
JUNE 2002

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N
L E T T E R F R O M T H E E D I T O R

Are We There Yet?

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Everard Strong estrong@cmp.com
Production Editor

Olga Zundel ozundel@cmp.com
Product Review Editor

Daniel Huebner dan@gamasutra.com
Art Director

Elizabeth von Büdingen evonbudingen@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Jonathan Blow jon@bolt-action.com
Hayden Duvall hayden@confounding-factor.com
Noah Falstein noah@theinspiracy.com

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Beemania
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed WildTangent

ADVERTISING SALES
Director of Sales & Marketing

Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218

National Sales Manager
Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Account Manager, Northern California & Southeast
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Recruitment
Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225

Account Manager, Western Region, Silicon Valley & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Account Representative
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz

Advertising Production Coordinator Kevin Chanel

Reprints Cindy Zauss t: 909.698.1780

GAMA NETWORK MARKETING
Senior MarCom Manager Jennifer McLean

Marketing Coordinator Scott Lyon

Audience Development Coordinator Jessica Shultz

CIRCULATION
Group Circulation Director Catherine Flynn

Circulation Manager Ron Escobar

Circulation Assistant Ian Hay

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Executive Vice President & CFO John Day

President, Technology Solutions Group Robert Faletra

President, Business Technology Group Adam K. Marder

President, Healthcare Group Vicki Masseria

President, Specialized Technologies Group Regina Starr Ridley

President, Electronics Group Steve Weitzner

Senior Vice President, Business Development Vittoria Borazio

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, HR & Communications Leah Landro

Vice President & General Counsel Sandra Grayson

Vice President, Creative Technologies Philip Chapnick

W W W . G A M A N E T W O R K . C O M

✎

Inoticed something wandering

around the GDC Expo floor this

past March. Middleware is making

serious progress with game devel-

opers. At GDC ‘99, when Sony

showed off the newly unveiled Playstation

2 and its adjunct Tools & Middleware

program, “middleware” was the ubiqui-

tous buzzword of the day. At the time it

was a buzzword in the sense that there

was little to show for all of the grandiose

promises of painless development and

seamless integration. Developers were

characteristically skeptical.

In the three years since then, three new

game consoles have entered the market,

many PC developers have migrated to

console development, and many middle-

ware vendors have been slowly and

painstakingly improving their tools. The

smart ones have listened carefully to

developer feedback and feature requests,

and worked toward better integration

with other vendors’ offerings. Many of

those who didn’t have quietly departed

this game development vale of tears.

Whereas up until recently technology

licensing for AAA titles was far more the

exception than the rule, developer trepida-

tion toward middleware seems to be on

the decline as more and more commercial-

ly successful titles are released that have

been developed with various kinds of

licensed technology. Three of our last five

Postmortems have featured games that

licensed crucial engine technology;

February’s DARK AGE OF CAMELOT and

May’s FREEDOM FORCE both used the

NetImmerse toolkit; this month’s MEDAL

OF HONOR: ALLIED ASSAULT was built on

QUAKE 3. Mike Milliger, lead programmer

at 2015 and the author of this month’s

Postmortem, identifies in his article a

trend in technology licensing with intrigu-

ing implications: that the more prized skill

among game developers is now in evaluat-

ing, choosing, and integrating licensable

technologies, not in developing new ones.

Whether you agree with such an assess-

ment or not, it’s yet another opportunity

to look around and ask, where are we and

what are we doing? Budgets can’t go

much higher if profit is to remain a goal

(yes, we said that when they first broke a

million dollars, and look where we are

now), development times can’t get too

much longer (the risk of permanently los-

ing our industry’s top talent increases with

every thankless, death-march crunch

mode), and Christmas still comes but once

a year.

The current generation of consoles has

presented some interesting trends so far.

There is already a whole lot of software

out on the market showcasing these new

hardware platforms, and all these games

need to be able to differentiate themselves

in a crowded field. But graphical gewgaw

doesn’t seem to be what’s resonating with

mass market consumers or capturing their

imagination — it’s gameplay. Whether it’s

a brand-new game experience or a sub-

lime refinement of an existing theme,

gameplay is the front on which this gener-

ation of consoles will wage war, many

believe. PCs will be way out in the graphi-

cal lead soon enough anyway.

Here we are at a point where many

respected, successful, and innovative

games have come out using licensed tech-

nology, and taking the middleware plunge

is getting easier. Essential elements such as

refining control mechanisms (critical in

crowded console genres), online and mul-

tiplayer components (for adding value),

and systems integration (to streamline

development) can benefit when program-

mers are liberated from the onus of build-

ing an engine from scratch. The result can

be a more refined overall experience in

roughly the same amount of development

time. Most advantageous is that more and

better tools simply give developers that

many more options: build it if that’s your

core focus and talent, buy it if you know

your game will benefit from efforts spent

elsewhere. More options mean better odds

at merging creative vision with commer-

cial reality.

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

4

Game Developer
is BPA approved

Jennifer Olsen

Editor-In-Chief

Slerping Your Way to
the Top

I enjoyed Jonathan Blow’s April “Inner

Product” column, “Inverse

Kinematics with Joint Limits.” I espe-

cially liked Listing 1, the “fastest sim-

ple-rotation-finder in the West.” It had

never occurred to me to use slerp to

compute the square root of a quater-

nion. My question is, why bother to

multiply all the components of the

quaternion by 0.5f when it is normal-

ized in the next step? In other words,

we can improve the function further by

omitting these multiplications.

Another optimization involves the call

to fast_normalize(). Since the input vec-

tors are unit length, it’s possible to get a

simpler formula for the squared length of

the quaternion that we have to normal-

ize. It is (2 + 2 * dot), where dot is the

inner product of the vectors. So it’s

overkill to call q->squared_length(), as hap-

pens in fast_normalize. Computing the dot

product is usually pretty slow, so this

could be worthwhile. The downside is

you’d have to create a special version of

fast_normalize() to get this optimization.

I really learned from this column. It

hadn’t occurred to me to use slerp to get

the square root of a quaternion. Jon has

some really good ideas, and I look for-

ward to his future columns.

Bill Budge

The 3DO Company

via e-mail

Jonathan Blow responds: Yep, indeed that
works and, in fact we can wrap all this
up into one optimization. So we want to
find

but since the components of the quater-
nion are the results of dot and cross
products, we can rewrite this as

.
A trigonometric identity gives us

and we can simplify this down to

0.25(2 + 2d), where d = cos � is the dot
product of the two vectors (what Bill is
talking about). Multiplying the 0.25 into
that gives us 0.5 + 0.5d as the squared
length of the quaternion, which we pass
into the inverse square root approximator.

But that approximator already has
additive and multiplicative terms, so we
can factor these 0.5 terms into there,
and make a new function that is just a
factor of d. And there we go. I think it’s
justifiable to have a special version of
fast_normalize, assuming that a fast ver-
sion of simple_rotation is important to
your app.

By the time we’ve done all this, we’ve
saved something like eight multiplica-
tions and four additions over the origi-
nal function. For people who are used
to calling functions like acos to do
quaternion stuff, that doesn’t sound like
very much; but since we’d already got-
ten this task down to a couple handfuls
of adds and multiplies, Bill’s improve-
ments eliminate a large percentage of
the function’s work, and thus constitute
a major optimization.

Thanks to Bill for the optimizations
and the nice comments about the column.

Getting Emotional
About Games

T hanks to David Freeman for his

insightful article, “Four Ways to

Use Symbols to Add Emotional Depth

to Games” (February 2002).

I must admit, glancing through the

mag, I was set to dismiss the article as

yet another “helpful technique” to legit-

imize what seems to be very expensive

and shallow thumb-twiddling.

Don’t get me wrong; I work in the

game industry, and I am grateful to have

this creative outlet, to say nothing of it

being my rice bowl. If people take

David’s message to heart, I’ll never have

to retire! For what they’re worth here

are some of my observations:

First, I agree with all of David’s

rationale for increasing the emotional

depth of games. For years, the industry

has touted improved hand-eye coordina-

tion as videogames’ single point of

redeeming social value, and it has there-

fore been beset with criticisms of moral

and intellectual bankruptcy. No wonder.

I’m glad to hear a voice for subtlety and

spirituality amidst the cacophony of

screaming hylics.

Second, it seems that the notion of

adding emotional depth to enrich the

game experience might also have a ben-

eficial psychological effect on the player.

For instance, in the case of the Subplot

symbology to identify a character’s

FLBWs and ensuing growth, if players’

FLBWs identify with the character, they

may be tempted to enact their own

catharses in real life. It’s a stretch, I

know, but we all identify with charac-

ters in movies all the time, and role-

playing is a bonafide psychological tool

for operant conditioning, so deep game-

playing could enable players to realize

more about themselves. This point is

especially interesting to me. I often won-

der why we all are so incapable of see-

ing our own FLBWs. And wouldn’t it be

helpful to be able to practice growing

and evolving instead of just practicing

our aim?

Third, I was intrigued by David’s

comments about the effectiveness of

symbology being linked to its unobtru-

siveness. Individual writers and artists

create imagery, each from their own

composite vision. Sometimes they will

insert a symbol to enhance, but more

often the symbology is resident in the

original vision. It may even exist with-

out the artist’s awareness. It’s different

with a team making a videogame.

David’s points about inserting symbolo-

gy are well taken. Filmmaking is a com-

mittee effort also, but the studios have

been doing it longer than game-makers.

Steve High

Sony Computer Entertainment America

via e-mail

0.25(1 – cos + (1 + cos))2 2θ θ

0.25(sin + (1 + cos))2 2θ θ

0.5 (q + q + q + (1 + q))2

x

2

 y

2

z

2

w

2

j u n e 2 0 0 2 | g a m e d e v e l o p e r6

S A Y S Y O U
A F O R U M F O R Y O U R P O I N T O F V I E W . G I V E U S Y O U R F E E D B A C K . . .C

C
Let us know what you think: send us an

e-mail to editors@gdmag.com, or write

to Game Developer, 600 Harrison St.,

San Francisco, CA 94107

Awash in red Ink, Interplay settles
its feuds. The turmoil at Interplay

continues unabated, as the company

reported sharp declines in fourth-quar-

ter and full-year revenues for 2001.

Interplay brought in fourth-quarter net

revenues of $21.5 million, a full 30 per-

cent drop from the previous year, lead-

ing to a net loss of $4.9 million for the

quarter. The company posted a loss of

$4.8 million in the same period one year

ago. For the full year, Interplay’s rev-

enues fell to $57.8 million, a 45 percent

drop from the previous year, pushing

the company’s net loss for 2001 to

$46.3 million. Losses for the previous

year totaled $12.1 million. Interplay

attributes its poor overall performance

to a weak release schedule — the com-

pany shipped only three games in the

fourth quarter and managed just 10 in

the entire year, combined with high

product returns, and product mix overly

dependent on low-margin PC games.

Titus Interactive has increased its stake

in Interplay, now owning 72.4 percent

of capital stock.

The company did manage to follow

up its bleak financials with some

encouraging news by settling an out-

standing dispute with former chairman

and CEO Brian Fargo. Shortly after

Fargo’s resignation from both positions

in late January, an Interplay company

filing revealed that the struggling pub-

lisher was considering filing a suit

against him for allegedly soliciting

Interplay employees. Neither side

revealed the nature of the settlement.

Creative acquires 3Dlabs, Activision
grabs Shaba, Outrage goes to THQ.
Creative Technology is acquiring 3Dlabs

in a stock and cash transaction. Under the

terms of the agreement, Creative will pick

up 3Dlabs stock at $3.60 per share in a

deal worth $170 million. Two-thirds of

the shares will be converted to Creative

stock while the balance will be converted

to cash. 3Dlabs will continue to supply,

support, and develop its professional

graphics product lines, including Wildcat

and Oxygen, and will carry on its stan-

dardization activities with OpenGL 2.0,

OpenML, and embedded OpenGL in the

Khronos Group and the Web3D Consor-

tium. The transaction is subject to the

approval of 3Dlabs shareholders.

Activision continues to buy up its more

successful development partners, this time

wrapping up a deal to acquire SHAUN

MURRAY’S PRO WAKEBOARDER developers

Shaba Games in an all-stock deal worth

close to $7.4 million. Shaba and

Activision previously worked on MAT

HOFFMAN’S PRO BMX and TONY HAWK’S

PRO SKATER 3 for the PSX. Under the

terms of the agreement, Shaba will

become a wholly-owned subsidiary of

Activision. Shaba’s equity holders received

258,621 shares of common stock, valuing

the deal at approximately $7.4 million. As

part of the agreement, Shaba’s key person-

nel will stay on under long-term contracts.

THQ added Michigan’s Outrage Enter-

tainment to its internal studio roster. The

deal reunites Outrage with Volition under

the THQ roof; both companies were cre-

ated by the break-up of DESCENT develop-

er Parallax Entertainment.

Vivendi takes on Battle.net clone.
Blizzard Entertainment’s parent compa-

ny, Vivendi Universal, has filed a lawsuit

against a company accused of operating

an unauthorized Battle.net site. Vivendi

filed suit in Eastern Missouri Federal

Court in St. Louis against Internet

Gateway, operator of The BNETD

Project. The suit also names Tim Jung,

one of BNETD’s developers. While

Internet Gateway maintains that BNETD

is simply a Battle.net emulator designed

by volunteers because of Battle.net’s lack

of reliability, Vivendi contends that

BNETD violates several Vivendi copy-

rights and trademarks. The company

had originally threatened action under

the anti-circumvention provision of the

Digital Millennium Copyright Act

because BNETD doesn’t perform a key

check to ensure players are using legally

purchased Blizzard games.

GTA 3 leads Take-Two turnaround.
After taking a beating in the media and

the markets due to financial irregularities

and misreporting, Take-Two reported a

stunning jump in first-quarter results.

Take-Two reported first-quarter sales

totaling $283 million and a net profit of

$34.8 million; the company posted a

profit of $8.2 million on sales of $158

million in the same period last year.

Despite strong showing from other titles,

including MAX PAYNE and STATE OF

EMERGENCY, Take-Two realized fully 41

percent of its sales from GRAND THEFT

AUTO 3. q

j u n e 2 0 0 2 | g a m e d e v e l o p e r8

I N D U S T R Y W A T C H
T H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e r

Activision has acquired Shaba, developers of
SHAUN MURRAY’S PRO WAKEBOARDER.

J

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

GRAND THEFT AUTO III helped pushed Take-Two’s
sales up in 2002.

S I G G R A P H 2 0 0 2
HENRY B. GONZALES CONVENTION CENTER

San Antonio, Tex.
July 21–26, 2002
Cost: $50–$950 (member and
student discounts available)
www.siggraph.org/s2002

XX

O ver the past four or five

years, those of us who

have chosen our comput-

ers as a means to record

music and sound effects

have been blessed with an incredible

choice of affordable software and hard-

ware. Who remembers the original

Sound Tools days? The first time I saw a

sales rep manipulate a Yes song left me

in awe. The cost was astronomical, even

by that time’s standards; my studio’s first

600MB hard drive, which we picked up

for Sound Tools, cost close to $4,000.

Today, that would buy enough gigabytes

to store everything I’ve recorded in the

past 10 years.

With the advent of USB and Firewire,

new avenues have opened up for con-

necting hardware, transportable stor-

age (hot swappable at that). We’ve

been granted an exceptional means to

input and output signal to our comput-

ers. In the past we had sound cards or,

with Macintoshes, the built-in 16-bit I/O.

But thanks to companies like Digidesign,

we no longer have to worry about quali-

ty I/O and software at an acceptable

price.

It’s All in the Box

E nter Mbox, a collaboration between

two partner companies, Digidesign

and famed British audio designer

Focusrite, a name revered in pro audio

circles. Digidesign is best known for its

Pro Tools systems of hard-disk recording,

but its basic professional set-up is expen-

sive and overkill for simple home studio

or multimedia needs. A few years back

they released the Digi 001 with Pro Tools

LE, an affordable I/O and software pack-

age that addressed the needs of most

lower-budget users, but with up to 18

inputs/out-

puts, it’s still a

bit too much for

some.

With Mbox, the two companies offer

us a smaller package that exemplifies

ease of use in a powerful system. Mbox

has a small footprint, as it sits upright on

your desk or computer table. Compact

yet sturdy and well made, it’s a nice

design that takes up little space, looks

great, and is eminently portable.

I/O, I/O, So Off to
Record We Go

Mbox’s front panel is simple and

well laid out, showing the unit’s

underlying flexibility. There are four

main knobs situated vertically on the

front panel, similar in style to the ones

in Focusrite’s Green and Platinum series.

The top two knobs control gain for the

two input sources, the third is an

input/output monitor mix (more on this

later), and the last knob is the head-

phones level. The two input source gain

knobs have a small button to the left

that cycles through that channel’s input

options, and three LEDs to the right

that correspond to whatever mode the

input channel is in, with choices being

mic (green), line (green), and instrument

(yellow). Directly below these LEDs and

adjacent to the gain knob is a red peak

LED for each input source.

Beneath the two input channels, on

each side of the panel, are two additional

LED indicators. The left green LED lights

up when an S/PDIF signal is present,

acknowledging that Mbox’s inputs are

set to receive digital in as opposed to

analog. The one on the right signifies

proper USB connection, giving visual

feedback that the Mac recognizes the

Mbox and has loaded the drivers for it.

There have been a few software issues

with Mac OS 9.1 and Mbox not proper-

ly loading its USB drivers (as I found out

shortly after my first reboot), but a

quick fix — unplugging the USB cable

from the back of the box and then

reconnecting it — works more often

than not. When I kept getting error mes-

sages or peak lights on Mbox, I had to

drag and drop the whole collection of

Digiextensions a couple of times too.

Digidesign is aware of the problem and

is working toward a permanent fix. For

the time being, they recommend upgrad-

ing to Mac OS 9.2 and downloading the

latest drivers from their web site.

Digidesign’s Mbox
by gene porfido

j u n e 2 0 0 2 | g a m e d e v e l o p e r10

P R O D U C T R E V I E W S
T H E S K I N N Y O N N E W T O O L S

G E N E P O R F I D O | Gene operates Smilin’ Pig Productions, his own sound design and
music company located in San Francisco.

The third knob down, actually a

mix/ratio knob, works by mixing your

input source (the knob all the way to

the left) with the playback from soft-

ware (the knob all the way to the

right). You can dial in any blend of

the two, which gives a zero-latency

response to your input signal; you’re

listening to the track through Mbox,

not through software, similar to listen-

ing through a mixer channel instead

of “off tape,” so there’s no noticeable

delay between what’s playing and

what you hear. If Mbox handles all of

your monitoring and input/output chores

instead of routing through a console, this

is a nice addition, perfect for the small

home studio on a budget.

The fourth and last knob, controlling

headphone levels, has a mono-sum but-

ton to its side so you can check for phase

problems or just listen to a mono mix.

There’s a 1/8-inch mini-plug on the front

for connecting applicable headphones.

The M Connection

T he back of Mbox is where it all gets

patched in. Two Focusrite mic pre’s,

highlights of the input channels, guaran-

tee a good sound. They are multi-connec-

tor-type jacks and accept either XLR or

1/4-inch in the same socket. This allows

Mbox to use only one connector on each

of the two inputs, and gives the user the

option of a line/instrument or mic.

Four 1/4-inch connectors are located

above the input jacks, the bottom two

being channel inserts that access the

channel after the preamp and before the

A to D converter. These Tip-Ring-

Sleeves give the user the ability to patch

in their favorite analog device, such as a

compressor or an EQ. The remaining

two 1/4-inch jacks are line outputs, typ-

ically a left and right out from your

computer. These can be patched to a

mixer, a home stereo, a power amp for

monitoring, or sent to a two-track for

mix-down.

Above the outputs are RCA-type

S/PDIF connectors, with an in and an

out. A 1/4-inch headphone jack is also

offered, but keep in mind plugging into

this jack will negate audio to the front

panel mini-plug headphone. The remain-

ing items on the back include a single

USB connector, and the phantom power

switch providing 48 volts to both input

channels simultaneously. Because it can

potentially damage certain mics, most

notably ribbon-type mics, it’s a good idea

to turn your volume down and unplug

unused inputs when switching phantom

power on and off.

That’s Not All, Folks

P ro Tools 5.2 (version LE), included

with Mbox, is the most popular

hard-disk recording software in the

world. But, since this isn’t a Pro Tools

review, I’ll just add that this is a limited

version of the fabled program, maxing

out at 24 audio tracks. Still, Pro Tools

LE is an exceptional recording package

that will fulfill many people’s needs, with

plenty of included plug-ins for EQ, com-

pression, and delays. Other plugs are

available at an extra cost.

During the time I used Mbox, it met

all my expectations and more. Perhaps its

most notable feature is the fine tone of

the input channels, a combination of the

Focusrite mic pre’s and Digidesign’s 24-

bit converters. There’s plenty of routing;

I used Mbox primarily with a small con-

sole, returning the two outputs in chan-

nels in the console for processing with

live MIDI tracks. By plugging a number

of powered and nonpowered mics and

instruments into Mbox, I tested every

input choice, and everything worked as

I’d hoped.

Mbox can also be used with other

sequencers or audio programs. Once the

USB drivers are loaded, you can select

Mbox in the Digidesign control panel,

then select the Digidesign I/O from inside

the software. I had absolutely no prob-

lems using Mbox with both Mark of the

Unicorn’s Digital Performer 3.0 and the

included Pro Tools LE.

For a small studio that needs only one

or two simultaneous inputs, Mbox is a

charm. For a larger professional studio,

Mbox offers two channels of quality

audio in and out of your Mac. With its

excellent sound quality, well-made hard-

ware, and world-class software, the

Mbox is hard to beat for its price

(around $495 MSRP), and it’s a great

choice for someone seeking ease of porta-

bility. If you’re looking to get into 24-bit

recording, the Mbox is an exceptional

way to get there.

j u n e 2 0 0 2 | g a m e d e v e l o p e r12

STATS
DIGIDESIGN INC.

Daly City, Calif.
(650) 731-6300
www.digidesign.com

PRICE
$495 (MSRP)

SYSTEM REQUIREMENTS
Macintosh with factory-shipped USB
port running Mac OS 9.1 or higher (OS
X and Classic mode unsupported) with
128MB RAM (192MB recommended for
newer Macs, virtual memory not sup-
ported), and CD-ROM drive for installa-
tion. Also Opcode OMS 2.3.8 and Quick-
time 5, both supplied on Pro Tools CD.

PROS
1. Low price makes it very accessible.
2. Focusrite mic pre’s.
3. Pro Tools software.

CONS
1. Some software hitches with OS 9.1.
2. No half rack or drive bay mounting

scheme.
3. Pro Tools LE is not as powerful as regu-

lar Pro Tools.

MBOX XXXX

XP R O D U C T R E V I E W S XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

BIOGRAPHIC’S AI
IMPLANT PLUG-IN

by kian bee ng

B iographic’s AI Implant (currently

available for Maya 3 and 4, with

Lightwave and 3DS Max versions and an

SDK planned) allows users to animate

large scenes, by splitting them into man-

ageable parts as necessary, while retaining

control over the individual or grouping

characters as an integrated whole.

AI Implant differentiates between two

types of characters, autonomous and

non-autonomous. An autonomous char-

acter exhibits intelligence in its course of

action. The intelligence is governed by a

set of behaviors that are assigned to it,

and there are many behaviors you can

assign. You can make the character flee,

seek, wander around, avoid obstacles,

follow a path, move with its group, sepa-

rate from the group, and so on. In addi-

tion, each behavior is fully modifiable,

allowing users to create detailed and spe-

cific animations.

Unlike autonomous characters, the AI

solver does not influence non-auto-

nomous characters. These are largely

scene props, such as chairs, doors, or

flags. Their presence serves to complete

an interactive environment. Further-

more, you may also create objects that

constrain the movement of the charac-

ters. These constrains include barriers,

paths, and terrains. With barriers, char-

acters may be set to avoid them; with

paths, characters may be instructed to

follow them; and with terrains, charac-

ters may be made to always stay on the

surface geometry.

There are two types of solvers avail-

able within AI Implant, 2D and 3D. The

2D solver is for characters that are con-

strained on a 2D surface, and therefore

more computationally efficient. The 3D

solver is used when the characters move

freely within the 3D world. Unlike other

solvers in Maya that are default and

fixed, AI Implant lets you create multiple

solvers. This allows you to have different

solvers for different character sets. You

might bind a group of bugs on the

ground with a 2D solver and assign a 3D

solver to the flock of birds in the sky.

Still, by combining the AI solvers with

Maya’s dynamic solvers, users can easily

create a fascinating environment in

which all objects exhibit movements that

convincingly mimic the real world.

The heart of AI Implant lies in its

binary decision tree. A binary decision

tree acts like a simple switch: given a

condition, go to state A or go to state B.

With the binary decision tree, not only

can you modify characters’ behaviors,

you can also use it to drive animation

cycles or update a character’s data.

AI Implant marks an important step

toward managing large-scale crowd

scenes, offering artists a viable means to

create and control thousands of charac-

ters with ease. The only reservation I

have is the hefty price tag; $5,000 might

be easier to justify as later versions add

more robust behavior options and run

them faster. As it stands, small and inde-

pendent studios with only occasional

requirements to deliver large crowd ani-

mations may find it hard to justify the

expenditure. Nonetheless, once more fea-

tures and advanced behavioral controls

are added, AI Implant may well become

an indispensable tool.

Note: Pay-per-use licenses for AI

Implant are available.

XXX | AI Implant 1 for Maya
Biographic Technlogies

www.ai-implant.com

Kian Bee Ng is a programmer on the
GRAN TURISMO series, writing tools and
plug-ins for Maya.

BERKELEY DB
BY SLEEPYCAT SOFTWARE INC.

C++ NETWORK
PROGRAMMING, VOL.
1: MASTERING
COMPLEXITY WITH ACE
AND PATTERNS
BY DOUGLAS SCHMIDT &
STEPHEN HUSTON

reviewed by crosbie fitch

N ow that admitting to using middle-

ware in your games is getting more

respectable, the next step is admitting to

using open source middleware. Don’t

worry, it’s just like saying you use

DirectX — it’s free middleware and

someone else developed it. While there

are debates as to whether open source is

really cheaper, at least you get to peruse

and tweak the source code.

One of the ways that open source mid-

dleware vendors can bring in extra

income is by publishing reference books

or manuals concerning their middleware

— even if this information is also freely

available in online documentation (it

seems even leading-edge coders still like

the old fashioned ink-on-wood-pulp dis-

tribution medium).

I’ve picked two books, each correspon-

ding to game components increasingly

likely to be outsourced as games get ever

larger in scale: the scenery database and

the networking layer. You may find it

hard to imagine using off-the-shelf com-

ponents that didn’t necessarily have spa-

tially indexed, visibility-analyzed 3D

j u n e 2 0 0 2 | g a m e d e v e l o p e r14

XP R O D U C T R E V I E W S

A group of fish moving in a 3D world and the list of behaviors in Biographic’s AI Implant available
to control them.

objects in mind when they were designed,

but sometimes it might be expedient to

knock something together that does the

job before you get around to doing it

properly (which may not be until after

the game has shipped).

Berkeley DB addresses the database

engine of the same name, while C++
Network Programming discusses the

ACE (Adaptive Communications

Environment) networking layer.

Each of these components can be used

in your game statically, via DLL, or

(because you have the source) in any

other manner you see fit. As you might

expect, and given that you need a typical

OS and C compiler, most Windows and

Unix type platforms are supported.

However, whether or not it’s easy to port

to them, game consoles aren’t really

addressed.

Can you use them in proprietary game

code? In the case of ACE you’re in luck.

It’s subject to a BSD-style license, mean-

ing it can be freely used in proprietary

code even without disclosure. Berkeley

DB is almost as available; rather, it has

older versions that can be freely used in

proprietary code (BSD license). However,

in its recent, more powerful versions

(say, multi-user), you’re required to pur-

chase licenses for proprietary use

(though it’s still free for use in open

source code).

So while Berkeley DB and ACE might

be worth looking into for your next

game, are the books worth buying?

Berkeley DB is a pleasure to read.

You come away feeling you’ve been told

all you need to know about it, that the

system has been lovingly crafted for

demanding professionals such as your-

self, and you get in the mood to down-

load the code and build it into your

game (or a few test harnesses first). The

book gives you a very good overview of

how Berkeley DB works, how it should

be applied, how it fits into the platform

(with considerations for the ambient

operating environment), coding exam-

ples, building for different platforms

(with FAQs), and even a test suite.

After all this, at page 245 (out of

642) you get API documentation for C,

C++, Java and TCL. Database theory is

briefly introduced, but Berkeley DB is

really a core, scalable building block

(hash tables, B-trees, simple numbered

records, and persistent queues) from

which you can build more complex

database architectures, so you don’t

need to know about say, relational data-

bases, unless you want to build one.

And no, you don’t need to learn SQL or

anything like it either. This really is a

neat, self-contained component. Buy the

book and keep it by the bedside; it’s a

much better read than the documenta-

tion available online.

C++ Network Programming is a dif-

ferent reference in many ways. Patently

trying to hijack the less cautious devel-

oper looking for general coverage of the

issues and techniques, it’s only when

you read the subtitle, Volume 1:
Mastering Complexity with ACE and
Patterns, that you might suspect this

book has a different agenda. With very

little C++ coverage, and very little about

network programming in general, it

should really be titled ACE — Adaptive
Communication Environment, and sub-

titled A Cross-Platform Networking
Layer, Abstracting Typical Facilities
Required by Distributed Applications.

If you’ve studied up on network pro-

tocol (see Comer and Stevens’ Inter-
networking with TCP/IP series from

Prentice Hall), the Sockets API (even

WinSock), multi-threading, CORBA

and/or COM, and Unix and Windows

operating systems, then you’re ready for

cross-platform networking middleware

such as ACE. Addressing the diversity of

networking environments in-house is a

bleak prospect: you’re choosing from

DirectPlay, a proprietary third-party

networking middleware vendor, or ACE.

If you’re not ready for this book, don’t

read it. Unlike newbie-friendly Berkeley

DB, ACE will burn your brain.

Because it’s written in a formal academ-

ic/hardcore systems programming style,

you need to know the underlying systems

and historical precedents to have much of

an idea of what ACE is trying to do. The

style follows, but it overdoes the mantra

of “(1) Tell them what you’re going to tell

them, (2) Tell them, (3) Tell them what

you just told them.” That is to say, a lot

of each chapter spends time recapping

what the previous chapter covered, intro-

ducing what the chapter is about to cover,

covering it, summarizing what the chapter

covered, and introducing the next chapter.

The book pats itself on the back a bit

about its pioneering use of design pat-

terns (façade, factory, and the like — all

rather underwhelming). However, since

it has “C++” in the title, I would’ve

liked to have seen some evidence that

the “object” design pattern was used

somewhere (as in object oriented).

Nevertheless, I tip my hat to ACE’s

laudable achievement in representing a

cross-platform networking library.

That’s what’s exciting here.

As a 268-page introduction to ACE

(with no API reference section), the

book is passable. It’s a bit like an anno-

tated reference manual and tutorial,

except that the annotations are mixed in

with the main text and it’s not obvious

when you’re reading to which slant the

information is directed — to someone

interested in the design of ACE, to a

designer or implementer of something

like ACE, to a user of ACE, to someone

interested in general networking issues,

and so on.

Although C++ Network Programming
covers the essentials, its style and multi-

ple (obscure) objectives make reading

laborious. They should take a page from

the Berkeley DB book and cut to the

chase. That way they might not only

combine volumes 1 and 2, but also pro-

duce a book that you’d want to read in

a single sitting. Buy the book if only to

sweeten the bitter pill of reading the

online ACE documentation.

XXXX | Berkeley DB

www.newriders.com

XX | C++ Network Programming,
Volume 1 | Addison-Wesley
www.addison-wesley.com

Crosbie Fitch currently gets paid to do
a bit of C++ at Qube Software Ltd., but
not at www.cyberspaceengineers.org.

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

w w w . g d m a g . c o m 15

New Riders Publishing

T etsuya Mizuguchi is

the affable president

and CEO of Sega’s

United Game Artists

division. Best known

previously for the popular SEGA

RALLY series, Mizuguchi helped

solidify the Dreamcast’s reputation

for uniquely stylish games with

2000’s SPACE CHANNEL 5. Leaving

Sega’s swan-song console behind

and flush with the music-action

success of SPACE CHANNEL 5,

Mizuguchi brought REZ to the

Playstation 2 in late 2001. A musi-

cal shooter inspired by abstract

expressionist Wassily Kandinsky

and steeped in the sensory anarchy

of synesthesia, REZ has been hailed

by critics and developers alike as a

milestone in artistic expression

with games, but Mizuguchi main-

tains a distinction between games

and other art forms.

Game Developer. What were your
motivations and goals in creating REZ?

Tetsuya Mizuguchi. The idea for REZ is something that we have

been contemplating since 1995, but we could not realize it with

the technology at that time. So we could do nothing but just wait

for hardware to improve. The starting point was the idea that we

wanted to transform the pleasure of shooting games into music.

The idea was that shooting would assimilate into sounds, and

your own actions would become music. My goal with REZ was

to design human ambitions and desires into a game by using cut-

ting-edge technology. I develop everything with this same motiva-

tion in mind — from SEGA RALLY to REZ to SPACE CHANNEL 5.

GD. Most developers I’ve talked to are quite impressed with REZ’s
unique gameplay and player experience. Since all creators are nat-
urally influenced by other works they see and experience, what
games influenced REZ, and what influence would you like REZ to
have on the development of other games?

TM. As a general rule, I do not get inspiration from other

games. Rather, I am inspired in a variety of ways as I go along

my journey and talking to various people. REZ was not directly

influenced by any particular games,

however, the game is a conscious

continuation of excellent shooting

games from the past, like XENON 2

or XEVIOUS.

GD. You’ve spoken often of the
synesthesia you try to create in your
games, the melding of the senses. Do
you envision and design around a cer-
tain experience you want players to
have, or is it better to try to define a
good framework for a range of poten-
tial experiences?

TM. I do not design a game around

a particular experience, and I don’t

think it’s practical to include so

many variations of experiences into a

single game. Although the core of the

gameplay should focus on only one

or two personal experiences, we

must consider how we can meld the

senses to achieve this.

GD. You have the word “artist” in
the name of your studio. Do you think
of REZ as a work of art?

TM. I do not regard REZ as a work of art — it is a game.

Even though REZ shares some artistic aspects that have been

inspired by Kandinsky, we still consider REZ entertainment, not

art. I named my studio United Game Artists because we wanted

every single member of staff to always be creative and innova-

tive toward games. That is why we say “game artists,” not

“artists.” Our name means that we want our studio to be a

union of game artists.

GD. How do you orchestrate the individuals on your development
team to work together to deliver a unified concept, especially one
that is unique and hasn’t been seen before?

TM. All my team members have totally different personalities,

and this is sometimes intentional when we are recruiting our

staff. Game development is a group activity, and the producer’s

job is to manage how to bring out everyone’s special talent and

to get them together into one. It is not words that help us create

a unified concept, but sharing common experiences.

GD. What kind of games will you be making five years from now?
TM. It’s a secret (laughs). q

Tetsuya Mizuguchi:
On Game Artists and Games As Art

j u n e 2 0 0 2 | g a m e d e v e l o p e r16

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | j e n n i f e r o l s e n

United Game Artists’ Tetsuya Mizuguchi, affable creator of
SPACE CHANNEL 5 and REZ.

I n last month’s column, “Packing Integers,” I revealed

some convenient techniques for fitting things in a small

space for save-games or for saving bandwidth for

online games (massively multiplayer games in particu-

lar spend a lot of money on bandwidth). This month

I’ll extend these methods to include floating-point values. I’ll do

this by converting the floating-point values to integers, then

combining the integers.

Let’s say we want to map a continuous set of real numbers

onto a set of integers, a process known as quantization. We

start by splitting the set into a bunch of intervals and then

assigning one integer value to each interval. When it’s time to

decode, we map each integer back to a scalar value that repre-

sents the interval. This scalar will not be the same as the input

value, but if we’re careful it will be close. So our encoding here

is lossy.

Game programmers often perform this general sort of task. If

they’re not being cautious and thoughtful, they’ll likely do

something like this:

// ‘f’ is a float between 0 and 1

const int NSTEPS = 64;

int encoded = (int)(f * NSTEPS);

if (encoded > NSTEPS - 1) encoded = NSTEPS - 1;

Then they decode like this:

const float STEP_SIZE = (1.0f / NSTEPS);

float decoded = encoded * STEP_SIZE;

Because I want to talk about what’s wrong with these two

pieces of code and suggest alternatives, I’ll call the first piece of

code “T,” for Truncate. It multiplies the input by a scaling factor,

then truncates the fractional part of the result (the cast to int

implicitly performs the truncation).

The second piece of code, which I will call “L” for Left

Reconstruction, recovers a floating-point value by scaling the

encoded integer value, giving us the value of the left-hand side of

each interval (Figure 1a). Using these two steps together gives us

the TL method of encoding and decoding real numbers.

Why TL Is Bad

A s Figure 1a shows, the net result of performing the TL

process on input values is to shunt them to the left-hand

side of whichever interval they started in. (If you don’t see this

right away, just keep playing with some example input values

until you get it.) This leftward motion is bad for most applica-

tions, for two main reasons: First, our values will in general

shift toward zero, creating a bias toward energy loss. Second,

we end up wasting storage space (or bandwidth). To see why

these two problems exist, let’s look at an alternative.

I am going to replace the L part of TL with a different recon-

struction method, which is mostly the same except that it adds

an extra half-interval size to the output value. As a result, it

shunts input values to the center of the interval they started in,

as Figure 1b shows. I’ll call this piece of code “C,” for Center

Reconstruction:

const float STEP_SIZE = (1.0f / NSTEPS);

float decoded = (encoded + 0.5f) * STEP_SIZE;

When we use this code together with the same truncation

encoder as before, we get the codec TC. We can see from Figure

1b that TC increases some inputs and decreases others. If we

encode many random values, the average output value converges

to the average input value, with no change in total energy.

Now let’s think about bandwidth. The amount of storage

space used is determined by the range of integers we reserve

for encoding our real-numbered inputs (the value of NSTEPS in

the code snippets above). In order to find an appropriate

value for NSTEPS, we need to choose a maximum error thresh-

old by which our input can be perturbed.

When we use TL to store and retrieve arbitrary values, the

mean displacement (the difference between the output and the

input) is

,

where s is 1/NSTEPS.

When we use TC, the mean displacement is only 1/4s.
Thus, to meet a given error target, NSTEPS has to be twice as

1 1

2
0

s
xdx s

s

∫ =

j u n e 2 0 0 2 | g a m e d e v e l o p e r18

J O N A T H A N B L O W I Jonathan is a game
technology consultant living in San Francisco.
He is addicted to Pocky. Send him e-mail at
jon@bolt-action.com.

Scalar
Quantization

I N N E R P R O D U C T j o n a t h a n b l o w

ored
278

high with TL as it is with TC. So TL needs to spend an extra

bit of information to achieve the same guaranteed accuracy

that TC gets naturally.

Why TC Can Be Bad

T hough TC is a step above TL in many ways, it has a prop-

erty that can be problematic: there’s no way to represent

zero. When you feed it zero, you get back a small positive

number. If you’re using this to represent an object’s speed, then

whenever you save and load a stationary object, you’ll find it

slowly creeping across the world. That’s really no good.

We can fix this by going back to left reconstruction, but then,

instead of truncating the input values downward, we round them

to the nearest integer. We’ll call this “R” for Rounding. As pro-

grammers, we know that you round a nonnegative number by

adding 1/2 and then truncating it. Thus the source code is:

// ‘f’ is a float between 0 and 1

const int NSTEPS = 64;

int result = (int)(input * (NSTEPS - 1) + 0.5f);

if (result > NSTEPS - 1) result = NSTEPS - 1;

Figure 1c demonstrates method RL. It’s

got the same set of output values that TL

has, but it maps different inputs to those

outputs. RL has the same mean error as

TC, which is good. It can store and

retrieve 0 and 1; 1 is important, since, if

you’re storing something representing

fullness (such as health or fuel), you

want to be able to say that the value is at

100 percent.

It’s nice to be able to represent the

endpoints of our input range, but we do

pay a price for that: RL is less band-

width-efficient than TC. Note that I

changed the scaling factor from NSTEPS, as

TC uses, to NSTEPS - 1. This allows us to

map values near the top of the input

range to 1. If I hadn’t done this, values

near 1 would get mapped further down-

ward than the other numbers in the input

range and thus would introduce more

error than we’d like. Also, RL’s average

error would have been higher than TC’s,

and it would have regained a slight ten-

dency toward energy decrease. I avoided

this situation by permitting the half-inter-

val near 1 to map to 1.

But this costs bandwidth. Notice that

the half-intervals at the low and high

ends of the input range only cover one

interval’s worth of space, put together. So

we’re wasting one interval’s worth of information, made of the

pieces that lie outside the edges of our input. If an RL codec

uses n different intervals, each interval will be the same size as

it would be in a TC codec with

n – 1 pieces. So to achieve the same error target as TC, RL

needs one extra interval.

If our value of NSTEPS was already pretty high, then adding 1

to it is not a big deal; the extra cost is low. But if NSTEPS is a

small number, the increment starts to be noticeable. You’ll want

to choose between TC and RL based on your particular situa-

tion. RL is the safest, most robust method to use by default in

cases where you don’t want to think too hard.

Don’t Do Both

O nce, when I was on a project in which we weren’t thinking

clearly about this stuff, we used a method RC, which both

rounded and center-reconstructed. Figure 1d shows the results

of this unfortunate choice. The result is arguably worse than

the TL that we started with, because it generally increases ener-

gy. Whereas decreasing energy tends to damp a system stably,

increasing energy tends to make systems blow up. In this partic-

j u n e 2 0 0 2 | g a m e d e v e l o p e r20

I N N E R P R O D U C T

FIGURES 1A–1D (from top to bottom). Four methods of quantizing real numbers. The yellow
notches represent the integers; the red arrows indicate which real numbers map to each inte-
ger, and the blue dots show which real numbers will be reconstructed.

Method TL

Method TC

Method RL

Method RC

Truncate:

Truncate:

Round:

Round:

Left
Reconstruct:

Center
Reconstruct:

Left
Reconstruct:

Center
Reconstruct:

D

C

B

A

ular project, we thought we were being

careful about rounding. However, we

didn’t do enough observation to see that

the two rounding steps canceled each

other out. Live and learn.

Interval Width

S o far we’ve been assuming that the

intervals should all be the same size.

It turns out that this is optimal when our

input values all occur with equal proba-

bility. Since I’m not talking about proba-

bility modeling in this article, I’ll just

assume intervals of equal size (this

approach will lend us significant clarity

next month, when we deal with multidi-

mensional quantities). But you might

imagine that, if you knew most of your

values landed in one spot of the input

domain, it would be better to have small-

er intervals there and larger ones else-

where. You’d probably be right, depend-

ing on your application’s requirements.

Varying Precision

S o far, I’ve talked about a scheme of

encoding real numbers that’s appli-

cable when we want error of constant

magnitude across the range of inputs. But

sometimes we want to adjust the

absolute error based on the magnitude of

the number. For example, in floating-

point numbers, the absolute error rises as

the number gets bigger. This property is

useful because often what we care about

is the ratio of magnitudes between the

error and the original quantity. So with

floating point, you can talk about num-

bers that are extremely large, as long as

you can accept proportionally rising

error magnitudes.

One way to implement such varying

precision would be to split up our input

range into intervals that get bigger as we

move toward the right. But in the interest

of expediency, I am going to adopt a

more hacker-centric view here. Most

computers we deal with already store

numbers in IEEE floating-point formats,

so a lot of work is already done for us. If

we want to save those numbers into a

smaller space, we can chop the IEEE rep-

resentation apart, reduce the individual

components, and pack them back togeth-

er into something smaller.

IEEE floating-point numbers are stored

in three parts: a sign bit, s; an exponent,

e; and a mantissa, m. Figure 2a shows

their layout in memory. The real number

represented by a particular IEEE float is

–1
sm�2

e
. The main trick to remember is

that the mantissa has an implicit “1” bit

tacked onto its front. There are plenty of

sources available for reading about IEEE

floating-point, so I’ll leave it at that.

If we know that we’re processing only

nonnegative numbers, we can do away

with the sign bit. The 32-bit IEEE format

provides eight bits of exponent, which is

probably more than we want. And then

we can take an axe to the mantissa, low-

ering the precision of the number.

Our compacted exponent does not

have to be a power of two and does not

even have to be symmetric about 0 like

the IEEE’s is. We can say, “I want to

store exponents from –8 to 2,” and use

the Multiplication_Packer from last

month’s column to store that range.

Likewise, we could chop the mantissa

down to land within an arbitrary integer

range. To keep things simple, though, we

will restrict our mantissa to being an

integer number of bits. This will make

rounding easier.

To make the mantissa smaller, we

round, then truncate. To round the man-

tissa, we want to add .5 scaled so that it

lands just below the place we are going to

cut (see Figure 2b). If the mantissa con-

sists of all “1” bits, adding our rounding

factor will cause a carry that percolates to

the top of the mantissa. Thus we need to

detect this, which we can easily do if the

mantissa is being stored in its own integer

(we just check the bit above the highest

mantissa bit and see if it has flipped to 1).

If so, we increment the exponent.

Rounding the mantissa is important.

Just as in the quantization case, if we

don’t round the mantissa, then we need to

spend an extra bit’s worth of space to

achieve the same accuracy level, and we

have net energy decrease as well.

Sample Code

This month’s sample code implements

the TC and RL forms of quantization.

It also contains a class called

Float_Packer; you tell the Float_Packer

how large a mantissa and exponent to use

and whether you want a sign bit. You can

down-

load this month’s code from

I N N E R P R O D U C T

j u n e 2 0 0 2 | g a m e d e v e l o p e r22

FIGURE 2A (top). The format of a 32-bit IEEE floating-point number. FIGURE 2B (bottom). Adding
a constant before truncating the mantissa (the yellow-colored area) represents the number of
bits to which we want to truncate.

F O R M O R E I N F O R M AT I O N

Hecker, Chris. “Let’s Get to the (Floating)

Point.”Game Developer (February/March

1996).

sign (1 bit)

exponent (8 mantissa (23

bits)

A

B

+

=

01100111010 input mantissa

00000001000 rounding constant

01101000010 sum

0110100 truncated sum

bits)

www.gdmag.com. q

w w w . g d m a g . c o m 23

A R T I S T ’ S V I E Wh a y d e n d u v a l l

Last month, I looked at the

process of gathering source

material to use as a starting

point for generating tex-

tures. This month, we’ll con-

tinue with the next stage, processing

these images and making them into a

finished texture.

The particular style constraints that

apply to an individual game’s visuals vary.

Making textures for a kid-friendly

RAINBOW WORLD OF FLUFF will obviously

take you down a different path from

building a texture set for SLAUGHTERHOUSE

CARNAGE TOURNAMENT. However, there

are some general approaches that can be

helpful to whatever style of game you’re

working on.

Some of the following points may seem

obvious to those who have been working

with textures for a while. However, since

there is usually more than one way to

work, it’s always best to look at multiple

available methods.

Powers of Two

Powers of two are the basis for most

texture sizing. In mathematical

terms, power of two refers to the process

of multiplying the number two by itself a

particular amount of times, giving us the

sequence that anyone working with com-

puters is familiar with: 2, 4, 8, 16, 32, 64,

128, 256, 512, and so on.

Sizing textures to fit within these con-

straints (Figure 1) reduces the amount of

time the processor takes to handle a tex-

ture, thus speeding the process up consid-

erably. A screen full of textures whose

sizes are something in the order of

137�86 pixels will most likely force

your engine to jump through a whole

host of unnecessary hoops.

Bigger Is Better

A ssuming for a moment that the stan-

dard size of most textures in your

game is 256�256, it may seem best to

work on them at this size so that you

always have an accurate idea of what the

finished texture will look like. In most

cases, however, working at that size is not

ideal. If you have the luxury of using an

extremely high resolution scan as your

starting point, working on the texture at

1024�1024 is usually a bonus. There are

two main reasons for this.

First, shrinking an image down often

makes the features added into an image

integrate better than they would at its

original scale. The resampling process

smoothes out small areas that may have

looked a little rough. In addition, working

large generally gives the artist more free-

dom to work quickly, because he or she

knows that every pixel does not have to

be perfect, and the scaling-down process

will produce a more forgiving end result.

Second, the development of a game can

take longer than expected, as we all know.

Sometimes, as development rolls on, the

hardware-induced restraints are relaxed

several times. This may be a result of

refinements in your engine, an increase in

what is considered minimum spec for a

current PC, or if you’re really taking a

long time, a new generation of consoles

emerging with whole extra levels of per-

formance enhancements. Whatever the

reason, working on (and more important-

ly saving a version of) a texture at as large

a size as possible protects you from the

problem of finding that all your textures

are saved at a smaller size than what your

From Source

w w w . g d m a g . c o m 25

H A Y D E N D U V A L L I Hayden started work in 1987, creating
airbrushed artwork for the games industry. Over the next eight years,
Hayden continued as a freelance artist and lectured in psychology at
Perth College in Scotland. Hayden now lives in Bristol, England, with
his wife, Leah, and their four children, where he is lead artist at
Confounding Factor.0 71486 0213

$5.95US $6.95

FIGURE 1. Power of two texture sizing.

512

32
64

128

256

to Texture

engine can actually handle. Even

Photoshop’s might is unable to retrieve

details that are lost from the original

image when it’s scaled down, and scaling

up is practically pointless.

Keep the Layers

I may be presumptuous, but I suspect

that most people working on textures

do so in Photoshop, and if so, are famil-

iar working with layers. So, in the same

way that I recommended artists save as

large a copy of each texture as possible,

I also suggest maintaining a copy of

each texture with all its layers intact.

The temptation to flatten and save

once you are happy with the result can

be quite strong. Saving the texture with

its layers gives you more options for

alteration at a later stage, without the

time-consuming process of working an

image through once again from the start.

Work from a Generic
Base

I f you need a texture set that must

look like it fits together, you’ll save

time and be more effective if you estab-

lish a base starting point and then modi-

fy it to create variation. The base ought

to be fairly feature free but should pro-

vide the background for the rest of the

textures (Figure 2).

This approach works well with interiors

and can be used in exteriors to some

extent. However, the innate variation in

organic forms does limit somewhat its

usefulness outside.

Managing the Color
Palette

U sing the base layer approach goes

some way toward unifying your

color palette. When considering the

range of colors a complete texture set

will contain, artists should consider four

areas: consistency, variation, harmony,

and collision.

Consistency. Consistency refers to the

idea that colors chosen within a specific

texture set must remain constant for

things that are meant to represent the

same thing. For example, the color of the

clumps of grass in a muddied earth tex-

ture would have to fit with the main col-

oration of the grass texture with which it

is used in conjunction.

Variation. This element is the antithesis

of monotony and presents the opportunity

to provide visuals that impress and entice

the player. Providing textures that utilize

as many of the available colors as possible

(without breaching the boundaries of con-

sistency and overall styling) helps to avoid

dullness in an environment.

Harmony. Presenting harmony in tex-

tures can reinforce the feeling that an

environment works as a whole and is not

just a grouping of isolated elements

(Figure 3). Simply put, some colors work

well together and some don’t. There are

books that can help with this (see For

More Information) but as an artist you

should have your own sense of what

works and what doesn’t.

Collision. Collision is the opposite of

harmony. In nature, colors that don’t fit

with the environment often signify dan-

ger of some kind, like some poisonous

snakes, for example. Like highway work

crews before us, we have borrowed this

concept to some extent when marking

out areas or objects in our game that

require caution (Figure 4). For artists

assembling a texture set, collision can

be useful for alerting the player (even if

not overtly) to the possibility of danger.

Darkening and
Lightening

A dding features within a texture often

requires a certain amount of darken-

ing and lightening of areas to give the

impression of depth. As with traditional

painting, just adding black or white won’t

achieve the effect particularly well. For

more flexibility, it is worth considering the

blending modes of screen, multiply, dodge,

and burn (Figure 5).

Screen. Selecting a screen operation

multiplies the inverse of the blend (the

color you are using) and the base color

(the color of the image itself) in each

channel. This operation results in a

lighter color than is currently present in

A R T I S T ’ S V I E W

j u n e 2 0 0 2 | g a m e d e v e l o p e r26

FIGURE 4. Color collision helps alert players
to something unusual about the environment,
such as dangerous areas.

FIGURE 2. Using base layers with variations
speeds workflow and helps unify the color
palette.

FIGURE 3. Harmonious colors help pull an
environment together as a whole.

the image, unless you choose black as

the blend color, which results in no

change. Effectively, the screen operation

allows you to choose the color that

you’ll use as a base for lightening, but

when it’s applied, it leaves the underly-

ing detail intact (as opposed to simply

painting over with a lighter color).

Multiply. This is essentially the opposite

of screen, where the base and blend (not

the inverse blend) colors are multiplied in

each channel. This process produces a

darker color. Here again, the underlying

detail is not destroyed, just darkened.

Depending on the blend color you select,

you can obtain a more realistic shadow-

ing effect.

Dodge. In the dodge technique, you use

the color information in each channel to

produce a brightening effect in the direc-

tion of the blend color. The basic result

sounds like it would be similar to that of

screen, but dodge operates more aggres-

sively on brightness levels as well as hue,

and the results are a lot stronger. Over-

saturation can occur with dodge, but the

technique is most useful when you need to

simulate lights or metallic highlights,

when there is a very rapid rise in per-

ceived brightness.

Burn. Burn is to dodge as multiply is

to screen. Burn uses the color informa-

tion in each channel and darkens in the

direction of the blend color. However,

burn is perhaps even more dangerous

when it comes to oversaturation than

dodge, as its darkening effect achieves

nothing in areas that are already at max-

imum saturation.

Contrast, Brightness,
and Level Adjustments

T extures designed to be used in a game

often require higher levels of contrast

than what is present in the original image

from which they are taken. Exaggerating

the variation across a texture helps reduce

the flattening effect that in-game lighting

can often have and can help make features

more clear (Figure 6). You also may need

to raise overall brightness levels if the tex-

ture is too dark.

A basic adjustment with the brightness

and contrast controls may provide the

desired result, but this tool is broad in its

effect, the values cannot be saved, and in

some cases the effects are too generalized.

If this is the case, level adjustment may be

what you’re after.

Adjusting levels gives you tightly

focused control over each aspect of the

image. In brief, the level adjustment dialog

gives access to each of the color channels

as well as a combined RGB channel,

allowing you to adjust midtones, shad-

ows, and highlights separately. In addi-

tion, an output level controller allows you

to remap the intensity values for the entire

image to correspond to any range you set.

This lets you constrain the total level of

contrast within new limits that you can

shift away from the dark or the light end

of the scale as required.

Most of the time, you’ll make adjust-

ments in the combined RGB channel

(unless specific color correction is need-

ed). Once you’re happy with the set-

tings, you can save them for later use,

which is essential if you find that you

need to match the adjustments you

made earlier but neglected to write all

the values down.

Both contrast and level adjustments

also affect saturation. More often than

not, you’ll need to compensate for this

change by reducing the overall level of sat-

uration, so it is closer to its initial value.

Harness the Power

A ll in all, the power of today’s top

image-manipulation packages allows

the artist a huge amount of control when

converting an image into a texture. With

practice and experience, this process can

become quite rapid as you become famil-

iar with what works best and how to get

the result you’re looking for with the least

amount of pain. q

w w w . g d m a g . c o m 27

FIGURE 6a (left) AND 6b (right). Adjusting the levels of the initial image (6a) makes texture fea-
tures more clear and can reduce the flattening effects of in-game lighting (6b).

F O R M O R E I N F O R M AT I O N
Birren, Faber, and M.E. Chevreul. The

Principles of Harmony and Contrast of
Colors and Their Applications to the Arts.

Schiffer Publishing Ltd., 1987.

Sahawata, Lisa. Color Harmony Workbook: A
Workbook and Guide to Creative Color
Combinations. Rockport Publishers, 1999.

FIGURE 5. Blending modes lighten and dark-
en textures to help create depth and other
effects, but use with caution.

j u n e 2 0 0 2 | g a m e d e v e l o p e r28

I ’ve always said that the

videogame industry right now is

a lot like the film industry was in

the 1940s and ‘50s. We are a

young industry, one which is still

feeling out and incorporating new stan-

dards and methods each day — not only

in the creative arena, but in technical

and business aspects as well. Being in

audio for videogames over the last 11

years, I’ve heard all of the concerns,

complaints, and industry criticisms from

my fellow audio compadres.

In February 2002, several leading

audio professionals in the game industry

got together to form an organization

focused on promoting excellence in

interactive audio, and we officially

launched the Game Audio Network

Guild (G.A.N.G.) at GDC in March.

G.A.N.G. is a nonprofit organization

established to raise awareness of interac-

tive audio by providing education, infor-

mation, instruction, resources, publicity,

guidance, community, recognition, and

enlightenment not only to its members,

but also to content providers and listen-

ers throughout the world. G.A.N.G.

aims to advance the gaming industry by

helping produce more competitive and

entertaining products, while supporting

career development and education for

aspiring game audio professionals, pub-

lishers, developers, and students.

There is no evil plot purposely trying

to stomp on game audio. Developers

and publishers don’t secretly wish that

their audio will suck. The fact is that a

lot of times it’s just a matter of educat-

ing the masses, learning and sharing

from our past experiences, banding

together collectively as a group, and

acknowledging what needs to be fixed

and addressing the issues head-on. Why

is it that some of the best and most pop-

ular games we’ve ever played fell short

in the audio department? Why are the

dialogue and acting in some very big-

selling games out there so awful and

unbearable? Anyone else sick of that

one single footstep sound you too often

hear throughout an entire game? Not

only do we need to educate ourselves,

game audio professionals also need to

teach the up-and-comers as well as sup-

ply information and resources to profes-

sionals from other industries, such as

film, television, and music, so that they

too can accomplish great-sounding

audio for games.

This broad approach is why

G.A.N.G. is not meant to be a boys’

club for a select few. In addition to its

other goals and initiatives, G.A.N.G. is

establishing a variety of programs

including the annual G.A.N.G. Awards,

the G.A.N.G. Seal of Approval, and var-

ious membership levels which will all

help promote recognition and audio

quality to the game industry.

Let’s say that a publisher or developer

is thinking about putting live orchestra

into their game. Where do they go?

Whom do they contact? What is the

cost? What services are available? How

many instruments would they need?

What are the benefits? What are the

possible production pitfalls? Where can

they hear each of the orchestras they’re

considering? G.A.N.G. aims to provide

answers to these questions and other

quandaries. But G.A.N.G. isn’t just

about audio people, it can educate the

entire gaming industry. Perhaps once

developers see how well G.A.N.G.

works for everyone, other game makers

will form their own specific guilds:

artists, programmers, designers, produc-

ers, and even testers could benefit great-

ly from a sharing of their unique knowl-

edge and experience.

All Together Now

Companies such as Dolby and DTS

have already committed sponsorship,

time, and marketing resources to the

organization. In addition, all of the major

audio manufacturers are getting behind

G.A.N.G. because our goal is their goal:

improving audio. We have representatives

from Microsoft, Sony, and EA who sit on

our board of directors or who are

G.A.N.G. advisors and summit attendees.

Our mission statement and member

benefits are very ambitious, and we realize

it may take years to complete our goals.

But we have to start sometime with some-

thing. We are willing to start now and put

all of the time, energy, resources, money,

and knowledge into something we all

believe will benefit not only ourselves and

the gaming industry today, but also the

future generations of game makers. In the

meantime, we’re very interested to hear

from all videogame professionals to find

out how a professional guild such as

G.A.N.G. can help them as creators refine

and advance their art. q

Charting a Course for

t o m m y t a l l a r i c o

TOMMY TALLARICO | Aside from being the president of Tommy
Tallarico Studios Inc., Tommy is the host and co-producer of the
Electric Playground and Judgment Day television programs. He is
also the acting president and founder of G.A.N.G. You can contact
Tommy at tallarico@aol.com. For more information on G.A.N.G.,
see the G.A.N.G. web site at www.audiogang.org.

S O U N D P R I N C I P L E S

Game Audio

j u n e 2 0 0 2 | g a m e d e v e l o p e r30

Instead of another rule, this month

I’m doing something a little differ-

ent. I’m writing this column just

days after the conclusion of the

2002 Game Developers Confer-

ence, and several developments there bear

on The 400 Project and the idea of design

rules in general.

Hal Barwood and I gave a lecture this

year called “More of the 400: Discovering

Design Rules,” which covered the concept

behind the project and made the case for

design rules as a good tool for game

designers to improve the state of their

craft. We believe that design is a planning

process, where one proceeds from murk

to clarity, successively improving and

refining a concept. But the process is not a

mechanical or deterministic one, and it

requires knowledge of not only games and

production methodology, but also a keen

appreciation of human nature and a sense

of what is fun.

It’s essential that the human element be

considered and so we take a linguistic

approach, in part to avoid potentially

rigid software-engineering techniques as

the template for game design. Some rules

we propose can be bent, others can be

broken — but having a conscious appreci-

ation of what those rules are is an impor-

tant prerequisite to being able to bend or

break them and move toward order, not

chaos. Rules are tools that provide

instructions to the designer, not just obser-

vations on the nature of what has been

done previously. To be most useful, they

must be reasonably concrete and aimed at

practical use, not pure academic discourse.

One essential part of the format of

these rules is the concept of trumping, or

documenting how the rules affect each

other and showing how to determine

precedence when they conflict. This is a

tough chicken-and-egg problem, as it’s

hard to propose rules that contain trump-

ing information when there is no existing

list of proposed rules. But as regular read-

ers of this column have seen, we’re going

ahead anyway, proposing trumping infor-

mation based on the growing base of

rules, and using common sense where the

lack of comparable rules leaves a gap. If

you’ve been thinking of submitting a rule

but are stymied by the problem of deter-

mining trumps, don’t hesitate — better

that we reach critical mass first, and then

we go back and find the interconnections.

At this year’s GDC, we recapped the

four rules Hal proposed last year (the

original “Four of the 400” talk at GDC

2001) and explained six new ones, some

of which have been published in previ-

ous installments of this column. Some of

the new ones include “Emphasize

Exploration and Discovery,” “Let

Players Turn the Game Off,” and “Build

Subgames.” We found an increasing

number of rule overlap and conflict,

confirming the usefulness of focusing on

trumping information.

The quest for better ways to discuss

and design games was a common theme

at this year’s GDC. Other methods pro-

posed included design heuristics, a design

grammar, and several different approach-

es using design patterns based on archi-

tect Christopher Alexander’s works. We

had some fascinating discussions both in

the formal and informal venues of lec-

tures, roundtables, hallway conversa-

tions, and shop talk at parties. It’s far

beyond the scope of this column even to

summarize the wide range of ideas that

were proposed and debated, but I found

particular inspiration in Bernd

Kreimeier’s roundtable discussions on

design patterns. It was promising to see

the amount of agreement between the

different approaches, and I expect we’ll

see some convergence in the future. I’ll

continue to report on it in this column.

To conclude with a related anecdote

from GDC, I had the pleasure of attend-

ing the second of Steve Meretzky’s

roundtables on game addictiveness. He

had collected a number of suggestions

and observations about ways that games

have been made addictive in the past,

many of which would make good rules.

He also quoted some research on changes

in brain activity when people play games,

in particular referring to an article called

“This Is Your Brain on TETRIS” (Wired,

May 1994).

TETRIS was often cited (along with

CIVILIZATION in its various incarnations) as

a primary example of addictive game

design. In a moment reminiscent of the

scene in Annie Hall where Woody Allen

hears someone in line ahead of him pon-

tificating on Marshall McLuhan, and then

produces McLuhan from behind a corner

to refute the claim, Alexey Pajitnov him-

self appeared in midsession and defended

his conscious decisions to make TETRIS

addictive; he contended that the best

gameplay can be real quality time.

We’re still a young enough industry that

we have to strive to define and codify the

very techniques we use to create games —

but that very same youth means that

many of the trailblazers of our industry

are still available to reveal their own

thoughts and insights about their work. I

invite you to be a trailblazer yourself and

send in your own rules or thoughts on this

process to me. q

Game Design

n o a h f a l s t e i n

N O A H F A L S T E I N | Noah is a 22-year veteran of the game
industry. You can find a list of his credits and other information at
www.theinspiracy.com. If you’re an experienced game designer
interested in contributing to The 400 Project, please e-mail Noah
at noah@theinspiracy.com (include your game design background)
for more information about how to submit rules.

B E T T E R B Y D E S I G N

at GDC 2002

A s technology and production values have

changed, there’s been a rise of nostalgia in our

industry for the days of the garage developer.

Part of this is real nostalgia, but in other ways

it masks a very legitimate fear — the fear that

either our industry will become a cynical, uncreative corpo-

rate animal, or that it will become financially untenable.

As developers, we share this concern too. Nevertheless, hav-

ing had a unique opportunity in our nearly 30 years of com-

bined experience to observe the good and bad in game develop-

ment, we believe that it’s possible to build games in a fashion

that not only fosters the necessary creativity to create an excit-

ing game, but also goes a long way toward alleviating the cor-

porate risk that threatens to torpedo creativity along the way.

For lack of a better name, we’ve called our strategy

“Method.” Our Method is built on four keystones, which we’ll

describe one by one: the distinction between preproduction and

production, the “publishable” first playable, macro versus

micro design, and gameplay testing.

Preproduction vs. Production

W ith the notable exception of highly sequelized or serial-

ized games, the beginning of every project is primarily

concerned with looking for a lightning strike of inspiration. Just

as a musician uses a piano to compose a song, or a painter

begins with sketches and studies, game preproduction is about

creating a canvas on which to find the core concept or feature

that will set the game apart.

Preproduction is hard. In fact, preproduction is so much

harder than production that lots of teams just skip it, or give it

short shrift and head on into production. Our guess is that 80

percent of mistakes in game development are the direct result of

things done — or not done — in preproduction.

These mistakes often befall those who believe in one of what

we have identified as seven myths in game development:

Managing chaos. The division of pre-

production and production is as

much a strategic one as it is a

creative one. Preproduction is

certainly hard for the creative

people who are trying to invent

the game, but it’s also hard for

the management assigned to

shepherd the process along.

Planning is hard in preproduction

because it must be allowed to be a chaot-

ic process. You cannot plan when inspiration will strike, nor

can you schedule the date when you will have worked out all

your seemingly intractable problems. It’s not just a bad habit —

it’s impossible.

So if your schedules and charts are useless in preproduction,

how do you manage chaos?

First, assemble a core team. When faced with a chaotic situa-

tion, your inclination should be to find your smartest, most

experienced (and probably highest-paid) staff to comprise your

core team. This small core team (perhaps as few as four or five

people) will determine everything that’s important about your

game, and they will most likely go on to become your team

leaders during production.

Unfortunately, it’s a common habit to kick off the preproduc-

tion phase using junior people who are only available because

you can pull them off another project or because you just hired

them. In such a scenario you are entrusting your most valued

possession, your original game concept, to your least experi-

enced employees.

With your core team in place, the team must create succes-

sive prototypes. It’s important not to wait before you start mak-

ing a prototype. Take the pieces you have, however sketchy,

and build the best you can. Prototypes are where you learn.

The first prototypes will by necessity be simple and limited in

their ambition; however, the prototypes should become indistin-

guishable from game levels relatively quickly. Each of these

“real-level” prototypes brings together artwork, game mechan-

ics, and technology to show what could be an entire level of

Game Development
Myth vs. Method

M A R K C E R N Y & M I C H A E L J O H N | Mark Cerny has been working in the videogame industry for over 20 years, on games rang-
ing from MARBLE MADNESS to CRASH BANDICOOT and JAK & DAXTER. Michael John is a 10-year veteran of the game business, with credits
including the SPYRO THE DRAGON series. Mark and Michael have been working together since 1995 and are currently doing contract
design and production work for a number of clients as Cerny Games, Inc.

j u n e 2 0 0 2 | g a m e d e v e l o p e r32

M Y T H V S . M E T H O D m a r k c e r n y & m i c h a e l j o h n

MYTH #1: PLANNING
“It’s possible to plan and schedule the creation of your game.”

your game, if you were to finish it.

Which you won’t. Which brings up another myth:

At Cerny Games, we plan on five of these real-level proto-

types. This means that we discard four completed levels of our

game. Using the character-action genre as an example, these

games tend to have about 20 levels when completed — so we’re

talking about throwing out 20 percent of a game.

In fact, throughout preproduction you will not create any ma-

terial designed to be played by the public. If you are very lucky,

you might find a use for the best of your preproduction work.

But don’t count on it, and for

God’s sake don’t schedule

for it.

As a matter of fact, that’s

the second part of the defi-

nition of preproduction.

Building a game design. In

preproduction, it’s essential to

remember that you’re not making

a game — not yet. This sounds frus-

trating and difficult for developers, and to managers it sounds

half-assed and impossible to schedule. All of this is true. So

what are you doing during preproduction? Through your real-

level prototypes, you’re actually building your game design,

w w w . g d m a g . c o m 33

MYTH #2: PRODUCTIVITY
“Working productively means not throwing out good work.”

but not your actual game.

Game design at this stage should include at least the

following things:

• The three Cs: character, camera, and control. (The

three Cs we employ are somewhat specific to a character-

action game, but there are analogues in every genre. For

instance, you might replace “control” with “interface” in a

real-time strategy game, or “character” with “car” in a driv-

ing game.)

• Your game’s look.

• Completed key technology.

Looking at this list, you can see why preproduction is so dif-

ficult. Why then is all this so important to achieve before build-

ing the first level of the published product?

In order to get a game design worth building, you have to

take chances. You have to make best guesses at how your game

will work and try it out in as real a setting as you can put

together.

Taking chances during preproduction means finding yourself,

for example, building levels without complete knowledge of

your character’s move set, without knowing the real limits of

your technology, or without knowing the global context of the

piece of the game you’re working on.

These are all absolutely terrible things to be doing during

production and should be considered signs that your game is in

serious trouble. In preproduction, however, these are exactly

the kinds of things you want to be doing.

From a financial standpoint (which is also a metaphor for

what you’re doing inside the development team), this is about

spending money now to save money later. If you’ve ever can-

celled (or thought about cancelling) a project near completion,

wouldn’t you rather have done five prototype levels before fully

funding it?

It’s these kinds of managerial and financial concerns that lead

us to our next myth:

Milestones are wonderful during production; they allow you to

break down the game into manageable chunks and set deadlines to

track your progress. Having said that, milestones should not exist

during preproduction.

Preproduction is chaotic, somewhat disorganized, and does-

n’t produce predictable results. And yet we often see and hear

of expectations for teams in preproduction to produce view-

able, playable milestones for internal or external review.

Once a game’s in full production, it’s not too tricky to bring

all aspects of the game together for a milestone. In preproduc-

tion, on the other hand, not only will a milestone have little

resemblance to the real product, milestones do significant dam-

age to the preproduction process. In preproduction, the effort

put into generating a viewable milestone is expressly subtracted

from effort that could have been put into preproduction of the

game itself.

Simply put, a team in preproduction

should be considered “offline” when it

comes to formal deliverables. This situ-

ation puts managers in a quandary:

How, without formal product reviews, can

preproduction be responsibly managed?

As a start, adhering to the strict discipline of a

publishable first playable keeps pressure in the right place on a

preproduction team. In addition, there can be a prenegotiated

term for preproduction, a limit on how long it can continue. If

the production team is not making progress, continued experi-

mentation doesn’t benefit the team, the game, or the publisher.

Making experimentation results visible is another way of

managing preproduction. Although traditional milestones can’t

be scheduled, the team will be in a rapid prototyping cycle,

with all the parts for a brand-new experiment being assembled

and demonstrable every month or two, ready to be shown to

responsible parties in a semi-formal setting. Timing of these

builds of the game must be determined by the natural flow of

the work, not by an external schedule; this is a critical point in

reviewing experiments.

Achieving such a level of trust between publisher and devel-

oper or management and an internal team is not easy.

Management must understand that rough results —

and failures — are a natural part of the pre-

production experience, and teams must

understand that publishers are going

out on a limb when they support

development without deliverables.

Ready (or Not):
First Playable

Two deliverables mark the end of preproduc-

tion: a macro design document (discussed a bit later) and a

“publishable” first playable.

The definition of first playable can be slippery at best, and is

often abused. Sometimes it is designated as complete much too

early; other times it’s postponed seemingly indefinitely. In both

cases the effect is the same:

Failing to define the game fully before real levels are built is

among the worst things a team can do. Taking a “What, me

worry?” attitude toward first playable can lead to a game that

is not defined all the way up to alpha (we’ve seen this disaster

scenario with our own eyes).

To avert this situation, we define first playable as publish-

able. It’s when you can look at your playable game and say, “I

know exactly what this game is, and I know exactly how I’m

going to build it, and it’s really, really good.”

So how do you determine whether your first playable deliver-

able is “publishable”? First, it should have at least two levels,

j u n e 2 0 0 2 | g a m e d e v e l o p e r34

M Y T H V S . M E T H O D

MYTH #3: MILESTONES
“Frequent project review is essential to good management.”

MYTH #4: ALPHA = FIRST PLAYABLE

and those levels should demonstrate the variety that will be

present in the game. Very few games can succeed without an

alluring sense of variety; your first playable should demonstrate

how your game will clear this hurdle.

Second, the first playable should pass a number of sniff-tests

to show that your game is sufficiently compelling

to be marketable 12 to 18 months in the

future, when it’s completed. Your look,

your gameplay, and your technology

all must be of such quality that an

uninitiated consumer will look at it

and be impressed enough to

believe that it’s a level from a com-

mercial product.

If you think you have a first

playable in hand, here’s a checklist to

see if you have two (or more) levels of

publishable quality:

• Player behavior fully defined

• Basic technology done

• Enemy/obstacle behavior fully defined

• Art direction in place

• All local features included, with global features included as

required

• A touch of variety

• Scope of game defined.

One of the great benefits of a rigorous first playable is that

constructing a project schedule from it becomes almost trivial.

Having constructed a couple of “real” game level prototypes,

you will have gained a very good idea of how long it takes to

put one together. The first playable also gives a firm idea of

what the scope of the game will need to be.

Finally (and this is a bit of a religion with us as you’ll see later

in the “Game Testing” section), first playable represents your

first opportunity to put the game in front of your consumers in

a gameplay-test context. Do this. Note in detail how your play-

ers pick up the controls, whether they struggle with the camera,

whether it’s too easy or too hard, and whether they find it com-

pelling. If something is seriously wrong, you will know. And if

anything is wrong, now is the time to fix it, not later.

A time to kill. All of this discussion of first playable presumes

that your game is coming along well. That may not be true.

What if, after months of effort, you realize you’re not going to

get to the bottom of that checklist? Or perhaps you did and the

game bombed in the hands of consumers. This brings us to our

next myth:

Actually, sometimes a cancelled project is something you

should be proud of. Regardless of the talent of the team, if you

can’t reach a compelling first playable, it’s time to kill the proj-

ect and move on. You just saved several million dollars, and

perhaps more importantly, a year of a good team’s lives.

But how do you know when to stop a project? Unlikely as it

sounds, it’s very common to discover that the team simply can-

not assemble everything required for a publishable first

playable. If so, cancel, because if you can’t get past the logistics

of assembling two polished levels, you certainly can’t make an

entire game.

Another cancellation scenario is that you diligently create

your publishable first playable and discover that you have a

game not worth publishing. Canceling a project at this

point is a very hard call, especially due to the emotional

investment of all involved. But do it anyway. This

harkens back to a central thesis underlying Method:

that your project will not miraculously get better dur-

ing production. You must compare your first playable

with published products in your category, and your first

playable has to be better than those are.

Macro vs. Micro Design

S plitting the design into two components, the macro and the

micro, is the third keystone of Method. The macro design

is completed by the end of preproduction, whereas the micro

design is created during production.

This methodology is the result of one of the most dangerous

myths in game development:

This myth sometimes takes the more insidious form of “I need

a 100-page document describing my game.”

Forget that. Not only do you not need a 100-page document

to start your game, you don’t need such a document ever.

Cerny Games has a reputation in certain circles as being anti-

documentation. We consider this a badge of honor. Sitting

down and writing a 100-page design document is the worst

thing you can do to kick off your preproduction.

There are myriad reasons not to start with this document,

but here are a few favorites:

• It’s a waste of resources (including trees).

• It’s deceptive — you appear to have a far more evolved idea

than you could possibly have.

• You risk setting direction prior to real-world establishment of

gameplay fundamentals.

• And most importantly, to quote Masaya Matsuura, creator of

PARAPPA THE RAPPER: “Anything I could just write down on a

piece of paper couldn’t be fun!”

Macro design. Once you’ve finished preproduction, however,

you should have a macro design document; in our Method, this

document runs about five pages and includes (using a character-

action game as an example):

• The character and move set

• Any exotic mechanics planned

• Description of level structure, size, and count

• Level contents

w w w . g d m a g . c o m 35

MYTH #5: KILLING GAMES IS BAD
“A cancelled project is a sign of bad management or a bad team.”

MYTH #6: DESIGN DOCUMENTS
“The more defined your initial vision, the better.”

• Overall structure (linear, hub, and so on)

• The “macro chart,” a one-page chart that

shows all the game’s dependencies and dis-

tribution of various mechanics and game-

play elements.

This document will be your roadmap for

the production phase of development. It serves

as the basis of scheduling for the production

phase and keeps the game consistent throughout the

time that it will take to finish the game.

There are a few more things that may be appropriate to have

at the end of preproduction, such as story or conceptual art.

These should be considered addenda and do not change the

basic structure of the macro design document.

Micro design. On the flip side of development is the micro

design. Micro design is strongly distinguished from macro design

in that it’s not represented by a document. Rather, micro design

is the day-to-day work of the designers during production.

Micro design, which includes level maps, enemy descriptions,

mini games, and the like, is best done on the fly. Why? Two

reasons: First, if you believe that the micro design must wait for

the completion of preproduction, then creating documentation

at that point would mean the ridiculous act of putting the rest

of the team on ice while the designers create documentation.

Not likely.

More importantly, though, even after completing preproduc-

tion, you will continue to learn things during production —

certain techniques, cameras, and gameplay types that work bet-

ter than others. So long as you have a solid macro design and

follow it, you can advance the state of the art for your game

during production with confidence that you will not break the

continuity or consistency of the experience.

Gameplay Testing

L et’s go on to the final keystone of Method, gameplay test-

ing, and its corresponding myth:

If you want to find out what features to put in your game,

or what type of game you should make, the last thing you

should do is conduct a focus test.

We can sometimes be cavalier about our terminology when

we discuss focus tests and gameplay tests. In our Method, we

shun focus tests like week-old bread; meanwhile we attend to

gameplay tests as we would to gospel.

Focus tests: Learn to say no. Humans are pack animals. If you

don’t believe this, then you haven’t been to a moderated focus

test. Focus tests inevitably devolve into popularity contests —

popularity among those in the room and also popularity of

ideas currently out there in the culture. So, here’s a quick list of

all the things you’ll learn in a focus test:

• What’s popular as of about 10 minutes ago

• How not to stand out

• The feature list of every game that was pretty

good.

Are focus tests completely useless? Absolutely not.

However, we believe in one very simple principle

regarding focus tests: A focus test can only tell you

what not to do. Sometimes, that’s incredibly useful.

Gameplay testing: Your most vital feedback. While we

may not be great fans of focus testing, gameplay testing with

consumers is the last of our four keystones of Method. No game

should be released without having been formally and extensively

gameplay-tested during at least two points in the development

process, and perhaps four or five.

Gameplay testing is simply putting your game in front of

consumers — mostly the same consumers to whom you expect

to sell your game — and watching them play. We may not trust

what consumers say in focus testing, but we trust completely

what they do in gameplay testing.

Gameplay testing should also be

analyzed quantitatively as well as

subjectively. You need to be able

to derive statistics from your

gameplay tests that allow you to

tune your gameplay with a very

high degree of precision. At the

same time, however, it’s best not

to get too enamored with your sta-

tistics. What you believe represents

fun is almost always wrong. That’s why

it’s so important to be in the same room with

the game players as they do their test. You can learn a lot from

body language, and even though your compiled statistics can

show how many times the players died, they can’t tell you

whether the players were enjoying themselves or hating life.

The Process Is Part of the Product

Is it possible to follow all the principles of Method on a game

project? Yes. However, it requires both the publisher and the

developer to commit to these principles. The publisher must be

willing to accept a high degree of uncertainty and trust during

the preproduction phase and exercise a decisive will to finish or

start over when preproduction comes to a close.

The developers must hold up their end of the bargain too.

They must commit to creating a meaningful first playable, to

being transparent during their chaotic preproduction, and to

submitting to time-consuming (and somewhat scary) gameplay

testing multiple times during production.

That’s our Method. It’s a system we’ve identified and

refined over years of making games. Is it a guarantee of suc-

cess? Not even close. Games are too unpredictable and too

dependent on creativity and inspiration, but we wouldn’t have

it any other way. q

j u n e 2 0 0 2 | g a m e d e v e l o p e r36

M Y T H V S . M E T H O D

MYTH #7: THE CONSUMER IS KING
“If you want to make a hit, listen to the consumer.”

Creating a C++
Scripting System

S C R I P T I N G

j u n e 2 0 0 2 | g a m e d e v e l o p e r40

e m i l d o t c h e v s k i

M ost of today’s games require some kind of

system to allow the game designers to pro-

gram the story of the game, as well as any

functionality that is not general enough to be

directly supported by the AI or some other

system. Often, the scripting system of a game is also made

available to players for customization. Today it is not uncom-

mon for third-party companies to customize an existing game

to incorporate completely different gameplay, in part by chang-

ing the game scripts.

Depending on the game type, the best results are achieved

using different approaches to scripting. In environments that

have very well defined rules, such as RTS games, the most impor-

tant task of the designer is to achieve good balance between the

different units and resources, while also producing interesting

maps with features that clever players can use to their advantage.

Clearly, the scripting support for such games is focused on fast

and easy tweaking of the different parameters exposed by the

game engine, and is usually directly supported by the map editor.

Other games, for example many FPS titles, require very limit-

ed levels of customization. This is usually done by tagging

objects in the game editor.

And finally, many games are driven by complex enough logic

to require a complete programming language for scripting. In

some cases, developers have designed and implemented their

own programming languages to serve this need. To cut develop-

ment time, today most game companies opt to use existing pro-

gramming languages customized for their own scripting needs.

Scripting Languages

Most so-called scripting languages have one thing in com-

mon: they have been developed by a small team or even

a single person for the purpose of writing simple programs to

solve a particular, limited set of problems. By their very nature

they are not universal, yet many end up being employed

beyond their intended purpose.

Sometimes, “scripting language” simply means a program-

ming language used to write scripts. Indeed, people have suc-

cessfully used languages such as Java for scripting.

When selecting a scripting language for a game, chances are

that a developer will not find a language that matches the

desired functionality completely. At the very least, a developer

will have to design and implement an interface between the

game engine and the scripting language. The programming

language the developer chooses is just one of the components

— often not the most important one — of a scripting engine.

Using C++ for Scripting

One of the most important characteristics of C++ is its

diversity. Unlike many other languages that are efficient

for a particular programming style, C++ directly supports sever-

al different programming techniques. It’s like a bag of tricks

that allows many, often very different solutions to a problem.

Some of the C++ features — such as function and class tem-

plates — are so powerful that even the people who developed

and standardized them could not have foreseen the full spec-

trum of problems they can solve.

The idea of using C++ for scripting may seem strange at first.

Indeed, most people associate C++ with pointers and dynamic

memory management, which are powerful features but are

more complex to work with than what most game designers

would consider friendly.

On the other hand, C++ is the natural choice to program the

rest of the game in. If the scripts are also written in C++, then

integration with the rest of the code is seamless. In addition,

C++ is translated to highly optimized machine code. While speed

is rarely a problem for most game scripts, faster is always better.

Naturally, using C++ for scripting has some drawbacks.

Because it is a compiled (as opposed to interpreted) language, a

C++ program can’t be changed on the fly, which is important in

some applications. Also, C++ does not provide a standard for

plugging in program modules at run time, which makes it near-

ly impossible to expose the script for customization by users

(usually this is not an issue for console titles).

It’s important to create a safe and easy-to-use environment

for our scripts. The language used is a secondary concern,

because by their very nature scripts are simple and mostly lin-

early executed, with limited use of if-then-else or switch state-

E M I L D O T C H E V S K I | Emil is currently co-lead programmer at Tremor Entertainment on a soon-to-be-announced original Xbox
title. His previous work includes RAILROAD TYCOON II for Playstation and an enhanced 3D version for Dreamcast. Emil has an M.S. in
computer science from the Sofia University, Bulgaria. He can be reached at emil@tremor.net.

w w w . g d m a g . c o m

ments. In this article we will demonstrate how to use some

advanced C++ features to create a safe “sandbox” environment

for the scripts within our game code.

Creating a Safe Scripting
Environment

More often than not, programmers design a class hierarchy

to organize the objects that exist in the game’s digital

reality. For the purposes of this article, let us assume that our

game uses the classes whose partial declaration is given in

Listing 1.

Using C++ for script-

ing allows us to use

plain pointers for inter-

facing with the script

code. The main draw-

back of using pointers

is that they can point

to invalid memory. The

benefits are that point-

ers are directly sup-

ported by the language

and are very efficient.

Also, pointers make it

easy for programmers

to implement and later

extend the interface

between the scripts and

the game.

To eliminate the pos-

sibility for the script

code to access invalid

memory, the use of

pointers must be hidden from the scripts. In C++, we can do

this by organizing the pointers in a set container. Then we can

define functions and operations for working with entire sets of

(pointers to) objects. This neatly unifies the processing of one

or more objects and usually allows the scripts to not have to

handle empty sets as a special case.

For example, to represent a set of CGrunt objects (see Listing

1), we can use something like this:

std::set<CGrunt*> grunts;

Let’s also define a functor to expose the CActor::Attack func-

tion to the script:

struct Attack {

void operator()(CActor* pObj) const {

pObj->Attack();

}

};

Now we can use std::for_each with the function object

Attack to have all the grunts in the set use their attack func-

tionality:

std::for_each(grunts.begin(), grunts.end(), Attack());

The for_each template function is defined so that it can work

with any sequence of objects, which is a level of flexibility we

do not need. Instead, we can define our own version of for_each,

which for convenience we can simply call X (from Execute):

template <class Set,class Functor>

void X(const Set& set, Functor f) {

for(typename Set::const_iterator i=set.begin(); i!=set.end(); ++i)

f(*i);

}

Now we can simply say:

X(grunts, Attack());

It’s also possible to write functors that take arguments and

pass them to the function they call:

41

class CRoot {
virtual ~CRoot();

};

class CActor: public CRoot {
public:

bool HasWeapon() const;
bool HasArmor() const;
int GetHealth() const;
void SetHealth(int health);
void Attack();
...

};

class CGrunt: public CActor {
public:

...
};

class CAgent: public CActor {
public:

...
};

LISTING 1. An example class hierarchy.

S C R I P T I N G

struct SetHealth {

int health;

SetHealth(int h): health(h) {

}

void operator()(CActor* pObj) const {

pObj->SetHealth(health);

}

};

Now we can use the SetHealth functor like so:

X(grunts, SetHealth(5));

Predicates

Using function objects to perform actions on an entire set of

objects is a powerful feature by itself, but it becomes even

more powerful if we define another version of the X function

that allows us to call the function object only for selected

objects in a set:

template <class Set,class Pred,class Functor>

void X(const Set& set, Pred p, Functor f) {

for(typename Set::const_iterator i=set.begin(); i!=set.end(); ++i)

if(p(*i))

f(*i);

}

A predicate is a special type of function object that checks a

given condition. For example, we can define the following

predicate:

struct HasArmor {

bool operator()(const CActor* pObj) const {

return pObj->HasArmor();

}

};

Now we can write something like:

X(grunts, HasArmor(), Attack());

This will execute the Attack functor on the members of the

grunts set that are armored. Again, exposing the armor property

of objects of class CActor to the script is as easy as writing a sim-

ple predicate.

Type Predicates

In the preceding examples, because Attack::operator() takes

CActor* as an argument, the Attack functor can only be used

with sets of objects of class CActor. Because any object of class

CGrunt is also of class CActor, we can use the Attack functor with

a set of grunts too. But what if we have a set of objects of class

CRoot? It would be nice to be able to select only the objects of

class CActor and execute Attack on them.

To do this, we need our predicates to define an output_type.

Then we can design our system so that if an object passes a

predicate, we can assume it is of class output_type that the predi-

cate defines. For example, we could use the predicate IsActor

that checks if a given object is of class CActor:

struct IsActor {

typedef CActor output_type;

bool operator()(const CRoot* pObj) const {

return 0!=dynamic_cast<const CActor*>(pObj);

}

};

Note in this case that some compilers do not implement dynam-

ic_cast efficiently because it has to work in nontrivial cases such

as multiple inheritance and the like. Instead of dynamic_cast, we

could use a virtual member function to do our type checks.

We also need to modify the predicate version of our X tem-

plate function:

template <class Set,class Pred,class Functor>

void X(const Set& set, Pred p, Functor f) {

for(typename Set::const_iterator i=set.begin(); i!=set.end(); ++i)

if(p(*i))

f(static_cast<typename Pred::output_type*>(*i));

}

The output_type defined by our predicates makes it safe for the

X template function to use a static_cast when calling the functor.

Now, if we have a set of objects of class CRoot, we can write:

X(objects, IsActor(), Attack());

Complex Predicates

So now we have seen how to use predicates to execute a functor

on selected objects from a given set of objects. But what if we

want to combine multiple predicates to select the objects we need?

Generally speaking, it’s easy to combine multiple simple

predicates in a single complex predicate that our X function can

check. As an example, let’s define a predicate called pred_or:

template <class Pred1,class Pred2>
struct pred_or {

Pred1 pred1;
Pred2 pred2;
pred_or(Pred1 p1, Pred2 p2): pred1(p1),pred2(p2) {
}
bool operator()(const CActor* pObj) const {

return pred1(pObj) || pred2(pObj);
}

};

To make it possible to use pred_or without having to explicit-

ly provide template arguments, we can define the following

helper function template:

template <class Pred1,class Pred2>

pred_or<Pred1,Pred2> Or(Pred1 p1, Pred2 p2) {

return pred_or<Pred1,Pred2>(p1,p2);

}

j u n e 2 0 0 2 | g a m e d e v e l o p e r42

With the Or function template in place, we can use pred_or to

combine the HasArmor and the HasWeapon predicates:

X(grunts, Or(HasArmor(),HasWeapon()), Attack());

But wait, why did we define pred_or::operator() to take

CActor*? This is not ideal, because we want pred_or to be able to

combine predicates that take objects of different classes. In

addition, our X function requires us to define an output_type.

What is the output_type for pred_or?

Let’s extend our system to require that the predicates define

not only output_type but also input_type, which is the class of

objects the predicate can be checked for. With this in mind, let’s

define pred_or as shown in Listing 2.

For this to work, we need two helper template classes,

select_child and select_root. We see how they work later, but for

now let’s just assume the following: select_root<T,U>::type is

defined as the first class in the class hierarchy that is common

parent of both T and U, or as void if T and U are unrelated. For

example, select_root<CGrunt,CAgent>::type will be defined as CActor.

select_child<T,U>::type is defined as T if T is a (indirect) child

class of U, as U if U is a (indirect) child class of T, or as void other-

wise. For example, select_child<CRoot,CGrunt>::type is defined as

CGrunt, while select_child<CGrunt,CAgent>::type is defined as void.

Indeed, for pred_or::operator() to return true, either the first

or the second predicate should have returned true. Since we

do not know which predicate returned true, our output_type is

the root class of the output_types defined by the Pred1 and Pred2

predicates.

Similarly, because Pred1::operator() takes objects of class

Pred1::input_type, and Pred2::operator() takes objects of class

Pred2::input_type, pred_or::operator() must take objects that are

of both class Pred1::input_type and class Pred2::input_type. This is

why we need select_child.

Now let’s define pred_and as shown in Listing 3. Here, the

static_cast is justified because C++ always evaluates the left side

of operator&& first, and then evaluates the right side only if the

left side was true — and we know that if an object passes Pred1,

it is of class Pred1::output_type.

Let’s extend the definition of HasArmor to define input_type and

output_type as required:

struct HasArmor {

typedef CActor input_type;

typedef input_type output_type;

bool operator()(const input_type* pObj) const {

return pObj->HasArmor();

}

};

Now, if we have a set of objects of class CRoot, we can do

something like this (assuming we have defined a function tem-

plate And similar to the function template Or):

X(objects, And(IsActor(),HasArmor()), Attack());

We can even combine pred_and and pred_or in an even more

complex predicate expression:

X(objects, And(IsActor(),Or(HasArmor(),HasWeapon())),

Attack());

To complete our set of complex predicates, let’s define

pred_not. Because not satisfying a predicate does not give us any

additional information about an object, pred_not::output_type is

the same as its input_type:

template <class Pred>
struct pred_not {

typedef typename Pred::input_type input_type;
typedef input_type output_type;
Pred pred;
pred_not(Pred p): pred(p) {
}
bool operator()(const input_type* pObj) const {

return !pred(pObj);
}

};

Besides being powerful, the complex predicates we defined

are also type-safe. Consider the following example:

X(objects, Or(IsActor(),HasArmor()), Attack());

j u n e 2 0 0 2 | g a m e d e v e l o p e r44

LISTING 2. Defining pred_or. LISTING 3. Defining pred_and.

template <class Pred1,class Pred2>
struct pred_and {

typedef typename Pred1::input_type
input_type;

typedef typename select_child<
typename Pred1::output_type,
typename Pred2::output_type>::type

output_type;
Pred1 pred1;
Pred2 pred2;
pred_and(Pred1 p1, Pred2 p2): pred1(p1),pred2(p2) {
}
bool operator()(const input_type* pObj) const {

return pred1(pObj) &&
pred2(static_cast<const typename

Pred1::output_type*>(pObj));
}

};

template <class Pred1,class Pred2>
struct pred_or {

typedef typename select_child<
typename Pred1::input_type,
typename Pred2::input_type>::type

input_type;
typedef typename select_root<

typename Pred1::output_type,
typename Pred2::output_type>::type

output_type;
Pred1 pred1;
Pred2 pred2;
pred_or(Pred1 p1, Pred2 p2): pred1(p1),pred2(p2) {
}
bool operator()(const input_type* pObj) const {

return pred1(pObj) || pred2(pObj);
}

};

S C R I P T I N G

If used with our class hierarchy, the above example will not

compile. This is because if an object passes the predicate, it may

or may not be of class CActor, and the compiler will generate a

type mismatch error when trying to call HasArmor::operator().

However, if we used And instead of Or, there would be no com-

pile error due to the static_cast in pred_and::operator().

Predicate Expressions

So far, our predicate system is pretty powerful, but nested

predicate expressions are not fun. We need to be able to use

a more natural syntax. For example, instead of

X(objects, And(IsActor(),HasArmor()), Attack());

we want to be able to write:

X(objects, IsActor() && HasArmor(), Attack());

The obvious solution to this problem is to overload the opera-

tors we need for predicates. For the system to work, we need to

overload the operators in a way that can be used for any predi-

cates, including custom predicates defined further in our project.

However, if we define operator&& the way we earlier defined

the Or function template, it would be too ambiguous — we

need a definition that the compiler will consider for predicates

only. To achieve this, we need some mechanism to distinguish

between a predicate and any other type. One way of doing

this is to have all our predicates inherit from this common

class template:

template <class T>

struct expr_base {

const T& get() const {

return static_cast<const T&>(*this);

}
};

For example, let’s define pred_and like this:

template <class Pred1,class Pred2>

struct pred_and: public expr_base<pred_and<Pred1,Pred2> >{

...

};

With this trick, we can overload operator&& like so:

template <class Pred1,class Pred2>

pred_and<Pred1,Pred2>

operator&&(const expr_base<Pred1>& p1, const expr_base<Pred2>& p2) {

return pred_and<Pred1,Pred2>(p1.get(),p2.get());

}

Following this pattern, we can overload operator || and

operator !. Now we can build Boolean predicate expressions

that follow the natural C++ syntax, while also taking advantage

of the operator precedence defined by the language.

This technique of building an expression tree through opera-

tor overloads is commonly known as Expression Templates (see

Veldhuizen in For More Information).

Numerical Predicates

P redicates are usually defined as Boolean functions, but we

can extend our definition of predicate to include numerical

predicates. This is useful for exposing non-Boolean properties of

objects. For example:

struct Health {

typedef CActor input_type;

typedef input_type output_type;

int operator()(const input_type* pObj) const {

return pObj->GetHealth();

}

};

Of course, the predicate version of the X template function

treats all predicates as Boolean. We can use the Health predicate

directly, but then we would only be able to check if the health of

an actor is not 0 (or we can check for 0 if we use pred_not).

Obviously, we need to be able to check for other values as well.

So, we can define the following predicate:

template <class Pred,class Value>

struct pred_gt: public expr_base<pred_gt<Pred,Value> > {

typedef typename Pred::input_type input_type;

typedef typename Pred::output_type output_type;

Pred pred;

Value value;

pred_gt(Pred p, Value v): pred(p),value(v) {

}

bool operator()(const Pred::input_type* pObj) const {

return pred(pObj)>value;

}

};

Similarly to the case of pred_or, pred_and, and pred_not, we can

overload the > operator to provide access to pred_gt:

template <class Pred,class Value>

pred_gt<Pred,Value>

operator>(const expr_base<Pred>& p, Value v) {

return pred_gt<Pred,Value>(p.get(),v);

}

Now, we can do something like:

X(grunts, Health()>5, Attack());

This will execute the Attack functor only on the objects with

health greater than 5. As any other predicate that defines

input_type and output_type, we can combine pred_gt in complex

predicate expressions. For example:

X(objects, IsGrunt() && (Health()>5 || HasArmor()), Attack());

Following this pattern, we can overload all other comparison

operators: <, >=, <=, ==, and !=.

j u n e 2 0 0 2 | g a m e d e v e l o p e r46

S C R I P T I N G

Additional Set
Operations

T he predicate expression system we just

described is the core of our scripting sup-

port, but we still need to write some addition-

al functions to make it easy to work with sets.

Table 1 shows some additional function tem-

plates that we may find useful to define.

In addition, it is convenient to define opera-

tor functions for set intersection (*,*=), set union

(+,+=), and set difference (-,-=). All of these func-

tions can be defined as templates for maximum

flexibility.

Integration with the
Game

W e have a powerful system to manipu-

late sets of objects, but to be able to

do anything with it, we need to define the

interface between the script and the game.

For example, it could be appropriate to

define a class that is the root of all scripts:

class CScriptBase {

public:

void RegisterObject(CRoot* pObject);

void RemoveObject(CRoot* pObject);

virtual void Tick(float deltaTime)=0;

...

protected:

set<CRoot*> m_Objects;

set<CRoot*> CheckArea(const char* areaName);

...

};

The public section of our class contains functions that the

game can execute. RegisterObject is called from the constructor

of CRoot whenever a game object is created. The task of

RegisterObject is to filter out any objects we do not want the

script to have access to, and include all other objects in the

m_Objects set which is accessible by the script. Similarly,

RemoveObject is called from the destructor of CRoot to make sure

m_Objects does not contain pointers to invalid objects. The game

also calls Tick on each frame to let the script do its job. We can

continue along these lines, but obviously there is not much the

game has to know about the script.

The protected section of our class has functions that the child

script classes can use to query the game for information. All

such functions are implemented by CScriptBase. In our example,

CheckArea will check a named area in the level for any objects

and return a set that contains them. Once the script has the set,

it can use the predicate system to get the information it needs.

For example, to check if the player has advanced to a given

area, we can do something like this:

if(Any(CheckArea(“Area1”),IsPlayer()))

SignalPlayerIsInArea1();

Besides query functions, it is also useful to define functions

that make it easier for the script to perform common tasks.

This could include, for example, the ability to register a mem-

ber function of the script for automatic periodic execution.

Defining Additional Templates

T o operate properly, our predicate system depends on the

select_root and select_child templates. The C++ language

does not provide direct support for something like that, but we

can trick the compiler into doing what we need with some meta

programming.

We will need to associate a numerical identifier with each

class of our class hierarchy. To do this, we can define the fol-

lowing templates:

template <class T>

struct get_id {

enum {value=0};

};

template <int ClassID>

struct get_type {

typedef void type;

};

To associate identifiers with classes, we simply define explicit

specializations of get_id and get_type. For example:

w w w . g d m a g . c o m 47

TABLE 1. Some additional functions that enhance usability of sets.

All(set,predicate)

Num(set)

Num(set,predicate)

Any(set)

Any(set,predicate)

FirstFew(set,count)

FirstFew(set,predicate,count)

Some(set,count)

Some(set,predicate,count)

Returns a set that contains all the elements of the input
set that satisfy the predicate

Returns the number of elements in the set

Returns the number of the elements in the set that
satisfy the predicate

Returns true if the set contains at least one element,
false otherwise

Returns true if the set contains at least one element that
satisfies the predicate

Returns a set that contains the first count elements of
the input set

Returns a set that contains the first count elements of
the input set that satisfy the predicate

Returns a set that consists of count random elements
from the input set

Returns a set that consists of count random elements
from the input set that satisfy the predicate

template<>

struct get_id<CGrunt> {

enum {value=30};

};

template<>

struct get_type<30> {

typedef CGrunt type;

};

Now, get_id<CGrunt>::value evaluates to 30, and

get_type<30>::type evaluates to CGrunt.

In addition, let’s define the following template:

template <class T>
struct tag {

typedef char (&type)[get_id<T>::value];
};

For a given class T, this template defines a reference to a char

array the size of the numerical identifier associated with T.

Finally, to continue our CGrunt example, let’s declare the fol-

lowing function:

tag<CGrunt>::type caster(const CGrunt*,const CGrunt*);

Note that we only declare this function. We do not provide a

definition.

For select_root to work, all of the classes in our hierarchy

must be properly registered by providing explicit specialization

of get_id and get_type, plus a declaration of the caster function.

This is best done using a macro:

#define REGISTER_CLASS(CLASS,CLASSID)\

template<> struct get_id<CLASS> { enum {value=CLASSID}; };\

template<> struct get_type<CLASSID> { typedef CLASS type; };\

tag<CLASS>::type caster(const CLASS*,const CLASS*);

Now let’s register CRoot, CActor, CGrunt, and CAgent by invoking

the REGISTER_CLASS macro, using a different numerical identifier

for each class:

REGISTER_CLASS(CRoot,10)

REGISTER_CLASS(CActor,20)

REGISTER_CLASS(CGrunt,30)

REGISTER_CLASS(CAgent,40)

With the classes properly registered, the select_root template

can be defined like this:

template <class T,class U>

struct select_root {

enum { ClassID=sizeof(caster((T*)0,(U*)0)) };

typedef typename get_type<ClassID>::type type;

};

Now let’s follow what happens when we use select_root with

CGrunt and CAgent (this is all done at compile time):

typename select_root<CGrunt,CAgent>::type* pObj;

We have invoked the REGISTER_CLASS macro for CRoot, CActor,

CGrunt, and CAgent. As a result, now we have the following func-

tion declarations:

tag<CRoot>::type caster(const CRoot*,const CRoot*);

tag<CActor>::type caster(const CActor*,const CActor*);

tag<CGrunt>::type caster(const CGrunt*,const CGrunt*);

tag<CAgent>::type caster(const CAgent*,const CAgent*);

In our select_root template, we define ClassID as the size of

the type returned by caster((T*)0,(U*)0). In our example, T is

CGrunt and U is CAgent. Since we have not declared a version of

the caster function that takes CGrunt* and CAgent*, the compiler

automatically picks the best match from the ones we did

declare, which is:

tag<CActor>::type caster(const CActor*,const CActor*);

This defines ClassID as sizeof(tag<CActor>::type). If you recall

how the tag template was defined, tag<CActor>::type is a refer-

ence to a char array of size get_id<CActor>::value. Since

get_id<CActor>::value is 20, select_root<CGrunt,CAgent>::ClassID

will also be 20. Now we simply use get_type<ClassID>::type to

retrieve the class the number 20 identifies, which is CActor.

So, if we return back to our example,

typename select_root<CGrunt,CAgent>::type* pObj;

pObj will be defined as pointer to object of class CActor.

And finally, Listing 4 shows how we can define select_child.

Here, meta_if is a template that’s commonly used for meta pro-

gramming. I’ll skip its definition, but assume that meta_if<CONDI-

TION,T,U>::type is defined as T if the condition is nonzero, and as

U otherwise.

The implementation of select_root and select_child could be

simplified if C++ had compile-time typeof() fuctionality. The

emulation of typeof() through type registration used here was

first discovered by Bill Gibbons (see For More Information).

Safety and Performance
Considerations

One of the most important features of our scripting system

is that it is type-safe. Thanks to the input_type and

output_type each predicate defines, the compiler knows the class

of the objects that pass a given predicate expression and will

issue error messages if we try to use incompatible functors with

j u n e 2 0 0 2 | g a m e d e v e l o p e r48

template <class T,class U>
struct select_child
{

typedef
typename meta_if<

get_id<typename
select_root<T,U>::type>::value==get_id<T>::value, //if

U, //then
typename meta_if< //else

get_id<typename
select_root<T,U>::type>::value==get_id<U>::value, //if

T, //then
void //else

>::type>::type type;
};

LISTING 4. Defining select_child.

S C R I P T I N G

them. Predicate expressions that make no sense — for example,

IsGrunt() && IsAgent() — will not compile. In addition, predicate

expressions will benefit from the compiler’s expression short-

circuit logic.

To further improve safety, we can avoid using pointers in our

sets. In this case we can convert back to pointers just before we

call functors and predicates from our X function (or any other

helper function that works with sets). Note that only one con-

version to pointer per object occurs, regardless of how complex

the predicate expression we use is.

We can further separate the script and the game code by put-

ting them in their own namespaces. Thus we can control what to

hide from the script, and what to expose

by providing functors and predicates.

Most of today’s compilers will opti-

mize any of our predicate expressions to

inline code as if a programmer wrote a

custom if statement to check for the con-

dition of the predicate. This means that

the performance of our scripting system

depends mostly on the implementation of

std::set and the iterator classes it defines.

The C++ standard mandates that the

iterators of std::set are not invalidated

when adding or removing elements from

the set, which usually means that each

element of the set is allocated as individ-

ual heap block. Because the elements of

our sets are simply pointers, this trans-

lates to a waste of memory, increased

heap fragmentation, and overall slow

processing of std::sets due to cache

misses. In addition, copying a std::set of

pointers is a relatively slow and heap-

intensive operation.

Even if we do not do anything to

speed the system up, our scripts will

most likely execute faster than if we

used an interpreted scripting language.

Still, we can speed them up significantly

by using a custom allocator with the

std::set class template, or by designing

our own, faster set container.

Example Source Code

The source code available for down-

load at www.gdmag.com uses the

class hierarchy from Listing 1 to demon-

strate the ideas discussed in this article,

but it is a bit more complex because it

has added support for const and volatile

type modifiers. The code has been tested

and is compatible with Visual C++ ver-

sion 6 and 7, but should be compatible

with most of today's C++ compilers. q

w w w . g d m a g . c o m 49

A C K N O W L E D G E M E N T S

I would like to thank Peter Dimov for his help in implementing and
further enhancing the predicate expressions system described in
this article.

F O R M O R E I N F O R M AT I O N

T. Veldhuizen. “Expression Templates.” C++ Report Vol. 7, No. 5,
(June 1995) www.osl.iu.edu/~tveldhui/papers/
Expression-Templates/exprtmpl.html

B. Gibbons. “A Portable typeof Operator”
www.accu-usa.org/2000-05-Main.html

M EDAL OF HONOR: ALLIED ASSAULT (MOHAA)

is an example of how a small team can use

licensed technology to create a good game in

a reasonable amount of time. Starting with a

team of 11 developers, most of whom had

never worked on a full title, 2015 was able to generate excite-

ment for the game at E3 2001 and follow through with an on-

time completion and both critical and commercial success.

Early development on the project raised our publisher’s expecta-

tions and led to a tremendous push for a strong E3 demo.

Screenshot releases built up some hype for the game,

and our publisher seemed impressed with the milestone builds

they were circulating regularly. At E3, they turned a small view-

ing theater into a mock-up of a Higgins boat with netting and a

“loading ramp,” where MOHAA was shown to a long line of

people. Even after long waits to see the demo, people were

clearly enthusiastic about the game. The team was extremely

gratified that we could make that kind of impact among the

sensory overload of E3, and the expectations

2015’s MEDAL OF HONOR:
ALLIED ASSAULT

P O S T M O R T E M m i k e m i l l i g e r

j u n e 2 0 0 2 | g a m e d e v e l o p e r50

M I K E M I L L I G E R | Mike is the lead programmer at 2015.

and excitement generated there set the bar

for the rest of the project.

One of the most interesting times of

the project came right after E3. Our pub-

lisher sent Captain Dale Dye to 2015 “to

whip those bastards into shape.” Capt.

Dye is a war veteran who acted as the

technical director on many Hollywood

projects including Platoon, Band of
Brothers, and Saving Private Ryan.

Working with Capt. Dye felt like walking

into the first scene of Full Metal Jacket.
After an afternoon of being called mag-

gots and being forced to do push-ups for

saying “gun” instead of “weapon,”

Capt. Dye gave us the goods: K-factors of

historical weapons, realistic death anima-

tions, and tactics for our AI. He also

reminded us of and reinforced our goals

for realism in the design. He highlighted

the unrealistic nature of many game mis-

sions where play ends as soon as the last

task is accomplished, even if the player is

standing in the midst of a fully alerted

enemy base. Capt. Dye’s guidance led us

to stress the exfiltration as well as infiltra-

tion side of military operations, which

made our game levels more realistic as

well as more creative.

The daylong session ended in a debacle

that was kindly referred to as team-build-

ing exercises. Capt. Dye wanted us to do

70 atomic crunches in two minutes.

(Atomic crunches consist of everyone sit-

ting in a row linking arms to shoulders

and doing more sit-ups as

a group

w w w . g d m a g . c o m 51

G A M E D A T A
PUBLISHER: Electronic Arts

NUMBER OF FULL-TIME DEVELOPERS: 27
NUMBER OF CONTRACTORS: 2

LENGTH OF DEVELOPMENT: 19 months
RELEASE DATE: January 22, 2002

DEVELOPMENT HARDWARE USED: 800MHz
Pentium IIIs with GeForce 2 GTS cards

DEVELOPMENT SOFTWARE USED: Visual Studio,
3DS Max, Photoshop, in-house level editor

NOTABLE TECHNOLOGIES: QUAKE III engine, Ritual
level editing tools, LIPSinc technology

PROJECT SIZE: 469,646 lines of code, 659 files

than you could by yourself). I didn’t have

the heart to tell him that most of the guys

here at 2015 hadn’t done 70 sit-ups in

two years, much less two minutes.

The hours the team had to put in for

the E3 demo were not insignificant, and

alpha rolled around in no time, followed

even more quickly by beta. It was tough

to stay focused after the amount of time

we spent on the E3 demo, and the compa-

ny put in crazy hours on a weekly basis.

Fortunately, all the long hours paid off

— with the industry focus of the past cou-

ple of years being on multiplayer games,

whether massively multiplayer or mods of

popular older games of the past, it was

refreshing to be part of the resurgence of

the single-player experience. Our hard

work on the single-player game was

rewarded with feedback from some that

MOHAA was the best single-player game

since HALF-LIFE.

What Went Right

1. Level designer support.
Because of the importance 2015

places on gameplay, one of the most

important things we did was support the

designers of the game. We licensed tech-

nology specifically for designers and used

an editor that all of our designers were

familiar with. In our experience, designer

technology is just as important as the

game engine you choose to license. The

level design tools we used gave us a high-

er level of interactivity than what was

available in a clean QUAKE III code base.

Inside the game there were editing menus

available to set and modify particle sys-

tems, view and scrub animations, and

manipulate sound triggers and effects.

The most important feature we extend-

ed, and something that 2015 is now

known for, is the scripting system. We

heavily modified the scripting language to

enable the level designers unprecedented

control over events in the game. There

wasn’t anything that a

designer couldn’t do in the scripting sys-

tem that a programmer could do in code.

A designer could micromanage complete

firefights and could simulate the AI system

in its entirety with our scripting system if

needed. We also implemented a design

technique called manvis, similar to the

concept of zones in UNREAL, which allows

the designers to set the visibility areas in

the level manually. This technique makes

our open-style levels possible — without

it, the popular Omaha Beach level could

not have been made.

2. Feature management.
Feature management is an inter-

esting part of the development cycle and

one of the hardest. Creative

individuals get attached to

their creations. This is a

natural tendency, one

that exists in all parts

of software engineer-

ing, not

just

games.

When we announced that the Bridge of

Remagen level had been cut and the

flamethrower had been axed, our fledg-

ling fan base was crushed. Without even

playing the game, some proclaimed that

our product was going to suck. The risk

of sucking notwithstanding, we decided

to cut features that weren’t going to be

up to the quality we demanded for our-

selves. If we couldn’t spend an adequate

amount of man-hours to make the best

flamethrower ever, then we would cut it

and focus on something else. If vehicles

appear in only one tenth of your game,

then don’t allocate more than that share

of a designer’s or programmer’s time to

make a robust vehicle dynamics system.

Two mediocre features will never equal

one good feature. We were able to esti-

mate our payoff early enough to adjust

our design and schedule to make these

decisions effective. We learned to pick

our battles and play to the strengths of

the game.

3. Licensing technology.
Licensing the QUAKE III engine

was another key to our success. Tom

Kudirka, our president, hired people that

were familiar with the QUAKE technology.

We were much more comfortable using

P O S T M O R T E M

j u n e 2 0 0 2 | g a m e d e v e l o p e r52

MEDAL OF HONOR: ALLIED ASSAULT’s level editor in action.

OpenGL as

the rendering API,

and it just made sense to

use this engine given our experience with

expansion packs for QUAKE-based games.

It gave us a stable build from which to

work and a couple of point releases’

worth of fixes by the time we started.

Licensing our technology allowed us to

begin work on more complex systems

right away. For example, we started

work on a skeletal animation system for

our characters, in addition to morph tar-

gets for facial animation. We also imple-

mented a terrain system into the indoor-

oriented QUAKE III engine using an edge

collapse strategy modeled after the

ROAM terrain algorithm. The unsung

hero may have been the Ritual toolset —

not as glamorous as licensing the QUAKE

III engine perhaps, but just as effective.

We are now convinced that it’s essential

for teams to know when to take advan-

tage of existing technology. Many people

believe the prime skills for game pro-

grammers are beginning to shift

to evaluating new technolo-

gy and choosing facets of existing tech-

nology rather than the ability

to write systems

from scratch. I

think it’s kind

of silly to write

whole engines

from scratch when

you can save the

man-hours and start

cranking out content for the

game immediately. Most new

engines built from scratch seldom

look as good as the mature licensable

ones anyway.

4. Publisher support. The

efforts of the small, original

core team won over our publisher with a

series of solid deliverables climaxing with

the E3 demo — by that point, they felt

they had a hit on their hands. After-

wards, our publisher moved the alpha,

beta, and gold dates forward to solidify

the game, but we never missed a due

date, and we always made an effort to

deliver high-quality milestones.

Our publisher also did an incredible

job with the sound. Most reviews gave

the highest marks to the award-winning

sound team that worked on the project.

We were also fortunate to get an engi-

neer and a designer sent from our publish-

er to help during the last couple of

months. The designer did most of

the animation scripts for the AI, which

enhanced the gameplay. The engineer

helped us track down bugs and nail down

default engine settings based on system

specifications.

Most importantly, our publisher pro-

vided quick feedback and approval of

milestones. We found this to be very

important to the quality of the title. I

have heard horror stories where develop-

ers don’t hear from their publisher for

months, only to then get a long list of

changes at the last minute. This type of

interaction hurts the quality of the game,

which reflects on all the parties involved.

5. A competing title. Many peo-

ple in the game industry view

competition as a bad thing. We took the

opposite view, and it fueled our drive for

making the best game we could. Going

up against RETURN TO CASTLE WOLFEN-

STEIN gave us something of an underdog

attitude. We were up against the legacy

of the grandfather of first-person shoot-

ers. The developers working on RETURN

TO CASTLE WOLFENSTEIN had a one-year

head start, the executive production

experience of id Software, and an experi-

enced group to handle multiplayer. We

were going against the champion, and we

were the challenger.

On the other hand, with the recent

success of the Band of Brothers book

and miniseries, the

World War II

j u n e 2 0 0 2 | g a m e d e v e l o p e r54

P O S T M O R T E M

realm was a gold mine of ideas, scenar-

ios, and resources, enough to support

two very similar games with different

themes (similar in the sense of the time

period and underlying technology). All in

all, we felt that the scope of World War

II could support both titles and that the

games were different enough to target

different audiences. World War II and

FPS fans would probably buy both.

Nonetheless, we still had the underdog

mentality that made us work harder.

Every time there were new movies or

screenshots of WOLFENSTEIN, we set out

to make our content look better and our

gameplay run smoother. In the end, our

assumptions proved correct: both games

did extremely well.

What Went Wrong

1. Art pipeline and tools.
Overall, there was a lack of art

asset management and accounting on the

project. We used an off-the-shelf product

for the code, but there really was no

good method of source management for

artists. Not surprisingly, this caused some

problems. We did look at some other

source control tools geared specifically

for content, but we found them to be

overpriced.

Additionally, there was poor tools

maintenance throughout the project. We

did not have a dedicated tools person

that would build the tools continuously

to make sure they still compiled and the

formats didn’t crash the game. We

changed the internal formats of our ani-

mations mid-project, and when we need-

ed to reexport our animation again, the

tools would not compile, so we had to

spend unscheduled time going and fixing

the tools.

We also had a data architecture that

was carried over from our licensed tech-

nology. The specific functionality should

have been removed and replaced with a

better system that allowed the content cre-

ators to spend their time making content

instead of editing text files. Over half our

animators’ time was spent editing level

text files that loaded specific animations

for that level. The system that we were

using is comparable to a programmer hav-

ing to make all the animations for a char-

acter before the programmer begins work-

ing on the animation system. It just does-

n’t make sense for a well-balanced team.

Our artists had no shader previewer.

They edited a text file and then fired up

the engine to see if a shader was what

the artist had envisioned. A previewer

would have saved many hours going

back into the engine just to see the

results. A smart GUI on top of the pre-

viewer would have allowed the artists to

make the shaders visually instead of

using an arcane, codelike shader lan-

guage. We plan to address this problem

immediately on 2015’s next project.

Seeing our artists produce good work

despite all they had to endure gave me

even more respect for them.

2. Assertions and profiling late
in project. Our experience

underlined the fact that a robust assertion

and profiling scheme should be imple-

mented as soon as possible. If you’re lucky

enough to get some time for preproduc-

tion, one of the first systems to be written,

besides a memory manager, is the func-

tionality to handle asserts, list the call

stack, file name, and line number. Even-

tually, we modeled our assertion system

after a popular system for tracking bugs.

Profiling came late as well, in a classic

case of putting the cart before the horse.

We had completed all of the base sys-

tems, then implemented the profiler. This

caused confusion as to where the actual

slowdowns were occurring. With a pro-

filer in place, any change in system func-

tionality can be immediately tracked and

bad design is more readily spotted.

There are tons of references and several

well-known, cheap, off-the-shelf pack-

ages for profiling. We wrote our own to

cut down on timing overhead but it was

unnecessary to do so.

An example of the costs imposed by

our lack of a profiling system would be

the continuous LOD system we added to

our models, which turned out to be

overkill. In retrospect, we should have

gone with a discrete system and cut out

the edge collapse calculations. Naturally,

this would have spared a large amount

of artist rework on poorly deforming

models. Our engine was CPU bound,

and we could have used the extra pro-

cessing for other systems. A profiling

system earlier in the project would have

P O S T M O R T E M

56 j u n e 2 0 0 2 | g a m e d e v e l o p e r

Allied soldiers sweeping the area.

given us indication and foresight to

avoid these problems.

3. Too aggressive a
schedule. When I

first made the engineering

schedule, our initial goal was

Christmas 2001. For better or worse, we

planned to go head-to-head with our

competition. However, an initial lack of

end-game focus in task implementation

wasted a great deal of our development

hours. We didn’t think through the AI

and vehicle systems early in the project,

and gameplay was late to mature, which

reduced level designer productivity.

While it turned into a death march,

we are proud of the accomplishments of

the game. There are some guys that lived

at the office, and if it weren’t for that

kind of dedication the game would have

never seen the light of day. While culling

out content and functionality to make

our gold date was, as I mentioned previ-

ously, ultimately a positive thing, it

meant that a lot of content and time was

wasted. We had planned to implement

stencil shadows, volumetric smoke sys-

tems, and pixel and vertex shaders but

never did. And with a short schedule like

ours, the man-hours that we took away

from the game to focus on the D-Day

demo really showed.

Even with these problems, we never

missed a milestone and always delivered

quality higher than what was expected of

us. We had the game prepared a month

before shipping and enjoyed a well-

deserved Christmas vacation.

4. Project leadership. Because

the team was small and rela-

tively inexperienced, our structure didn’t

include departmental leads at the begin-

ning of the project. We didn’t have a

mature process for development (espe-

cially at the beginning), and there was a

lack of engineering direction (we didn’t

even have passwords for our source con-

trol). At the time I wrote the technical

design document and made the schedule,

we had three engineers. Luckily, our only

animator had some programming experi-

ence, so we had to rely on him to write

the

founda-

tion of

our anima-

tion system. There was

simply an overall lack of cohesive vision

on the engineering side, so it was nice to

finally get a lead in the latter stages of

the project. We needed someone to pass

out the deluge of bugs from the testers,

communicate with the publisher about

the features that were doable, and spend

a lot of time talking with the producer

about features that needed to be cut.

Design focus was another major prob-

lem early in development. While our tech-

nology enabled us to work with many

types of gameplay, it made for an unbal-

anced experience. Levels in the game

wavered in intensity and really did not

build up to a final climax. There was no

one on the project to hold the vision for

the entire game, arrange the experience to

steer the intensity, and assign the work

accordingly. This led to a somewhat frag-

mented feeling for MOHAA. There was

just no overall consistency in the game.

5. No evolution of graphics
and burnout. Since I get to

write this article, I took the liberty of

reserving this last point for myself. There

was no evolution in our graphics engine,

which was a direct result of not having

engineering vision.

The QUAKE III rendering architecture

is very forward-thinking. When QUAKE

III shipped in late 1999, it targeted a

certain range of chipsets. But with hard-

ware TnL coming to the consumer mar-

ket after QUAKE III’s release and our

game shipping in 18 months, I thought

that evolving the engine to support a

higher range of graphics cards would be

the proper thing to do, but I felt like I

was alone in my desires. I had to put

my PC duties on hold to do a prototype

w w w . g d m a g . c o m 57

Level designer’s view of of the assault on Normandy Beach.

for a next-generation console that we

eventually put on hold to work on the

E3 demo. That time could have been

spent supporting vertex and pixel

shaders, register combiners, and hard-

ware TnL. That functionality would

have taken the game to the next level.

The last 10 percent of the project is

always the hardest. It’s easy to begin a

project and give it your all when every-

thing is brand-new. After the crunch of

E3 and the console project getting put

on hold, I was burned out. I could have

put in the extra time (beyond the crunch

we were already working) and rewritten

the renderer, but at this point in the

project, I just didn’t have the steam. On

this occasion, I felt like I let my team-

mates down. I’m the type of person who

learns more in defeat than victory, and I

now realize that making a game is not a

sprint, it’s a marathon.

The Road to
Experience

Iam not a guy who pretends to have

been around the game industry for

years. But with a lack of experience

comes a lack of jadedness, which has

been to my advantage in some respects.

For one, it’s given me a fresh perspective

on the process of creating MEDAL OF

HONOR: ALLIED ASSAULT.

Even though 2015 has only been

around for four years, with MOHAA

we managed to identify what is fun and

what people like. One of my favorite

books, Design Patterns (Addison-

Wesley, 1995), explains the difference

between an expert designer and an inex-

perienced one: “One thing expert

designers know not to do is solve every

problem from the first principles.

Rather, they reuse solutions that have

worked for them in the past. When they

find a good solution, they use it again

and again. Such experience is part of

what makes them experts.” Our compa-

ny has completely bought into this phi-

losophy for making games, and we will

continue to use our system and apply

our formulas in hopes of achieving more

best-selling titles in the future. q

P O S T M O R T E M

j u n e 2 0 0 2 | g a m e d e v e l o p e r58

Historical references made conceptualizing the look an easier task.

I ’m worried about the PC

gaming industry. For

years our sales have

significantly lagged

behind the

increases in home com-

puter penetration. Our

audience, while bigger

than it was 10 years

ago, seems like it is

made up of a fairly

uniform demographic.

With very few excep-

tions, we have not

successfully reached

beyond our core

gaming audience to

create new computer

gaming consumers.

Many of you reading this

are thinking, well, aren’t games as big

as Hollywood now? What is this fool

talking about? Well, our entire industry

might be as big as the North American

box office sales, but we aren’t anywhere

near as successful as Hollywood in total

revenues. PC games reach only a fraction

of their audience, and worse yet a tiny

fraction of the potential computer gam-

ing audience.

In many ways we have sown a crop of

marginalization that we now reap by a

series of behaviors that we could change.

I have assigned one of the seven deadly

sins to each these behaviors. Before you

get too outraged, I have to admit that I

have been guilty at one time or another

of all of these sins myself.

Allowing low-quality games to be
released on the unsuspecting public
(Greed). This is the most deadly of all

our sins as game developers. Team mem-

bers and product management need to be

much more vocal and active in this area.

Our names are going to be on

products we are not proud of if we

don’t stand up for the consumer before a

product that’s not ready for prime time

goes out the door. Shipping for financial

targets at the expense of damaging the

franchise value and burning first-time

consumers (ensuring they never buy

another computer game again) is self-

defeating.

Making games that only run on the lat-
est, greatest hardware (Envy). This ongo-

ing trend completely limits us to the most

dedicated gaming consumers, and actual-

ly discourages consumers from getting

involved in computer gaming. Far too

many consumers have been turned off by

purchasing a game only to find out that

their machine can’t run it. Or their

machine can run the game but the expe-

rience is so poor that they think the game

or their machine is broken. Designing

and shipping products that require the

latest drivers and hardware is a sure-fire

way to ensure that games remain a

hobby instead of a mass medium.

Making games that substitute
quantity of features for

gameplay (Sloth).
Too many games use

feature quantity as a

design theme. The

thought process seems

to be that if we make

a big enough game,

more people will find

something interesting

to play within it. This

is a lazy way to

design games.

Products that really

nail their core design

elements and make

them clean and seam-

less seem to be more suc-

cessful overall.

Making games too big, too com-
plex, and too long (Gluttony). One way

we try to beat the competition is by

equating bigger with better. If some com-

plexity is good, then more is better. If 40

hours of gameplay is good, then 100

hours must be better. If a large game

world is good, then a bigger one must be

better. While I like a bigger, longer, and

more complex game as much as the next

person, these are not innovative or cre-

ative design goals. People who have not

played dozens of games are not necessar-

ily impressed with bigger, longer, and

more complex games, as they don’t work

from the same the reference that the

hardcore audience does. In fact, a game

that has 100 hours of gameplay may

intimidate many consumers who can’t

imagine spending that kind of time on

their entertainment.

Making games only we want to play.
(Lust). While it is critical to have passion

for what we do, treating ourselves as the

S O A P B O X g o r d o n w a l t o n

j u n e 2 0 0 2 | g a m e d e v e l o p e r72

continued on page 71

Ill
us

tr
at

io
n

by
 S

co
t R

itc
hi

e

More Professionalism
Wouldn’t Hurt

(Or the Seven Deadly Sins of Computer Game Development)

core audience ensures we will only

appeal to hardcore gamers. Too often we

believe that if we lust after a game,

everyone else will too. As professionals

and (gasp!) artists, we should be expand-

ing the reach and impact of our medium.

While there is a place for elitist art with-

in a medium, typically it is the minority

of the output, since it caters to a very

limited audience. Strangely enough, our

industry has most of its output geared to

the gaming elite, not the broader poten-

tial audience.

Spreading the blame (Anger). Too many

of us blame problems with our games on

the elusive “them,” which pretty much

includes everyone except ourselves.

Favorite targets include the publisher,

management, marketing, and other team

members. I bet most of this anger is real-

ly anger at ourselves for not doing every-

thing in our power to make better prod-

uct before it ships.

Not letting players under the hood of our
games (Pride). Too often developers don’t

let players play with their games or game

worlds. We want them to play the game

the way we would. But historically those

games that let players add their creativity

by adding features or data to the game

extend their shelf life tremendously.

In order to preserve a healthy future

for computer gaming, we need tremen-

dously more focus on serving people not

currently involved in it. Game developers

have always enjoyed a challenge, and the

goal of making elegant yet highly accessi-

ble games is just as challenging (if not

more so) as making the games we do for

our current audience. q

S O A P B O X

w w w . g d m a g . c o m 71

G O R D O N W A L T O N | Gordon has
developed over two dozen games and has
managed the development of hundreds of
others. He is currently VP and executive
producer of THE SIMS ONLINE at Maxis.

continued from page 72

	04gameplan
	06saysyou
	08indwatch
	10prodrev
	16profile
	18innerp
	25artview
	28soundp
	30betterby
	32f-cerny
	40f-dotche
	50postmort
	72soapbox

	return:
	cover:
	cover2:

