replicate
in the North American continent the
success that has made us a leader in
Europe.”

In real terms, the company’s initial
goal was for the U.S. market to con-
tribute $150 million to Infogrames’
revenues by 2001. Recently, the com-
pany stated that it wanted its U.S. sales
goal for fiscal 2004 to be $2 billion. As
a result, a key event for Infogrames last
year was raising $222 million through
a five-year convertible bond offering in
order to provide the company with a
war chest to fund strategic acquisitions,
primarily in the U.S.

Infogrames acquired Accolade in
April 1999. This came in the wake of
the acquisition of U.K.-based Gremlin

Interactive a month earlier. In one fell
swoop, Infogrames snatched up strong
development teams in the U.S. and
U.K., added 18,000 U.S. sales outlets
to its 30,000-strong base in Europe,
and attracted the interest of 50 sales
representatives in the U.S. The culmi-
nation of Infogrames’ North American
invasion was the controlling stake in
GT Interactive it purchased for $135
million in November 1999. GT Inter-
active had been a takeover target for
some time, but it was surprising to see
Infogrames manage to wrest control of
GT from the Cayre family for, in
effect, 75 cents a share. As we went to
press, Infogrames’ total sales were pro-
jected to grow by 50 percent in fiscal
2000 (the company’s financial year
ends in June, therefore fiscal 2000
results will be delivered at the end of
summer), to reach $460 million.
North American sales will contribute a
fifth of this revenue.

The U.S. wasn’t Infogrames’ only tar-
get, however. Infogrames became a
player in Australia by taking a 62.5 per-
cent-share holding in the game distrib-
ution company Ozisoft, which had
1998 sales of 32 million Australian dol-
lars. Then there was the acquisition of
Arcadia in Spain and Portugal’s A+
Multimédia, which were renamed Info-
grames Spain and Infogrames Portugal
respectively. These two acquisitions
alone gave Infogrames direct access to
more than 1,500 additional European
sales outlets.

h t t p : / / w w w . g d m a g . c o m M A R C H 2 0 0 0 G A M E D E V E L O P E R

31

Infogrames: Today the Smurfs,

Tomorrow the World

W hile the game industry likes to pat itself on the back in light of

the stellar growth it has experienced in the last five years, I

think it’s worth singling out Infogrames as an exceptional

example of growth in its own right. Like its French counterparts

Omid Rahmat is bidding farewell to his loyal readers after this column to join
Expertcity.com, based in Santa Barbara, Calif. You can still read his research and
market analysis notes on his web site at http://www.smokezine.com.

Your Neighborhood Billion-Dollar
Game Company

So what does consolidation buy you
in today’s game industry? Probably

the best answer is to look at what
Gremlin, Accolade, and GT Interactive
bring to the table. Obviously, all these
companies generate revenue from the
sale of games. However, at least in the
case of Gremlin and GT Interactive,
both public companies in their respec-
tive countries, the combined impact of a
share-price collapse and a lack of capital
made them easy prey. However, the real
key to assessing the value of these com-
panies is in examining the mix of devel-
opment talent, franchise titles, and dis-
tribution that they offer.

Gremlin’s U.K. sales account for 56
percent of its business, with 25 percent
in Europe and 19 percent for the rest of
the world. However, Gremlin also has a
development business. The company
acquired Scottish developer DMA
Design in 1996, and 80 percent of its
titles are developed in-house. Among
Gremlin’s titles are ACTUA SOCCER (46
percent of 1996 sales) and ACTUA GOLF

products. DMA Design developed the
hit LEMMINGS series, BODY HARVEST for
the N64, and GRAND THEFT AUTO for
Take Two Interactive. For its fiscal year
ending in June 1999, Gremlin had

planned 14 titles representing 20 SKUs.
For all this, Infogrames paid £24 million
($39 million). Not a bad deal for a very
talented development group and some
interesting franchises.

A good soccer franchise is as essential
to a European game developer as a
football title is to a U.S. company.
Therefore, in acquiring Gremlin, Info-
grames adds a couple of key sports
franchises as well as a strong group of
developers. It also helps solidify the
position of both Gremlin and Info-
grames in Europe, and allows Info-
grames to expand the reach of Gremlin
titles beyond its home territories.

Accolade is an even more interesting
acquisition. The company was founded
in 1984 by former Activision developer
Alan Miller. Accolade was primarily
involved in the development of console
titles (having made the transition from
PC titles in 1991), and owns the rep-
utable and successful HARDBALL series
franchise, in addition to TEST DRIVE and
TEST DRIVE OFF-ROAD, the number-one
U.S. off-road franchise for the Playsta-
tion. But here’s the real kick for its
French parent: Accolade also has pres-
tige licenses such as Major League Base-
ball, the Major League Baseball Players’
Association, and automotive licenses
such as Jaguar, Hummer, Land Rover,
Jeep Wrangler, Chevrolet Corvette,
Chevrolet Camaro, Dodge Viper, Dodge

T-Rex, Dodge Ram, and Shelby Cobra.
It’s a product base of testosterone and
pure Americana that is not exactly in
line with Infogrames’ traditional image.

It has to be said that European tech-
nology companies traditionally find it
difficult to operate successfully in the
North American market. It may be
partly cultural, and it may also be part-
ly the competitive nature of the U.S.
market coupled with its complex mix
of channels and tastes. Into this fray,
Infogrames has added its 70 percent
stake in GT Interactive, indicating that
the company is confident in its ability
to handle its U.S. outlets, but that’s
where its greatest challenge lies.

The Global Imperative

W hatever the value of Infogrames’
acquisitions and however the

resultant mix of companies performs, I
think Infogrames makes an excellent
case study in how to position yourself
as a game company in the next five
years — you have to be global. Gremlin,
Accolade, and GT Interactive can bene-
fit from Infogrames’ European presence
as much as Infogrames benefits from its
increased presence in English-speaking
markets. I’d even go as far as to say that
almost all the major European and
American game companies are starting
to resemble Electronic Arts, the compa-
ny that helped define what it means to
have a global brand in this business.

Still, there are numerous problems in
Infogrames’ strategy. GT Interactive
could end up being a drain. GT isn’t a
pure game company; it also has educa-
tional and reference products. It has
great distribution in North America, but
could nevertheless end up being a big
weight on Infogrames’ shoulders. Info-
grames has a ways to go in creating a
unique identity and family of franchises
to accompany its global presence. The
company has some consolidating to do
on its product lines, its development
slate, and even in its distribution chan-
nels. It’s a common side effect of rapid
growth. Still, had Infogrames, Ubi Soft,
Titus, and Eidos not been so aggressive
in the past three years, the European
game industry would have been in dan-
ger of becoming swamped by U.S. take-
overs, or at worst being marginalized as
a development resource for American
and Japanese companies. ■

H A R D T A R G E T S

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

32

Gross Profit

R&D

Marketing & Sales
Fixed Costs

Operating Income

Income before Taxes

& Goodwill

Consolidated
Net Income

Financial Year
1997-98

Financial Year
1998-99 % Change

$230.8

97.1

(19.8)
(33.4)
(27.9)

16.0

12.4

�
13.3

$316.1

140.5

(26.6)
(57.6)
(29.4)

26.8

27.9

�
21.3

+37%

+44.7

+34.4
+72.6
+ 5.3

+67.5

+124.9

+60.2

Sales

Infogrames’ financials for 1997–98 and 1998–99, expressed in millions of dollars based

upon an exchange rate of 1 Euro = US$1.03280. Infogrames’ fiscal year ends in June, and its

acquisitions during 1999 did not contribute significantly to the results of the financial year

ending June 30, 1999. For instance, Accolade and Gremlin were consolidated on June 1 and

June 30, 1999, respectively.

How to Simulate
a Ponytail

b y C h r i s H e c k e r

35

he truth is, it’s hard to use

physics in games. I found this

out the hard way, and I think a lot

of other developers are finding the same

thing as they try to integrate dynamics

into their projects. It’s not that the

physics simulation technology

itself is terribly difficult — you

can either read a bunch of

books and implement it

yourself, or license one

of the many physics

simulators on the

market these

days.

The hard part is inte-

grating dynamics with game play in a

meaningful way.

Always one to avoid the hard parts when pos-

sible, I’m going to present a slightly different

kind of physics article this time around. Let’s

completely dodge the integration of physics

and game play, and simply use physics to

dynamically generate some cool effects that

would be tedious or difficult for an animator to

create by hand. This isn’t a cop out or a totally

superfluous goal, mind you. Not only are special

effects important to games as we all know, but

by easing physics into the development process

Chris Hecker (checker@d6.com) can’t come up with a funny

saying for his bio because he’s been highly constrained by

the deadline.

through relatively low-risk special
effects, you can get comfortable with
the math and implementation in a
real, shipping game. The experience
gained through incremental adoption
will be very valuable when you’re
deciding whether to add physics to any
of the core game-play elements in your
game, and possibly risking the project
in the process. To this end, we’re going
to simulate a character’s hair tied in a
ponytail.

The Ponytail

No one would argue that the pony-
tail is the most important physi-

cal feature of today’s game heroines
(ahem), but ponytails have a lot of
characteristics that make them com-
pelling candidates for simulation. First
and foremost — given our focus on
low-risk special effects in this article —
ponytails are relatively important to
the look of a character, but they don’t
affect the game play. Rarely are video-
games won or lost based on the move-
ment of a ponytail. Second, the pony-
tail’s movement is almost always pas-
sively dynamic, depending only on
external forces like gravity and the
character’s movement. Games don’t
often need the ponytail to move in a
specific way, it just has to look like a
ponytail. This is the best kind of ani-
mation to simulate, because not only is
it the easiest (as opposed to simulating
something with active controlled

dynamics, such as a creature’s
walking motion), but it’s also
the most tedious to hand-ani-
mate. If we can write a short
piece of code to dynamically
generate the ponytail
motion given any possible
movement of the character
and the forces acting on
her, then our animator
can go work on some-
thing more important.
We get a ponytail
that always reacts
correctly, rather
than having only a
few canned pony-
tail animations.
Finally, the
math behind
the ponytail
simulation

we’ll derive is applicable to any other
dynamic chain, and this category
includes all sorts of other objects you
see in games, such as ropes and chains
hanging from ceilings, swords in scab-
bards on characters’ belts, and the like.

There are myriad ways to simulate a
ponytail, both in the sense that there
are a large number of physical models
for a ponytail and a large number of
ways to simulate each model. Picking
an appropriate model for your system
that captures the dynamics you’re
interested in but doesn’t make the sim-
ulation too complicated is an impor-
tant first step. One obvious model for a
ponytail would be to simulate every
strand of hair and actually tie the simu-
lated strands together into a conven-
tional ponytail. This is probably over-
kill for the kind of movement we’d like
to capture, not to mention that a high-
ly accurately simulated ponytail like
this would probably come undone in
the middle of some Egyptian crypt,
which is the last thing you want to
have happen while adventuring. My
own ponytail comes undone while I’m
typing articles, let alone while battling
lions and tigers and bears…anyway,
you get the picture.

We’re going to model our ponytail as
a series of rigid bodies constrained
together with joints. Our joints allow
the bodies to rotate relative to each
other, but not to translate relative to
each other. Thus, the ponytail can flop
around, but it can’t stretch or slide
apart. See Figure 1 for a screenshot of
the sample application showing the
ponytail. Each segment of the ponytail
will be a rigid body, and each body will
be attached to its two neighbors. The
first and last links are exceptions. The
last link is attached to the rest of the

ponytail above it, but it doesn’t have a
neighbor below it, so it’s the end of the
chain and it dangles freely.

The first link is attached to its neigh-
bor below it on the ponytail, and to
the head. The ponytail bodies move
dynamically due to the simulation,
assuming we do our job correctly, but
the head is a different matter.

Kinematic and Dynamic Control

W e definitely don’t want the head
to move dynamically, since

that opens the can of game play worms
we’re trying to avoid by simulating
something “trivial,” like a ponytail.
The artist should have complete con-
trol over the head’s movement, and
that animation should be played back
by the game exactly as if there were no
simulated ponytail. So, how do we con-
nect the dynamically simulated pony-
tail to the traditionally animated head?
The exact mathematics for this connec-
tion will have to wait until later in the
derivation, but the concept is impor-
tant to discuss early on.

As you’ll remember from my series
on rigid body dynamics in Game
Developer (Oct./Nov. 1996–Feb./Mar.
1997 and June 1997), the quantities we
use during simulation break down into
kinematic quantities and dynamic
quantities (the articles are available on
my web site or on the 1999 Game
Developer back issues CD-ROM; see the
end of this article for details). The kine-
matic quantities, such as position,
velocity, and acceleration, describe the
movement of the object, but don’t
specify why these quantities might
change. The dynamic quantities,
including force and mass, describe why
and how the kinematic quantities are
changing.

This is true for a dynamically simu-
lated rigid body, but what about the
character’s head? It has animations
generated by an artist in a tool such as
Maya, or out of procedural animation
code, not from our dynamic simula-
tion. This kind of body is “kinematical-
ly controlled,” as opposed to the
dynamically controlled bodies that
we’ve simulated before. It is kinemati-
cally controlled because there are pre-
scribed functions for the body’s kine-
matic quantities, whether simple
interpolated keyframes for the posi-

36

G A M E P H Y S I C S

F I G U R E 1 . A screenshot from the

sample application showing a pony-

tail swinging from the back of a head.

h t t p : / / w w w . g d m a g . c o m

tion, or something more elaborate.
Mixing kinematically controlled bodies
with dynamically controlled and simu-
lated bodies is an important part of
incrementally adopting physics for
things such as special effects. We need
our dynamically simulated bodies to
react to the kinematically controlled
bodies, but not vice versa — we always
want to respect the artist’s kinematic
animations and leave them in control.

Our constrained rigid body model
for the ponytail is obviously a simplifi-
cation, but it is detailed enough to cap-
ture most of the important dynamics
of the ponytail’s movement. It’s not
modeling the flexibility of the hair
except at the joints, but then again,
most of the animators doing ponytails
aren’t doing more than linked seg-
ments anyway. Our model closely
matches the bones-based animation
models that most animation tools are
using today.

Lagrange Multipliers

Now that we’ve chosen our basic
physical model, we need to

choose a solution method. There are a
number of different techniques for
simulating constrained rigid bodies,
and we don’t have room to discuss
them even briefly here. I’ve chosen a
popular method that’s relatively intu-
itive and easy to implement. Perhaps
most importantly, it has a mathemati-
cal derivation that fits in a magazine
article or two.

The technique we’re going to use is
called Lagrange Multipliers. The basic
idea behind this method is first to cal-
culate the external forces and torques
on the constrained rigid bodies, com-
pletely ignoring the constraints. Then
we calculate the forces of constraint
that keep the joints together given
these external forces trying to pull the
joints apart. So, in Figure 2, if Body B is
pulled up by some force, we’ll calculate
a joint force that will pull up Body A
and the constraint will stay satisfied.

The tricky part is how to calculate
that joint force. Calculating this force
is tricky because it depends on the
dynamics of the objects. Obviously, if
Body B and Body A are both traveling
at the exact same velocity in the same
direction, then the joint won’t need to
exert any force to stay together. Simil-

arly, the joint shouldn’t counteract any
rotational movement, so if Body A is
rotating around the joint but the posi-
tion of the joint is not moving, there
should be no joint force as well. Only if
the joint threatens to translate apart
will the algorithm compute and apply
a nonzero force.

The derivation in this article is going
to follow the derivation I gave in my
lecture of the same name at the recent
Game Developers Conference
RoadTrips. As I did for that lecture, I’m
going to have to assume you’ve either
read my physics articles or their equiv-
alents from other sources. We’re going
to start manipulating the dynamics
equations straightaway, so go review
now if you need to by using the refer-
ences at the end of this article. I’ve
placed the basic kinematic and dynam-
ic equations for a 3D rigid body in
Table 1 for quick reference.

The Derivation

W e’ll do most of our derivation
work using only two bodies

with a single constraint between them.
This will help us get comfortable with
the math and detect the structure with-
in it without needing to mess with lots
of bodies and constraints from the
beginning. Let’s start by outlining the
steps in the derivation:

1. Figure out notation and
conventions.

2. Write dynamics equations with
unknown constraint force.

3. Write constraint equation in terms
of body accelerations.

4. Plug ‘n’ chug to get constraint
equation with unknown con-
straint force.

5. Numerically solve for constraint
force.

Step 1 is incredibly important. If you
don’t have your conventions worked
out before you start, you’ll quickly get
lost in a sea of conflicting symbols. Our
notations and conventions are illus-
trated in Figure 2. I’ve labeled the bod-
ies A and B, and all objects fixed on the
bodies are subscripted appropriately.
So, pA is the tip of A’s constraint vector,
computed by adding body A’s center of
mass position, RA, to A’s joint vector,
rA. Our goal is to enforce the constraint
that pA is equal to p

B
in world space at

all times. That is, the bodies can move
around the world and rotate and what-
not, but the ends of their joint vectors
had better match up or that means the
joint came apart and we screwed up.

We’re going to use fc to denote the
constraint force vector that’s applied at
the joint to keep it together. This is the
vector we’re trying to calculate.
Although both bodies on either side of
the joint feel a constraint force, there’s
only one constraint force per joint
because of Newton’s third law. This law
states that for every action there’s an
equal and opposite reaction, or put in
plain terms, whenever the joint pulls

38

KINEMATIC EQUATIONS. R is the position of the center of mass, r is some radius vector to a point p fixed

in the object.

Eq. 1

Eq. 2

Eq. 3

DYNAMIC EQUATIONS. Equations 4 and 5 are f=ma for a 3D body. Equations 6 and 7 describe how a

force at p affects the center of mass.

Eq. 4

Eq. 5

Eq. 6

Eq. 7τc m pr f= ×

f fc m p=

τ α ω= + ×I L

f mR= ˙̇

˙̇ ˙̇p R r r= + × + × ×α ω ω

˙ ˙p R r= + ×ω

p R r= +

TA B L E 1 . Kinematic and dynamic equations for a 3D rigid body.

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

G A M E P H Y S I C S

on Body A, it pulls on Body B in exact-
ly the opposite direction. If Body A
feels the joint pulling it up, then Body
B feels the joint pulling it down. This
means we only need to calculate a sin-
gle vector for each constraint, and then
we can apply it positively to one of the
bodies and negatively to the other. By
convention, we will apply the con-
straint force positively to Body A.

The constraint force vector is a 3D
vector, as is every other force in our
dynamic system, including springs, drag
forces, friction, and so on. At the end of
all our equation manipulation, we’re
going to end up with a matrix equation
that looks like Afc = b, where A is a
three-by-three matrix, and fc and b are
three-vectors. A and b will be known to
us (they’ll be composed of various
known vectors in the system at the
given time, like the positions and veloc-
ities of the objects). We will need to cal-
culate fc from this linear system of equa-
tions. We’ll talk more about solving this
system when we come to it, but while
we’re in the thick of things, remember
our goal, Afc = b. Keeping our eyes on
the prize will help us stay sane and
guide us in our manipulations when
we’re awash in equations.

The Dynamics Equations

L et’s quickly write down the linear
and rotational dynamics equations

for Body A:

Eq. 8

Eq. 9
I’ve separated out the forces and
torques into those caused by fc and
those caused by the external stimuli.
The latter are labeled with a subscript E
for “external.” External forces are basi-
cally “everything else,” such as springs,
friction, drag, forces from explosions,
weapon recoil, wind blowing, and
every other force and torque that
affects the bodies in the system. These
should all be known at the current
instant. If we weren’t going to simulate
the constraint, we’d just plug in the
external forces and all the other known
terms (the masses, inertia tensors,
angular velocity and momentum, and
so on) and integrate forward, just like
when we were simulating discrete rigid
bodies. However, the unknown fc keeps

us from integrating yet, because we
need to know all the forces on the
objects to find the accelerations.

We can take Equations 8 and 9 and
solve them for the linear and angular
acceleration terms:

Eq. 10

Eq. 11
In Equations 8 and 10 I’m treating the
rigid body mass, M, as a matrix rather
than as the usual scalar. This is totally
acceptable, as long as I make this mass
matrix mathematically equivalent to
the scalar. It’s easy to create such a
matrix by multiplying the identity
matrix by the mass.

Equations 10 and 11 for Body B are
almost identical. Obviously we need to
change the little A subscripts to little B
subscripts. Besides that, the only real
difference is that the constraint force is
applied negatively to Body B, so wherev-
er fc appears in the equations for Body
A, –fc will appear in those for Body B.

The Constraint Equation

Now we have four vector equations
for the accelerations of the bod-

ies: Equations 10 and 11 and their
equivalents for Body B. If we knew the
force of constraint a priori, we could

plug it in here with the other known
values and then compute the new
accelerations of the objects and step
forward in time. Since we don’t know fc
yet, we need another equation to play
around with. The constraint equation
should do nicely.

You should notice that we haven’t
really talked mathematically about the
constraint yet. We’ve said we’re going
to enforce a constraint, but how is that
expressed in symbols? It’s relatively
simple. Just write an equation that
describes the desired situation. I pro-
pose this:

Eq. 12
Or, written out in terms of the individ-
ual body components:

Eq. 13
Equation 12 (and 13) states that the

vector to the endpoints of the con-
straints on the two bodies have to be
equal. If Body A’s constraint endpoint
moves to the left, then Body B’s had
better follow or Equation 12 will be
violated. If we can enforce Equation 12
at all times, we’ve constrained the bod-
ies together.

It’s not at all clear how to keep Equa-
tion 12 satisfied using our force, fc,
though. Forces can’t directly affect
positions, so we need to put Equation
12 into a form where our fc can act
upon it. The secret is to differentiate
the equation twice. This will give us a
constraint equation in terms of acceler-
ations, which we know from f = ma are
directly influenced by forces. More
specifically, differentiating Equation 12
will give us a constraint equation in
terms of the bodies’ accelerations,
which are directly influenced by fc via
Equations 10 and 11.

Differentiating Equation 12 isn’t just
a symbolic trick to make it work with
forces, it actually makes intuitive sense
as well. Since Equation 12 says the
positions of the two points must coin-
cide, its first derivative says their veloc-
ity vectors must be equal as well. This
is symbolically obvious from simply
taking the derivative:

But, it’s also physically obvious when
you think about it. If the joint end-
point velocities were not equal at some
point in time, then an instant later
their positions would have to be

˙ ˙p pA B− = 0

R r R rA A B B+ − − = 0

p pA B− = 0

α τ ωA A A c A EA A A AI r f I I L= ×() + − ×()− − −1 1 1

˙̇R M f M FA A c A EA= +− −1 1

r f I LA c EA A A A A× + = + ×τ α ω

f F M Rc EA A A+ = ˙̇

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

40

G A M E P H Y S I C S

Body B

Body A

R
B

r
B

r
A

R
A

p
A
= pB

F I G U R E 2 . A simple system with two

bodies and one constraint between

them.

unequal as well, since differing veloci-
ties means the points were going in dif-
ferent directions. Does this mean we
need to enforce the velocity constraint
as well as the positional constraint?
No. If the objects begin the simulation
with the position constraint satisfied,
then as long as we satisfy the velocity
constraint every timestep, the position
equation will be satisfied automatical-
ly. How could it not be? It’s satisfied at
time = 0, and then we enforce the
velocities to be the same at all times, so
the positions can never diverge. (For
extra credit, think about how this phe-
nomenon is related to the somewhat
mysterious constant that always
appeared when integrating equations
in high school calculus.)

This argument makes sense for accel-
eration as well. If the position and
velocity constraints were met at some
time in the past, and we’ve forced the
accelerations of the points to be equal
at all times since then, the positions
must still be equal because the veloci-
ties must have always been equal.
Again, we can write out the second
derivative of the constraint equation

and see this symbolically:

Eq. 14
Now that we’ve arrived at the accelera-
tion version of the constraint equation,
how do we use fc to enforce it?

For starters, Equation 14 is a pretty
compact and abstract way of describing
the relationship between the two joint
endpoint accelerations. We can drill
down and enlarge it considerably by
substituting in the definition of the
points’ accelerations in terms of their
center of mass and angular accelera-
tions from Equation 3. If we substitute
in Equation 3 for both pA and pB into
Equation 14, we get a much more
detailed description of what’s going
on, and we also get a big huge mess of
terms.

Homework

Unfortunately, it’s a mess of terms
that you’re going to have to battle

with yourself until next month,
because I’m out of space. I will drop a
few hints for the adventurous. The

main idea is to take the big mess we
just made, and make it even bigger by
substituting in Equations 10 and 11
and their equivalents for Body B into
the body acceleration terms. This will
give us one huge equation that we can
eventually get into our goal form,
Afc = b. Still, you might go insane
manipulating all of those terms, so if
you’re going to try it, I recommend
only dealing with one of the joint end-
points and seeing where you can get
with that first.

Next month we’ll finish up the
derivation for two bodies with one
constraint, and talk about extending
the math to arbitrary numbers of bod-
ies and constraints. ■

˙̇ ˙̇p pA B− = 0

42

My Dynamics Page
http://www.d6.com/users/checker/

dynamics.htm

The 1999 Game Developer Back Issues
CD-ROM
http://www.gdmag.com

FF OO RR FF UU RR TT HH EE RR II NN FF OO

G A M E P H Y S I C S

Yes, most of these elements are vio-
lent. But in terms of technology, most
of the effects in a scene like this would
benefit from a good particle system.
Smoke, sparks, and blood are routinely
created in today’s games using particle
systems.

To realize these effects, you need to
build a particle system, and not just a
simple one. You need an advanced par-
ticle system, one that’s fast, flexible,
and extensible. If you are new to parti-
cle systems, I recommend you begin by
reading Jeff Lander’s article on particle
systems (“The Ocean Spray in Your
Face,” Graphic Content, July 1998).
The difference between Lander’s col-
umn and this article is that the former

describes the basics of particles, where-
as I will demonstrate how to build a
more advanced system. With this arti-
cle I will include the full source code
for an advanced particle system, and
you can download an application that
demonstrates the system.

Performance and Requirements

A dvanced particle systems can
result in pretty large amounts of

code, so it’s important to design your
data structures well. Also be aware of
the fact that particle systems can
decrease the frame rate significantly if
not constructed properly, and most

performance hits are due to memory
management problems caused by the
particle system.

When designing a particle system,
one of the first things to keep in mind
is that particle systems greatly increase
the number of visible polygons per
frame. Each particle probably needs
four vertices and two triangles. Thus,
with 2,000 visible snowflake particles
in a scene, we’re adding 4,000 visible
triangles for the snow alone. And since
most particles move, we can’t precalcu-
late the vertex buffer, so the vertex
buffers will probably need to be
changed every frame.

The trick is to perform as few memo-
ry operations (allocations and releases)

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

44

S Y S T E M SP A R T I C L E

Building an Advanced
Particle System

b y J o h n v a n d e r B u r g

magine a scene in a game in which a rocket flies through the

air, leaving a smoke trail behind it. Suddenly the rocket

explodes, sparks flying everywhere. Out of the disintegrating

rocket a creature is jettisoned towards you, its body parts

exploding and blood flying through the air, leaving messy

blood splatters on the camera lens. What do most of the ele-

ments in this scene have in common?

John van der Burg is the lead programmer for Mystic Game Development, located in the Netherlands. Currently he is working on
Oxygen3D, which is his third hardware-only engine and his eighth engine overall. Currently he is doing freelance work on LOOSE

CANNON for Digital Anvil and for OMG Games on THE CREST OF DHARIM. He previously freelanced for Lionhead Studios on BLACK

AND WHITE, and for Orange Games on CORE. You can find screenshots of his previous work at http://www.mysticgd.com. Feel free
to drop him a line at john@mysticgd.com.

II

as possible. Thus, if a particle dies after
some period of time, don’t release it
from memory. Instead, set a flag that
marks it as dead or respawn (reinitial-
ize) it. Then when all particles are
tagged as “dead,” release the entire par-
ticle system (including all particles
within this system), or if it’s a constant
system, keep the particle system alive.
If you want to respawn the system or
just add a new particle to a system, you
should automatically initialize the par-
ticle with its default settings/properties
set up according to the system to
which it belongs.

For example, let’s say you have a
smoke system. When you create or
respawn a particle, you might have to
set its values as described in Table 1.
(Of course, the start color, energy, size,
and velocity will be different for blood
than, say, smoke.) Note that the values
also depend on the settings of the sys-
tem itself. If you set up wind for a
smoke system so the smoke blows to
the left, the velocity for a new particle
will differ from a smoke system in
which the smoke just rises unaffected
by wind. If you have a constant smoke
system, and a smoke particle’s energy
becomes 0 (so you can’t see it any-
more), you’ll want to respawn its set-
tings so it will be replaced at the bot-
tom of the smoke system at full energy.

Some particle systems may need to
have their particles rendered in differ-
ent ways. For example, you may want
to have multiple blood systems, such
“blood squirt,” “blood splat,” “blood
pool,” and “blood splat on camera
lens,” each containing the appropriate
particles. “Blood squirt” would render
blood squirts flying through the air,
and when these squirts collided with a
wall, the “blood splat” system would
be called, creating messy blood splats
on walls and floors. A blood pool sys-
tem would create pools of blood on the
floor after someone had been shot dead
on the ground.

Each particle system behaves in a
unique manner. Blood splats are ren-
dered differently than smoke is dis-
played. Smoke particles always face the
active camera, whereas blood splats are
mapped (and maybe clipped) onto the
plane of the polygon that the splat col-
lides with.

When creating a particle system, it is
important to consider all of the possi-
ble parameters that you may want to

affect in the system at any time in the
game, and build that flexibility into
your system. Consider a smoke system
again. We might want to change the
wind direction vector so that a car
moving closely past a smoke system
makes the smoke particles respond to
the wind generated by the passing car.

At this point you may have realized
that each of these systems (blood splat,
smoke, sparks, and so on) is very spe-
cific to certain tasks. But what if we
want to control the particles within a
system in a way not supported by the
formulae in the system? To support
that kind of flexibility, we need to cre-
ate a “manual” particle system as well,
one that allows us to update all particle
attributes every frame.

The last feature we might consider is
the ability to link particle systems
within the hierarchy of our engine.
Perhaps at some point we’ll want to
link a smoke or glow particle system to
a cigarette, which in turn is linked to
the head of a smoking character. If the
character moves its head or starts to
walk, the position of the particle sys-
tems which are linked to the cigarette
should also be updated correctly.

So there you have some basic
requirements for an advanced particle
system. In the next section, I’ll show
how to design a good data structure
that is capable of doing all the above-
mentioned features.

Creating the Data Structure

Now that we know what features
we need, it’s time to design our

classes. Figure 1 shows an overview of
the system we’re going to build. Notice
that there is a particle manager, which
I will explain more about in a moment.

Let’s use a bottom-up approach to
design our classes, beginning with the
particle class.
THE PARTICLE CLASS. If you have built a
particle system before, you probably
know the types of attributes a particle
must have. Table 1 lists of some com-
mon attributes.

Note that the previous position of a
particle can also be useful in some sys-
tems. For example, you might want to
stretch a particle between its previous
and current positions. Sparks are a
good example of particles that benefit

h t t p : / / w w w . g d m a g . c o m M A R C H 2 0 0 0 G A M E D E V E L O P E R

45

Particle
Manager

Particle
System

Particle
System

Particle
System

Par Par Par Par Par Par Par Par Par

F I G U R E 1 . A global overview of the system we are going to build.

Data type Name Description
Vector3 position The position of the particle in world-space

Vector3 oldPos The previous position of the particle, useful in some systems

Vector3 velocity The velocity vector (position += velocity)

dword color The color of the particle (its vertex colors)

int energy The energy of the particle

float size The size of the particle

TA B L E 1 . Particle attributes.

from this feature. You can see some
spark effects I’ve created in Figure 2.

The color and energy attributes can
be used to create some interesting
effects as well. In a previous particle
system I created, I used color within
the smoke system, which let me
dynamically light the smoke particles
using lights within the scene.

Energy value is very important as
well. Energy is analogous to the age of
the particle — you can use this to
determine whether a particle has died.
And because the color or intensity of
some particles (such as sparks) changes
over time, you may want to link it to
the alpha channel of the vertex colors.

I strongly recommend that you leave
the constructor of your particle class
empty, because you don’t want to use
default values at construction time,
simply because these values will be dif-
ferent for most particle systems.
THE PARTICLE SYSTEM CLASS. This class is
the heart of the system. Updating the

particle attributes and setting up the
shape of the particles takes place inside
this class. My current particle system
class uses the node base class of my 3D
engine, which contains data such as a
position vector, a rotation quaternion,
and scale values. Because I inherit all
members of this node class, I can link
my particle systems within the hierar-
chy of the engine, allowing the engine
to affect the position of the particle
system as discussed in the above ciga-
rette example. If your engine does not
have hierarchy support, or if you are
building a stand-alone particle system,
this is not needed. Table 2 lists the
attributes which you need to have in
the particle system base class.

Here’s how to calculate the four posi-
tions of a normal (not stretched) parti-
cle that always faces the active camera.
First, transform your particle world-
space position into camera-space (mul-
tiply the world-space position and your
active camera matrix) using the size

attribute of the particle to calculate the
four vertices.

The four vertices, which form the
shape, are what we use to render the
particle, though a particle has only one
position, xyz. In order to render a parti-
cle (such as a spark), we need to set up
a shape (created from four vertices).
Two triangles are then rendered
between these four points. Imagine a
non-stretched particle always facing
the camera in front of you, as seen in
Figure 3. In our case, the particle is
always facing the active camera, so this
means we can simply add and subtract
values from the x and y values of the
particle position in camera-space. In
other words, leave the z value as it is
and pretend you are working only in
2D. You can see an example of this cal-
culation in Listing 1.
THE FUNCTIONS. Now that we know what
attributes are needed in the particle
system base class, we can start thinking
about what functions are needed. Since
this is the base class, most functions
are declared as virtual functions. Each
type of particle system updates particle
attributes in a different way, so we
need to have a virtual update function.
This update function performs the fol-
lowing tasks:

• Updates all particle positions and
other attributes.

• Updates the bounding box if we
can’t precalculate it.

• Counts the number of alive parti-
cles. It returns FALSE if there are no
alive particles, and returns TRUE if
particles are still alive. The return
value can be used to determine
whether a system is ready to be
deleted or not.

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

46

A D V A N C E D P A R T I C L E S Y S T E M S

void ParticleSystem::SetupShape(int nr)

{

assert(nr < shapes.Length()); // make sure we don't try to shape anything we

// don't have

// calculate cameraspace position

Vector3 csPos = gCamera->GetViewMatrix() * particles[nr].position;

// set up shape vertex positions

shapes[nr].vertex[0] = csPos + Vector3(-particles[nr].size, particles[nr].size, 0);

shapes[nr].vertex[1] = csPos + Vector3(particles[nr].size, particles[nr].size, 0);

shapes[nr].vertex[2] = csPos + Vector3(particles[nr].size, -particles[nr].size, 0);

shapes[nr].vertex[3] = csPos + Vector3(-particles[nr].size, -particles[nr].size, 0);

}

L I S T I N G 1 . Calculating the shape of a particle facing the camera.

F I G U R E 2 . Some spark effects you can create using a particle system such as the

one discussed in this article. Note that all particles perform accurate collision

detection and response in these two screenshots.

the
shape

shape
vertex #1

shape
vertex #2

shape
vertex #3

shape
vertex #4 Particle

Position

triangle
#1

triangle
#2

Size

F I G U R E 3 . Setting up a shape to ren-

der a particle.

Now our base class has the ability to update the particles,
and we are ready to set up the shapes which can be construct-
ed using the new (and perhaps previous) position. This func-
tion, SetupShape, needs to be virtual, because some particle sys-
tem types will need to have their particles stretched and some
won’t. You can see an example of this function in Listing 1.

To add a particle to a given system, or to respawn it, it’s use-
ful to have a function that takes care of this. Again, it should
be another virtual function, which is declared like this:
virtual void SetParticleDefaults(Particle &p);

As I explained above, this function initializes the attribut-
es for a given particle. But what if you want to alter the
speed of the smoke or change the wind direction that affects
all of your smoke systems? This brings us to the next subject:
the particle system’s constructor. Many particle systems will
need their own unique constructors, forcing us to create a
virtual constructor and destructor within the base class. In
the constructor of the base class, you should enter the fol-
lowing information:

• The number of particles you initially want to have in
this particle system.

• The position of the particle system itself.
• The blend mode you want to use for this system.
• The texture or texture file name you want this system to

use.
• The system type (its ID).

In my engine, the constructor in the particle system base
class looks like this:
virtual ParticleSystem(int nr, rcVector3 centerPos, BlendMode

blend=Blend_AddAlpha, rcString file name=”Effects/Particles/

green_particle”, ParticleSystemType type=PS_Manual);

So where do various settings, such as the wind direction
for the smoke system, get addressed? You can either add set-

tings specific to the system type (such as wind direction)
into the constructor, or you can create a struct called InitInfo
inside each class, which contains all of the appropriate set-
tings. If you use the latter method, make sure to add a new
parameter in the constructor, which is a pointer to the new
struct. If the pointer is NULL, the default settings are used.

As you can imagine, the first solution can result in con-
structors with many parameters, and that’s not fun to work
with as programmer. (“Parameter number 14…hmmm. What
does that value represent again?”) That’s the main reason I
don’t use the first method. It’s much easier to use the second

h t t p : / / w w w . g d m a g . c o m M A R C H 2 0 0 0 G A M E D E V E L O P E R

47

Data type Name Description

Texture *texture A pointer to a texture, which all particles will use. For performance reasons, we only use one texture for each

individual particle system; all particles within the specific system will have the same texture assigned.

BlendMode blendMode The blend mode you want to use for the particles. Smoke will probably have a different blend mode from

blood — that’s the reason you also store the blend mode for each particle system.

int systemType A unique ID, which represents the type of system (smoke or sparks, for example). The systemType identifier

is also required, since you may want to check for a specific type of particle system within the collection of all

systems. For example, to remove all smoke systems, you need to know whether a given system is a smoke

system or not.

Array Particle particles The collection of particles within this system. This may also be a linked list instead of an array.

Array PShape shapes A collection of shapes, describing the shapes of the particles. The shape descriptions of the particles usually

consist of four positions in 3D camera-space. These four positions are used to draw the two triangles for our

particle. As you can see in Table 1, a particle is only stored as a single position, but it requires four positions

(vertices) to draw the texture-mapped shape of the particle.

int nrAlive Number of particles in the system which are still alive. If this value is zero, it means all particles are dead

and the system can be removed.

BoundingBox3 boundingBox The 3D axis-aligned bounding box (AABB), used for visibility determination. We can use this for frustum,

portal, and anti-portal checks.

TA B L E 2 . Particle system base class attributes.

A blood system. Blood colors were set based on the colors

in the light maps. Blood on dark areas looks dark as well.

The red areas in the bottom screenshot are the blood splats

on the camera lens, dripping down the lens.

method, and we can create a function in
each particle system class to initialize its
struct with default settings. An example
of this code and a demo application can
be found on the Game Developer web site
(http://www.gdmag.com) or my own
site at http://www.mysticgd.com.

The Particle Manager

Now that we have covered the tech-
nology behind an individual par-

ticle system, it’s time to create a man-
ager class to control all of our various
particle systems. A manager class is in
charge of creating, releasing, updating,
and rendering all of the systems. As
such, one of the attributes in the man-
ager class must be an array of pointers
to particle systems. I strongly recom-
mend that you build or use an array
template, because this makes life easier.

The people who will work with the
particle systems you create want to add
particle systems easily. They also don’t
want to keep track of all the systems to
see if all of the particles died so they
can release them from memory. That’s
what the manager class is for. The
manager will automatically update and
render systems when needed, and
remove dead systems.

When using sporadic systems (sys-
tems which die after a given time), it’s
useful to have a function that checks
whether a system has been removed
yet (for example, if it still exists within
the particle manager). Imagine you cre-
ate a system and store the pointer to
this particle system. You access the par-
ticle system every frame by using its
pointer. What happens if the system
dies just before you use the pointer?
Crash. That’s why we need to have a
function which checks if the system is
still alive or has already been deleted
by the particle manager. A list of func-
tions needed inside the particle manag-
er class is shown in Table 3.

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

48

A D V A N C E D P A R T I C L E S Y S T E M S

This was constructed from sparks and a big real-time calculated flare explosion

(not just a texture).

This image is the same as the above one, but with some extra animated explo-

sions (animated textures) and shockwaves, which are admittedly very small and

may be difficult to see in this image.

Init Initializes the particle manager.

AddSystem Adds a specified particle system to the manager.

RemoveSystem Removes a specified particle system.

Update Updates all active particle systems and removes all systems which died after the update.

Render Renders all active and visible systems.

Shutdown Shuts down the manager (removes all allocated systems).

DoesExist Checks whether a given particle system still exists in the particle manager (if it has not been removed yet).

TA B L E 3 . Particle manager class functions.

The AddSystem function will probably
have just one parameter: the pointer to
the particle system which is of the type
of our particle system base class. This
allows you to add a smoke or fire sys-
tem easily depending on your needs.
Here is an example of how I add a new
particle system in my engine:
gParticleMgr->AddSystem(new Smoke(nr

SmokeParticles, position, ...));

During the world update function, I
call the gParticleMgr->Update() function,
which automatically updates all of the
systems and releases the dead ones.
The Render function then renders all vis-
ible particle systems.

Since we don’t want to keep track of
all particles across all of our systems
every frame to see whether all particles
have died (so the system can be
removed), we’ll use the Update function
instead. If this function returns TRUE,
it means that the system is still alive;
otherwise it is dead and ready to be
removed. The Update function of the
particle manager is shown in Listing 2.

In my own particle system, all parti-
cles with the same textures and blend
modes assigned to them will be ren-
dered consecutively, minimizing the
number of texture switches and
uploads. Thus, if there are ten smoke
systems visible on screen, only one tex-
ture switch and state change will be
performed.

Design, Then Code

D esigning a flexible, fast, and
extensible advanced particle sys-

tem is not difficult, provided you take
time to consider how you will use it
within your game, and you carefully
design your system architecture accord-
ingly. Because the system I discussed
uses classes with inheritance, you can
also put the individual particle system
types into .DLL files. This opens up the
possibility of creating some sort of
plug-in system, which might be of
interest to some game developers.

You can also download the source
code of my particle system, which I
have created for Oxygen3D, my latest
engine. This source is not a stand-
alone compilable system, but it should
help you if you run into any troubles.
If you still have any questions or
remarks, don’t hesitate to send me an
e-mail. ■

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

50

A D V A N C E D P A R T I C L E S Y S T E M S

A rain effect, using stretched shapes for the particles. The rain also splats on the

ground by calling the sparks system with adjusted settings and texture.

This electricity has its own render function. A hierarchy tree was constructed to

represent the electricity flow using branches and sub-branches. It is a thunder-

storm lightning effect with the branches animated. Particle shapes are being con-

structed for every part in the electricity tree.

for (int i=0; i<particleSystems.Length()) // traverse all particle systems

{

if (!particleSystems[i]->Update()) // if the system died, remove it

{

delete particleSystems[i]; // release it from memory

particleSystems.SwapRemove(i); // remove number i, and fill the gap

// with the last entry in the array

}

else

i++;

}

L I S T I N G 2 . Update function of the particle manager.

53

h t t p : / / w w w . g d m a g . c o m M A R C H 2 0 0 0 G A M E D E V E L O P E R

he merging of great concepts from many different

sources in order to create a new, better whole is

perhaps one of the most fundamental aspects of human

innovation. DRAKAN: ORDER OF THE FLAME uses this notion

to full advantage by combining action and adventure

game concepts with sword combat, aerial battles, and sim-

ple RPG elements. It is a true hybrid of many proven gaming concepts.

But this attribute made DRAKAN’s development doubly challenging

because we had to create a game in which multi-

ple elements worked well independently yet

blended together seamlessly. Perhaps this is analo-

gous to the way developers must work well as

individuals and effectively as a team.

b y S t u a r t D e n m a n

Surreal SoftwareÕs
DRAKAN: ORDER OF THE
FLAME

P O S T M O R T E M

Stuart Denman was the lead programmer on DRAKAN and is a co-founder of Surreal Software. This was his
first “real” job following four years as a student of computer engineering at the University of Washington.
After scouting around Europe on a post-DRAKAN vacation, he is currently back at work developing Surreal’s
next 3D engine technology. He can be reached at stu@surreal.com.

TT

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

54

P O S T M O R T E M

Origins of the Team

B ecause DRAKAN was Surreal’s first product, the story of
DRAKAN’s development is also the story of Surreal’s

development as a company. Surreal’s creation is the classic
game development story in which four ambitious recent col-
lege graduates decided they had nothing to lose and formed
a game company. These four founders contributed four criti-
cal skills to the team: art, programming, design, and busi-
ness skills. None of us had ever run a company or managed
schedules, but we all loved games, and we knew what it took
to make a good one.

Lead designer Alan Patmore had always played games and
had the business savvy to complement Nick Radovich’s busi-
ness experience and connections. I had been programming
games and graphics since the age of ten, so even though I
didn’t have experience working at a game development
company, I did have the skills and motivation. Mike
Nichols, our creative director, came from within the indus-
try and was the only member with any titles under his belt.

Our initial goal was to develop several game concepts and
a solid technological foundation that we could pitch to
game publishers. This would get us the funding we needed
to pay ourselves and start hiring programmers and artists
without having to involve venture capitalists.

Once we got project funding, we were able to quickly
build a strong team of artists, programmers, and designers
who all played games. Some of the team came from other
game companies — lured by the informal atmosphere and
the focus on games, not profit. Others were inexperienced
with game development, but had the skills and fresh ideas
we needed.

As the technology lead, I was determined to build Surreal’s
foundations on its technology. By retaining rights to our
engine and tools, we always had something to fall back on if
a game design was cancelled by the publisher. This also
allowed us to develop multiple game titles from one generic
technology and license the technology to other companies.
Any investment in time that the programmers and I put into
the engine could be quickly put to use on another project if
anything went awry.

We initially moved away from the popular DOOM-type
engines toward a landscape-style rendering engine in order
to set our games apart. There were many unique ideas that
we could build from this: flying, underwater environments,
outdoor deathmatch, and so on. But the technology was not
only about rendering; the tools had to empower the design-
ers and be general enough to support almost any game. So I
designed a toolset in which every game-specific property and
behavior would be provided by the game code itself, and the
editor would be just a generic interface to the underlying
game specifics.

Origins of the Beast

A fter pitching several game ideas to all the major pub-
lishers, we finally sold the first “dragon” concept to

Virgin Interactive Entertainment (VIE) in the summer of
1996. The concept was very different from today’s DRAKAN.
The first concept was for a dragon RTS game in which the

player’s dragon could fly around taking over villages and
forcing them to do their bidding. VIE wanted a more arcade-
style shooter game to fill a slot in their product line, so we
started developing a fast-paced, third-person dragon-flying
game.

It was not until early 1997 (when VIE began cutting pro-
jects just prior to closing its doors) that Surreal sold the
DRAKAN concept to Psygnosis. Psygnosis saw the strength in
our team and gave us complete freedom to perfect the
design. We wanted more of an RPG feel, but as a dragon, the

The DRAKAN team: FRONT ROW, FROM LEFT TO RIGHT: Satish Bhatti (net-

work programmer), Tim Ebling (programmer), Todd Andersen

(designer), Susan Jessup (artist), Louise Smith (artist/animator),

Andre Maguire (designer), Mel Guymon (lead animator), Tom

Vykruta (programmer).

MIDDLE ROW: Shaun Leach (programmer), Armen Levonian (program-

mer), John Whitmore (designer), Greg Alt (programmer), Heron

Prior (animator), Tom Byrne (artist).

BACK ROW: Stuart Denman (lead programmer), Scott Cummings (ani-

mator), Boyd Post (sound engineer), Alan Patmore (lead designer),

Hugh Jamieson (character artist), Mike Nichols (lead artist), Hans

Piwenitzky (artist), John McWilliams (designer), Nick Radovich

(business/sound).

NOT PICTURED: Joe Olson (artist), Duncan (designer), Isaac Barry

(designer), Ben Olson (artist).

Surreal Software Inc.
Seattle, Wash.
(206) 587-0505
http://www.surreal.com

Release date: August 1999
Intended platform: Windows 95/98
Project budget: $2.5 million
Project length: 28 months
Team size: 23 full-time developers, 2 sound and music

contractors
Critical development hardware: Pentium II and AMD K6-2

(3DNow!), 200 to 450MHz, 128MB RAM with Nvidia Riva 128
and TNT, 3dfx Voodoo 2 3D hardware. Artist workstations:
Wacom tablets.

Critical development software: Windows software,
Programming software: Microsoft Visual C++ 5.0 and 6.0,
Visual SourceSafe 5.0, Intel VTune 2.5, InstallShield
International 5.0. Art and animation software: Softimage, 3D
Studio Max, Adobe Photoshop, In-house modeling and textur-
ing tools. Sound and music: Sonic Foundry Soundforge,
Emagic Logic Audio

DRAKAN: ORDER OF THE FLAME

player was limited in what he or she
could carry or interact with. Adding a
human rider was the best solution, and
a female character was the natural
choice since she would be the ideal
personality to offset the dragon’s
immense size and power. With an
increased budget under Psygnosis, we
hired more team
members and
increased the art and
game-play content to a level
that the press called “ambitious” at
our public debut at E3 in 1998.

The production under
Psygnosis allowed us to expand
the technology as well. We
added real-time lighting
effects and expanded the sim-
ple height-field landscape
engine into our seamless
indoor/outdoor layer technolo-
gy. Critical to this technology was
Psygnosis’s willingness to drop sup-
port for software rendering (a risky mar-
keting decision at the time). This
allowed us unprecedented freedom. We
switched over to true-color textures,
increased the polygon counts through-
out the game, and built arbi-
trary geometry for our
worlds. The downside to
relying on 3D hardware was
that we faced serious com-
patibility challenges — the
game would have to run on
almost every 3D card. This
also meant battling Direct3D
driver bugs, and the possibil-
ity that we would be inun-
dated with technical support
calls, since people would not
have software rendering to
fall back on if the 3D hard-
ware failed to work correctly.

What Went Right

1.SUCCESS WITH GRAPHICS.
There’s no doubt

DRAKAN had an ambitious
design, so the graphics had
to be top-notch in order to
make the game world believ-
able. The amount of art and
animation content we
would need mandated care-
ful planning, lest our sched-
ule slip. The solution to the
problem was what I call

“flexible reuse.” In addition to the
sharing of texture and geometry data
between objects, DRAKAN’s engine
(code-named the Riot engine) was pro-
grammed to allow arbitrary scaling and
rotation of art content. By assigning
different behaviors
and combining
multiple art

components, we
were also able to cre-

ate totally new struc-
tures with minimal

effort.
Because we dropped 3D

software rendering, we knew all
of our textures could be created in

true color. This vastly improved the
look of DRAKAN, so much so that we
decided to switch from using palette-
based textures to true-color textures,

which required quite a bit of reworking
on most of the textures in the first few
levels. This decision is just one example
of Surreal’s aesthetic fussiness. Often if
a few people thought that something
within the game didn’t look good

enough, it would end up getting
redone until everyone

was satisfied. The bene-
fits can be seen in the final

product, but our schedule
sometimes suffered as a result.

Though the artists created the
objects and buildings in the game, the
designers were responsible for placing
the objects into the game and gave
immediate aesthetic and game-play
feedback to the artists. They also were
responsible for building the landscapes
and caves, which defined the overall
level flow. This process evened out the
workload between artists and design-
ers, but it required the designers to
have a good artistic sense. This can be
seen in the very fantastical landscape
architectures that the designers con-
structed and then painted with tileable
textures. The textures were drawn by
the artists to have many variations and

transitions, which added to the
organic nature of the terrain.

2.A GREEN TEAM WITH FRESH

IDEAS. DRAKAN had an
advantage that many large
game development companies
sometimes overlook. It had a
young team, highly motivat-
ed, bursting with ideas, and
ready to take risks. The ideas
were unique and motivated
by the desire to set DRAKAN

apart from the shooters and
TOMB RAIDER clones (although
this was still difficult given
the tendency of the gaming
press to compare games to
one another).

The most original idea in
DRAKAN was the combination
of dragon flight with sword
and bow combat on the
ground. This fundamental
idea formed a developer’s car-
nival for more innovative
ideas and forced the player to
strategize in a way not often
seen in action games. The rel-
ative vulnerability of the
female rider contrasted with
the powerful dragon required
careful thinking by the

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

56

P O S T M O R T E M

Arokh’s polygon mesh and alpha-blended wings (above).

designers. Levels were created with
restrictions on the dragon’s ability to
go places. Rynn could enter caves, but
would come across areas where the
dragon’s flying abilities or strength
would be necessary to proceed. The
player (as Rynn) would then have to
find a large door or other method to
get the dragon inside the cave system.
In this world of magic, creative ideas
for special effects are very important,
and these tasks were ideally suited to
people who were not afraid to do
things “outside the box.”

3.ENGINE AND TOOLS. Many recent
games have shipped with

engines that simply cannot handle the
target platforms and the breadth of 3D
hardware that they claim to support. I
believe this is primarily due to a lack
of planning and preparation for cur-
rent and future technologies (not hav-
ing scalability, for example), and a
rush to focus on the game’s design and
art. No time is given to solidify the
underlying technology, which should
ideally be done before the designers
and artists even start con-
structing content. If the
designers spend half their
time waiting for the game
to load, or dealing with
unplayable frame rates,
the final game will only
be half as good as it could
have been.

Regarding the game’s
code, if ever there was an
example to put the C vs.
C++ argument to rest, it is
DRAKAN. There simply are
no performance reasons
not to go with C++, as
long as the programmers
understand what is hap-
pening under the covers.
Object-oriented code gen-
erates so many benefits,
especially for an engine
that you plan to build on

for many years to come. In DRAKAN,
the game-specific source code and
engine source code were separated into
different projects, so no game-specific
code was allowed in the engine. The
game-specific code included such
features as the user interface, AI, and
game entities, and contained no
platform-specific code.

The engine is broken up into many
classes that handle various engine tasks
and are the interfaces by which the
game code accesses the engine. For
instance, there is a sound class for play-
ing sounds, a texture class for working
with textures, a sequencing class for
playback of scripted cutscenes, and
numerous others. These also form a
framework for future porting of the
system-specific functions to other plat-
forms. The stability of this system can
be validated; we are currently creating
additional games based on the DRAKAN

engine with little or no code changes
to the engine project. To further reduce
the debugging time, we put coding
guidelines in place to ensure the con-

sistency of code between programmers,
and created classes to catch array
boundary violations and memory allo-
cation problems.

DRAKAN has no scripting language.
Instead, the programmers create mod-
ules that are visually connected by the
designers to create scripted events in
the game. Such modules include trig-
gers, switches, timers, counters, and
more complex modules such as doors,
enemy creatures, and weapons. The
modules have programmer-defined
parameters associated with them. A
parameter can be almost anything: a
number, a list of options, a sound, a
texture, another module, and so forth.

The system meant designers could
tweak parameters and combine mod-
ules in ways that the programmers
never intended. One particularly nice
example was an effect that was origi-
nally created for the “ice sword.” The
effect was made up of a number of par-
ticles (originally snowflakes) that
would collect for a certain amount of
time on the mesh of an affected object.

After a time, the particles
would fall to the ground
and stick for a bit. All these
properties, from the tim-
ings to the particle texture,
are configurable. With this
feature at their disposal,
the designers created glow-
ing auras around ghosts by
increasing the particle size
and making the stick-time
infinite. They created snow
that landed on invisible
platforms to guide players
across them. The snow
effect was attached to
arrows to drop ice behind
them as they flew. All
this from a small bit of
programming.

The engine also has an
efficient caching system,
so it’s able to handle hun-

h t t p : / / w w w . g d m a g . c o m M A R C H 2 0 0 0 G A M E D E V E L O P E R

57

A panoramic view of the first level in DRAKAN.

Surreal’s in-house level editing tool showing the real-time 3D

editing window in the center and top-down layout view in the

upper-left.

dreds of megabytes of data on our
minimum system requirement of
32MB RAM. The two main characters,
Rynn and Arokh, total more than
20MB of animations, plus 12MB of
sounds (including in-game cutscenes).
To pull this off, the system keeps the
most recently used sounds or anima-
tions in the cache and can flush mem-
ory that it hasn’t used in a long time.
Further reduction of memory usage is
achieved by sharing anima-
tions between characters
with the same skeleton, even
if they have completely dif-
ferent skins. The system only
loads the data that it needs,
as it needs it. This is impor-
tant during development, as
artists and designers are
prone to leave unused tex-
tures, sounds, and models in
a database. The result is good
engine performance during
development, which is also
representative of the final
product.

We tried to ensure that the
engine and tools always dis-

played to the artists and designers some-
thing that was representative of the
final game (WYSIWYG). The best exam-
ple of this was our real-time 3D editing
system. The engine was integrated into
the editor, so any geometry, texture
mapping, or lighting changes made by
the designer would be immediately
reflected in the 3D view. The impor-
tance of this aspect of the tools should
be emphasized because it gave the

designers the ability to tune levels and
game play very quickly and with a mini-
mum of guesswork.

4.COMPELLING DESIGN. A good
design will not only sell a

game — it can also help smooth the
development process. The DRAKAN

world has immense possibilities, so
new ideas were born easily within its
scope. This kept the team highly moti-
vated, as there were always innovative

things to do with the genre.
The varied environments
gave a wealth of new things
to work on for the art and
design team, and were an
ideal canvas for programmer
invention.

The design also kept
Psygnosis very interested.
DRAKAN became its top PC
product, and it was comfort-
ing to us as developers to
know that our publisher was
behind the product.
Psygnosis saw the marketing
potential in a beautiful
female character combined
with a fearsome, fire-breath-

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

58

P O S T M O R T E M

The war giant towered above Rynn and had multiple high-resolution texture maps.

Concept drawing for DRAKAN’s mountain world.

ing dragon and the press
latched on to the concept with
excitement. They could market
it to TOMB RAIDER fans, AD&D
fanatics, and even 3D shooter
addicts.

Even the most brilliant
design would be difficult to
implement lacking a proper
design document. The 175-
page DRAKAN design document
contained outlines for the
entire game, including all AI
behaviors, weapons, and level
flows. It served its initial pur-
pose well, and was a blueprint
for our lead designer’s vision.
The document was vital to the
development team, especially
when it came to scheduling,
creating tasks, and communi-
cating with the publisher. But
as you will read in the follow-
ing “What Went Wrong” sec-
tion, feature creep overtook
the project halfway through,
and the document never kept
up with the changes. A design
document should always be
maintained throughout devel-
opment to preserve it as a use-
ful resource for the team. For-
tunately, the team could
always rely on Alan to explain
anything or to fill in any holes
in the design document.

5.INDOOR/OUTDOOR ENVIRON-
MENTS. One of the major

technologies that set the Riot
engine apart from the other
landscape engines was its abili-
ty to render both indoor and
outdoor environments using
the same engine. The benefits
to game play were huge because
we could do arbitrary cave sys-
tems, arches, overhangs, and
other structures that were per-
fect for a fantasy game. The
“layer” system that the land-
scape was created with was
ideal for massive outdoor envi-
ronments and allowed the designers to
create very organic-looking worlds.
Rectilinear structures such as buildings
and objects were created using arbi-
trary models imported from external
3D modeling programs. Although these
models were not included in the visi-
bility calculations, the layers were
included and were nicely suited for use

in the visibility culling of large envi-
ronments. Because the layers were
small height fields that made up the
ceilings and floors of the surroundings,
they took up very little space in memo-
ry. This meant that the levels could be
vast, and it helped give the player a
sense that there was a living world
around them.

What Went Wrong

1.STAYING ON SCHEDULE. DRAKAN

was originally slated for
release in February 1999, but
ended up being released six
months later. Even with careful
scheduling and task planning, we
failed to meet the final deadlines.
Part of the problem was that we
didn’t account for the time the
team would spend creating ver-
sions of the game for E3 and for
magazine and Internet demos.
Each demo pulled nearly two
weeks of time away from our nor-
mally scheduled tasks. The major-
ity of the scheduling problems
were due to feature creep and
other improvements that were
considered necessary during
development.

In March 1998, the design team
was faced with a mountain of
work ahead in order to complete
the 14 original levels as designed.
After careful consideration, the
designers decided to spend their
efforts on enlarging and improv-
ing upon the ten best level
designs. They also ended up cut-
ting many features that did not
show much game-play promise.
The dart gun and the boomerang
weapons were among those elimi-
nated from the game. Even
though these tasks had already
been mostly completed (in terms
of code) for several months, they
had not yet been put into the
game. By the end of the project,
the designers did not have ade-
quate time left to work with pro-
grammers to play-balance those
features, and the art staff had not
done any work on them either. So
they got cut. The decision
allowed us to focus on improving
the weapons that worked well,
such as the bows and arrows. We
now know that it’s critical that
programming tasks get put into

the game and tested almost immediate-
ly so that their effectiveness can be
realized early on. This lack of coordina-
tion between designers, artists, and
programmers often caused problems
during development. Some of this was
because our design document wasn’t
updated when weapons, levels, or AI
were redesigned.

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

60

P O S T M O R T E M

Colored conceptual sketch of a Wartok grunt.

Concept sketch of the Dark Union sailing ship.

The initial AI programming followed
the original design document, but
didn’t work well when put into the
game. It wasn’t until our designers
worked with the AI programmers to fig-
ure out exactly what they wanted for
our combat system that the AI really
came together. This kind of collabora-
tion should have occurred at the begin-
ning of the AI programming process
and the lack of it caused moderate
delays.

DRAKAN’s art team often rebuilt
geometry and model textures, some-
times up to three times before they
were satisfactory. This may have been
partially due to Surreal’s high aesthetic
standards, but a lack of consistent artis-

tic vision is also to blame. DRAKAN had
lots of character conceptual art, but no
“art bible” to document all the models
and environments for the game. This
meant that if our art lead was not satis-
fied with work of another artist, he
would often rebuild it himself. At vari-
ous points during development his
time was spread thin across many dif-
ferent tasks. In addition, the art team
went through communication prob-
lems and power struggles that ham-
pered the coordination of the team.

2.INADEQUATE TESTING. Although we
tracked bugs internally before

and during the alpha and beta releases,
Psygnosis was responsible for the bulk
of the testing after alpha. For a game as

vast and ambitious as DRAKAN, the time
that we allocated for testing was inade-
quate. Multiplayer and collision detec-
tion issues, in particular, were not
given enough testing time. When the
final shipping date approached, we
reluctantly agreed to allow some non-
critical bugs to slip through to the gold
master in the interest of meeting the
deadline. A patch was inevitable.

Other testing complications added
to the problems. As Psygnosis was
being reorganized by its parent com-
pany, Sony Computer Entertainment
Europe (SCEE), half the testing depart-
ment was let go and merged with
SCEE’s U.K. testing group. This caused
minor hiccups in tester allocations to

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

62

P O S T M O R T E M

Rynn’s highest polygon count was only 538. Single-skinned characters such as Rynn generally look much better with fewer

polygons compared to the segmented characters traditionally used in most game animation systems.

Morphing walls were created by assigning special behav-

iors to the world geometry. A multiplayer ground deathmatch level.

DRAKAN. Since the testing
team was located in Europe,
communication was diffi-
cult, and often messages
were delayed by a day or
two. Bug reports were sent
to us via Microsoft Excel
worksheets, which were con-
verted from an Oracle data-
base that sat isolated on
their LAN in the U.K. Often
the Excel worksheets would
come to us corrupted or
would have incomplete bug
descriptions. Bug responses
from Surreal’s programmers
had to be tracked carefully
and entered back into the
Oracle database by hand.

We kept our own internal database
at Surreal using Outlook forms in spe-
cial public folders on our Exchange
Server. We ended up generating almost
1,000 internal design, art, and pro-
gramming bugs during the entire pro-
ject. This rivaled the number of bugs
generated by the testing team during
alpha and beta. The internal system
worked very well, but it could have
been more useful if the Psygnosis
testers had access to the system as well.
We tried getting on-site testers, and
some of the U.K. team did come to
Surreal for about a week. But it was too
late in the project and for too short a
time to be effective.

3.COLLISION DETECTION AND RESPONSE.
One of the biggest chores for the

testing team was to make sure that all of
our hundreds of 3D models could not
be penetrated by missiles, NPCs, or
Rynn. Each model had to be properly
bounded by the artist during the
model’s construction, a process which
took about 20 percent of their modeling
time to construct. Bounding was gener-
ated in our custom modeling tool and
approximated the polygons of the
model using a hierarchy (tree) of bound-
ing spheres or oriented bounding boxes
(OBBs). This made the collision detec-
tion system very fast and accurate, but it
also meant that if an artist made a mis-
take in the bounding tree, collision
detection might not work. To say this
created a testing challenge would be an
understatement.

Even though the engine was capable
of rendering arbitrary meshes, the colli-
sion detection system was not designed
to handle some of the detailed meshes

that the artists produced. Some of our
AI used the bounding information at
the lowest level, while Rynn’s collision
response system used a polygon-accu-
rate analysis, which didn’t work per-
fectly for some complex models.
Frame-rate variations across machines
also caused differing results, making it
hard for programmers to reproduce the
bugs and correct the problems. Finally,
our indoor/outdoor landscape system
created some challenging collision-
detection problems that we hadn’t
anticipated when it was originally
designed.

4.MULTIPLAYER. Considered by
some the Achilles’ heel of

DRAKAN, its multiplayer suffered from
developmental neglect. For the game’s
multiplayer to have succeeded, the
design, art, and programming teams
would have had to spend at least twice
as much time on it than they did. The
two multiplayer designers did most of
their level and weapon work during the
alpha and beta periods. The same

designers also created most of
the artwork for the multiplay-
er effects and weapons. Any
game-related bugs that came
up were fixed by our single
network programmer, who
already had his hands full
optimizing the underlying
network engine. Most of
these game-related problems
arose because the same
weapons were used in both
single and multiplayer games,
but the original programmers
were not careful to make
them “network aware.”

Originally, we thought that
DirectPlay was the easiest net-
working solution for us. But as

the design got more complex, we found
that DirectPlay just did not work well
for us. DirectPlay was a debugging
nightmare. The network programmer’s
machine crashed several times per day
when debugging the networking code
and we couldn’t determine what was
causing that to happen. It wasn’t until
we switched to Winsock that we discov-
ered that the crashes were caused by
DirectPlay. DirectPlay also caused a seri-
ous problem for us while we debugged
the game under the first release of
Windows 98. DirectPlay actually caused
the system clock to slow down. This
caused the game to run slower and
sucked up tons of CPU cycles, forcing a
reboot. When put to the test, DirectPlay
also had issues with firewalls, which we
were not able to resolve. Under certain
circumstances, the way DirectPlay han-
dled the message queues sometimes
caused messages to pile up until the
application hung. Perhaps Microsoft
will be addressing these issues in future
releases.

It was clear even before alpha that
the networking code would need to be
rewritten. In the final design, we only
used the TCP/IP portion of DirectPlay,
and we used a Winsock front end to
handle communication with the mas-
ter server. We proposed to Psygnosis
that they give us more time to convert
the system over to Winsock, to which
they replied yes — but only as a down-
loadable patch, since the additional
work would have delayed the game’s
release. The Winsock conversion was
not finished until a month after
DRAKAN’s release, and greatly stabilized
the multiplayer experience. This, com-

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

64

P O S T M O R T E M

Lighting effects created varying

moods. This bridge model was reused

from the islands level.

Dragon’s-eye view of a fantastical island formation.

bined with the release of the
level editor and mods, has cre-
ated a resurgence in multiplay-
er support, but it will never be
as good as it could have been.

5.BADLY EXECUTED STORY.
Although the overall

story concept of DRAKAN was a
great, the script and execution
of the idea were lacking. We
hired a movie scriptwriter to do
the initial work on the script,
but he was not familiar with
the fantasy genre and did not
have a firm grasp on Alan’s
vision for the design. From
there, the script was edited and
rewritten by several more peo-
ple: members of Surreal, mem-
bers of Psygnosis, even one of the voice
actors. Under pressure to finish the
script, it was completed with cheesy
one-liners and other badly written dia-
log. Once it had been recorded by the
voice actors, it was very difficult to re-
record lines that were badly written or
acted. Some were re-recorded, but that
was a luxury we could only afford for
the completely failed lines. The voice

acting was difficult to get right, because
just as some of the writers had almost
no vision of the game, the voice actors
likewise had little understanding of the
characters they portrayed.

Another problem with the execution
of the story was that most of the con-
struction of the cutscenes was left until
the last minute, since all the levels had
to be “geometry complete” before

cutscenes could be created. This
meant that the scenes at the end
of the game were hastily done,
and some even had to be cut
from the game.

Onward to the Next Projects

D RAKAN’s development was a
bumpy ride, but it went

suitably well considering it was
the first game developed by an
inexperienced team. Even with
some of the schedule slips that
occurred, the great design, art,
and programming kept the pro-
ject going strong. DRAKAN has
been a great learning experience

for the team, and the careful evalua-
tion of our past mistakes has helped us
in the development of our current pro-
jects. DRAKAN was recently named PC
Game of the Year by several popular
magazines, and it has sold very well. If
DRAKAN showcases what this team is
capable of in our first project, it will be
very exciting to see what we are capa-
ble of in the future. ■

66

P O S T M O R T E M

The island level showing the organic qualities of the

terrain and textures.

been online for at least a couple of
decades. The problem is that what
worked then doesn’t work now: the
Internet of 1984 bears zero resem-
blance to the Internet of 2000. And
yet, too many people in the industry
are still looking backward, assuming
that little has changed, or what
worked in single-player games will
work with multiplayer games
online. So the question for our
industry is not “Hey, can we play
games online?” but “Can we
make lots of money by getting
lots of people to play our
games online?” The
answer to the first ques-
tion is a definite “Yes!”
The answer to the sec-
ond one is more prob-
lematic. It seems like
an easy concept:
People are flooding
onto the Internet. People
like games. People like
playing games with
other people. So it
should be a slam-dunk
to get people to play
games with other people on
the Internet and make scads of money
in the process, right? Wrong.

The problem with making money
from online games is that you need
some way of actually getting someone
to pay you for providing your games,
preferably over and over again. Most

small developers know how difficult it
is to get a game onto the retail
shelves, and even once you’ve made it
there, how perilous it can be trying to
sell it in a fiercely competitive market.
The Internet, with its seemingly infi-
nite space for

games — not to mention
its lack of publishers, distributors, or
boxed goods — seems like it should be
a paradise for developers.

But the online business models can
be harrowing. You can either try to
get people to pay you to play your

games, or you can try to get someone
else to pay you for attracting people to
play your games. This latter model is
the one that everyone was looking at
as a panacea just a year or so ago: Sell
ads that people see while they play
your games! What could be simpler?
Unfortunately, this is not a stable part
of the industry.

The presence of advertisements
online has soared over the past couple
of years, but inventory (places where
ads could be shown) has exploded
even faster. As a result, the price that
you can charge for providing ad space
has gone through the floor. CPMs
(cost per thousand viewings) have

decreased from $30–$50
to just $2–$10, and click-
through rates have stabi-
lized at around 1–2 per-

cent of ads shown.
Moreover, while click-
through rates for people
playing parlor games tend

to be about the same as for
those doing other online
activities, the more com-

pelling the game, the less
likely its players are to
take a time-out and go

hit a hot ad.
This all means that it is

incredibly risky to try to
base a business strict-
ly on ad revenues.

And as advertising on
the Internet matures, this

problem is going to get worse,
especially for the small developer.
There are more high-profile places an
advertiser can attract customers, and
free games are increasingly a backwa-
ter in online traffic.

Which brings us back to getting
people to pay you directly to play
your games. The now-standard model
for pay-for-play online is to charge
customers $10 per month to play all
they want, often in addition to paying

G A M E D E V E L O P E R M A R C H 2 0 0 0 h t t p : / / w w w . g d m a g . c o m

72

b y M i k e S e l l e r sS O A P B O X

Pay and Play and Pay:

The Future of Online Gaming

By now the Internet has fully invaded most

aspects of our lives. So what about online

games? If you’ve been around the industry

at all, you know that games have actually

Mike Sellers was the designer of MERIDIAN 59, the first commercial 3D massively-
multiplayer online game, launched in 1995 (or about a hundred years ago, Internet-
time). He has co-founded two online game companies, and now works for Maxis
doing cool online stuff. He can be reached at archetypist@hotmail.com.

Continued on page 71.

illustration by Jackie Urbanovic

for a game at retail. Other models
have been tried, but no other serious
challengers are yet on the horizon.
This model can reap great financial
rewards for the game publisher,
though it carries with it increased and
sometimes unforeseen responsibilities,
too. In online games, the product is
just the tip of the iceberg: what you’re
really selling is a service. If, as a devel-
oper or publisher, you’re not prepared
to run a service and support a commu-
nity, you should steer away from pro-
viding online games.

All this sounds pretty gloomy. Make
no mistake, though, online gaming is
gaining steam and is going to be huge.
But ad-supported games are a rickety,
risky business at best. And in pay-for-
play online games, the big winners are
going to be the companies with exclu-
sive and established brands, both for
PCs and eventually consoles. (When
console games finally venture online,
there will be a whole new host of
design and technical issues to deal
with, but given the number of console
owners, the rewards could eclipse any-
thing the game industry has seen yet.)

So what’s a small developer to do?
First, lose any remaining starry-eyed
naïveté. The Internet is a gold rush, but
for every 28-year-old Internet million-
aire, there are ten 40-year-olds with
third mortgages. If you’re set on mov-
ing into online games, understand that
you’re by no means alone (there are
more than 70 massively-multiplayer
game projects underway right now by
one estimate), but neither are you too
late. This area is the new frontier for
the gaming industry, but it isn’t for the
faint of heart, or those with just anoth-
er implementation of Hearts. ■

S O A P B O X

71

Continued from page 72.

	back:

