
JUNE 2001

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N
L E T T E R F R O M T H E E D I T O R

I n recent years, the number of possi-
ble development platforms you can
work on has gone through the roof.
It’s a bit crazy, but it certainly is
nice to have options. Here’s a short

list of platforms you could create games for:
Xbox, Playstation 2, Gamecube, Indrema,
Game Boy Advance, Palm, Windows CE,
WAP, BREW, Java for Wireless, Synovial,
FOMA, WildTangent, Java for Web, Real
Arcade, Macromedia Shockwave, Adobe
Atmosphere, Windows, Macintosh, Linux,
and there are many others.

The recent IDSA “State of the Industry
Report 2000–2001” reveals that in the
American market, roughly 60 percent of
people regularly play interactive games.
But most people probably only have one or
two of the platforms above. How can you
maximize your audience?

Choose. When planning out your new
title, the first choice that you’ll likely make
is which platform category. Which plat-
forms would be capable of providing the
experience you envision, and how long will
it take to develop for that platform? For
example, if you’re an independent develop-
er you can probably write a Palm game on
your own, but an Xbox title would require
too much time to do well.

After identifying whether you’re target-
ing handhelds, consoles, the web, or what
have you, you’ll consider money (these two
decisions are actually interwoven). What is
the licensing arrangement on the specific
platforms you’re looking at? How many
units have shipped to the public?

Of course I’m greatly simplifying things,
but after considering the platform category,
licensing arrangements, and possibility for
sell-through, you’ll need to examine how
difficult it is to develop for the platform as
well as how easy it will be to make your
title cross-platform. Making sure your
game can be cross-platform is a serious
consideration, unless you have a sweetheart
deal with a particular platform manufactur-
er. Last month’s CHICKEN RUN Postmortem
is a perfect cross-platform example, with
the game appearing on PC, Dreamcast,
Playstation, and Game Boy Color.

Research the SDK. Doing research to
determine the technology available on

each platform is a challenge. For most
platforms you can easily access the avail-
able SDKs. But if you’re looking at con-
soles, you’re blindfolded. What do the
console SDKs offer? What technology is
available in the form of libraries that you
can take advantage of?

Holding the console SDK as a corporate
secret keeps power in the hands of the
console manufacturer, not the developer.
How can you compare SDKs? For that
matter, how might the SDK be improved
by the console manufacturer when they’re
creating it without direct knowledge of
what their competitors are doing?

The open flow of information encour-
ages innovation and competition. If you’re
working with a console manufacturer,
encourage them to share their SDKs more
freely. You’ll wind up with a better SDK as
a result, and you’ll be able to choose your
platform with eyes wide open.

This Month

K eeping in this spirit, our primary fea-
ture this month details how to make

sure your game will support Mac OS X.
Tim Wood from The Omni Group has
ported a number of marquee titles over to
OS X. He shares his suggestions on how to
make sure your game is easily portable to
support the Macintosh.

I’d also like to introduce a new face to
the magazine this month: Tito Pagán, senior
3D artist/animator from WildTangent, is
joining us in the Artist’s View column. Tito
has many titles under his belt and a unique
perspective on level design due to his archi-
tectural training. Mark Peasley has just
entered crunch mode on his project at Gas
Powered Games, so he and Tito are sharing
the column for a while.

Our Postmortem this month is the
much-anticipated PC title BLACK &
WHITE. Get Peter Molyneux’s take on
what went well and what went poorly
during the design of this massive game.

Open Your SDKs

600 Harrison Street, San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090 w: www.gdmag.com

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief
Mark DeLoura mdeloura@cmp.com

Senior Editor
Jennifer Olsen jolsen@cmp.com

Managing Editor
Laura Huber lhuber@cmp.com

Production Editor
R.D.T. Byrd tbyrd@cmp.com

Editor-At-Large
Chris Hecker checker@d6.com

Contributing Editors
Daniel Huebner dan@gamasutra.com
Jeff Lander jeffl@darwin3d.com
Tito Pagán tpagan@wildtangent.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Independent
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed WildTangent
Dan Teven Teven Consulting
Rob Wyatt The Groove Alliance

ADVERTISING SALES
Director of Sales & Marketing
Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218

National Sales Manager
Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Account Manager, Recruitment
Morgan Browning e: mbrowning@cmp.com t: 415.947.6225

Account Manager, Northern California
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Western Region, Silicon Valley & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Sales Associate
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Senior Vice President/Production Andrew A. Mickus
Advertising Production Coordinator Kevin Chanel
Reprints Stella Valdez t: 916.983.6971

GAMA NETWORK MARKETING
Senior MarCom Manager Jennifer McLean
Strategic Marketing Manager Darrielle Ruff
Marketing Coordinator Scott Lyon
Audience Development Coordinator Jessica Shultz
Sales Marketing Associate Jennifer Cereghetti

CIRCULATION
Group Circulation Director Catherine Flynn
Director of Audience Development Henry Fung
Circulation Manager Ron Escobar
Circulation Assistant Ian Hay
Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes
t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas
t: 650.513.4234 f: 650.513.4482
e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall
Corporate President/COO John Russell
CFO John Day
Group President, Business Technology Group Adam K. Marder
Group President, Specialized Technologies Group Regina Starr Ridley
Group President, Channel Group Pam Watkins
Group President, Electronics Group Steve Weitzner
Senior Vice President, Human Resources Leah Landro
Senior Vice President, Global Sales & Marketing Bill Howard
Senior Vice President, Business Development Vittoria Borazio
General Counsel Sandra Grayson
Vice President, Creative Technologies Philip Chapnick

Game Developer
is BPA approved

W W W . G A M A N E T W O R K . C O M
4

✎

A D I V I S I O N O F C M P M E D I A L L C

S A Y S Y O U
C T H E F O R U M F O R Y O U R P O I N T O F V I E W . G I V E U S Y O U R F E E D B A C K . . .

Writer Has Suggestions
for Dual Specialty

I very much appreciated Richard Rouse’s
recent Soapbox article in Game Devel-

oper (“What Ever Happened to the
Designer/Programmer?” April
2001). Rouse brings up a point I
seldom even hear mentioned
these days, to my considerable
sadness. Our industry definitely
does very little to encourage the
designer/programmer dual spe-
cialty — in my own early career
I experienced considerable resist-
ance to even the idea, let alone
the reality. I can remember being
told on my first day at my first industry job
that as a programmer I would never do
design work at the company — that I even-
tually proved this prophecy incorrect was
the result not only of years of hard work
but also of considerable dumb luck.

From my own experiences I can also men-
tion an additional reason I believe designer/
programmers are a rare breed these days —
because more senior mono-specialty pro-
grammers and especially designers perceive
young would-be designer/programmers as a
threat. Even at companies founded by suc-
cessful designer/programmers this can be a
problem. I concur with Rouse’s assessment:
a young designer/programmer with talent in
both specialties has great advantages over
his peers and is bound to advance rapidly.
This potential creates “political problems”

which can be quite intractable.
Another quite difficult problem: how to

successfully train young developers to the
dual specialty? I can suggest that young
programmers take college courses in the

humanities — history, writing,
and so on, and that young
designers teach themselves C++.
On the job I can also suggest
mentoring by senior developers
in each specialty. At my own
company, Big Huge Games, we
encourage all of our program-
mers to learn and exercise their
“game sense” and all of our
designers to do as much coding

work as possible. Not a panacea, perhaps,
but at least a step in the right direction.

These problems remain conundrums,
but the potential reward is considerable.
Thank you once again for bringing this
issue to everyone’s attention!

Brian Reynolds

President, Big Huge Games

via e-mail

Rating System Flawed

I n regards to Mark DeLoura’s editorial
(Game Plan,“Rating Systems,” March

2001), I thought I would tell you about
our own experience with the ESRB.
When we were preparing to release KING

OF DRAGON PASS, we got a “T” rating,
which seemed reasonable (the game has

mature themes that probably wouldn’t
appeal to younger players, for example,
getting married). But they gave as the
content descriptor “Animated Violence.”
We were astonished, since KING OF

DRAGON PASS uses no animation. We
decided to appeal the rating and figured
that it was easier to get a harsher rating
than a tamer one (and didn’t have the
time to go through a protracted process),
so we asked for a “Realistic Violence”
descriptor, which we were granted. I
believe the ESRB scheme has some major
flaws, and this is one of them.

David Dunham

A Sharp

via e-mail

Kudos for “Heads”

G avin Moore’s article in Game Devel-
oper (“Talking Heads,” March 2001)

was truly excellent. I’ve been working close-
ly with Keith Waters (one of Moore’s refer-
ences) on the LifeFX facial animation sys-
tem, and we were both impressed by the
flexibility of the Talking Heads system and
the speed with which Sony engineered it.

Dan Teven

Systems Architect, LifeFX

via e-mail

C
Send e-mail to editors@gdmag.com, or

write to Game Developer, 600 Harrison St.,

San Francisco, CA 94107

6 j u n e 2 0 0 1 | g a m e d e v e l o p e r

Kludge by Tiger Byrd and Daniel Huebner

Booth
Babe
Inspector

Hey, you’re back
from E3! Did you have a
good time? Did you see

anything memorable?

Memorable?

You spent the whole
time drunk and you can’t

remember anything?!?!

My swag
shirts assure me I
had a good time.

8 j u n e 2 0 0 1 | g a m e d e v e l o p e r

I N D U S T R Y W A T C H
J

Japanese Xbox plans. Microsoft chair-
man Bill Gates used an address at the
Tokyo Game Show to finally shed light on
some of the company’s plans for its
upcoming Xbox console. Microsoft
announced a long-term publishing deal
with Sega that will bring several future
Sega titles to Xbox. A total of 11 Sega
games will premiere on Xbox, with new
installments of JET GRIND RADIO FUTURE,
PANZER DRAGOON, and SEGA GT leading
the slate. Sega has already made similar
arrangements for Playstation 2 and Game
Boy Advance.

In addition to the landmark Sega deal,
Microsoft outlined some of its plans to
make the Xbox a success in Japan. The
company announced that it is forming an
Xbox Japan division that will focus on
managing third-party relationships with
Japanese game companies as well as han-
dling Xbox sales and support in Japan.
The new division will also contain an
Xbox Games Production Group with the
goal of developing and publishing original
games under the Microsoft label. To help
Japanese games take advantage of the con-
sole’s online capabilities, NTT Communi-
cations will work with Microsoft to create
an Xbox network. The two companies
plan to launch the broadband service
sometime in 2002, with trials of the online
gaming service set to start later this year.

Microsoft also unveiled a unique ver-
sion of the Xbox controller for Japan. The
alternative controller, which will ship with
every Xbox in Japan, is slightly smaller
than its North American and European
counterparts and features repositioned
buttons to accommodate Japanese game-
play styles.

Indie games winners. The Independent
Games Festival presented six awards over
two nights at the Game Developers
Conference to honor the cream of the
independent game development crop, but
it was a single title that garnered most of
the honors. The first four awards were
presented in the IGF “craft” categories,
recognizing games for achievement in spe-
cific technical categories. Best Audio went
to Denmark’s Space Time Foam for its
title CHASE ACE 2. HARDWOOD SPADES,
from Silver Creek Entertainment, took the
prize for Best Visual Art. Best Game
Design and Technical Excellence honors

went to Nexon’s SHATTERED GALAXY, the
game that nearly swept the awards by also
taking home the Audience Award as well
as the Seumas McNally Grand Prize. The
company walked away with $1,000 for
the Audience Award, and $10,000 and an
Intel Pentium 4 workstation for winning
the Grand Prize.

Sega chairman dies of heart failure.
Sega Chairman and CSK founder Isao
Okawa has died of heart failure at the age
of 74. Mr. Okawa established CSK in
1968 and acquired Sega Enterprises in
1984, in time turning it into one of the
largest videogame companies in the
world. Okawa became Sega’s president
last summer when Shoichiro Irimajiri
stepped down to take responsibility for
poor Dreamcast sales. Just last January,
Okawa said that he would help prop up
the sagging company with $730 million of
his own money.

Yoshiji Fukushima, a Sega board member
since 1996 and the chairman of CSK Corp.,
becomes the new chairman of Sega. Sega
has also named chief operating officer
Hideki Sato as its new CEO. Sato, who has
been with Sega since 1971, has been
responsible for the day-to-day operations
of the company as the company’s co-COO,
a title he shares with Tetsu Kayama.

ATI acquires FGL Graphics. ATI has
acquired Sonicblue’s FGL Graphics at a
cost of up to $10 million. FGL Graphics,
formerly part of Diamond Multimedia,
develops and markets the Fire GL brand
of OpenGL-based graphics accelerators
for NT and Linux workstations. Under
the terms of the sale agreement, Sonicblue
will receive $2.7 million in cash and is eli-

gible to receive further financial consider-
ation of up to $7.3 million, depending on
FGL Graphics achieving future perfor-
mance targets. ATI will acquire FGL
Graphics’ current contracts as well as the
right to use the Fire GL brand name and
35 employees at FGL Graphics facilities in
Munich, Germany, and San Jose, Calif.
ATI expects the acquisition of FGL
Graphics to have a minimal effect on
earnings this fiscal year.

ATI posted an adjusted net loss of $26.1
million in this year’s fiscal second quarter.
The loss, which translates to 11 cents per
common share, came on sales of $232.4
million and is in line with projections
released by ATI on March 1.

Infogrames posts first-half 2001 loss.
Infogrames reported a loss for the first half
of fiscal 2001. The company attributed its
poor performance to slower game sales
caused not by the console transition that
has plagued the company in recent quarters
but to console shipment delays. The com-
pany posted a net loss of $20.7 million, an
improvement from a loss of $80.4 million
in the same period a year ago.

Sales for the company reached $325.4
million, an increase of 26 percent. Research
and development costs more than doubled to
$50.9 million as the company prepared more
next-generation titles. Infogrames Inc., the
unit formerly know as GT Interactive, finally
showed a profit in the second fiscal quarter.

CEO Bruno Bonnell said that the
remainder of this year will be spent turn-
ing its newly acquired Hasbro Interactive
unit around and explained that the com-
pany faces restructuring costs related to
the Hasbro deal of about $20 million. q

d a n i e l h u e b n e r | T H E B U Z Z A B O U T T H E G A M E B I Z

S I G G R A P H 2 0 0 1
LOS ANGELES CONVENTION CENTER

Los Angeles, Calif.
August 12–17, 2001
Cost: $40–$950 (member and

student discounts available)
www.siggraph.org/s2001

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

Nexon’s SHATTERED GALAXY, winner of the IGF Best
Game Design, Technical Excellence, Audience
Award, and the Seumas McNally Grand Prize.

A lex St. John, the man
behind DirectX, has a
vision for the future of web
content. Whether or not his
company, WildTangent,

will become the authors of the delivery
mechanism and creation tools of choice
for 3D on the web will depend on how
they direct their efforts right now.

For those of you unfamiliar with the
WildTangent Web Driver, it’s definitely time
to give it serious consideration for your web
game needs. With Web Driver 2.0 now offi-
cially released, we can all expect to see a
new wave of content hitting the web devel-
oped using this springboard technology.

O.K., What Is It?

W eb Driver 2.0 is a complete “all-in-
one” system for web-based content

development. Simply put, you can build

games (our primary concern) along with
many other types of content including, but
not limited to, audio visualizers and some
surprisingly engaging interactive web ads.
As we can all see from some of the high-
profile games constructed using the
WildTangent technology which now reside
on Microsoft’s Zone, naysayers will find
proof that this SDK has the power to deliv-
er CD-quality content over the web.
Heresy, you might say. Well, kind of.

Actually, the “magic” is accomplished by
an impressive streaming system that allows
for those objects and support code which are
needed first in a scene to come down even on
a limited bandwidth connection while the
remaining dependent assets stream down in
the background. The ability to control this
process via scripting in Java or JavaScript
makes for pretty easy handling on the coding
side. And it no doubt helps that the
WildTangent developers include former

members of the venerable team behind
DirectX, providing them with an intimate
understanding of this multimedia paradigm.

What Are the
Components?

W eb Driver 2.0 SDK Full (about 16MB).
This is the complete development

package available on the WildTangent web
site. It includes tools, documentation,
demonstration code, and tutorials about
how to create content for the Web Driver.

WTStudio (about 3MB). This is a world
builder/editor allowing the user to create
familiar BSP geometry to construct a scene.

3D Studio Max Exporters (165KB). These
exporters, when copied into your 3DS
Max plug-ins folder, will export geometry
and motion information into a format
native to WildTangent and can then be
loaded into WTStudio or passed off to
your Java game engine.

WildCompress (512KB). When creating con-
tent for a scene with various types of media
(such as models, textures, and sounds), you
can use this compression utility to convert
assets for use with the Web Driver.

Our Web Driver Content
Experience

A lmost a year ago, our team started
looking for ways to expand the kind

of 3D game content being done anywhere
on the web. After some quick research, we
set out to “test the legs” of the Web Driver
by developing a series of applications, each
an internal stepping stone to the next.

We built a small-scale first-person explo-
ration title intended to test all aspects of a
production cycle using the WildTangent
technology. WTStudio handled the interiors
quite well, with some fantastic visuals avail-
able via procedurals. Interiors are a strong
point for this tool. At times, since we were
trying to re-create the visuals of a Disney
property faithfully, we really needed the abil-
ity to get into the geometry and grab control
points to accurately build certain organic
shapes that could not be done very well
using merged brushes. In its present state,
WTStudio has fairly limited primitives with
which to craft a scene, and importing huge
actors created in 3DS Max (such as domes
or porticos) is a recipe for slow motion.

XXT H E S K I N N Y O N N E W T O O L S

P R O D U C T R E V I E W S

WildTangent’s
Web Driver 2.0

by tom meigs

WildTangent’s WT Studio interface.

10 j u n e 2 0 0 1 | g a m e d e v e l o p e r

w w w . g d m a g . c o m 11

For our first deliverable, we needed to get
a hero character up and running through an
indoor/outdoor environment with simple
switch-based puzzles and pickups driving an
inventory. This cycle would include tests on
the Web Driver, WTStudio, and other tools
still being completed as we began along
with the driver’s performance on minimal
bandwidths (28K) and its performance via-
bility through America Online. Working
with WildTangent to try to shoot down
bugs fast, yet competing constantly for
internal Java engineering support, this exer-
cise proved to be our first valuable lesson.

We struggled a bit initially to hand off art
correctly through the 3DS Max 3 exporters.
There were some obvious bugs, some more
subtle but no less irritating. Mapping infor-
mation on models was not always retained
and exported correctly, and our models
would often import with lighting values
blasting away surface information.

Finally, based on the reasonable success
of our first “demo” title and the successful
presentation of our next title running
through America Online and, incidentally,
loading faster than some of our Flash-
based content, we gained management
approval to build out a complete title.
Would our 3D application still load faster
than the Flash content? Yes.

Our Experience with the
Tools

W TStudio is one of the best stand-
alone interior level editors any mem-

ber of our team has ever used. It has a great
lighting system, nice particle abilities, and
includes on-the-fly scaling of cut brushes. In
the unanimous opinion of our team, further
development of this tool in particular needs
to continue full-force as a critical point of

strategy for WildTangent. For content-dri-
ven companies like ours, becoming the 3D
answer to Flash on the web would help
both WildTangent and developers alike.

Having Java and JavaScript code hook
into the Web Driver lessens the demand
for heavy and constant C++-based engi-
neering support and is a smart move for a
web development environment. This
forms an advantage for web and game
hybrid developers, and the exposure of
WildTangent’s games through partner-
ships with Microsoft, Toyota, Radio
Shack, and others demonstrates the kind
of stability and presence many companies
look for when deciding to build content
using WildTangent.

However, there were significant delays in
shipping the final Web Driver, and
WTStudio remains in a state of constant
“feature flux.” For content to be rapidly
prototyped and thrive in a development
atmosphere, there is too much dependence
on having experienced Java game engineers
available. A stronger, more feature-robust
WTStudio with more built-in Flash-like
“drag and drop” scripting abilities and a
variety of geometry prefabs would allow
content providers to build simple game and
interactive functionality with minimal code
support. For those with strong Java
resources available, this built-in scripting
ability could be enhanced, extended, and
customized into entire feature libraries.

Competitors in the general 3D-web
arena, such as Adobe, Viewpoint, Pulse,
and Cult3D, are making inroads with
strong 3D character- and product-based
tools and current exporters supporting
multiple 3D packages. If WTStudio could
be enhanced to handle very basic character
setup, include the ability to tag product
models with hot spots, and implement
mouse controls for viewing, WildTangent
would more successfully be able to fend
off competitors as a complete solution.
Right now, WildTangent only supports
3DS Max 3 with no Maya exporters.
Some competitors already support 3DS
Max 4 and Maya.

Bottom Line

W ildTangent is a solid choice for
bringing 3D content to the web.

They are a first-rate technology company

actively engaged in pursuing multiple
venues for their technology. Hopefully,
this multi-attack approach will not frac-
ture their ability to become a premier 3D
web content solution. From a game devel-
oper’s perspective, a more powerful and
robust WTStudio will enable developers
to make the kind of content that will give
people a reason to acquire the driver and
pass it on to others via sites that use
WildTangent. To be sure, some fantastic
games can be made, and there is already
good evidence of this. Beyond that, the
“adver-tainment” potential of the driver
and its toolset are perhaps one of the
most interesting growth areas to watch.
Get familiar with WildTangent now, as
they stand a very good chance of leading
the way. q

Game example created with WildTangent’s Web
Driver 2.0 SDK.

WEB DRIVER 2.0 SDK XXXX

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

fair

don’t bother

STATS
WILDTANGENT

Redmond, Wash.

(425) 497-4500

www.wildtangent.com

PRICE

Free until developers or publishers post or

distribute content in a commercial format.

Then technology licenses are available on a

per-usage or per-product basis.

SYSTEM REQUIREMENTS

PC: 233MHz Pentium, 32MB RAM, Windows

95/98/2000 or Windows NT 4.0; 16-bit color

display adapter; 28.8Kbps Internet connec-

tion; Internet Explorer 4+ or Netscape

Navigator 4+; DirectX 5.0 or higher.

PROS
1. WildTangent has solid developer sup-

port and well-placed strategic partners.
2. WTStudio could and should become

the web’s 3D answer to Flash.
3. Java entry into SDK opens game craft-

ing to a wide audience.

CONS
1. “Feature flux” in WTStudio makes con-

tent feature promises unreliable.
2. Strong competition from rivals.
3. WildTangent’s web focus may be

spread too thin.

12 j u n e 2 0 0 1 | g a m e d e v e l o p e r

XP R O D U C T R E V I E W S

PERFORCE
by james boer

S oftware configuration management
systems, more commonly referred to

as source-control systems, are a necessity in
today’s software development projects.

With a complex 3D game engine being
developed simultaneously for three differ-
ent platforms in quarterly release cycles,
engineers at Lithtech wanted an industrial-
strength but simple-to-use tool. The prod-
uct that was deemed best suited to our par-
ticular demands was Perforce, which hap-
pens to be both the name of the product
and the company that creates it.

Because we are developing an engine for
multiple platforms, it’s a requirement that
any source-control system be multi-platform.
Perforce handles this in spades, as the list of
supported operating systems is quite impres-
sive. The Perforce server runs on Unix or
Windows NT, and client programs are avail-
able for most flavors of Windows, Unix,
Linux, Macintosh, QNX, BeOS, and OS/2.

Fortunately, just because this is a cross-
platform product doesn’t mean you have to
suffer with an antiquated command-line
interface. While there is a command-line
client available, most users will be using the
Windows-native (P4Win) or web-based
(P4Web) user interface, greatly reducing the
learning curve. The Windows UI is compa-
rable to many other source-control prod-
ucts, both in functionality and in ease of use.
The main window is split three ways, with
the file tree displayed on the left, a multi-
function display area on the right, and a
scrolling status window on the bottom.

While the Windows client is a huge step
up from a command-line interface, there are

a few annoyances, as well as some obvious
holdovers from Perforce’s command-line her-
itage. When setting up client information,
paths connecting the file depot (the database)
and the local hard drive must be set up in a
nonintuitive command-line fashion. The
worst part of this is that Windows users may
not be aware of the fact that Perforce treats
all directories and file names as case sensi-
tive, an obvious requirement for Unix and
Linux development. But there are no clues
for the hapless Windows user as to why the
paths they’re typing in don’t seem to work.

But despite a few small nitpicks, Perforce
really shines where it counts. File operations
are blazingly fast and the database is reliable
and space-efficient. In addition, Perforce
works in a different manner from simple
file-based systems. Files are grouped togeth-
er in numbered “change lists” consisting of
modifications, additions, and deletions of
individual files. This makes it easy to track
single feature-based changes or bug fixes
instead of having to scan the entire database
for similar check-ins.

In addition to a friendly Windows front-
end, Perforce has several other options for
use. It integrates with Microsoft Visual
Studio, Metrowerks’ Codewarrior, IBM
VisualAge, and others for quick access to
basic functionality from within your work
environment. It has a clever web-based
interface as well, meaning that it supports
nearly every platform that can display a
web page. Frankly, I haven’t used the web
interface for any real work, but I did check
out a sample database on Perforce’s web
site, and it seemed fairly simple to use. The
integration with Visual Studio is generally
solid, but there are annoyances here as well.
Perforce insists on altering project and
workspace information when no changes
have been made, and clicking through
warning dialogs becomes tiresome.

Overall, despite some minor issues,
Perforce is a robust and solid-performing
source control tool for game developers,
particularly if you have multiple projects
with shared code or do any sort of cross-
platform development work. Perforce is
$600 per user for 20 or fewer users and
costs less with more seats purchased.

XXXX| PERFORCE
Perforce Software

www.perforce.com

CALIGARI’S TRUESPACE 5
by david winter

T rueSpace 5 is the latest in a line of
mid-range 3D modeling and render-

ing packages developed by Caligari. The
interface is far different from your typical
3D graphics application. Modeling tools
are provided via a large number of “fly
out” button bars. You can use a four-view
screen as used in other 3D packages, or
you can use the traditional TrueSpace
workspace. After fumbling with the ver-
sion 5 configuration for a short while, I
found myself changing back to the version
4 configuration.

Since version 4, TrueSpace has offered
modeling in wireframe, or solid view via
Direct3D. Version 5 has improved the per-
formance of this feature significantly. It is
now just as fast to use the solid view as it
was to use the wireframe view in version
4. I am currently using TrueSpace 5 with
DirectX 8 running on a Windows 98 Pen-
tium II with an ATI Radeon card and have
had no performance issues.

Most of the modeling tools in True-
Space are designed to create smooth,
detailed objects by increasing the polygon
count. These tools (NURBS, Quad Divide,
and Meta-Balls) are almost never used for
building game models. In general, the best
way to create polygonal game character
models is to draw a flat polygon and then
sweep it. Scale the top plane, then sweep
it to the next contour and repeat. Using
this method, you will easily be able to
build game models in the 600 to 1,200
polygon range.

TrueSpace offers a bones system and a
jointed IK system for animating. Add in the
Puppeteer plug-in and you have a reason-
ably good set of tools for animating.

TrueSpace does not offer game-develop-
er-friendly texturing tools. It does offer a
3D painting system and standard UV
mapping, such as planar, cube, and so on.
However, it is very difficult to create tex-
tures optimized for games. If you use the
3D texture painting tools, each face is
saved as a separate bitmap. Imagine your
game engine trying to load 800 bitmaps to
texture one character. The ability to posi-
tion a face’s vertices in a 2D texture
bitmap while updating the 3D display
should be a must for TrueSpace 6.

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

fair

don’t bother

Perforce is split into a file tree display, a multi-
function display, and a scrolling status window.

14 j u n e 2 0 0 1 | g a m e d e v e l o p e r

XP R O D U C T R E V I E W S

File formats are TrueSpace’s second
biggest fumble. You can export to Micro-
soft’s .X format. That’s great, but the
problem is that TrueSpace 5 was released
early in 2001 and Caligari is still using the
format specifications from January 1997.
There is no provision for skinned meshes;
you had best build your characters with IK
groups rather than
with the superior
bone or skin
system.
TrueSpace does
not support
animated 3DS
Max files.

There is
also a huge
bug in their export
tool in that it flips all the tex-
ture UV values. If your character wears
jeans and a T-shirt, his fly will wind up
down by his ankles, and the collar of the
shirt will be around his waist.

Like 3DS Max, TrueSpace can use plug-
ins. Fortunately there are plug-ins which
can correct most of the .X export shortfalls.

In conclusion, most of my projects have
budgets ranging from “nothing at all” to
“not a heck of a lot.” Purchasing packages
like 3DS Max and Character Studio are
out of the question — purchasing the 3DS
Max tools would cost about $7,500
Canadian. It’s important for there to be
another option for development houses
that don’t have the budgets of Microsoft or
Electronic Arts. At under $1,000 (U.S.),
Caligari’s TrueSpace 5 offers a very afford-
able alternative to the 3D Studio/Character
Studio combination if you don’t mind the
need to work around some issues.

For those on a really tight budget I
would recommend purchasing the older
version 4.3. It is under $400, and version
5 does not offer the game developer any
features that are worth the extra cost.

Caligari has made it known that they
wish to work with the game development
community to enhance their product.
Adding game-developer-friendly texture
tools and the ability to export correctly to
modern game formats would be a good
starting point.

XXX| TRUESPACE 5 |
Caligari | www.caligari.com

NVIDIA’S GEFORCE 3
by brian sharp

A long with a speed boost over existing
cards, Nvidia’s new GeForce 3 graph-

ics card boasts an extraordinary number
of substantial new features. It includes
support for curved surfaces, programma-
ble vertex shaders, more textures in more
formats, increased internal precision, and
expanded fragment-blending capabilities.

The curved surface support is a new
feature for the GeForce 3, not present in
the GeForce 2. The GeForce 3 supports
the industry-standard Bézier patches, both
triangular and quadrilateral. It accepts
parameters independently specifying the
number of vertices along each side of a
patch, which makes continuous level-of-
detail adjustment possible. As the parame-
ter is specified in floating point, it helps
curb “popping” in patches as they change
density over time. The implementation
seems well thought-out and eminently
useful for games using curved surfaces, as
Bézier patches are a very common curved
surface representation, supported in most
major 3D modeling programs.

Programmable vertex shaders are
among the most impressive new features.
A game sends microcode programs to the
card at run time which are executed to
process vertices. Programs can scale any-
where from doing nothing at all to apply-
ing a variety of application-specific effects
using the orthogonal instruction set and
temporary storage space. The main limita-
tion on vertex program size is speed — the
longer the program, the fewer vertices
processed per second. Nonetheless, the
card is fast enough to handle powerful
tasks at good speeds. Programs cannot
contain loops, but since the programs are
short, looping isn’t needed. The engine can
neither create nor destroy vertices, which
could limit clever schemes to generate ver-
tices in the shader to reduce bus traffic.
Overall, though, vertex shaders on the
GeForce 3 are orthogonally designed, well
implemented, and have a lot of potential
for use in games.

The card sports more power in the area
of textures: a single rendering pass can
reference up to four textures and in some
new flavors. For size, texture dimensions
are no longer limited to powers of two,

and as for formats, the card supports a
signed RGBA texture format (where each
component is an 8-bit fixed-point signed
value) and the “HILO” format, either
signed or unsigned, where each texel is
made up of two 16-bit components. The
latter is particularly useful for textures
whose values represent arbitrary vectors
needing greater precision or range.

The card supports up to eight stages of
fragment blending, where each stage can
apply one of a handful of operations to
incoming values and pass the result on to
the next stage. Operations include basic
arithmetic as well as limited dependent
texture reads (where one texel is used as a
vector to shift the lookup into another
texture) and dot products. Computations
at each stage are done with increased pre-
cision and in floating point, which goes a
long way toward reducing blending arti-
facts. With all of that, though, the frag-
ment-blending pipe does leave a few
things to be desired. Unlike the extremely
general vertex shaders, the fragment-
blending capabilities are still very fixed-
function, and the specialized operation set
and small amount of scratch space keep
the fragment-blending pipe from being
generally programmable. Where the ver-
tex shaders offer fertile ground for experi-
mentation, the fragment blending is
nowhere near as versatile. For the set of
effects it is capable of, though, it does
them very well and is a significant
improvement over other current cards’
capabilities, and so while it begs to do
more, it certainly does a lot as it is.

The GeForce 3 has other assorted addi-
tions and features, but the above are the
most significant features to be aware of
as a game developer. The card is not
without its limitations and pitfalls, and as
a developer it’s important to be aware of
them ahead of time to avoid any unpleas-
ant surprises down the road. Those pit-
falls are small detractions from a general-
ly superb piece of hardware. The fea-
tures, power, and versatility of the card
give game programmers some serious
potential to play with and the opportuni-
ty to take a substantial leap in our games’
visual quality.

XXXXX|GEFORCE 3 |
Nvidia | www.nvidia.com

XXXXX
XXXX
XXX
=XX
X

excellent

very good

average

fair

don’t bother

16

P R O F I L E S
j e n n i f e r o l s e n | T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E

ouis Castle co-founded Westwood Studios in 1985 with Brett
Sperry in Las Vegas, Nevada. They shared their first office in
Louis’ converted garage and have been profitable ever since.

Westwood now has approximately 250 total employees,
making it one of Electronic Arts’ largest subsidiaries.

Game Developer caught up with Louis at the Game Developers
Conference, where he frequently gives lectures on company culture
and the business of game development, to talk about his back-
ground and his philosophy of how to run a game studio.

Game Developer. When you were in college, you used to spend
time converting cubist paintings into hexadecimal and entering the
data into tables to re-create them on your computer. If you hadn’t
found developing games as your outlet for this unusual proclivity,
what do you think you might be doing today?

Louis Castle. I suppose I’d be an architect who was very savvy
with new computer technologies and movement through spaces to
sell the concepts, probably running a firm and working in the high-
tech side of architecture. But once I got bitten by the bug of doing
programming, I found it so satisfying as an artist to be able to see
my work appear and to animate things myself. I turned down quite
a few scholarships to architectural colleges to pursue fine arts and
computer science at a local university.

GD. Did you and Brett meet in college?
LC. No, we met in Las Vegas. He was working as a freelancer for

an educational software company. I was selling computers and
doing some freelance artwork and such, and we got to know each
other there. There was a small community in Las Vegas of game
developers who would get together and gripe about how most peo-
ple running companies didn’t care about the product. They were just
looking to exploit the talent and turn a quick buck.

GD. That sounds kind of familiar.
LC. That’s why we started Westwood. Brett and I were acutely

aware that we didn’t want to work for people who didn’t care about
the products they were building. Brett had a lot of visions of build-
ing the company and growing it to an enormous size, but all I really
wanted to do was make sure that the environment that I came to
work in every day I really enjoyed, and that all the people there had
similar goals to mine. Even to this day, being the most profitable
company is really not what drives me. I just want to make great
games that people love.

GD. How did you arrive at defining Westwood’s company culture?
Was it something philosophical, or more trial and error?

LC. It’s very deliberate and very philosophical, and not communi-
cated clearly enough and frequently enough. I’m always reminded
that we need to be better at communicating it. With so many people
at such a large organization, it would be very easy to lose touch with
people. It’s a constant effort to make sure everyone knows they are
appreciated and an even greater effort to make sure everyone is
happy, and if not, why not. I don’t want someone coming to

Westwood, spend-
ing six months with
us, then saying,
“This is horrible, I
can’t believe this
company after all
the great things I’ve
heard about it.” I
hate seeing someone have a bad experience in this industry, especial-
ly at my company, because this is an industry that’s about entertain-
ment. You should want to come to work every day and love it.

GD. That’s the basis of your company culture?
LC. That’s it. I want people to really enjoy themselves. Many years

ago, my partner asked, “What do you want to do with the compa-
ny?” And I said, “I think I just want to have fun.” It sounds very
simple, but if you think about it, that’s a very hard ideal, if you try
to push that through an entire organization and say, “I want every-
one in our organization to have fun.”

GD. But how do you create an environment where people feel
empowered to have fun and also be able to function in their jobs?

LC. Westwood’s a work in progress. There will never be a time
when all 250 people are smiling and running into the office every
day because they’re delighted to be working, but if I can get as many
of them into that mode as possible, it becomes very infectious.

GD. How do you communicate that to your employees?
LC. The way we do it is very organically, at social events, hanging

out with the teams. People ask what you think, and you just go off
on a little soapbox. If you don’t make a conscious effort of it, once
you get to a certain size, people just don’t have enough touch time
with each of the visionaries at the company.

GD. Without some framework, it’s too easy to make game devel-
opment feel like futility.

LC. I think that happens a lot. A lot of people feel frustrated even
within our company. What I tell people is that if you’re frustrated,
say something right away and surface these ideas. Because the com-
pany as a whole really wants everybody to enjoy their position.

GD. No one wants to be the guy to crack and say, “I’m not having
fun right now. Actually, we’re on a flaming train wreck to hell.”

LC. Then what happens is that when the train wreck occurs, every-
body says, “Oh yeah, I saw that coming.” Well why didn’t you say
something? But I agree that there’s pressure. We have all of the same
pressures that everyone else does.

GD. Everybody really seems to like you. Coincidence?
LC. I treat people the way I’d like to be treated. I care a lot about

the industry and I want to see it become the next wave of entertain-
ment. Maybe I saw too many Chris Crawford lectures when I was
growing up in the industry [laughs]. Maybe that’s why people find
me an affable person to get along with. And I’m not afraid to say,
“Hey, we don’t get it right every time. We make mistakes.” q

Westwood’s general manager, Louis Castle.

j u n e 2 0 0 1 | g a m e d e v e l o p e r

Louis Castle
Helping Westwood Studios
Command & Conquer

W e have been pushing towards this elusive thing called photorealism,
yet we can’t really blame the hardware anymore. We have more
polygon throughput and greater pixel fill rate than ever before. We
can use 32-bit textures pasted all over our imaginary worlds. How-
ever, it seems to me that, ironically, as game graphics get more

realistic, they’re not as interesting. We live in a photorealistic world. I’m used to walking
around and looking at things in it — I’m just not sure that I want to play there.

I think it would be interesting to walk through a world as moody and full of emotion
as Vincent Van Gogh’s Starry Night. How would that turbulent sky move? What is over
the next hill? How does it look inside the church in the village? Now that would be an
interesting world to explore. What Dreams May Come, directed by Vincent Ward, gave
an interesting glimpse of what it would look like to explore the inside of an impressionist
world. This month I am going to explore methods for creating more artistic styles in a
game environment.

From the Canvas to the Screen

T he most obvious and easiest way to create a scene in a different artistic style is to
create more artistic textures. This seems painfully obvious. However, programmers

are often prone to solving all problems with technology. While oftentimes the creation
of 3D graphics requires a technical solution, the most effective method for achieving
the goal is to have a talented artist who understands the vision. While the technology
used in a game such as Sega’s JET GRIND RADIO enhances the style, the style in the tex-
tures clearly dominates the look.

I found this to be very apparent in my research on sketch rendering styles. When try-
ing to create the look of a pen and ink sketch, often a simple texture achieves the look
in a very efficient manner. There is also a variety of artistic filters for programs like
Adobe Photoshop which can aid in the
creation of artistic textures.

Last year some students at the Uni-
versity of Wisconsin modified the
OpenGL version of QUAKE to support
some artistic rendering styles. Some of
the effects were achieved by drawing
edge lines in a random fashion, much as
I described in this column last month
(“Images from Deep in the Program-
mer’s Cave,” May 2001). They also
worked on a sketch style by combining
the edge-rendering routine with some
simple pencil sketch textures. The result

The Era of
Post-Photorealism

“When you go out to

paint, t ry to forget

what objects you have

before you, a t ree, a

house, a f ie ld,

whatever. Merely think:

here is a l i tt le square

of blue, here an oblong

pink, here a streak of

yel low, and paint i t just

as i t looks to you . . .”

— C l a u d e M o n e t

j u n e 2 0 0 1 | g a m e d e v e l o p e r18

G R A P H I C C O N T E N T j e f f l a n d e r

Vincent Van Gogh, Starry Night (1889).

J E F F L A N D E R | Realistically, Jeff should be at his desk banging

out code for Darwin 3D instead of gazing at the sunset lost in the

swirling skies. If he ever snaps out of it, you can reach him at

jeffl@darwin3d.com.

FIGURE 1. Sketch-style QUAKE.

w w w . g d m a g . c o m 19

was pretty interesting, as you can see in Figure 1.
The idea of modifying the look of a game by hijacking the

rendering engine was pretty interesting. However, what interest-
ed me more was how much simple texture manipulation could
change the feel of a game. To take this idea a step further, I
passed the original QUAKE textures through a Photoshop brush
filter. This simple change yields some very dramatic results, as
you can see in Figure 2.

When interacting with an environment like this, though, it is
apparent that the style is applied as textures to the mesh. The
brush strokes align directly with the polygon. The size of the
strokes is also a function of distance from the viewpoint. It looks
very consistent as you move through the world, but it looks like a
creatively textured world, not one that was painted.

Brush Strokes and Bullets

O ne thing that makes a painting different from a textured
rendering is brush size. When we apply a texture of a brush

stroke to a polygon and then move it through an environment,
the brush stroke starts almost infinitely small when it is far away.
As the texture gets nearer to the camera, the size of the brush
stroke grows very large.

This is not usually true of a painting. Artists are actually lim-
ited to some extent by the fact that painting is a physical
process. Paint must be applied with a brush or knife of a finite
size. Paint takes up physical space. When a painter draws a tree
very near the viewpoint it is usually composed of many brush
strokes. When it is far in the distance, that same tree may only
require a couple of strokes. This effect can be simulated through
the use of level of detail and MIP-mapping. However, in order
to actually capture the look of a painting, we really need to look
at how an artist works.

Painting is done on a 2D canvas. It is only the artist’s talent at
perspective and our own minds that create this illusion of depth. In
many cases the size of the brush strokes is almost independent of
depth. This fact is why many of the 2D image-processing algo-

rithms for simulating painting styles are so effective; take a look at
another screen capture of QUAKE. This time, however, I am going to
apply an artistic filter within Photoshop (see Figure 3).

You can see how the strokes give much more of an impression
of being painted. The brush size is much more uniform, and color
blends across polygonal boundaries. Creating continuity from
frame to frame is a real challenge with this method though. Since
the postprocessing method is applied on the rendered 2D image,
there is nothing to keep brush strokes from changing dramatically
from one frame to the next.

The people who created the visual effects for the movie What
Dreams May Come dealt with this problem by tracking the motion
of the camera as well as individual patches of color throughout the
scene and then using this information to make continuous strokes.
They have even released an Adobe After Effects plug-in called
Video Gogh for applying this effect to video sequences.

The next crop of 3D graphics hardware may show some form
of accelerated 2D image processing. Nvidia recently released a
demo of some simple image processing on a 3D scene. The new
GeForce 3 graphics chip supports rendering of four simultaneous
textures as well as vertex programs and programmable pixel oper-
ations. By placing the same texture in each of the four texture
units and using the vertex and pixel operations, a simple convolu-
tion kernel can be applied to an image. It may not be possible to
do complex effects, but simple edge detection and sharpening is
clearly possible. It is definitely time to start playing around in the
Photoshop convolution editor to see what is possible.

Flowing through the Turbulent Skies

T hese 2D image-processing tricks are good for creating more
artistic textures. However, I am not really any closer to find-

ing a method for generating images like those seen in the Starry
Night painting. To me, the painting does not express a texture.
The work has a profound sense of motion. The sky in particular
invokes a feeling of fluids moving and swirling across the sky. I
am familiar with fluid animation techniques, and that seems like

FIGURE 2 (left). QUAKE with Photoshop textures. FIGURE 3 (right). QUAKE with impressionistic textures.

20

an interesting approach to rendering the sky. It makes sense for
me to pursue this idea a bit further. Instead of just creating a
texture, I can think of each individual brush stroke flowing
along the river of the heavens. The stars and moon are obstacles
in the flow, disrupting and curving the strokes around them.

In order to create an environment with this flow as the sky, I
need to define where the sky is drawn. Much like a hemispherical
map or a skybox, the brush strokes can be drawn on the surface of
a 2D plane that is wrapped around me. This effectively changes the
problem into a 2D fluid flow problem. That will make the problem
quite a bit easier.

Fluid simulation is a difficult problem. The equations are com-
plex and the calculations are computationally intensive. The gov-
erning equations of fluid mechanics are the Navier-Stokes equa-
tions. These equations describe the basic laws of mechanics in
terms that describe all of the effects and phenomena that we gen-
erally associate with fluid flow. The complexity of the involved
mathematics means that fluid flow problems are generally solved
with numerical methods.

The two primary properties of fluids are viscosity and inertia.
Viscosity is a term you normally hear mentioned in connection
with motor oil. However, this property of fluid is the source of
internal friction forces within the fluid. This property is most
apparent in the way that a highly viscous fluid flows, such as
honey off of a spoon, when compared with a fluid of relatively
low viscosity, such as water. Inertial force is the property that
causes the fluid to keep flowing in its direction of motion.

In general, the viscous forces in liquids are much greater than
in gases. In a gas, the actual viscous force is so low that idealized
gases often ignore internal frictional forces and are called invis-
cid, meaning not viscous. As such, the behavior of these idealized

gases can be described by dynamic equations that are much sim-
pler than the complete Navier-Stokes equations. Examining the
sky in the painting, I believe that the formulas of elementary flow
would adequately simulate the sky.

Bryan Marshall’s Siggraph presentation last year (see For
More Information) described the simulation of elementary flows
by dividing the simulation area into a grid of discrete cells, as is
often needed when simulating viscous fluids. This is done by
simulating the “potential flow” as the summation of a set of ele-
mentary flows. Once this flow field is described, the total direc-
tional change in velocity at any point in the simulation area can
be directly determined. In order to use this potential fluid flow
field, I can trace particles through the simulation area, modify-
ing the particles’ velocity at each position.

Living up to Its Potential

T o make a workable simulation system, I need to describe all
of the elements that make up the flow field for my work

area. These elements are the building blocks that I can use to
describe the flow.

Uniform flow. Uniform flow describes flow in a general direc-
tion and of a single strength throughout the flow field. The
mathematics of uniform flow is pretty simple. The velocity, V, at
any point in the flow field is described as a flow rate, U, and
angle of flow, � (see Figure 4).

Source flow. Source flow is flow generated at a point that radi-

V U

V U

x

y

=

=

cos

– sin

θ

θ

j u n e 2 0 0 1 | g a m e d e v e l o p e r

G R A P H I C C O N T E N T

FIGURE 4 (top left). Uniform flow. FIGURE 5 (top middle). Source flow. FIGURE 6 (bottom left). Doublet flow. FIGURE 7 (bottom middle). Vortex flow.
FIGURE 8 (far right). A complex flow field.

j u n e 2 0 0 1 | g a m e d e v e l o p e r22

G R A P H I C C O N T E N T

ates out from the source, decreasing with the distance from the
source point. The velocity is described as a function of the flow
rate, q, and the distance from the source point, (x,y).

The flow at the very center of the source is undefined. As you can
see, it would give you a divide-by-zero error. This is easily avoided
by not introducing particles into the flow at the exact center of the
source (see Figure 5).

Doublet flow. Doublet flow describes a bit of a strange function.
Given a circular obstacle in a uniform flow, this function describes
the flow as it avoids the obstacle. The velocity, V, at any point in the
flow field is described as a flow rate, U, and a length value, a.

Like the source flow, the doublet is undefined at the center. How-
ever, particles should never reach the center, as the generated veloci-
ty will always push the particle away. It is necessary to ensure
against initial creation of a particle at the center (see Figure 6).

Vortex flow. Vortex flow describes flow that is rotated about a
point. This is the force that causes the rotating element of
dynamic fluid flow. The force is applied tangential to the center
of the vortex. The velocity is described as a function of the rota-
tional rate, G, and the distance from the source point, (x,y) (see
Figure 7).

The vortex is also undefined at the center. Moving particles
away from the exact center is sufficient to avoid the issue.

Building Blocks

U sing these basic flow elements, I can create a complex flow
pattern. At any point in the fluid field, I can calculate the

sum of all the elementary flow elements for that position. The
value is added to the particle as it moves through the simulation
field. This ability to add flow elements to create a combined
velocity field is called the superposition principle. Figure 8
shows the sum of a complex set of flow elements where red cir-
cles are barriers that generate doublet flows and blue circles are
vortex positions.

Now this flow field is fairly static. Particles that travel through

this field will follow the same path if they start at the same point.
This is not terribly dynamic or turbulent. When we look at the
flow of fluids such as smoke in the real world, we generally see
quite a bit of dynamic behavior. The reason for this difference is
those vortex flow points we dispersed about the simulation
space. In an actual fluid flow, the vortices are generated dynami-
cally based on changes in the pressure within the fluid area. The
vortex fields are generated at positions where there is shear in the
flow. For instance, the point at which the flow direction has
changed around an obstacle will generate vortices that will move
in the direction of the flow and then slowly diffuse over time.

I can automate the process of creating these vortex source
points and simulate them through the flow space. However, it is
possible that I can achieve the effect I desire by simply placing
the vortex sources in a nonphysical manner to create the type of
fluid flow I want.

Go with the Flow

T hat’s all the time I have for now. Next time, I will use these
tools to create an artistically interesting flow pattern for my

brush strokes to follow. I will also describe how to use texture
methods to make the elements look like actual brush strokes.

We also haven’t even discussed how these same ideas can be
applied to the creation of objects that animate in a very artistic and
fluid manner. Until then, think about how physical simulations can
be used to create other interesting art styles. q

V
y

x y

V
x

x y

x

y

=
+







= −
+







Γ

Γ

2

2

2 2

2 2

π

π

V Ua
x y

x y

V Ua
xy

x y

x

y

=
+()

















=
+()

















2
2 2

2 2 2

2

2 2 2

–

V
q x

x y

V
q y

x y

x

y

=
+







=
+







2

2

2 2

2 2

π

π

FOR MORE INFORMATION

PUBLICATIONS

BWalther, Ingo, and Rainer Metzger. Van Gogh: The Complete Paintings.

Cologne, Germany: Benedikt Taschen Verlag, September 1997.

WEB S ITES

BFluid Flow formulas and Java Applet

See www.simscience.org/fluid/blue/supbas.html.

BMarshall, Bryan. “Real-Time Interactive Grid Free Fluid Dynamics.”

SIGGRAPH 2000, Sketches and Applications.

See www.mathengine.com/Files/Marshall_Sig2000_files/index.html.

BNPR QUAKE

See www.cs.wisc.edu/graphics/Courses/cs-838-2000/Students/

herrman/nprQuake/index.html.

BQUAKE

id Software

See www.idsoftware.com.

BVideo Gogh Plug-in for After Effects

See www.revisionfx.com/videogogh.htm.

25

I f you are a game level designer or
artist who wants to create 3D
interior levels that stand out and
get your product noticed, creat-
ing a well-designed, believable

environment is a sure way to do it. Play-
balancing aside, real-time gaming
“worlds” of the recent past, made up of
planar-surface corridors wallpapered in
repeating patterns that show off their
pixel components, should be put away
bearing a label that reads “For Nostalgic
Purposes Only.” As hardware capabilities
evolve, character development and anima-
tion techniques mature, and content
development software improves, the
process of designing and creating richer
levels for players and their 3D counter-
parts to play in must also evolve.

As a once-practicing interior designer
now wearing one of many hats as a game
artist, I have a few ideas and some archi-
tectural and interior design tips to share
which I have learned throughout many

years of applying environmental design.
Moreover, I’ll point out the possibilities
which lie at the roots of architectural and
interior design and which, in the hands of
a creative level designer, can give the art
of creating, texturing, and lighting a game
level a more human countenance.

In my experience, game developers cre-
ate games for other developers to appreci-
ate just as a reputable architect would
design a public building for other archi-
tects to admire and respect. Whether
designing a futuristic environment or a
children’s virtual playroom, a poorly
planned 3D environment sporting unskill-
fully crafted textures is not going to have
the same broad audience appeal as one
that is well designed and thought out.

Consider a great public building that
many people love to visit and always feel
good in because its designer has taken
into account all potential audiences who
will visit and interact with it. The design-
er of this popular structure did not
address only a particular or specialized
group of people.

In creating levels with mass-market
appeal, you should give thought to design
that extends beyond the basics to which
players of that genre are accustomed.
Similarly, level designers need to reach
beyond the principles and conventions
established for those very specific game
audiences. Like the seasoned architect or
interior designer, the experienced level
designer takes into account who the user

T I T O P A G Á N | Tito Pagán is a seasoned 3D artist working at

WildTangent and teaching at Digipen in Seattle. He has worked for several

game companies and has created art on 14 PC games. Contact him at

tpagan@w-link.net or visit his web site at www.titopagan.com.

A R T I S T ’ S V I E W t i t o p a g á n

Where’s the Design in
Level Design?, Part 1
Where’s the Design in
Level Design?, Part 1

Azuchi Castle in Japan, modeled by Max Braun.

w w w . g d m a g . c o m

j u n e 2 0 0 1 | g a m e d e v e l o p e r26

A R T I S T ’ S V I E W

or occupant of their new 3D world is,
how they will use it, how they will inter-
act with it, how they will move through
it, and how they will approach and
depart from it. This interaction, which
takes place on a human scale, calls for an
attention to detail down to the smallest
level for most game environments. In
many first-person games, that amount of
design detail is not an option, given the
close proximity of the game camera to
surfaces in the environment. How your
in-game textures are applied can be just
as critical. Finally, using good design
principles generally will also help you
“sell” your game world more easily to
your internal development team as well as
your buyers.

The Price of Bad Design

W hen starting a new level design, a
good understanding of basic

design principles and guidelines can help
any artist or level designer avoid making
costly mistakes. This may be stating the
obvious, but it does go on too often in
our industry. In game development, mis-
takes are what we fear most when enter-
ing any new project. Good design princi-
ples, like a good game design document,
can’t be overlooked if you wish to avoid
basic design mistakes that will cost you
and your team lots of time later when
you have to redo the level or its contents.
The proper layout of a level adds com-
plexity not often considered by the novice
level designer who simply wants to jump
in and bang out a cool-looking death-
match level.

A well-designed level takes into consid-
eration a whole set of requirements, such
as user interaction and navigation, that
are inherent to the purpose they serve.
How will the spaces control and direct the
player throughout the explorative and
interactive experience? What sort of direc-
tional and responsive feedback mecha-
nisms will be provided to assist the
process? How will all of the elements tie
together to form a cohesive environment
that is well understood without compro-
mising aesthetic appeal? The level designer
must also consider the impact of particu-
lars such as sound, space, lighting, pace,
and scale.

Learning from Others

O ur friends in architecture have been
addressing these same design-related

questions for generations. They have many
of the answers to our common problems if
we would only take the time to explore
their proven methods of design. You can
find applied methods in much of the archi-
tecture around us today if you know what
to look for. These are design-oriented tools
and principles that can assist us in our
process as level creators.

I’m not suggesting that you take the
same step-by-step approach utilized in
designing real-world structures, which are
bounded by gravity, physics, construction
methods, and materials that are subjected
to natural weather conditions. A virtual
existence within a computer game is only
limited by imagination and, of course, the
CPU, GPU, the capabilities of the level-
editing tools, the game engine, and the
production budget. Nor am I suggesting
that one necessarily fall back on and copy
motifs directly from the past. I am advo-
cating, however, that we learn from proven
methods how to control the masses and
evoke emotion with solid design principles.

Forms That Express and
Serve

T here are many similar architectural
structures in existence today that are

patterned or modeled from the same origi-
nal idea or form. Architects do this delib-
erately for practical reasons when con-
structing or designing such structures.
They do it because they understand that
specific forms can establish certain moods.

These basic forms are like the gram-
mar of architecture and have been used
from antiquity up to the present day as a
means of addressing important goals in
architectural design. Level designers can
borrow much from the expressive poten-
tial of form in the theory of architecture.
When designing levels, they can use this
as a way to establish a common language
of form, which audiences can immediate-
ly understand regardless of the individual
or their culture. These are well-estab-
lished principles that have immediate
application in the design of our virtual
worlds. They are not recipes for right

FIGURES 1A–1H. Eight different wall forms
that can express weight and direction in a
game level.

27

and wrong; however, they do have a
design-oriented goal. I will present a few
of them and explain their purpose in
hopes that they provoke your interest.

Walls. When laying out a level, the first
inclination a level designer tends to have is
to go in and plop down a bunch of walls in
an attempt to define and separate spaces
before ever laying out a floor plan or a con-
cept drawing on paper. This is often done in
a 3D program using primitive shapes resem-
bling slabs of generic walls and floors. The
resulting interior spaces and exterior spaces
created by close placement of separate
buildings are then commonly arranged
based on functionality, importance, line-of-
sight, and progression through the game. At
this point it would be a good time to go
back and revisit the walls themselves. In
game levels such as first-person 3D shoot-
ers, little thought is often given to the
importance of the wall’s form, scale, and
angle. The wall motif is an expressive form.

A wall area, in principle, may be formed
within eight different motifs (see Figures
1a–1h). The first two (1a and 1b) are con-
cerned with the relationship between width
and height, in that the wall’s main form is
either horizontal or vertical. The next three
motifs (1c, 1d, and 1e) deal with the rela-
tion to depth, which are the flat, the con-
vex, and the concave main forms. The final
three motifs (1f, 1g, and 1h) deal with the
slant of the wall. The wall may be upright,
leaning toward us, or leaning away from us.

All eight motifs are actual representa-
tions of fundamental motion situations,
which we may characterize by using
words specifying directions. Figures 1a
and 1b describe a “follow along” and
“upward” motion, respectively. Figures
1c, 1d, and 1e convey a “halting,”
“advancing,” and “retreating” motion.
Figures 1f, 1g, and 1h depict a “neutral”
motion, a “leaning towards” and “down-
ward” motion, and a “tilting away” and
“over” motion. Assuming one stands in
approximately the same relative position
in front of each wall, that wall will
arouse certain motion impulses that cre-
ate different impressions of the inside-
outside relation in depth for that wall.

Comparing Figure 1a and 1b further,
we find that the horizontal wall expresses
a weight against the ground. Its horizon-
tal nature gives a compressed and com-

pact first impression. It stirs a force that
starts the body into motion to follow
along beside it in either direction to either
side or end, as if seeking an entrance
“around the corner” where something
interesting or dangerous awaits the play-
er. The vertical wall, on the other hand, is
communicative for several reasons. One
reason is that the weight expression of
the vertical wall will always seem lighter
because it is rising toward the sky. Think
of churches and their columns and cross-
es, and look again at the image of the
interior of the Japanese Azuchi Castle at
the beginning of the article. Another rea-
son is the motion expressed. Whereas the
horizontal wall spreads movements, the
vertical rising wall collects them. The
final reason for this wall’s communicative
content is that, like a tower or obelisk,
such a wall is the image of the erect
standing figure that naturally attracts our
attention. Throughout architectural histo-
ry we find many examples of the charac-
teristic differences in vertically and hori-
zontally oriented walls.

Windows and openings. Another expres-
sive form is the window. The window’s
location in the wall also affects the wall’s
expression of weight (see Figures 2a–2e).
A horizontal window placed low in the
wall increases the sinking effect, and a
vertical window high up increases the ris-
ing effect, while a centralized window
seems more ambiguous.

Examine the openings in Figures 2d and
2e. The impression that the motion is from
the outside inwards can be heightened or
lessened by the opening’s profiles. A cut at
right angles to the wall emphasizes motion
from the outside. The strength of the wall is
weakened and it offers no resistance. With
a straight profile it is as if the wall’s own
substance deflects the incision. The entire
wall takes on a thin character, seeming to
be a stiff plane with no strength.

On the other hand, a diagonally-cut
opening will resist motion from outside.
The narrowing of the hole itself shows
that the wall is about to close. It is given
added weight and substance, because the
diagonal bevel conveys an impression of
greater thickness than the wall actually
has. In the diagonally-cut opening the
hole itself appears to lie deeper in the
wall than does the right-angle-cut open-

w w w . g d m a g . c o m

FIGURES 2A–2E. The window’s location in the
wall affects the wall’s weight.

ing. It is less accessible and is protected
within the wall itself.

These are only a few simple examples of
the many architectural forms that are at
your disposal should you consider employ-
ing them in your own creations.

Achieving Realism

R ealism in 3D games is often mistak-
en for having a photorealistic quali-

ty instead of good design. Good design
principles will do more in achieving a
believable environment that your players
will relate to and feel comfortable in.
Photorealism is a surface quality usually
achieved by photographing images,
objects, or natural surfaces and then
cladding a 3D environment with a
processed and optimized version of these
images. Believable levels, on the other
hand, call for the effective use of estab-
lished design principles to address things
such as proper lighting, transition
between surfaces and textures, and how
architectural elements and the surfaces
and masses they are integrated with are
handled. The proper placement of furni-
ture and architectural detailing, as well as
the transition between split levels should
also be properly resolved. These are all
common concerns in the design of interi-
or and exterior spaces.

Do you need to achieve a photorealistic
quality in your art? Before planning your
road trip with your digital camera in hand,
find out if the game or level design calls
for this degree of realism. Is it appropriate
for your genre? A photorealistic quality in
a level is often well received by most audi-
ences because of its sincere attempt to sim-
ulate the known environment around us in
the real world. If done right, good photo-
graphic images that have correct lighting
direction, appropriate scale, and proper
surface treatment can enhance a level
greatly. Skillfully crafted images can also
depict construction methods used, estab-
lish a sense of good interior design, and
help prolong suspension of disbelief for
your players. If done wrong, the offending
texture or detail stands out like a sore
thumb to artist and nonartist alike.

Photorealistic images can be a double-
edged sword — they’re easy to achieve
with a little bit of effort, a decent camera,
and a good paint program, and they
require no traditional art skills. The prob-
lem is that the images will detract from the
scene if not applied appropriately. If this
degree of realism is only reserved for hav-
ing decent physics or accurate targeting in
your game, then narrow your focus to
achieving good design. Even a cel-shaded
game would benefit from having a well-
designed and balanced environment.

Preplanning Before
Building

E arlier I mentioned the cost of bad mis-
takes. Another money-burning mis-

take developers often make is not preplan-
ning art asset requirements. In addition to
having good visual interest, a good design
approach and some initial preplanning will
pay for itself in no time. Through a lack of
knowledge or preparation, we often make
our choices about how to design and outfit
our environments with art assets we don’t
need, assets we don’t want, or assets that
just don’t work for some reason. These
misfit items then get tossed aside and
replaced by others, costing us more time
and money to produce. This trial-and-error
approach is enough to make any project
manager chew through his fingernails. For
professional interior designers and archi-
tects, the most cost-effective approach to
creating a custom structure or interior
space is to prequalify all construction
needs through careful planning and evalua-
tion, long before raising a hammer. Pro-
duction artists, modelers, and level design-
ers should prequalify the creation of all 3D
assets before clicking a mouse (see Figure
3). Level design needs should also be ana-
lyzed to determine the art assets required.

If you want your levels to rise above the
accepted game level look and feel, start
really taking notice of the successful works
of architecture and designed interior spaces
around you. I challenge you to seek and
borrow what you can that may address
specific design problems you are encounter-
ing in your levels. Don’t just reinvent blind-
ly. Try to apply some of the approaches I’ve
discussed here and enjoy the difference it
will make as we continue to raise the bar
together. Help define good design in level
design. I look forward to your work.

Next Month

I n next month’s continuation of this
topic, I will take you step by step

through a design process for creating level
assets that will help you avoid making cost-
ly mistakes and save you lots of time. I will
also cover designing and detailing textures
for your levels using more design principles
and elements of design you can borrow
from architecture and interior design. q

j u n e 2 0 0 1 | g a m e d e v e l o p e r28

A R T I S T ’ S V I E W

FIGURE 3. Designers can avoid costly mistakes by carefully planning all 3D assets on paper before
model construction begins. Concept drawing by Richard Hescox.

30

M A C O S X t i m w o o d

W ith the release of Mac OS X, the Macintosh platform gains
a new path to easy-to-use and high-performance gaming.
This article will address how you can easily port your cur-
rent game over to the Mac and the APIs in Mac OS X that
you can use to do so. Many of the issues involved with

porting to a new operating system are common to porting to any new OS, not
just the Mac.

I’ll primarily be addressing this subject from my experiences in porting games
such as QUAKE 3: ARENA, STAR TREK: VOYAGER — ELITE FORCE, ONI, and AMERICAN MCGEE’S

ALICE. All of these titles obviously belong to a similar style, but the techniques I’ll
describe in this article are applicable to any game. We at Omni have been able to
port well-structured games successfully in a matter of days, and sometimes
hours, due to the productivity and ease-of-use advancements in OS X.

Why Port to the Mac?

T he first reason is obviously economics. Sure, writing games is one of
the most exciting and most challenging jobs around, but if you aren’t

generating income, you are either independently wealthy, or you won’t
be doing it for very long. Every developer should strive to write

portable and modular code as a matter of course. The benefits of
doing this are many and diverse. One of the benefits is being able

to move your code easily to a new platform and attract an audi-
ence that you wouldn’t have attracted otherwise. If your game is

written correctly from the beginning, a port to the Mac will generate
much more money than the cost of porting it. If you don’t do the

port, you might as well toss money in the trash.

Porting Games to
Mac OS X

T I M W O O D | Tim has been programming the progenitors of Mac OS X since NeXTStep 0.9
in 1990. Most of that time was spent on mission-critical custom applications for companies
such as the William Morris Agency and AT&T Wireless Services. Early “spare time” ports
include DOOM, DOOM 2, QUAKE 2, QUAKE 3, and 3dfx Glide/MiniGL for Mac OS X Server,
but after having seen one database/Corba server/transaction manager too many, Tim switched
to porting games full-time. His current projects include OS X Cocoa versions of STAR TREK:
VOYAGER — ELITE FORCE, HEAVY METAL F.A.K.K. 2, AMERICAN MCGEE’S ALICE, and ONI. Tim
may be contacted at tjw@omnigroup.com.

Revenue in the Mac market will certainly not be as
high as in the PC or console markets, but neither are
costs. Advertising does not cost millions of dollars in
the Mac market. Due to the high level of community,
the word-of-mouth advertising, and possibly piggy-
backing on your PC marketing, if you have a simulta-
neous release date it can yield very good market pen-
etration. The Mac market also doesn’t demand that
you produce a game with a $3 million budget. If you
are looking at original development on the Mac, you
can build games very cheaply that will be well received
(and perhaps focus more on gameplay rather than
having to spend time on all the latest graphics effects
just to get on the shelf). Simple and well-designed titles
are possible on the Mac.

The Mac market has a longer shelf life for titles than the PC market, and there is
less overall competition. Thus, while it is very easy to lose money on a PC or con-
sole title, it takes much more effort to do so on a Mac title.

Also, if you license your PC publication rights, you can often hold back the Mac
rights. Many PC publishers will not see the economy of scale on the Mac that they
need in order for them to turn a profit. By doing so, you can either publish on the
Mac yourself or find a publisher that specializes in the Mac market and knows how
to make money there. This will give your development house additional income
beyond the advances and royalties you get from your PC publisher.

There are other, less obviously money-grubbing reasons to port to the Mac. If
you plan on licensing or reusing the engine that you are using for your current title,
the work in making your engine run on the Mac can be amortized over multiple
titles, and it can generate more licensing interest.

Finally, moving your code to another platform can help uncover many latent
bugs in your code. In this case, the extra effort involved in supporting multiple
platforms can actually reduce the amount of work at the tail end of a project by
ensuring that the base you are building your game on is as stable as possible.

31

ABOVE (from left to right). Screenshots from
some of the games ported to OS X. STAR

TREK: VOYAGER — ELITE FORCE, ONI, QUAKE 3:
ARENA, and AMERICAN MCGEE’S ALICE .

Planning Your Game

A s with any complicated task, large gains in productivity can
be had if you plan your effort before embarking on it. The

first step in planning a project is deciding where you want to end
up after all your effort has been expended. This applies to both
the features you want in your game
and the platforms on which it will run.
The earlier you decide on your sup-
ported platforms, the easier it will be
to achieve your goals.

The decision of which features your
game will include is related to the plat-
forms you will support. For example,
if you are planning on supporting
wireless gaming, you probably won’t
be using OpenGL for at least a couple
of years (beyond that, who knows?).
Likewise, if you are going to write
games that are going to run on the
Mac, you need to pick foundation
technologies that are available there.
This excludes proprietary technologies
like DirectThis and DirectThat (and Mac proprietary technologies
such as CoreGraphics, Cocoa, Carbon, and so on if you are going
to run on Windows).

There are many well-known software techniques for multi-plat-
form development. I’ll assume you are familiar with these for the
purpose of this article, and I’ll focus exclusively on Mac OS
X–specific techniques. Some of the arrows in your quiver for
multi-platform development should include separating code using
ifdefs based on the platform, using custom data types to steer
clear of standard type system dependencies, avoiding depending
on bitfield order, steering clear of compiler- and linker-specific
behaviors, and of course using a good source code control system
and open APIs.

Mac OS X Technology

M ac OS X has two primary high-level toolboxes, Cocoa and
Carbon. Mac OS X also has two object file formats, Mach-

O and CFM. There are some choices to be considered when
choosing between these. In this article, I’ll be talking about the
Cocoa/Mach-O approach. This choice is primarily due to the fact
that fewer lines of code are necessary to accomplish similar func-
tionality in Cocoa, and Cocoa requires Mach-O.

Cocoa is Apple’s advanced object-oriented application toolkit,
which is based on the technology it acquired from NeXT. Carbon is
a distillation of the classic Mac OS toolbox APIs that removes a
bunch of the less commonly used functions which were not easily
implemented in the new world. This includes removing things such
as direct access to the hardware, completely obsolete APIs, and so
on. The remaining APIs have been modified to work in terms of the
new underlying OS. So, a Carbon application can run on both OS 9
and OS X (as long as it doesn’t make use of any new OS X services).

The foundation of Mac OS X is the Mach kernel. Mach pro-

vides the hardware abstraction and lowest-level OS services. This
includes interprocess communication, protected virtual memory,
threads, symmetric multi-processing, and driver services. The
BSD/POSIX layer sits on top of Mach (so a BSD process is really
a Mach task with a little extra goo, and a POSIX thread is really
a Mach thread with some of its own goo). All of the API sets are

accessible from a user program written
using Carbon or Cocoa, but the vast
majority of users will be able simply to
use the high-level APIs or maybe occa-
sionally use the intermediate BSD APIs.
Only in special cases is it necessary to
access the Mach API directly, so most
of the time Mach sits in the back-
ground, providing a rock-solid OS
infrastructure. As an example, Mach
provides an API for pausing a thread,
getting or setting its registers, and then
allowing it to continue. Programs don’t
need to typically do this, but if you
were writing a debugger, this would be
very important.

Platform-Specific APIs

T here are a few platform-specific APIs that most games depend
on. These are APIs for performing the following tasks:

• System functions (file and network access, memory manage-
ment, threading, code loading and unloading)

• Display management
• 3D graphics rendering
• Music and sound effect playback
• Reading input devices.
I’ll address each of these functional groups in turn.

System functions. Mac OS X has a BSD 4.4 API layer as part
of its Mach-based kernel. Apple has stated that their goal is to
be POSIX-compliant. This means that a large portion of the
platform-specific APIs can be addressed via both BSD and
POSIX APIs.

The Windows stdio interface is very similar to the BSD func-
tionality from which it was copied (except for Windows’ strange
notion of binary versus text files). The stdio API can be used for
all file I/O, with the option of accessing the Mach API for memo-
ry-mapping files.

Likewise, the BSD sockets API served as the template for the
Windows version. There are some minor differences here (select()
versus WaitForSingleEvent() and the list of supported socket options),
but nothing terribly surprising.

Unlike on many systems, the standard memory allocation pack-
age on Mac OS X performs very well. Still, for portability with
other platforms you may choose simply to use malloc to allocate
large chunks of memory for your internal memory allocator.

For threading, Mac OS X uses the POSIX threading library
(pthreads). The implementation of this library isn’t 100 percent
complete, but the items which aren’t implemented are more eso-
teric. If your game uses threads at all, you likely only want to create

j u n e 2 0 0 1 | g a m e d e v e l o p e r32

M A C O S X

Screenshot from STAR TREK: VOYAGER — ELITE FORCE.

threads, mutexes, and conditions — this portion of the API works
fine. If you do want to do anything more interesting, there is the
option to use the underlying Mach thread APIs (each pthread corre-
sponds to a Mach thread).

Mac OS X uses a dynamic linker called “dyld,” which handles
both launch-time linking of shared libraries and run-time linking
of code modules. While it is possible to call dyld directly for your
code-loading needs, it is probably easier to use the “dl” API
defined in Linux, Solaris, and other Unix platforms. A wrapper
for dyld that provides the dl interface can be found as part of the
open source Darwin kernel that resides underneath Mac OS X
(see For More Information).

The input to the dl wrapper API should be a Mach-O “bundle”
file (as opposed to a dynamic library, or “dylib”). Using Project-
Builder, the IDE that ships with Mac OS X, or whichever IDE you
prefer (Codewarrior, for example), you can easily build a bundle
file. Bundles are typically file wrappers, which simply means that
they are directories that contain a variety of resources, one of
which is code to be loaded. The path to this code is what should
be passed to the dl API functions.

It is also possible to load CFM libraries into Mach-O processes
using the Carbon Code Fragment Manager APIs. You might

choose to do this if you want to use a toolkit that is only available
in CFM format for the Mac (for example, the Bink video library).

Display management: CoreGraphics. At the heart of Apple’s new
Quartz rendering system is the CoreGraphics framework. Core-
Graphics implements a powerful PDF-based imaging model and
also supplies primitives for accessing and configuring the display
hardware.

CoreGraphics can easily support multiple displays, so the first
thing to do is choose the display or displays and your preferred
display mode(s). Each mode is a dictionary of key/value pairs
which can be queried easily. The kCGDisplayIOFlags key returns a
mask with various interesting bits. By far the most useful is the
kDisplayModeStretchedFlag. On a Cinema Display (or other wide-
aspect-ratio monitor), there may be multiple versions of the same
mode, one with a square pixel aspect ratio and one that is non-
square, taking advantage of the full width of the screen. Typically,
you will want to pick the unstretched mode, but if your graphics
technology allows for it, you could pick the stretched mode and
apply a viewport transformation that accounts for the nonsquare
pixel aspect ratio (and thus you get to use the entire viewable area
of the monitor).

The CoreGraphics framework also allows control over the cur-
sor. In addition to being able to hide/show and move the cursor,
CoreGraphics allows you to disassociate the mouse and cursor.
This means that when the user moves the mouse, you will receive
mouse events, but the cursor on the screen will not change posi-
tion. This is useful for automatic demonstrations of an applica-
tion, but it is also useful in full-screen OpenGL applications. If
you do not pin the mouse down while in full-screen mode, even
though there is a window shielding the entire display, if the user
moves the mouse high enough to hit the menu, the menu will start
grabbing the mouse events. The easiest way to avoid this is to pin
the mouse in the center of the screen while you are in full-screen
mode (see Listing 1).

You will also want to allow the user to control the gamma setting
inside the game. CoreGraphics provides several functions for setting
the gamma curve. Some of these functions take tables of data, and
some of them take function descriptions (see Listing 2). When your
game is about to exit (or if you have a “reset to defaults” option in
your configuration screen), you will want to restore the gamma
curve to that specified in the user’s ColorSync settings.

3D graphics rendering: OpenGL. The clear choice for 3D on Mac
OS X is OpenGL. As with every other platform, the Mac OS X
version of OpenGL adds its own API for creating a GL context
and binding it to a drawing surface. Mac OS X actually provides
three such APIs. Two of these correspond directly to the two
high-level UI toolkits. For Cocoa, there is NSOpenGL, while
Carbon has AGL. Both of these are very thin layers on top of
CoreGL (CGL).

The first stage to creating an OpenGL context is to decide
whether you are going to be in full-screen mode or not. If you
are, then you need to capture the display and change its mode
setting. Capturing the display prevents any other applications
from accessing the display and, very importantly, prevents other
running applications from being notified of a screen geometry
change. If you don’t lock the display, other applications will find

w w w . g d m a g . c o m 33

LISTING 1. Pinning the mouse in the center of the screen in full-
screen mode.

CGEventErr err;
err = CGAssociateMouseAndMouseCursorPosition(boolValue);

CGDisplayErr err;

err = CGDisplayHideCursor(display);

err = CGDisplayShowCursor(display);

CGPoint point = (CGPoint){x, y};

err = CGDisplayMoveCursorToPoint(display, point);

LISTING 2. Setting and restoring the gamma curve.

CGGammaValue gamma;

CGDisplayErr err;

gamma = 1.0 / someValue;

err = CGSetDisplayTransferByFormula(

display,

min, max, gamma, // red

min, max, gamma, // green

min, max, gamma); // blue

// Restores ALL displays

CGDisplayRestoreColorSyncSettings();

out about the geometry change and move their windows around,
annoying the player.

Next, you need to create a pixel format object that describes
the list of attributes that the OpenGL context must have. This
includes the number of color and depth bits, whether the context
should support full-screen usage, and so on. In Mac OS X, the
OpenGL context must always have the same color depth as the
frame buffer. Once we have the pixel format, we simply use it to
create the OpenGL context and then discard it (see Listing 3).

We can set and query a wide variety of parameters on the con-
text. One useful example is setting whether buffer flushes are syn-
chronized to the vertical refresh.

Before we can draw anything into the context, we naturally
need to make it the current context. We also need to be able to
clear the current context, display the context, and occasionally
we need to find the current context. All of these operations are
simple one-liners.

Music and sound effect playback: CoreAudio and Sound Manager.
Mac OS X includes several APIs for making noise. CoreAudio is
the lowest-layer audio API. CoreAudio uses a callback to provide
sound samples. This callback is invoked in a different thread, so
it must be at least minimally thread-safe. All samples are in float-
ing-point format, making it easier to perform mixing. The call-
back receives several timestamps, two of which are valid depend-
ing upon whether the callback is being invoked to play or record
audio samples. One of the timestamps is the current time; in the
case of playback, the other timestamp is the time at which the
samples currently being requested will actually be heard. This
allows for fine-grain synchronization between what you see on
the screen and what you hear.

Setting up CoreAudio is very simple. We simply get the device
on which we want to play audio, configure the buffer size, provide
a callback, and tell the device to start playing (see Listing 4).

The audio API a level above CoreAudio is the Carbon Sound
Manager. Since Sound Manager is built on top of CoreAudio, it
will have slightly higher overhead than using CoreAudio direct-
ly, although if you are using short samples internally instead of
floating-point samples, you may be better off using Sound Man-
ager. Unlike CoreAudio, you do not need to provide a callback
function, but can instead just send play commands whenever
appropriate. Sound Manager does provide a command that will
call a callback function, so you can issue another play command
and request another callback when that buffer is finished.

j u n e 2 0 0 1 | g a m e d e v e l o p e r34

M A C O S X

LISTING 3. Creating the OpenGL context.

#define ADD_ATTR(attr) \

do { \

attrCount++; \

attrs = realloc(attrs,sizeof(*attrs)*attributeCount);\

attrs[attrCount-1] = attr; \

} while (0)

NSOpenGLPixelFormat *pixelFormat;

NSOpenGLPixelFormatAttribute *attrs;

unsigned int attrCount = 0;

attrs = malloc(sizeof(*attrs));

if (fullscreen)

ADD_ATTR(NSOpenGLPFAFullScreen);

ADD_ATTR(NSOpenGLPFAColorSize);

ADD_ATTR(colorBits);

ADD_ATTR(NSOpenGLPFADepthSize);

ADD_ATTR(depthBits);

ADD_ATTR(NSOpenGLPFADoubleBuffer);

ADD_ATTR(NSOpenGLPFAAccelerated);

ADD_ATTR(NSOpenGLPFAScreenMask);

ADD_ATTR(CGDisplayIDToOpenGLDisplayMask(display));

ADD_ATTR(0);

pixelFormat = [[NSOpenGLPixelFormat alloc]

initWithAttributes: attrs];

free(attrs);

context = [[NSOpenGLContext alloc]

initWithFormat: pixelFormat

shareContext: nil];

[pixelFormat release];

// Set context to draw into

[context makeCurrentContext];

LISTING 4. Setting up CoreAudio.

propertySize = sizeof(outputDeviceID);

status = AudioHardwareGetProperty(

kAudioHardwarePropertyDefaultOutputDevice,

&propertySize, &outputDeviceID);

propertySize = sizeof(bufferByteCount);

bufferByteCount = SAMPLES_PER_BUFFER * sizeof(float);

status = AudioDeviceSetProperty(outputDeviceID,

NULL, 0, NO,

kAudioDevicePropertyBufferSize,

propertySize, &bufferByteCount);

status = AudioDeviceAddIOProc(outputDeviceID,

audioDeviceIOProc,

userInfoPointer);

status = AudioDeviceStart(outputDeviceID,

audioDeviceIOProc);

j u n e 2 0 0 1 | g a m e d e v e l o p e r36

In addition to the relatively simple CoreAudio and Sound
Manager APIs, Mac OS X provides the QuickTime API. Quick-
Time is extremely powerful and, thus, rather more complicated
than either of the two lower-level APIs. QuickTime provides facili-
ties for playing audio, video, Flash, PDF, and other media types.
Of particular interest for game developers are the audio decom-
pression capabilities of QuickTime. The code to do this is too
long to present here, but is available with the rest of the example
programs developed for this article (see For More Information).

Reading input devices. Keyboard and mouse input can be
implemented through a combination of the normal Cocoa event
mechanism and calls to CoreGraphics. Support for other input
device types (such as joysticks) can reportedly be accomplished
via HIDManager, but as this API is not documented yet, I won’t
address it here (although check the Omni Group web site for
updates later).

Keyboard up and down events are just normal Cocoa event
objects. These objects carry a string of characters in the event,

encoded as Unicode characters. Function keys and other special
keys such as Help and Home are defined in the vendor-specific
Unicode range. Modifier keys such as Shift, Control, and Com-
mand do not transmit keyboard up or down events, since there are
no Unicode characters for these keys. There is a “flags changed”
event that is sent when the state of these keys changes.

Mouse button events are transmitted in two different ways
under Mac OS X. Left, right, and “other” buttons have individual
up and down events, but if you want to handle a larger number of
buttons, it is easiest just to ignore these events. Instead, you can
use the “system defined” event which is sent each time a mouse
button changes state — part of the data payload for this event
type is a 32-bit mask of the current button state.

When the mouse moves, events are sent to your application.
These events contain absolute mouse position information, clipped
to the bounds of whatever screen the mouse resides on. The data
in these events can be ignored, with the event just serving as a noti-
fication that you should call CoreGraphics’ CGGetLastMouseDelta()
function. See Listing 5 for an example event-handling loop for
mouse events.

There are a few common problems you might run into with
input on Mac OS X:
• The keyboard repeat and mouse-scaling settings are not auto-

matically restored when your application terminates.
• The “other” mouse button events have been added since the

public beta but are not yet documented.
• It is best to avoid assuming that your engine will be able to poll

the state of a device button, since some platforms only have
event interfaces.
Also, if you are creating a windowed application (not full-

screen), you will need to create your own window object in which
to place your game view. If you want to receive mouse movement
events in this case, you need to request them explicitly (this is not
necessary in full-screen mode).

PowerPC Specifics

T he code snippets in the example programs are sufficient to
build a game that runs on the Mac, but in order to make a

game that runs as well as possible, there are a few PowerPC-spe-
cific issues that you may need to address, depending upon the
architecture of your game.

Pitfalls. The Macintosh does not have the memory bandwidth
that Intel boxes have. This is less true on the newer machines, but
if you are targeting older iMacs, you will need to be aware of this.
There are things that you can do to help avoid this problem. First,
stay away from back-to-back load and store operations. Instead,
load several values, operate on them, and then store them. The
PowerPC chip has a huge register file compared to Pentiums. You
can avoid a lot of memory operations simply by putting more val-
ues in registers. The PowerPC also provides a set of cache control
instructions that allow you to preload cache lines, flush them, or
zero out entire cache lines (much faster than doing it yourself,
since you avoid the read to load the cache line).

Converting between floating-point and integer formats is
expensive on the PowerPC. There are two reasons for this. First,

M A C O S X

LISTING 5. Example mouse input-handling code.

NSEventType eventType;

CGMouseDelta deltaX, deltaY;

eventType = [event type];

switch (eventType) {

case NSLeftMouseDown:

case NSLeftMouseUp:

case NSRightMouseDown:

case NSRightMouseUp:

case 25: // New undocumented ‘other’ mouse down

case 26: // New undocumented ‘other’ mouse up

break;

case NSSystemDefined:

if ([event subtype] == 7) {

unsigned int buttons;

buttons = [event data2];

// buttons is a bitfield of 32 mouse button states

}

break;

case NSMouseMoved:

case NSLeftMouseDragged:

case NSRightMouseDragged:

case 27: // New undocumented ‘other’ mouse dragged

CGGetLastMouseDelta(&deltaX, &deltaY);

break;

}

j u n e 2 0 0 1 | g a m e d e v e l o p e r38

since the PowerPC is RISC, the floating-point and integer units
are only connected via memory through the load and store unit.
Additionally, the PowerPC (prior to the G4 Altivec instruction set)
does not have architecture-level support for converting from inte-
gers to floats. Casting between float and integer is never free on
any architecture, but it is definitely more expensive on the Power-
PC. You can often get large performance increases by eliminating
needless casting back and forth between int and float.

If your game engine is in C++, you will not be able to mix
Objective-C code snippets as listed
into the same files as your core C++
code. This isn’t a huge problem, since
all the platform-specific code should
be isolated in its own files anyway.
Currently, the simplest way to call
between C++ and Objective-C is to
use a vanilla C interface. If you
design your platform support library
interface in pure C, you won’t even
notice this problem. Apple is devot-
ing engineering resources to this
issue, however, and will be talking
about their progress at the 2001
Apple Worldwide Developers Confer-
ence in May.

Optimizations. The PowerPC has a
few instructions that deserve to be pointed out for possible opti-
mizations.

If your engine uses the square root math library function, you
might be able to use the frsqrte instruction. This instruction com-
putes an estimate of the inverse of the square root. Depending
upon your precision needs, you can use multiple Newton-
Raphson refinement steps to extend the precision of the result.
The frsqrte instruction can in practice be up to 16 times faster
than 1.0 / sqrt(x). In addition to using this instruction for the
reciprocal square root, you can also use it to compute a normal
square root by simply multiplying its result by the original value,
since x / sqrt(x) = sqrt(x).

The PowerPC provides an fsel instruction for performing sim-
ple if/else assignments. This can eliminate branches in inner loops,
which not only reduces the total number of instructions issued,
but also frees up branch prediction slots and eliminates the possi-
bility of an incorrectly predicted branch.

Another interesting group of instructions is the lwbrx family
(load word byte reversed indexed). This family of instructions
allows you to load or store two- and four-byte values and also
perform endian swapping. This is much faster than loading the
value and then performing bitwise operations in order to swap the
value around manually.

Performance-monitoring tools. Mac OS X ships with a full set
of developer tools. Included in this are several performance moni-
toring tools. The Sampler application (and the “sampler” com-
mand line tool) will periodically stop all the threads in your
application, record their stacks, and then let them continue. This
provides you with a tree of wall clock time spent, easily allowing
you to find the portions of your program that are using the most

time. You can also invert the tree, putting the leaves at the root,
allowing you to find small leaf routines that are taking a large
amount of time.

Omni also provides the OmniTimer framework (see For More
Information). This allows you to insert instrumentation calls into
your application at key points (typically determined by running
Sampler) in order to get very high precision timings. OmniTimer
uses the PowerPC TBR (time base register) in order to minimize
the overhead of collecting the timestamps.

Advanced topics. The PowerPC G4
ships with what is considered by many
to be the best SIMD instruction set in a
consumer CPU. With the right type of
task, Altivec can provide huge per-
formance gains. It is also possible to
store floating-point (X, Y, Z, W) vector
data in single Altivec registers and
operate on those registers using macros
or inline functions. Care must be taken
to keep the values in the vector regis-
ters to yield performance gains. The
jury is still out on the feasibility of this
approach, but it is worth considering.

Mac OS X provides full symmetric
multi-processing. If you have the right
sort of tasks (that is, very few synchro-

nization points and low data flow), you can break them up into
separate threads and Mac OS X will automatically schedule them
to different CPUs (if available).

Mac Attack

I n the past couple of years, Apple has increased its focus on
gaming, and it shows. The Macintosh is now a great gaming

platform and only looks to improve in the coming years. By port-
ing to the Mac you can experience increased portability and
robustness for all platforms.

Even better, by adding the Mac enthusiasts to your customer
base, you can increase your revenue stream while continuing to
produce excellent games. q

M A C O S X

F O R M O R E I N F O R M AT I O N

This page on our web site contains pointers to Mac OS X–specific game devel-

opment resources. Included in this is a reference to my GDC 2001 talk, including

several sample applications that demonstrate all of the systems (and more)

addressed above.

www.omnigroup.com/community/developer/game-development/

Apple

http://developer.apple.com/games/index.html

Screenshot from AMERICAN MCGEE’S ALICE.

D esigning first-person action games for Internet multiplay is a challenging
process. Having robust online gameplay in your action title, however, is
quickly becoming essential to the success and longevity of the title. In
addition, the PC space is notorious for requiring developers to support a
wide variety of customer setups. Often, customers are running on less

than state-of-the-art hardware or network connections.
While broadband has been held out as a panacea for all of the current woes of online

gaming, broadband is not a simple solution allowing developers to ignore the implica-
tions of latency and other network factors in game designs. Moreover, it will be some
time before broadband truly becomes widely adopted in the United States and much
longer before it can be assumed to exist for your clients in the rest of the world. In addi-
tion, there are many poorly executed broadband solutions, in which users may occasion-
ally have high bandwidth but more often than not will also have significant latency and
packet loss in their connections.

The traditional client/server architecture, when applied to Internet multiplayer action
games, presents some problems of its own when faced with network latencies. For
instance, one of the most significant challenges is synchronizing instant-hit weapon fire
under a system where the players all have different amounts of latency, and the latency
itself varies from frame to frame. Synchronization must occur while simultaneously bal-
ancing the need for instant feedback with the need for maintaining a fair landscape of
play between narrowband and broadband users.

In some first-person shooter titles such as QUAKEWORLD (a later version of QUAKE),

j u n e 2 0 0 1 | g a m e d e v e l o p e r40

L A G C O M P E N S A T I O N y a h n b e r n i e r

Y A H N B E R N I E R | Yahn received his under-
graduate degree in chemistry from Harvard Uni-
versity and his law degree from the University of

Florida School of Law. Yahn spent five years
practicing patent law in Atlanta and, in his spare
time, he authored the popular QUAKE level editor
BSP. Yahn joined Valve in 1998 working on tech-

nology for Valve’s first title, HALF-LIFE. Cur-
rently, Yahn is a senior engineer and development
lead for Valve’s upcoming title TEAM FORTRESS 2.

Contact him at yahn@valvesoftware.com.

Leveling the
Playing Field

Implementing Lag Compensation to
Improve the Online Multiplayer

Experience

Leveling the
Playing Field

Implementing Lag Compensation to
Improve the Online Multiplayer

Experience

w w w . g d m a g . c o m

you have to lead your target by some distance related to your latency to the server. Aim-
ing directly at another player and pressing the fire button is almost ensured to miss that
player. The trouble with this approach is that leading with an instant-hit weapon is just
not realistic, and the player control has nonpredictable responsiveness due to the vary-
ing latency.

Underpinning HALF-LIFE’s networking architecture was our game design goal to allow
each player to have completely responsive interaction with the world and with his or her
weapons. This article details the technology we developed and the trade-offs that were
made to achieve this goal. Along the way, I’ll also give some background on how
client/server architectures work in typical online action games.

Basic Architecture of a
Client/Server Game

M ost action games played on the Internet today use a
modified client/server architecture. Games such as

HALF-LIFE, including its mods such as COUNTER-STRIKE and
TEAM FORTRESS CLASSIC, operate on such a system, as do
games based on the QUAKE 3 engine and the UNREAL

TOURNAMENT engine. In these games, there is a single,
authoritative server which is responsible for running the
main game logic. To this are connected one or more

“dumb” clients. These clients initially were nothing more than a
way for the user input to be sampled and forwarded to the server
for execution. The server would execute the input commands,
move other objects, and then send back to the client a list of
objects to render (see Figure 1). Of course, the actual system has
more components to it, but this simplified breakdown is useful
for thinking about prediction and lag compensation.

For this discussion, all of the messaging and coordination nec-
essary to start up the connection between client and server is
omitted. The client and server are functionally synchronized on a
per-frame basis after initialization is completed. The system’s
frame loop looks like Figure 2.

Each time the client and server make a pass through this loop,
the frame time is used for determining how much simulation will
be required on the next frame. If your frame rate is constant, then
the frame time will be a correct measure; otherwise, the frame
times will be incorrect. But there isn’t really a solution to this,
unless you have some way to compute deterministically how long
it is going to take to run the next frame loop iteration before
actually running it.

In this model, non-player objects run purely on the server, while
player objects drive their movement based on incoming packets.
Of course, this is not the only possible way to accomplish this
task, but it does make sense.

In games using the HALF-LIFE engine, the user input message that
is sent to the server is quite simple and contains just a few essential
fields: frame time, view direction, movement velocity, currently
pressed buttons, and a few weapons flags (see the usercmd_t data
structure in the HALF-LIFE SDK, file common/usercmd.h).

Using this data structure and the client/server process above
creates a quite simple simulation, but it doesn’t react well under
real-world situations with significant latency in client connections.
The main problem is that the client truly is “dumb,” and all it
does is the simple task of sampling movement input and waiting
for the server to tell it the results. If the client has 500 millisec-
onds of latency in its connection to the server, then it will take
500 milliseconds for any client actions to be acknowledged by the
server and for the results to be perceptible on the client. While
this round-trip delay may be short and thus acceptable on a LAN,
it is definitely not acceptable on the Internet.

Client-Side Prediction

O ne method for ameliorating this problem is to perform the
client’s movement locally and just assume, temporarily, that

the server will accept and acknowledge the client commands

directly. This method can be called “client-side prediction.”
Client-side prediction requires us to let go of the “dumb” or

minimal client principle. That’s not to say that the client is fully in
control of its simulation, as in a peer-to-peer game with no central
server. There is still an authoritative server running the simulation,
as I noted. Having an authoritative server means that even if the
client simulates different results from the server, the server’s
results will eventually correct the client’s incorrect simulation.
Because of the latency in the connection, the correction might not
occur until the time for a full round trip has passed. The down-
side is that this can cause a very perceptible shift in the player’s
position when the prediction error is resolved.

To implement client-side prediction, the following general pro-
cedure is used. As before, client inputs are sampled and a user
command is generated. Also as before, this user command is sent
off to the server. However, each user command (and the exact
time it was generated) is stored on the client. The prediction algo-
rithm then uses these stored commands.

Prediction starts by using the last acknowledged movement
from the server. This acknowledgment indicates which user com-
mand was last acted upon by the server and also tells us the exact
position (and other state data) of the player after that movement
command was simulated on the server. The last acknowledged
command will be somewhere in the past if there is any lag in the
connection. For instance, if the client is running at 50 frames per
second (20 milliseconds per frame) and the network connection
has 100 milliseconds of latency (round-trip), then the client will
have five stored commands since the last one acknowledged by the
server. These five commands are simulated on the client as a part
of client-side prediction. Assuming full prediction, the client starts
with the latest data from the server and then runs the five com-

j u n e 2 0 0 1 | g a m e d e v e l o p e r42

L A G C O M P E N S A T I O N

CLIENT

• Start time = current clock
• Sample user input (mouse,

keyboard, joystick)
• Send movement command to

server using simulation time

• Read server packets
• Use packets to determine

visible objects and their state
• Render scene
• End time = current clock
• Next frame simulation time =

End time – Start time

SERVER

• Start time = current clock

• Read client user input
messages

• Execute client user input
messages

• Simulate server-controlled
objects using previous frame
simulation time

• For each connected client,
package up visible objects/
world state and send to client

• End time = current clock
• Next frame simulation time =

End time – Start time

FIGURE 1. General client/server architecture.

FIGURE 2. The system frame loop allows for synchronized functionality
between the client and the server.

• Sample user input
• Receive current

objects
• Render objects

Network
Connection

• Process user input
• Move objects
• Send current

objects to client for
rendering

CLIENT SERVER

tim
e

j u n e 2 0 0 1 | g a m e d e v e l o p e r44

mands through logic similar to what the server uses for simulation
of client movement. Running these commands should produce an
accurate final state on the client which can be used to determine
from what position to render the scene for the current frame.

The HALF-LIFE engine shares player movement code between
the client and server, in order to minimize discrepancies in the
prediction logic. These are the routines in the pm_shared/ (which
stands for “player movement shared”) folder of the HALF-LIFE

SDK (see For More Information). The input for these shared rou-
tines is encapsulated in the user command and a “from” player
state. The output is the new player state after executing the user
command. The general algorithm on the client is shown in the
following pseudocode.

FromState: state after last user command acknowledged by the server

Command: first command after last user command acknowledged by server

while (true)

{

run Command on FromState to generate ToState;

if (Command was the most up to date command)

break;

FromState = ToState;

Command = next command;

};

The final to state is the prediction result and is used for render-
ing the scene that frame. The portion where the command is run
is simply the portion where all of the player state data is copied
into the shared data structure, the command is processed (by exe-
cuting the common code in the pm_shared routines in HALF-LIFE’s
case), and the resulting data is copied to the to state.

There are a few important caveats to this system. You’ll notice
that, depending upon the client’s latency and how fast the client is
generating commands (the client’s frame rate), the client will most
often end up running the same commands over and over again
until they are acknowledged by the server and dropped from the
list of commands (done via a sliding window in HALF-LIFE’s case).
The first consideration is how to handle any sound effects and
visual effects that are created in the shared code. Because com-
mands can be run over and over again, it’s important not to create

events such as footstep sounds multiple times every time the old
commands are rerun. In addition, it’s important for the server not
to send the client effects that are already being predicted on the
client. However, the client still must rerun the old commands, or
else there will be no way for the server to correct any erroneous
prediction by the client. The solution to this problem is easy: the
client just marks those commands which have not been predicted
yet on the client and only plays effects if the command is being
run for the first time on the client.

The other caveat is with respect to state data that exists solely
on the client and is not part of the authoritative update data from
the server. If you don’t have any of this type of data, then you can
simply use the last acknowledged state from the server as a start-
ing point and run the prediction commands in place on that data
to arrive at a final state. In this case, you don’t need to keep all of
the intermediate results along the route for predicting from the
last acknowledged state to the current time. However, if you are
doing any logic completely on the client side (this could include
functionality such as determining where the eye position is when
you are in the process of crouching) which affects fields that are
not replicated from the server to the client by the networking
layer, then you will need to store the intermediate results of pre-
diction. This can be done with a sliding window, where the from
state is at the start, and each time you run a command through
prediction, you fill in the next state in the window. When the
server finally acknowledges receiving one or more commands that
had been predicted, it is a simple matter of looking up which state
the server is acknowledging and then copying over the data that is
completely client-side to the new from state.

So far, the preceding procedure describes how to accomplish
client-side prediction of movements in a manner similar to that
used in QUAKEWORLD (see For More Information for the link to
the QUAKEWORLD source code).

Weapons Fire Prediction

L ayering prediction of weapons fire onto the above system is
straightforward. Additional state information is required for

the local player on the client, of course, including which weapons
are being held, which one is active, and how much ammo each of
these weapons has remaining. With this information, the firing
logic can be layered on top of the movement logic, because once
again, the state of the firing buttons is included in the user com-
mand data structure that is shared between the client and the
server. Of course, this can get complicated if the actual weapon
logic is different between client and server. In HALF-LIFE, we chose
to avoid this complication by moving the implementation of a
weapon’s firing logic into shared code, just like the player move-
ment code. All of the variables that contribute to determining
weapon state (for example, ammunition, when the next firing of
the weapon can occur, which weapon animation is playing, and so
forth), are then part of the authoritative server state and are repli-
cated to the client so that they can be used on the client for pre-
diction of weapon state there.

Predicting weapons fire on the client will likely also lead to the
decision to predict weapon switching, deployment, and holstering

L A G C O M P E N S A T I O N

46

so that players will feel that the game is 100 percent responsive to
their movement and weapon activities. This goes a long way
toward reducing the feeling of latency that many players have
come to endure with Internet-based action games.

Replicating the necessary fields to the client and handling all of
the intermediate state is a fair amount of work. At this point you
may be asking, why not ditch the server stuff and just run the
movement and weapons purely on the client side? Then, the client
would just send results to the server such as, “I’m now at position
X, and, by the way, I just shot Player 2 in the head.” This works
fine if you can trust the client, and in fact is how a lot of military
simulation systems work, since they’re a closed system and can
trust all of the clients. Generally this is how peer-to-peer games
work as well. Unfortunately for HALF-LIFE and most Internet-based
action games, this mechanism is unworkable because of realistic
concerns about cheating. If we encapsulate absolute state data in
this fashion, we’d raise the motivation to hack the client even high-
er than it already is. (For a discussion of cheating and what devel-
opers can do to deter it, see Matt Pritchard’s Game Developer arti-
cle in For More Information.) For our games, this risk is too high,
and so we have to fall back on requiring an authoritative server.

A system where movements and weapon effects are predicted
client-side is very workable. For instance, this is the system that
the QUAKE 3 engine supports. A problem with this system,
though, is that players still have to combat their latency to
determine how far to lead their targets when firing. In other
words, although you hear the weapon firing immediately and
your position is up-to-date, the results of your shots are still
subject to your latency. For example, if you’re aiming at a player
running perpendicular to your view, and you have 100 millisec-
onds of latency and the player is running at 500 units per sec-
ond, then you’ll need to aim 50 units ahead of the target to hit
it with an instant-hit weapon. The greater the latency, the
greater the lead targeting required. Getting a “feel” for your
latency is difficult for the player and detracts from the gaming
experience. QUAKE 3 attempts to mitigate this by playing a “hit”
tone when the client receives confirmation of a hit. This gives
players some hint as to how far they need to lead their weapons
fire. Obviously, with sufficient latency and an opponent who is
actively dodging, it is quite difficult to get enough feedback to
focus in on an opponent consistently. If your latency is fluctuat-
ing, it can be even more challenging.

Determining Opponent Position

A nother important aspect influencing how a user perceives the
responsiveness of the world is the client’s mechanism for

determining the position of the other players. The two most basic
mechanisms for determining where to display the other players
are extrapolation and interpolation.

Extrapolation. In extrapolation, the other player is simulated
forward in time from the last known position, direction, and
velocity in more or less a ballistic manner. That is, if you’re lagged
100 milliseconds, and the last update you received indicated that
the other player was running 500 units per second perpendicular
to your view, then the client can assume that the other player has
moved 50 units straight ahead from their previous position. The
client can then draw the player at that extrapolated position and
the local player can more or less aim right at the other player (see
Figure 3).

The biggest drawback of using this method is that player move-
ments are not usually very ballistic. Instead, they’re usually very
nondeterministic and very jerky. (“Jerk” is a measure of how fast
acceleration forces are changing.) Layer on top of this the unrealis-
tic player physics models that most FPS games use, where players
can turn instantaneously and apply unrealistic forces to create huge
accelerations at arbitrary angles, and you’ll see that the extrapola-
tion is quite often incorrect. The developer can mitigate this error
by limiting the extrapolation time (QUAKEWORLD, for instance, lim-
ited extrapolation to 100 milliseconds). This limitation helps
because once the true player position is finally received, there will
be a limited amount of corrective warping. Unfortunately, most
players still have more than 150 milliseconds of latency, so the
player must still lead other players in order to hit them. If those
players are “warping” to new positions because of extrapolation
errors, the gameplay suffers nonetheless.

Interpolation. The other method for determining where to dis-
play objects and players is interpolation. Interpolation uses the
two most recent acknowledged player positions and interpolates
between them based on the latency. For instance, if the server is
sending 10 updates per second of the world state, we could
impose 100 milliseconds of interpolation delay into our render-
ing. As we render frames, we interpolate the position of the

L A G C O M P E N S A T I O N

FIGURE 3. Extrapolation allows the client to calculate where the other play-
er will be, so that the local player can play in real time.

Time–100ms0ms

Z Z
Extrapolated

Position

Known:

Position at Time t – 100ms
Velocity at Time t – 100ms

(500 units per second)

Known
Position

j u n e 2 0 0 1 | g a m e d e v e l o p e r

50 units

48 j u n e 2 0 0 1 | g a m e d e v e l o p e r

object between the last updated position and the position directly
before that over 100 milliseconds. As the object arrives at the last
updated position, we should receive the next update from the
server and we can then start moving toward this new position
(see Figure 4).

If one of the server update packets fails to arrive, we have two
choices: we can extrapolate the player position as described pre-
viously, or we can simply have the player rest at the position in
the last update until a new update arrives (which causes the
player’s movement to stutter).

In essence, in one basic form, interpolation buffers one addi-
tional round-trip latency on the client. The other players, there-
fore, are drawn where they were at a point in the past that is your
latency plus the amount of time over which you are interpolating.
To deal with the occasional dropped packet, we could set the
interpolation time to 200 milliseconds instead of 100 milliseconds,
for example. This would allow us to miss one update and still
have the player interpolating toward a valid position without a
hitch. Of course, increasing the interpolating time is a trade-off,
because it trades additional latency (making the interpolated play-
er even harder to hit) for visual smoothness.

Unfortunately, interpolation also suffers from visual quality
issues that are difficult to resolve. Imagine that the object being
interpolated is a bouncing ball (which accurately describes some
of our players, actually). At the extremes, the ball is either high in
the air or hitting the ground. However, on average, the ball is
somewhere in between. The bounciness of the ball appears flat-
tened out due to the ball being interpolated between just before
and just after hitting the ground or reaching its high point. This is
a classic sampling problem and can be alleviated by sampling the
world state more frequently. However, we are still quite likely
never actually to have an interpolation target state be exactly at
the ground or high point (see Figure 5).

One interesting consideration we have to layer on top of the
interpolation scheme is some way to determine that an object has
been teleported. Otherwise we might “smoothly” move the object

over great distances. We can either set a flag in the update that
says “don’t interpolate” or “clear out the position history,” or we
can determine if the distance traveled between updates is too
large, and thereby presume it to be a teleport.

Using Lag Compensation

U nderstanding interpolation is important in designing for lag
compensation, because interpolation is another type of laten-

cy in the player’s experience. Since the player is looking at other
objects that have been interpolated, the amount of interpolation
must be taken into consideration in computing, on the server,
whether the player’s aim was true.

Lag compensation normalizes server-side the state of the world
for each player as that player’s commands are executed. You can
think of lag compensation as taking a step back in time, on the
server, and looking at the state of the world at the exact instant that
the player performed some action. The algorithm works as follows:
1. Compute a fairly accurate latency for the player.
2. Search the server history for the update that was received by

the player just before they issued the movement command.
3. From that update and the following one, move the other play-

ers backward in time to exactly where they were when the
player’s command was created. This moving backward must
account for both connection latency and the interpolation
amount that the client was using that frame (which is encoded
in the player command).

4. Execute the command using these “old” positions.
5. Move all of the players back to their current positions.

Note that when we move the player backward in time, it might
also require forcing additional state information backward (for
instance, whether the player was alive or dead, or whether the
player was ducking). The end result of lag compensation is that
each player is able to aim directly at other players without having
to worry about leading their target to score a hit. Of course, this
behavior creates its own issues and is a game design trade-off.

L A G C O M P E N S A T I O N

FIGURE 4 (left). Interpolation uses previously acknowledged positions and buffers one additional round-trip latency.
FIGURE 5 (right). Interpolation suffers from visual quality issues.

Time–300ms–250ms–200ms–150ms–100ms–50ms

Interpolated
Position

Actual
Path

–200ms–100ms

Interpolated
Position

Known:

Position at t – 100ms
Velocity at t – 100ms

Position at t – 200ms
Velocity at t – 200ms

Latency = 100ms
Known
Position

ZZ
Known
Position

Z

Time

49

Game Design Implications

T he introduction of lag compensation allows each player to run
and interact with the world and most other players in real

time, with no apparent latency. In this respect, it is important to
understand that some inconsistencies can occur. Of course, the old
system with the authoritative server and “dumb” or simple clients
had its own inconsistencies. In the end, making this trade-off is a
game design decision. For HALF-LIFE, we believe deciding in favor
of lag compensation was justified.

The first problem of the old system was that you had to lead
your target by some amount that was related to your latency.
Aiming directly at another player and pressing the fire button
was almost sure to miss that player. The inconsistency is that
aiming is just not realistic and that the player controls have non-
predictable responsiveness.

With lag compensation, the inconsistencies are different. For
most players, all they have to do is acquire some aiming skill and
they can become proficient. Lag compensation allows the player to
aim directly at their target and press the fire button (for instant-hit
weapons). The inconsistencies that can sometimes occur are from
the point of view of the player being fired upon.

For instance, if a highly lagged player shoots at a less lagged
player and scores a hit, it can appear to the less lagged player that

they’ve somehow been “shot around a corner.” The lower-lagged
player may have just darted around a corner, but the higher-
lagged player is seeing everything in the past, so they may have a
direct line of sight to the other player. If the higher-lagged player
is sufficiently lagged, say 500 milliseconds or so, this scenario is
quite possible. When the higher-lagged player’s command arrives
at the server, the hiding player is transported backward in time
and calculated as being hit. This is an extreme case, but in this
case the lower-lagged player thinks that they were somehow shot
from around the corner. But from the higher-lagged player’s per-
spective, they simply lined up the crosshairs and fired a direct hit.
From a game design point of view, this was an easy decision: let
each individual player have completely responsive interaction with
the world and with their weapons.

In practice, this inconsistency is much less pronounced in nor-
mal combat situations. For first-person shooters, there are two
more typical cases. First, consider two players running straight at
each other, pressing the fire button. In this case, it’s quite likely
that lag compensation will just move the other player backward
along the same line as their movement. The person being shot will
be looking straight at the attacker and no “the bullet bent around
the corner” feeling will be present.

The second example is one player aiming at another while the
other dashes perpendicularly across the first player’s field of

w w w . g d m a g . c o m

50

vision. In this case, the inconsistency is minimized for a wholly
different reason. The player who is dashing across the view of
the shooter probably has (in first-person shooters, at least) a field
of view of 90 degrees or less. In essence, the dashing player can’t
see where the aiming player is aiming. Therefore, getting shot
isn’t going to be surprising or feel wrong (you get what you
deserve for running around in the open like a maniac). Of course,
if you’re playing a tank game, or a game where the player can
run in one direction and look in another, then this scenario is less
clear-cut. You might actually see the other player aiming in a
slightly incorrect direction.

Additional Notes

F or weapons that fire projectiles, lag compensation is more
problematic. For instance, if the projectile lives autonomous-

ly on the server, then what time space should the projectile live
in? Does every other player need to be “moved backward” every
time the projectile is ready to be simulated and moved by the
server? If so, how far backward in time should the other players
be moved? These are interesting questions to consider. In HALF-
LIFE, we avoided them; we simply don’t lag-compensate projectile
objects (that’s not to say that we don’t predict the sound of play-
ers firing the projectile on the client, just that the actual projectile

is not lag-compensated in any way).
In general, lag compensation is an effective tool to ameliorate the

effects of latency on today’s Internet-enabled action games. The
decision of whether to implement such a system rests with the game
designer, since the decision directly changes the feel of the game.
For HALF-LIFE, TEAM FORTRESS, and COUNTER-STRIKE, the benefits
of lag compensation easily outweighed the inconsistencies. q

j u n e 2 0 0 1 | g a m e d e v e l o p e r

L A G C O M P E N S A T I O N

F O R M O R E I N F O R M AT I O N

WEB SITES

QUAKEWORLD Source Code
ftp://ftp.idsoftware.com/idstuff/source/q1source.zip

HALF-LIFE SDK
http://download.cnet.com/downloads/0-10045-100-3422497.html

ARTICLES

Internet Cheating in Games
Pritchard, Matt. “How to Hurt the Hackers: The Scoop on Internet
Cheating and How You Can Combat It” (June 2000).
Also at www.gamasutra.com/features/20000724/pritchard_01.htm

B LACK & WHITE is the game I always wanted to make.

From the days of POPULOUS I had been fascinated by the

idea of controlling and influencing people in an entire

world. I was also interested in the concepts of good and

evil as tools the player can use to rule or change the

world. These themes crop up regularly in my games, but I realize now that with every

game I was heading toward my ultimate goal — the god game BLACK & WHITE.

I wanted the game to be more flexible, more open, and more attractive than anything

I’d ever played. I was determined that the player could do almost anything he or she

wanted. Instead of leading players deeper into a world of levels and testing them with

tougher and tougher monsters, I wanted players to be engaged by the story but to take

it at their own pace and decide which bits to tackle and when to tackle them.

More technically, I didn’t want a panel of icons or a set of on-screen options. With

j u n e 2 0 0 1 | g a m e d e v e l o p e r54

P E T E R M O L Y N E U X | Peter co-founded
Bullfrog Productions in 1987 and created a

new genre of computer games, the “god
game,” with the release of POPULOUS. Since

then, Peter has been responsible for a string of
massive-selling games, including POWER-

MONGER, THEME PARK, MAGIC CARPET, and
DUNGEON KEEPER. He founded Lionhead

Studios in 1997, whose first game, BLACK &
WHITE, was released in March of this year.

Lionhead Studios’
BLACK & WHITE

P O S T M O R T E M p e t e r m o l y n e u x

w w w . g d m a g . c o m 55

G A M E D A T A

PUBLISHER: Electronic Arts

FULL-TIME DEVELOPERS: 25

CONTRACTORS: 3

BUDGET: Approx. £4 million

(approx. $5.7 million)

LENGTH OF DEVELOPMENT: 3 years, 1 month,

10 days

RELEASE DATE: March 30, 2001

PLATFORMS: Windows 95/98/2000/ME

HARDWARE USED: 800MHz Pentium IIIs with

256MB RAM, 30GB hard drives, and Nvidia

GeForce graphics cards

SOFTWARE USED: Microsoft Dev Studio, 3ds Max

NOTABLE TECHNOLOGIES: Bink for video

playback, Immersion touch sense for

force-feedback mouse

PROJECT SIZE: Approx. 2 million lines of code

DUNGEON KEEPER I felt we overdid the control panel, and, while it worked, it didn’t add

to the immersive sense of being this evil overlord deep underground. Frankly, it simply

reminded you that you were playing a videogame.

Finally, I wanted to place into BLACK & WHITE the ability to select a creature (origi-

nally any creature from the landscape) and turn it into a huge, intelligent being which

could learn, operate independently, and do your bidding when you wanted. I knew that

this would require an artificial intelligence structure unlike any ever written. It had to

be the best.

Of course, I needed a team for all this, but I wanted the right sort of team and so had

to build it slowly. A core team of about six was formed, and at the start of Lionhead we

worked at my house. Our first task was to create a library of tools, so we spent our time

there doing boring foundation tool-building.

We started work on the game
proper when we moved into our
offices in February 1998, at which time
there were nine of us. By this time we had
begun thinking about the game in general
terms. We discussed what we could have
in it, what we should have in it, and
what, in a perfect world, we’d like to see.
Funnily enough, much of the last category
did in fact make it in, things such as the
changing atmosphere and buildings if
you change alignment between evil and
good or vice versa. Also, ideas for some
fully lip-synched characters were thrown
around. At that time, we didn’t seriously
think it could be done.

During the first year of Lionhead we
added people gradually, as I was very keen
for the friendly, family-style atmosphere
of Lionhead to remain, and it takes a
certain sort of person to fit in and
enjoy working with such a close-knit
team. This policy of only recruiting people
whom we felt had the talent and a way of working which fit in
with Lionhead’s existing members meant that our team had
evolved their own way of working. They didn’t just carry out
their tasks but questioned, tested, and pushed both themselves
and each other. It’s labor-intensive, but you often end up with
more than you expected. For example, the art team divided up the
tribal styles for the villages and tried to outdo each other in terms
of design and effort put in. The result was better design work than
we thought we’d get.

At Lionhead Studios, we all knew that BLACK & WHITE was
going to be something special. This belief became self-fulfilling
as we were inspired by each new feature and every neat, innova-
tive section of code. Naturally, this meant that everyone worked
exceptionally hard. Over the course of the project the team did
the work of a group twice their number. We regularly went
home as dawn broke, and weekends became something other
people did.

What Went Right

1. It got finished. This sounds stupid, but we encountered
some big problems, and there were times when we doubt-

ed that the game (as it ultimately ended up) would get released.
As a new company, we not only had to work out the game we

were going to create, but we had to write the tools
and libraries, create everything from scratch in soft-

ware, and also gel together as a team.
We couldn’t have a dress rehearsal for this, so

we learned by trying things and then changing
them if they didn’t work. As time rolled on,

we couldn’t afford to make any mistakes or
pursue blind alleys. For example, we talked
about updating some of the graphics at one

point. It didn’t seem a big job, but once
we’d changed some of the
buildings in the tribal villages,
they showed up any unchanged

ones and made them look less
impressive, so we had to assign time

to do them all. We got a much better set
of buildings out of this, but if we’d known

that we’d have had to do all of them, we would
have said, rightly, that there wasn’t time.
The programmers were likewise coming up with neater and

neater ways of coding, and thus trying to do more and more
with the code they had. It says a lot about the talented and sin-
gle-minded development team at Lionhead that everybody
always wanted to make every element that little bit better.

And as we fixed the bugs and sent the game to QA, we felt
like people who’d run a marathon and could see the finish
line, but it didn’t seem to be getting any closer. Perhaps this
is a function of not getting enough sleep over a period of sev-
eral months.

2.All the risks paid off. We wanted to do
some pretty groundbreaking things in BLACK

& WHITE. One example was doing away with the
panel of controls and using the Gesture system for cast-
ing Miracles. We tried and tried to get this feeling just
right, and if we’d had to dump it, I’d have been so dis-
appointed. But after research, testing, and simple trial
and error we got it working beautifully, and we now
have a feature no one else does.

Also, integrating the story line into such a free-flow-
ing strategy game was a risk. We thought it would sit

quietly behind the game, popping up to direct you if you hadn’t
moved on, but the story came alive and started to draw the player
through the game in a way none of us, apart from perhaps

j u n e 2 0 0 1 | g a m e d e v e l o p e r56

P O S T M O R T E M

ABOVE.
Concept draw-
ing for the tor-
toise Creature.
RIGHT. Render
of the evil cow
Creature.

scriptwriter James Leach, had envisaged. It also gave us characters
such as Sable, the Creature trainer, and those advisors whom we
hear people now quoting lines from, and who exist outside the
game as recognizable characters.

The huge, learning, intelligent Creature was also more of a
gamble than he now seems. To go into AI in such an in-depth
way required Richard Evans, our AI programmer, to consider
what learning was, how practice works, and how the reinforce-
ment of ideas comes about. Then he built all this into a character
which appeared to live and learn like, say, a clever puppy. AI is
always a minefield, and I’m always disappointed by great strategy
games which appear to have the most simple, easy-to-predict AI
running your enemies. We just wanted to advance the technology
to its extreme.

We also wanted to do more with graphics and animation
blending. The world changes depending on whether you’re play-
ing as a good or an evil god, and things take on subtle new
looks. The Creature, the player’s hand, and many of the build-
ings change, and we used more animation blending to achieve
smooth movement and changes than anyone else has ever done,
I believe.

We’re also the first game (apart from Microsoft’s FLIGHT SIMU-
LATOR) which enables you to import real weather in real time
into the world. We are also the first to enable unified messaging,
whereby you can send messages to the web from the game, or
receive them, using e-mail and mobile phones. This integrated
two-way messaging as well as the ability to take your Creature
out of BLACK & WHITE and onto the web is brand-new. Also, the
game can import names from your e-mail package and assign
them to unique villagers in your tribe in the game. I expect lots
of games to do similar things in the future, but we took massive
risks and devoted huge amounts of effort to being the first and to
making it work properly.

3. The game looks so stunning. When we started, we
used a wireframe test bed and a couple of conceptual

screenshots to provide some atmosphere. I first showed the test
bed and these mocked-up screenshots to the press at E3 in
Atlanta in 1998, and I could see on the assembled faces that
nobody believed we could accomplish anything like it in the
final game. I was complimented on the depth and beauty of pre-
liminary efforts, but the compliments had a slightly hollow ring.
I could almost hear people thinking, “Yeah, it looks great, but
anyone can draw pretty screens using an art package. What’s
your game really going to look like?”

Not only did we manage to pull off the look we wanted, but
we exceeded it by some margin. The sheer beauty of the lands is
something I hope won’t be matched for a while, and the fact that
you can move, zoom, and rotate to view it from any angle, any-
where in the game, is again something we got spot-on.

Looking back, I don’t know whether we were insanely ambi-
tious, because at the time we started, you couldn’t have done
what we did. We needed so much custom-written software, and
we also needed the minimum specification of the PC community
at large to get better before this would be viable. When we started
BLACK & WHITE, most people had 32MB of RAM in their PCs.
The game requires 64MB, but that’s commonplace now. So, if you
like, we aimed beyond the horizon, and the world rotated and
caught up with us so we still hit our target.

I still have those original screenshots, and I still like looking at
them. We wrote a book called The Making of Black & White,
and from reading that, it’s clear that we went from a bunch of
bizarre ideas linked by the concept of supreme control to the best
game I have ever seen.

4. The artificial intelligence. The Creature AI, as I have
mentioned, is absolutely spot-on. Richard Evans worked

57w w w . g d m a g . c o m

LEFT (top and bottom). Concept art featuring Horny from DUNGEON KEEPER — a great deal to live up to. RIGHT. The final product.

58

tirelessly on this, and it became something that surprised even
him with its flexibility and power. The AI isn’t just restricted to
the Creature. Every villager in the game has it as well, and they
are all different in their wishes, desires, motivation, and personali-
ty. Because there is no upper limit to the number of villagers you
can have, we had to cap the AI slightly by giving some of the vil-
lager control to the Village Center, which acts like a hive and
farms out some of the cooperative elements to the people. We
couldn’t have them interrogating each other, so this central con-
trol means that they do work as a unit but can retain their indi-
vidual characteristics. This makes the game much faster and still
gives them minds of their own.

The Creature himself is an astonishing piece of work. Once he
starts learning, he forms his own personality as he goes, and no
two players will ever have the same Creature. The complexity is
kept to a minimum to keep him fast, but we managed to steer
completely clear of using random elements to make him seem like
he has a mind of his own. And there is nothing in the game that
you can do which you can’t teach your Creature to do. It’s true to
say that the Creature mirrors you and your actions, so in BLACK

& WHITE we’ve got a game in which part of the game itself learns
from everything you do and tailors itself to you.

5. The way the team came together to make BLACK &
WHITE happen. This is Lionhead Studios’ first project,

and everything started from scratch. The people, the software,
and the working environment were all new. Although this was
exactly what we needed to do a game so fresh and diverse, it
also created problems which I was delighted to overcome. The
lack of any precedent meant that things took a lot longer than
they should have, and the open-ended nature of the game
throughout much of its development meant that team members

were limited only by their own imagination.
But the nice thing is, every member of the Lionhead team gelled

brilliantly, and although I know we picked the very best people,
there is an element of luck in whether they can all work together
so well. We certainly lucked out with the team, and every one of
them contributed massively to making the game what it is.

The last few months of the project were the hardest any of us
has ever had to work, but thanks to the people, they were also
some of the most fun months we ever had. If nothing else, we’ll
always remember the time we spent closeted together making
BLACK & WHITE.

And I’ll never forget that without the right team, this game
never would have happened. It’s as simple as that.

What Went Wrong

1. Planning the story. We underestimated how long it
would take to construct and write the story element of

BLACK & WHITE. The free-form nature of the game required an
unfolding tale to give it some structure and lead it to a conclu-
sion, and in October 1999 we began to work on the story. We
thought it would take no more than two months, but after a
while we realized that we didn’t have the skill set needed to take
care of this vital aspect of the game. I contacted James Leach,
who’d been the in-house games scriptwriter at Bullfrog and had
worked on SYNDICATE WARS, DUNGEON KEEPER, THEME HOSPITAL,
and many others. He was working as a freelance ad copywriter
but gladly came on board, again in a freelance capacity, and
turned our ideas into a fully plotted story line, wrote hundreds
of challenges and quests, and wrote all the dialogue in the game.
It ended up being more than 60,000 words, the size of a novel.

Hiring James meant that we got a sense of continuity, consis-

j u n e 2 0 0 1 | g a m e d e v e l o p e r

P O S T M O R T E M

ABOVE. The citadel, inside (right and bottom left) and out (top left), turned out better than we dared hope.

j u n e 2 0 0 1 | g a m e d e v e l o p e r60

P O S T M O R T E M

tency, and style throughout the game. It also meant that we
could describe what we wanted, or even write placeholder text,
and he would rapidly turn it into finished work. Sections of the
game that were still at an early stage seemed more easy to under-
stand, get a feel for, and work on when we used dialogue and
text which seemed, to us, finished. Of course, another pass was
usually needed to make it accurate and sometimes to polish it,
but having a dedicated scriptwriter made this a simple task.

Storytelling in games, as elsewhere, is an art. If a story line
flows easily and naturally, that’s because someone has worked
incredibly hard at it. I’m a great believer in the
emotion and immersion that can be added to a
game through good story and dialogue. It can’t
make a bad game good, but it can make any
game better. And when the script was looked
at by Hollywood scriptwriters and film
directors from the BBC, we knew we were on
to a winner.

Another by-product of using a professional
scriptwriter was that we morphed the in-game
advisors, the good and evil guys, from being just
sources of information and guidance into stylish,
popular characters who are now bankable properties in their
own right.

2. Fixing the bugs. After canceling our Christmas party
on December 26, 2000, we managed to hit Alpha,

which as any developer knows is a very loose definition, but at
least we could say that all the game features were now locked.
After a well-deserved Christmas break, we came back to
find that we had more than 3,000 bugs. We had six weeks
to reduce this to zero, but the thing about bug-fixing is

that you can solve one problem but in doing so create three more.
So although we worked as hard as we could, the overall figure
crept down slowly rather than dropped at the rate at which we
were actually sorting out the bugs.

By this stage the team was very tired. The only things that kept
them going were the sense that the end was in sight and the fact
that they could now play the game and actually experience what
we had created. Bugs, of course, could have killed the game, so
there was no way around it but to fix each and every one. We
had bug lists circulated to every member of the staff, and we put
up a chart on the wall which was updated daily. Some days we

had more bugs than the day before, and that was like looking
at a mountain which was growing quicker than we could

climb it. But there came a moment three weeks into this
process when we felt we’d broken the back of the
major bugs, and the numbers fell steadily. Of

course, the irony was that the last 10 bugs
were the hardest to fix, and with every one

there were four more created. It was as
if the game just didn’t want to be fin-
ished and perfected.

3. The project was too big.
BLACK & WHITE got to be

so large that we almost felt lost
within the code. In fact there are
well over a million lines of code
within the game. Loading up even
the most simple of the smallest
tools would take many minutes,

Good ape.

LEFT. Creature comforts. RIGHT (top and bottom). We tried to make the micromanagement of the villagers as user-friendly as possible.

j u n e 2 0 0 1 | g a m e d e v e l o p e r62

and compiling the entire game took over an hour. This meant
that toward the end of the development phase even a tiny change
could take a whole day to implement.

Checking in changes and rectifying errors was a nightmare.
We eventually decided to limit the checking-in to one machine,
and we implemented a buddy system whereby nothing was done
without an onlooker checking it at every stage. This put a stop
to tired people checking in changes at four in the morning and
finding that, instead of fixing something, they’d
actually caused further problems.

Another worry about the project’s size was
that we didn’t think the game would fit on one
CD, although we were desperate for it to. The
audio files are immense. Music, dialogue, and
effects are all compressed, but of sufficiently
high quality that we refused to reduce them
any further.

And with 15 language versions to get trans-
lated and recorded, we had to do the biggest
localization job I’ve ever seen. This landed on
Lionhead Studios at the very busiest time, and
although our publisher did an excellent job of
handling it, we were needed to check and answer
questions and to provide explanations for some
of the more arcane elements of the game.

4. Leaving things out. The idea of the
game didn’t really change much over

the course of its creation. But I do have some
regrets that features we thought would be
great proved unworkable. I expected this, as
it happens with every project, but I thought

the problems would be caused by software or even hardware
limitations. In fact, it came down more to emotional issues.

For example, the original idea of the Creatures was that a play-
er could choose to make any living thing a Creature. We wanted
the player to be able to select an ant and grow that, or a human
being from a tribe, and raise him or her. Christian Bravery, one of
the artists, spent a long time drawing concept work and sketches
depicting what the Creatures could look like at various stages of

their development. This of course included humans.
We soon realized that people would have certain expec-

tations from a human. Players wouldn’t expect a turtle to
learn as quickly as a man, but if we dumbed down the
people, they’d seem like a proto-hominid race from eons
ago, and we didn’t want that. Also, discipline in the game
involves slapping your Creature. We certainly couldn’t
have the player slapping a child or a woman or, really,
even a grown man. The emotional feel of raising a
human, teaching him or her to eat what you want, and
leading him or her around in a speechless environment
was all wrong.

Christian’s work in visualizing humans as player Crea-
tures was all for nothing in the end, and we dropped the
idea. We also dropped the notion of turning any living
thing into a trainable Creature, as ants, butterflies, fish,
and other nonmammals would have caused big problems.

A flying Creature would change BLACK & WHITE into a
totally different game.

I also regret that we couldn’t use color as a dynamic con-
cept a little more. The landscapes in the game are gorgeous,

and our sound and music man, Russell Shaw, suggested that
various spells could drain the color out of areas, or spread dif-
ferent colors around. We liked this idea for its surrealism, and

P O S T M O R T E M

ABOVE. Tortoise morphs from evil to good. BELOW. Concept sketch of the good Celt.

63w w w . g d m a g . c o m

we thought about having color wars with other wizards (at this
stage you weren’t a god, you were a wizard battling others on a
land). The idea lost momentum when we thought about how the
land would actually look, and how it would seem like something
drawn by a preschooler. I still like the idea of color wars, but I
think children’s TV has also cottoned on to the idea, which
means we won’t be going there.

5. Talking about release dates. I have to admit, rueful-
ly, that I have a reputation for being, shall we say, opti-

mistic about when the projects I’m
working on will be completed. I
opened my big mouth and announced
that Lionhead Studios would finish
BLACK & WHITE and get it released at
the end of last year.

I just can’t resist talking about what-
ever I’m currently working on. This has
been a problem I’ve experienced with
every game I’ve ever developed. But the
thing is, when I think something is going
to be finished in December, I really do believe
it. People at Lionhead were telling me that
we had to build in time for bug-fixing, and
I knew this was true, but the truth is that
there seems to be no formula for working
out how long things will take. The best thing
to do, I guess, is to take the finishing date I
first think of and move it twice as far
away — and then not announce it until
we’re halfway there.

It’s a function of working on prod-

ucts which could literally be endless. Unlike a film, where once
the footage is shot, you edit it with an idea of where you’ll end
up, you can add completely new features to a game and then bal-
ance it and change it radically right up until the last minute. I’m
sure that there were many people who didn’t believe me when I
said we’d finished making BLACK & WHITE and were only con-
vinced when they saw a box with a CD in it.

“Just More”

B LACK & WHITE is unlike any other game ever writ-
ten. That was our goal, and we achieved it. We

wanted something more beautiful, more complex, more
emotive, more innovative, more clever, and more, well,
just more.

As you’ve read, it was beset by problems. We nearly
drove ourselves crazy solving them. Nothing worth-
while is ever simple, though, and for every minute
spent thinking up wonderful ideas to include in the
game, there were probably 20 hours of sheer hard

effort trying to get them to work.
People told Lionhead we were perfectionists, but

if we were, the game would never have been finished.
It’s not a perfect game. Our next game won’t be,
either. But because there’s no such thing as a perfect
game, we’ll just try to do something different, and

do it as well as we possibly can. Someone asked me
recently what drove us to work so hard on this and
to spend so much time thinking outside the box. The
simple truth of my answer only struck me afterwards.
With BLACK & WHITE, we made the game that we
wanted to play. q

ABOVE. The game’s underlying detail is immense but never overwhelming. BELOW. Concept art of the evil Celt.

S O A P B O X c h u c k w a l b o u r n

Origin Systems has always been to me like some Ivy
League college, an institution beyond my reach or
means. Many used to refer to it as “Origin U,” a
place where young, creative people went to learn
if they had the chops to make games. Attending

Origin U required starting at the bottom — usually in the QA
department or as a technical design assistant — and working
outrageous hours for very little pay. A college degree was as
helpful in getting into Origin U as it would be at an Army boot
camp — more of a handicap than anything else. Making games
was the Wild West of computer software, and code was written
by mighty heroes supported by groups of wide-eyed apprentices
longing for the day they too would become heroes. When they
“graduated,” they quit and founded dozens of start-up game
companies over the years, turning Austin into a hotbed of com-
puter game development.

I wanted to make games, but I want-
ed a living as well, so instead of
attending Origin U, I took my first
full-time job across the street at a
graphics company doing drivers for
AutoCAD and 3D Studio for DOS. It wasn’t
the most exciting work I could imagine, but
it paid decently and was a great learning
experience. I just didn’t think I was in a
good position to break into the game indus-
try. I already had a computer science degree
and was starting work on a master’s
with support from my employer, and I
had a lot of things to learn about
writing software for the PC. Ironically,
it was through an ex-Origin employee
I met at that job that I found myself a
co-founder at a game company start-
up a few years later.

In many ways, Origin Systems defined the game industry in its
youth. It was founded by Richard Garriott, who was program-
mer/designer/artist/sound designer and created games sold in plas-
tic bags. Origin mushroomed over the years with the successes of
the ULTIMA series, WING COMMANDER, and a slew of other hits into
a behemoth employing 150-plus people. Whenever the Austin jour-
nalists wanted to do a story on computer games, it was Origin
Systems they turned to. Richard was the classic eccentric million-
aire and poster child for young success via technology. The distri-
bution muscle and money that Electronic Arts commanded meant
that the Origin brand was everywhere, on consoles and PCs. With-
out that kind of money, WING COMMANDER 3 would probably
have been the Plan 9 from Outer Space of computer games, or at
least a lot shorter.

With the recent layoffs of the entire ULTIMA ONLINE 2
team, cancellation of all in-development

projects at Origin, and the death of the
Origin brand, an era has come to an end.

Even the employees who once worked at
Origin recognized it as a watershed event,

holding a “wake” in Austin by the
lakeshore and burning UO2 design docu-

ments in memory of the place that was.
Sure, the OSI offices are still here, and
ULTIMA ONLINE continues to cater to an
addicted hardcore audience willing to shell
out $10 a month for their chance to be
fantasy heroes, but a company with no
future projects isn’t long for this world,
and everyone knows it.

It certainly seems a sad ending for
one of the founding institutions of our
industry. Some will no doubt blame

Origin’s demise on the “suits” at Electron-
ic Arts, but I suspect the company culture

The Passing
of a Legend

72 j u n e 2 0 0 1 | g a m e d e v e l o p e r

continued on page 71

Illustration by Francis Blake

w w w . g d m a g . c o m 71

S O A P B O X

was also to blame. There is no doubt that
Origin’s development teams demonstrated
creativity and vision aplenty, but according
to many ex-Originites I have known over
the years, the teams were often plagued by
a lack of engineering discipline and pro-
ductivity, relying heavily on the efforts of a
dedicated few. There is probably an ex-
Origin employee in your organization who
can attest to this.

The computer game industry is full of
people who long for the glory days when
content was king and developers controlled
the project. The industry has changed since
those days; projects are larger and more
complex, games are written with interdisci-
plinary teams from a wide range of back-
grounds, and the platforms are far more
complex and powerful. For now, the pub-

lishers and other large companies are the
only ones who have the financial resources
we need. Creativity and vision are as
important today as they were back then,
but the industry also needs professionalism,
engineering discipline, and responsibility.
Budgets and schedules may be a drag, but
we are spending other people’s money, and
it is incumbent on us to spend it wisely.

More importantly, we should not use
nostalgia as an excuse for making the same
mistakes over and over again. If you are
writing games the same way you were in
the 1980s, then you are doing your
investor and yourself a disservice. The plat-
forms have evolved, the tools have evolved,
and the projects have evolved, so certainly
developers should as well. The age of
heroes is past, and while we remember the

buzz of those wild days, we should
also remember the wasted human
effort, personal lives, and money
which could have gone to worthy
projects instead of keeping developers
in the manner to which they had
become accustomed. q

CHUCK WALBOURN | Chuck is currently
director of technology at Kinesoft Develop-
ment, developing tools and software com-
ponents for use on Kinesoft’s PC title
CRIMSON ORDER and other projects. He
was previously a co-founder of Charybdis
Enterprises Inc., a small Austin-based PC
developer which created two original PC
titles (INTERACTIVE MAGIC and FIGHTER

PILOT) for Electronic Arts. He can be
reached at chuckw@kinesoft.com.

continued from page 72

	04gameplan
	06saysyou
	08indwatch
	10prodrev
	16profile
	18graphic
	25artview
	30f-wood
	40f-bernie
	54postmort
	72soapbox

	return:
	cover:

