
JUNE 2000

G A M E D E V E L O P E R M A G A Z I N E

G A M E P L A N✎

L E T T E R F R O M T H E E D I T O R

F or months I had planned to
use this editorial to talk about
the redesign of Game Devel-
oper. When you work on a
magazine day in and day out

for years, modifying superficial aspects of it
like fonts and page layouts is a big deal to
the publication’s staff. Or at least these
types of changes seemed like a big deal to
us until March 21, the day we found out
that Seumas McNally, president and lead
programmer of Longbow Digital Arts, suc-
cumbed to Hodgkin’s disease. How quickly
perspectives change when confronted with
the loss of someone you know.

The amount of time I knew Seumas was
altogether too brief. Last fall an entry form
for the Independent Games Festival from
Longbow Digital Arts flashed across my
desk with his name on it, and as we began
evaluating the IGF submissions, it quickly
became apparent that the company’s entry,
TREAD MARKS, would be one to beat. It
sailed into the final round of the IGF and a
letter went out to Longbow congratulating
them on being chosen as a finalist and
inviting them to the event last March at
the San Jose Convention Center.

About a week before the IGF, the
McNallys asked us whether a wheelchair
would be available to them at the conven-
tion center. At the time I didn’t know what
it was needed for, but we made necessary
arrangements and frankly we didn’t think
too much about it since we were in our
pre-show crunch. But when I arrived at the
Game Developers Conference and was told
about Seumas’s condition, it was almost
too much for me to handle. None of the
information on Longbow’s entry form pre-
pared me for my introduction to 21-year-
old Seumas in his wheelchair, obviously
suffering from the effects of a recent
chemotherapy session. Everything about
the situation stunned me: how young he
was, how weak and tired he looked, and
how difficult it must have been for Seumas
and his family (who made up the rest of
the Longbow team) to make the long trip
from Providence Bay, Ontario, to Califor-
nia. But despite his obvious weariness,
Seumas had a smile for everyone and
seemed genuinely happy to be at the event.

TREAD MARKS took three awards at the
IGF: Best Design, Best Programming, and
the Grand Prize. When the McNallys came
up to the stage to accept their first award
for game design, Seumas nearly collapsed
from weakness as he got out of his wheel-
chair and tried to step up onto the 18-inch
riser to accept the award. His dad, Jim,
caught him in time and the whole family
came over to the podium to accept the
award. In his acceptance speech, Seumas
talked in a quiet voice about working on
the game while battling cancer and revealed
that the goal of completing the game had
helped him continue on. A number of peo-
ple in the audience began crying. The
McNallys came up to receive their next two
awards shortly afterwards and when the
event was over, seeing the McNallys — and
most of all Seumas — smiling and laughing
gave me an indescribable feeling. It’s a
moment I’ll never forget.

The next day, Saturday, Seumas collect-
ed all his strength and presented a lecture
with Jonathan Blow on terrain rendering
systems. Seumas talked from his wheel-
chair, often stopping to catch his breath.
On Sunday and Monday, Seumas
remained in bed in the McNallys’ hotel
room. Many of his friends came by to
visit him and even though Seumas was
too short of breath to talk much, he
appreciated the company.

Seumas had a hard time getting home
and his health continued to decline. Jim
McNally told me that Seumas was deter-
mined to remain alive until the end with-
out sedation. “Unfortunately he suffered
considerably, but as was his nature, he
never complained,” Jim said.

Seumas died on March 21 at 2:00 P.M.
EST. I, like many others in the game devel-
opment community, will not forget him,
nor the example he set.

Seumas McNally
1979–2000

C
Let us know what you think. Send

e-mail to editors@gdmag.com, or write

to Game Developer, 600 Harrison St.,

San Francisco, CA 94107

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228 w: www.gdmag.com

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editorial Director

Alex Dunne adunne@sirius.com
Managing Editor

Kimberley Van Hooser kvanhoos@sirius.com
Departments Editor

Jennifer Olsen jolsen@sirius.com
News & Products Editor

Daniel Huebner dan@gamasutra.com
Art Director

Laura Pool lpool@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Jeff Lander jeffl@darwin3d.com
Mel Guymon mel@infinexus.com

Advisory Board
Hal Barwood LucasArts
Noah Falstein The Inspiracy
Brian Hook Verant Interactive
Susan Lee-Merrow Lucas Learning
Mark Miller Group Process Consulting
Paul Steed id Software
Dan Teven Teven Consulting
Rob Wyatt Microsoft

ADVERTISING SALES
National Sales Manager

Jennifer Orvik e: jorvik@cmp.com t: 415.905.2156

Account Executive, Western Region & Asia
Mike Colligan e: mcolligan@cmp.com t: 415.356.3486

Account Executive, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.905.2323

Sales Associate/Recruitment
Morgan Browning e: mbrowning@cmp.com t: 415.905.2788

ADVERTISING PRODUCTION
Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Kevin Chanel

Reprints Stella Valdez t: 916.983.6971

CMP GAME MEDIA GROUP MARKETING
Marketing Manager Susan McDonald

Product Marketing Manager Darrielle Sadle

Field Marketing Manager Jennifer McLean

Marketing Coordinator Scott Lyon

CIRCULATION
Vice President/Circulation Jerry M. Okabe

Assistant Circulation Director Kathy Henry

Circulation Manager Stephanie Blake

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Pam Santoro

INTERNATIONAL LICENSING INFORMATION
Robert J. Abramson and Associates Inc.
t: 914.723.4700 f: 914.723.4722
e: abramson@prodigy.com

CORPORATE
President & CEO Gary Marshall
Corp. President, Business Tech & Channel John Russell
President, Business Technology Group Adam Marder
President, Specialized Technology Group Regina Ridley
President, Channel Group Pam Watkins
President, Electronics Group Steve Weitzner
General Counsel Sandra L. Grayson
Vice President, Creative Technologies Johanna Kleppe
General Manager, CMP Game Media Group Greg Kerwin

Game Developer
magazine is

BPA approved

4 W W W . C M P G A M E . C O M

Z
F R O N T L I N E T O O L S

THE EAGLE HAS LANDED

C reative’s Environmental Audio Graphi-
cal Librarian Editor, less ponderously

known as EAGLE, is a simple sound model-
ing tool designed to help game developers
take full advantage of Creative’s EAX envi-
ronmental audio technology. EAGLE lets
sound designers create 3D models to import
actual game level geometry and assign envi-
ronment and obstacle properties to rooms
and areas of the map. EAGLE then applies
these effects interactively during game play.
EAGLE can be obtained at no charge from
Creative’s web site.

7w w w . g d m a g . c o m

SIDE EFFECTS’ PROCEED

B illed as a content-to-
code solution, Side

Effects Software’s Proceed
(codename) combines the
film-level authoring capabil-

ities of the company’s Houdini package with
run-time engines for both motion and parti-
cles, plus automatic code generation. Pro-
ceed offers a collection of NURBS, Bézier,
and polygonal surface and solid modeling
operations, including surfacing, fitting, cut-
ting, projection, instancing, deformation,
dynamics, H-splines, and conversion.
Choreography through motion layering and
manipulation is handled by Proceed’s
Channel Operators technology, allowing
nondestructive motion editing suitable for
motion capture, motion-on-motion com-
positing, lip-synching, facial animation,
motion management for large projects, real-
time gesture capture, audio editing, and
audio synthesis. Proceed can automatically
generate code for both motion compositing
and particle systems. The package provides
a high-level interface, but operators can be
created and customized using a development
kit available at no extra charge. Proceed
supports Windows NT 4.0 with SP3 or
later, Windows 2000, IRIX 6.2 or later, and
Red Hat Linux 6.0. Proceed will ship during
the second quarter of this year with the
option of either a fixed-price or royalty-
based pricing scheme.

PROCEED | Side Effects Software |
www.sidefx.com

EAGLE | Creative Labs |
developer.soundblaster.com

O riginally developed around Newtek’s
Lightwave 3D file format, Cinegraph-

ics’ Uview 2.1 has been expanded to work
with every major 3D animation package.
Uview is a stand-alone application designed
to ease UV texture mapping. Enhancements
include the addition of groupings for ver-
tices and polygons, a texture bounding fea-
ture, UV mirroring to form symmetrical
objects, and improved translation and rota-
tion controls. Uview can output to propri-
etary game engines as well as commercial
3D packages. Prices are $599 for Intel-based
Windows 98/NT systems and $729 for DEC
Alpha Windows NT.

W H A T ’ S N E W I N T H E W O R L D O F G A M E D E V E L O P M E N T | d a n i e l h u e b n e r

UVIEW 2.1 | Cinegraphics |
www.cinegraphics.com

TRAVELING PAINT
EFFECTS

A lias|Wavefront has a new plug-in for
Adobe After Effects 4.1 and Maya

Fusion 2 that allows motion graphic artists
to take advantage of Maya Paint Effects
technology within desktop compositing
applications. Maya Paint Effects users can
use brushes created for any Paint Effects
product, including Maya itself, to create
animated paint strokes of plants, fibers,
and other natural media along a mask,
Bézier path, or motion path. The Maya
Paint Effects plug-in is available for $499
for Windows-based computers.

PAINT EFFECTS PLUG-IN | Alias|Wavefront |
www.aliaswavefront.com/entertainment

UVIEW 2.1 EXPANDS ITS FRONTIERS

MO-CAP AT FACE VALUE

L ucent Technologies is licensing a new
automated lip-synchronization system

aimed at the television, Internet, and game
development markets. Face 2 Face uses
facial motion analysis to capture head and
face movement without the use of markers,
stickers, or headgear. The system converts
video to an RGB .MOV format which is
then processed to identify facial definition
points. The output is a frame-by-frame
capture of the definition points, which can
then be mapped to an animation. Based on
the emerging MPEG-4 standard, Face 2
Face lets animators transparently adapt
content to multiple media. The system
operates with software plug-ins for multi-
ple animation packages on Windows NT
and IRIX, and requires S-VHS or better
video for capture. Face 2 Face is available
in downloadable formats with pricing
based per frame of processed video.

FACE 2 FACE | Lucent Technologies |
www.f2f-inc.com

Moss Lake by Terry Stoeger, Alias|Wavefront

8 j u n e 2 0 0 0 | g a m e d e v e l o p e r

I N D U S T R Y W A T C HJ

Indie Games Festival. The Second
Annual Independent Games Festival was
once again a highlight of the Game Devel-
opers Conference this past March. The
conference crowds were most impressed
with THE RIFT from Seattle’s Thrushwave
Technologies, giving the space strategy
game the Audience Award. The prize for
Best Audio went to BLIX, a retro-styled
puzzler from New
York’s Station Blix,
while RPG KING OF

DRAGON PASS took
home the award for
Best Visual Art. The
stars of the festival,
though, were Seumas
McNally and Long-
bow Digital Arts.
The festival’s judges
honored Longbow’s
TREAD MARKS, a
futuristic tank battle
game developed by a unique collaboration
between two brothers and their parents,
with three of the festival’s top awards. The
game earned awards for Best Programming,
Best Game Design, as well as the Grand
Prize for best overall game. The audience at
the IGF awards ceremony was clearly
moved by Seumas McNally’s acceptance
speech, in which he talked about his fight
against cancer. Seumas lost that battle just
11 days later. The Independent Games
Festival has since decided to honor the
memory of Seumas McNally by renaming
the festival’s highest award, now to be
known as the Seumas McNally Grand
Prize. “By renaming the top IGF award in
his honor, we hope to uphold that same
spirit that Seumas so freely displayed to
those who shared his passion for game
development,” said IGF founder and chair-
man Alex Dunne.

More Changes to the Graphics Indus-
try Landscape. ATI’s purchase of ArtX is
not the last word in graphics chip industry
changes. Struggling chipmaker 3dfx is
investing $186 million, in the form of 15.6
million 3dfx shares and options, to acquire
Gigapixel Corporation, recently spurned by
Microsoft as the graphics provider for the
X-Box. 3dfx hopes to exploit Gigapixel’s
core technologies, those that reduce power
and memory consumption in 3D accelera-

tion, in both traditional accelerators and
products related to possible new 3D mar-
kets like cell phones and PDAs. As part of
the deal, Gigapixel CEO George Haber will
join the 3dfx board of directors.

While everyone else seems to be a in
buying mood, S3 Inc. recently sold off its
graphics chip business in order to focus on
its burgeoning Internet device business. The

company sold its graphics
chip business to a newly
formed joint venture with
Taiwan’s VIA Technolo-
gies for $323 million in
cash and securities.

Learning Company up
for Sale. Mattel is look-
ing to unload The Learn-
ing Company less than a
year after purchasing it.
Mattel is separating The
Learning Company from

the remainder of Mattel Interactive and
has hired Credit Suisse Boston to sell the
software maker that it spent $3.6 billion to
acquire last May. The purchase had been
part of former Mattel CEO Jill Barad’s
strategy to expand Mattel into electronic
toys and videogames, but accounting prob-
lems and huge losses related to the acquisi-
tion led instead to Barad’s resignation. At
the time of the acquisition, Mattel had
expected The Learning Company to con-
tribute $50 million annually to its bottom
line, instead the company posted losses of
$183 million in the fourth quarter and
$206 million for the year. Mattel began
treating the unit as a discontinued opera-
tion effective March 31. The Wall Street
Journal estimated that the sale price for
The Learning Company would range from
$500 million to $1 billion, depending on
included licenses. Havas, Knowledge
Universe, and Infogrames were said to be
interested buyers.

Sony Broadband Consolidation. Sony is
making moves to strengthen its online con-
tent offerings, in part by grouping Sony
Music Entertainment and Sony Pictures
Entertainment into a single new holding
company called Sony Broadband Entertain-
ment. The new company is charged with
finding ways to exploit the cross-market
potential of Sony’s entertainment holdings

in conjunction with Sony’s planned broad-
band network. The first effect of this reor-
ganization was the departure of Lisa Simp-
son, president of Sony Online Entertain-
ment. Simpson left the company to take a
position with the CBS Internet Group. For-
mer 989 Studios head Kelly Flock is said to
be Sony’s top choice to take on the division
in the role of CEO.

Aureal in Turmoil. Poor fourth-quarter
financials were only the beginning for
Aureal, as the company faced the mass res-
ignation of all executive officers and senior
staff members at the end of March. Aureal’s
fourth-quarter operations generated a net
loss of $9.5 million, a sizable increase from
last year’s fourth-quarter loss of $3.5 mil-
lion. Losses for the year reached $26.9 mil-
lion, compared with losses of $18.5 million
in 1998. Aureal attributed some of this to
$6.4 million in legal fees related to its
patent suit with Creative. Resignations fol-
lowed the financials by a day, with presi-
dent and CEO Kip Kokinakis, CTO Scott
Foster, CFO David Domeier, and COO and
general counsel Brendan O’Flaherty
announcing their departures along with the
entire senior staff. The Aureal board of
directors has filed for Chapter 11 insolven-
cy protection while it considers options
ranging form appointing new turnaround
management to a liquidation of assets and
cessation of operations. q

M A C W O R L D E X P O
JACOB K. JAVITS CONVENTION CENTER

New York, N.Y.
July 18–21, 2000
Cost: $25–$1,295
www.macworldexpo.com

S I G G R A P H 2 0 0 0
ERNEST N. MORIAL CONVENTION CENTER

New Orleans, La.
July 23–28, 2000
Cost: $65–$960 (member and

student discounts available)
www.siggraph.org/s2000

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

T H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e r

The McNally family accepts one of Longbow
Digital Arts’ three awards at the IGF.

XX

B ack in October 1999, Lamb-
soft quietly released a flag-
ship product called Move-
tools, a file converter for 3D
Studio Max, Softimage, and

Maya. Since its release, artists and anima-
tors in the game industry have been flock-
ing to the product, which is rapidly gaining
a reputation as the final word in file trans-
lation. This month, I had a chance to test
drive the software and put it through its
paces, and as you read on, you’ll see I was
pretty pleased with the results.

Why Do You Need a
Converter?

T o artists and animators with experi-
ence in the industry, the answer to this

question is obvious and comes in two
parts. First, one classic problem in game
development is that there is usually no sin-
gle piece of software which encapsulates
all the functionality needed by developers.
Typically, studios end up using one plat-
form for animation, another for modeling
and texturing, and yet a third for export-
ing the data into the game engine. Mixing
and matching tools can be a tempting solu-
tion, but the trade-off is substantial, since
time will inevitably be wasted managing
the different naming conventions, file for-
mats, and animation protocols specific to
each tool.

The second part of the answer has to do
with personnel. While the feature sets for

each of the big three platforms have been
converging, artists and animators still tend
to be experts in only one tool. The ideal
scenario, then, is to let animators work in
the environment in which they are most
experienced, which means more pressure
on everyone else to incorporate those tools
with which they are familiar.

It’s clear that having the ability to inte-
grate content seamlessly from multiple
software packages is a powerful benefit
not to be undervalued. This is precisely the
functionality that Movetools promises to
deliver.

Methodology

Basically, Movetools works as a plug-
in for each of the three platforms.

The Movetools file structure, which is
based on Alias|Wavefront’s venerable .OBJ
format, serves as the hub of a wheel
through which each of the three platform
plug-ins communicates. In order to get
files from Maya into Softimage, for exam-
ple, the Maya content is exported into an
intermediate Movetools scene database,
which is then imported directly into Soft-
image with little or no loss of information.
The concept of how this works is further
reinforced by the nomenclature, as the
Movetools files are compressed into .HUB
files and the individual platform licenses
are termed “spokes.”

One of the few problems I had with the
implementation of this process is that each

of the spokes must be purchased and
licensed separately. This means that you
end up buying at least two licenses for the
software, one for the program you export
from and one for the program you import
to. Furthermore, the spokes are licensed to
only a single machine, not to the software’s
hardware lock, which means that the
spokes are not portable between machines.
THE .HUB FILE. After Movetools exports the
data into a Movetools scene database, the
.OBJ and scene files are further com-
pressed into a single .HUB file, making the
data footprint smaller and the file manage-
ment task simpler. The data within the
.HUB file is readable with Winzip, so that
the interim step data format is readily
accessible (Figure 1).

The fact that the .HUB file is an exter-
nal format enables modelers, texture
artists, and animators to work independ-
ently from each other, all within the plat-
form most appropriate for their task. This
can be extremely useful when compiling
large animation databases, which histori-
cally require the animator to work with
the finished or near-finished model. In
Movetools, this is made possible through
the use of a Freshen modifier in the
import process.
FRESHEN. The Freshen modifier is an option
that allows the artist to update his or her
scene with a set of animation data without
destroying the current scene. This means
that animation data from any external
program, once it has found its way to the
Movetools scene database, can be applied
to the current character. This has particu-
lar relevance for game development, since
each new character need not contain a
completely unique set of animations. Fur-
thermore, this process allows multiple ani-
mators to work simultaneously on the
same character, since a single version can
be “freshened” from multiple sources.
Finally, it makes the process of applying
large volumes of motion capture data
extremely efficient.

Movetools’ Capabilities

F rom an animation and modeling stand-
point, Movetools supports most of the

basic functionality for game development.
Polygonal and NURBS-based geometry,
dummy nodes, grouping, and null objects

P R O D U C T R E V I E W
T H E S K I N N Y O N N E W T O O L S

w w w . g d m a g . c o m

A U T H O R ’ S B I O || Mel is rapidly discovering he’s a gadget freak and is becoming addicted to
doing reviews of cool plug-ins and such. Send all inquiries and free stuff to mel@infinexus.com.

11

Lambsoft’s Movetools
b y m e l g u y m o n

X

are all supported, but even more impres-
sive is the fact that the hierarchies and
bone structures for each of the platforms
are preserved. Position, rotation, and scal-
ing transform values are sampled once per
keyframe, regardless of the number of data
points generated by hand or through mo-
cap. This ensures that the curvature and
interpolation values in the animation con-
trollers are preserved, but results in a very
high data frequency. Shape shifting and
morph-target animation are not currently
supported in Movetools, however, due to
the dissimilar ways in which the individual
platforms accomplish these tasks.

Geometry and texture coordinates are
currently transferred. Textures (and mate-
rials) may be reapplied and will appear the
same, since the UV coordinates are trans-
ferred as well. Various types of camera and
lighting information come through as well.
The camera lens type and field of view, as
well as the light type and shadow parame-
ters, are all supported.

Individual Interfaces

Because it’s a plug-in and not a stand-
alone, Movetools depends on the

native interfaces of the programs it works
with to accomplish its task. I found this to
be refreshing, since I didn’t have to learn
an entirely new external interface. And
though the basic functionality is the same
between platforms, the implementation is
unique to each.
MAYA. In Maya, Lambsoft capitalizes on the
Maya Embedded Language (MEL) to cre-
ate the Movetools GUI, which is particu-
larly clean and straightforward. In addi-
tion to the standard options, the Maya
spoke allows for the importing and export-
ing of skinning parameters for all objects,
which is particularly useful in character
animation. Additionally, the spoke can
convert the coordinate system of the data
by flipping the Z to Y coordinate or vice
versa. This is useful when working in a
package that has a Z-up coordinate system
such as 3D Studio Max.

Although most of the functionality of
Maya is kept intact, there are some excep-
tions. Objects built using patches must
first be converted to NURBS or polygon
objects prior to export. Also, only those
materials in the current material library
will be accessed, and then only if there is a

material name match. Finally, while the
polygon smoothing data can be exported
without a problem, it’s not accessible on
import.
SOFTIMAGE. In Softimage, the Movetools
spoke is accessed through the Custom
Tools interface. The basic functionality is
the same as in Maya with geometry and
animation import and export and manipu-
lation of coordinate systems. There are,
however, some key differences in the way
Softimage handles data, and these are car-
ried through to the Movetools implemen-
tation.

First, Softimage is unique in the way it
handles naming conventions since objects
can be named using a prefix. Objects built
using patches must be first converted to
NURBS or polygonal objects prior to
export. Also, only those materials in the
current material library will be accessed,
and only if there is a material name match.
Finally, while the polygon smoothing data
can be exported without a problem, it is
not accessible on import.
3D STUDIO MAX. In Max, the Movetools
spoke is accessed via the file export and
import drop-down menu. The basic func-
tionality is identical to Maya and Soft-
image with a few notable differences. In
Max, animations imported from Move-
tools scene databases can have their
keyframes reduced automatically. This fea-
ture uses the native functionality in Max
to remove duplicate or static values in all
keyframes. Also, though not supported by
the Movetools format, patch objects will
be converted to polygonal meshes on
export. Additionally, during export Max
has the additional feature of being able to
freeze the scaling value of the objects and

normalize them to 100 percent. This can
be extremely useful when exporting
between platforms, since the coordinate
systems and scaling properties are seldom
identical. Furthermore, the IK, Biped, and
Look At controllers do not allow data to
be read in. In order to use skeletons with
these controllers, they must first be export-
ed in the Movetools format, and then re-
imported into Max, where they will be
assigned keyframable controllers. And
finally, skinning is not currently supported,
due to the way in which the skinning mod-
ifiers are implemented.

The Final Word

W ith the obvious advantages it brings
to any production pipeline, Move-

tools is a must-have for any development
team. With a few exceptions, notably the
lack of skinning support in Max and the
need for multiple machine-specific licenses,
I was extremely pleased with this product
and highly recommend it. q

12 j u n e 2 0 0 0 | g a m e d e v e l o p e r

P R O D U C T R E V I E W

STATS
LAMBSOFT INC.

Minneapolis, Minn.
(612) 872-1700
www.lambsoft.com

PRICE
Permanent licenses are $1,800 per
spoke; rentals are available for $300 per
spoke per month.

SUPPORTED PACKAGES
Maya 2 or 2.5 (NT/IRIX), Softimage 3.8
(NT/IRIX), 3D Studio Max 2.5 or 3 (NT).

PROS
1. Plug-in interface requires no learning

curve to use.
2. High-fidelity animation conversion with

little or no data degradation.
3. Freshen option enables multiple ani-

mators and artists to work concurrent-
ly with the same content.

CONS
1. Multiple fees for multiple platforms:

users need to purchase a licensed
spoke for each platform.

2. Lack of portability: licenses are keyed
to the machine and not the hardware
lock, meaning artists have problems
upgrading or switching machines.

3. Skins not supported in 3D Studio Max.

MOVETOOLS XXXX

FIGURE 1. The .HUB file, readily accessible
through Winzip.

XXXXX

XXXX

XXX

=XX

X

excellent

very good

average

fair

don’t bother

15w w w . g d m a g . c o m

E veryone has their favorite
memory of watching a classic
Tex Avery or Chuck Jones car-
toon. For many, these
moments usually involve one

of the characters being drastically deformed
by a large, massive object. Simple 2D draw-
ings made the physically impossible seem
natural, believable, and fun for the kids.

Last month, I discussed how to use the
power of new graphics hardware to give
characters more life (“To Deceive Is to
Enchant: Programmable Animation”).
Using matrix deformation techniques
along with interpolated morphing of mesh-
es has gone a long way toward improving
real-time character animation. However,
creating the illusion of life needed for truly
realistic characters requires more sophisti-
cated techniques. According to John Lasse-
ter (see References, p. 20), one of the chief
advantages of computer animation is the
ability to combine techniques in layers to
achieve more complex and realistic results.

This idea of layering can be applied to

real-time character animation to make
characters more realistic. In past columns, I
have talked about how a skeletal animation
system is composed of a hierarchical struc-
ture of matrices (also referred to as bones)
to provide the base animation layer for the
character. The matrices are attached to a
mesh “skin” by vertex weight assignments
that relate each vertex to matrices in the
system. These matrices are then kinemati-
cally animated to provide the motion.

However, fine details in a matrix defor-
mation system are difficult to achieve. In
order to create detailed articulation, such
as for fingers or facial expressions, a great
many matrices must be used. This increas-
es both the production time required to
create these characters and the processor
time needed to render the character, thus
reducing run-time performance.

Vertex morphing techniques are a very
useful animation tool for efficiently achiev-
ing fine-detailed animation. Vertex morph
animations for facial expressions and hand
poses are easy to create and require minimal

processing at run time. Typically, a single
vertex morph target involves moving a very
small subset of the vertices in a base mesh.
The vertex morphing layer can provide the
input to the skeletal animation layer, pro-
viding a very flexible animation system.

Dropping a Virtual Anvil
on My Characters

A fter a long afternoon of Cartoon Net-
work research, I decided that it was

time to combine my cartoon renderer (see
“Shades of Disney: Opaquing a 3D
World,” Graphic Content, March 2000)
with some animation techniques so that I
can start smashing things up. In their com-
pelling work The Illusion of Life (see Re-
ferences), Frank Thomas and Ollie John-
ston outlined the use of squash and stretch,
exaggeration, follow-through, and overlap-
ping action as key components for charac-
ter animation. The combination of a skele-
tal animation system with vertex morphing
described above supplies a lot of character
control. However, these animation controls
are not well suited to creating characters
that can dynamically squash and stretch.
As I described last month, the matrices in a
skeletal animation system are full transfor-
mation matrices that can be translated,
rotated, and scaled. These structures pro-
vide a great deal of local control over the
vertices that the matrix influences. It cer-
tainly seems that matrix manipulation is a
possibility for achieving some nice squishy
effects. However, manipulating the control
matrices individually can be tedious. Ani-
mators need a more intuitive parameteriza-
tion of these properties in order to achieve
fluid results.

Sederberg and Parry (see References)
introduced the use of free-form deforma-
tions (FFDs) as an efficient method for ani-
mating soft bodies via a structural hyper-
patch. By abstracting the control surface
from the surface of the animated body, the
deformation controls can be manipulated
without regard to the model itself. This

In This Corner... The Crusher!
Squashing Stuff with Hardware-Friendly

Animation Techniques

A U T H O R ’ S B I O || Cartoon inspirations come to Jeff after an afternoon at the brewery. If
you have any visions you want to share, please contact him at jeffl@darwin3d.com.

FIGURE 1. A free-form deformation lattice around a body.

j e f f l a n d e r G R A P H I C C O N T E N T

j u n e 2 0 0 0 | g a m e d e v e l o p e r16

technique has been used successfully to model semi-elastic surfaces.
An FFD works by positioning a 4×4 lattice of control vertices

(CVs) around the model you wish to deform, as you can see in
Figure 1. This lattice is aligned along the global X-, Y-, and Z-
axes for clarity. It also makes sense to align it with the model’s
principal axes. These CVs are the controls the animator (or simu-
lation, but I don’t want to get ahead of myself) will manipulate to
animate the object.

In order for the control vertices to change the model, I need to
establish a relationship between the control lattice and the model.
For this I’m going to use a cubic Bézier volume. This structure is
composed of a 3D lattice of Bézier curves of degree 3 (cubic)
which share control vertices. This gives me a total of 64 control
vertices in a 4×4×4 grid. (For more on the mathematics of Bézier
curves and patches, see Brian Sharp’s Game Developer article on
curved surfaces as well as Alex Ferrier’s introduction to free-form
deformations on Gamasutra.com, both in the References box.)

To evaluate a Bézier curve, I need a function that takes a point
along the curve I wish to evaluate and returns the position. There
is a function called the Bernstein basis function that serves this
purpose. For a cubic curve, it takes the form

where pn represents the control vertices. To extend this function to
a Bézier volume, it becomes a function of three variables (u,v,w)

which represents the 3D position within the Bézier volume. The
full formula for the Bézier volume basis function is:

It seemed to me that layering the FFD technique into my ani-
mation system would allow me to get the results I wanted. How-
ever, in order to deform a mesh using this FFD lattice, I need to
pass every vertex through this function to evaluate its deformed
position. That’s 64 evaluations of the Bernstein basis function at
every vertex. This amounts to quite a few calculations that would
fall under the CPU’s responsibility. It occurred to me that the con-
trol vertices look an awful lot like matrices in my standard anima-
tion pipeline. Consumer graphics hardware that accelerates matrix
deformation techniques is becoming standard and will be widely
available by end of this year. If I can frame the FFD problem in
terms of a matrix deformation system, I can use this hardware to
relieve the CPU and also streamline my animation pipeline.

The basis functions serve the role of relating the control vertices
to the vertices in the base mesh. For matrix deformation, the ver-
tex weights relate the control matrix in the same way as the ver-
tex weights in a skeletal animation system. If I treat each control
vertex in the FFD lattice as a matrix, I need to create the weights
to relate that matrix to the base mesh. This brings me back to the
basis functions. Each control vertex in the control curve influences
a certain portion along the length of the curve. If I examine the
influence each CV has on the curve, I get the formulas:

B u u p u u p u u p u p

B u B p B p B p B p

B u

B u u

B u u

B u

3 3

0

2

1
2

3
3

4

3
0
3

0 1
3

1 2
3

3 3
3

4

0
3 3

1
3 2

2
3 2

3
3 3

1 3 1 3 1

1

3 1

3 1

() = −() + −() + −() +

() = + + +

= −()
= −()
= −()
=

B u v w p B u B v B wijk
kji

i j k
3

0

3

0

3

0

3
3 3 3, ,() = () () ()

===
∑∑∑

B u u p u u p u u p u p3 3

0

2

1
2

3
3

41 3 1 3 1() = −() + −() + −() +

FIGURE 2. Bézier basis functions.

1.0

1.0

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1
0.0

B0 B1 B2 B3

LISTING 1. Converting the FFD function to vertex weights.

///
// Function: SetFFDWeights
// Purpose: Approximate an FFD by setting up control
weights
// Arguments: Pointer to base mesh visual structure
///
void SetFFDWeights(t_ToonVisual *visual)
{
/// Local Variables ///

tVector *vertex;
int loop,cvLoop;
float XBasis[4], YBasis[4], ZBasis[4];
float u, v, w;
float *vertexWeight;
int px,py,pz;

///
// Allocate the space for all the weights
visual->weightData = (float *)malloc(visual->vertexCnt *

FFD_NODE_COUNT * sizeof(float));
vertex = visual->vertex;
// Go through all the vertices
for (loop = 0; loop < visual->vertexCnt; loop++, vertex++)
{

// Find where each vertex is within the FFD grid
// Effectively scales each vertex to 0-1
u = (vertex->x - g_FFDmin.x)/(g_FFDmax.x - g_FFDmin.x);
v = (vertex->y - g_FFDmin.y)/(g_FFDmax.y - g_FFDmin.y);
w = (vertex->z - g_FFDmin.z)/(g_FFDmax.z - g_FFDmin.z);

continued on page 18

G R A P H I C C O N T E N T

These formulas show the influence each control vertex has on
the curve, which you can see graphically in Figure 2. Each control
vertex has an influence over a region of the volume. These func-
tions will provide the vertex weighting data I need.

To attach a FFD lattice to an object, I take the base mesh and
place it within the FFD lattice. The weights are calculated for each
vertex by scaling the vertex position to a value between 0 and 1.
This represents the relative position of the vertex within the lat-
tice. The scaled value is plugged into the three basis functions for
each control vertex and out pops a vertex weight that relates the
mesh vertex to that CV. Listing 1 contains the code that calculates
these weights. You can also see the influence of a single CV on the
mesh in Figure 3.

One restriction required in order for matrix deformation to
work is that the sum of the weights on any one vertex must equal
one. Fortunately for us, the wonders of mathematics are working

in our favor. Due to the very nature of the Bézier basis functions,
the sum of the influences at any point along the curve is always
equal to one. You gotta love how well that works out.

Once these weight values are calculated for each vertex, I can
run this object through my matrix deformation system and start
moving control vertices around. As each CV moves, it deforms the
base mesh through the weight values. In fact, I get a bonus over
the traditional FFD system. I can apply other transformations on
these control points. I can rotate and scale them, giving me even
more control over the mesh. However, I still need to move each
CV individually to make anything happen. I will need to add a
control mechanism to make them move together.

Controlling the Squishy Beast

F or many applications, manually positioning the FFD control
vertices will work fine. Often, though, I will want them all to

move together like a single flexible object. Fortunately, I have
played around with something like this in the past. You may recall
my column last year on the topic of soft-body dynamics (“Colli-
sion Response: Bouncy, Trouncy, Fun,” Graphic Content, March
1999). In that column, I connected point masses together using
dampened springs. I could then toss those objects around and
they bounced off the walls and floor in a flexible manner.

For this application, I will make the point masses the control
vertices in my FFD lattice. I then connect those points together
with a network of springs in the same way as I did in my March
1999 column so the lattice will be somewhat stable when I drop
it. When I run the object through my particle dynamics simula-
tor, the control vertices start bouncing around. Since these con-
trol vertices are used to deform the base mesh, the mesh bounces
along also. Just for fun, I applied the cartoon shader to the
objects so I could really get that Saturday morning, “bang him
on the head with a skillet” feel.

You can see the application in action in Figure 4. I loaded in
my cartoon car and bashed around some of the CVs to flatten
the roof.

j u n e 2 0 0 0 | g a m e d e v e l o p e r18

FIGURE 3. Weight values for a control vertex.

LISTING 1 (continued). Converting the FFD function to vertex weights.

continued from page 16

// X Bezier Basis Functions
XBasis[0] = (1.0f - u) * (1.0f - u) * (1.0f - u);
XBasis[1] = 3.0f * u * (1.0f - u) * (1.0f - u);
XBasis[2] = 3.0f * u * u * (1.0f - u);
XBasis[3] = u * u * u;

// Y Bezier Basis Functions
YBasis[0] = (1.0f - v) * (1.0f - v) * (1.0f - v);
YBasis[1] = 3.0f * v * (1.0f - v) * (1.0f - v);
YBasis[2] = 3.0f * v * v * (1.0f - v);
YBasis[3] = v * v * v;

// Z Bezier Basis Functions
ZBasis[0] = (1.0f - w) * (1.0f - w) * (1.0f - w);
ZBasis[1] = 3.0f * w * (1.0f - w) * (1.0f - w);
ZBasis[2] = 3.0f * w * w * (1.0f - w);
ZBasis[3] = w * w * w;

// Pointer to Place to store weight data
vertexWeight = &visual->weightData[loop * 64];
// Go through the control vertices
for (cvLoop = 0; cvLoop < FFD_NODE_COUNT;

cvLoop++,vertexWeight++)
{

// Some quick math to find the component indices
px = FFD_WIDTH - (cvLoop % FFD_WIDTH) - 1;
py = FFD_HEIGHT - (cvLoop / (FFD_WIDTH * FFD_HEIGHT)) - 1;
pz = FFD_DEPTH - ((cvLoop % (FFD_WIDTH * FFD_HEIGHT)) /

FFD_WIDTH) - 1;

// set the vertex weight for this CV
*vertexWeight = (XBasis[px] * YBasis[py] * ZBasis[pz]);

}
}

}
/// SetFFDWeights ///

G R A P H I C C O N T E N T

Putting It All Together

A dding this FFD lattice technique to a
character animation system opens up

some interesting possibilities. The FFD can
be positioned in the skeletal hierarchy such
that transformations are inherited from par-
ent matrices. That way an FFD lattice can
be applied, for example, to an upper arm so
that the muscles will bulge. You would need
to be careful with how the weights blend
across the FFD and skeletal links. However,
I have found that scaling and blending
weights works very well.

There are a few problems with the use
of the mass-and-spring system for FFD
animation. My current system does not
preserve the volume of the original control
mesh. What that means is that the spring
system can find valid configurations where
it has collapsed inside itself. This may not
be totally realistic for certain solid but

flexible objects. For
an object like my
car, though, it
works in my favor.
I sometimes want
the object to col-
lapse inside itself
and stay there. At
the GDC in March,
Alexis Mather of
Matrox Graphics
showed how hard-
ware-accelerated
matrix techniques
can be used in this
way to simulate
damage on a complex car model. If such
behavior were not desirable, however, I
could add a lot more springs to the con-
trol mesh or I could use another method
for dynamically connecting the control
points that preserves the volume of the
object. I may take a look at that issue in
another column.

Another problem involves rendering.
When I deform the mesh, I am moving
vertices all around. This changes the sur-
face quite a bit and I am not currently
adjusting the surface normals to match,
which causes some problems with the
shading model. Unfortunately, this is a
tricky problem. To fix it, I would need to
rebuild the vertex normals by creating
new face normals and averaging them to
get new vertex normals. This is processor-
intense, but not terribly hard to code up. I
leave that up to industrious readers to add
to the sample application.

As a second layer of abstraction, it
would be interesting to make the FFD lat-
tice deform a skeleton inside the object
instead of individual vertices in the mesh.
That would definitely speed up the calcula-
tions, as there would be a lot fewer points
to process. However, it would also lower
the amount of control.

There’s also nothing stopping you from
using lower- or higher-degree Bézier vol-
umes. I chose cubic because it seemed to
provide a good flexibility-to-performance
tradeoff. For other objects, more or less
control may be needed.

Another interesting extension to this
technique would be to make some of the
lattice springs active instead of passive,
thereby creating virtual “muscles” that

animate the object automatically. I will
look more into that next month. For now,
grab the application and source code at
www.gdmag.com and start smashing
things around. q

j u n e 2 0 0 0 | g a m e d e v e l o p e r20

O ne of the fun things about writ-
ing this column is all the great
mail I get from readers. For
anything I wonder about or

miss, one of you always is quick to let me
know about it.

In last December’s column on 2D water
effects (“A Clean Start: Washing Away the
Millennium”), I mentioned that I didn’t know
who wrote the original version of this idea.
Several people wrote in, the first being Juan
Carlos Arevalo Baeza who wrote that the
effect was done for Heartquake, a demo
entered in a competition in Helsinki by
Arturo Ramirez-Montesinos of the demo
group Iguana in 1994. He based the idea on a
crude approximation of the 2D general wave
propagation formula. You can get the original
demo at ftp://x2ftp.oulu.fi/pub/msdos/
programming/iguana/heartq.zip.

I also received a note from Fabio Policarpo
who is working on a book on game pro-
gramming with Alan Watt. He integrated the
cartoon rendering technique into his Fly
engine that will be the basis of the book. He
has a great demo of a cartoon car driving
around a terrain. You can download the
demo at www.paralelo.com.br/download/
car-toon.zip.

C L E A R I N G O U T M Y
E - M A I L B O X

FIGURE 4. A taxicab in a meteor storm.

B Lasseter, John. “Principles of Traditional
Animation Applied to 3D Computer Animation.”
Proceedings of Siggraph ‘87. In Computer
Graphics (Vol. 21, No. 4): July 1987.

B Thomas, Frank, and Ollie Johnston. Disney Ani-
mation: The Illusion of Life. New York: Abbeville
Press, 1984.

B Sederberg, Thomas, and S. R. Parry, “Free Form
Deformations of Solid Geometric Models.” Pro-
ceedings of Siggraph ‘86. In Computer Graphics
(Vol. 20, No. 4): August 1986.

B Sharp, Brian. “Implementing Curved Surface
Geometry” (Game Developer, June 1999).

B Ferrier, Alex. “Real-Time Soft-Object Animation
Using Free-Form Deformation.”
www.gamasutra.com/features/19990827/

deformation_01.htm.

B Chadwick, John, and others. “Layered Construc-
tion for Deformable Animated Characters.” Pro-
ceedings of Siggraph ‘89. In Computer Graphics
(Vol. 23, No. 3): August 1989.

B Mather, Alexis. “Content Creation for Hardware
Accelerated Skinning.” Game Developers Con-
ference 2000.
www.matrox.com/mga/dev_relations or
devel@matrox.com.

R E F E R E N C E S

A C K N O W L E D G E M E N T S

Thanks to Alexis Mather and Jason Della Rocca of
Matrox, Alex Ferrier, Andrew Bond of Havok.com,
and Casey Muratori of RAD Game Tools for dis-
cussing this issue with me.

G R A P H I C C O N T E N T

“The Best Laid Plans...”
Repenting Our Art Sins

m e l g u y m o n A R T I S T ’ S V I E W

I t’s been estimated that for every PC
and console game that successfully
makes it onto retail shelves, there
are between three and five titles
which get axed at some point in

their development. And of the thousands of
games that do make it to market, only a
chosen few ever reach the triple-A status
that separates a mediocre title from one of
greatness. In an ideal world, the develop-
ment community would learn from its mis-
takes and constantly upgrade its perform-
ance so that the games we make would get
better and better. This is clearly not the case
however, and the number of graphically
mediocre and bug-ridden games released
continues to mount each year.

It seems clear then, that a lot of misdi-
rected effort is being spent on creating
product that either never sees the light of
day, or does so only as a stopping point
on the fast track to the bargain bin. Why
does it have to be this way? Shouldn’t we,
as developers, be learning from our past
mistakes? Or are we wrapped up in some
kind of adolescent invulnerability complex
which makes us immune to the advice and
experience of others? If the Postmortem
columns in this magazine are any indica-
tion, it seems clear that we are continuing
to beat our heads against the wall.

This month, I’m going to depart from
the standard tips and tricks format for art
generation and look at content-creation

problems at a more fundamental level. I’ll
identify three of the major areas where
developers tend to misstep, discussing both
the methods that work and the mistakes
that keep coming back to haunt us. And
hopefully, if the planets are aligned and the
moon is full, a few of us will actually
remember and adhere to the lessons
learned by ourselves and our peers.

Creation with Purpose

Before we begin analyzing the potential
problems associated with in-game art

generation, it’s crucial for us to realize that
the art we generate is far more than just
eye candy for the player, and as such, it
deserves the same level of attention to
detail as the coding and design aspects of a
game. In addition to being the first thing
that a player usually notices about the
game, the art can serve as the vehicle
through which the storyline is conveyed,
either through interactive cutscenes, or
through the use of a consistent, cohesive
art style. Alternately, as in an action/adven-
ture game, the art can serve as the support-
ing canvas on which the game play takes
place. Or finally, as in the case of a first-
person shooter, the art need only be capa-
ble of maintaining the immersive quality of
the game-play space. (See Figure 1 for some
examples of different art functions in vari-
ous games and genres.)

In each of these cases, the art serves a
specific role within the game engine. In
order for an artist to be successful, he or
she must first understand and embrace the
role the art will play within the game. This
will help to keep the team as a whole
focused on the important aspects of art
generation and help minimize the time
spent on extraneous or inappropriate con-
tent. Once the team has a clear under-
standing of what role the art will serve in
the game, the images in the art bible can
be placed in context.

w w w . g d m a g . c o m 23

A U T H O R ’ S B I O | Mel Guymon has been animating in the gaming industry for several
years. When he’s not at his desk pushing polygons, he can usually be found at the local Barnes
and Noble, slumming for reference materials. Mel can be reached at mel@infinexus.com.

FIGURE 1. Clockwise from top left, screenshots from ABE’S ODDYSEE PS2, QUAKE 3: ARENA, NOCTURNE,
and TEKKEN 3. In each of these titles, the art serves a different purpose.

The Art Bible: Working
from a Blueprint

One of the most common complaints in
the “what went wrong” section of the

Postmortem column is that the art in the
game had no coherence, no vision. In most
cases, this is due to a lack of artistic direc-
tion in the form of a readily accessible and
updated style guide or “art bible.” Ideally,
the art bible contains both reference photo-
graphs and artist-generated images depict-
ing every scene in the game. It should con-
tain as much detail as possible about every
object in the world, down to the color and
surface properties of the textures. While the
art bible should be started at the same time
the R&D phase for the game begins (or at
least in concert with the initial resource
production), the document must be treated
as a living organism, being updated and
kept current as the project evolves. For
artists, this document should be the blue-
print for the world they create.

Think of a contracting firm constructing
a skyscraper. It would be insane to expect
them to build it without a blueprint, and
even if they tried the results would be dis-
astrous. So too are there serious ramifica-
tions for attempting to create art without
an artistic style guide. Either the vision
will be incomplete or nonexistent, or poor-
ly executed and underdeveloped. Further-
more, once the construction of a sky-
scraper has commenced, changes to the
blueprint may have repercussions which
are hard to rectify. In the same manner,
making changes to the art bible should not
be done in a haphazard way, particularly
when they affect objects which have
already been built.

The most common complaint I hear
about creating an art bible is, “I know
what a tree looks like, so why do I have to
put a picture of a tree in the art bible?”
The answer to this question — and any of
the many other “why” questions — is sim-
ple. First, for most objects, sketching out or
finding photo resource for an object takes
much less time than actually building it in
3D. So it follows that the most efficient
way to iterate on the look is on paper, not
in 3D space. And second, the art bible,
when taken as a whole, is the best place to
see the coherent artistic vision before it
ever gets built. When something doesn’t

quite fit the vision, it can be identified
before a single polygon is constructed.

The Art Path: Opening
the Floodgates of
Creativity

A nother common thread in the Post-
mortem saga is the lack of an efficient,

GUI-based protocol for converting and edit-
ing art resources in the game engine. For art
leads and art directors, few things are more
important than creating an efficient and
effective art path for getting resources into
the game. The art path is the main artery
through which all resources will enter the
game engine. The primary test of an effi-
cient and effective art path is how long it
takes for an artist or designer to load and
play-test art resources within the game
engine. With a well-crafted art pipeline,
artists and designers should be able to pre-
view and game-test their work within a few
minutes of creating it. A poorly executed
art path wastes artists’ and designers’ time
as they try to merge resources with the
game engine. This can cause potentially
fatal problems at several levels. The more
time lost in converting and managing data,
the less time there is for creativity and inno-
vation. Consider further that the more
tedious it is to get resources into the game
engine, the longer the iterative loop for
resource debugging and play-testing. This
can result in a lack of polish in both look
and game play. If it takes two hours to edit
and preview an object in the world, how
motivated will the artists be to fix a single
erroneous mapping coordinate?

Here’s a real-life example that describes
this problem with stunning clarity (the
names have been changed to protect the
innocent). Bob is art-directing a real-time
3D action/adventure game that takes place
in a large exterior terrain system. The art
path that has been implemented starts with
3D Studio Max, but the data must pass
through multiple external formats and pro-
grams to gain lighting information and be
converted into a data format readable to
the game engine. Furthermore, the massive
levels must be “BSP’d” (that is, have their
BSP trees calculated) in order to preview
any changes made to the levels. As Bob
comes into the office to check up on his
artists and level designers, he notices that

most are sitting idle at their desks. When
he asks them what they are waiting on, one
of the modelers chimes in to tell him that
he had made a series of texture-mapping
adjustments to the level, and he was just
waiting for the engine to finish calculating
the BSP tree for the level so he could pre-
view the changes he made in the game
engine. The problem is that it took more
than five hours to BSP the level. How
much more motivated and creative would
the artist have been if he could have pre-
viewed his work in five minutes rather than
five hours? Rather than interactively
adding value to the game play and aesthet-
ic of the level, the developers in this situa-
tion were forced to waste time waiting on
an inefficient process.

Getting the Most Bang
for Your Buck

T he third most common problem with
art generation is the lack of focus on

what really matters. All of the developers
should have a clear idea of what the pur-
pose of the art is within the game. If what
you’re doing doesn’t serve a specific pur-
pose and add value to the product, some-
thing is wrong. Adding in a special effect or
technical nicety which only another devel-
oper would appreciate is generally not a
good idea. This is not to say that innova-

j u n e 2 0 0 0 | g a m e d e v e l o p e r24

A R T I S T ’ S V I E W

tion and uniqueness aren’t good qualities to
have as an artist, quite the contrary. How-
ever, when deciding whether to include a
certain feature, it’s important to remain
objectively critical about the value of the
feature. What actual value — value percep-
tible to the player — does it add? How
does it positively or negatively impact the
game-play experience? Was it created using
a known technique that others on the devel-
opment team will be able to grasp? What is
the cost in man-hours to implement the fea-
ture? And how will it affect the run-time
experience on the low-end target platform?
Features that should undergo such scrutiny
include things as specific as the number of
polygons in a character’s head or as broad
as the decision whether or not to use global
vertex lighting instead of lightmaps.

The ultimate litmus test of a new feature,
however, is what portion of the product’s
purchase price is the user willing to allocate
for the feature. For example, if in your
action/adventure game you add the ability

to use inverse kinematics to keep your char-
acter’s feet on the ground and it costs
$300,000 of your $2 million budget, essen-
tially that means players will spend $6 of
their $40 purchase price on that feature.
Put yourself in the player’s shoes and ask
where you’d like that extra $300,000 to be
spent. Most likely, the subtle gimmick
which impresses the other developers is
totally wasted on the player, who’d much
rather see better AI, a fully developed story,
and a richer, more diverse world.

Wrap Up

In the game development industry, the
road to innovation is paved with the

remains of projects which hovered near
greatness but were doomed to ignominy
before they ever hit the shelves. While the
cause of these misfortunes can sometimes
be blamed on an overeager publisher or a
less-than-receptive market, often a game’s
demise results from developers’ lack of dis-

cipline and attention to detail, ideals which
were cast aside in the name of creative
freedom. The ongoing rash of buggy and
visually substandard titles serves as testa-
ment to the unspoken yet pervasive notion
that process and methodology have no
place in game development. Ultimately it
will be the teams that have both the vision
to be innovative and the discipline to
adhere to process that will win the respect
of players and publishers alike.

(Disclaimer: The author of this column
has never made any of the mistakes refer-
enced in this piece. In particular, he has
never implemented a heinously complex
art path or neglected the construction of
an art bible, or added fallacious and need-
lessly complicated special effects, and he
has never, ever, ever succumbed to creep-
ing featuritis. And anyone who swears
they saw him commit such acts was proba-
bly under the influence of a mind-altering
drug, or it was my evil twin brother Mort,
take your pick.) q

j u n e 2 0 0 0 | g a m e d e v e l o p e r26

A R T I S T ’ S V I E W

A tool like Lipsinc’s Ventriloquist has long been on the wish
lists of animators, for whom the extremely dreary process of
lip-synching has become more than a painful chore. One of a

suite of tools for 3D Studio Max, Ventriloquist automates this tedious
process by analyzing a sound file and automatically identifying the
phonemes in the audio track.
(Phonemes are the building blocks that
form the sound patterns we associate
with speech. Depending on which
method you ascribe to, there can be
anywhere from nine to 40 different
phonemes in English. The visual equiv-
alent of a phoneme is a viseme, which
is the shape your mouth and tongue
form when pronouncing the phoneme.)
Though still dependent on a good ani-
mator to create the actual visemes, this
product eradicates the most difficult
step in the process, that of animating a
character’s mouth in sync with the spo-
ken word.

The process is very straightforward.
As in standard lip-synching, the animator creates and assigns a set of
morph targets, corresponding to the desired list of visemes to be used.
Ventriloquist has a preset list of 16 visemes which are created and then
linked to controllers in the plug-in. Once the visemes are created and

assigned, the animator’s lip-synching work is mostly complete. Any
number of audio tracks can then be loaded in, and the plug-in automati-
cally analyzes the sound file for phonemes and assigns the correct ani-
mation, freeing up the animator to focus on secondary head and eye
movement. The screenshot at left shows the animation tracks that were

generated with Ventriloquist.
And while Ventriloquist is strictly a

production tool for use with canned
sequences and prerendered scenes,
Lipsinc is about to make their SDK
available in two new products called
Talk Back and Talk Now, which are
able to accomplish the same thing in
real time. According to Scott Curtis at
Lipsinc, the Talk Now SDK, which can
sample voice tracks coming in from a
multiplayer game or in an audio-based
chat program, is able to generate pret-
ty good results, with only a three- to
500-millisecond lag time. Clearly this is
something that game players and
online developers are salivating for,

and I’ll be eager to see it when it ships. Ventriloquist stands out as a
production-enabling weapon which will significantly help raise the bar of
RT3D entertainment and is a definite “must-have” for anyone working
with lip-synched characters.

PPLLUUGG--IINN PPOOWWEERR!!
L I P S I N C ’ S V E N T R I L O Q U I S T

j u n e 2 0 0 0 | g a m e d e v e l o p e r28

I N T E R N E T C H E A T I N G m a t t p r i t c h a r d

A U T H O R ’ S B I O | Matt Pritchard is busy trying to be a modern renaissance
man. When not working hard on his latest game, he can be found spending
time with his family or collecting antique videogames. Send e-mail to mpritchard@ensemblestu-
dios.com.

How to Hurt
the Hackers

I had planned to begin this article
by sharing my own true experi-
ences with online cheating as it
pertained to a particular game.
But I think the long version of my

story would cast an unnecessarily negative
light on the game and the company that
made it. And since the developers are good
friends of ours, I’ll stick to the short ver-
sion that goes like this.

Last year I became hooked on a certain
first-person shooter (FPS) game. After a
couple months of addictive online gaming,
I became convinced that some players were
cheating and things suddenly changed that
day. I was ready to walk away from the
game in disgust and tell everyone else to
do the same. Instead, I decided it was time
to learn what I could about the alleged
cheaters, their motivations, and most
importantly their methods. In my case, I
discovered at least three distinctly different
methods of cheating that could explain
what I experienced — though as just a
player I could not prove conclusively
which methods, if any, were being used
against me.

The aim of this article is to bring the sub-
ject of online/multiplayer cheating out of
the shadows and talk about it in terms of
real problems with real games and to help
build a framework for classifying and
understanding the various details. I will
cover some of the ways that players are able
to cheat at various games; at times I will go
into the working details, ways to prevent
those cheats, and limitations of various
game architectures as they relate to multi-
player cheating. This is by no means a com-
prehensive and exhaustive tome on the
issue, but it is a start. There is a serious lack
of information on this subject, and paranoia
among developers that talking about it will
reveal secrets that will only make the prob-
lem significantly worse. Several individuals
at various companies declined to talk to me
about cheating and their games for this and
other similar reasons. I respect that, but I
think developers have everything to gain by
sharing our knowledge about cheaters and
how to combat them.

Just how seriously should you as a devel-
oper take the possibility of online cheating?
If your game is single-player only, then you
have nothing to worry about. But if your
game is multiplayer only, the success of

your entire product is at stake. If your
game does both, you’re somewhere in the
middle. As more games are released with
online play as an integral component,
drawing ever-larger audiences (and the
corollary development of online communi-
ties and sites based around the game), it
becomes ever more important to insure that
each online game player experiences what
they believe to be a fair and honest experi-
ence. I’m reminded of a quote from Greg
Costikyan’s excellent report, “The Future
of Online Gaming” (www.costik.com): “An
online game’s success or failure is largely
determined by how the players are treated.
In other words, the customer experience —
in this case, the player experience — is the
key driver of online success.” Our short
version is, “Cheating undermines success.”

Consider the well-known case of Bliz-
zard’s DIABLO — deservedly a runaway
best-seller and great game that acquired a
significant reputation for a horrible multi-
player experience because of cheaters.
Many people I know either refused to play
it online, or would only play over a LAN
with trusted friends. Blizzard did their
best to respond, patching it multiple
times, but they were fighting an uphill
battle.

Cheating hit closer to home for me
while I was working on the final stages of
AGE OF EMPIRES II: THE AGE OF KINGS.
Cheating online became a widespread
problem with the original AGE OF EMPIRES.
Tournaments had to be cancelled due to a
lack of credibility, the number of online
players fell, and the reputation of my com-
pany took a direct hit from frustrated
users. Unable to spare the resources to fix
the game properly until after AGE OF KINGS

was done, we just had to endure our users
turning their anger upon us — probably
the most personally painful thing I’ve
experienced as a developer.

What about your next game? This is a
good time to introduce my first two rules
about online cheating:

R U L E # 1 : I F Y O U B U I L D I T ,
T H E Y W I L L C O M E — TO H A C K
A N D C H E AT.

R U L E # 2 : H A C K I N G AT T E M P T S
I N C R E A S E W I T H T H E S U C C E S S
O F Y O U R G A M E .

w w w . g d m a g . c o m 29

The Inside Scoop

on Internet

Cheating and

How You Can

Combat It

Need more reasons to take online cheating
seriously? Go onto eBay and type in the
name of your favorite massively multiplay-
er game. Now look at the real money
changing hands for virtual characters and
items. What if those items being sold were
obtained via some sort of cheat or hack?
Let’s not overlook the growth of tourna-
ments and contests for online games.

Consider the public relations nightmare
that would ensue if the winner of a cash
prize in a tournament had cheated.
Enough to give you a headache, eh?

Understanding the
Hackers and Cheaters

T he sad truth is that the Internet is full of
people that love to ruin the online

experiences of others. They get off on it. A
great many cheaters use hacks, trainers,
bots, and whatnot in order to win games.
But while some openly try to wreak havoc,
many really want to dominate and crush
opponents, trying to make other players
think they are gods at the game — not the
cheaters they are. The only thing that seems
to bother them is getting caught. Beyond
that, no ethical dilemmas seem to concern
them. The anonymity and artificiality of the
Internet seems to encourage a moral vacu-
um where otherwise nice people often
behave in the worst possible way. A big fac-
tor in this is a lack of consequences. If a
player is caught, so what? Are they fined or
punished? No. Are they rejected by the peo-
ple they played against? Usually, but it’s so
easy to establish another identity and return
to play that discovery and banishment are
no barrier to those with ill intent.

Another interesting aspect of online
cheating is the rise of clans and how cheats
get propagated. If a member of a clan hacks
a game or obtains a not-readily-available
program for cheating, it will often be given
to other members of the clan with the
understanding that it’s for clan use only and
to be kept secret. The purpose being, of
course, to raise the standing and prestige of
the clan. If the cheater is not a clan member,
odds are he will keep the secret to himself
for a while and not advertise his advantage.
The logic here is simple: If anyone goes
public with a cheat, a) he will lose his
advantage, b) he will probably be identified
by his opponents as a cheater, and c) the
developer can then patch the game, invali-
dating the cheat. As a result of this secretive
behavior we get to rule number three.

R U L E # 3 : C H E AT E R S A C T I V E LY
T R Y TO K E E P D E V E L O P E R S
F R O M L E A R N I N G T H E I R
C H E AT S .

Tools of the Hackers

S o how do they discover the hacks
and create the programs to cheat at

your game? Consider rule number four:

R U L E # 4 : Y O U R G A M E ,
A L O N G W I T H E V E R Y T H I N G O N
T H E C H E AT E R ’ S C O M P U T E R ,
I S N O T S E C U R E . T H E F I L E S
A R E N O T S E C U R E . M E M O R Y
I S N O T S E C U R E . S E R V I C E S
A N D D R I V E R S A R E N O T
S E C U R E .

That’s right, you gave them a copy of
your game when they purchased it. The
hackers have access to the same tools that
you had while making the game. They
have the compilers, dissemblers, debug-
gers, and utilities that you have, and a few
that you don’t. And they are smart people
— they are probably more familiar with
the Assembly output of an optimized C++
file than you are. The most popular tool
among the hackers I surveyed was
NuMega’s excellent debugger, SoftIce —
definitely not a tool for the wimpy. On
another day, you just might be trying to
hire these people. Many of them possess a
true hacker ethic, doing it just to prove it
can be done, but more do it specifically to
cheat. Either way we get the same result: a
compromised game and an advantage to
the cheater.

Hacking games is nothing new, it’s been
going on as long there have been computer
games. For single-player games, it has
never been an issue, since no matter what
a player does with a game, he’s only doing
it to himself (and therefore must be happy
about it). What’s new is bringing the
results of the hacking to other players,
who never wanted or asked for it.

I’ve lost count of the number of devel-
opers I’ve encountered who thought that
because something they designed was com-
plicated and nobody else had the docu-
mentation, it was secure from prying eyes
and hands. This is not true, as I learned
the hard way. If you are skeptical, I invite
you to look at the custom graphics file for-
mat used in AGE OF EMPIRES. Last year, I
received a demanding e-mail from a kid
who wanted the file format for a utility he
was writing. I told him to go away. Three

j u n e 2 0 0 0 | g a m e d e v e l o p e r30

I N T E R N E T C H E A T I N G

Cheaters
Never
Prosper

RULE #1: If you build it, they will come — to
hack and cheat.

RULE #2: Hacking attempts increase with
the success of your game.

RULE #3: Cheaters actively try to keep
developers from learning their
cheats.

RULE #4: Your game, along with everything
on the cheater’s computer, is
not secure. The files are not
secure. Memory is not secure.
Services and drivers are not
secure.

RULE #5: Obscurity is not security.

RULE #6: Any communication over an open
line is vulnerable to interception,
analysis, and modification.

RULE #7: There is no such thing as a
harmless cheat or exploit. Cheat-
ers are incredibly inventive at
figuring out how to get the most
out of any loophole or exploit.

RULE #8: Trust in the server is everything
in a client-server game.

RULE #9: Honest players would love for a
game to tip them off to possible
cheating. Cheaters want the
opposite.

j u n e 2 0 0 0 | g a m e d e v e l o p e r32

days later he sent me the file format docu-
mentation that he reverse-engineered, and
asked if he missed anything. He hadn’t.
Thus, this is a perfect example of rule
number five. Yes, I’ve borrowed it from
cryptography, but it applies equally well
here.

R U L E # 5 : O B S C U R I T Y I S N O T
S E C U R I T Y.

Sometimes we do things, such as leaving
debug information in the game’s exe-
cutable, that make the hacker’s job easier.
In the end, we cannot prevent most cheat-
ing. But we can make it tough. We don’t
want effective cheating to be a matter of
just patching six bytes in a file. Ideally we
want hacking a game to be so much work
that it approaches the level of having to
completely rewrite the game — something
that goes outside the realm of any reason-
ableness on the hacker’s part.

One of biggest things we often do that
makes it easier for a hacker, and thus
harder on us, is include Easter eggs and
cheat codes in the single-player portion of
our games. Considered to be practically a
requirement, they expose extralegal
capabilities of our game engines and
make it much easier for the hackers to
locate the data and code that controls
that functionality.

Models of Multiplayer
Communications

M ost online games use one of two
communication models: client-server

and peer-to-peer. For our discussion, the
deciding factor is where game event deci-
sions are made. If only one player’s (or a
separate) computer makes game event
decisions or has the game simulation data,
it is client-server. If all players’ computers

make some or all of the game event deci-
sions, or have the full game simulation,
then it’s peer-to-peer. Many of the cheating
methods described here are applicable to
both models. I’ve organized the various
cheats, trainers, exploits, and hacks that
I’ve learned about into the categories listed
in Figure 1.

Oh Look, It’s the
Terminator...

T he first type of cheat is reflex augmen-
tation, which is when a computer pro-

gram replaces human reaction to produce
superior results. This type of cheating is
really only applicable to games where
reflexes and reaction times matter, and
thus is most applicable to action games.

During my FPS obsession, I believe that
I encountered a form of reflex augmenta-
tion known as an aiming proxy. An FPS
aiming proxy works like this: The proxy
program is run on a networked computer
and the player configures it with the
address of the server they are going to play
on. They then run the FPS game on anoth-
er machine and connect to the proxy
machine, which in turn connects the game
to the server, acting just like an Internet
packet router.

The only hitch is that the proxy moni-
tors and attempts to decode all of the
packets it is routing. The program keeps
track of the movements and locations of
all the players the server is reporting to the
game, building a simple model. When the
proxy sees a Fire Weapon command pack-
et issued by the cheating player, it checks
the locations and directions of all the play-
ers it is currently tracking and picks a tar-
get from them. It then inserts a Move/
Rotate command packet into the stream
going to the server in front of (or into) the
Fire Weapon command packet that points
the player straight at the selected target.
And there you have it: perfect aim without
all the mouse twisting.

When aiming proxies for QUAKE first
appeared a couple of years ago, their tar-
geting wasn’t too sophisticated and didn’t
take into account things such as the play-
er’s field-of-view (FOV) or lag. Giveaways,
such as players shooting weapons out of
their backs, tipped people off that some-
thing foul was afoot. One of the first

countermeasures to be developed was a
server add-on that statistically identified
players whose aim was too good to be
true, then kicked out and banned the per-
petrators. This naturally proved controver-
sial, since some people really are “railgun
gods,” and the issue of possibly falsely
identifying a person as a cheater was
raised (and has yet to go away). And of
course, the aiming proxies evolved with
time. Later versions were improved to con-
sider only the player’s current FOV and
compensate for lag, and added just enough
randomness in their aim to stay below a
server’s “too good to be legit” identifica-
tion threshold.

This big vulnerability is summed up in
rule number six. Since the proxy is not
running on the same computer as the game
client, definitive detection can be next to
impossible. Making the development of the
proxy extremely difficult then becomes a
priority.

R U L E # 6 : A N Y C O M M U N I C AT I O N
O V E R A N O P E N L I N E I S V U L -
N E R A B L E TO I N T E R C E P T I O N ,
A N A LY S I S , A N D M O D I F I C AT I O N .

One way to inhibit this form of cheat-
ing is to encrypt the command packets so
that the proxies can’t decode them. But
there are limits to the extent that encryp-
tion can be used on communications.
Most FPS games can send and receive a
couple of kilobytes of data or more per
player per second, and have to allow for
lost and out-of-order packets. The encryp-
tion therefore has to be fast enough not to
impact frame rate, and a given packet’s
encryption can not be dependent on any
other packet unless guaranteed delivery is
used. And once the encryption is cracked,
the game is vulnerable until the encryption
is revised, which usually involves issuing a
patch. Then the hacking starts over.

Another way to make life more difficult
for the proxy creator is to make the com-
mand syntax dynamic. Using something as
simple as a seed number that’s given to the
game when it connects and a custom ran-
dom number function, the actual opcodes
used in the communication packets can be
changed from game to game, or even more
often. The seed itself doesn’t have to be
transmitted; it could be derived from some

I N T E R N E T C H E A T I N G

FIGURE 1. Cheating classifications.

• Reflex augmentation
• Authoritative clients
• Information exposure
• Compromised servers
• Bugs and design loopholes
• Environmental weaknesses

j u n e 2 0 0 0 | g a m e d e v e l o p e r34

I N T E R N E T C H E A T I N G

aspect of the current game itself. The idea
here is that since a proxy sees all the com-
munications, but only the communications,
the random seed is derived from something
not explicitly communicated. Foolproof?
No. But it’s far more difficult to hack, forc-
ing the hackers to start from scratch.

If guaranteed delivery is used, another
communications protection technique is to
serialize each packet. Taking it a bit fur-
ther, you could make a portion of the next
serial number dependent on a checksum
of the last packet. While there are speed
issues with the delivery, it’s an excellent
way to make it difficult to insert or modi-
fy packets.

Though reflex augmentation seems to be
exclusive to FPS games, the vulnerability
extends to any game where quick reflexes
can make a difference and game communi-
cations can be sniffed.

The Client Is Always
Right

T he next major class of cheats is
exploiting authoritative clients. This is

when one player’s modified copy of an
online game tells all the other players that
a definitive game event has occurred.
Examples of the communications would be
“player 1 hit player 2 with the death-look
spell for 200 points of damage,” “player 2
has 10,000 hit points,” and so on. The
other players’ games accept these as fact
without challenging them and update their
copy of the game simulation accordingly.

In this case, a hacked client can be cre-
ated in many ways: The executables can be
patched to behave differently, the game
data files can be modified to change the
game properties on the hacked client, or
the network communication packets can
be compromised. In any case, the result is
the same — the game sends modified com-
mands to the other players who blindly
accept them. Games are especially vulnera-
ble to this type of exploit when they are
based on a single-player game engine that
has been extended to support online multi-
play in the most direct (read: quickest to
develop) manner.

Fortunately there are several steps that a
game developer can take to eliminate most
problems with authoritative clients. A first
step is to install a mechanism in the game
that verifies that each player is using the
same program and data files. This means
going out and computing a CRC or similar
identifier for all the data in question, not
just relying on a value stored in the file or
the file size. A nice side benefit is that this
method also detects out-of-date files dur-
ing the development process.

For peer-to-peer games, cheating can be
made difficult by changing from a game
engine that issues commands to one that
issues command requests. It’s a subtle
distinction but one that requires engineer-
ing changes throughout the game. It also
requires that each player’s machine run
a full copy of the game simulation,
operating in lockstep with the other
players.

Command processing in a single-player
game typically works in the manner shown
in Figure 2. The player issues some sort of
command via the game’s user interface.
The game then performs a validation
check on the command to see if the player
has the resource, the move is legal, and so
on. The game then performs the command
and updates its internal game simulation.
Figure 3 shows game engine command
processing extended to support multiple
players in the most direct way possible.
The process stays the same except for the
addition of a communications packet that’s
sent out to inform the other players of
what has taken place. The receiving play-
ers integrate the data directly into their
world simulation.

With the shift to command requests, the
order of events changes a bit, which is
shown in Figure 4. After determining that
the command is a legal one, a command
request describing the command is sent out
to other players and is also placed into the
player’s own internal command queue,
which contains command requests from
other players as well as his own requests.
Then the game engine pulls command
requests from the queue and performs
another validation check, rejecting the
request if it fails. The fundamental differ-
ence is that every player has a chance to
reject every action in the game based solely
on the information on that player’s
machine. No other machine provides the
information to make the determination on
what is right and wrong. A hacked game

FIGURE 2. Single-player-game command processing steps.

w

i

M

Keyboard &
Mouse Input

The Desired Command
& Details are Determined

Results are Reflected
in Updated Game
Simulation Data

Game Continues
with Next Turn

Verification
Failed, Go
to Next Command aCommand

Verification

b T
Command is Processed
by Game Update Routines

FIGURE 3. Single-player-game command processing extended to support multi-
player operation.

w

i

M

Keyboard &
Mouse Input

The Desired Command
& Details are Determined

Results are Reflected
in Updated Game
Simulation Data

Verification
Failed, Go
to Next Command

aCommand
Verification

b

T
Command is
Processed by Game
Update Routines

Results are Received
from Other Players'
Computers

Game Continues
with Next Turn

Results are Sent
to the Other Players'
Computers

s
QQ

j u n e 2 0 0 0 | g a m e d e v e l o p e r36

cannot reach out and alter what’s on an
honest player’s machine with this
approach. Note that such an architecture
works equally well for a single-player
game.

Preventing a dishonest command from
being accepted on an honest player’s
machine is only half the task. The game
also has to be able to determine whether
someone is playing the same game and if
not, it must do something about it. For
instance, when a received command
request is rejected for reasons that should
have prevented it from being issued in the
first place (remember, the issuer is sup-
posed to have checked it for validity
before passing it to the other players), all
other players should assume that a cheater
is in their midst, and take some sort of
action.

Often though, due to design issues (such
as posting command requests to a future
turn), it is not possible to thoroughly
ensure that all command requests passed
to other players won’t be rejected if a play-
er is being honest. A good way to deal
with this is to add synchronization check-

ing to the game. At various points during
the game, each player’s machine creates a
status summary of the entire game simula-
tion on that computer. The status, in the
form of a series of flags, CRCs, and check-
sums, is then sent to all the other players
for comparison. All the status summaries
should be the same, provided the game
program and data files are the same for
each machine. If it turns out that one play-
er has a different status from all the rest,
the game can take action (like drop the
player from the game). The idea is that a
hacked game should cause that player’s
game simulation to produce different
results.

Alternatively, you can make life even
more difficult for the hacker by easing up
on the received command request evalua-
tions. By allowing command requests to
bypass the verification check only on the
machine that issued it, you’re deliberately
allowing the game to go out of synch if the
initial verification check or data has been
hacked. Combine this with a synchroniza-
tion check that occurs somewhat infre-
quently and you’ve presented the hacker

with something of a mystery — on his
machine the cheat worked, but then a
while later the other players booted him
out of the game.

This status synchronization has a huge
benefit for the development process as
well. Getting a complicated game engine to
produce the same game simulations results
while having different player views, inputs,
and settings is a very difficult task. It’s dif-
ficult to keep the simulation-independent
code from accidentally impacting the simu-
lation. For example, a compare against the
current player number variable in the sim-
ulation code, or randomly playing a back-
ground sound based on an object in the
player’s view using the same random func-
tion used by the simulation, could cause
future executions to produce different
results on different machines. Judicious use
of status synchronization allows a develop-
er to quickly narrow down the portion of
the game that isn’t executing the same for
all players.

Client-server games unfortunately can’t
benefit as much from these techniques, as
they lack full game information and by
design must rely on the authority of the
server. We will look at this more a bit later.

The Game Emperor’s
New Clothes

T he next major class of cheats is what
I’ve dubbed “information exposure.”

The principle is simple: On a compro-
mised client, the player is given access or
visibility to hidden information. The fun-
damental difference between this and
authoritative clients is that information
exposure does not alter communications
with the other players. Any commands
sent by the cheater are normal game com-
mands — the difference is that the cheater
acts upon superior information.

The first-person-shooter cheats of modi-
fied maps and models arguably fall under
this classification, as they let cheating play-
ers see things that they normally wouldn’t
be able to (in the case of modified maps), or
see them more easily (in the case of a modi-
fied player model that glows in the dark).
Any game whose game play relies on some
information being hidden from a player has
a lot to lose to these types of cheats.

The real-time strategy (RTS) genre suf-

I N T E R N E T C H E A T I N G

FIGURE 4. Command processing steps when using command requests.

w

i

Keyboard &
Mouse Input

The Desired Command
& Details are Determined

Verification
Failed Go
to Next Command aCommand

Verification

T

s
QQ

Command Request is
Composed and Issued

Command Request is
Sent to Other Players

Command
Request

Queue

Incoming Command
Requests from

Other Players

Command Request
Extraction & Verification

Command is Processed
by Game Update Routines

iRequest is
Rejected as Invalid

MResults are Reflected in
Updated Game Simulation Data

aaa

jRequest is Accepted

fers severely from this. The most obvious
being hacks that remove the “fog of war”
and “unexplored map” areas from the dis-
play. With a fully visible map, the cheating
player can watch what other players are
planning and head them off at the pass, so
to speak.

There are a couple of ways the hacker
accomplishes this. The hacker may go
after the variables that control the display
characteristics of the map. With the help
of a good debugger and single-player
cheat codes to reveal the whole map, find-
ing the locations in memory that control
the map display is fairly simple. Then
either the game .EXE file is modified to
initialize those map control values differ-
ently, or a program is made that attaches
to the game’s memory space and modifies
the variable values while the game is run-
ning. To combat this, the values of those
variables should be regularly reported to
other players in the form of a checksum
or CRC code. Unfortunately, that only
raises the stakes; the hackers then just

attack the code that reads those control
values (easy enough to find quickly),
inverting or NOP’ing out the instructions
that act upon them.

Additional techniques are needed to
detect the hacked game view. There are a
couple of ways to take advantage of the
fact that the full game simulation is run on
all clients. One way is to borrow a tech-
nique from the “authoritative client” sec-
tion and check each command request for
the side effects of a hacked map on one of
the players. We specifically ask the game
simulation, which is separate from the
screen display, the question, “Can that
player see the object he just clicked on?” In
doing this we are assuming ahead of time
that such hacks will be attempted, making
sure we consider the side effects by which
they might be detected. Once again, easing
up on checks of the player’s own machine
is very useful. The next time the game per-
forms a synchronization check, all the
other players will agree that the cheating
client is “out of synch” with the rest of the

game and can deal with him accordingly.
Another technique that avoids looking

at the display control variables is to com-
pile abstract statistics on what gets drawn
to the screen. The statistics are derived
from the game simulation data and just
filed away. This doesn’t immediately pre-
vent the hacker from cheating; instead,
you send the statistics around as part of
the status synchronization and see what
the other players think of them.

In the RTS map-hack case, it is neces-
sary for some change to be made to the
game; either the code or some data is in a
modified state while the game is running.
And if something has been modified, you
can attempt to detect that.

But information exposure cheats can be
totally passive. Consider a scenario where
a program gains access to the memory
space of an RTS game that is running. It
then reads key values for each player in
the game out of memory and sends them
to an adjacent networked computer. An
industrious hacker once raised that sce-

j u n e 2 0 0 0 | g a m e d e v e l o p e r38

nario with me regarding one of the AGE OF

EMPIRES games, saying he had figured out
how to read out of memory the resource
amounts for every player. At first we
thought that this wasn’t very serious. He
then explained that if he polled the values
a couple hundred times a second, he could
identify nearly every discrete transaction.
A simple Visual Basic program could then
display a log window for each player, with
messages for events such as the training of
various units (to the extent they could be
distinguished from others on the basis of
cost), and messages for events such as
building construction, tribute, and
advancement to the next age. Basically,
this cheating method was the next best
thing to looking over the shoulders of his
opponents.

R U L E # 7 : T H E R E I S N O S U C H
T H I N G A S A H A R M L E S S C H E AT
O R E X P L O I T. C H E AT E R S A R E
I N C R E D I B LY I N V E N T I V E AT
F I G U R I N G O U T H O W TO G E T
T H E M O S T O U T O F A N Y L O O P -
H O L E O R E X P L O I T.

Intrigued, I asked him how he could be
sure he had found the correct memory
locations each time, as they changed each
game since they were stored in dynamical-
ly allocated classes. His answer was most
interesting. He first scanned the memory
space of a paused game looking for known
values for things such as population,
wood, gold, and other very significant
game values that he knew about and
believed were unique. He had a simple cus-
tom program that looked for the values in
basic formats such as long ints and floats.
After his program identified all the possi-
ble addresses with those values, he ran the
game a bit more until the values had
changed. He then reran the program,
checking the prior list of locations for the
new values, reducing the list of possible
addresses until he was sure he had found
the correct locations. He then put a read-
access breakpoint on the value and looked
at how it was accessed from various points
in the code. At one of the breakpoints, the
C++ code for accessing the wood amount
looked something like this:
GAME_MASTER -> GAME_WORLD->PLAYER[n].

ResourceAmount[Wood_Index];

This is a pointer to a pointer to an object
containing an array of integers, one of
which contains the value of the player’s
current stockpile of wood, and all the
objects are dynamically allocated. The
hacker’s point was that if you trace back
through all the dynamic pointers, you even-
tually find a static variable or base pointer.
The different spots where his breakpoints
were triggered were from member func-
tions at different levels in the class hierar-
chy, and even from outside the class hierar-
chy containing the data. And it was finding
an instance of that latter access condition
that was the jackpot. There it was in his
debugger’s disassembly window: a base
address and the Assembly code to traverse
through the classes and handle player and
resource index numbers.

Considering all this, I found a couple of
strategies that can greatly reduce the likeli-
hood of this sort of passive attack. Again,
these tips cannot guarantee 100 percent
security, but they make the hacker’s job
much harder.

The first strategy is to encrypt very sig-
nificant values in memory at all times.
Upon consideration, most game variables
are not significant enough to warrant such
protection — the hit points of a particular
object don’t tell anyone much, while a
drop of 1,000 food and 800 gold from a

player’s resources does indicate that the
player is advancing to the Imperial Age,
which is an event of large strategic impor-
tance in our game. Simple encryption is
relatively easy when all access to the vari-
ables goes through assessor functions. A
communicative function such as XOR is
your friend here, as it alters values upon
storing, restores them upon reading, and
is extremely fast. The whole point is to
make it very hard for the hacker to find
the variables he is searching for in the first
place. Values the hacker would know to
look for are not left around so that a sim-
ple scan can find them. In C++, our
encrypted assessor functions for game
resources look something like what’s
shown in Listing 1.

The second strategy for slowing down
passive attacks is to never access very sig-
nificant values from outside the class hier-
archy. Assuming the values are located
while using the debugger, try not to access
them in a way that starts with a reliably
fixed memory address. Combining this
with small, randomly sized spacing buffer
allocations during the main game setup
ensures that the memory addresses for
vital information will never be the same
from one game to the next. A piece of C++
code you won’t see in our next RTS game
would be the following:

I N T E R N E T C H E A T I N G

LISTING 1. Hiding the variables that tip off hackers to possible cheats.

void GameResource::SetResource(int Resource_Num, int Resource_Amount)
{

GameResourceAmount[ResourceNum] = Resource_Amount ^ EncryptValue[ResourceNum];
}
int GameResouce::GetResource(int Resource_Num)
{

return(GameResourceAmount[ResourceNum] ^ EncryptValue[ResourceNum]);
}
//and more specific functions...
void GameResource::SetWood(int Wood_Amount)
{

GameResourceAmount[RESOURCE_WOOD] = Wood_Amount ^ EncryptValue[RESOURCE_WOOD];
}
int GameResource::GetWood(void)
{

return(GameResourceAmount[RESOURCE_WOOD] ^ EncryptValue[RESOURCE_WOOD]);
}

w w w . g d m a g . c o m 39

GLOBAL_GAME_POINTER -> PLAYER_DATA[n] ->

RESOURCE_TABLE[gold] = SOME_UNIQUE_START_VALUE;

Information access isn’t limited to games
as complex as RTS games, it can extend to
something as simple as a card game. Con-
sider an online card game such as poker.
All it would take to ruin the game is for a
player to see the values of the face-down
cards in another player’s hand. If the infor-
mation is on the machine, hackers can go
digging for it. This goes back to rule num-
ber four.

Who Do You Trust Baby?

I n client-server games, because so much
is controlled by the server, the game is

only as good as the trust placed in the
server and those who run it.

R U L E # 8 : T R U S T I N T H E
S E R V E R I S E V E R Y T H I N G I N A
C L I E N T - S E R V E R G A M E .

An issue here is brought up because some
client-server games can be customized by
the user running the server. Access and
configurability are great for many games,
as they allow the player community to
extend and evolve a game. But some indi-
viduals will test the server to see what
can be exploited in the name of cheating.
This in itself is not the problem — rather
it’s when honest but unaware players find
their way to the server and don’t know
that they are not on a level
playing field.

You really need to consider
your audience here. A success-
ful game will sell hundreds of
thousands of copies, if not
millions. You as a developer
will be most in tune with the
hard-core players — those that
know the game inside and out.
But it’s easy to forget about
the more casual players, who
probably will be the majority
of purchasers of your game
once you pass a certain level
of success. These are the peo-
ple who don’t know to check
the status of the Cheats_Allowed
flag before joining a server, or
that game rule changes are
transparently downloaded

when they connect. All they probably
know is the default game configuration,
and when they see their ReallyBFG27K
gun doing only 0.5 points of damage,
they’re going to cry foul. It doesn’t matter
that it was technically legal for the server
operator to make the change, you still
wind up with a user that is soured on the
game and not likely to recommend it to
his buddies anymore.

Naturally, people get a whole lot more
unhappy with a game when they encounter
modifications with malicious intent. What
if a clan decided to add a tiny server mod
to their FPS server that looked something
like this snippet of C code:
If Player.Name->Contains(“OUR_CLAN”)

Taken_Damage = Taken_Damage * 0.80;

Or what if the remote console was
hacked to allow normal cheats to be tog-
gled? Dishonest players in with the server
could make a key-bind that resembled
this:
Access_password on; set Cheats_Allowed true;

Give Big_Ass_Weapon; Give Big_Ass_Ammo; Set

Cheats_Allowed false; Access_Password off;

The important point here is that with
user-run servers and powerfully config-
urable game engines, these kinds of
shenanigans will happen. While we as
developers can’t protect our more casual
users from joining any game server they
wish, we can do a better job of letting
them know when they are encountering
something that could be different from

what they expect. QUAKE 3: ARENA set a
great example when it introduced the con-
cept of a “pure” server. It’s a simple idea
that casual users can quickly grasp and set
their gaming expectations by.

But why stop there? If we download
data that includes a new set of weapon
properties, why not put a message on the
screen saying, “Weapon properties modi-
fied”? If single-player cheat commands
are issued in the middle of a game, maybe
we should send a message to every client
notifying them of that fact, so even
players who aren’t near the issuer can
be made aware. Empower players to easi-
ly determine whether the games are fair
or not.

R U L E # 9 : H O N E S T P L AY E R S
W O U L D L O V E F O R A G A M E TO
T I P T H E M O F F TO P O S S I B L E
C H E AT I N G . C H E AT E R S WA N T
T H E O P P O S I T E .

Bugs & Design Issues

T echnically, this category of cheats is
one that we bring upon ourselves:

bugs in our games can be discovered by
users and used to disrupt game play.
Most bugs don’t enable cheating, but a
few do.

A good example is the farm-stopping
bug in the unpatched version of AGE OF

EMPIRES. When a user had both a villager
and a farm selected, he could

issue the Stop command.
Because the command was
valid for a villager, it was
allowed to go through, but
listed both objects as the tar-
get of the command. The vil-
lager would stop working as
expected and reset its state.
The farm would also reset
itself, something it never did
normally, and replenish its
food supply. Once this was
discovered by players, it dras-
tically changed the game for
them, giving them a huge
advantage over those who
didn’t know about it.

I encountered another bug
when playing HALF-LIFE. I
would get into a firefight with

QUAKE 3: ARENA introduced the concept of a “pure” server so players know
what to expect when joining a multiplayer game.

another player, both of us using the same
weapon, but when it came time to reload
our weapons, my opponent was able to
reload much more quickly than I could.
Sure enough, when the next patch came
out, I saw in the release notes that a bug
allowing fast reloads was fixed. There’s
really not much we can do about these
types of bugs, other than fix them with a
patch.

Environmental
Weaknesses

M y last category of cheats is some-
thing of a catchall for exploitable

problems a game may have on particular
hardware or operating conditions. A good
example is the “construction-cancelled”
bug that was found amazingly in both
AGE OF EMPIRES and STARCRAFT at about
the same time. The element needed to
make it work was extreme lag in network
communications, to the point of a
momentary disconnection. When this
happened, the game engines stopped
advancing to the next game turn while
they waited for communications to
resume. During this time, the user inter-
face still functioned, so the player didn’t
think the game had locked up. While the
game was in this state, a player could
issue a command to cancel construction
of a building, returning its resources to
the player’s inventory — only the player
would issue the command over and over
as many times as possible. Normally, a
player could only issue one Cancel com-
mand per turn, but because the game sim-
ulation was in a holding state, multiple
command requests went into the queue.
Because of some necessities of RTS engine
design, when an object is destroyed dur-
ing a turn by something such as a Cancel
command, the destruction is postponed
until after all the commands for that turn
have been processed. The result was the
command executed multiple times during
one game update.

Once discovered, this had a horrible
impact on online games. People deliber-
ately caused massive lags to take advan-
tage of the cheat. To fix it in AGE OF

EMPIRES, we had to update the validation
checks to see if a similar request was
already pending on the current turn and

reject duplicates.
Another bug of this type involved the

game FIRESTORM and its interaction with
the Windows clipboard. It seems a clever
user found out that if he pasted text from
the clipboard into his chats and that text
contained a certain character not normally
used, the game would crash when it
attempted to print it to the screen — on all
player’s machines. He then treated this
knowledge as a personal nuclear bomb
that he could spring on people when he
found himself losing.

Yet another example taken from AGE

OF EMPIRES is what happens when a play-
er’s network connection is overloaded or
ping-flooded by another player. When
such an attack renders a game unable to
communicate with its peers, the other
players decide that something is wrong
with that player and drop him from the
game — a totally necessary capability, but
one that can be exploited in a modern
twist on scattering all the pieces on a
game board when you are losing. This
was one the major reasons we added
Multiplayer Save and Restore capabilities
to AGE OF EMPIRES II.

Some Final Thoughts

I hope these examples got you thinking
about some of the problems and issues

at stake when developers address the
problem of online cheating. We certainly
have a lot more ground to cover, from
massively multiplayer games, open
source, and consoles, to enabling the
online communities to better police the
situation. But we’re out of space and time
for now. q

j u n e 2 0 0 0 | g a m e d e v e l o p e r40

I N T E R N E T C H E A T I N G

A C K N O W L E D G E M E N T S

Special thanks to the following people who

provided valuable information and insight for

this article:

• Greg Costikyan author of “The Future of
Online Gaming” (www.costik.com)

• Harvey Smith Ion Storm Austin

• Mark Terrano Ensemble Studios

• Gordon Walton Origin Systems

A GE OF EMPIRES II: THE AGE

OF KINGS (AOK), a tile-
based, 2D isometric, real-
time strategy game, was
built on the code base used

in the original AGE OF EMPIRES (AOE) and
extended in its RISE OF ROME expansion
pack. In these games, players guide one of
many civilizations from the humble begin-
ning of a few villagers to an empire of tens
or hundreds of military and non-military
units, while competing against other
human or computer-controlled opponents
in single or multiplayer modes.

This is the first of a two-part article that
describes the tips, tricks, tools, and pitfalls
that went into raising the performance
profile of AGE OF EMPIRES II: THE AGE OF

KINGS. All of the techniques and tools used
to measure and improve AOK are fully
capable of improving the performance of
other games.

Beginning the Diagnosis

I n some ways, the AOK development
team was fortunate because we had the

benefit of an existing code base to work
with. Many performance improvements
went into AOE, including extensive opti-
mization of its graphics drawing core, and
this work gave us a good starting point for
AOK.

Still, a significant amount of new func-
tionality was added over the course of the
sequel’s two-year development cycle. This
new functionality, as well as new require-
ments placed on existing functionality,
meant that there was a large amount of
new work to do in order to meet the mini-
mum system requirements for shipping
AOK. As such, a dedicated performance

improvement phase began in April 1999 to
ready AOK for its September 1999 release.
The purpose of this phase was to identify
and resolve the game’s remaining outstand-
ing performance issues, and to determine
whether AOK would perform well on the
intended minimum system configuration.

Our team had some ideas as to which
parts of the code were taking a long time
to execute, and we used Intel’s VTune,
NuMega’s TrueTime, and our own profil-
ing code to verify these hunches and see
exactly where time was being spent during
program execution. Often these perform-
ance results alone were enough to deter-
mine solutions but sometimes it wasn’t
clear why the AOK code was underper-
forming, and in these cases we analyzed
the data and data flow to determine the
nature of the problem.

Once a performance problem is identi-
fied, several options are available to fix it.
The most straightforward and recognized
solution is direct code optimization by
optimizing the existing C code, translating
it to hand-coded x86 Assembly, rearrang-
ing data layouts, and/or implementing an
alternative algorithm.

Sometimes we found that an algorithm,
though optimal for the situation, was exe-
cuting too often. In one case, unit pathing
had been highly optimized, but it was being
called too often by other subsystems. In
these cases, we fixed the problem by cap-
ping the number of times the code could be
called by other systems or by capping the
amount of time the code could spend exe-
cuting. Alternately, we might change the al-
gorithm so its processing could occur over
multiple game updates instead of all at once.

Profiling, Data Analysis,
Scalability, and Magic Numbers

Meeting the Minimum Requirements
for AGE OF EMPIRES II: THE AGE OF KINGS

j u n e 2 0 0 0 | g a m e d e v e l o p e r42

A U T H O R ’ S B I O | Herb Marselas currently works at Ensemble Studios. He helped out on AGE OF EMPIRES II: THE AGE OF KINGS. Shhhh!
Please don’t tell anyone he’s working on a secret 3D-engine project called [deleted]. Previously, he worked at the Intel Platform Architecture Lab
where he created the IPEAK Graphics Performance Toolkit. You can reach him at hmarselas@ensemblestudios.com.

P R O F I L I N G & A N A L Y S I S h e r b m a r s e l a s

AOK’s 2D graphics pipeline added new features to AOE’s original system, implemented with a combi-
nation of C/C++ and hand-coded Assembly.

We also found that some functionality,
no matter how much we optimized it, still
executed too slowly. For example, support-
ing eight players in a game required too
much processor time on the minimum sys-
tem, so we specified that the minimum sys-
tem could support only four players. We
presented scalability features such as this
as facets of game play or as options that
players could adjust to their liking. These
scalable features ultimately allowed AOK
to run well on its stated minimum system,
providing incentives or rewards to users
who have better computers.

And then there were AOK’s approxi-
mately 30 single-player scenarios. We eval-
uated the performance of these scenarios
slightly differently from other game func-
tionality. Instead of trying to optimize
offending code, we first examined the sce-
nario for performance problems that had
been inadvertently introduced by the sce-
nario designers in their construction of the
scenario and it’s elements. In many cases,
performance improved significantly with
slight changes to the scenario, for example
reducing the number of player units,
shrinking the game map, or making sec-
tions of the maps inaccessible to players.

Above all, we made sure that we did not
change the designer’s vision of the scenario
as we optimized it.

Shopping for Old
Hardware

One of the goals of AOK was to keep
the system requirements as low as pos-

sible. This was necessary in order to reach
the broadest audience possible and to stay
on the same incremental processor perform-
ance ramp set by the original AGE OF

EMPIRES and its RISE OF ROME expansion
pack. Our overriding concern was to meet
these minimum system requirements yet still
provide an enjoyable game experience.

The original AGE OF EMPIRES was
released in September 1997 and required a
90MHz Pentium processor with 16MB
RAM and a 2D graphics card capable of
handling 8-bit palletized color. The RISE OF

ROME expansion pack shipped a year later
and raised the minimum system processor
to a 120MHz Pentium. Based on this
information, the AOK minimum processor
was pegged as a 133MHz Pentium with
32MB of physical RAM (Figure 1). The
additional RAM was required due mainly
to the increased size and number of graph-
ics and sound files used by AOK. There
was also a greater amount of game data
and an executable that grew from approxi-
mately 1.5MB for AOE to approximately
2.4MB for AOK.

To make sure AOK worked on the mini-
mum system, we had to shop for old hard-
ware. We purchased systems matching the
minimum system specification from a local
system reseller — we no longer used sys-
tems that slow. When the “new” comput-
ers arrived, we decided not to wipe the
hard drives, nor did we reinstall software
and hardware with the latest driver ver-
sions. We did this because we expected
that most AOK users wouldn’t optimize
their computer’s configuration or settings,
either. Optimizing these systems would
have undoubtedly improved our perform-
ance numbers, but it would not have trans-
lated into true performance gains on other
minimally-configured computers. On the
other hand, for normal in-house play-test-
ing we used computers that were signifi-
cantly more powerful than the minimum
system configuration, which made up for

performance issues caused by unoptimized
code and enabled logging functions during
play-testing (Figure 1).

A precedent set by the original AGE OF

EMPIRES was the use of options and set-
tings playable on the minimum system
(Figure 2). A list of the specific options
supported by the minimum system was
needed due to the large number of them
available in AOK (Figure 3). These were
also the default options for the single-
player and multiplayer games, and were
used to guide the creation of approximate-
ly 30 single-player scenarios.

One of the first tasks of this dedicated
performance phase was to determine the
largest performance problems, the
improvements that we could hope to
make, and the likelihood that AOK would
meet the minimum system specification in
terms of processor and physical memory.
This initial profiling process led us to
increase the minimum required processor
speed from 133 to 166MHz. We also felt
that meeting the 32MB memory size could
difficult but we were fairly certain that the
memory footprint could be reduced
enough to meet that goal.

Grist for Profiling

N o matter how good or bad a program
looks when viewed through the lens

of profiling statistics, the only true test of
satisfactory performance is how players feel
about their game experience. To help corre-
late player responses with game perform-
ance in AOK, we used several on-screen
counters that displayed the average and
peak performance. Of these counters, the
ones that calculated the average frame rate
and lowest frame rate over the last several
hundred frames were used most to deter-
mine performance problems. Additional
statistics included average and peak game
simulation time (in milliseconds) over the
last several hundred game updates.

Identifying symptoms of play-testing per-
formance problems and making saved
games of these problem situations was very
useful. We replayed saved games in the pro-
filer and routines that took too long could
be identified quickly. Unfortunately, some
problems were difficult to track down, such
as memory leaks and other programs run-
ning on the play-tester’s computer.

43

FIGURE 1. AOK minimum PC and play-test
PC system configurations.

MINIMUM SYSTEM SPEC TEST PC
• 133MHz Pentium processor*
• S3 Virge 2MB graphics card
• 32MB RAM
• Windows 98

ENSEMBLE PLAY-TEST PC
• 450MHz Pentium II processor
• Nvidia TNT 8MB graphics card
• 128MB RAM
• Windows 98

*later upgraded to 166MHz

FIGURE 2. AOK minimum system game play
specifications.

• 4 players; any combination of human
and computer players

• 4 players map size
• 75 unit population cap
• 800×600 resolution
• Low-detail terrain graphics quality*

*added as part of scalability effort

w w w . g d m a g . c o m

We also created scenarios that stressed
specific situations. For instance, we
stressed the terrain engine’s hill-drawing by
using a special scenario consisting of a
large game map covered mostly with hills.
Other special scenarios were created that
included many buildings, walls, or
attempts to path units long distances
between difficult obstacles. These scenarios
were easy to build and it was obvious the
first time the scenario was run whether a
given issue needed to be targeted for
optimization.

The final set of data to came in the
form of recorded AOK games. AOK has a
feature that allows human or computer
player commands to be recorded to a file.
This data can then be played back later as
if the original player were issuing the com-
mands. These recorded games helped diag-
nose pathfinding problems when it was
unclear how a unit had arrived at a partic-
ular destination.

Since AOK was able to load scenarios,
saved games, and recorded games from the
command line, the game could be run
automatically by a profiler. This simplified
the profiling process by allowing the pro-
filer to run AOK and have it jump directly
into the problem. This command-line
process bypassed the startup and pregame
option screens. (Some profilers slowed the
game down so much that manually load-
ing a saved game from the profiler would
have been impossible.) And since perform-
ance profiling and logging significantly
slowed game play, analyzing recorded

games was a much better solution from the
tester’s perspective. Multiplayer games
could be recorded and then played back
command-for-command under the profiler
overnight to investigate performance
issues.

Issues from the
Original AGE

S ome performance issues from AOE
needed to be resolved while we were

working on AOK, the biggest of which was
AOE’s 2D graphics pipeline. The graphics
for AOK are created through a combina-
tion of software rendering and hardware
composition. This pipeline had been highly
optimized for AOE by hand-coding most of
the system in Assembly, so there was not
much additional need to optimize it for
AOK.

But there were new features to integrate
into the 2D pipeline. For one thing, AOK
had more detailed terrain. Also, units that
were visually obscured behind buildings
and other obstructions appeared as out-
lines so players could see where they were.
Both of these systems were implemented as
a mixture of C/C++ and hand-coded
Assembly during implementation.

The biggest challenge in keeping the per-
formance up for the graphics system was
making sure that the sprites used for
graphics in the game were properly tagged
as belonging in system memory or video
memory. If a sprite was in the wrong mem-
ory type a significant performance hit or

even an error could occur, but it was usu-
ally hard to identify these graphics memo-
ry location problems. They were usually
marked by a drawing problem on-screen,
such as a shadow drawing on top of a unit
instead of under it.

Sprites used by the software rendering
engine needed to be in system memory so
that they could be read and processed. If
they resided in video memory instead, the
limited throughput from video memory
caused a significant performance hit to
the game. Conversely, sprites bltted by the
hardware that accidentally ended up in
system memory would render slowly and
could fail to render at all if the hardware
bltter didn’t support blts from system
memory.

Pathfinding problems from AOE also
had to be fixed. In AOE, there was a sin-
gle unit-pathing system, which was
known as “tile pathing” because it broke
the game map down into individual tiles
and classified them as “passable” or
“nonpassable.” This tile-pathing system
was fairly good at moving units short dis-
tances, but it often took too long to find
paths (if it could find one at all), so we
created two additional pathing systems
for AOK.

The first of these two systems, “MIP-
map pathing,” quickly approximated dis-
tant paths across the map. The basis for
MIP-map pathing was the construction of
compact bit vectors that described the
passability of each tile on the map. This
system allowed the game to determine
quickly whether it was even possible for a
unit to get from its current location to the
general target area. The only way to deter-
mine whether the general area could be
reached was through the resolution of the
bit vectors.

Once a unit was within a short distance
of its target area, another new pathing sys-
tem called “low-level pathing” was used.
Low-level pathing allowed very accurate
pathing over short distances. When low-
level pathing failed, the pathing system fell
back and used the original tile pathing
from AOE.

Changing the pathing system from a sin-
gle, general-purpose system to three special-
purpose systems improved the performance
of AOK and also significantly improved
game play since it virtually eliminated the

j u n e 2 0 0 0 | g a m e d e v e l o p e r44

P R O F I L I N G & A N A L Y S I S

NUMBER OF PLAYERS: 2 to 8, in any combination of human or computer

SIZE OF MAP: 2 to 8 player sizes and “giant” size

TYPE OF MAP: • All land (Arabia)
• Mostly water (islands)
• Nine others in between (Coastal, Baltic, and so on)

UNIT POPULATION CAP: 25 to 200 units per player

CIVILIZATION SETS: Western European, Eastern European, Middle Eastern, Asian

RESOLUTION: • 800×600
• 1024×768
• 1280×1024

THREE TERRAIN DETAIL MODES: • High detail — multi-pass, anisotropic filtering, RGB color
calculation

• Medium detail — multi-pass, fast lower-quality filtering, RGB
color calculation

• Low detail — single pass, 8-bit color lookup

FIGURE 3. Game play and feature scalability.

j u n e 2 0 0 0 | g a m e d e v e l o p e r46

problem of stuck and stopped units
caused by pathing failures.

While we were able to improve
the pathing system for AOK,
enhancing the unit-class hierarchy
system was a much more onerous
task. The unit-class hierarchy system
from AOE couldn’t be changed easi-
ly since so many game systems and
so much functionality relied on the
old implementation. At its heart, the
game’s unit-class system is a hierar-
chy of derived classes and each
derived class is more specialized
than its parent. The special func-
tions of each derived class are sup-
ported by virtual functions exposed
by the classes in the hierarchy. A
simplified version of the hierarchy is
shown in Figure 4.

From a programming standpoint, call-
ing a virtual function consumes no more
overhead than a regular class function.
If each class could implement only its
own version of the virtual functions, then
this hierarchy wouldn’t cause any func-
tion overhead problems. However, since
each level of the hierarchy implements its
own special code, it must also call its par-
ent’s version of the derived function to
perform its work. In a hierarchy four
classes deep, that means calling three
additional functions. This may not sound
like much, but it can add up when code is
executed hundreds of thousands or mil-
lions of times.

Some performance improvement could
have be gained by circumventing the hier-
archy using “special case” units. For
example, walls are a type of building unit
that do not attack other units and only
need to scan their vicinity for enemy units
every few game updates unless they are
under attack. To handle this special case,
we could specifically check whether the
current unit being processed is a wall,
and if so, skip the code that is only exe-
cuted for other buildings. Unfortunately,
coding in too many special cases can also
lead to performance losses, because you
end up checking to see whether a unit is
one of your many special cases. In the
end, we left unit-class hierarchy in place,
and made specific changes to shortcut to
functionality that didn’t apply to specific
units.

Commercial Profiling
Tools: The Good, the
Bad, and the Ugly

P erformance analysis extends beyond
evaluating the execution speed of pro-

gram functions and subsystems. It also
includes measuring memory usage and
evaluating the way the program interacts
with other programs and the operating
system. In order to determine where the
performance problems were in AOK, four
separate tools were used: Intel’s VTune,
NuMega’s TrueTime, the Windows NT
performance counters, and our own profil-
ing and memory instrumentation code.

Although we used Microsoft Visual
C++, we did not use the bundled Microsoft
Profiler. There were two reasons for this:
we found it difficult to get the Microsoft
product to work correctly (or at all) and
the data format from their profiler was
either inadequate or needed post-process-
ing in a spreadsheet to be minimally use-
ful. Using VTune, TrueTime, and the NT
performance counters we were able to col-
lect, analyze, and present data in a reason-
able fashion.

VTune is a sampling profiler, which
means it has a component that wakes up
every few milliseconds (or whatever
amount of time you specify) and looks at
what processes are executing on the
CPU(s). When you decide enough time has
elapsed, you can stop VTune and look at

the statistics it produces for each
process executed during that time. If
you’ve compiled your program with
debug information, VTune can display
which lines of code were called and
what percentage of the elapsed time
was consumed by the executing code.

VTune is great because you don’t
need to compile a special version of
your program, it doesn’t slow your
program down while it runs, and it
lets you see the amount of time the
CPU spent executing processes besides
your own. The only major drawback
is that you can end up with spurious
data due to this sampling. This can be
caused by other processes that are
running in the system, or by running
VTune for too long a period. To

improve VTune’s accuracy on your own
program, it comes with an API to turn
VTune on and off programmatically. This
is a very useful feature, especially when
drilling down into the performance of spe-
cific subsystems and smaller sections of
code.

We found that VTune’s call-graph func-
tionality couldn’t be used with a program
that linked either explicitly or implicitly
with DirectDraw. Also, some applications
(including AOK) were too large in terms of
code and debug information in order for
VTune to resolve its data back correctly to
a line of code. It seems that some of these
problems have been fixed in VTune 4.5,
however.

Another commercial product that we
used was NuMega’s TrueTime, which is an
instrumenting profiler. To use this product,
you have to make a special TrueTime com-
pilation of your program that inserts tim-
ing code into each module. This can some-
times be a slow build process, but it’s
worth it. As the TrueTime build of your
program runs, TrueTime logs which func-
tions are entered, when they are entered,
and when they are exited. This process can
be significantly slower than VTune’s effec-
tively real-time performance but it’s a use-
ful second opinion nonetheless. The only
big drawback (and it can be very severe) is
that TrueTime can slow down your pro-
gram so much that it’s impossible to use it
for profiling network code. This problem
can also skew profiling statistics for time-
based game actions such as AI or updates

BaseObject

StaticObject

MovingObject

MissleObject

virtual long BaseObject::update(...)
(
...
)

virtual long StaticObject::update(...)
(
 BaseObject::update
 ...
)

virtual long MovingObject::update(...)
(
 StaticObject::update
 ...
)

virtual long MissleObject::update(...)
(
 MovingObject::update
 ...
)

FIGURE 4. AOK unit class hierarchy.

P R O F I L I N G & A N A L Y S I S

that are scheduled to occur at a certain
interval of time.

This performance hit from TrueTime
also made it impractical to use it to ana-
lyze the performance of the graphics sub-
system. When system performance relies
on two independent processors (such as
the main CPU and the graphics card), effi-
cient cooperation between both processors
is critical so that they run concurrently and
perform operations in parallel. When True-
Time slowed the CPU (and consequently
the AOK rendering load which the CPU
governed), it made the graphics card

appear to give bet-
ter performance
than it actually
did.

There were four
drawbacks to both
programs. First,
neither program
can be run in
batch mode, so
the programmer
has to baby-sit the
programs while
they run through

each performance test case. Even though
we worked on performance test cases one
at a time, it would have been convenient
to run each program in batch mode
overnight to gather results from other test
cases. VTune has since added a batch
interface in version 4.5 but support is still
lacking in TrueTime.

Second, performance numbers gathered
during the execution of a program need to
be taken with a grain of salt. Due to the
multi-threaded nature of the Windows
operating system, other programs (includ-
ing the performance tool itself) are effec-

tively running at the same time, and that
can skew performance. Fortunately, multi-
ple performance runs with the same tool
or with different tools can help identify
specific problem areas by correlating all of
the results, and analyzing performance
over smaller sections of code can improve
accuracy and reduce the time required by
some performance tools.

The third drawback to these profilers is
that it’s difficult to use both TrueTime and
VTune together when using Visual C++ as
your development environment. TrueTime
cannot instrument code from Visual C++
with VTune installed because VTune
renames certain underlying compile and
link programs.

Finally, although both tools display call
graphs, we found it difficult at times to
ascribe performance timings to specific
subsystems. For instance, pathing was
sometimes called from both movement and
retargeting code, but we were not able to
determine which subsystem was using
more of the pathing code. TrueTime was
generally accurate about this, but in some
cases, the numbers it reported just didn’t
seem to add up. In this type of case, we
had to place our own timing code directly
into AOK to get complete results.

Regardless of how good today’s profil-
ing tools are, they have no understanding
of or insight into the underlying program
they profile; profiling and analysis tools
would be significantly more useful if they
had some understanding of what the appli-
cation was attempting to accomplish. With
that kind of additional functionality, these
tools could provide performance statistics
that would greatly enhance the program-
mer’s ability to improve the application
performance. Until that day arrives, you’ll
have to add profiling and analysis code to
your application for even the most mun-
dane performance information beyond
simple timings and call graphs.

Performance on the
Minimum System

S ince performance statistics can change
based on the platform on which the

application is running, it was especially
critical to get computer systems that
matched the minimum system specifica-
tion. To demonstrate this performance dif-

j u n e 2 0 0 0 | g a m e d e v e l o p e r48

P3-450
4p
Starting

P3-450
8p
Starting

30 min
4p

30 min
8p

60 min
8p

NTOSKML.EXE

WIN32K.SYS HAL.DLL

Starting
4p

30 min
4p

Starting
8p

30 min
 8p

60 min
8p

100%

 90%

 80%

 70%

 60%

 50%

 40%

 30%

 20%

 10%

 0%

AGE2.EXE AGE2.EXE
VMM

KERNEL32.DLL
Misc Misc

FIGURE 6 FIGURE 7

FIGURE 6 (left). Four-player and eight-player game CPU process utilization (Pentium-166).
FIGURE 7 (right). Four-player and eight-player game CPU process utilization (dual Pentium III-450).

FIGURE 5. Performance analysis.

TEST PC 1 TEST CASE 1
166MHz Pentium 60 seconds of game play
32MB RAM Eight-player game
S3 Virge GX Giant map, largest map available
Windows 98 One civ from each of the for civ art sets

TEST PC 2 TEST CASE 2
Dual 450MHz Pentium III 60 seconds of game play
128MB RAM Four-player game
Nvidia TNT2 Ultra Four-player map size
Windows 2000 All civs share same civ art set

P R O F I L I N G & A N A L Y S I S

ferential and the scalability of AOK, two
test cases were run on the minimum sys-
tem configuration and one was run on a
regular development workstation (Figure
5). To contrast the data as much as possi-
ble in this example, the first test case uses
the maximum AOK settings for players
(eight) and map size (giant). The second
test case conforms to the game settings for
the minimum system configuration: four
players on a four-player-sized game map.

Using VTune, the percentage of CPU
clock cycles spent in each process during
an AOK game was calculated for a 60-
second period at 30-minute intervals. This
was done on the 166MHz Pentium mini-
mum system (Figure 6), and on a dual
450MHz Pentium III development work-
station (Figure 7).

As you can see, the four-player game
performs well on the 166MHz Pentium.
The AOK process starts at approximately
60 percent of the CPU and increases to
about 75 percent after 30 minutes. The
additional time devoted to the virtual
memory manager (VMM) process at start-
up is caused by AOK data as it is paged in
and accessed for the first time. In contrast,
the amount of CPU time used by AOK in
the eight-player game degrades over time.
This is due to the additional memory
requirements to support so many players
and such a large game map. The CPU
reaches the point where it’s spending
almost as much time managing the virtual
memory system as actually executing the
game itself.

Since the development workstation (Test
PC 2) is a dual-processor system and AOK
is single-threaded, the second CPU is idle
as the kernel runs. This is why the
NTOSKRNL is shown as approximately
50 percent of the CPU.

As both the four- and eight-player
games progress, the AOK process continues
to use more and more of the CPU. There is
no downward pressure being applied from
other processes as there was for the
166MHz Pentium for eight players.

If it had not already been established
that four players was the number of play-
ers to support on the minimum system,
these same statistics could have been col-
lected for a varying number of players.
Then we could have set the maximum
number of players based on how many

players could fit within the memory foot-
print of 32MB.

Our Custom
Profiling Tool

T o complement and augment the results
from the commercial profilers we were

using, we developed an in-house profiling
tool as well. This tool logged the execution
time of high-level game systems and func-
tions (telling us how much time was spent
by each one) and told us the absolute
amount of time a section of code took to
execute — a sanity check for performance
optimizations that we sorely needed. Our
profiling system consisted of four simple
functions that were easily inserted and
removed for profiling purposes and relied
on a simple preprocessor directive,
_PROFILE, that compiled the profiling code
in or out of the executable. This let us
keep our profiling calls in the code, instead
of forcing us to add and remove them to
create nonprofiled builds. You can down-
load an abbreviated example of the profil-
ing code from the Game Developer web
site (www.gdmag.com).

While VTune told us how much of the
CPU AOK was using (Figure 6), our cus-
tom profiler told us how much time was
being spent on each of AOK’s major sub-
systems (Figure 8). This additional infor-
mation told us interesting things about the
performance of AOK and where we might
be able to improve performance. You can
see in Figure 8 that the amount of time
devoted to game world simulation and
unit AI increases from approximately 33
percent to approximately 57 percent of the
AOK process over the course of three sam-
ples at 30-minute intervals during an eight-
player game.

Looking back at the process statistics
from VTune in Figure 6, you see that the
amount of time spent in the VMM
increases while the time spent on AOK
decreases. Since AOK spends more time in
simulation/AI and the operating system
spends more time manipulating virtual
memory, we can propose some theories to
explain this:

• The simulation/AI code is allocating
more memory over time without free-
ing memory, stressing the VMM. How-
ever, skipping ahead to Figure 5, we see
this probably isn’t the case since the
memory footprint isn’t skyrocketing.

• The simulation/AI code is allocating
and deallocating so much memory that
as time goes on, the memory heap is
becoming fragmented, and that’s slow-
ing memory allocation. The only way
to confirm this theory is to instrument
the code and determine where, when,
and how often memory is allocated.

• The data being processed by the simu-
lation/AI is so large or being accessed
so randomly that it constantly causes
the VMM to flush data from memory
and read in new data from the virtual
memory swap file.

More data would be required to deter-
mine the cause of this problem. It would
also be good to break the “simulation/AI”
group down into more discrete compo-
nents for timing.

Our timing code relies on the Assembly
instruction ReadTimestampCounter (RDTSC), but
it could also have used the Win32
QueryPerformanceCounter, or another fine-
grained counter or timer. We chose RDTSC
because it was simple to use, it works on
all Pentium (and later) processors (except

w w w . g d m a g . c o m 49

100%

 90%

 80%

 70%

 60%

 50%

 40%

 30%

 20%

 10%

 0%

P166/8p
Start

P166/8p
30 min

P166/8p
60 min

Math

Memory
Allocation

Pathing

Graphics

Simulators/AI

Misc

FIGURE 8. An eight-player-game breakdown of
internal AOK performance (Pentium-166).

some very early Cyrix Pentium-class parts),
and these profiling functions were based on
extending existing code.

Finally, although both tools display call
graphs, pathing was sometimes called from
both movement and retargeting code but
we were not able to determine which sub-
system was using more of the pathing
code. TrueTime was generally accurate
about this, but in some cases the numbers
it reported just didn’t seem to add up. In
this type of case, we had to place our own
timing code directly into AOK to get com-
plete results.

As I stated earlier, it was difficult to
assign performance timings to specific sub-
systems based on the results of the com-
mercial profilers that we used. To remedy
this, we built functionality into our custom
profiler to determine how much of each
system’s time was spent in, say, pathing.
Here’s how our profiler works. During
profiler initialization (_ProfInit), the static
array of profiling information (groupList) is
initialized to zero, and the CPU frequency
is calculated. The size of the groupList

array matches the number of profile group
entries in the ProfileGroup enum list in the
prof header file. The CPU frequency is cal-
culated with a simple, albeit slow, function
called GetFrequency. (Alternately, this could
have used one of the specific CPU identifi-
cation libraries available from Intel or
AMD, but this code works transparently
on Windows 95/98 and NT and across
processors without problems.)

The final part of initialization seeds each
groupList array entry with its parent group.
Since the groupList array entries match the
ProfileGroup enums in order, the ProfileGroup
enum can be used as an index into the
groupList array to set the parent group
value. Using the SetMajorSection macro sig-
nificantly simplifies this code by encapsu-
lating the array offset and assignment.
More importantly, it allows us to use the
stringizing operator (#) to record the par-
ent group’s ProfileGroup declaration as a
string (const char *) for use when format-
ting our output.

The second requirement for our custom
profiler was that its profiling code had to
be smart enough to make sure that the
profiling start (_ProfStart) and stop
(_ProfStop) statements were inserted
around a function or group of functions
in correct pairings. The _ProfStop function
first makes sure that profiling was start-
ed, and at that point the current time is
recorded. This is then used to calculate
and store the elapsed time. The number
of calls made is incremented, and the
starting time is reset to zero. We wanted
to avoid the situation where profiling
starts multiple times on the same group,
or where a _ProfStop appears before its
corresponding _ProfStart. To ensure the
correct pairing of profiling statements, in
_ProfStart a check is made to ensure that
the function has not already been called
by examining the starting timing value
mqwStart. The current time is then record-
ed into mqwStart using the GetTimeStamp
function, a wrapper for RDTSC.

In GetTimeStamp, it should be noted that
the eax and edx registers are used for
returning the current 64-bit timing value
as two 32-bit values, which are subse-
quently shifted and combined. In this case,
there is no need to push and pop the
scratch registers since the compiler is smart
enough to recognize the inline Assembly

use. However, if this timing code was
encapsulated in a macro, there’s the chance
that the compiler might not recognize it
and it would be necessary to push and pop
the registers.

Another issue we confronted with our
custom profiling system was the accuracy
and resolution of timing available from a
system that uses two function calls from the
calling code (first to _ProfStart and then to
GetTimeStamp). Since we use this timing code
to profile larger subsystems and functions,
there will be timing variations due to system
factors, such as the execution of other
processes by the operating system. If we
time significantly smaller portions of code,
down to a few lines, it’s preferable to inline
the RDTSC call or use it within a macro.

Using the RDTSC as a high-resolution timer
can present another problem, too. Note that
RDTSC is not an instruction that will serialize
the execution inside the CPU. In other
words, RDTSC can be rescheduled just like
any other CPU instruction and may actually
be executed before, during, or after the
block of code you’re attempting to time.
Using a fencing (serializing) instruction like
CPUID can solve this.

At the end of the program, the _ProfSave
function saves the recorded profiling infor-
mation out to a file. The name of the group,
the number of calls, the elapsed time spent
in the group, the average time per call, its
percentage of its parent group, and the par-
ent group name are listed for each profile
group. This output is formatted out using
the complicated proftrace macro, which
once again uses the stringizing operator (#)
to print out the character version of the
profile group followed by its information.

Next month we’ll wrap up talking about
our profiling tools by discussing the memo-
ry instrumentation we created for AOK.
Then, we’ll take an in-depth look at a num-
ber of performance issues facing AOK,
including unit movement and pathing, and
see how they were addressed. q

j u n e 2 0 0 0 | g a m e d e v e l o p e r50

A C K N O W L E D G E M E N T S

Creating and optimizing AOK was a team effort.

I’d like to thank the AOK team, and specifically the

other AOK programmers, for help in getting the details

of some of that effort into this article. I’d also like to

thank everyone at Ensemble Studios for reviewing

this article.

P R O F I L I N G & A N A L Y S I S

F O R M O R E I N F O R M AT I O N

Ensemble Studios
www.ensemblestudios.com

Intel VTune and C/C++ Compiler
developer.intel.com/vtune

MicroQuill HeapAgent and SmartHeap
www.microquill.com

NuMega TrueTime
www.numega.com

Performance Analysis and Tuning
Baecker, Ron, Chris DiGiano, and Aaron Mar-

cus. “Software Visualization for Debugging.”

Communications of the ACM (Vol. 40, No.

4): April 1997.

Marselas, Herb. “Advanced Direct3D Perform-

ance Analysis.” Microsoft Meltdown Pro-

ceedings, 1998.

Marselas, Herb. “Don’t Starve That CPU! Mak-

ing the Most of Memory Bandwidth.” Game

Developers Conference Proceedings, 1999.

Pottinger, Dave. “Coordinated Unit Move-

ment.” Game Developer (January and

February 1999).

Shanley, Tom. Pentium Pro and Pentium II

System Architecture, 2nd ed. Colorado

Springs, Colo.: Mindshare Inc., 1997.

G ABRIEL KNIGHT 3 (GK3) is a
traditional “Sierra-style”
murder-mystery adventure
game that tells its story
through a complex, nonlin-

ear mix of dialogue trees, scripted
sequences, movies, and puzzles. Most of us
should be familiar with this kind of game
— it’s paced at the speed of the player, and
involves a lot of “inspect the monkey” and
“use the banana on the monkey” type of
interaction to move the story forward. GK3
differs from its predecessors technologically
in a variety of ways, but most important is
the fact that it moves the genre to full 3D.

GK3 offers a freely roaming camera that
lets players go where they please and zoom
in on whatever they like. This isn’t just a
gimmick — this single feature changes the
game radically, making it more like an
interactive movie and less like an interac-
tive comic book. As we found out, moving
from 2D to 3D is not just one-third more
work, it’s more like three times as much
work. It affects nearly all aspects of the
game, including both the design and the
engine. It’s not as simple as just drawing
your actors and environments with poly-
gons instead of sprites. Suddenly you have
to start worrying about camera angles and
dramatic effects that were never possible or
necessary in 2D, at least not without
resorting to a prerendered movie.

Another part of GK3’s design was the
ability to give the player the option to turn
off cinematic camera cuts during dialogue
sequences. The idea was that players could
be the director and choose their own cam-
era as the action was unfolding. This had a
serious and very expensive effect on the art:
it meant that artists could take no shortcuts
with their animations. In a prerendered
movie, an animator has full control over
the camera and can avoid bothering with

anything that’s outside of its view. This
saves a lot of time. In GK3, because players
may at almost any time decide to take con-
trol of the camera, they would be able to
see the action from any angle they pleased
and go “behind the curtain” so to speak.
Therefore, the animators needed to make
sure that the entire scene could be both
viewable and good-looking from any angle.
This increased their workload by an order
of magnitude.

Previous Sierra adventure games, includ-
ing GK1 and GK2 as well as the SPACE

QUEST and LEISURE SUIT LARRY series were
built using the “SCI” game engine. SCI was
developed and maintained by Sierra Oak-
hurst and, for a variety of reasons, Sierra
Northwest (the division I worked for)
decided to stop using it. This single deci-
sion probably affected the project more
than anything else did — it meant that
GK3 was to be the first adventure game
Sierra had built completely from scratch in
a very long time.

From the start, the project had some
important things going in its favor. Sierra
hired an experienced engineer, Jim Napier,
who got the game started by developing the
G-Engine, a 3D rendering, sound, and ani-
mation toolkit that provided the low-level
foundation for us to build the game upon.
After the engine’s completion, Jim unfortu-
nately had to leave the project to start on
the fledgling SWAT 3 as its lead. The
G-Engine was on the whole a successful
part of GK3; it provided a stable base for
the game and was easy to use and under-
stand. The team was also able to reuse
some of the tools and concepts that SCI
had provided, such as the content database
and lip-synching tools.

Despite these initial advantages, the
project faced problems almost from the
start. The team had to build a new game

Sierra Studios’
GABRIEL KNIGHT 3

j u n e 2 0 0 0 | g a m e d e v e l o p e r52

A U T H O R ’ S B I O | Scott Bilas was a senior engineer at Sierra Studios and the technical lead
on GABRIEL KNIGHT 3. He is currently working at Gas Powered Games, where he spends his
time inserting needles into haystacks. Scott lives in Seattle and thinks everyone should get out of
their cars and onto their feet. He can be reached at scott@gaspowered.com or scottb@aa.net.

P O S T M O R T E M s c o t t b i l a s

G A M E D A T A
FULL-TIME DEVELOPERS: More than 45 total,

averaged 20 at a time.
CONTRACTORS: 3

BUDGET: Originally well below $2 million,
final budget $4.2 million.

LENGTH OF DEVELOPMENT: Almost 3 years.
RELEASE DATE: November 1999 (over a year late).

PLATFORMS: Windows 95, 98, NT, 2000.
HARDWARE USED: Lots of expensive stuff that

quickly became obsolete — Dual Pentium Pro
200s, Pentium II 266 up to Pentium III 500. 3D

cards by Matrox, Nvidia, ATI, and 3dfx, and
whatever else we could get our hands on.

SOFTWARE USED: 3D Studio Max,
Character Studio, Visual C++, SourceSafe,

CodeWright, VTune, MKS Lex & Yacc,
Photoshop, special “sound guy magic.”

TECHNOLOGIES: DirectX, Bink Video,
Standard Template Library, LZO and zlib

(free, open-source compression libraries).
LINES OF CODE: 350,000 lines of C++ (not includ-
ing original engine), 40,000 lines of script and
logic, 8,000 lines of (spoken) dialogue, 36,000

unique resource files, 1,500 average triangles
per actor, 185,000 cups of coffee consumed,

w w w . g d m a g . c o m 53

engine and most of the related content
development tools from scratch, but team
members severely underestimated the time,
cost, effort, and experience required to
construct these tools and establish effective
development processes around them. The
initial development team was not up to
this task.

In the early days of the project, the
engineering team must have been living in
a magical dream world — I can’t find any
other way to explain it. When I joined the
project in early 1998, GK3 had already
been in development for more than a year
and a half, and it was scheduled to ship at
the end of that summer. I realized that this
would never happen because at that point
the game was a hacked-up version of a
sample application that Jim Napier wrote
some time earlier to demonstrate the
G-Engine. Sample code being used in a
production environment should send shiv-
ers up the spine of any experienced engi-
neer. Malignant growths of code were
added haphazardly whenever a new fea-
ture was required, making the game
extremely unstable and difficult to main-
tain. This problem fed on itself and grew
worse over time. One example of this
problem was the game’s horrendous start-
up time. The file and resource system,
while sufficient for a sample application’s
minimal resources, completely fell over
when faced with the tens of thousands of
files and hundreds of directories in GK3.
The game took over a minute just to start
up and display the title screen.

Most of the game’s non-art content,
such as a story sequence involving simple
dialogue exchanges between two charac-
ters, was initially hard-coded into the
game in C++. This was a nightmare for a
couple of reasons. First, engineers were
creating content instead of working on the
engine, and engineers are generally not the
best people for creating good content (and
they tend to be very slow at it as well).
Second, the tiniest changes to the game,
such as choosing a different line of dia-
logue or altering an animation sequence,
required recompilation. This made the
content development process unbelievably
inefficient. Artists would potentially have
to wait weeks to see their work integrated
into the game. This resulted in engineers
resenting artists “chucking art over the

fence” and probably inspired similar
resentment on the art side.

If GK3 was to ship at all, all of this had
to change. And so it did.

What Went Right

1.Redesigning the engine. A
month after I joined the team, we

decided to rebuild the game engine and a
little while later I took over as its architect.
We spent a couple of weeks in roundtable
design sessions with engineering advisors
from other projects (including Jim Napier
from SWAT 3) and used a low-tech Class-
Responsibility-Collaborator (CRC) card
design technique to hash out the systems
we would need and how they would fit
together. I thought all of this went pretty
well, though it was slower than most of us
liked. Once we started coding, though,
things really got moving. The application
core was rewritten in a weekend, and then
individual systems (user interface, scene
abstraction and configuration, font render-
ing, the console system, and so on) were
developed and integrated as fast as we
could manage.

In proposing the re-architecture, we
gained the full support of upper manage-

ment, specifically Mark Hood, the general
manager of Sierra. They really had no
choice, considering that the only other
option was to cancel the project, but I
think it’s important to recognize the risk
that they took with us and give them
credit for believing in our ability to
rebuild the engine. Throughout develop-
ment, Mark was always 100 percent
behind us, and never wavered in his
desire for us to ship a triple-A title of the
highest quality. Despite our lack of expe-
rience, we largely delivered what we set
out to accomplish.

Unfortunately, I don’t think a lot of the
team members outside of engineering ever
really understood why we rebuilt the
engine. Looking back, I wish we had
spent a little more time explaining to
them the dire situation it was in.
Although it took months to redesign and
rebuild the game engine (a time that
understandably confused and frustrated
everybody), it ultimately improved our
team’s productivity immensely and made
it possible to ship the game. The new
engine was stable, flexible, and although
it still had architectural problems (due to
our inexperience), it worked properly and
performed well.

j u n e 2 0 0 0 | g a m e d e v e l o p e r54

Hint: Don't walk on that bridge on the left.

P O S T M O R T E M

j u n e 2 0 0 0 | g a m e d e v e l o p e r56

2.Data-driven engine. GK3 is a
content-heavy game that ships on

three CD-ROMs and includes more than
800MB of compressed non-movie data
(consisting largely of texture maps, MP3
dialogue and music, and animations).
There are thousands of lines of dialogue
and almost as many logic rules tying it all
together. During the re-architecture, we
went with a data-driven approach, putting
as much as we possibly could into text
files so that non-engineers could create and
maintain content. We were very happy
with the results.

One of the project’s major successes in
this area was its flexible scripting system,
“Sheep,” which used a C-like language
and was implemented using a simple com-
piler and p-code interpreter. The compiler
was built with our old friends Lex and
Yacc from the Unix world. Originally
designed just for the game’s animated
sequences, the Sheep engine ended up
being used for custom rules processing,
event handling, resource packaging, scene
configuration, debugging, the develop-
ment console, and even for a little bit of
testing automation.

I can’t stress this enough to developers:
Build a scripting engine, even if you don’t
think you need one. Make it generic
enough so that it can be reused in as many
places as possible. I think many engineers
are scared of building one because they
think it will take too long to develop or
that it will execute scripts too slowly. This
was certainly the case with the original
GK3 engineering team. I’ve found these
fears to be completely unfounded — a
scripting engine will pay for itself many
times over, and can be easily optimized to
approach the speed of C++ code. Also,
don’t invent a new language. Pick a pro-
gramming language that one of those
“Teach Yourself Something Useful in 21
Days” books exists for, and you can buy
copies for your scripters if they don’t
already know the language (although this
wasn’t necessary for the GK3 scripters).
This will save you the time you would
have spent documenting syntax and train-
ing scripters had you used a completely
proprietary language.

Another benefit of Sheep was that when
combined with our redesigned file and
resource manager, we were able to cut

down dramatically the time neces-
sary to integrate art into the game.
The old engine used C++ to refer-
ence art assets, which meant that
artists needed to wait for the next
build (at best) before they saw
their work in the game. We
reduced those days or weeks of
waiting down to minutes or hours
and almost completely removed
the engineers from the picture.
Under the new system, artists
could check in their work and
have one of the scripters integrate
and demonstrate it immediately
on the existing build.

We added clipboard support
too, so that developers could use
GK3’s console to paste Sheep code
directly into the game. The scripters could
Alt-Tab away from the game, grab a sec-
tion of test code from their text editors,
Alt-Tab back into the game, and paste it
into the console to see immediate results.
With these kinds of features in place, con-
tent poured into the game at a blinding
pace.

3. The design. The game’s design
was a major success and deserves

special mention. GK3 would have simply
fallen over and died had we had a less
experienced designer than Jane Jensen.

Throughout the entire development
process, the one thing that we could count
on was the game design. It was well
thought out and researched, and had an
entertaining and engrossing story. Best of
all, Jane got it right well in advance —
aside from some of the puzzles, nothing
really needed to be reworked during devel-
opment. She delivered the design on time
and maintained it meticulously as the proj-
ect went on.

TOP: There's a big ugly demon beyond that veil.
BOTTOM: Hand-drawn concept art.

P O S T M O R T E M

4. The audio. Audio designers and engineers rarely get the
credit they deserve and often end up taking second place

to the people drawing the pretty triangles. But GK3 is an adven-
ture game, and as such it lives and breathes on the ability of its
dialogue and supporting audio to immerse the player in the story.
Many reviewers picked up on the great audio they found in GK3,
often rating it as one of the best parts of the game (that is, those
reviewers who didn’t have a silly personal issue with Tim Curry
cast as Gabriel Knight). From a development point of view, audio
content was something we could always rely on. David Henry,
GK3’s composer and lead sound designer, had it all done long
before we actually needed it, and was therefore able to spend time
polishing the audio and adding lots of small details to it. And in
stark contrast to the other parts of the game, integration and
maintenance of the audio content went as smooth as glass.

5.A talented, dedicated core of developers. GK3
never would have shipped without the heroic efforts of

critical developers in key places across the board — art, scripting
and logic, engineering, design, and testing. These people took over
various parts of the project on their own initiative and kept push-
ing until things were done and done right. The loss of any one of
these individuals would have severely crippled the game’s chance of
making it out in 1999, if at all. Among the crowd, two names

deserve special mention. Halfway through the project, we picked
up Jessica Tams as our content lead, who took over the content
and put it in order. She wrote nearly all the scripts and logic for
the entire game, completed them on schedule, and somehow made
them all work despite the problems with the engine (more on these
problems in a moment). Lead animator Ray Bornstein came onto
the project with a year left to go, put the animations in order, cre-
ated a realistic schedule, and made the animators stick to it.

What Went Wrong

1. Team casting problems. When someone is placed in a
role in which they don’t belong, I call this being “badly

cast.” Many of the problems with GK3 resulted from developers
being badly cast in their roles, usually because the project require-
ments were so severely underestimated. To give you an idea of the
casting problems we had, consider this: we went through a total
of two producers, three art directors (we spent the last year of the
project without one), and three project leads (the producer was
forced to take over as project lead towards the end).

This was an ambitious, massive project that required experi-
enced engineers and the original team was simply not up to this
task. GK3 was initially built from members of the SHIVERS 2 team
(one of the last games built with SCI) and they had practically no
3D experience. Engineers under the venerable SCI engine were
basically scripters and putting them in charge of building a game
engine from scratch was like feeding them into a furnace. To make
things worse, the developers that were in over their heads didn’t
ask for help, which gave management a false sense of progress.

2. Severe morale problems. Hundreds of books and arti-
cles have been written about this and here we have yet

another Postmortem listing it under “what went wrong.” It’s time
for me to get on my soapbox. To managers everywhere: morale is

j u n e 2 0 0 0 | g a m e d e v e l o p e r58

P O S T M O R T E M

Construct a familiar symbol to open the stairs into the floor in one of the
game's cooler sequences.

one of those icky personal political things
that many of you avoid dealing with. But
you need to understand that your develop-
ment team is not a factory churning out
content and code. To paraphrase Peter
Sellers in Being There, “The team is a gar-
den of creativity that requires regular
watering and sunshine in order to build
strong roots.” Loyalty is not something
that comes easily. The job market is very
competitive — your best developers will
simply leave and work for somebody else
if they aren’t treated well and maintained
properly. On GK3, there was a serious
lack of love and appreciation throughout
the project. Recognition of work (other
than relief upon its completion) was very
rare, lacked sincerity, and was always too
little, too late.

Internally, a lot of the team believed
that the game was of poor quality. And of
course, the many web sites and magazines
that proclaimed “adventure games are
dead” only made things worse. Tim Scha-
fer’s GRIM FANDANGO, although a fabulous
game and critically acclaimed, was suppos-
edly (we heard) performing poorly in the
marketplace. Rumors circulated among
our team that GK3 was going to lose
money, due largely to our high burn rate.

The low morale resulted in a lot of
send-off lunches for developers seeking
greener pastures. GK3 had a ridiculous
amount of turnover that never would have
been necessary had these people been
properly cast or well treated in the first
place. More than 45 developers worked on
GK3 (the average standing team size was
15 to 20), and now, just a few months
after it shipped, only seven remain at
Sierra. Strangely, the opposite also hap-

pened — several of our developers were
included in Sierra’s mid-1999 houseclean-
ing layoffs but these individuals were
allowed to stay on for a couple of months,
postponing their last day until we shipped
GK3. I believe this was done in good faith
out of respect for the developers’ hard
work up to that point but it ended up
being a prolonged drain on morale. Hav-
ing a small group of people who are
(understandably) upset with your company
for laying them off and actively looking
for a job while still trying to be productive
and contribute to a project is a tough situ-
ation that should be avoided.

After a certain amount of time on a
project like this, morale can sink so low
that the team develops an incredible
amount of passive resistance to any kind
of change. Developers can get so tired of
the project and build up such hatred for it
that they avoid doing anything that could
possibly make it ship later. This was a ter-
rible problem during the last half of the
GK3 development cycle and as a result
there are many aspects of the game that
we aren’t proud of. These were problems
that should have been fixed but nobody
wanted to take the time to correct them
because we were so focused on trying to
get the game out. I don’t think anyone on
the team is directly at fault for this and I
don’t know what we could have done to
correct this problem.

3. Schedule problems. Our engi-
neers never had an accurate devel-

opment schedule — the schedules we had
were so obviously wrong that everybody on
the team knew there was no way to meet
them. Our leads often lied to management

about progress, tasks, and estimates, and I
believe this was because they were in over
their heads and weren’t responding well to
the stress. Consequently, upper management
thought the project was going to be stable
and ready to ship long before it actually
was, and we faced prolonged crunch times
to deliver promised functionality. More fre-
quent and honest communication within the
team would have avoided a lot of this.

w w w . g d m a g . c o m 59

ABOVE: Dynamic texture composition used to
generate facial expressions and eye move-
ments: eyebrows + eyelids + eyeballs + mouth
equals expressive lip-synched face.
TOP LEFT: Poke around in here and you may
annoy an arch villain.

GK3 had few real milestones, which
undermined our ability to track progress.
There were some milestones very early on
in development, but the focus on shoveling
visible features into the game turned them
into worthless smoke-and-mirrors demos.
The concept of milestones eventually was
discarded and was replaced with two sim-
ple and unofficial goals — beta and release
to manufacturing. In the push to ship the
game, we simply forgot about milestones
(because “we’re almost there!”), put the
blinders on, and worked like mad.

Crunch mode is a reality on most proj-
ects, but you should not gear up for one
unless the light at the end of the tunnel is
really in sight. The GK3 team was pushed
into crunch mode three separate times,
each time thinking that we were almost
ready to ship. Most of the last year of the
project we spent in this mode, which
meant that even small breaks for vaca-
tions, attending conferences, and often
even taking off nights and weekends were
looked down upon. It was time that the
team “could not afford to lose.” The irony
is that this overtime didn’t help anyway —
the project didn’t move any faster or go
out any sooner. The lack of respect for our
personal lives and attention to our well-
being caused our morale to sink.

Because of the high turnover, GK3
always had a high percentage of develop-
ers new to the team. Faced with mandato-
ry overtime, these new people understand-
ably felt it was unfair to be “punished” by
paying for problems caused by the original
team or things that they felt management
had brought upon itself. GK3 became a
black hole that sucked in many developers
from other projects, often at the expense
of those projects. Artists were shifted off

the team to cut the burn rate, and then
pulled back on later because there was so
much work left to do. Our art team finally
got on track in the last year of the project
(thanks to Ray), but engineering never got
a solid schedule together and as a result
we were nearly always late in our feature
delivery.

4. Engineering problems. When
we rebuilt the game engine, we

tried to retain as much of the original code
as we could to get the game up and run-
ning again as soon as possible. With the
exception of the G-Engine, this was a big
mistake. Nearly every one of the systems
that we kept caused us problems — they
were badly designed, buggy, inflexible, and
should have been redesigned. Some of
these systems never worked correctly
throughout the lifetime of the project and
had to be hacked around by the content
developers to get the game to ship.

Specifically, we had serious problems
with the “fidget” system (used by charac-
ter models when idle or when involved in
dialogue), the character model’s walker,
the vertex animation system, and the con-
versation and dialogue systems. All of
these failed regularly and were regularly
“fixed,” but each bug fix introduced new
bugs, usually in the form of hidden time
bombs. The engineers responsible for
these systems became very defensive
about the problems with them, and usual-
ly ended up blaming artists and scripters
or even other engineers for the cause.
Management, thinking that it would save
time, often encouraged content developers
to hack and work around the problems
rather than fix them properly. We should
have ripped these parts of the game out

j u n e 2 0 0 0 | g a m e d e v e l o p e r60

P O S T M O R T E M

ABOVE: 2D interfaces are overlaid on the 3D scene to keep the player immersed.
LEFT: Just about all of Gabriel's inventory fits in his pants.

and rebuilt them, rather than continually attempting to work
around a flawed legacy design. It would have saved a lot of time
and hard feelings.

We also faced a lot of problems that were out of our control.
Most notable were the technical difficulties with the DirectX driv-
ers provided by hardware vendors for their 3D graphics cards and
sound cards, but this probably isn’t news to any 3D game devel-
opers. These problems were generally features that were imple-
mented improperly or inconsistently, or just outright bugs that
caused system crashes or hangs.

We also wasted a few weeks trying to add copy protection.
During the final push to ship, we repeatedly attempted to make
Macrovision’s SafeDisc product work with GK3. SafeDisc has a
set of special (and we felt completely unnecessary) antihacking
measures that got in the way of the game’s execution. It heavily
affected performance, dropping the frame rate to a third of its
original speed and adding strange intermittent freezes of several
seconds while the camera was moving. After getting nowhere with
Macrovision’s engineering department, we decided to ditch Safe-
Disc and roll our own (which took less than a day to do). This
entire process wasted several weeks of our time and frustrated us
all the more because, apart from this one remaining task, we were
ready to ship the game. Lesson learned: If you are required to use
copy protection, don’t put it off until the last month, especially if
it’s SafeDisc. We weren’t the first game to have severe problems
working with SafeDisc and probably won’t be the last, so if you’re
using this product be sure to do your homework and try it out
well in advance of your ship date.

5.Art and (more) engineering problems. One of the
most expensive mistakes a team can make is ramping up

art before the engine is ready. This often happens at large game
companies because developers need a place to go after they’ve
shipped their most recent game. Unfortunately, this was a serious
problem with GK3 — artists were brought onto the game while
the original engine was in development, and long before a stable
engine was available. They created content for an animation
engine that was untested and in doing so built up enough inertia
that we ended up having to keep the design. Later we discovered
that the engine’s design was seriously flawed.

GK3’s animation system is vertex-based, meaning that a
model’s individual vertices are animated. Even using some cre-

ative compression methods, this is very expensive in terms of
memory usage. Contrast this method with a typical skinned
skeletal animation system, which only requires that the bones be
animated. The worst thing about this system was not the memo-
ry usage, however. It was the impact on content creation, and
the repercussions of this requirement were not fully realized
until the art team was ramped up and churning out models and
animations.

GK3 animations are completely coupled to the meshes of the
models that they affect. Once an animation is exported from 3D

w w w . g d m a g . c o m 61

ABOVE: Gabriel Knight, from concept art to dashing real-time 3D model.
ABOVE RIGHT: Rendering lasers required a little bit of custom code.

Studio Max, the models it involves cannot
be changed in any way, otherwise existing
animations created from the old versions
of those models would break. Vertices
can’t be added or removed, and texture
maps can only be tweaked, not remapped.
Changing a model required re-exporting
every single animation that affected the
model, which was very time consuming,
tedious, and repetitive for animators, and
was often impossible to boot. The source
assets (the original Max files) had a way
of getting lost and usually ended up stored
on backup disks as artists left the project.
The end result was that once a model was
created, it could never be changed.
Consequently, GK3 shipped with a lot of
bad art that the team was dissatisfied with
but had to use. An example of this was the
Mosely character (sometimes not-so-fondly
called “T-Rex man” internally), whose
arms were way too short. Just seeing this
guy in the game hurt our morale, and
made a lot of us feel poorly about the
game. The art was bad and there was
nothing we could do about it. Nearly
every attempt to change a model was met
with the response, “That will require re-
exporting all of its animations, which will
take too long.”

What we should have done was just
stop the presses and fix the art. When we
first recognized the severe problems with
the vertex-based animation system, we
should have rebuilt that part of the
G-Engine and replaced it with a simple
skeletal animation system (as the SWAT 3

team later did on their project). We should
have also thrown out all of our existing art
and recreated it. In retrospect, that would
have saved us a lot of time, given us better
performance, and made development pro-
ceed more smoothly.

Out The Door

G ABRIEL KNIGHT 3 was an extremely
ambitious project combined with an

extremely inexperienced team. With all
that went wrong, you would have every
reason to believe it would never have been
finished. Despite all that was messed up
with our development process however, we
somehow managed to get GK3 out the
door and ship it in time for Christmas
1999. Best of all, the game works and it
works well, against all odds. This is a trib-
ute to the testing skills of our QA lead,
Matt Julich, and his team. Though severe-
ly understaffed, they did a great job ensur-
ing that the game we shipped was of high
quality. There are no crashes and no hangs
in GK3 — Sierra will not be issuing a
patch.

This isn’t to say that GK3 has no prob-
lems, just no problems that we had any
real control over as developers. To the best
of our knowledge, every single critical
problem with the game is caused by either
bad hardware drivers (sound or 3D card)
which can be fixed by upgrading them, or
CD-ROM problems due to our oversized
CD copy protection. Also, the first disk
that shipped in some retail boxes was dif-

ficult to read on some CD-ROMs, appar-
ently due to duplication problems. This
can also be worked around, as the same
file exists on the second disk and can be
copied to the hard drive.

GK3 is certainly not the game it could
have been had we been able to knock down
a couple of those “what went wrong”
issues early on, but it is a high-quality,
entertaining game that has been well
received by adventure gamers. And that’s
something we can all be very proud of. q

j u n e 2 0 0 0 | g a m e d e v e l o p e r62

P O S T M O R T E M

Concept and final environment for the end game.

T he hype surrounding the next
generation of games is at
fever pitch. But with quality
comes big expenses and long
development times. Develop-

ers need money and publishers need prod-
ucts. Something’s got to give.

Any number of seasoned game players
knows about the next generation of hard-
ware. They have a good idea of its speed,
power, and versatility, and therefore not
only expect but demand software to be
worthy of it. The public wants ever more
accessible, better-looking, more compul-
sive, more immersive, deeper games. And
every development studio, big or small, is
going to try to give them exactly what they
want. Of course, this is exactly how it
should be.

But there’s a price to pay for these new,
better-in-every-respect games. Unparal-
leled innovation costs dearly. It takes a lot
longer to create software of this magni-

tude and it costs a lot more money. I have
witnessed a great many game concepts
recently and virtually all are attempting to
implement brave, sometimes outstanding
ideas. Some of these are original, some are
born of licenses, but the one thing they
have in common is that all are very expen-
sive. And industry-wide, they aren’t going
to get any cheaper.

So how is funding currently arranged? A
lot of existing publisher-developer contracts
are based upon the music industry model. A
publisher, perceiving greatness and predict-
ing success in a group of talented individu-
als, hands over a wad of cash. The team
then goes and creates a hit product. While
this model has worked well (with a few
exceptions in both the music and game
industries), it’s a risky prospect, and really
only seen in cases where the game will be in
development for less than two years and
will cost less than $4 million to produce.
The truth is, with the new games being con-

ceived now, figures of three years and $10
million will become the norm.

The Problems
Developers Face

W e’re all starting to compete like
crazy with each other in every

aspect of game creation. This is good for
the consumer, because it means we build
games to a far higher specification than
ever before. Admit it — in the U.S. and
Europe, we view the latest screenshots
from Japanese development houses with
awe and mounting dread as we realize that
the eyebrows on our main characters don’t
comprise individual hairs.

So competition is a good thing, even if it
means we have to keep pushing the enve-
lope until it rips. There are three recognized
ways of keeping up the momentum. First,
you can grow a team of geniuses. Talented
people don’t come cheap, and you’ll be
looking to lure the best from Disney for
your animation and Pixar for your models.
So we’re not saving money here.

Second, you can form partnerships with
out-of-house resources. Many studios are
doing just this and relationships can thrive
with animation houses or art or program-
ming teams. Watch the spreadsheets,
though. Budgets can easily creep upwards
toward the gulp-worthy $10 million mark.
In fact, there are some projects and game
designs being talked about at the moment
with figures of more than $20 million
attached. If that kind of money makes you
shiver, consider that as a rule, only the top
five games at any one time make money.

Another option is to purchase existing
game engines, animations, art, and other
middleware development tools. This
approach is the current flavor of the
month: Why struggle to produce your own
technology and artwork when you can dial
out for it? O.K., but we’re talking about
the next generation of software here. It’ll

continued on page 71

Next-Generation Gaming
Raising the Stakes in the

Publisher-Developer Relationship

p e t e r m o l y n e u x S O A P B O X

j u n e 2 0 0 0 | g a m e d e v e l o p e r72

Adaboy 33
Alias|Wavefront 22
AICS 60
Apple Computer C2–1
Autonomous Effects 69

Beatnik C3

Capcom 65
Cibro Technologies 40
Cinram 69
Conitec 62
Criterion 5

Dice.com 66
Digimation 57

EA.com 61
Ensemble Studios 64

Game Refuge 66

Havok.com 2
Hewlett-Packard 17

IBooks.com 6
Intel Corp. 9
Interact Source 66

Licensemusic.com 55
LIPSinc 37

MathEngine 25
Motek 19

Multigen 10
Muse Corporation 66

Newtek 27
Numerical Design Ltd. 13
NxN Software AG 21

RAD Game Tools C4
Rainbow Studios 68
Retro Studios 67

Skills Village 31
SN Systems 35

Unique Development 67

Vancouver Film School 68

71

continued from page 72

take ages before middleware is good
enough and plentiful enough to satisfy
innovation-hungry consumers. And since
there isn’t an abundance of middleware,
most games using it are going to end up
looking the same.

The Publishers’
Point of View

N ow let’s look at the problems from
the publishers’ perspective, now that

they can no longer afford the hit-and-miss
approach of funding lots of projects with
the hope that a quarter of them will result
in high-quality, high-selling games.

First, they can fund games to the proto-
type stage, forcing the developers to prove
themselves in game play and graphical
terms in order to gain further cash. The
problem is that it still costs around
$200,000 to produce a prototype and it
extends the development lifespan of any
advancing project considerably.

Alternately, publishers can sign only tal-
ent with a proven track record. Such
developers have been there and done it
before, and are as safe a bet as you’re
going to get. But again, these people cost
big money and you might get similar proj-
ects and stifle the innovation you crave.

Third, publishers can construct their
own internal teams through creation and
acquisition. This is a long-term answer
with flexibility and growth potential. But

will such a corporate culture lead to
“safe” projects and a lack of creative
hunger from these teams?

So How Can Developers
Fund Games?

F irst, developers should fund their
games not based on the music industry

but rather the movie industry. Set up a
company based on the game’s intellectual
property. Anyone can purchase equity in
the whole package, including merchandise,
film or TV rights, online properties, and
other spin-offs. This extends also to mar-
keting, distribution, and, well, everything
to do with the concept.

Second, you can pool your talent to give
smaller teams access to resources other-
wise denied them. This isn’t limited to
technology, but can include everything
from office resources to ideas. Lionhead’s
own satellite scheme works in this way,
with the smaller groups benefiting from
AI, 3D, and, just as importantly, testing
and focus group access.

Another alternative is for software hous-
es to get listed on the stock market. This is
an extremely popular move at the moment,
and can provide all the funds necessary for
a team to take their game from conception
to bagged and boxed without worry. You
can get a higher royalty rate, too, by find-
ing a publisher and distributor at the end
of the project. You do of course need a
track record, a stunning idea, and ultra-

smart management, but if you can pull it
off, you’ll have the last laugh.

Finally, venture capitalism is also a
viable alternative. Although you’ll get
locked in with the backers, you’ll receive
the money you need and you might not
face the tough milestones a seasoned pub-
lisher would demand. The purse strings are
held tightly but the men in suits want to
see your game out there and selling, so
they’ll remain on your side if you can ulti-
mately deliver the goods.

Our industry needs to face the fact that
tomorrow’s games will cost more. But
games will still need the lifeblood of inno-
vation, especially if we desire the holy grail
of being truly mass-market. Both develop-
ers and publishers have to be innovative in
another way, too. They must find alterna-
tive sources of investment and convince a
great many people that their game is going
to sit comfortably in the top five. For the
games that ultimately achieve this kind of
success, this is and will always be an
incredibly profitable business. q

S O A P B O X

A U T H O R ’ S B I O | Peter Molyneux co-
founded Bullfrog Productions in 1987 and
created a new genre of computer games, the
“god game,” with the release of POPULOUS.
Since then Peter has been responsible for a
string of massive-selling games including
POWERMONGER, THEME PARK, MAGIC CARPET,
and DUNGEON KEEPER. He founded Lionhead
Studios in 1997, whose first game BLACK &
WHITE is due for release later this year.

w w w . g d m a g . c o m

A D V E R T I S E R I N D E X

C O M PA N Y N A M E PA G E C O M PA N Y N A M E PA G E C O M PA N Y N A M E PA G E

	01june cover
	04gameplan
	07frontlin
	08indwatch
	11prod_rev
	15graphic
	25artview
	28f-pritch
	42f-marsel
	52postmort
	72soapbox

	return:

