
MARCH 1999

G A M E D E V E L O P E R M A G A Z I N E

I n a young entertainment medi-
um that has seen such tremen-
dous growth as ours has, I some-
times think there’s a tendency

for everyone to expect radical leaps
forward every year. For instance, this
magazine’s sister web site, Gamasutra,
posed a question in December which
simply asked, “What is your vision for
1999?” Being a typical, year-end utopi-
an type of question, I figured that
there would be a wide range of
responses. I was fairly shocked when
about half of them lamented current
game designs and pined for more
innovation from the industry. This
sentiment seems to be shared widely
among consumer magazines, con-
sumers, and to some extent, even
within developer circles, so it deserves
to be addressed in this magazine.

What can be done to combat cre-
ative stagnation — or even the percep-
tion of such stagnation? That’s a diffi-
cult question. Though it’s easy to
point fingers at various causes, one
can’t look at the current state of gam-
ing and say that where we are today is
the result of any one particular force,
be it ourselves, game publishers, con-
sumers, game reviewers, or the limits
of technology. Each year, thousands of
games are released by thousands of
game development teams, and it’s
oversimplifying things to say that one
force is at work shaping what comes
out of our industry.

All that we can do is to strive to cre-
ate better games. It’s that simple. This
industry has lost some extremely tal-
ented developers who got burned,
depressed, angry, or bitter that the
medium of interactive games wasn’t
living up to their expectations. I don’t
think we can afford to lose more cre-
ative talent, and if you find yourself
smarting from a bad review of your
game, a snide comment from a player
online, poor sales of your game, or
some other form of negativity, it’s
your responsibility to recharge and re-
inspire yourself.

To this end I recommend the book
The Illusion of Life: Disney Animation
(Hyperion, 1995) by Frank Thomas
and Olie Johnson. Chris Hecker told

me about this book early last year, and
after reading it, I can see what spurred
his praise. After plowing through
dozens of messages complaining about
stagnant game designs which thor-
oughly depressed me, this book was a
welcome dose of inspiration.

In particular, one anecdote made
me realize that it is the responsibility
of creative professionals to fight nega-
tivity. The year was 1937, and after
producing a number of successful ani-
mated shorts, Disney studios was
embarking upon its first full-length
animated feature, Snow White. After
an early screening of Snow White for
some of the Disney staff, someone
wrote “Stick to Shorts” on an
unsigned questionnaire and submitted
it. The comment really stuck in Walt
Disney’s craw, and after the success of
the film, he used the phrase to illus-
trate his disdain for poor judgement.
According to Thomas and Johnson, if
you raised a bad idea in a meeting,
“suddenly there would be this loud,
‘Ah haaa!’ and Walt’s finger would
come shooting out toward you; in a
triumphant voice he would explain,
‘You must be the guy who said “Stick
to Shorts!”’ And for that day you were
the guy, and everyone else would keep
looking at you and wondering.”
Disney was a visionary, and he didn’t
need some nay-sayer in the ranks of
his own organization decrying the
admittedly risky venture.

I do not think that the current state
of game development is as dismal as
some paint it, despite those that decry
the marginal rate of innovation in
game design. For goodness sake, we
have a lot to be proud of. A game
earned more revenue in the U.S. over
the last six weeks of 1998 than any
movie during the same period of time!
Quite an accomplishment, indeed, and
a benchmark I’m sure that we’ll get
used to seeing — especially if we don’t
“Stick to Shorts.” ■

G A M E D E V E L O P E R M A R C H 1 9 9 9

4

P L A NG A M E

“Stick to Shorts”

www.gdmag.com

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228 w: www.gdmag.com

Publisher
Cynthia A. Blair cblair@mfi.com

EDITORIAL

Editorial Director
Alex Dunne adunne@sirius.com

Managing Editor
Tor D. Berg tdberg@sirius.com

Departments Editor
Wesley Hall whall@sirius.com

Art Director
Laura Pool lpool@mfi.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Jeff Lander jeffl@darwin3d.com
Mel Guymon mel@surreal.com
Omid Rahmat omid@compuserve.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook id Software
Susan Lee-Merrow Lucas Learning
Mark Miller Harmonix
Paul Steed id Software
Dan Teven Teven Consulting
Rob Wyatt DreamWorks Interactive

ADVERTISING SALES

Western Regional Sales Manager
Alicia Langer alanger@mfi.com t: 415.905.2156

Eastern Regional Sales Manager/Recruitment
Ayrien Houchin ahouchin@mfi.com t: 415.905.2788

ADVERTISING PRODUCTION

Vice President Production Andrew A. Mickus

Advertising Production Coordinator Dave Perrotti

Reprints Stella Valdez t: 916.983.6971

MILLER FREEMAN GAME GROUP MARKETING

Group Marketing Manager Gabe Zichermann

MarComm Manager Susan McDonald

Marketing Coordinator Izora Garcia de Lillard

CIRCULATION

Vice President Cirulation Jerry M. Okabe

Assistant Circulation Director Mike Poplardo

Circulation Manager Stephanie Blake

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Joyce Gorsuch

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
President Libby Abramson
720 Post Road, Scarsdale, New York 10583
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

Chairman-Miller Freeman Inc. Marshall W. Freeman
President/COO Donald A. Pazour
Senior Vice President/CFO Warren “Andy” Ambrose
Senior Vice Presidents H. Ted Bahr, Darrell Denny
Galen A. Poss, Wini D. Ragus, Regina Starr
Ridley, Andrew A. Mickus, Jerry M. Okabe
Vice President/SD Show Group KoAnn Vikören
Senior Vice President/Systems and Software
Division Regina Ridley

BPA International Membership
Applied for March 1998

Miller Freeman
A United News & Media publication

h t t p : / / w w w. g d m a g . c o m M A R C H 1 9 9 9 G A M E D E V E L O P E R

News from the World of Game Development

7

New Products
by Wesley Hall

form-Z 3.0 Adds Animation

AUTO*DES*SYS INC. announced at
MacWorld the release of form-Z 3.0,
the latest version of their 3D modeling
program that includes drafting and
rendering.

The biggest leaps forward for form-Z
3.0 include objects with multiple para-
metric personalities, a fully customiz-
able interface, and animation. form-Z
now allows you to perform walk-
throughs and fly-by animations, and
to replay from within form-Z. You can
export animations to .AVI and
Quicktime. Additionally, there are
many other new features including
new spline drawing procedures, stair
generation from any path, patch mod-
eling, improved skinning, and cen-
troids, local origins, centers of gravity,
and coordinate axes that can act as
bases for geometric operations.

The new 3.0 release is available for
the MacOS, and Windows

95/98/NT/NT Alpha platforms. form-Z
3.0 can be purchased alone, or with
the addition of Renderzone (render)
and/or Radiozity (for advanced light-
ing effects). Alone, form-Z retails for
$1,495; with Renderzone the price is
$1,995; and form-Z Renderzone with
Radiozity is $2,390.
■ auto*des*sys Inc.

Columbus, Ohio.

(614)488-8838

http://www.formz.com

Sorenson Speeds Up Quicktime

SORENSON VISION INC. recently released
a major upgrade to their video codec,
Sorenson Video 2.0, and announced it
at MacWorld SF in January 1999.

The 2.0 upgrade enhances the per-
formance of the encoding and decod-
ing process for Quicktime compatible
CD-ROM, DVD, and Web-based appli-
cations. 2.0 encodes up to four times
faster than the Sorenson’s original
codec. It also offers more flexibility
for managing the quality/bandwidth
tradeoffs of compressed video. This
release also supports multiple-proces-
sor workstations and divides the

workload among the
available processors
in order to speed up
jobs. Improved
motion handling fur-
ther increases the
quality and clarity of
compressed video
clips, and reduces
the distortion and
artifacts. Decoders
for playback are built
into all releases of
Quicktime 3 or later.

Sorenson Video 2.0
is a Quicktime system
extension that oper-
ates on any platform
that supports Quick-
time 3 or later. You

can purchase the software directly
from Sorenson Vision. Upgrades are
$99. No developer royalties are
required for applications created by
Sorenson Video.
■ Sorenson Vision Inc.

Logan, Utah

(408) 970-0696

http://www.s-vision.com

Graphical User Interface SDK

CHILKAT SOFTWARE INC. released the
downloadable Chlikat SDK 1.0 in
January 1999.

This new, downloadable SDK will
allow you to develop Graphical User
Interfaces (GUIs) for your game that
incorporate custom artwork and ani-
mations. The Chilkat SDK also pro-
vides visual components (C++/DirectX)
which you can use to compose an
application’s interfaces. These include
managers (row-columns, bulletin
boards, clip windows, and so on) and
primitives (labels and line edits).
Animation classes exist so that visual
components can use an animation
anywhere a static bitmap might be
used. Bitmap classes automatically
handle pixel-format conversion, so
games can run in any pixel format.
Other features include a library that
works with palette-sets, image tables to
organize bitmaps and animations, and
a wide variety of other classes.

The Chilkat SDK supports Windows
95/98/NT, DirectX 5.2 and 6.0, Borland
and Microsoft compilers, and
Microsoft DirectShow. It also supports
MPEG and .AVI. It’s licensed on a per-
product, royalty-free basis. Pricing is
set at $495 for a commercial single-
product license, $95 for a shareware
developer single-product license, and
$45 for a non-commercial license.
■ Chilkat Software Inc.

Lisle, Ill.

(312) 953-3949

http://www.chilkatsoft.com

New Products: Sorenson’s codec,
auto*des*sys’s form-Z, and Chilkat’s
SDK p. 7.

Industry Watch: A bunch of mergers;
Derek Smart makes nice with publisher;
and the end of the ULTIMA lawsuit p. 8

Product Reviews: Andrew Boyd
tastes a slice of Cakewalk Pro Audio 8
pp. 10-12.

The form-Z interface.

Industry Watch
by Alex Dunne

MATTEL MERGER. Mattel announced
that it was merging with The Learning
Company, a deal valued at a whopping
$3.8 billion. The deal fueled specula-
tion on Wall Street that more toy and
game company deals in the industry
would follow. Mattel CEO Jill Barad
said that the merger achieved the com-
pany’s goal of becoming a $1 billion
interactive software business. The
transaction is expected to close in
March or April 1999 and will be con-
sidered a pooling of interests.

TAKE-TWO INTERACTIVE SOFTWARE
has been busy in the news lately. First,
the company announced that it com-
pleted the acquisition of TalonSoft in a
stock swap transaction. TalonSoft
founders John Davidson and Jim Rose
will stay on with the Take-Two
Interactive. Take-Two already owns and
operates Mission Studios, GearHead
Entertainment, Tarantula, and
Alternative Reality Technologies.

Second, Take Two and 3000AD
(a.k.a. the company Derek Smart built)
settled their long-standing feud. Both
sides issued a statement saying “...since
we have been able to remain friends of
sorts through all the occurrences of the
past years, we concluded that it was just
time to stop bashing each other and
start supporting one another.” Third,
Take-Two issued its financial results for
its fiscal year, and things look pretty
rosy. The company more than doubled
its net sales over the previous year, to
$191 million, and saw $6 million in net
income — better than their $3.6 million
loss in the previous year.

STRATA AQUIRED. Strata, maker of the
StudioPro 3D animation environment,
was acquired by C-3D Digital. The
technology and principal assets of
Strata will be added to C-3D Digital’s
line of 3D technology for broadcast
video and the Internet. C-3D Digital
(http://www.3d.com) creates stereo-
scopic media for the Web and televi-
sion (requiring traditional shutter
glasses), and will air sporting events,
live broadcasts, feature films and other
original content in stereoscopic 3D. C-
3D Digital launched the world’s first

television network to exclusively offer
3D programming to satellite dish own-
ers, cable TV subscribers, and pay-per-
view lodging guests.

SEEMINGLY NEVER OUT OF THE NEWS,
GT Interactive acquired Legend
Entertainment, the developer of MISSION

CRITICAL and DEATH GATE, in a cash trans-
action. Legend becomes GT Interactive’s
seventh fully integrated software devel-
opment studio. Legend, headed up by
president Bob Bates, is working on the
UNREAL LEVEL PAK and UNREAL II for GT
Interactive, as well as WHEEL OF TIME,
which uses the Unreal engine.

GT Interactive also entered into a
publishing agreement with Infinite
Machine, a new development company
founded by former JEDI KNIGHT develop-
ers Justin Chin and Che-Yuan Wang.
GT Interactive will publish Infinite
Machine’s first title, a 3D action game
for the PC, which will ship next year.
Under the agreement, GT Interactive
obtains rights to console versions of
the title as well as sequels, add-on, and
level packs.

THE BALLYHOOED LAWSUIT by a group
of five ULTIMA ONLINE players against
Origin and its parent company, EA,
was finally settled. The lawsuit, which
alleged breach of contract, intentional
misrepresentation, negligent misrepre-
sentation, negligence, breach of war-
ranties, and other charges stemming
from problems with the game, was put
to bed after EA agreed to make a
$15,000 charitable donation to The
Tech Museum of Innovation in San
Jose, California. Both parties agreed to
bear their respective legal costs, and
agreed that the settlement was not an
admission of liability on the part of
EA/Origin or Schultz (attorney for the

plaintiffs) and his clients. In other
words, a Mexican standoff. In a state-
ment after the settlement, EA said
“…such frivolous lawsuits stifle inno-
vation and threaten the creative com-
munity’s efforts to bring new technolo-
gies to the consumer.” Looks like the
only winner was the museum.

B I T B L A S T S

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

8

March 5-6, 1999

ASIFA-Hollywood’s
Animation Expo
Glendale Civic Auditorium
Glendale, Calif.
Cost: starts at $10
http://www.asifa-hollywood
.org/expo.html

March 15-19, 1999

Game Developer’s
Conference
San Jose Convention Center
San Jose, Calif.
Cost: starts at $130
http://www.gdconf.com

UPCOMING EVENTS

CALENDAR

The Tech Museum of Innovation in

San Jose was the surprising benefi-

ciary of the ULTIMA ONLINE lawsuit.

On page 10 of our 1999 Buyers Guide
we mistakenly identified 4DPaint 1.5 as
being manufactured by 4DVision. 4D
Paint is manufactured by Right
Hemisphere Ltd. of Auckland, New
Zealand. Right Hemisphere can be
reached at +64 (9) 309-3204 and the
company’s web address is
http://www.righthemisphere.com.

In “Surveying the Digital Video
Landscape” in the January 1999 issue, we
incorrectly credited TrueMotion as the
video technology used by Interplay in its
Star Trek titles. Paul Edelstein of Interplay
says that most company titles that
include video use “proprietary movie
technology owned by Interplay and
referred to internally as Interplay's MVE
format, of which I am the author.”
Apologies to Mr. Edelstein and the devel-
opers at Interplay.

Corrections

B I T B L A S T S

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

10 Cakewalk
Pro Audio 8

by Andrew Boyd

I f any piece of music software
deserves the descriptor venerable,
it’s Cakewalk’s MIDI sequencer

product. This thing has been around in
one form or another since 1988. Its
current form began taking shape in
1992 when it was released for
Windows. It turned another corner in
1995 when digital audio features were
added to its extensive set of MIDI
tools. Cakewalk has done an impres-
sive job of keeping up with or leading
its competition in adding new features,
refining functionality, and improving
the interface, all while keeping prices
very reasonable. I took a look at
Cakewalk’s latest top-of-the-line offer-
ing, Pro Audio 8 Deluxe.

I installed the product onto my pri-
mary Windows audio machine: a
Pentium 200MHz MMX with 64MB of
RAM, a Turtle Beach Pinnacle sound
card, and an Adaptec Ultra-SCSI card
running Windows 95. This machine
had Cakewalk Pro Audio 6.1 already
installed, and Pro Audio 8 found it and
effortlessly updated the application. My
other machine, a Pentium Pro 200MHz
with 96MB of RAM, a Sound Blaster 16
card, with an Ultra-Wide SCSI card run-
ning Windows 98, held no previous

versions of Cakewalk, so Pro Audio 8
stepped me through the setup process
with little hassle. On both machines, I
used a Mark of the Unicorn MIDI
Timepiece AV for MIDI interface and
synchronization duties, and Pro Audio
8 recognized it flawlessly.
INTERFACE. After you’ve launched the
application, Pro Audio 8 presents you
with a new, empty project file (using
the default Normal template), or
optionally, a very simple but handy
window called Quick Start. Quick Start
gives one-button access to New File,
Open File, Open Recent (with a drop
down list of choices), and Learn
More…. At first, I turned off Quick
Start, thinking I didn’t need that sort
of thing. Eventually though, I came to
like it as, well, a quick way to start. If
you choose to create a new project,
you’re presented with an impressive
list of prebuilt (and user-created, if
you’ve made any) project templates.
Templates can store all kinds of set-
tings for a new document, so once you
figure out how you like to use the pro-
gram, make up your own default start-
up template and save the time of mak-
ing basic settings for each new project.
The included templates set up General
MIDI-compatible tracks for typical ses-
sions of a given music type. “Classical
Brass Quintet,” for instance, creates
five tracks pre-assigned to General
MIDI patches: two for trumpet, one
each for French horn, trombone, and
tuba, each with their correct key off-
sets, channels, pan settings, and so on.

The interface is organized as a collec-
tion of dockable toolbars around a
workspace where you maneuver the
various display windows. The primary
window is the Track view, which pre-
sents a very standard sequencer inter-
face grid of tracks against time. Its
adjustable vertical split places track
numbers, names, and basic controls on
the left, and displays the contents of
the tracks — bits of MIDI and/or audio
data here called clips — on the right.
This arrangement makes immediate
sense if you’ve ever used another mul-
titrack piece of software (MIDI or
audio), and should be easy to figure
out even if you’ve never seen anything
like it before. The clips display a mini

visual representation of their contents,
and are by default color-coded by type
(and can be further differentiated by
color on a clip by clip basis). Clicking
on a clip selects it, dragging moves it,
and [control]+dragging copies it. This
view is comfortable and it’s easy to
work very quickly here. Interestingly,
Pro Audio 8 doesn’t provide any kind
of bin for clips, so they must always be
accessed here, from within a track.

In Pro Audio 8, form follows function
when it comes to the interface. And
while functionality is extremely impor-
tant, the interface feels a littler under-
polished. When I’m working in Digital
Performer (my main ax), I feel as
though I’m enveloped in a comfortable,
creative space. Somehow, Pro Audio still
feels a little clunky and boxy, more like
a “tool” than an “instrument,” if you
will. Every button, dialogue box, and
slider in Digital Performer is custom art,
creating a very consistent and pretty
space in which to create. Pro Audio uses
standard Windows dialogues and slid-
ers, drop-down boxes, and text-labeled
buttons. This approach is probably bet-
ter in terms of RAM usage and system
performance, but not quite as comfort-
able and inspirational. I give PA8’s inter-
face the highest marks for speed and
efficiency when working, and it takes a
small hit when it comes to aesthetics.
AUDIO. The first project for which I
used Pro Audio 8 involved stacking up
16 voice tracks to create a virtual choir
from a single person’s voice (a buddy
was making a Christmas caroling CD
for friends and family). I wanted to see
how Pro Audio 8 performed as a
straightforward digital audio worksta-
tion, because the product’s audio fea-
tures get most of the advertising and
promotional attention. While I’m not
scrapping my Pro Tools rig just yet,
PA8 has sure come a long way since its
days as a DOS-based MIDI sequencer,
and it packs a lot of power.

Pro Audio 8 offers a rich comple-
ment of audio recording and editing
features, and integrates well with
stand-alone audio editors such as
Sound Forge and Cool Edit (both of
which, already installed on my
machine, were automatically added to
the Tools menu when I installed Pro
Audio 8). Pro Audio 8 provides tools to
record audio directly into a sequence
(including manual or automatic
punch-in and punch-out), to import

Andrew Boyd is Sound Design Manager at Stormfront Studios in San Rafael, Calif.
Drop him a line at aboyd@stormfront.com.

Excellent Very Good Average
 PoorBelow Average

h t t p : / / w w w. g d m a g . c o m M A R C H 1 9 9 9 G A M E D E V E L O P E R

11

previously recorded audio files, to
change gain and apply fades, to split
audio files, and to render effects. It can
automatically configure itself to your
particular setup, but it also gives you a
very high degree of fine-tuning to eke
the most performance from your sys-
tem. This tuning lets you adjust the
inherent tradeoffs between, for
instance, latency and polyphony to
suit your taste and working style.

Pro Audio 8 supports DirectX-com-
patible plug-ins, which can either be
used in real time in a mix or while you
render to an audio file. Pro Audio 8
ships with a collection of standard
effects, including reverb, chorus,
flange, delay, pitch shifter, modulate
time, and parametric equalizer. Each
effect is fully editable, has several pre-
sets available from a drop-down menu
in the effects window, and lets you
save your settings as new presets.

The equalizer and delay effects work
well and sound fine, although their
interfaces aren’t the most elegant I’ve
seen. Unfortunately, the other effects
(chorus and flange in particular) fall a
bit short. The reverb is actually quite
nice at short decay settings (the Club
preset is very realistic and usable), but
at longer, more dramatic settings, it
starts to sound harsh and artificial. In
Pro Audio 8’s defense, it is quite proces-
sor efficient, exacting a surprisingly
small performance toll at mix time.
And in a mix with primary reverb
being provided by a high-quality out-
board box (or a good third-party plug-
in), it’s quite satisfactory. But I feel that
the included effects aren’t good enough
for professional game developers to rely
upon to polish an important mix;
they’ll disappoint you in the end.
MIDI. Cakewalk products have long
included a comprehensive set of MIDI
recording and editing tools, and Pro
Audio 8 is no exception. In fact, I dare
say that it is a complete set of MIDI
tools; you should be able to do any-
thing you want to do, no matter how
unique or esoteric you might think it
is. The reason is that in addition to
just about every tool you might need
in the normal course of a project, Pro
Audio 8 provides its own programming
language. The Cakewalk Application
Language (CAL) is beyond the scope of
this review, but suffice it to say, if you
like to tweak settings, you’ll have plen-
ty to keep you busy. The fact is that

there’s just not a lot to say about Pro
Audio 8’s MIDI features — it is the
very definition of a full-featured
sequencer.

One new feature that deserves men-
tion is the addition of real-time MIDI
effects to the mixing palette. Such
effects have been around for a genera-
tion or two in other products, and
they’re very useful. For instance, when
working on quantize filter settings,
there is just no substitute to doing it in
situ, while all the tracks are playing
together, so the effect on the feel of
the piece is clear. The effect can then
be written to the track, or just used at
playback like an audio effect. Other
MIDI effects include arppegiator, event
filter, and transpose. These effects work
great, are easy to use, and are fine
additions to the product.
SCORING VIDEO. The ability to open a
video file into a project, work on audio
and MIDI locked directly to the pic-
ture, and then write out the results to
a new video file with no generational
loss to the video is key to post-produc-
tion work, especially in games. And it’s
a feature that’s been present in
Macintosh-based digital audio
sequencers for a while. In PA8, the fea-
ture works as advertised, much as it
does in other products. I also appreci-
ate the fact that it can work with .AVI,
Quicktime, and MPEG video formats. I
had some trouble randomly accessing
segments within .AVI files that used
certain codecs (probably because of the
limited keyframing that the codecs
provide), but this is certainly not the
fault of Pro Audio 8, rather an unfortu-
nate side effect of certain codecs. In
any case, this video functionality alone
makes Pro Audio 8 a serious contender
for anyone scoring game cutscenes.
WORKING MUSICIAN SEEKS MATURE AND

STABLE SOFTWARE… Pro Audio 8’s fea-
ture set is clearly indicative of a prod-
uct that’s been around the block a few
times, culled and refined to create a
versatile and comprehensive toolkit for
the recording musician. And certainly
one would expect that a product in
version 8 would be as solid and stable
as its features are varied and powerful.
However, I’m not quite sure this is the
case with Pro Audio 8. While I didn’t
find any bugs per se, twice during fair-
ly routine operations the program
crashed on me, and during general use
I noticed a number of small glitches

and strange behavior that made me a
little less than confident in the appli-
cation’s overall stability. While I’m not
nearly ready to indict the program for
being unreliable (to be fair, I was really
pounding on it), I do want to share my
experience and raise a cautionary flag.

The first crash occurred while I mixed
down the caroling piece. As I added
effects and mix automation, the large
project became too much for my admit-
tedly under-powered system to play
back in real time. This deficiency wasn’t
a huge problem, as I was almost fin-
ished with the mix anyway, and Pro
Audio 8 has a great Mixdown Audio
feature that can mix a large project off
line, even if the program can’t play it
all back at once. I adjusted some final
mix settings, selected an empty track
pair, and mixed the project down. Up
to this point, PA8 worked like a charm.
Next, I soloed the newly created stereo
mix and listened to it — it was pretty
good, so I invoked the Export Audio
command to save the project as a stereo
wave file so that I could play with it in
Sound Forge. My plan was to export the
wave, save my project, and exit Pro
Audio 8. At that point however, PA8
crashed. According to the error message
box, PA8 “performed an illegal opera-
tion.” Afterward, I had to reboot my
system. All my mix settings were gone.
Luckily, this was just a fun project for a
friend, because if I’d had a client stand-
ing behind me, I would have looked
pretty bad. The second crash happened
while I applied an audio effect to a
track. I wasn’t able able to reproduce
the bugs, so I didn’t have a case to pre-
sent to Twelve Tone’s technical support
staff. Nonetheless, the episode did
nothing to improve my confidence in
the product’s overall stability.

Because I was unable to reproduce

Cakewalk Pro Audio 8 can effort-

lessly combine MIDI, digital audio,

and video in a project.

either crash, I’m not going to put the
blame squarely on Pro Audio 8’s shoul-
ders. It is possible that other instabili-
ties had crept into the system.
Rebooting seemed to solve the prob-
lem each time. We all know that
Windows is notorious for this sort of
thing, and I was working quickly on a
project that clearly strained the limits
of my hardware. But my system is oth-
erwise stable, a crash is a crash,
reboots are very time consuming, and
at the very least, my confidence
waned. And it was not buoyed by the
other little glitches I found, such as
windows, toolbars, and buttons not
redrawing completely when I switched
between views.
DOCUMENTATION. As has been the case
with previous editions of this product,
Pro Audio 8’s documentation is out-
standing. The hefty printed User’s
Guide is absolutely thorough, easy to
read, well illustrated, and starts with
three informative tutorials that should

get even the most bewildered beginner
up and running with little trouble. In
addition, the online help is simply fan-
tastic — well indexed and cross-refer-
enced and comprehensive beyond
belief. Would that all software was so
elegantly and effectively documented.

All in all, this is an impressive piece
of software. It’s powerful, flexible, easy
to use, and its price is surprisingly low.
I can unconditionally recommend it

to the hobbyist/amateur/semi-pro. It
has every feature you’re ever likely to
need, and you’ll be up to speed with it
in no time. For a professional environ-
ment, I’d have to raise a cautionary
flag about stability, and point out that
you will definitely have to spend some
additional money on a third-party
effects package for mixing. With those
caveats, though, the program certainly
is powerful, flexible, and efficient. ■

B I T B L A S T S

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w. g d m a g . c o m

12

Company: Twelve Tone Systems Inc.
Cambridge, Mass.
(617) 441-7870
http://www.cakewalk.com

Price: Standard Edition $319; Deluxe
Edition, $429; Upgrades $19 - 409

System Requirements: Pentium 100 or
higher (Pentium 120 recommended for
NT implementation and real-time
effects); 16MB RAM (32MB for NT);
Windows 95/98/NT-compatible sound
card and/or MIDI interface (sound card
required for digital audio record/play-
back).

Pros:

1. Just about every feature you could want
in a digital audio sequencer, well imple-
mented

2. Incredible price/performance ratio

3. Outstanding documentation

Cons:

1. Stability might be questionable in a pro-
fessional environment

2. Some included audio effects leave a bit
to be desired

3. The look and feel of the interface is
somewhat unpolished

Cakewalk Pro Audio 8:

Thanks to Phil King for the kind use of

his voice.

Acknowledgements

b y J e f f L a n d e r G R A P H I C C O N T E N T

around, make collide, and then watch
their responses. Yeah, collision
response, that will be great! Then I
thought, “How am I going to get these
objects flying around in the first
place?” Well, I could give each object
an initial velocity and they would col-
lide. But, I would need world bound-
aries for those objects to bounce off of
so they would stay in play. To direct
the objects, I need to be able to apply
force. Suddenly, instead of a nice colli-
sion demo, I had designed ASTEROIDS.
All I wanted was a little demonstration
of a fairly simple concept and instead I
ended up applying forces and accelera-
tion to particles. I had stumbled on
the big “D” word: Dynamics.

That’s alright. I will not be afraid. I
always say, “Turn a problem into an
opportunity.” For months, I’ve been
considering picking up where Chris
Hecker left off his “Behind the Screen”
columns back in June 1997. Chris had
created a very interesting rigid body
dynamics simulation and spearheaded
the use of hardcore physics in the
game development community.
However, physics is a huge field full of
fertile topics that can be distilled into
nice column-sized pieces. So once
more good friends, into the breach.

What’s So Dynamic About It?

W hen I was writing about
inverse kinematics back in

September, I was only really interested
in kinematics: that is, the study of
motion without regard to the forces
that cause it. Dynamics, I said, con-
cerns how forces are used to create

motion, and I didn’t want to open up
that can of worms. Well, the can is
now open and the worms are climbing
all over.

I’m going to have to recap a bit, but
I suggest you go back and reread
Chris’s column from the January 1997
Game Developer, “Physics, the Next
Frontier.” If you don’t have the maga-
zine handy, the article is available on
the Definition Six web site at
http://www.d6.com/users/checker.

This month, I’m going to focus on
particle dynamics. What is particularly
important about particle dynamics is
the relationship between force, f, the
mass of a particle, m, and the accelera-
tion of that particle, a. This can be
stated in the familiar Newtonian nota-
tion as . You may recall from
Chris’s column that the acceleration
of a particle is the derivative with
respect to time of the velocity of that
particle, v. Likewise, the velocity of
the particle is the derivative with
respect to time of the position of the
particle, x. You can see how this rela-
tionship works in Eq. 1.

(Eq. 1)
So, let me state the problem I’m trying

to solve. Given a set of forces acting on a
particle at time t, where will that particle
be after a small amount of time has
passed? It’s clear that with the value of
the force and the mass of the particle, I
can obtain the acceleration of the parti-
cle. If I integrate that acceleration with
respect to t, I’ll end up with the new
velocity of the particle. If I integrate
again, I get the new position. Easy, right?

The structure for a particle is in
Listing 1. It’s easier to store 1/m for the
particle because this is what I need in
the equations. The forces that act on the
particle accumulate in the f term. With
this information, I can integrate the
dynamic system forward in time to
establish a new position for the particle.
This process involves solving ordinary
differential equations. Fortunately,

f ma

a
dv
dt

v x
f
m

v
dx
dt

x

=

= = = =

= =

˙ ˙˙

˙

f ma=

h t t p : / / w w w . g d m a g . c o m M A R C H 1 9 9 9 G A M E D E V E L O P E R

15

Collision Response:

Bouncy, Trouncy, Fun

Iwas all set this month to start talking about how to handle collision response. It

seemed to be the next logical step from the discussion last month on methods

for detecting collisions between 3D objects (“When Two Hearts Collide,”

February 1997). I thought I could just have these objects that you could move

Many have told Jeff that his top is made of the rubber and bottom of the spring.
Bounce him and Darwin 3D a note at jeffl@darwin3d.com

//// TTYYPPEE FFOORR AA PPHHYYSSIICCAALL PPAARRTTIICCLLEE IINN TTHHEE SSYYSSTTEEMM
ssttrruucctt ttPPaarrttiiccllee
{{

ttVVeeccttoorr ppooss;; //// PPoossiittiioonn ooff PPaarrttiiccllee
ttVVeeccttoorr vv;; //// VVeelloocciittyy ooff PPaarrttiiccllee
ttVVeeccttoorr ff;; //// TToottaall FFoorrccee AAccttiinngg oonn PPaarrttiiccllee
ffllooaatt oonneeOOvveerrMM;; //// 11 // MMaassss ooff PPaarrttiiccllee

}};;

L I S T I N G 1 . The particle type.

Chris’s column described a numerical
method of solving these problems.
Listing 2 contains code that uses the
simplest numerical integrator, known
as Euler’s method, to compute the new
state of the system. The great thing
about this integrator is that it’s simple
to implement and understand.
However, because it’s a simple approxi-
mation, it’s subject to numerical insta-
bility, as we will see later.

You Can’t Force Me to Move, Can You?

I now have a method for dynamically
moving particles around in a realistic

fashion. However, to get anything inter-
esting to happen, I need to get things
moving. This requires the application of
some brute force, or several forces. But
what kinds of forces do I want to apply
to my little particles?

Well, the obvious force that has been
applied to objects in games since the
beginning of computer simulations is
gravity. When I wrote the article on par-
ticle systems back in July 1998 (“The
Ocean Spray in Your Face”), I had a very
simple system for applying a force such

as gravity. This time, however, I want to
be a bit more physically realistic.
Gravity is a constant force that is being
applied to all particles. In order to realis-
tically simulate gravity, force must be
added into the particle’s force accumu-
lator every system update. In general,
this force is a vector pointing down
along the y axis. However, there’s noth-
ing to stop a simulator from having a
gravity vector that points in a different

direction. In fact, one of the very cool
things about having a good physical
simulation is that gravity can change
and things will still “look” correct. This
realistic look may not occur if you are
trying to hand animate an object.

Putting the Bounce
Back in my Bungie

N ow, gravity was a pretty obvious
force to apply to particles. But

what else can I do? A loose connection
of points isn’t really all that interesting
to watch even if it is simulated with
accurate physics. It would be much
more entertaining if I could connect
those particles to form structures.

What about stretching a spring
between two particles? This procedure
is actually easy to implement. Hook’s
spring law (Eq. 2) is a pretty good way
of representing the forces that a spring
exerts on two points.

(Eq. 2)
This formula represents the force

applied to particles a and b; the dis-
tance between these particles, L; the
rest length of the spring, r; the spring
constant or “stiffness”, ks; the damp-
ing constant, kd; and the velocity of
the particles, v. The damping term in
the equation is needed in order to sim-

f k L R k
L L

L
L
L

f f

L a b

L v v

a s d

b a

a b

= − −() + •

= −
= −

= −

˙

˙

G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

16

//
//// FFuunnccttiioonn:: IInntteeggrraattee
//// PPuurrppoossee:: CCaallccuullaattee nneeww PPoossiittiioonnss aanndd VVeelloocciittiieess ggiivveenn aa ddeellttaattiimmee
//// AArrgguummeennttss:: DDeellttaaTTiimmee tthhaatt hhaass ppaasssseedd ssiinnccee llaasstt iitteerraattiioonn
//// NNootteeSS:: TThhiiss iinntteeggrraattoorr uusseess EEuulleerr''ss mmeetthhoodd
//
vvooiidd CCPPhhyyssEEnnvv::::IInntteeggrraattee((ffllooaatt DDeellttaaTTiimmee))
{{
////// LLooccaall VVaarriiaabblleess //
iinntt lloooopp;;
ttPPaarrttiiccllee **ssoouurrccee,,**ttaarrggeett;;

//
ssoouurrccee == mm__CCuurrrreennttSSyyss;; //// CCUURRRREENNTT SSTTAATTEE OOFF PPAARRTTIICCLLEE
ttaarrggeett == mm__TTaarrggeettSSyyss;; //// WWHHEERREE II AAMM GGOOIINNGG TTOO SSTTOORREE TTHHEE NNEEWW SSTTAATTEE
ffoorr ((lloooopp == 00;; lloooopp << mm__PPaarrttiicclleeCCnntt;; lloooopp++++))
{{
//// DDEETTEERRMMIINNEE TTHHEE NNEEWW VVEELLOOCCIITTYY FFOORR TTHHEE PPAARRTTIICCLLEE
ttaarrggeett-->>vv..xx == ssoouurrccee-->>vv..xx ++ ((DDeellttaaTTiimmee ** ssoouurrccee-->>ff..xx ** ssoouurrccee-->>oonneeOOvveerrMM));;
ttaarrggeett-->>vv..yy == ssoouurrccee-->>vv..yy ++ ((DDeellttaaTTiimmee ** ssoouurrccee-->>ff..yy ** ssoouurrccee-->>oonneeOOvveerrMM));;
ttaarrggeett-->>vv..zz == ssoouurrccee-->>vv..zz ++ ((DDeellttaaTTiimmee ** ssoouurrccee-->>ff..zz ** ssoouurrccee-->>oonneeOOvveerrMM));;

//// SSEETT TTHHEE NNEEWW PPOOSSIITTIIOONN
ttaarrggeett-->>ppooss..xx == ssoouurrccee-->>ppooss..xx ++ ((DDeellttaaTTiimmee ** ssoouurrccee-->>vv..xx));;
ttaarrggeett-->>ppooss..yy == ssoouurrccee-->>ppooss..yy ++ ((DDeellttaaTTiimmee ** ssoouurrccee-->>vv..yy));;
ttaarrggeett-->>ppooss..zz == ssoouurrccee-->>ppooss..zz ++ ((DDeellttaaTTiimmee ** ssoouurrccee-->>vv..zz));;

ssoouurrccee++++;;
ttaarrggeett++++;;

}}
}}

L I S T I N G 2 . My simple Euler intergrator.

pp11 == &&ssyysstteemm[[sspprriinngg-->>pp11]];;

pp22 == &&ssyysstteemm[[sspprriinngg-->>pp22]];;

VVeeccttoorrDDiiffffeerreennccee((&&pp11-->>ppooss,,&&pp22-->>ppooss,,&&ddeellttaaPP));; //// VVeeccttoorr ddiissttaannccee

ddiisstt == VVeeccttoorrLLeennggtthh((&&ddeellttaaPP));;

//// MMaaggnniittuuddee ooff ddeellttaaPP

HHtteerrmm == ((ddiisstt -- sspprriinngg-->>rreessttLLeenn)) ** sspprriinngg-->>KKss;; //// KKss ** ((ddiisstt -- rreesstt))

VVeeccttoorrDDiiffffeerreennccee((&&pp11-->>vv,,&&pp22-->>vv,,&&ddeellttaaVV));; //// DDeellttaa VVeelloocciittyy VVeeccttoorr

DDtteerrmm == ((DDoottPPrroodduucctt((&&ddeellttaaVV,,&&ddeellttaaPP)) ** sspprriinngg-->>KKdd)) // ddiisstt;; //// DDaammppiinngg TTeerrmm

SSccaalleeVVeeccttoorr((&&ddeellttaaPP,,11..00ff // ddiisstt,, &&sspprriinnggFFoorrccee));; //// NNoorrmmaalliizzee DDiissttaannccee VVeeccttoorr

SSccaalleeVVeeccttoorr((&&sspprriinnggFFoorrccee,,--((HHtteerrmm ++ DDtteerrmm)),,&&sspprriinnggFFoorrccee));; //// CCaallcc FFoorrccee

VVeeccttoorrSSuumm((&&pp11-->>ff,,&&sspprriinnggFFoorrccee,,&&pp11-->>ff));; //// AAppppllyy ttoo

PPaarrttiiccllee 11

L I S T I N G 3 . A damped spring force.

ulate the natural damping that would
occur due to the forces of friction. This
force, called viscous damping, is the
friction force exerted on a system that
is directly proportional and opposite
to the velocity of the moving mass. In
practice, the damping term lends sta-
bility to the action of the spring. The
code applying the spring force on two
particles is in Listing 3.

Other Forces

V iscous drag should be applied to
the entire system. A drag is a great

way of making the particles look as
though they are floating around in oil.
It also adds numerical stability to the

system, meaning that the particles
won’t bounce around too much. A vis-
cous drag force is applied by multiply-
ing a damping constant, Kd, with the
velocity of the particle and subtracting
that force from the accumulator.

Momentary forces are also very use-
ful for interacting with the simulation.
I’ve used a spring tied to a particle and
attached the mouse to drag the object
around. A force applied to a particle
can be used to create a motor or other
source of motion.

You can also make some interesting
effects by locking a particle. That is, by
turning off the simulation for a particu-
lar particle, it becomes fixed and can act
as an anchor point. (You can achieve
the same effect by causing the particle
to have an infinite mass. In the simula-
tor, simply set the particle’s mass to
zero.) Immobilizing one particle like
this creates many possibilities for creat-
ing complex simulations.

Finally, Back to Collision

W hew, now that I have a nice
dynamic particle simulator, I

can start talking about collision detec-
tion and response again. The simplest
form of collision detection that I can
add to this simulation is point-to-plane
collision. With particles, it will be easy.
Last month, I discussed the use of the
dot product to determine whether a
point has collided with a plane. Take a
look at Figure 1.

Particle X with a velocity vector V is
moving towards plane P with a normal
N. I know that a collision of some sort
occurred if (X-P) • N < ε, where ε is
some small threshold near zero. If that
value is < -ε, then the particle has
passed through the wall, penetrating it.
That won’t make my simulator happy,
so if a particle is penetrating any

boundary, it’s necessary to back up the
simulator a little and try again. If the
dot product is just very near zero, then I
have what is called a contact and I need
to check further.

A particle in contact with a boundary
may not be colliding with that bound-
ary if the particle is moving away from
the boundary. The relative velocity of
the two bodies is checked by calculat-
ing N • V. If that value is less than zero,
the two bodies are in colliding contact
and I need to resolve the collision.

To resolve the collision, I need to cal-
culate two more vectors. They repre-
sent the motion parallel and tangential
to the normal of collision. Take a look
at Figure 2.

The normal of collision is simply the
normal to the plane. I calculate the
velocity after the collision with Eq. 3.

(Eq.3)
In this equation, Kr is the coefficient

of restitution. This is the amount of the
normal force, Vn, that is applied to the
resulting force. If Kr is 1, I have a total-
ly elastic collision. If it is 0, the particle
sticks to the plane.

Building with Sticks

N ow that I have this nifty particle
simulator where I can attach par-

ticles with springs and apply forces to
them, it’s time to build something. Let
me start with a simple block such as
the one in Figure 3.

Each of the edges of the object is a
spring connecting the vertices.
Unfortunately, if I run this object
through the simulator, I end up with a
big heaping mess. The mess occurs

V N V N

V V V

V V K V

n

t n

t r n

= •()
= −

′ = −

G R A P H I C C O N T E N T

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

18

P

N
X

V

F I G U R E 1 . A particle colliding with a

plane.

P

N
X

V

Vt

Vn

F I G U R E 2 . Components of a

collision.

F I G U R E 3 . A simple dynamic cube. F I G U R E 4 . A stable cube. F I G U R E 5 . A cube out of control.

h t t p : / / w w w . g d m a g . c o m M A R C H 1 9 9 9 G A M E D E V E L O P E R

19

because the springs connecting the
vertices aren’t enough to provide sta-
bility for the cube. In order to create a
cube that won’t collapse, it’s necessary
to put crossbeam supports on each
face of the cube (Figure 4).

Creating objects this way feels more
like constructing a bridge than 3D mod-
eling. You find yourself adding struts
and crossbeams all over the place.

Leave a face open and it behaves cor-
rectly. The face without the crossbeam
supports is more likely to collapse.

Bring Me Stability or Bring My
Program Death

Imentioned before that by using a
simple Euler integrator, I’m sacrific-

ing numerical stability for ease and
speed of calculation. You may won-
der, however, what happens when the
system becomes unstable. There’s a
really easy way to find out what will
happen. Remember the spring coeffi-
cient that was applied to the particles?
This coefficient represented the stiff-
ness of the springs used. If I set that
value fairly high because I want really
stiff springs, the little Euler integrator
cannot handle it. If you run that cube
I had with stiff springs, you may see
something like Figure 4 or something
equally interesting. The still frame
doesn’t do it justice. This is a rigid
body way out of control.

There’s a solution to combat this
instability beyond, “Don’t do that” —
it’s to give my integrator an upgrade.
Euler’s method is simply not sophisti-

cated enough to handle problems such
as this. Next month, I will take a look
at how I can improve the integrator
with something a little more stable.

Kid in a Gummi Bear Store

I really find in fun to play with this
simulator. It’s very satisfying to

bring in shapes and play with making
them stable and tweaking the spring
and gravity settings. You then can
fling the objects all around and
bounce them off the walls. There are
many more variables that can be
added to the simulator. Other forces
such as contact friction can be added.
Some interactive features such as pin-
ning vertices would make it more fun.
But I think we’re on our way to a really
fantastic Jello-land simulator. Next
month, I also plan on adding support
for multiple bodies as well as object-to-
object collision. Check out the source
code and demo application on the
Game Developer web site at
http://www.gdmag.com. It will allow
you to load in your own shapes, con-
nect them with springs, and play
around with the simulator. ■

• Baraff, David, and Andrew Witkin.

“Physically Based Modeling,” SIG-

GRAPH Course Notes, July, 1998, pp. B1-

C12. I built my first particle dynamics

simulator after seeing an article by

David Barraff a couple of years ago. For

this article, I used one source of his and

Andrew Witkin’s in particular.

• Hecker, Chris. “Behind the Screen.”

Game Developer, October 1996 – June

1997. Credit for the ideas and some of

the methods of simulation go to Chris

Hecker. I have tried to base my code on

many of his ideas so it will be familiar to

readers. His excellent series of articles

on rigid body physics got me and many

others excited about real-time physics.

Hopefully, I can continue to build on

this tradition. Also available on Chris’s

web site at http://www.d6.com.

You will need several good math and

physics books if you really want to get

into this topic. Here are a few that I

used in this article.

• Beer and Johnston. Vector Mechanics

for Engineers: Dynamics, Sixth Edition,

WCB/McGraw-Hill, New York, 1997.

• Mullges and Uhlig. Numerical

Algorithms with C, Springer-Verlag,

New York, 1996

• Acton, Forman S. Numerical Methods

that Work, Harper and Row, New York,

1970. This last book was a useful little

book my father had from his days of

working on guidance systems. Now I am

using it to make virtua-jello. Go figure.

• Doug DeCarlo at the University of

Pennsylvania wrote an application for

X-Windows called XSpringies that

allows you to simulate 2D particle-

spring interactions. You can check this

out from his website at http://www.cis.

upenn.edu/~dmd/doug.html or get the

program at ftp.cis.upenn.edu/

pub/dmd/xspringies/xspringies-

1.12.tar.Z

FF OO RR FF UU RR TT HH EE RR II NN FF OO

b y M e l G u y m o n A R T I S T ’ S V I E W

Unfortunately, the number of really
good-looking titles seems to have
tapered off in the last year or two
(With the notable exceptions of the
ABE’S ODDYSSEY and RESIDENT EVIL fran-
chises, and the recently released HALF-
LIFE). In recent months, all too many
hotly anticipated games have turned
out to be all hype and no substance —
just the same old mediocre stuff.

Far out in the deserts of the great
Southwest, a small team of innovators
is laboring to bring us a game with an
extraordinary look. In an industry
bloated with QUAKE-clones and MYST

look-alikes, they are quietly working to
bring us something refreshing and
unique — or, in the words of Monty
Python’s John Cleese, “something
completely different.” In this month’s
issue, we’ll be taking a look behind the
scenes and discovering exactly how
they did it. The title is FLESH & WIRE,
and the developer is Running With
Scissors (RWS).

FLESH & WIRE: The Challenge

A ccording to Randy Briley, the soft-
spoken art lead for the project,

the development process for FLESH &
WIRE (FW) has always been a little bit
different. For starters, the publisher
(Ripcord Games) has been very hands-
off, letting the development team drive
the development. This uncharacteristic
display of trust has as much to do with
RWS’s track record of getting products

out the door on time as it does with
Ripcord Games’ relative newness to the
gaming scene. And although the style
of game play has some basis in current-
ly released titles (the game is some-
thing of a cross between RESIDENT EVIL

and THE THUNDERCATS), the look of the
game is anything but conventional.
From character design and animation
to background generation, the
unorthodox look derives from equally
unorthodox production methods.

h t t p : / / w w w . g d m a g . c o m M A R C H 1 9 9 9 G A M E D E V E L O P E R

23

And Now for

Something Completely Different…

W hen was the last time you sat down in front of a game and said to

yourself, “Wow, this game really looks cool; I wonder how they

did that.” You can probably count on one hand the number of

games identifiable by just a half-second glance at the screen.

Mel has worked in the games industry for several years, with past experience at Eidos and Zombie. Currently, he is working as the
art lead on DRAKAN (http://www.surreal.com). Mel can be reached via e-mail at mel@surreal.com.

F I G U R E 1 . Concept Sketches of Some of the characters in FLESH & WIRE.

When RWS finally settled on the
game spec, they realized that from a
resource production standpoint, they
had bitten off more than they could
chew. In addition to the standard bud-
get of special effects, GUI art, and sev-
eral minutes of cut scenes, the spec
called for over 200 static screens of
game play with in-betweens, and a set
of enemy and player characters’ 300+
unique animation sequences. With a
production cycle of just under 18
months, no budget for outsourcing,
and an extremely small art team, the
task seemed pretty daunting. It was
time to improvise.

After analyzing the production work-
load, the team determined that the two
main liabilities were character anima-
tion and static background generation.
In both cases, the time and manpower
were projected to be too limiting. A
faster, efficient workaround was need-
ed for both.

Character Animation

T he character designs for the game
were anything but conventional.

As the game’s title implies, the charac-
ters seem to be escapees from the Borg
infestation of H.R. Giger’s zoo. Because
the character designs touted a tricky
combination of rigid and flexible joint
structures, the team devised solid-skin
skeletal system using Softimage. The
straightforward solution of animating
with weighted envelopes enabled the
animator to maintain the rigid inflexi-
bility of steel while keeping the organic
parts of the body fluid and supple.

To get the characters animated in a

timely manner and within budget,
however, proved to be a more difficult
task. There were over 300 unique ani-
mations in the spec, and these had to
be completed in a matter of a few
months — in time for design and pro-
gramming to start implementing them.

The team had three options: motion
capture, pure hand-animation, or roto-
scoping. After looking at the animation
lists, the team decided that straight
motion capture would be too expen-
sive and too limiting for this specific
character set. Although RWS’s experi-
ence with motion capture was positive
(they are currently producing a differ-
ent title using motion capture services
provided through House of Moves), the

unique body style and the rigid nature
of motion capture data precluded its

A R T I S T ’ S V I E W

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

24

F I G U R E 2 . Rotoscoping in

Softimage.

F I G U R E 3 . In-game screenshot using miniatures.

F I G U R E 4 . Artist hard at work on the production floor.

Who the Heck is
Running With Scissors?
RWS is a well-established development

house located out in Tuscon, Ariz.

(that’s right, Tuscon, as in cactus and

gila monsters). Although the guys at

RWS have quietly (but successfully)

been making children’s games for over

a decade, if you recognize the name it’s

probably because these are the same

folks who brought us POSTAL, the con-

troversial and oddly satisfying game

that was pulled from the shelves soon

after it was released due to the “over-

the-top” gratuitous violence.

http://www.gopostal.com

use for this specific task.
Additionally, the amount of time it

would take a single animator to pro-
vide all 300 animations proved to be
too limiting. In contrast, rotoscoping
could be done largely in-house with lit-
tle or no overhead, the production
time compared to hand animation was
much faster, and although it required
the talents of a skilled animator to
implement, it provided a cheap, effi-
cient method to complete the anima-
tions on schedule.

The team went down to a local gym-
nasium and interviewed several martial
arts students. Then, working closely
with the art lead (a martial arts expert
himself), the actors were mocked up to
look like the characters in the game.
Several sets of motion shots were
taken, using two synchronized digital
cameras set 90 degrees apart (front and
side). After digitizing these images and
importing them into Softimage, the
result was a sequence of images. The
animator then animated the characters
by hand, using the images as a guide.
Figure 2 shows an example of the
process being done in Softimage.

The result was a rapidly-created set
of fluid, realistic character animations,
generated by hand, but with the aid of
a human actor. In comparing pure
hand animation to rotoscoping, the
team surmised the following: 1) roto-
scoping took only about a third of the
time vs. generating the animations by
hand and 2) although the same limita-
tion existed for rotoscoping and
motion capture (in that they were
required to generate an animation list
far in advance of actually producing
the animations), the flexible nature of
the process allowed the animator a
large degree of creative license, so that
last minute changes to the actual ani-
mation sequences were relatively easy
to implement.

Background Generation

C ompared to the mammoth task of
generating over 200 hundred in-

game background scenes, the character
animation problem looked simple.
With only a handful of 3D artists on
staff, the team had to make some
tough decisions.

As the project evolved through its
initial stages, it became clear that the

art direction was evolving towards the
techno-grunge look typified by such
industry standards as The Crow and
City of Lost Children. The level of detail
the team wanted would require hours
of tedious texture and modeling work
using classical CG methods. Given the
size of the team and the allotted time,
this simply would not be possible.
Rather than cut the design or ask for
more time, the team resolved to find a
solution that would allow them to
maintain the scope of the project while
holding true to the artistic vision. They
took a gamble, and decided to build
the entire game using miniatures.

Near the end of the planning phase
of the project, RWS presented the pub-
lisher with a proof of concept for the
process. For the first test, the team put
together a town from a model railroad

set and digitized it into the POSTAL

engine. In short, the result was a huge
success. The models had a photorealis-
tic quality that pure CG couldn’t
attain, and the artifacts and subtle
inconsistencies in the model were fil-
tered out as a result of the digitizing
process. As you can see in this later
screen shot in Figure 3, the result looks
like a set from a Hollywood special
effects studio.

The Process

P ut simply, the sets for the game
were built with “anything we

could get our hands on,” says Randy
Briley. Basically, the team would just
bring stuff in: PVC piping, copper tub-
ing, old VCR’s, and so on, and the

A R T I S T ’ S V I E W

26

h t t p : / / w w w . g d m a g . c o m M A R C H 1 9 9 9 G A M E D E V E L O P E R

F I G U R E 5 . One of the larger models. This one was used for in-game cinematics.

F I G U R E 6 . The digitizing room.

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

28

pieces were glued together and painted
using a hot glue gun and standard
modeling paints. Most of the back-
drops for the game were created using
styrofoam panels, which proved easy
to get hold of and standardize. “Once
we got an assembly line going with a
certain panel (background piece), we
could crank each one out in a matter of
a few hours.”

Early on in the production cycle, it
was determined that because the most
time-prohibitive factor was the sheer
number of pieces required for the back-
ground sets, the production would
begin concurrently with level design
and engine creation (the engine for the
game was developed as part of the pro-
duction process). As with all produc-
tion lines, any reworking of resources
would prove highly detrimental. Once
objects were created, they needed to be
left intact. Otherwise a realistic produc-
tion schedule could not be maintained.

To enable the designers to have the
ability to interactively tweak the levels,
the sets were designed to be assembled
from modular pieces. This single key
factor is what allowed the art team to
begin production on final in-game
architecture at a very early point in the
production cycle, thus enabling design
and programming to have the requisite
time for implementation and tweaking.

Figure 6 shows the setup for taking
the actual video footage. A standard
Cannon XL1 digital video camera,
capable of 60+ FPS at NTSC resolution
(720×486) was used to capture the
images. Spotlights with colored gel fil-
ters provided the lighting. Note the
smoke machine in the bottom right of
the shot. During filming, smoke was
turned on to give the captured images
depth, and to soften the edges of the
materials used in the shots. Also, volu-
metric lighting effects were used exten-
sively, adding needed realism.

Figures 7 and 8 show the results once
the images have been processed and fil-
tered into the engine. Note the differ-
ent lighting schemes that have been
applied. Because the engine provided
for real-time lighting on the polygonal
characters, it was important to match
up the lighting values for the scenes.
This turned out to be one of the most
difficult aspects of the process because
if the scenes were lit incorrectly, they
had to be retaken from scratch.
However, the different lighting

schemes also enabled the team to re-
use the same modular pieces over and
over again. The abstract nature of the
design was such that the same piece
looked correct from several different
angles, and in fact, this efficient re-use
of resources was key to the success of
the process.

Another difficult problem was setting
up the exact camera angles in the game
to match the angle from which the shot
was taken. Because, in the engine, the
scene was basically created using a set
of flat planes and rudimentary poly-
gons, the entire setup could be shifted
to give the correct perspective and
depth of field to the on-screen actors.

As it turned out, the process went
much more smoothly than anticipated.
For example, the large piece of geome-
try in Figure 6 took about two weeks to
get completely finished and into the
engine. And because it was built with a
modular design and an abstract con-
struction, it was usable again and again
from different angles and with differ-
ent lighting schemes. Since then, the
team has been able to increase its pro-
jected number of screens from 200 to
over 300, and still maintain the sched-
uled production cycle.

By far however, the biggest advantage
of the process is the lack of any require-
ment for CG expertise on the part of
the artists. Consider that with a single
trained 3D artist to guide the process,
the bulk of the artists can be classically
trained with little or no industry exper-
tise. This means that production costs
go down for any given piece of work,

or, you get a lot more resource for a lot
less money. Again, an efficient, innova-
tive method for solving an otherwise
unsolvable problem.

Necessity is the mother of innova-
tion, and it stands to reason that the
success of the process is due, at least
in some degree to the relative isola-
tion of the RWS team. The fact that
the developers are insulated from the
mainstream has had mostly positive
consequences. The team has been
obliged to re-invent the wheel in sev-
eral instances, and in so doing, they
have progressed down a slightly differ-
ent path than the rest of us. And
although the project is far from com-
plete, it’s easy to see that if it stays on
track, the result will be nothing less
than spectacular. ■

A R T I S T ’ S V I E W

F I G U R E S 7, 8 , 9 , A N D 1 0 . Models digitized into the engine.

F I G U R E 1 1 . One of the final images

in the game.

Randy Briley, David DeGasperis, Vince

Desiderio, Mike Reidel, Amy Searcy, and

the rest of the FLESH & WIRE team.

S P E C I A L T H A N K S :

b y O m i d R a h m a t H A R D T A R G E T S

market will shape up, it is still safe to
say that in the next two years we can
kiss 600MB of storage goodbye, and
move on to multi-gigabytes of DVD-
ROM storage.

Most developers acknowledge grudg-
ingly that this extra storage could force
them to provide more video content
than they feel comfortable with or find
necessary. However, it could also help
to increase the general quality of game
graphics via better and larger textures.
A little less clear is the impact on audio
development, and particularly the use
of emerging 3D audio features.
Nevertheless, DVD drives are going to
be out in force in the coming year irre-
spective of whether game developers
need them or not, and undoubtedly,
all that extra storage space will get
filled up.

DVD Market Growth

T here seems to be little agonizing
from PC companies as they transi-

tion from CD-ROM drives to DVD.
This is mostly due to the fact that CD-
ROM is very well established, and DVD
drives in PCs provide backward com-
patible with legacy CD disks. More
importantly, the transition is also
aided by the fact that consumers are
hungry for greater content and more
high-bandwidth multimedia. CD-
ROMs established themselves on the
basis of the oversell of multimedia CD
titles in the early 1990s. Most of the
multimedia CD-ROM market has dis-
appeared to be replaced by either
games or edutainment category prod-

ucts. In the case of DVD, consumer
expectations of multimedia content
are difficult to gauge. It may be that
DVD video in the home will force
developers to pay more attention to
the quality of audio and video on
DVD-ROM on a PC, or even in a con-
sole at some point. One thing is for
certain: in the North American market
at least, it is unlikely that DVD movies
will be a driving force in DVD-ROM
content on the PC. The computer
industry went down that route with
VideoCD, basically an MPEG video on
CD-ROM. And despite its popularity in
some areas of Asia, the VideoCD is pri-
marily used to distribute adult video
content in North America and Europe.

And there’s more storage to come
beyond existing DVD-ROM capacity.
As storage needs increase beyond the
year 2000, we will start to see media
that go beyond DVD-ROM’s 4.7GB of
storage space to somewhere in the
region of 15GB. The DVD-ROM will
grow to be a significant force in the
next five years, and software is going
to be a big part of the success of DVD.
According to Cambridge Associates,
the total number of DVDs forecasted
to be replicated in 2002 will be 1.1 bil-
lion units, of which 350 million will
be video and the remaining 760 mil-
lion will be DVD-ROMs.

More storage is going to put pressure
on game developers to use that addi-
tional capacity. I still remember how
some publishers were taken to task for
not using all the storage capabilities of
CD-ROMs in the early days.
Consumers expected that when they
bought a CD, it needed to be full of

stuff, irrespective of whether 50MB of
content fitted nicely on one CD platter
rather than a box full of floppy disks.
There was 600MB more left unexploit-
ed. I would still like to think that more
video content will be anathema to the
development community, and that
developers place some bigger expecta-
tions on audio.

h t t p : / / w w w . g d m a g . c o m M A R C H 1 9 9 9 G A M E D E V E L O P E R

31

DVD — A/V Feast and Famine

DVD, the digital versatile disc, is going to pass the halfway mark in 1999 to

becoming the replacement for CD-ROM drives in PCs. While there con-

tinues to be some uncertainty over copyright issues and storage formats,

and while there is even more uncertainty about how the DVD-ROM

Omid Rahmat works for Doodah Marketing as a copywriter, consultant, tea boy, and sole employee. He also writes regularly on the
computer graphics and entertainment markets for online and print publications. Contact him at omid@compuserve.com.

200019991998

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

DVD-ROM Drive Units

CD-ROM Drive Units

C
D

-R
O

M
 D

ri
ve

 a
n

d
 D

V
D

-R
O

M
 D

ri
ve

 U
n

it
 S

h
ip

m
e

n
ts

 (
in

 t
h

o
u

s
d

a
n

d
s

)

70,700

40,300

11,200

43,700

89,300

61,700

F I G U R E 3 . Worldwide PC CD-ROM

and DVD-ROM drive unit shipments

(in thousands). Source: IDC.

H A R D T A R G E T S

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

32

Making Noise with DVD

Imay be alone in that sentiment.
Jeremy Schwartz, senior analyst at

Forrester Research, has this to say about
DVD’s impact on the audio portion of
the game industry: “A lot of people are
not thinking about branching video, so
there’s an opportunity for audio.
However, I think most game companies
will keep the percentage of the budget
they spend on audio the same.
Unfortunately, audio is still the orphan
child compared to graphics, and usually
the cool 3D audio stuff is the first thing
to get cut out of a game’s budget when
the belt is tightened.” The key question
is then, apart from the quality of 3D
graphics, what will DVD bring to the
interactive audio experience? No one
wants to make branching video games,
but no one seems too interested in
upping their audio budgets either.

Arguably, one of the of the biggest
advancements in the audio market has
been positional audio, and Dolby’s AC3
specification transcends and bridges
both DVD and PC markets. (AC3 is the
standard 3D audio format on DVD and
is also widely used on the PC.)
Standards remain a tricky issue for DVD
audio. In fact, the original incarnation
of the DVD audio format was slated to
be set way back in 1996. Intel and 38
other consumer electronics manufactur-
ers are members of the DVD WG-4
Audio Working Group and support its
proposed DVD audio specification.
However, the Audio Working Group,
like all committees of its kind, suffers
from the problem of having to bring
together the conflicting agendas of its
members to ratify a universal standard.
Furthermore, Intel was the first comput-
er industry representative invited to join
the forum, and that was only this year.
So, DVD audio remains a fledgling idea
on the PC.

The DVD Forum finally released the
Version 1.0 specifications in October,
1998. It is a very flexible format. It’s pos-
sible to store more than 74 minutes of
audio content for two channels at the
highest quality, which translates into a
sampling frequency of 192KHz-with 24-
bit quantization, or six channels for
Dolby Digital 5.1 Surround Sound at a
92KHz sampling frequency with 24-bit
quantization. Quantization is at 16, 20,
and 24 bits. Currently, CD audio tech-
nology is limited to a sampling rate of

44.1KHz and 16 bits of data. The format
supports all DVD formats, from 12cm
diameter 4.7GB single-sided disks to
17GB dual-layer double-sided 8cm

units. In short, the audio quality on
DVD surpasses anything you have ever
experienced on CD. Tom White of the
MIDI Manufacturers Association sum-
marizes the state of DVD audio this way,
“There are a lot of flavors of DVD audio,
so it is not clear what standards game
developers would develop to, and what
kind of hardware playback installed
base there would be in the PC market to
support it.” That includes WG-4.

Content is a Fat King

W hile CD-ROM is confined to
audio and computer markets for

the main part, DVD promises to be on
everything from game consoles to PCs to
digital television set-top boxes. DVD will
nudge game developers even further
into the mass-market entertainment
industry. This may ultimately, be the
true strategic value of moving to DVD.

Game developers have started to slow-
ly test the waters of this new medium.
Psygnosis’s LANDER is the company’s first
DVD game and probably the game
industry’s most widely publicized DVD
title. It incorporates MPEG-2 video
sequences with Dolby Digital 5.1 chan-
nel music as well as in-game audio and
interleaving sound effects. LANDER is also
optimized to allow game players to play
the DVD movies and trailers in the game
on a DVD movie player or to just listen
to the soundtrack. So, the role of DVD is
ultimately coming down to how it plays
in the general entertainment market.
LANDER is marketed in the same manner
that DVD video is marketed to a tradi-
tionally VCR-loving public: buy the new
format and get quality and new features
at no extra expense. Despite the ramifi-
cations, game developers are a conserva-
tive lot in some areas, and DVD develop-
ment is not taking the industry by
storm. Sonic Solutions of Novato, Calif.,
has been involved in DVD authoring
and production for three years now. The

company worked with Hollywood stu-
dios to encode MPEG-2 content even
before the standards for DVD were rati-
fied. Mark Ely, director of product mar-

keting at Sonic Solutions, has noticed
the reluctance of game developers to
embrace DVD.“ We have seen a tremen-
dous lag in support for DVD on the
game developers’ side,” he said.

“One of the reasons may have been
the lack of an installed base on the PC.
It has only really been in the last couple
of months that we have seen DVD game
titles, but the tools have been around
awhile. Initially, what we are seeing is
game developers merging content from
multiple CDs onto one DVD or recoding
video and audio content for DVD, and
quality is the single greatest advantage
of DVD over CD-ROM to them.”

For companies such as Sonic
Solutions, the Hollywood production
market is relatively small. Growth will
have to come from corporate develop-
ers, multimedia developers, and game
developers. Perhaps the higher cost of
producing a DVD is a factor in its slug-
gish growth in the game industry.
Presently, the cost of encoding and pro-
ducing DVD audio and video is roughly
50 percent higher than for other media,
but that cost is coming down dramati-
cally. Furthermore, the cost of master-
ing a DVD disk is substantially higher
than for CD-ROM. Fortunately, the pat-
tern of development is following the
trends in the CD-ROM market, and by
2000 developers can expect DVD pro-
duction and mastering costs to be the
equivalent of CD-ROM. In the mean-
time, to set up a small DVD audio and
video authoring suite can set developers
back anywhere from $30,000-$50,000.
The big publishers can do it, and high-
profile content will benefit.

DVD is as good a convergence tech-
nology as anything that has been tout-
ed. It can bounce from PC to set-top to
home multimedia player, but how it
will do that is still a mystery. For now,
game developers look at the medium as
better and bigger storage, and maybe
not much else. It’s your call. Good strat-
egy, or bad strategy? ■

The key question is then, apart from the qual-
ity of 3D graphics, what will DVD bring to the
interactive audio experience?

h t t p : / / w w w . g d m a g . c o m M A R C H 1 9 9 9 G A M E D E V E L O P E R

35

ideo is one of the most commonly used and least

understood elements of modern computer games.

Ever since the CD-ROM offered a medium able to

carry significant amounts of audio and video, game

developers have worked to incorporate video into their

titles. Although there have been many missteps along

the way, video is still a critical element of the game

designer’s palette. When used well, it can create mood, set

up game play, introduce characters, and forward narrative.

When used poorly, it can rip you out of the game faster than a

direct rocket-launcher hit during a deathmatch.

B Y B E N W A G G O N E R
A N D H A L S T E A D Y O R K

VIDEO IN GAMES:
THE STATE OF

THE INDUSTRY

Ben Waggoner is the chief technologist of Journeyman Digital, a company specializing in pushing the quality envelope for inter-
active media assets. As the World’s Greatest Compressionist and avid game player, he has an unquenchable need to improve the
quality of digital video across the gaming industry.

Halstead York is the head of digital media production for Journeyman Digital. When not producing and consulting, Halstead
spreads his digital media gospel through teaching and lectures.

Throughout the brief history of our
industry, games have striven to be
more immersive, more involving, and
more dramatic. The term often used is
“cinematic.” There was even a time
when the term “interactive movie”
was very much in vogue. Now of
course, we look back at this period
knowing that most filmmakers don’t
know much about games and that
game designers don’t necessarily
make good films. The half-baked

efforts of this period stigmatized the
term “full-motion video” (FMV).
Indeed, we’ve reached a point where
one recent FMV adventure game, A
FORK IN THE TAIL, proudly proclaimed
that it contained “FMV that doesn’t
suck.” For the record, the FMV didn’t
suck. However, the game did, and for
a very simple reason: game players
don’t like being passive. Game players
like to play, and choosing which
sophomoric one liner to use on the

scantily clad, direct-to-video harlot in
front of you ain’t playing.

While many developers have been
licking the wounds they received after
mistaking cutscenes for game play,
others have forwarded the state of the
art. GRIM FANDANGO’s FMV adds cam-
era movement and the pacing of pro-
fessional editing, while keeping the
fabulous feel of its engine intact. In
fact, many can’t tell where the video
ends and the engine begins. Jane’s has
done a wonderful job with FMV,
repurposing training films and using a
news broadcast format at the begin-
ning and end of campaigns in the
LONGBOW series. Here, video is used to
present information in a concise and
informative manner while simultane-
ously creating a technothriller feel in
the simulations.

Son, Put Down That Camera Before
Somebody Gets Hurt

A lot has changed since the Hi8-
video-and-blue-sheet days of THE

7TH GUEST. Game players today
demand a much higher level of creative
and technical competence, and devel-
opers need to recognize that the pro-
duction values of their video need to
match (and often exceed) the quality
of the rest of the game.

Why are the production values of
cutscenes and other video elements so
critical? Because you’re competing
against the consumer’s instinctive
understanding of production values, an
education furthered every time they go
to the movies or turn on a TV.

Too often, a game’s development
process starts without much thought
for the video other than, “We’ll have a
cool video intro” or “We’ll use
cutscenes to introduce each level.” All
too often, this attitude leads to cine-
matics that seem incongruous and
inappropriate for the game. I remem-
ber watching the MECHWARRIOR 2
opening animation, and thinking how
great it looked. When I started the first
mission, the game’s then state-of-the-
art 3D engine seemed cheap and flat.
Now, I’ve been playing and working
on games for some time, so intellectu-
ally, I knew that the MECHWARRIOR

engine was damned fine. However, I
couldn’t escape wondering what it
would be like to play that game I saw

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

36

D I G I T A L V I D E O

T he first game using video was

the arcade classic DRAGON’S

LAIR. However, this game was

based around an analog

LaserDisc, not digital video. The first

game using digital video in any signifi-

cant way was SHERLOCK HOLMES:

CONSULTING DETECTIVE, released back in

1992. It had a budget of over $1 million

and was shot by experienced filmmakers

with professional actors on real sets.

Given the limited quality of the playback

technologies of the day, the quality of the

presentation was poor on most platforms,

but the game used video well and it was a

pretty fun beer-and-pretzels game.

The first big commercial hit in the bur-

geoning interactive movie genre was

Trilobyte’s THE 7TH GUEST. In retrospect,

the success of this title was probably

more due to the novelty of seeing video

on a computer, rather than the game’s

design. Functionally, the game was a

series of barely related logic puzzles

that used cut scenes as a reward for

solving those puzzles. The video was

poorly produced; actors were filmed in

front of a blue sheet with a home video

camera. It was impossible to make a

clean key from this, and so the actors

were left with ugly blue halos. The

game’s signature effect of transparent

ghosts with blue halos walking through

rendered environments wasn’t originally

intended — rather, it was a last-ditch

attempt to make the best use of this arti-

fact. THE 7TH GUEST’s success set up

some basic fallacies for the genre: quali-

ty doesn’t matter, video is enough of a

reward for users, and game play doesn’t

have to be tied to the video narrative.

Needless to say, this model isn’t seen in

games anymore, at least in games in

which the actors wear clothing.

The standout success of the early digi-

tal video era was MYST. While reviled by

some game purists, MYST remains the

most popular game of all time, and

immeasurably contributed to expanding

the mass market for interactive entertain-

ment and CD-ROM drives in general. MYST

used video in an appropriate manner — in

short snippets, inside the overall game

environment, advancing plot in a plot-ori-

ented game.

The expectation grew in some quarters

that “Interactive Movies” would prove to

become the dominant form of computer

game, and prove to be another outlet for

the talents of second-tier stars. Some of

them were even quite interesting, such as

PHANTASMAGORIA.

WING COMMANDER III was another turn-

ing point in the genre. It melded THE 7TH

GUEST’s model of video sequences

between game play elements with the

plot-integration of MYST, and added big

name stars such as Mark Hamill and

Malcolm McDowell. And it was moderate-

ly successful, both creatively and finan-

cially. However, the costs for producing

what was effectively a TV miniseries in

parallel with game development were

very high, and the games had to be huge-

ly successful to break even.

The way video was used in WING

COMMANDER III remains dominant today,

even though our video budgets are a

small fraction. We see video in short,

plot-advancing sequences that alternate

with game play and give context to what

happens in game play sequences. Most of

the budget and energy goes to an impres-

sive opening sequence that sets up the

plot and is endlessly repeated at game

retailers as an attract loop.

A Brief History of Video in Games

in the intro, with large rocky hills to
hide behind and cool textures on the
Mechs. In short, Activision presented a
bill of goods in the intro that they
couldn’t deliver once the player took
control of the action.

Cinematics should either fit in with
the look and feel of the game engine,
or use the high visual definition

afforded by FMV to reveal details that
can’t be seen within the game. GRIM

FANDANGO, BLADE RUNNER, and
INTERSTATE ‘76 offer excellent exam-
ples of FMV that looks like the rest of
the game, but offers details and sub-
tleties of motion that are still out of
reach of a modern real-time 3D
engine. They add depth and character

to the games without making the
player feel that the game play is a
weak and underdeveloped version of
the cinematics. The COMMAND &
CONQUER series and QUAKE II offer
excellent examples of games that use
FMV to step completely outside of the
game mechanics and offer views of
the game universe outside of what’s

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

38

D I G I T A L V I D E O

I f you’re combining live action and

animated elements within a scene,

compositing will play a large role

in your final product. You’ll most

likely begin by shooting video on a blue or

green screen. The background color is

then removed using a chroma keying

process. Blue and green are the most pop-

ular colors for a removable background

because they are easy to remove and

rarely appear in foreground subjects.

Chroma key production and post-produc-

tion is complicated, and it’s strongly rec-

ommended that you allow professionals

to handle it. However, if time, budget, or

ego considerations get in the way, here

are a few pointers:

1.USE A BIG SPACE. You’ll want to keep

your talent as far a way from the

screen as you can and light as flatly and

broadly as you possible (more on this

later). For these reasons, you want your

space to offer as much room as possible.

2.GIVE YOUR BLUE SURFACE A SLIGHT

CURVE. A very slight curve on the ver-

tical axis will help soften the light and

lessen visible highlights on the screen.

3.USE FLAT LIGHTING ON THE SCREEN. The

screen should be lit softly from

above and possibly the sides. Never point

lights at the screen from behind (or too

near) the camera. The goal is to introduce

no contrast variations. A video tool called

a waveform monitor is used to measure

the brightness and color of the screen to

make sure it is consistent throughout. Any

good production group will use one. If you

use any glossy materials on your screen,

you’re sunk.

4.WHEN YOU LIGHT THE TALENT, DON’T
RELIGHT THE SCREEN. Dramatic and

flattering lighting is often antithetical to

good bluescreen lighting. Keep the talent

far enough from the screen so that you

can light them without their lights hitting

the screen. Never point talent lights at the

screen — you won’t be able to key later.

And remember to recheck your waveform

monitor after you’ve lit everything.

5.CHOOSE A PROFESSIONAL, HIGH-QUALITY

TAPE FORMAT. You’ll need a format that

can handle highly saturated, complicated

images. This requirement precludes the

use of consumer formats such as VHS and

Hi-8. The new DV format is a better choice,

although it deals with color space in a

somewhat limited fashion, and can create

pixelated artifacts around the edges of

foreground objects, making the objects dif-

ficult to key. Betacam is a viable low end,

with Digital Betacam, Digital-S, and film

being the preferred format choices.

6.NARROW YOUR DEPTH OF FIELD. You may

want the talent in focus, but keep the

screen as blurry as possible in order to

hide the inevitable imperfections in the

screen and make keying much simpler.

7.KICK THE TALENT (NO, DON’T HURT

THEM). A warm-colored light (try an

orange gel) placed behind the talent

pointing at his or her back will help create

a strong, very unblue edge on the talent,

which will keep fingers and hair form dis-

appearing in the key.

8.AVOID THE KEY COLOR IN ANY FORE-
GROUND OBJECTS. Yes this sounds

simple, but trust me — it isn’t. Blue

shirts, socks, even eyes can disappear in

the key, as will anything that reflects

blue (particularly white and metallics). If

you have to use blue elements (such as

the WING COMMANDER uniforms), shoot on

a green screen.

9.FIX PROBLEMS IN PREPRODUCTION.
Generally, what you’re paying for

with high-end post tools is the ability to

screw up in production. Terminator 2

might have cost one third as much if it

hadn’t been rushed through production so

quickly. If you don’t have access to high-

end tools, following these tips (and others

like them) are the only chance you’ll have

to get a good key. You have time and

intelligence, which can offer you almost

all of the advantages of money as long as

you use them well. Also, I don’t recom-

mend putting too much faith in the equip-

ment to hide your mistakes.

10.IT’S IMPORTANT THAT THE LIVE-
ACTION VIDEO MATCHES THE

LIGHTING PRESENT IN THE RENDERED BACK-
GROUND ELEMENTS. Otherwise, even the

cleanest composite will stand out, and

the video will look fake and gimmicky.

Giving the animator a diagram of your

lighting setup and a tape of the shoot are

a requisite.

The Black Art of Chroma Key Compositing

The original design spec for

JOURNEYMAN PROJECT 3 called for a blue

time-travel suit. When developers

realized that wouldn’t work in a blue-

screen shoot, the suit was quickly

repainted green.

shown during game play. The cine-
matics in these games let players look
at the world from other perspectives,
offering images and information that
these players can hold in their minds
as they play the game. As we watch a
unit’s health go into the red in C&C,
we remember the opening scenes of
missiles and bullets ripping through
flesh and steel. Wandering through
the Strogg’s homeworld in QUAKE II,
we think from time to time of that
dramatic flyover in the game’s intro
and keep wondering just what that big
gun we saw is meant for.

On the other hand, LucasArts’ other-
wise excellent JEDI KNIGHT: DARK

FORCES 2 made poor use of live action
and prerendered animation in its
cutscenes. Far too often, a cutscene
would transition into game play, leav-
ing the player completely disoriented
by how different the surroundings and
characters looked. Either the cutscenes
made me feel that the much lower-
quality in-game graphics were a gyp, or
poor acting made important, dramatic
villains laughable. Anybody remember
Jerec shooting his tongue out like a
frog in the opening video? Goofy.

Which is not to say that live-action
video is the downfall of a game. The
WING COMMANDER games, particularly
WING COMMANDER: PROPHECY, made
excellent use of video to further the
plot and add depth to characters. The
FMV that bookends most missions
achieves its goal: it makes the player
feel as though he or she is the lead
character in a sweeping B-movie space
opera. The deeply underrated SPYCRAFT:
THE GREAT GAME made excellent use of
video, creating a sense of realism and
immediacy that couldn’t have been
matched with CGI. Similarly, GABRIEL

KNIGHT: THE BEAST WITHIN used live-
action video brilliantly, and showed
just how involving real actors can
make a game.

Putting Together the Right Team

F or many developers, it has become
important to bring in a production

company or independent producer at
the same time the rest of the asset team
is being assembled, particularly if the
video will involve a live-action produc-
tion. However, even if the sequences
are 100 percent animated, it’s prefer-

able to have the team creating the
assets involved as early as possible.

Just as it is important for the devel-
oper to appreciate the intricacies of
FMV, so to must the FMV team under-
stand the game on which they’re
working. Make sure that they have a
real sense of the look and feel of the
rest of the game, particularly in-game
elements. If the game uses a palette
overwhelmed with blues, then the
video should match it. FINAL FANTASY

VII’s cutscenes have wildly different
styles of character animation than the

rest of the game. Its video uses a more
traditional anime style, while game
play centers around super-deformed
characters. The super-deformed style is
often used in Japanese animation to
convey humor and comic relief.
However, I’d go out on a limb and say
that the dichotomy in the look is dis-
ruptive and antithetical to the somber
adventure that the game seems to
work so hard to present. Apparently,
Square agrees — FINAL FANTASY VIII
won’t use the super-deformed design
elements.

h t t p : / / w w w . g d m a g . c o m M A R C H 1 9 9 9 G A M E D E V E L O P E R

Ensuring Video Production Success

C REATING QUALITY FMV. Far too often,
I’ll see video that looks almost

professional. For example, DUNE 2000
(along with just about every other
Westwood title using live action), had
crystal-clear interlacing artifacts caused
by not removing one of the two fields
that makes up a video frame. Just about
any digital video professional could
have corrected this problem with a
mouse click. These artifacts are distract-
ing, and make digital video compres-
sion much more difficult.

Problems such as this can crop up
in every stage of in the production of
video, from lighting to direction to
compositing to editing. The video in
BLACK DAHLIA, a game completely
dependent on the success of its cine-
matic elements is, quite simply, pro-
fessional. The lighting on actors
matches backgrounds. They are well
placed within their environment. 3D
animation is married sensibly and ele-
gantly to stock footage, as well as to
newly shot elements. The bottom
line is make sure that you have video
professionals working on your FMV
segments, otherwise your quality
could suffer.
ACTORS NEED GOOD DIRECTION. Game devel-
opers have often shown the ability to
pull wooden performances from very
talented actors. Many a time, I’ve seen
some of my favorite character actors
deliver lines with all the conviction of
a Creationist giving the keynote
address at a Darwinists’ convention.
These problems often stem from a fair-
ly simple issue: the talent has been
inadequately prepared for the task at
hand. If the developer is in charge of
the production of the video assets,
then the fault lies there.

When making the transition from
the stage to film or television, actors
often complain about the lack of lin-
earity. Movies are rarely shot in
sequence, and an actor used to being
able to carry their character from
scene to scene can get lost in the tech-
nical considerations of production.
What’s worse is that the nonlinearity
of game plots can make an actor’s role
even more difficult when filming
game video.

In the game developers’ world,
video sequences often exist around
game sequences, and each segment

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

40

D I G I T A L V I D E O

1.BAD BLUESCREEN. Do things look

funny around the edges of your

actress’s long hair? Is the background

either too visible or not visible enough?

That’s the product of bad bluescreen.

These sorts of effects can be expensively

fixed in post with frame-by-frame tweak-

ing, but it’s much better to get right in the

first place. See THE 7TH GUEST.

2.INTERLACED VIDEO. In analog video,

the even lines are captured 1/60th

of a second apart from the odd lines. So,

when objects are moving rapidly, you see

a stair-stepping pattern. It’s ugly,

increases data rates, and is easy to elimi-

nate. Every digital video program out

there can deinterlace, so do it, or we’ll

make fun of you at E3. See DUNE 2000.

3.UNCROPPED VIDEO. In analog video,

there’s almost always crud around

the edges of the image that isn’t seen on

TV. Computer monitors show every last

pixel all the way around. So you need to

crop out the crud on the edges. See the

LONGBOW series.

4.WRONG ASPECT RATIO. Pixels are

always square, right? Wrong. Many

high-end digital video standards use

720×486 pixels per frame, where the pix-

els are taller than they are wide. So if the

video is played like that on a computer,

everything looks wide. Scale the video so

that the pixels wind up square and circles

aren’t ovals.

5.BAD ACTORS. It’s an old saw in video

production that many good stage

actors don’t work out well in front of a

camera, because their performances are

aimed at people thirty feet away in the

audience, not two feet away in a close-up.

See almost every FMV game made.

6.POOR VOICE ACTING. In many ways,

poor voice acting is much more of a

problem than poor video. There are two

main reasons for this: audio is everywhere

in games, and voice acting looks easy.

Voice acting is not easy. If it was, it would-

n’t be obvious which computer games had

the engineers do voice-overs. Voice acting

requires skill and experience, and it’s a lot

more expensive to spend eight hours in a

recording studio with a volunteer than two

hours with a professional.

Ask this question before using someone

as a voice actor: “Are you a member of

AFTRA?” If they respond yes, then they’re

almost certainly a skilled professional. If

they give you a speech about how they

don’t like unions, at least they know what

business they’re in, and might be okay. If

they say “What’s AFTRA?” smile and go

somewhere else.(AFTRA is the American

Federation of Television and Radio

Artists.) See the RESIDENT EVIL series.

7.WRONG FRAME RATE. Video runs at 30

frames a second, and film at 24

frames a second. The final frame rate of

digital video should be an integer fraction

of the original frame rate in order to pre-

serve smooth motion. For example, video

should play back at 30 FPS or 15 FPS, and

film at 24 or 12. Note that if you transfer

film to video, you still should restore the

frame rate to 24 FPS. Media Cleaner Pro

does a great job with this conversion. See

virtually every game with content shot on

film, such as CLOSE COMBAT.

8.EIGHT-BIT AUDIO. Never, ever, ever

use 8-bit audio for anything. Ever.

Really. With modern audio codecs, 8-bit

always produces bigger files and sounds

worse than 16-bit.

9.MISMATCHED FOREGROUND AND BACK-
GROUND ELEMENTS. So, you want to

shoot actors on a bluescreen, then incor-

porate computer graphic elements in the

background? The video looks great, and

so do the computer graphics, but why

don’t the spaceships look like they’re in

the same universe as the talent? Lots of

reasons, probably. In order to make ele-

ments match, they need to have similar

frame rate, grain, motion blur, lighting

highlights, and so on. A good animator

can make a great looking spaceship. It

takes a great animator to make it look

like part of the set.

10.VIDEO TECHNICAL REQUIREMENTS

OUT OF SYNC WITH THE REST OF THE

GAME. While I like codecs as much as the

next guy (well, a lot more than the next

guy), it’s a mistake to have the processor

requirements for your cutscenes be high-

er than for the rest of the game. Yet, it

happens. Sometimes, testers get so used

to skipping past the video that they never

check cutscenes on low-end computers.

Great looking video doesn’t count if users

can’t see it. See CIVILIZATION II and CLOSE

COMBAT: A BRIDGE TOO FAR.

Ten Digital Video Game Disasters

might come from and go to many
branches. Actors can find it difficult
to maintain a strong grasp on what
their character is doing or, for that
matter, who they are.

This fact can result in flat, unap-
pealing performances. Therefore, if
you’re going to be working with
actors, empower them with an under-
standing of the process they’re
involved in. Some developers have
taken to bringing large flowcharts to
the set, so that the actors can see
where they are in a given scene, and
understand how it relates to the rest
of the game. Developers have also
learned the value of rehearsals and
read-throughs of the script. Many
problems with a scene can be caught
during this process.
KEEP YOUR ANIMATION ANIMATED. Almost all
titles today use 3D animation in their
cutscenes, either as background ele-
ments for actors (see the sidebar “The
Black Art of Chroma Key Compo-
siting”) or as the sole element in the
video. Most modern game develop-
ment teams have top notch 3D artists
on their teams. They are brilliant at

taking complicated objects and charac-
ters and building low–polygon-count
3D models with depth and life.
However, these skills don’t necessarily
translate into the ability to produce an
animated segment for a videogame.

For example, JEDI KNIGHT: DARK

FORCES 2 opens with a long, drawn out
flythrough over Nar-Shaddaa.
Although this is a wonderful example
of whatever modeling program the ani-
mator used, it’s long and uninvolving.
There is nothing wrong with using ani-
mation to introduce new settings and
hardware. Blizzard has done a very
good job of that with STARCRAFT. You
just can’t assume that a camera spin-
ning around a 3D object is inherently
dramatic. Without any sort of context,
it’s boring.
POST-PRODUCTION PREPAREDNESS. Digital
video post production is often thought
of as simply the stage where things
that went wrong are corrected — as in,
“We’ll fix it in post.” However, as
mentioned earlier, it’s a lot cheaper do
to something correctly the first time.
Keep that in mind.

Post production should be thought

of as fine tuning what you’ve already
done right, not correcting earlier
flaws. This is the stage where a scene’s
structure and rhythm are honed via
video editing, animation and live
action are merged, and graphics and
subtitles are added.

Never underestimate the critical
importance of good editing. It can be
tempting for some computer animators
to create an entire scene purely with
camera motion instead of using cuts —
almost always a terrible idea. Cutting
from different camera angles and sub-
jects is core to our video experience. A
great way to understand how this
works is to watch TV with the volume
off. Notice how often the cuts happen
during a scene. Note how they set up
the scene, emphasize facial expres-
sions, and set up a rhythmic pace.
INTERSTATE ’76, with its primitive
graphics, was able to really capture the
feel of a 1970s action film by mimick-
ing their editing style.

Some big differences exist between
traditional video post and post for
game delivery. First, traditional video is
made up of tall, rectangular pixels.

41

Computers use square ones. Second,
each traditional video frame is made of
two unique picture fields interlaced
into one frame, with all the even lines
capturing a moment in time a fraction
of a second different from the odd
lines. Video in games is always progres-
sive scan, with only one image in the
frame (see “Ten Digital Video
Disasters”).

Because RGB computer monitors are
much better than analog televisions,
games can use film-like color saturation
and contrast. The drawback to the
high-quality images produced by com-
puter monitors is that a lot of subtle
noise that would go unnoticed on a
television is often readily apparent on
the monitor. This can be especially
obvious in shadow tones, and it
requires processing by a tool such as
Media Cleaner or After Effects to
reduce the noise.

Digital video codecs also have limita-
tions that should be addressed in post
production. For example, Smacker and
other codecs that use a limited palette
of on-screen colors benefit from video

processing that limits the color palette
used in any given frame. Other codecs
have trouble with certain types of con-
tent, such as rapidly moving complex
textures. Perform some sample tests of
your post and edits well before final
compression, so you can alleviate trou-
ble spots in the video.

The Future of Games

S o, where is all this going? Great
places. Over the next few years,

DVD-ROM will become ubiquitous, as
will MPEG-2 playback. These advances
will increase the technical quality of
video in games beyond our current
goal of “broadcast quality.” The larger
media size of the DVD-ROM will also
allow more video storage capacity per
disc. A dual-layer, single-sided disc can
hold over four hours of extremely
high-quality video, with one gigabyte
left over for the rest of the game.

Not all video will go over to MPEG-2,
though. While great for standalone cut
scenes, MPEG-2 is difficult to use with-

in games themselves, where video is
displayed in only part of the screen or
at the same time that other things are
going on. Fortunately, a number of
next-generation software-based codecs
are hitting the market, such as Duck’s
TrueMotion 2X and Rad Game Tools’
Bink. Both provide very high-quality
content at reasonable data rates and
both should be released by the time
you read this.

Today’s video production tools are
much better suited to game produc-
tion. The whole video world is going
digital, which massively improved the
quality and costs of game video. Most
of the major video manufacturers
have announced progressive scan
cameras, which will eliminate the
interlacing conversion problems
(thereby doubling effective resolution)
that have limited quality since the
beginning of the game industry. In
addition, the next wave of high-defin-
ition cameras will offer the possibility
of film-quality video on the desktop.
The price of professional-quality
equipment is also dropping very
rapidly, to the point where today’s
$4,000 camera is better for game video
than the $40,000 rigs of ten years ago.

As playback quality increases, so
will the demands on developers to
produce high-quality video. After
decades playing the poor cousin to the
broadcast world, DVD and next-gener-
ation video playback engines will offer
us the opportunity to provide the end
user will far better that broadcast qual-
ity. Game developers have an oppor-
tunity to take a leadership position in
video quality. ■

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

42

D I G I T A L V I D E O

• Filmmaker's Handbook, by Steven

Ascher and Edward Pincus (New

American Library Trade, 1984), is still

the best primer available, and a new

version should be available by the time

you read this.

• http://www.codeccentral.com is a

Terran-hosted web site that’s a great

source for codec information

• Game Developer’s sister publication

DV is a great source for information on

video production and technologies.

More information can be found at

http://www.dv.com.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

than 1,500 flat-shaded triangles. Their shadows were project-
ed onto a perfectly planar ring. Sega AM2’s developers had
several reasons for choosing a simple planar ring.
1. A planar area was sufficient for a terrific 30 FPS game play.
2. Casting shadows on a relief is CPU-hungry because it’s

not hardware-accelerated.
3. The main processor (a 680x0 family) was too slow to han-

dle the inverse-kinematics mathematics needed for char-
acters on a nonplanar area (which didn’t appear until
arcade machines started featuring the Model3 board).
For years, fighting games were the only games to use real-

time shadows. These games typically featured only two char-
acters, each casting a shadow on the floor. But these games
lacked interobject shadow casting, such as the first player’s
shadow projected onto the second player’s. Nowadays, with
the power of arcade systems such as Sega’s Model3 family,
games such as VIRTUA FIGHTER 3 are capable of more elaborat-
ed special effects. Nonplanar shadows are now possible,
though interobject shadow casting is still missing.

My love of fighting games inspired my efforts to come up
with a way to create shadows that could be projected onto
any object, even onto the other fighter (Figure 1). As with
many techniques, the one I’ll describe in this article has
advantages and disadvantages, but I think the idea is worth
sharing.

The Easy Answer?

There are several ways to create 3D shadows. The most
popular technique is to project the whole mesh (or at

least the part that’s visible from the light) onto a single plane
(Figure 2). Some developers are using a simplified mesh to
cast the shadow (for example, TEKKEN 3 from Namco). This
technique dramatically reduces the number of triangles that
must be processed, and usually gives acceptable visual quali-
ty. Proceeding with polygons does offer benefits such as

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

44

S H A D O W SC A S T I N G

Casting
Shadows on
Volumes

AA
b y H u b e r t N g u y e n

Nguyen Hubert Huu lives in Nanterre, France. He built demos
for Impact Studios between 1993 and 1995, and is now work-
ing for a French game publisher. You can contact him via
e-mail at nguyenhub@aol.com

F I G U R E 1 . An example of projection shadow mapping, in a

screenshot taken from the sample application accompany-

ing this article.

s I recall, the very first 3D game with real

projected 3D shadows was VIRTUA FIGHTER,

a Sega AM2 arcade game based on a

Model1 board. That was the beginning of

a new era of fighting games. Each charac-

ter was composed of more

razor-sharp edges (Figure 3) and speed
(the game can render the shadow in
flat-shading, which is usually faster
than fully lit texture-mapped render-
ing). Projecting and clipping polygons
on an infinite plane is pretty fast.

Also, on a nonplanar surface, creat-
ing polygons for a shadow is more dif-
ficult. First, you have to perform the
projection onto a general plane, rather
than the typical single-axis–aligned
plane (vertical or horizontal). We could
say that casting a shadow onto some-
thing other than a plane is equivalent
to projecting one object onto another,
both composed of polygons. Let’s call
the shadow-caster object SSrrccOObbjjeecctt and
the receiver of the shadow DDssttOObbjjeecctt. For
each polygon of SSrrccOObbjjeecctt, we’ll have to
determine which polygons of DDssttOObbjjeecctt
will receive the shadow. One could rep-
resent the process with the pseudo-
code shown in Listing 1.

Of course, this algorithm is a little
“brutal.” It can be optimized to reduce

the number of polygons that must be
processed. For example, we could skip
those polygons that are light-
face–culled. Nevertheless, the overall
complexity of this algo-
rithm will always be
pretty high. Lines 05
and 06 can be quite
CPU-intensive com-
pared to a simple pla-
nar shadow casting
without clipping. We
could further optimize
this technique’s perfor-
mances by precalculat-
ing and storing certain
data, such as the planes
equation for each
SSrrccPPoollyyggoonn, DDssttPPoollyyggoonn,
and so on. But this
algorithm is still a pret-
ty complex process.

The code in Listing 1
will give us a brand new
set of polygons with

which to build the shadow. In most
cases, the number of triangles in the
shadow will be greater than or equal to
the number of triangles in the SSrrccOObbjjeecctt
that are visible from the light source
because a SSrrccOObbjjeecctt polygon can be pro-
jected onto more than one DDssttOObbjjeecctt
polygon. This calculation is probably
the costliest part of this algorithm.
Fortunately, alternatives do exist.

Projecting Shadows

I first realized that I could use a tex-
ture to cast a shadow when I saw a

3Dfx demo featuring a spotlight imple-
mented as a projected texture. I imag-
ined how easy it would be to render a
shadow into the projected texture.
Projecting textures doesn’t require
CPU-intensive operations such as pro-
jecting onto general planes and clip-
ping polygons. All we have to do is cal-
culate the texture coordinates for
applying a rendered texture onto an
object. Projecting shadows employs a
similar technique. The principle is to
generate textures dynamically using a
light source as the point of view.

The idea is pretty simple. Let’s imag-
ine that we want to project a picture
onto an object. we simply transform
each vertex of the object into the pro-
jector space (the light source), and use
its new coordinates (x’,y’,z’) to create
the texture coordinates (s,t). This tech-
nique is even more intuitive when you
can see what’s happening. Figure 4 is

h t t p : / / w w w . g d m a g . c o m M A R C H 1 9 9 9 G A M E D E V E L O P E R

45

F I G U R E 2 . An example of shadow

created with triangles projected on a

plane.

F I G U R E 4 . Let's see how to achieve this effect…

F I G U R E 3 . Note that edges are sharp

even if the shadow is stretched.

0011 lloooopp oonn SSrrccOObbjjeecctt ppoollyyggoonnss

0022 {{

0033 lloooopp oonn DDssttOObbjjeecctt ppoollyyggoonnss

0044 {{

0055 pprroojjeecctt SSrrccOObbjjeecctt ppoollyyggoonn oonn DDssttOObbjjeecctt ppoollyyggoonn ppllaannee

0066 iiff ((pprroojjeecctteedd SSrrccOObbjjeecctt ppoollyyggoonn sshhaaddooww iinn DDssttOObbjjeecctt ppoollyyggoonn))

0077 {{

0088 NNeewwppoollyyggoonn <<-- pprroojjeecctt SSrrccOObbjjeecctt ppoollyyggoonn oonn DDssttOObbjjeecctt ppoollyyggoonn ppllaannee

0099 SShhaaddoowwppoollyyggoonn <<-- cclliipp NNeewwppoollyyggoonn aaggaaiinnsstt DDssttOObbjjeecctt ppoollyyggoonn eeddggeess

1100 }}

1111 }}

1122 }}

L I S T I N G 1 . Establishing the relationship between SSrrccOObbjjeecctt and DDssttOObbjjeecctt.

the final result that we want to obtain.
Figure 5 shows the scene and the figure
from the light’s point of view. You can
see in Figure 5 that the shape of the
shadow in Figure 4 is exactly hidden by
the figure of the man when viewed
from the light’s point of view. The
scene will receive the shadow. Figure 6
shows the scene objects from the
light’s point of view; we need the coor-
dinates of these objects in order to cal-
culate the (s,t) coordinates for the
shadow-mapping. Figure 7 shows just
the shadow texture — we’ve rendered
the objects for which we want to create
shadows (in this case, the character
only). By projecting the texture in
Figure 7 onto the objects in Figure 6,
we get the final effect (Figure 4). In the-
ory, casting shadows using textures is
as simple as that.

Now let’s look at the code. A sample
application that performs these calcu-
lations is available from the Game
Developer web site. The most important
part of the algorithm computes the tex-
ture shadow coordinates for all the
objects onto which we want to cast
shadows. This calculation basically
remaps the (x,y,z) coordinates of the
object into (s,t) coordinates in the
shadow map (Listing 2).

Here, the (x,y,z) coordinates are
computed in the light’s space coordi-
nates (the object has been previously
transformed by the RRoottaattee(()) function).
Figure 8 helps to visualize how the
mapping is performed. The projection
is planar — we only use (x,y). Because
the object has been projected with its
perspective relative to the light’s point
of view, the mapping takes care of the
perspective. Figure 9 illustrates the

result of this operation. Once we’ve
remapped the (x,y) coordinates as (s,t)
coordinates, we simply use (s,t) as nor-
mal texture coordinates. In our case,
remapping was as simple as reusing the
(x,y) coordinates as (s,t) coordinates.

Obviously, we need to consider the
size of the shadow texture and the size
of the viewport used to transform the
object into the light’s point of view. The
sample application uses Glide, which
has texture coordinates in the range

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

46

C A S T I N G S H A D O W S

F I G U R E 5 . This is the scene from the

light's field of view.

F I G U R E 6 . These objects will receive

the character’s shadow. F I G U R E 7. The shadow texture map.

vvooiidd CCaassttOOnnMMeesshh((MMeesshh &&mm))
{{
ffllooaatt pprroodd;;

ffoorr ((iinntt ii==00;; ii<<mm..nnTTrriiaanngglleess;; ii++++))
{{

iinntt vv11== mm..TTrriiaanngglleeAArrrraayy[[ii**33++00]];;
iinntt vv22== mm..TTrriiaanngglleeAArrrraayy[[ii**33++11]];;
iinntt vv33== mm..TTrriiaanngglleeAArrrraayy[[ii**33++22]];;
mm..FFllaaggAArrrraayy[[ii]] == 00;; //// bbyy ddeeffaauulltt,, rreesseett tthhee ffllaagg

//// BBaacckkffaaccee CCuulllliinngg
////((((vv33..xx -- vv11..xx)) ** ((vv22..yy -- vv11..yy)))) -- ((((vv22..xx--vv11..xx))**((vv33..yy--vv11..yy))))
pprroodd ==
((
((((mm..VVeerrtteexxAArrrraayy[[vv33]]..ppxx--mm..VVeerrtteexxAArrrraayy[[vv11]]..ppxx))**((mm..VVeerrtteexxAArrrraayy[[vv22]]..ppyy--mm..VVeerrtteexxAArrrraayy[[vv11]]..ppyy))))
--((((mm..VVeerrtteexxAArrrraayy[[vv22]]..ppxx--mm..VVeerrtteexxAArrrraayy[[vv11]]..ppxx))**((mm..VVeerrtteexxAArrrraayy[[vv33]]..ppyy--mm..VVeerrtteexxAArrrraayy[[vv11]]..ppyy))))
));;
iiff ((pprroodd<<00..00ff)) ccoonnttiinnuuee;; //// rreejjeecctt bbyy BBaacckkFFaaccee CCuulllliinngg

iiff ((((mm..VVeerrtteexxAArrrraayy[[vv11]]..ffllaaggss &&
mm..VVeerrtteexxAArrrraayy[[vv22]]..ffllaaggss &&
mm..VVeerrtteexxAArrrraayy[[vv33]]..ffllaaggss)) !!== 00)) ccoonnttiinnuuee;; //// rreejjeecctt iiff tthhee ttrriiaannggllee iiss ccoommpplleetteellyy

//// oouuttssiiddee ooff tthhee lliigghhtt PPOOVV
mm..VVeerrtteexxAArrrraayy[[vv11]]..uu == mm..VVeerrtteexxAArrrraayy[[vv11]]..ppxx;; //// ((xx,,yy,,zz)) aarree iinn LLiigghhtt FFOOVV
mm..VVeerrtteexxAArrrraayy[[vv11]]..vv == mm..VVeerrtteexxAArrrraayy[[vv11]]..ppyy;;

mm..VVeerrtteexxAArrrraayy[[vv22]]..uu == mm..VVeerrtteexxAArrrraayy[[vv22]]..ppxx;;
mm..VVeerrtteexxAArrrraayy[[vv22]]..vv == mm..VVeerrtteexxAArrrraayy[[vv22]]..ppyy;;

mm..VVeerrtteexxAArrrraayy[[vv33]]..uu == mm..VVeerrtteexxAArrrraayy[[vv33]]..ppxx;;
mm..VVeerrtteexxAArrrraayy[[vv33]]..vv == mm..VVeerrtteexxAArrrraayy[[vv33]]..ppyy;;
mm..FFllaaggAArrrraayy[[ii]] == 11;; //// 11== ddrraaww tthhiiss ttrriiaannggllee ffoorr tthhee ccuurrrreenntt ffrraammee
}}

}}

L I S T I N G 2 . Remapping the (x,y,z) coordinates of the object into (s,t) coordinates

in the shadow map.

[0..256] instead of the range [0..1.0]
used by most of APIs. Because the shad-
ow texture is a square 256×256, we
don’t have to scale the (x,y) coordinates
when using them as (s,t) coordinates.

Crossing Hurdles

W e need to be careful of a couple
of things in regard to texture

coordinates. Some (s,t) couples will
have values outside of the range
[0.0..1.0]. In order to avoid a tiling
effect, which would distort the result
by repeating the shadow in an unde-
sired place, the rendering device must
be configured into clamp mode.

Every texel can be addressed by a
couple of texture coordinates (s,t) in

the range [0.0..1.0]. In theory, giving a
value outside of this range to s or t
would cause an addressing error. Most
people who’ve programmed a software
rasterizer have encountered this prob-
lem. To avoid it, many hardware man-
ufacturers have methods of keeping
texture coordinates inside of the tex-
ture. These include tiling and clamp-
ing. Both modes modify the texture
coordinates after they’ve been interpo-
lated by the chip for each texel. When
configured for tiling, the chip removes
the integer part of the (s,t) coordinates
(for example, 1.7 becomes 0.7). Clamp-
ing, on the other hand, brings the val-
ues that exceed the range to the nearest
bound (for example, -2.3 becomes 0,
and 1.3 becomes 1.0).

Figure 10 shows a clamped square
that has texture coordinates greater
than 1.0 and less than 0.0. Figure 11

shows the opposite, with tiling enabled.
If you look closely at Figure 10, you can
see that if the borders of our texture
aren’t clean, we’ll get an unwanted
effect on the display of our shadow.
Figure 12 is an example the sort of
problems that can arise in clamp mode.
This bug is caused by the object being
clipped by one of the texture’s borders
(Figure 13). To avoid those effects, we
must make sure that our object is com-
pletely inside the point of view and
isn’t being clipped by the texture’s bor-
der. We must be sure that our textures
have clean borders, with a width of at
least two pixels. In the sample applica-
tion that accompanies this article, I’ve
attached the light to the object and
adjusted the point of view to avoid any
clipping. A piece of code could auto-
matically check whether or not the
object is inside the point of view. A
good adjustment will maximize the
accuracy of the shadow in the scene by
increasing the surface taken by your
shadow in the texture. We’ll talk about
that at the end of the article.

Implementation

N ow that we understand how tex-
ture projection works, let’s look

at how it fits into the rest of the pro-
gram. I’ve divided the process up into
five steps:
1. Render the object for which we want

to create a shadow from the light’s
point of view.

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

48

C A S T I N G S H A D O W S

F I G U R E 8 . Superimposition of the

scene's position and the texture from

the light's point of view.

F I G U R E 9 . The scene has been dis-

played using the shadow texture.

-1.0

0.0

1.0

2.0

-1.0 0.0 1.0 2.0

F I G U R E 1 0 . Clamping example.

-1.0

0.0

1.0

2.0

-1.0 0.0 1.0 2.0

F I G U R E 1 1 . Tiling example.

2. Create a texture using the result of
Step 1.

3. Project the texture by calculating
(s,t) coordinates for each object onto
which we want the shadow to be
projected.

4. Render the scene from the camera’s
point of view.

5. Render the triangles that are visible
from the light’s point of view using
the (s,t) calculated during Step 3 and
the texture from Step 2.
This is the basic method behind

shadow projection. Now let’s look at
each step in detail.
STEP 1. We have to render the figure of
the object that will cast a shadow in
our scene. We’ll need to transform,
project, and render the object into the
light’s point of view. (A flat rendering
is sufficient to achieve a simple shad-
ow, but you can imagine a lot of spe-
cial effects that could be implemented
with this technique.) We can speed up
this operation by using a simplified
mesh (a level of detail mesh, for exam-
ple); the effect on the final result won’t
be too great, especially if the object is
animated (a character, for example).
The drawing of the triangles is pretty
fast because of the simplicity of a flat
rendering (particularly for software ras-
terizers). The fastest rendering, of
course, can be achieved with the help
of a 3D accelerator. Because we’re only
interested in a figure of the object, we
can deactivate the Z-buffer or any
other sorting technique — the result
will be the same, and the overall per-

formance of this step will improve. As
usual, any optimization aimed at
reducing the number of triangles to be
rendered would help speed things up
(backface culling and such).
STEP 2. Copying the rendered figure from
Step 1 into a texture is currently the
slowest part of the sample application,
due to the slowness of the LFB (linear
frame buffer) access on the Voodoo
chipset. Normally, this operation
should be a lot faster. Some chips allow
hardware blitting between the frame
buffer and texture memory. Better still,
some boards — such as the 3Dfx
Voodoo Banshee — let you render
directly into texture memory. In the lat-
ter two cases, you
can consider this
step as almost free,
and expect a gain
of 50 percent in
performance for
the sample applica-
tion provided with
this article.
STEP 3. Now, we
transform all of the
objects upon
which we want to
cast the shadow
into the light’s
point of view. This
is a good time to
flag triangles that
aren’t visible in the
light’s point of
view, so that we
can reject them

during Step 5. We then calculate the
new (s,t) coordinates to perform the
projection of the shadow. The speed of
this step depends on the number of ver-
tices in the mesh. In general, the com-
plexity of the mesh isn’t detrimental to
the final frame rate. This step should
typically account for about 15 to 20 per-
cent of the overall frame. So, although
it’s not a critical issue, one could easily
speed up this process. For example, we
could use occlusion techniques (poten-
tially visible sets, portals, and so on)
that will decrease the number of vertices
to process in the scene. Backface-culling
can also divide the number of vertices
by two for most objects.
STEP 4. We render the whole scene as
we normally would. We don’t need to
worry about shadows for now.
STEP 5. Now we’re going to render all the
triangles that we determined were visi-
ble in the light’s point of view during
Step 3 (Figure 6). We’ll texture these tri-
angles with the texture map produced
in Step 2 and we’ll use the texture coor-
dinates computed in Step 3. All of these
triangles should have been rendered in
Step 4. We are therefore using multipass
rendering to render them a second time
for the final result. Figure 14 shows the
triangles that have been rendered twice
to perform a multipass rendering. To
setup multipass rendering, we have to
configure the Z-buffer or W-buffer in
Less or Equal comparison mode or the
second pass (Step 5) won’t be visible
because the pixels will be rejected by the
depth-sorting.

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

50

C A S T I N G S H A D O W S

F I G U R E 1 2 . Clamping the texture coordinates can

cause strange display effects.

F I G U R E 1 4 . The triangles that are visible in the light's field

of view are displayed with colored flat rendering.

F I G U R E 1 3 . The

bug in Figure 12 is

due to this clipping

of the character

into the shadow

texture.

We also need to set our hardware to
skip pixels that are of the background
color in the shadow texture. The sim-
plest way to do this is to render the
shadow with an RGB color of
0x00000001 (ARGB value) on a
0x00000000 background. To reject the
background but not the shadow, we can
use the ggrrCChhrroommaakkeeyyVVaalluuee(()) function (or its
equivalent in whatever API you happen
to be using) to configure the rasteriza-
tion device to reject the background
pixels. However, the chroma-keying
solution doesn’t take advantage of bilin-
ear filtering, which helps smooth out
the otherwise pixilated texture.

A still better technique is to use a
texture with an alpha channel (ARGB-
4444 format in most hardware; I’ll
explain later how I generate an ARGB-
4444 texture in a 565 frame buffer). We
can use the alpha value in the texture
to discard pixels of the background
color. The point in using an alpha tex-
ture is to take advantage of filtering to
obtain smoother edges. The alpha
value will be interpolated in the same
way as the colors. The edges of our
shadows will appear smoother than if
we’d used a simple color-key test. In
some cases, we can even get an effect
that resembles antialiasing. Figure 15
demonstrates the filtering capabilities
of this technique. We can get sharper
edges by increasing the size of the
shadow texture, although this will slow
down its generation. With higher fill-
rates and Unified Memory Architecture
(as on the Banshee, for example) the
texture’s size will be less of an issue.

Listing 3 shows
how to configure
Glide before draw-
ing the shadow.
Listing 4 shows

the settings, which we perform once at
the beginning of the program. Some of
these may influence the rendering of
the shadow texture.

Odds and Ends

T he alpha combine is set to use both
texture and iterated alpha at the

same time to adjust the transparency of
the shadow. The alpha of the texture
encodes the mask of the shadow mask,
and the iterated alpha allows for
dynamically adjusting the transparen-
cy of the shadow. Using different
degrees of transparency allows us to

simulate variable light intensity. For
example, if the spotlight is near the
object, we would set the iterated alpha
to 255.0 to get a black (opaque) shad-
ow. On the opposite end of the spec-
trum, if the spotlight is far off or the
light intensity is low, we would set
alpha closer to 0.0 to get a very soft
shadow.

I’m currently using the same alpha
value for all vertices, but one could
consider using more exotic per-vertex
alpha calculation (such as computing
an alpha value that is a function of the
distance between the vertex and the
light source).

Previously, I talked about generating
an ARGB 4444 texture from a RGB 565
frame buffer. This is a simple trick. We
need a black texture with an alpha
mask representing the figure of our
object. I have a RGB 565 texture. Figure

h t t p : / / w w w . g d m a g . c o m M A R C H 1 9 9 9 G A M E D E V E L O P E R

51

F I G U R E 1 5 . Using an alpha shadow texture allows filtering

on the edges of our shadow.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Red Green Blue

F I G U R E 1 6 . A RGB 565 pixel.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RedAlpha Green Blue

F I G U R E 1 7. A 16-bit pixel again, but in ARGB 4444 format.

vvooiidd DDrraawwSShhaaddooww((MMeesshh &&mm))

{{

gguuAAllpphhaaSSoouurrccee((GGRR__AALLPPHHAASSOOUURRCCEE__TTEEXXTTUURREE__AALLPPHHAA__TTIIMMEESS__IITTEERRAATTEEDD__AALLPPHHAA));;

ggrrAAllpphhaaBBlleennddFFuunnccttiioonn((GGRR__BBLLEENNDD__SSRRCC__AALLPPHHAA,,

GGRR__BBLLEENNDD__OONNEE__MMIINNUUSS__SSRRCC__AALLPPHHAA,,

GGRR__BBLLEENNDD__OONNEE,,

GGRR__BBLLEENNDD__ZZEERROO));;

ggrrTTeexxCCoommbbiinneeFFuunnccttiioonn((GGRR__TTMMUU00,, GGRR__TTEEXXTTUURREECCOOMMBBIINNEE__AADDDD));;

gguuCCoolloorrCCoommbbiinneeFFuunnccttiioonn((GGRR__CCOOLLOORRCCOOMMBBIINNEE__TTEEXXTTUURREE__TTIIMMEESS__IITTRRGGBB));;

ggrrCCoolloorrCCoommbbiinnee((

GGRR__CCOOMMBBIINNEE__FFUUNNCCTTIIOONN__SSCCAALLEE__OOTTHHEERR,,

GGRR__CCOOMMBBIINNEE__FFAACCTTOORR__LLOOCCAALL,,

GGRR__CCOOMMBBIINNEE__LLOOCCAALL__IITTEERRAATTEEDD,,

GGRR__CCOOMMBBIINNEE__OOTTHHEERR__TTEEXXTTUURREE,,

FFXXFFAALLSSEE));;

ggrrTTeexxCCllaammppMMooddee((GGRR__TTMMUU00,,GGRR__TTEEXXTTUURREECCLLAAMMPP__CCLLAAMMPP,,GGRR__TTEEXXTTUURREECCLLAAMMPP__CCLLAAMMPP));;

L I S T I N G 3 . Configuring Glide to draw the shadow (continued on page 52).

16 shows the RGB values in a 16-bit
565 pixel. Figure 17 shows the same
thing in an ARGB 4444 pixel. We need
an alpha mask with a value of 1111b
for each pixel. If we compare the bits of
the 565 texture, it corresponds to a part
of the 565-Red, 11110b exactly. So, all
we need to do is to render a flat shape
with the value 1111000000000000b
and copy it as an ARGB 4444 texture.
This gives us an alpha mask with all
alpha pixels with a value of 1111b.
Listing 5 shows how it’s written the
sample application.

The ggrrTTeexxDDoowwnnllooaaddMMiippMMaapp(()) function
loads the memory from the
ShadowBitmap buffer into the Voodoo
texture memory. Because 4444 and 565
textures are both 16 bits per pixel, the
function doesn’t care about how bits
are organized inside. It copies a block
of memory to the address specified on
the board (as it happens here, zero).
The interesting part of this operation is
that we can set up the hardware for a
specific texture format with the
ggrrTTeexxSSoouurrccee(()) function. All we have to do
is to fill the GGrrTTeexxIInnffoo structure with the
constant GGRR__TTEEXXFFMMTT__AARRGGBB__44444444 for the for-
mat member instead of GGRR__TTEEXXFFMMTT__RRGGBB__556655.
The function will configure the texture
mapping unit to decode an ARGB 4444
texture. Most boards now support this
format, so don’t worry about the com-
patibility of this technique.

Pros and Cons

A s good as it is, this technique is
far from perfect. Its most signifi-

cant drawback is the low accuracy of
the shadow (As compared to a polygo-
nal shadow, which has sharper edges).
In order to increase the shadow’s accu-
racy, we have to increase the size of the
shadow texture. Changing the size of
the shadow texture from 256×256 to
512×512 would multiply the number
of texels by a factor of four, which is
significant with actual rasterizers (soft-
ware or hardware), but is still possible.
This is the main inconvenience of any
sampling technique.

Furthermore, because we need a
direction for doing the projection in
the light’s point of view, this technique
can only handle directional lights.
Omni lights, which cast light in every
direction, cannot be used. The closest
we could get to simulating an omni

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

52

C A S T I N G S H A D O W S

ffoorr ((iinntt ii==00;; ii<<mm..nnTTrriiaanngglleess;; ii++++))

{{

iinntt ii11 == mm..TTrriiaanngglleeAArrrraayy[[ii**33++00]];;

iinntt ii22 == mm..TTrriiaanngglleeAArrrraayy[[ii**33++11]];;

iinntt ii33 == mm..TTrriiaanngglleeAArrrraayy[[ii**33++22]];;

iiff ((mm..FFllaaggAArrrraayy[[ii]] ==== 00)) ccoonnttiinnuuee;;

iiff ((

((((mm..VVeerrtteexxAArrrraayy[[ii11]]..ffllaaggss || mm..VVeerrtteexxAArrrraayy[[ii22]]..ffllaaggss || mm..VVeerrtteexxAArrrraayy[[ii33

]]..ffllaaggss))

&& VVeerrtteexx::::CCLLIIPPZZ)) ==== 00))

{{

vv11..xx == mm..VVeerrtteexxAArrrraayy[[ii11]]..ppxx;;

vv11..yy == mm..VVeerrtteexxAArrrraayy[[ii11]]..ppyy;;

vv11..ooooww == mm..VVeerrtteexxAArrrraayy[[ii11]]..ppzz;;

vv11..ttmmuuvvttxx[[00]]..ssooww == mm..VVeerrtteexxAArrrraayy[[ii11]]..uu ** vv11..ooooww;;

vv11..ttmmuuvvttxx[[00]]..ttooww == mm..VVeerrtteexxAArrrraayy[[ii11]]..vv ** vv11..ooooww;;

vv11..rr == 225555..00ff;;

vv11..gg == 225555..00ff;;

vv11..bb == 225555..00ff;;

vv22..xx == mm..VVeerrtteexxAArrrraayy[[ii22]]..ppxx;;

vv22..yy == mm..VVeerrtteexxAArrrraayy[[ii22]]..ppyy;;

vv22..ooooww == mm..VVeerrtteexxAArrrraayy[[ii22]]..ppzz;;

vv22..ttmmuuvvttxx[[00]]..ssooww == mm..VVeerrtteexxAArrrraayy[[ii22]]..uu ** vv22..ooooww;;

vv22..ttmmuuvvttxx[[00]]..ttooww == mm..VVeerrtteexxAArrrraayy[[ii22]]..vv ** vv22..ooooww;;

vv22..rr == 225555..00ff;;

vv22..gg == 225555..00ff;;

vv22..bb == 225555..00ff;;

vv33..xx == mm..VVeerrtteexxAArrrraayy[[ii33]]..ppxx;;

vv33..yy == mm..VVeerrtteexxAArrrraayy[[ii33]]..ppyy;;

vv33..ooooww == mm..VVeerrtteexxAArrrraayy[[ii33]]..ppzz;;

vv33..ttmmuuvvttxx[[00]]..ssooww == mm..VVeerrtteexxAArrrraayy[[ii33]]..uu ** vv33..ooooww;;

vv33..ttmmuuvvttxx[[00]]..ttooww == mm..VVeerrtteexxAArrrraayy[[ii33]]..vv ** vv33..ooooww;;

vv33..rr == 225555..00ff;;

vv33..gg == 225555..00ff;;

vv33..bb == 225555..00ff;;

vv11..aa == 117700..00ff;;//// uussee tthhee ““IItteerraatteedd AAllpphhaa”” ttoo aaddjjuusstt tthhee

vv22..aa == 117700..00ff;; //// ““ttrraannssppaarreennccyy”” ooff tthhee sshhaaddooww ffoorr ppeerrffoorrmmiinngg

vv33..aa == 117700..00ff;;//// ssppeecciiaall eeffffeeccttss lliikkee ggrraaddiieennttss aanndd ssoo oonn......

gguuDDrraawwTTrriiaanngglleeWWiitthhCClliipp((&&vv11,, &&vv22,, &&vv33));;

}}

}}

ggrrCCoolloorrCCoommbbiinnee((GGRR__CCOOMMBBIINNEE__FFUUNNCCTTIIOONN__LLOOCCAALL,, //// ttuurrnn OOFFFF tthhee ““tteexxttuurree mmaappppiinngg””

GGRR__CCOOMMBBIINNEE__FFAACCTTOORR__NNOONNEE,,

GGRR__CCOOMMBBIINNEE__LLOOCCAALL__CCOONNSSTTAANNTT,,

GGRR__CCOOMMBBIINNEE__OOTTHHEERR__NNOONNEE,,

FFXXFFAALLSSEE));;

ggrrAAllpphhaaBBlleennddFFuunnccttiioonn((GGRR__BBLLEENNDD__OONNEE,, //// ddiissaabbllee tthhee ““aallpphhaa bblleennddiinngg””

GGRR__BBLLEENNDD__ZZEERROO,,

GGRR__BBLLEENNDD__OONNEE,,

GGRR__BBLLEENNDD__ZZEERROO));;

}}

L I S T I N G 3 . Configuring Glide to draw the shadow (continued from page 51).

light would be to create shadow maps
for each object in the scene by point-
ing the spot towards each of them, and
later compounding the effect of all the
shadow maps on each object. This
approach could be quite costly and
may not be practical. Another con-
straint is the distance from the light to
the object. Remember that we need to
avoid clipping the object against the
border of the texture. Thus, we can’t
place the object and the light too close-
ly to one another. We must maintain a
minimum distance between the light
and the objects casting the shadows.

But this technique does offer signifi-
cant advantages. The most important
of these is its simplicity. Any 3D pro-
grammer could implement this
method in a very short time. There are
no complex mathematics or data to
manipulate. It’s just an intuitive tech-
nique that can provide great effects.
And it’s fast. Rendering the shadow
texture doesn’t cost much CPU time if
it’s handled by a hardware accelerator.
A hardware bblliitt(()) between the frame
buffer and the texture memory will sig-
nificantly speed up our shadow casting
operation. We can even improve the
performance by using a simpler mesh,
although generating shadows from
complex objects only slows down Step
1. The rest of the code (drawing the
shadow) will run at exactly the same
speed regardless of the complexity of
the original mesh. In comparison,
polygon-based shadow techniques take
a bigger performance hit for higher-
complexity objects.

The shadow map texture is a scalable
technique. For scenes in which multi-
ple objects are casting shadows, we can
use differently sized texture shadow
maps. For the main object, or for the
object that is closest to the camera, we
would use a high-resolution texture
shadow map (512×512) and scale down
to 32×32 or smaller for less important
objects or objects that are farther away
from the camera (small on the screen).
It’s analogous to an LOD technique,

applied to the shadow texture. Finally,
certain special effects could be based
on this technique. One of these might
consist of using opacity maps to create
holes in the shadow maps (skeletons

are a typical case). I trust Game
Developer’s readers to adapt this tech-
nique to their needs, and I look for-
ward seeing good-looking shadows in
future games. ■

h t t p : / / w w w . g d m a g . c o m M A R C H 1 9 9 9 G A M E D E V E L O P E R

53

ggrrCCuullllMMooddee((GGRR__CCUULLLL__PPOOSSIITTIIVVEE));;

ggrrDDeepptthhBBuuffffeerrMMooddee((GGRR__DDEEPPTTHHBBUUFFFFEERR__WWBBUUFFFFEERR));;

ggrrDDeepptthhBBuuffffeerrFFuunnccttiioonn((GGRR__CCMMPP__LLEEQQUUAALL));;

ggrrDDeepptthhMMaasskk((FFXXTTRRUUEE));;

ggrrTTeexxFFiilltteerrMMooddee((GGRR__TTMMUU00,,GGRR__TTEEXXTTUURREEFFIILLTTEERR__BBIILLIINNEEAARR,,GGRR__TTEEXXTTUURREEFFIILLTTEERR__BBIILLIINNEEAARR));;

ggrrGGaammmmaaCCoorrrreeccttiioonnVVaalluuee((((ffllooaatt))00..88));;

ggrrDDiitthheerrMMooddee((GGRR__DDIITTHHEERR__DDIISSAABBLLEE));;

L I S T I N G 4 . Our Glide settings.

//// SSTTEEPP--22
//// rreeaadd tthhee rreennddeerreedd ppiiccttuurree ffrroomm SSTTEEPP--11
//// aanndd uussee iitt aass aa tteexxttuurree
////——--
ggrrLLffbbRReeaaddRReeggiioonn((GGRR__BBUUFFFFEERR__BBAACCKKBBUUFFFFEERR,, //// ccooppyy ffrroomm tthhee LLFFBB ttoo aa bbuuffffeerr iinn

00,, //// xx //// SSYYSSTTEEMM MMEEMMOORRYY
00,, //// yy
225566,, //// wwiiddtthh
225566,, //// hheeiigghhtt
225566**22,, //// ssttrriiddee iinn bbyytteess
SShhaaddoowwBBiittmmaapp
));;

LLooaaddTTeexxttuurreeOOnnVVooooddoooo(());; //// ddoowwnnllooaadd ffrroomm tthhee bbuuffffeerr iinn SSYYSSTTEEMM
MMEEMMOORRYY

TThhiiss rreeaaddss tthhee 556655 ffrraammeebbuuffffeerr iinn aa ssyysstteemm mmeemmoorryy bbuuffffeerr aallllooccaatteedd bbyy tthhee pprrooggrraamm,, bbuutt tthhee
rreeaall ttrriicckk iiss iinn tthhee LLooaaddTTeexxttuurreeOOnnVVooooddoooo(()) ffuunnccttiioonn..

vvooiidd LLooaaddTTeexxttuurreeOOnnVVooooddoooo((vvooiidd))
{{

GGrrTTeexxIInnffoo iinnffoo;;

iinnffoo..ssmmaallllLLoodd == GGRR__LLOODD__225566;;
iinnffoo..llaarrggeeLLoodd == GGRR__LLOODD__225566;;
iinnffoo..aassppeeccttRRaattiioo == GGRR__AASSPPEECCTT__11xx11;;
iinnffoo..ffoorrmmaatt == GGRR__TTEEXXFFMMTT__AARRGGBB__44444444;;
iinnffoo..ddaattaa == SShhaaddoowwBBiittmmaapp;;

ggrrTTeexxDDoowwnnllooaaddMMiippMMaapp((
GGRR__TTMMUU00,,
00,, //// ssttaarrtt aaddddrr
GGRR__MMIIPPMMAAPPLLEEVVEELLMMAASSKK__BBOOTTHH,,
&&iinnffoo
));;

//// tthhiiss sshhoouulldd bbee ddoonnee oonnllyy oonnccee oonnllyy ssiinnccee
//// II aallwwaayyss uussee tthhee ssaammee aaddrreessss aanndd tteexxttuurree ffoorrmmaatt
ggrrTTeexxSSoouurrccee((GGRR__TTMMUU00,,

00,, //// ssttaarrttaaddddrr
GGRR__MMIIPPMMAAPPLLEEVVEELLMMAASSKK__BBOOTTHH,,
&&iinnffoo
));;

}}

L I S T I N G 5 . Generating an ARGB 4444 texture from a RGB 565 frame buffer.

The author would like to thank the
following people for their great support :
Eliane Fiolet, Eric Smolikowski, Xavier
Gerbier, Alexandre Macris, Miky Larsen.

Special thanks to Denis Amselem at
3Dfx for Glide support.

Acknowledgements

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

54

IN is an original first-person shooter based on the QUAKE II

engine with enhancements. Our previous effort here at

Ritual Entertainment had been the highly acclaimed QUAKE

MISSION PACK #1 – SCOURGE OF ARMAGON. SIN’s story was

developed during the completion of the SCOURGE OF

ARMAGON, and the main level design started in earnest

immediately after the release of the mission pack.

b y S c o t t A l d e n

Ritual
EntertainmentÕs
SIN

P O S T M O R T E M

Scott Alden (aldie@ritual.com) is a graduate of University of Florida Computer Engineering Department (1993). He worked as a
developer support engineer at 3Dfx for a year, and then went to Ritual Entertainment as one of the three programmers on the SIN

project. His next project will be programming on HEAVY METAL: F.A.K.K. 2. Ritual’s Beau Anderson (beau@ritual.com) and Richard
“Levelord” Gray (levelord@ritual.com) were of invaluable help in writing the art and level design portions of this article, respectively.

SS
SIN’s focus was on its story and char-

acters; we wanted to breathe new life
into the first-person genre. Instead of
being a mindless shooter that simply
progresses from level to level, SIN has

interactivity beyond that of many
shooters. One of our primary design
goals was to implement Action-Based
Outcomes (ABOs), meaning that a
player’s actions on certain levels will
have an effect in later levels. From the
outset, we decided to license the QUAKE

engine and get started right away, and
later integrate the QUAKE II source code
to gain the benefits that it brought.

We displayed the initial prototype of
SIN at the 1997 E3 in Atlanta, Georgia.
The demo showed off the Geothermal
Plant level, some of the original
weapons, and the original monster
design. We proceeded to flesh out the
game design by describing all of the
locations that the SIN world would
encompass. SIN’s initial design featured
over 40 levels, 31 of which made it
into the final game.

SIN’s interactivity and ABOs repre-
sented a big part of the development

effort. We spent a total of about three
weeks behind closed doors just brain-
storming each level’s interactive fea-
tures — features that had essentially no
effect on the game’s final outcome. We
would play through a single level in the
morning, then after lunch we’d bom-
bard the level designer with ideas for
making the level in question more
interactive. Once, while playing
through the bank level over and over,
someone came up with the idea of plac-
ing an ATM machine in the level where
players could access certain character’s
accounts. This detail turned out to be
one of the most notable things in the
game. We also discussed the possibility
of blowing up the dam level, but in the
end we scrapped the idea due to the
amount of extra work we would have
to do to get the level to look right. We
also spent about four hours hammering
out how SIN was going to end. These

55

h t t p : / / w w w . g d m a g . c o m M A R C H 1 9 9 9 G A M E D E V E L O P E R

meetings were no holds barred, and we
had to be careful not to stomp all over
other people’s work.

We had completed most of the initial
level design by December 1997. With
the game’s design fully realized, we
began to add the major content. Then
all hell broke loose — we got the QUAKE

II source code. So, with the source in
hand, we began to rewrite of the game.
We didn’t really intend to rewrite the
game, it just sort of happened. The
QUAKE II engine’s new capabilities and
features allowed us to add lots of new
ideas. Our animation system with
bones and nodes allowed us to attach
any weapon or object to any character.
This feature let us have many different
grunts/soldiers by attaching different
weapons to the same model. The sur-
face system that we added let us have
context-specific footsteps and ricochet
sounds depending on the material
types. We also added an interactive
music system that changed moods dur-
ing action segments of the game.

Finally, our scripting system let us
add some internally developed features
fairly late in the development cycle. A
level designer might, for instance, need
a special command to perform a partic-
ular type of interactive element in his
level. Because it was so easy to add
commands to the scripting language,
the programmer would usually oblige.
We added two to three commands to
the scripting language daily. In the
end, we had over 400 script commands
total. So, while we did experience some
feature creep, and though these last

minute details did push our release
date back even farther, we were able to
add a lot of detail near the end of SIN’s
development cycle.

For about three months before the
release, deathmatch tuning took place
about two nights a week. We would
play the most recently created level,
and then the e-mail flood would begin.
Change this, change that, and so on….
During the final weeks before the
game’s release, we’d spend about 12
hours a day working on single-player
functionality, and about 3 hours a day
on multiplayer. Once multiplayer func-
tionality was to our liking, we froze it.
We didn’t change a single bit of multi-
player during the last couple of weeks.
We did keep playing it to make sure
that anything we did for the single-
player portion didn’t break any of the
multiplayer stuff.

Things That Went Right

1.POWER IN NUMBERS. When we start-
ed designing SIN, one of the first

things we did was to form a tribal team
approach. This is the way the company
is run as well. There are two main
camps of project management. In the
classical Roman Empire approach, deci-
sions are trickled down through a rigid
pyramid-shaped line of designers, man-
agers, and finally the implementers.
Conversely, in the Attila the Hun
approach, the entire group is given
equal input and has equal weight in
most decisions.

We opted for the tribal approach
because it offers the greatest pool of
ideas from which to dip and it adds a
certain synergy to the whole of the
game’s design. Often a project can
become myopic and narrow-minded in
the hands of only one or two grand
designers. We’ve noticed that the num-
ber three is magical. The greatest game
designs have resulted from one per-
son’s initial idea somehow supple-
mented by a second person and then

Ritual Entertainment
Dallas, Texas
http://www.ritual.com

Release date: November 1998.
Intended platform: Windows 95/98/NT
Project budget: $2 million
Project length: 20 months
Team size: The SIN team was made up of

three programmers (Scott Alden, Mark
Dochtermann, and Jim Dose), six level
designers (Patrick Hook, Levelord, Tom
Mustaine, Charlie Wiederhold, Matthias
Worch, and Mike Wardwell), four artists
(Beau Anderson, Robert Atkins, Michael
Hadwin, and Joel Thomas), one project
manager (Joe Selinske), one support
person (Don Macaskill), one business
person (Harry Miller), and one sound
person (Zak Belica).

Artist/Level Designer workstation:
200MHz Pentium Pro with 128MB RAM

Programmer workstation: 300MHz
Pentium II with 128MB RAM

Critical applications: 3D Studio Max,
Photoshop 3.0 and 4.0, and MSVC++ 5.0

SIN

finally finessed by a third. It’s that
third derivative that usually ends as an
ultimate idea. For example, the oil rig
level originally started out as a cine-
matic boat ride up to the rig. Someone
came up with the idea of letting players
circle around the rig until they sniped
off all the guards walking around. This
version was pretty good, but players
could ride around the rig 20 times
before they managed to get all the
guards. So we decided to have the boat
wait on each side of the rig until the
player had killed the two guards walk-
ing around that side.

2.LICENSING THE QUAKE ENGINE. Licens-
ing the QUAKE engine gave us a

very stable base from which to begin.
We were able to add new features and
effects and then try them out pretty
quickly. We also rewrote entire parts of
the engine and heavily modified other
parts. We wanted a higher level of
interactivity than was available in the
QUAKE game code, so we completely
rewrote the game event system and AI
code. We also built a character render-
ing system from scratch. The character
system we used is a single-mesh hierar-
chical system. Finally, we added a
bone-definition system so we could
attach things such as guns or spears or
spew out bubbles from any particular
point. Even though we wrote a lot of

the game code from scratch, the QUAKE

II code was useful as an educational
tool for game programming.

3.ANIMATION SYSTEM. The animation
system was tied into our .DEF file

system. The .DEF file is the extension
we ended up using for all of our model
text files. A .DEF file defines each char-
acter’s animations and event triggers
for specific frames of animation. The
.DEF file is in plain text, so an artist can
make updates to the file when he
changes an animation. For example, if
an artist changes the rocket launcher’s
firing animation, he can redefine in
which frame the rocket would be fired
in the game. Later, we discovered that
we could develop a lot of special effects
with the .DEF file system. We were able
to create muzzle flashes, smoke, rocket
trails, and various particle effects on
the client without having to send over
temporary entities with the networking
system. We made the networking
architecture so streamlined that firing a
bullet only sent over one byte of infor-
mation in the network packet.

4.ARTIST CONTROL. The artists had
total control over the integration

of the art into the game. Any artist had
the capability to place a character in
the game with a set of basic animations
and AI. The artist could test the charac-
ter (examine its skin, invoke its anima-

tion, and so on) within in the game
very easily. We were able to attach any
item or weapon to a bone location
with one command. This flexibility
allowed for a lot of tweaking to take
place at the artist level. Artists tend to
be much more critical of details, so giv-
ing them the ability to fix minor
glitches without bugging a program-
mer was welcome. Furthermore, most
of our artists were able to cross over
into other disciplines, whether build-
ing models, skins, animations, or tex-
tures, or any number of other related
tasks. This sharing of duties was impor-
tant because of the large volume of art
we had to complete.

5.OUR SCRIPTING SYSTEM INCREASED

LEVEL DESIGNERS’ CONTROL. We added
a flexible scripting system so the level
designers could create interactivity on
their own. Previously, implementing
most of the more interesting charac-
teristics of levels was in the hands of
the programmers. With our extensive
scripting system in place, however,
the programmers could focus on other
areas rather than spending time writ-
ing specific pieces of game code for
every level designer.

As I mentioned previously, the final
version of our scripting language com-
prised over 400 commands. Level
designers had intricate control over
every aspect of level geometry, charac-
ter animations, paths, and player inter-
actions with the characters. Level
designers could go far beyond the sim-
ple whizzing gizmos and script entire
scenes of characters and machinery
and gunfights. And, because we inte-
grated the AI with the scripting system,
the level designers were able to create a
lot of specialized content. In the SIN

world, bums will chat with you and
give you clues, and civilians will cower
in fear or run away.

SIN’s scripting system was actually a
full-blown multithreaded language —
the level designers became program-
mers on their levels as well as archi-
tects. Besides, making these modifica-
tions was the most fun and rewarding
aspect of level design. Level designers
gained a lot of freedom, but only at the
expense of time and effort on their
part. To borrow terms from the movie
industry, level designers have become
the set designers, casting directors,
directors, lighting engineers, gaffers…
they have control over it all.

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

56

P O S T M O R T E M

SinED, SIN’s level editor.

Things That Went Wrong

1.YOUNG AND NAÏVE. Ritual is a new
company and it went through a

lot of growing pains during SIN’s devel-
opment. Many new faces came into the
company, and many left. Actually, it is
only now that the dust has settled that
any real sense of a bona fide team can
be seen. Our newly formed tribe felt lit-
tle sense of cohesion, as most members
were basically strangers to each other.
A real team requires lot of faith and
trust in order to act as a unit while per-
forming something as creative as game
design. This fact was especially evident
in our decision-making processes. A
clear vision was often muddled by too
many inputs; settling on specifics often
became impossible.

We’ve also identified an almost crip-
pling realization that comes to all game
developers during their first full game:
We call it the Making Games Isn’t a
Totally Cool Job Syndrome. Crunch
time sets in far too early, and a game’s
development cycle soon becomes a 24-
hour-a-day, 7-day-a-week ordeal that
lasts a year or more. Only hardened
veterans know that the effort will
prove worthwhile in the end, and that
the end can be a long way off from the
seemingly endless now.

2.INTEGRATION OF THE QUAKE 2 SOURCE

CODE LATE IN THE PROJECT. SIN was
originally scheduled for a Spring 1998
release, and we didn’t get the QUAKE II
source until late December 1997. We
started the porting in early January,
and it took a lot longer than we had
anticipated. Because the QUAKE II
source was drastically different from
the original QUAKE engine that we
started with, major systems were
rewritten instead of ported. We rewrote
the scripting system three times during
the course of development. This was a
major setback — finding issues with
levels after they had been completed
forced the level designers to rework
each level, and in most cases, they just
started over from scratch. We definitely
learned our lesson in regard to trying
to implement a major technology
change midstream in a project.

We also had problems using QUAKE

II’s new tools (qbsp3, qvis3, and qrad3)
with our maps. A lot of changes went
into the tools before any of the old lev-
els could be compiled and used in the
game. We had to write a complete tex-
ture grabber utility because our texture
and surface properties format was so
different than QUAKE’s. Major additions
were made to QUAKE’s level editor
(QE4), which we then renamed SinED.

3.OVERCOMPLICATED SYSTEMS. Devel-
opers at Ritual are very sensitive to

the needs of the first-person shooter
gaming community, and one the rea-
sons that QUAKE has been such a success
is that it is easily changed and modified
by the end user. Nonprofessionals in
this community made hundreds of
modifications and total conversions,
and we wanted SIN to be just as flexible.

Most of the major systems in SIN can
be changed without rewriting any

source code. Just make a simple change
to a plain text file, and voilà, you have
new behavior and effects. However,
writing generalized source code is a lot
harder than writing special case func-
tions just to perform one task.
Accommodating our goal of an easily
modifiable game added a lot of extra
development time to the new systems
that we’d created.

An example of this is the console sys-
tem, which we developed from scratch.
This system had major ramifications in
the game, and took about three to four
man-months of programming time. We
had not planned for consoles during
SIN’s design stage, and each level design-
er was responsible for the console con-
tent. It took a lot of planning and work
to make a console, because the text mes-
sages were presented using a full layout
language (like HTML). Something as
seemingly simple as an ATM machine in
a bank required tweaking over the
course of several months. Moreover, the
level designers already had a lot of infor-
mation to absorb in creating a SIN level.
Add 100 more console commands to
the 400 script and AI commands, and
you are just asking for trouble. Because
consoles took so much work and effort,
when crunch mode hit, consoles were
underutilized and in some cases

57

dropped out from the level and replaced
with a push button.

4.INCONSISTENCY AND TOO MANY ASSETS.
We lacked a standardized method

of texturing models from the outset. We
started out using the QUAKE method of
planar projecting the front and back of
a character. Planar projection worked
well, but about halfway thorough the
project, it became apparent that this

method wasted a
lot of texture space
and wasn’t the
right way to map,
especially with less
organic models.

When we got per-face mapping and 3D
Studio Max 2, we took more care to
unwrap the models carefully and use
the texture space better. Most of the
original models were redone, but a few
slipped through due to time constraints.

Because it was our first major project
as a team, we spent quite a bit of time
just seeing what worked and looked
good in the engine. We created over

3,000 textures, but many simply didn’t
look good in the game or were too gen-
eral; we only used about a third of the
original texture library. We also built
over 400 in-game models, including
around 35 characters. This huge model
library made for some very diverse and
interesting environments, but the over-
whelming number of models represent-
ed a lot of work; sometimes, the quality
suffered because of the sheer quantity
of content that had to get done.

5.TOO MANY COOL THINGS ISN’T TOO COOL.
The more that’s in a game, the

more there is to go wrong. Although
creating the gadgets and gizmos and

58

P O S T M O R T E M

Modeling ThrallMaster in 3D Studio Max.

ThrallMaster's skin.

character AI and environment interac-
tions and such are some of the best
aspects of level designing, level design-
ing in particular has become far too
complicated for any single individual
to control. Level designing isn’t simply
making square rooms with connecting
hallways anymore, and gone are the
days of simply placing characters on a
map and relying on their inherent AI
to control them. The demand for real-
ism has requires almost unattainable
detailing to successful levels. Each and
every character must be placed with
paths and directions to escape points
and attacking advantages, and most all
their behavior must be scripted.
Environmental interaction (entities) is
also growing exponentially as level
designers now have control over just
about everything in their levels. A nor-
mal level can now take more than two
months to complete, and play testing
all of these added enhancements can
be a nightmare. Lighting and sound
have also become complicated and bur-
dening. Level designing will soon
become a multidisciplined department
due to these increasing demands. We
actually tried this organizational

approach, but being a totally new con-
cept, its actual implementation may
have hindered more than helped SIN.

Wrap Up

W hen we finished SIN, we were
pretty convinced that it was

free of show-stopper bugs.
Unfortunately, a few major bugs
slipped through, and we immediately
started working on the 1.01 patch.
These bugs represented a big letdown
to the team, because we literally had
been in crunch time almost the entire
previous year. We took a heavy beating
from the online community, but after
the patch was released, things started
shaping up and some good reviews
began to appear.

We definitely learned our lesson in
regard to compatibility testing. In this
day and age, it’s extremely hard to test
all possible hardware and software con-
figurations, but at a minimum you
should test all the major hardware ven-
dors’ peripherals. In hindsight, we
should have released a quick, small
patch to fix some of the major bugs, but

we worked on lots of little bugs that
popped up during the first two weeks
following the game’s release. The 1.01
patch was about a 20MB download, but
Activision offered a CD to anyone who
sent in an e-mail requesting the patch.

In summary, SIN was a major project,
and we spent a lot of time making it
fun. If we had to do it all over again,
we probably wouldn’t make the con-
version over to the QUAKE II source
code; that was a major pitfall in the
project. The entire team took a well-
deserved vacation over the Christmas
holiday and has returned refreshed and
ready to begin development of HEAVY

METAL F.A.K.K. 2 and and a yet to be
announced project.■

59

— which is quite different from the
stance of well-meaning but misguided
representatives of the Open Arcade
Architecture Forum (OAAF).

As we enter 1999, there hasn’t yet
been a commercially viable product
using this standard. I will be so bold as
to say there never will be. A few games
such as KICK IT have been represented as
being a Public PC or Open Arcade
games. This is not true. KICK IT is merely
a product which uses an “off-the-shelf”
PC to drive the video. If KICK IT is a
Public PC game, then we could claim
the same at Atari with our Cyrix-based
AREA 51: SITE 4 product, as could the
folks at Midway with their Intel-based
HYDRO THUNDER. Using off-the-shelf PC
motherboards is a trend, not a standard.

To those still intent on tackling the
brutal coin-op amusement device mar-
ket armed with the Public PC, I offer
these following words of advice.
MONEY-MAKER? You are now in the busi-
ness of selling a machine that the cus-
tomer will buy purely on the basis of its
proven ability to earn back its cost in a
10- to 20-week timeframe. No customer
of your product will hail your awesome,
innovative idea if it does not allow
them to make a profit. If another game
earns more and costs less, then the oper-
ator will purchase that product instead
of yours. Make sure your hardware is
cheap (less than $800).

The operator won’t pay extra for your
game just because it’s a new standard
(this only happens in a techno-centric

geekish dream). The commonly-touted
speculation that there are sure to be
other games from other developers will
be a highly doubtful data point to a guy
forking over $5,000 plus to buy your
box. The “Universal Evergreen Cabinet”
is a myth. The chances that two games
from separate publishers will come out
using the same hardware and controls
are very small. To date, I am unaware of
any coin-op developer ever releasing a
title on anything other than their own
hardware. (This might change with a
true standard but we haven’t seen it yet.
Naomi, from Sega, has the best chance
at this.) Additionally, technology moves
so fast that the “standard” board this
year will be outdated and non-competi-
tive within 18 months. Your $5,000
game will have to justify itself with
what it alone can earn.
ARCADE-SPECIFIC DESIGN. The idea com-
monly touted by the OAAF, that a
developer can easily and profitably
port their consumer title to the arcade,
is false. Games that are financially suc-
cessful in consumer markets generally
do not perform well in the arcade envi-
ronment. You need to redesign your
game from the ground up to give the
player approximately 90 seconds of
intense fun per quarter. Compare the
mechanics in a game like the PC-based
DIABLO to our recent coin-op hit
GAUNTLET LEGENDS and you will begin
to understand the differences.
CRASHES. The machine you sell will have
to be reliable. Not to make Mr. Gates

mad, but it has yet to be proven that
Windows 98 is robust or efficient
enough to be an operating system for
the arcade environment. Even if you
overlook the ridiculous disk access
times, having a coin-op game crash as
often as a home PC is unacceptable to
the arcade operator.
THIS ISN’T JUST SOFTWARE ANY MORE. Think
software development costs are bad?
You are now in the business of manu-
facturing a regulated device that must
be reliable and cost effective, in addition
to developing a game. Inventories of
parts will cost an average of $1,500 to
$3,000 a unit. You need to be ready to
spend $1.5 to $3 million just to create
the 1,000 units necessary to recoup your
investment in development. You’ll need
to be UL and FCC approved. Your cus-
tomers, (the distributor and the opera-
tors), will require customer support for
these devices so that they can continue
to earn money on a regular basis. While
all these obstacles are not insurmount-
able, they are indicative of many of the
Continued on page 63.

G A M E D E V E L O P E R M A R C H 1 9 9 9 h t t p : / / w w w . g d m a g . c o m

64

b y M a r k S . P i e r c eS O A P B O X
Public PC? Not Happening.

A s a head of coin-op product development

for Atari Games, and a speaker at past

CGDCs (now the GDC), the number one

question I hear is “What do you think

about the Public PC?” I have to answer with the sad truth

For the past five and a half years, Mark Stephen Pierce has been senior vice president of coin-op product development/ executive pro-
ducer at Atari Games in Milpitas, Calif. During his tenure as VP, he and his design group have delivered PRIMAL RAGE, T-MEK, a
novelty game called HOOP IT UP, AREA 51, WAYNE GRETZKY 3D HOCKEY, SAN FRANCISCO RUSH, MAXIMUM FORCE, MACE, RUSH THE

ROCK, CALIFORNIA SPEED, SITE 4, and GAUNTLET. Despite the tie, he is not a suit. You can reach him at pierce@agames.com.

Im
a

g
e

 b
y

 L
a

u
ra

 P
o

o
l

Continued from page 64.

hidden aspects of being in the manufac-
turing business as opposed to being in
the software business.

The Future

W hat will happen with the PC in
the arcade industry? Will the

X86 family of processors replace the cur-
rent prevailing use of proprietary,
embedded systems? Will a new standard
be built around the readily available PC
hardware open the coin-op market to
new developers? Here’s the opinion of a
self-confirmed skeptic.

Coin-op amusement devices will
increase the use of off-the-shelf PC
motherboards and graphics display
technology, coupled with their own cus-
tom I/O JAMMA-compatible boards.
There are already games with off-the-
shelf PC motherboards in them. The
price/performance ratio of these moth-
erboards and graphics cards at the lower
end of the PC spectrum is too attractive
for a manufacturer to pass up.

The chance of a global standard com-
ing to the fore is slim. Because of the cost

effectiveness of low-end, off-the-shelf PC
motherboards, the use of these solutions
will continue to increase. To avoid theft
of their valuable intellectual property,
these systems will have security features
that prevent piracy, and probably ham-
per others in publishing software kits.
This will effectively prevent the evolu-
tion of a truly open system.

Financial reality, not the hardware, is
the real challenge in our business.
Electronic Arts and Acclaim both real-
ized this when they tried to enter our
fold. They both spent about $20 to $50
million each trying to start arcade divi-
sions. After a few years they both shut
down these units with no intention of
returning. Do not think your chal-
lenges will be much different.

So, if you want to make a coin-op
game, forget about this yet-to-be-
established, ill-defined, two-year-old
standard, and go design a cost-effec-
tive device with a hardware solution
that fits the needs of your game. Make
sure it earns enough money on loca-
tion tests. Your customers will only
purchase your product because the
return on investment justifies the pur-
chase price. ■

S O A P B O X

	back:

