
JUNE 1999

G A M E  D E V E L O P E R  M A G A Z I N E



“This is your web site — it’s Open Source —

and I want you to help us build it.... Take a

look at our source code. Send us your ideas

on how to improve it, and build a better

campaign web site. The Gore 2000

Volunteer Source Code Project wants to

hear from you today!”

—Vice President Al Gore, 

from his presidential campaign website

http://www.algore2000.com

“I’ve heard reports of a number of compa-

nies calling software ‘open source’ even

though it does not fit the official definition.

I’ve observed some instances myself.”

—Richard Stallman, 

from the GNU Project web server 

http://www.gnu.org

A t the Game Developers
Conference in March, I got
into a conversation with
someone as to whether

Open Source software could ever be
commercially successful in our industry.
While some Open Source game projects
already exist (such as CRYSTAL SPACE —
see http://crystal.linuxgames.com for
more information), we quickly came to
the conclusion that the chances of an
Open Source game becoming a commer-
cial success à la Linux were slim to nil.
That’s not to say that projects like
CRYSTAL SPACE are fruitless — on the
contrary, I can’t think of a better route
to learn about game technology and
meet like-minded individuals than by
working on a Open Source project. It’s
just that an Open Source project carries
with it certain baggage, like implied per-
mission to modify and derive other
works from the source code. In an
industry that already gets pummeled by
critics for publishing too many copycat
games, this reason alone makes it
unlikely. That’s just the beginning, too
— there are a host of other reasons why
a game company might not want to
introduce the world to its intellectual
assets. It can be a scary proposition.

All of this isn’t to say that releasing
source code is necessarily foolish. For
some companies, releasing large chunks
of source code has helped to sell prod-
uct. id, of course, is the obvious exam-

ple to point to. It’s been releasing large
amounts of its games’ code to the public
for years. I asked Brian Hook about the
company’s motivation for posting
DOOM, QUAKE and QUAKE 2 source to
id’s website. His response might shed
some light on both why this company
went ahead and posted their code and
whether you ought to consider it also.

Hook is quick to point out while their
recent games had some form of source
code released with them, none of the
graphics, networking or core client code
was distributed. The QUAKE game logic
was based on QuakeC, and that was
released. QUAKE 2 encapsulated its game
logic in a .DLL, and that source code
was also released. In other words, the
company surgically removed certain
portions of their games and posted that
code. Furthermore, letting someone see
your code does not imply permission to
use it in another commercial game. 

There were some strong benefits that
id felt made its decision to post the code
worthwhile, and you might take these
reasons into consideration if your team
is mulling over the idea. The bottom
line, Hook explained, was that it helped
build their player community. Once
players had access to specific sections of
the code, people began writing mods,
building new levels, designing new art-
work for the game, and so on. That in
turn extended the shelf life of the game
and fostered communication within the
Quake community. Hook also said that
an unintended benefit was technical
feedback: “Individuals with strong com-
petency in a field that is not one of our
strengths may be able to offer advice on
a subject; and legitimate bugs can be
found in our code by ‘virgin’ eyes.”

To release code or not to release — it’s
a big question. There are issues of addi-
tional customer support, fear that your
competition might learn something
from your code that you’d rather not
teach them, and so on. But the concept
has merits that you shouldn’t dismiss
without investigating what you might
gain. “Power to the people” might be
your company’s motto someday.  ■

G A M E  D E V E L O P E R J U N E  1 9 9 9

4

P L A NG A M E

A Business Case for

Publishing Source Code

D E V E L O P E R

ON THE FRONT LINE OF GAME INNOVATION

www.gdmag.com

600 Harrison Street, San Francisco, CA 94107
t: 415.905.2200 f: 415.905.2228  w: www.gdmag.com

Publisher
Cynthia A. Blair  cblair@mfi.com 

EDITORIAL

Editorial Director
Alex Dunne  adunne@sirius.com

Departments Editor
Wesley Hall  whall@sirius.com

Editorial Assistant
Jennifer Olsen  jolsen@mfi.com

Art Director
Laura Pool  lpool@mfi.com

Editor-At-Large
Chris Hecker  checker@d6.com

Contributing Editors
Jeff Lander  jeffl@darwin3d.com
Mel Guymon  mel@surreal.com
Omid Rahmat  omid@compuserve.com

Advisory Board
Hal Barwood  LucasArts
Noah Falstein The Inspiracy
Brian Hook  id Software
Susan Lee-Merrow  Lucas Learning
Mark Miller  Harmonix
Paul Steed id Software
Dan Teven  Teven Consulting
Rob Wyatt  DreamWorks Interactive

ADVERTISING SALES

Western Regional Sales Manager
Alicia Langer  e: alanger@mfi.com t: 415.905.2156

Eastern Regional Sales Manager/Recruitment
Ayrien Houchin  e: ahouchin@mfi.com t: 415.905.2788

International Sales Representative
Breakout Marketing  e: breakout_mktg@compuserve.com
t: +49 431 801703 f:+49 431 801797

ADVERTISING PRODUCTION

Senior Vice President/Production Andrew A. Mickus

Advertising Production Coordinator Dave Perrotti 

Reprints Stella Valdez  t: 916.983.6971

MILLER FREEMAN GAME GROUP MARKETING

Group Marketing Manager Gabe Zichermann 

MarComm Manager Susan McDonald 

Marketing Coordinator Izora Garcia de Lillard

CIRCULATION

Vice President/Circulation Jerry M. Okabe

Assistant Circulation Director Sara DeCarlo

Circulation Manager Stephanie Blake

Circulation Assistant Kausha Jackson-Crain

Newsstand Analyst Joyce Gorsuch

INTERNATIONAL LICENSING INFORMATION

Robert J. Abramson and Associates Inc.
t: 914.723.4700  f: 914.723.4722
e: abramson@prodigy.com

CEO/Miller Freeman Global Tony Tillin
Chairman/Miller Freeman Inc. Marshall W. Freeman
President Donald A. Pazour
Executive Vice Presidents  H. Ted Bahr, Darrell Denny,
Galen A. Poss, Regina Starr Ridley
Sr. Vice Presidents Annie Feldman, Howard I. Hauben,
Wini D. Ragus, John Pearson, Andrew A. Mickus
Sr. Vice President/Development Solutions Group KoAnn 
Vikören
Group President/Division SF1 Regina Ridley



h t t p : / / w w w. g d m a g . c o m J U N E  1 9 9 9 G A M E  D E V E L O P E R

New Products
by Alex Dunne

glAnalyze Dissects Games

3D PIPELINE, a contract programming
firm specializing in graphics software
development, recently released
glAnalyze, an instrumented OpenGL
driver which provides real-time infor-
mation about OpenGL applications.
glAnalyze lets you peek inside
OpenGL applications to better undert-
stand how they work, on the premise
that your analysis will help you build
faster applications by studying the
competition. 

As an OpenGL application runs,
glAnalyze allows you to set breakpoints
to stop rendering. Breakpoints can be
set on end of frame, end of primitive,
glError, on specific OpenGL API entry
points, and so on. This feature is espe-
cially useful for understanding individ-
ual primitives and frames. At break, the
user can review all the prior API calls
(including data) to see what led up to
the current display. Breakpoints can also
be invaluable for tracking down unex-
pected state changes or errant polygons.

Here’s a scenario where glAnalyze
would come in handy. Say you’ve just
bought a game similar to the one

you’re currently working on, and you
want to see how it works. Without the
source code, it could be tough.
However, using glAnalyze to control
and manage the game’s OpenGL calls,
you could determine the type of geom-
etry that the game uses, count and
classify primitives (triangles, quad-
strips, and the like), gain insights as to
how the developers optimized it, what
types of state changes are going on,
count textures, and so on. glAnalyze
runs on Windows 95/98/NT, and is
priced at $295.
■ 3D Pipeline Corporation

La Jolla, Calif.

(619) 551-5493

http://www.3dpipeline.com/products/

glAnalyze.htm

EZ Environments in 3D

METACREATIONS unveils Canoma. Over
the years, various companies have
come up with ways to turn a 2D draw-
ing or photo into 3D geometry. The
latest company to throw its hat in this
ring is MetaCreations, and I’d say it’s
done a pretty nice job with its new
product, Canoma. With Canoma,
which runs on either the Windows or
Macintosh platforms, you can easily
take a photograph and turn the entire
scene into some basic 3D geometry
that you could stroll around in. 

Canoma imports photos, and using a
beautiful KPT Bryce-like interface, you
can start overlaying primitives onto
objects in the scene. You can scale
primitives so that they align well with
objects in the photo, and you can add
and subtract control points on the
geometry when working with irregular-
ly shaped items (like people). In other
words, the product lets you apply
geometry to textures, rather than the
other way around. 

Once you have defined the primi-
tives in the scene, you can move
about in the scene and see objects

within the photo from different
angles. Canoma takes care of correct-
ing the perspective of textures. Of
course, you’ll have to take photos
from different angles to capture back
sides of object that a single photo-
graph wouldn’t reveal, but the appli-
cation lets you stitch textures from
different photos into the scene to
make this feasible. Pricing for Canoma
has not yet been revealed.
■ MetaCreations

Carpinteria, Calif.

(805) 566-6200

http://www.metacreations.com

Middleware for Physics 

MATHENGINE. If the TRESPASSER

Postmortem in this issue doesn’t scare
you away from the complicated world
of realistic physical modeling in games
(and hopefully it won’t), a new product
called MathEngine might bear some
investigation. MathEngine is game
“middleware” for handling object
physics in real time. Like its name sug-
gests, it’s a number-cruncher that takes
care of some of the hairy math code
needed to model object interactions
rapidly and in a way that looks realistic. 

MathEngine’s C language interface
supports real-time articulated bodies,
friction and a generalized collision han-
dling system, and different surface
material properties, plus a variety of
other features. Though based in C, the
company states that the SDK has “an
object-oriented feel” that centers
around a world object and body objects
within that world. 

It requires Windows 95/98/NT, and
is available as a free download from
the MathEngine web site. Pricing for
commercial products is $1, plus $.01
royalty per game sold.
■ MathEngine Inc.

San Francisco, Calif.

(415) 495-1738

http://www.mathengine.com

New Products: glAnalyze from 3D
Pipelind, Metacreations’s Canoma, and
a middleware physics engine from
Math Engine. p. 9

Industry Watch: ULTIMA players dis-
cover eBay, Ms. Croft lands her first
endorsement deal, Bleem bests Sony,
and other serious news. p. 10

Field Report: Ben Sawyer wraps up
the first-ever Independent Games
Festival, held during this year’s GDC.
pp. 12-13News from the World of Game Development

9

The Canoma interface for creating

and exploring 3D environments.



B I T  B L A S T S  -  I N D U S T R Y  W A T C H

Industry Watch
by Alex Dunne

ACCLAIM REPORTED ROSY RESULTS for
its second fiscal quarter ending February
28. The company’s net revenues for that
period were $135.7 million, an increase
of 96 percent over the previous year.
Net earnings for the quarter were $14.5
million, compared with a net loss of
$1.2 million for the same period a year
earlier. Acclaim’s second quarter was
buoyed by a great holiday season
thanks to the N64 titles TUROK 2: SEEDS

OF EVIL and SOUTH PARK. 

SGI IDENTITY. Silicon Graphics, known
the world over for years by its
acronym, SGI, officially changed its
name to SGI. According to the compa-

ny, “the corporate
identity strategy was
supported by the
results of global
branding consul-
tants, Landor
Associates.” For its next act, Landor
will unveil a new identity for the
National Aeronautics and Space
Administration....

BLEEM BESTS SONY. Sony’s legal
department is getting plenty of experi-
ence as it jousts with various makers of
Playstation emulators. Last time we
caught up with Sony, they were
wrestling with Connectix. This time,
Sony’s going after Bleem
(http://www.bleem.com), a three-per-
son company which manufactures a
$25 PSX emulator for PCs. Once again,
however, Sony was denied satisfaction
in court: a San Francisco federal district
court judge denied the company’s
request for a temporary restraining
order, which would have stalled
Bleem’s product launch. 

HIGH STAKES FOR SEGA. The impor-
tance of the U.S. launch of the
Dreamcast is looking more and more
like a make-or-break situation for Sega.
Yasuo Tazoe, the corporate senior vice
president at Sega Enterprises Ltd., esti-
mated that the Japanese arcade market
saw a 20 percent decline in the number
of people playing arcade games from
1997 to 1998 — probably due to the
increased use of cellular phones and the
Internet by kids, he said. Sega of Japan’s
arcade division has been the only robust
element of the parent company for
some time, and to a large extent, it has
helped float Sega of America over the
past five years. If the arcade division
continues to decline, a Dreamcast flop
(i.e., insignificant sales in the next two
years in the U.S. and Japan) could sink
the company worldwide.

EBAY AND ULTIMA. If you’ve ever
scanned the auction lists on eBay, you
know that everything has a price tag
these days, even money — game cur-

rency, that is. Yes, the ULTIMA ONLINE

player community is putting eBay to
good use selling all sorts of intangible
game items, from high-level characters
to real estate in the game worlds to,
most interestingly, game currency.
Players are selling their in-game nest
eggs for U.S. dollars. The UO currency
market hasn’t quite settled down yet
(week-long auctions don’t make opti-
mal currency markets), so if you’ve ever
considered a career in arbitrage, here’s
your chance to make your first million. 

CROFT LANDS FIRST ENDORSEMENT
DEAL. For a while, everyone was talking
about ad placement in games. Finally,
I’m pleased to see that the worm has
turned. Welcome to game placements
in ads. Lara Croft is the television
spokesmodel for an Australian energy
drink called Lucozade. Eidos proves
that digital superstars are the best kind,
because polygonal models don’t care
who they pitch for or how it affects
their career. 

GT INTERACTIVE HITS A ROUGH PATCH.
The company said that it’s going to lay
off 35 percent of its staff, amounting to
650 employees, and that it will take a
one-time charge of $25-$30 million
related to its recently announced cor-
porate reorganization and relocation.
GT is expecting a net loss in the fourth
fiscal quarter to the tune of $50-$55
million. 

WHIFF OF Y2K? If you thought that the
Y2K hysteria was exactly that, and that
games had nothing to fear from clock-
related problems, here’s a story to
chew on. When Windows altered sys-
tem clocks around the world this
Spring to account for Daylight Savings
Time, many players of Hasbro’s
ROLLERCOASTER TYCOON found that they
could no longer play previously saved
games. To remedy the situation,
Hasbro had to issue a RCT time-zone
utility to customers.  ■

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w. g d m a g . c o m

10

June 10-11, 1999

PC Data’s 1999 Trends
The W Hotel
San Francisco, Calif.
Cost: $295 to $495
http://www.pcdata.com/con-
ferences

June 26-27, 1999

Develop! 99
Olympia Conference Centre
London, England
Cost: early bird rates available
http://www.unmf.com

June 30-July 2, 1999

MedPi ‘99 Software
Congress Center and
Auditorium of Monaco
Monte Carlo, Monaco
Cost: variable
http://www.unmf.fr/anglais/
salons-a.htm

UPCOMING EVENTS

CALENDAR

ULTIMA OLINE players bid for virtual

money on eBay.



B I T  B L A S T S  -  I N D E P E N D E N T  G A M E S  F E S T I V A L

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w. g d m a g . c o m

12

The First
Independent

Games Festival:
Recognition Without a
Million-Dollar Budget

by Ben Sawyer
It was a moment of innocence, per-

haps naïveté, that demonstrated how
new and exciting the first-ever
Independent Games Festival was: as
the development team from Vicarious
Visions accepted their Best Audio
award and began to leave the stage,
they forgot to take their trophy with
them. The event’s emcee, Alex Dunne,
tapped one of the departing develop-
ers on the shoulder and reminded
him. “Here, you’re supposed to take
this with you,” Dunne said, handing
the team its award. And who can
blame these winners for not fully
comprehending that their indepen-
dently developed game, TERMINUS, had
just garnered a metallic plaque and
$1,000 check? They were too busy
thanking whomever it is that game
developers thank.

So started the first Independent
Games Festival (IGF), which was held
March 17, at the Game Developers
Conference in San Jose, Calif. The
event grew out of an editorial that
appeared in this magazine last
September, and from its inception, the
process of pulling together the IGF took
everyone involved into uncharted terri-
tory. Hollywood may not know much
about developing games, but you have
to admit that Tinseltown has got that
awards thing down pretty well.

The event began with an introduc-
tion from GDC Director Jennifer
Pahlka, who described the launch of
the IGF as a “labor of love” for every-
one involved in its production.
Attendees piled into the awards area, a
large crowd began to build, and the 15
IGF finalists awaited to see what game
would take home the evening’s top
award for Best Overall Game — worth
$10,000 and publishing consideration
by G.O.D. Games. To Pahlka’s left on
stage was an easel with one massively
oversized check, with the requisite
black drape hanging over it to conceal
the winner’s name. When Dunne came
on stage and looked over at the check,
he remarked, “I kind of feel like Ed
McMahon tonight.” 
A SUNDANCE INSPIRATION. How did the
festival reach this point? Like many
crazy ideas, it began over beers at a San

Francisco bar. More than a year ago, a
friend of Dunne’s returned from the
Sundance Film Festival, and after
describing the event, this magazine’s
editor felt like it was natural event for
the game industry to adopt. Months
later, after sitting on the idea for a
while, he wrote an editorial asking
“Where’s our Sundance?” (Game Plan,
September 1998). The feedback from
the industry was encouraging (well,
nobody called Dunne crazy to his face
at least), so preparations were made to
launch the event at the GDC. By mid-
October, with the help of its primary
sponsor, game publisher Gathering of
Developers (G.O.D.), as well as support
from AMD, Microsoft, Disc Makers,
and GT Interactive, the event was
underway. When I asked G.O.D. CEO
Mike Wilson why his company decided
to get involved, he simply stated that
“it was something we couldn’t afford
not to do.” 

The announcement of prize money
for the six awards ($1,000 each for Best
Programming, Best Art, Best Audio,
Best Game Design, and Audience
Award, plus $10,000 for the Best
Overall Game), not to mention visibili-
ty at the show, established the awards
and energized the underground world

Ben Sawyer is the co-founder of Digitalmill, Inc. (http://www.dmill.com). He is the co-author of the Game Developer's
Marketplace and more than ten other computer books. His latest top-secret project is handling the business development for a foun-
dation-funded simulation product aimed at the higher-education market.  He can be reached at bsawyer@dmill.com.

TERMINUS from Vicarious Visions took

the awards for Best Audi0 and Best

Programming.

Singularity Software won Best Overall Game and the Audience Award for FIRE AND

DARKNESS. The grand prize was a check for $10,000.



of independent developers worldwide.
In fact, entries were received from as
far away as Pakistan, Russia, and
Poland. With entries starting to come
in, and sponsors and support in place,
a panel of jurors was invited to help
narrow all the entries down from near-
ly 100 submissions to 15 finalists, each
of whom would be invited to demon-
strate their games at the event. 

By the time the awards were about to
be handed out, a crowd of nearly 200
people had assembled. Singularity
Software’s FIRE AND DARKNESS took the
first honor, garnering the Audience
Award which was determined by popu-
lar ballot at the GDC. Vicarious Visions
took the second award, Best Audio, for
TERMINUS (a space combat RPG that was
one of several titles to show that indies
were very capable of putting out quali-
ty real-time 3D work). All the better for
the company’s apparent inexperience
in accepting awards, the developers at
Vicarious Visions had another chance
to practice their acceptance style when
they later won the Best Programming
award. This time they remembered to
take their award with them, and

entered the record books as the first
game ever to be a two-time IGF winner. 

Andrew Leker of Mind Control
Software accepted the award for Best
Game Design for RESURRECTION. This
game lay at the intersection of turn-
based strategy and role-playing, and
featured an interesting 3D landscape
on which two opponent attempt to fan
out their pieces and conquer the map.
The Best Art award went to Poland-
based Techland Software for their
game, CRIME CITIES. Andrew Beard, who
accepted for Techland, proclaimed
upon accepting the award, “I’m
pleased for Eastern Europe!”
THE ENVELOPE, PLEASE. Finally, the time
came for the big check — $10,000 for
the overall winner. FIRE AND DARKNESS,
the stunning 3D real-time strategy
game from Singularity Software, which
had earlier earned the Audience Award,
was proclaimed the overall winner. The
Singularity Software team, made up of
a group of friends attending Carnegie
Mellon University and their younger
high school friends from McLean,
Virginia, took home the big award. The
game combines an advanced 3D graph-

ics engine, state-of-the-art networking
technology, and a powerful combat
simulation engine that Next Generation
Online said “would make the game a
legitimate competitor with Pandemic
Studio’s spectacular-looking DARK REIGN

2.” After the ceremony, many of the
other participants I spoke with admit-
ted that they thought FIRE AND DARKNESS

would win, indicating that the game
was a winner even according to the
team’s IGF peers.

“We’d like to thank the members of
the Academy,” the team joked as they
proudly posed for press with their
poster-sized check in hand. The three
representatives of Singularity Software
thanked all of their peers and the peo-
ple who voted for their title. In thirty
short minutes these formerly inexperi-
enced indie game developers had
become pros, thanking the members of
the academy. No one ever said that
game developers weren’t quick learners. 

In the end Guha Bala, project lead for
Vicarious Visions, summed up what it
meant to win an award at the IGF: “We
hope it means a deal!” With this state-
ment, he seemed to speak for all of the
finalists. For some of the finalists and
winners, that hope may be realized.  ■

B I T  B L A S T S  -  I N D E P E N D E N T  G A M E S  F E S T I V A L

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w. g d m a g . c o m

14

Best Overall Game:

FIRE AND DARKNESS

by Singularity Software

Best Programming

TERMINUS

by Vicarious Visions, Inc.

Best Audio

TERMINUS

by Vicarious Visions, Inc.

Best Game Design

RESURRECTION

Mind Control Software

Best Visual Art

CRIME CITIES

Techland 

Audience Award

FIRE AND DARKNESS

by Singularity Software 

ACIDIA

by Whoola.com

BOOBIES

by Daedalon Interactive

Entertainment

BFRIS ZERO-GRAVITY FIGHTER

COMBAT

by Aegis Simulation

Technologies

EVERNIGHT

by VR.1

FLAGSHIP: CHAMPION

by Keith Nemitz

FOOD CHAIN

by Cajun Games

JOURNEY INTO THE BRAIN

by Morphonix

MIND ROVER

by CogniToy

SEED

by Human Soft, Inc.

SLEIGHTS

by James Ferolo

V.D. 
by Nothing Special

Productions

IGF WINNERS IGF FINALISTS IGF SPONSORS

The second annual IGF will take place

next year at the Game Developers

Conference. The specific submission

deadlines for the upcoming event are as

follows:

• Applications for the event must be

received by Wednesday, September 1,

1999.

• Finalists (those invited to the GDC)

will be announced Monday, November

29, 1999.

• The IGF winners will be announced at

the Game Developers Conference, San

Jose, Calif., March 9-13, 2000.

Note that completed games will be

required for both judging rounds, so

make sure your game is ready for play

by this September.

Updated information and IGF entry

forms will be posted on the IGF website,

at http://www.indiegames.com.

IGF 2000 INFORMATION:



b y  J e f f  L a n d e r G R A P H I C  C O N T E N T

enough to look things up and turn to
people around them who are more
experienced in that particular area. 

As I continue to explore areas of
graphics technology, I have attempt-
ed to document the research and
resources I have used in creating pro-
jects for my company. My research
demands change from month to
month depending on what is needed
at the time. This month, I have the
need to develop some facial anima-
tion techniques, particularly lip sync.
This means I need to shelve my
physics research for a bit and get
some other work done. I hope to get
back to moments of inertia, and such,
real soon. 

And Now for Something
Completely Different

M y problem right now is facial ani-
mation. In particular, I need to

know enough in order to create a pro-
duction pathway and technology to
display real-time lip sync. My first step
when trying to develop new technolo-

gy is to take a historic look at the prob-
lem and examine previous solutions.
The first people I could think of who
had explored facial animation in depth
were the animators who created car-
toons and feature animation in the
early days of Disney and Max Fleischer.

Facial animation in games has built
up on this tradition. Chiefly, this has
been achieved through cut-scene
movies animated using many of the
same methods. Games like FULL

THROTTLE and THE CURSE OF MONKEY

ISLAND used facial animation for their
2D cartoon characters in the same way
that the Disney animators would
have. More recently, games have
begun to include some facial anima-
tion in real-time 3D projects. TOMB

RAIDER has had scenes in which the 3D
characters pantomime the dialog, but
the face is not actually animated.
GRIM FANDANGO uses texture anima-
tion and mesh animation for a basic
level of facial animation. Even console
titles like BANJO KAZOOIE are experi-
menting with real-time “lip-flap”
without even having a dialog track.
How do I leverage this tradition into
my own project?

Phonemes and Visemes

N o discussion of facial animation
is possible without discussing

phonemes. Jake Rodgers’s article
“Animating Facial Expressions” (Game

Developer, November 1998) defined a
phoneme as an abstract unit of the
phonetic system of a language that
corresponds to a set of similar speech
sounds. More simply, phonemes are
the individual sounds that make up
speech. A naive facial animation sys-
tem may attempt to create a separate
facial position for each phoneme.
However, in English (at least where I
speak it) there are about 35
phonemes. Other regional dialects
may add more. 

Now, that’s a lot of facial positions
to create and keep organized. Luckily,
the Disney animators realized a long

h t t p : / / w w w . g d m a g . c o m J U N E  1 9 9 9 G A M E  D E V E L O P E R

17

Read My Lips: 

Facial Animation Techniques

T his column follows the erratic path of a professional computer graphics

developer, namely me. Anyone who has ever been in a professional produc-

tion situation realizes that real-world coding these days requires a broad area

of expertise.When this expertise is lacking, developers need to be humble 

Jeff Lander often sounds like he knows what he’s talking about. Actually, he’s just
lip-sync’d to someone who really know what’s going on. Let him know you are on to
the scam at jeffl@darwin3d.com

F I G U R E  1 .  The 12 classic Disney

mouth positions.

F I G U R E  2 .  Side cut-out view of

places of articulation.



time ago that using all phonemes was
overkill. When creating animation, an
artist is not concerned with individual
sounds, just how the mouth looks
while making them. Fewer facial posi-
tions are necessary to visually repre-
sent speech since several sounds can
be made with the same mouth posi-
tion. These visual references to groups
of phonemes are called visemes. How
do I know which phonemes to com-
bine into one viseme? Disney anima-
tors relied on a chart of 12 archetypal
mouth positions to represent speech as
you can see in Figure 1.

Each mouth position or viseme rep-
resented one or more phonemes. This
reference chart became a standard
method of creating animation. As a
game developer, however, I am con-
cerned with the number of positions I
need to support. What if my game
only has room for eight visemes? What
if I could support 15 visemes? Would it
look better?

Throughout my career, I have seen
many facial animation guidelines with

different numbers of visemes and dif-
ferent organizations of phonemes.
They all seem to be similar to the
Disney 12, but also seem like they
involved animators talking to a mirror
and doing some guessing.

I wanted to establish a method that
would be optimal for whatever num-
ber of visemes I wanted to support.
Along with the animator’s eye for
mouth positions, there are the more
scientific models that reduce sounds
into visual components. For the deaf
community, which does not hear
phonemes, spoken language recogni-
tion relies entirely on lip reading. Lip-
reading samples base speech recogni-
tion on 18 speech postures. Some of
these mouth postures show very subtle
differences that a hearing individual
may not see. 

So, the Disney 12 and the lip read-
ing 18 are a good place to start.
However, making sense of the organi-
zation of these lists requires a look at
what is physically going on when we
speak. I am fortunate to have a linguist

right in the office. It’s times like this
when it helps to know people in all
sorts of fields, no matter how obscure.

Science Break

T he field of linguistics, specifically
phonetics, compares phonemes

according to their actual physical
attributes. The grouping does not real-
ly concentrate on the visual aspects,
as sounds rely on things going on in
the throat and in the mouth, as well
as on the lips. But, perhaps this can
help me organize the phonemes a bit.

Sounds can be categorized accord-
ing to voicing, manner of articulation
(airflow), and the places of articula-
tion. There are more, but these will
get the job done. As speakers of
English, we automatically create
sounds correctly without thinking
about what is going on inside the
mouth. Yet, when we see a bad anima-
tion, we know it doesn’t look quite
right although we may not know why.

G R A P H I C  C O N T E N T

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

18

CONSONANTS

IN
TE

R
D

EN
TA

L
 (t

on
gu

e 
ti

p 
be

tw
ee

n
 th

e 
te

et
h)


 D

EN
TA

L
 (t

on
gu

e 
ti

p 
to

uc
hi

ng


 te
et

h)


A
LV

EO
LA

R


 (t
on

gu
e 

ti
p 

to
uc

hi
ng

 
ri

dg
e 

be
hi

nd
 te

et
h)


 PA

LA
TO

-A
LV

EO
LA

R


(t
on

gu
e 

bl
ad

e 
on

 th
e

 ri
dg

e 
be

hi
nd

 th
e 

te
et

h)


 PA
LA

TA
L

 (t
on

gu
e 

bl
ad

e 
on

 th
e

to
p 

of
 th

e 
m

ou
th

-p
al

at
e)


 V

EL
A

R


(b
ac

k 
of

 to
ng

ue
 n

ea
r s

of
t

pa
la

te
 h

an
gi

ng
 d

ow
n 

bi
t)

	
 G

LO
TT

A
L

(c
lo

si
ng

 o
ff

 in
 th

ro
at

)
B

IL
A

B
IA

L 


(b
ot

h 
lip

s)

LA
B

IO
V

EL
A

R
 

(l
ip

s 
an

d 
ha

ng
in

g 
do

w
n 

bi
t

 in
 th

e 
ba

ck
 o

f t
he

 th
ro

at
)

LA
B

IO
D

EN
TA

L 


(l
ip

 a
nd

 te
et

h)

CONSONANTS

			 

ORAL	 STOPS	 V	 buy					 die			 hag	 

	 (airflow closed off )	 VL	 pie					 tie			 hack	 uh-oh

	 FRICATIVES	 V			 vie	 thy		 zion	 vision	  			 

	 (airflow partially 

	
closed and turbulent)	 VL			 fie	 thigh		 sigh	 shy			  	 

	 AFFRICATE	 V				  			 jive			 

	 (combines a stop

	
then fricative)	 VL				  			 chime

			 

	
APPROXIMATE	 C	  	 why				 rye	  	 yes		 high

	 (airflow narrowed,		 

	
not turbulent)	 L					 lie

	
				 NASAL	 STOPS		 my					 nigh		  	 hang	



VOWELS	(airflow free flowing)		 FRONT	 CENTRAL	  BACK							 
	 
	 HIGH		 beat		 boot		 V = Voiced					 
			 bit		 book							 
			 bait	 but	 boat							 
			 bet									 
	 LOW		 bat		 bought		 					 

V = Voiced
VL  = Voiceless
C = Central
L = Lateral

C H A R T  1 .  American English phoneme summary chart.



With the information below, you will
be equipped to know why things look
wrong. Now for some group participa-
tion. This is an interactive article. Go
on, no one is looking. The categories
we want to examine are:
VOICED VS. VOICELESS. Put your hand on
your throat and say something. You
can feel an intermittent vibration. Now
say, “p-at, b-at, p-at, b-at,” (emphasiz-
ing the initial consonant). Looking at
the face, there is no visual difference
between voiced and voiceless sounds.
In some sounds the vocal cords are
vibrating together (b-voiced) and in
some the vocal cords are apart (p-
voiceless). This is an automatic no-
brainer as far as reducing sounds into
one viseme. Any pair of sounds that is
only different because of voicing can be
reduced to the same viseme. In English,
that eliminates eight phonemes.
NASAL VS. ORAL. Put your fingers on your
nose. Slowly say “momentary.” You
can feel your nose vibrating when you
are saying the “m.” Some sounds are
said through the nasal cavity, but most
are said through the oral cavity. These
are also not visibly different. So again,
we have an automatic reduction in
phonemes. All three nasal sounds in
English can be included in the oral
viseme counterpart.
MANNERS OF SPEECH. Sounds can also be
differentiated by the amount of open-
ing through the oral tract. These also
do not offer a visible clue, but are very
important for categorizing phonemes.
Sounds that have complete closure of

the airstream are called stops. Sounds
that have a partially obstructed closure
and turbulent airflow are called frica-
tives. A sound that combines a
stop/fricative is called an affricate.
Sounds that have a narrowing of the
vocal tract, but no turbulent airflow,
are called approximates. And then
there are sounds that have relatively
no obstruction of the airflow; these are
the vowels.
PLACES OF ARTICULATION. This involves
where the sound is being made in the
mouth. This is where the visible differ-
ences occur. There are several places
of articulation (see Figure 2) involving
the lips, teeth, tongue, and stuff in the
back of the mouth (the palate, velum,
and glottis) for the consonants. Vowel
placement is based on the relative
height of the tongue and whether the
tongue is more front or back in the
mouth. A differentiating factor not
listed in Chart 1 is lip rounding. This
is not associated with any particular
place of articulation and will be
addressed below. Whew.

As I said, there are 35 phonemes in
my dialect of American English. You
may have more. Chart 1 is a summary
of these phonemes. Read the chart
from the front of the mouth to the
back of the mouth. Try saying each of
the words that illustrate the phoneme
that is in bold. Have a look in the mir-
ror and see what is going on as well as
feel what is going on inside the head.
By using the distinction of voicing and
oral/nasal, we have already eliminated

11 phonemes. Let’s continue the
reduction of phonemes into the usable
visemes.

Take It to the Limit

A ccording to the chart, there are
three bilabials, which are sounds

made with both lips. They are [b], [p],
and [m]. According to the Figures 3a,
3b, and 3c they have different attribut-
es inside the mouth. B and P only dif-
fer in that the B makes use of the vocal
cords and P does not. The M sound is
nasal and voiced so it is similar to the
B sound, but it is a nasal sound. The
cool thing about these sounds is that
while there are differences inside the
mouth, visually there is no difference.
If you look in a mirror and say “buy,”
“pie,” and “my” they all look identi-
cal. We have reduced three phonemes
into one viseme.

While you’re working, remember
that you are thinking with respect to
sounds (phonemes), not letters. In
many cases a phoneme is made up of
multiple letters. So, if we go through
Chart 1, we can continue to reduce the
35 phonemes into 13 visemes. For the
most part, the visemes are categorized
along the lines of the Places of
Articulation (with the exception of [r]).

Take a look at the sidebar on
visemes. It describes the look of each
phoneme in American English. The
only phoneme not listed is [h]. “In
English, ‘h’ acts like a consonant, but

G R A P H I C  C O N T E N T

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

20

F I G U R E  3 b .  Side view of the sound

[p], as in “pie.”

F I G U R E  3 a .  Side view of the sound

[b], as in “buy.”

F I G U R E  3 c .  Side view of the sound

[m], as in “my.”



from an articulatory point of view it is
simply the voiceless counterpart of the
following vowel.” (Ladefoged, 1982:33-
4). In other words, treat [h] like the
vowel that comes after it.

To see how helpful this information
can be when animating a face take a
word like “hack.” It has four letters,
three phonemes, and only two visemes
(13 and 9 in the sidebar).

Say that you don’t have enough space
to include 13 visemes and whatever
emotions you want expressed. Well, by
using Chart 1 and the list of visemes in
the sidebar, you can make logical deci-
sions of where to cut. For example, if
you only have room for 12 visemes, you
can combine viseme 5 and 6 or 6 and 7
below. For 11 visemes, continue com-
bining visemes by incorporating viseme
7 and 9 below. For 10, combine visemes
2 and 3. For 9, combine 8 with the new

viseme 7/9. For 8, combine 11 and 13.
If I were really pressed for space, I

could keep combining and drop this list
down further. Most drastic would be
three frames (Open, Closed, and Pursed
as in boot) or even a simple two frames
of lip flap open and closed. In this case
you would just alternate between
opened and closed once in a while. But
that isn’t very fun or realistic, is it?

Art Issues

T hese viseme descriptions are enough
to realistically represent speech.

However, the use of individual visemes
is more an artistic judgement then a
hard rule. When speaking, people tend
to slur phonemes together. They do not
clearly articulate each phoneme all the
time. Also, the look of a viseme can
change depending on the visemes that
surround it. For example, the Disney
guidelines describe the use of a slightly
different viseme for B, P, and M if they
precede the ea sound as in beat.

This dependency on surrounding
sounds is called co-articulation and
makes viseme choice more complicated.
This is one reason that the automatic
phoneme recognition software in some
packages doesn’t always provide realistic
results. Smooth interpolation between
viseme keyframes can help, but this
alone may not be good enough. In
many cases, it requires an artistic judge-
ment for which viseme really looks best.
In computer animation, realistic looks
are all that matter. So, when you work,
put in the viseme that looks best. 

Emphasis and exaggeration are also
very important in animation. You may
wish to punch up a sound by the use of
a viseme to punctuate the animation.
This emphasis along with the addition

of secondary animation to express emo-
tion is key to a believable sequence.

In addition to these viseme frames,
you will want to have a neutral frame
that you can use for pauses. In fast
speech, you may not want to add the
neutral frame between all words, but in
general it gives good visual cues to sen-
tence boundaries.

So What Do I Do with This Stuff?

S o far, I have been discussing issues
that only seem important to the

artists working on the facial animation.
If the only use of facial animation in
your project is for pre-rendered cut
scenes, this may be true. However, I
believe facial animation will become an
important aspect in real-time 3D ren-
dering as we take character simulation
to the next level. This requires a close
relationship between the art assets and
engine features. As a technical lead on a
cutting-edge 3D project, you will be
required to create the production path-
way that the artists will use to create
assets. You will be responsible for decid-
ing how many visemes the engine can
support and the manner in which the
meshes must be created. Having a clear
understanding of what goes into the
creation of the assets will allow you to
interface more effectively with those
creating the assets.

However, even with the viseme count
I am still not ready to set the artists
loose creating my viseme frames. There
are several basic engine decisions that I
must make before modeling begins.
Unfortunately, I will have to wait until
next month to dig into that. Until then,
think back on my 3D morphing column
(“Mighty Morphing Mesh Machine,”
December 1998) as well as last year’s
skeletal deformation column (“Skin
Them Bones,” Graphic Content, May
1998) and see if you can get a jump on
the rest of the class.  ■

h t t p : / / w w w . g d m a g . c o m J U N E  1 9 9 9 G A M E  D E V E L O P E R

21

1. [p, b, m] - Closed lips.

2. [w] & [boot] - Pursed lips.

3. [r*] & [book] - Rounded open lips

with corner of lips slightly puckered. If

you look at Chart 1, [r] is made in the

same place in the mouth as the sounds

of #7 below. One of the attributes not

denoted in the chart is lip rounding. If

[r] is at the beginning of a word, then it

fits here. Try saying “right” vs. “car.”

4. [v] & [f ] - Lower lip drawn up to

upper teeth.

5. [thy] & [thigh] - Tongue between

teeth, no gaps on sides.

6. [l] - Tip of tongue behind open

teeth, gaps on sides.

7. [d,t,z,s,r*,n] - Relaxed mouth with

mostly closed teeth with pinkness of

tongue behind teeth (tip of tongue on

ridge behind upper teeth).

8. [vision, shy, jive, chime] Slightly

open mouth with mostly closed teeth

and corners of lips slightly tightened.

9. [y, g, k, hang, uh-oh] - Slightly open

mouth with mostly closed teeth.

10. [beat, bit] - Wide, slightly open

mouth.

11. [bait, bet, but] - Neutral mouth with

slightly parted teeth and slightly

dropped jaw.

12. [boat] - very round lips, slight

dropped jaw.

13. [bat, bought] - open mouth with

very dropped jaw.

Visemes

Special thanks go to my partner in

crime, Margaret Pomeroy. She was able

to explain to me what was really going

on when I made all those funny faces in

the mirror. When she was studying

ancient languages in school I am sure

she never imagined working on lip-

syncing character dialog.

Acknowledgements:

• Culhane, Shamus. Animation from

Script to Screen. New York: St. Martin’s

Press, 1988.

• Ladefoged, Peter. A Course in

Phonetics. San Diego: Harcourt Brace

Jovanovich, 1982. 

• Maestri, George. [digital] Character

Animation. Indianapolis: New Riders

Publishing, 1996. 

• Parke, Frederic I. and Keith Waters.

Computer Facial Animation. Wellesley:

A. K. Peters, 1996. 

FF OO RR   FF UU RR TT HH EE RR   II NN FF OO



b y  M e l  G u y m o n A R T I S T ’ S  V I E W

modeling needs are handled out-of-
house, and the tactic is paying off in
shorter time to market, and a smoother
production pipeline.

This month, we’ll take a close look at
some of the major players in the mar-
ket, and look at some examples of how
their products have evolved alongside
the gaming industry.

Why Are We Seeing the Shift?

T here are three main reasons for the
recent trend in outsourcing. First,

the hardware we deal with has become
extremely capable, and over the past
few years we’ve seen a shift from 2D
and 2.5 D games to fully 3D, immersive
environments. This refocusing of artis-
tic demand is necessitating a massive
amount of 3D work to fill the environ-
ments of today’s games. And it’s not
uncommon to have four or five model-
ers dedicated just to building environ-
mental models and architecture. The
second factor is the size of the talent
pool of good 3D artists. There just
aren’t enough of us out there to meet
the constantly increasing demand for
quality 3D work. In many cases, as you
will see shortly, developers have no
option other than to outsource. Finally,
the quality level of the outsourcing
community has risen dramatically
within the last few years. Modeling
houses are no longer the black sheep of
the digital artist community. Recent
Hollywood exposure as well as big
name entertainment titles have helped
these teams to solidify their respective
reputations for providing quality work
in a timely manner. Outsourcing has

become a more than viable option.

Who Are the Major Players?

A lthough there are myriad small
companies dedicated to providing

modeling services for both the film and
entertainment industries, there are a
select few who have risen to dominate
the field.
VIEWPOINT DATALABS. Widely recognized
as the industry leader in digital content
creation, Viewpoint is fast becoming
the Microsoft of modeling. Originally
known for its extensive database of
wireframe meshes, the company has
been rapidly expanding its operations
to include custom modeling and ani-
mation services, and very recently, the
development of a texture database for
3D models. Viewpoint’s client list reads
like a who’s who in film and video
games. Most notably, the digital lizard
in the recently
released film
Godzilla and the
entire cast of GT’s
ODDWORLD: ABE’S
ODDYSEE stand as
impressive trib-
utes to the team’s
custom modeling
capabilities. And
with the recent
acquisition of the
distribution
rights for the
REM Model Bank,
Viewpoint’s
library of digital
content remains
unparalleled in

the industry. Figure 1 is a highly
detailed model of the the statue of
Abraham Lincoln in the Lincoln
Memorial, and demonstrates the high
fidelity of artchitectural accuracy for
which Viewpoint is well-known. Figure
2 shows a rhinoceros model from the
REM Model Bank, the distribution
rights to which Viewpoint now owns.
Note the painstaking attention to
detail in the texture work. This is what
has set the Model Bank apart from its
contemporaries.
ZYGOTE. Formed back in 1994 by former
Viewpoint employees, this Utah-based
company was founded by a group of
industry professionals who have main-
tained their niche in the area of organic
modeling. Although Zygote’s offerings
and experience don’t match
Viewpoint’s, it is still a substantial play-
er. Its clients have included some of the
biggest names in the industry, from
DreamWorks and Digital Domain to

h t t p : / / w w w . g d m a g . c o m J U N E  1 9 9 9 G A M E  D E V E L O P E R

23

To Build or Not to Build

T hat is the question that many development houses are pondering today.

And with ever-increasing frequency, developers are turning to outsourcing

for much of their digital content creation needs. Some of the biggest

names in the industry have brokered deals where the bulk of their 

Mel has worked in the games industry for several years, with past experience at Eidos and Zombie. Currently, he is working as the
art lead on DRAKAN (http://www.surreal.com). Mel can be reached via e-mail at mel@surreal.com.

F I G U R E  1 .  This detailed model of Abe Lincoln demonstrates

Viewpoint’s high-fidelity architectural accuracy. 



Accolade and Pixar. With its expertise in
organic modeling techniques, it is prob-
ably the second-largest supplier of digi-
tal content in the industry.

Zygote recently developed of a line of
fully textured and animatable human-
oids. The models, created specifically
for use with 3D Studio Max and
Character Studio, come attached to a
biped skeleton, which is weighted and
ready for animation. An example of this
is shown in Figure 3, in which a nicely
modeled human is displayed with its
corresponding wireframe and biped
skeleton. Note the organic blending
characteristics of NURBS models; the
lack of texture work is made up for in
the detailed nature of the geometry.
Other relative newcomers to the scene
include Paraform and 3D Café.

Weighing the Options

W hether to go with an outsourc-
ing scheme is a decision to be

made carefully, no matter what the sit-
uation. But it can prove to be the best
and sometimes only option, depending
on the circumstances. And you don’t
always have to depend on the stock
digital libraries that Zygote and
Viewpoint offer. Both have also
demonstrated a robust capability for
custom modeling in the gaming indus-
try, which is where they get most of
their exposure. To get a better feel for
the custom modeling process, we inter-
viewed some of Viewpoint’s most
recent clients, and found that, without

exception, they viewed the entire expe-
rience as a positive one.
CASE STUDY 1: GAUNTLET: LEGENDS. This
remake of the 1980s arcade hit was
recently released by Atari. Steve
Caterson, the project’s art director,
went to Viewpoint in the latter stages
of production to get high-resolution
versions of the in-game characters cre-
ated. According to Steve, off-loading
these tasks at the back end of the pro-
ject enabled his team to focus all of
their creative energies on completing
the product. Atari got a lot for its out-
sourcing dollars as well, since the mod-
els were subsequently used for a num-
ber of marketing and promotional
images, cabinet graphics, screens graph-
ics, and full-motion videos. 

For LEGENDS, Steve was able to work
out a pipeline with the Viewpoint team
that proved extremely efficient.
Initially, concept sketches were sent off
to Viewpoint’s modeling teams, with
any questions resolved via telephone or
e-mail. Viewpoint’s modelers began
building the models and sending ortho-
graphic renders of the characters back to
Steve, who then
made changes to
the images in
Photoshop to
indicate the direc-
tion he wanted
the modeling
team to take
(Figure 4). This
back-and-forth
iteration contin-
ued through the

texturing stage until the final models
were completed (Figures 5 and 6).
Eventually, as the relationship and com-
munication evolved between Steve and
the Viewpoint team, they were able to
work out artistic changes via telephone
only. 

In retrospect, the cost of the process,
although substantial, paid big returns in
quality and speed. The Viewpoint team
was able to get the content created
much faster than the in-house team
could have. And the Viewpoint team
displayed a willingness to accept
changes and rework and edit the models
until the content was perfect. In Steve’s
words, “With other contractors I’ve
worked with, when you ask for ‘A’ they
give you just barely what you ask for,
but no more. And when you ask for
changes, they look at you like you’re
trying to kill their firstborn. With
Viewpoint, the modelers and animators
were totally enthusiastic about what
they were doing. I had animators calling
me up late at night to say they had
stayed an extra few hours to add in cool
features that we didn’t even know we
would need. With Viewpoint, I got what
I asked for, and then a whole lot more.”
CASE STUDY 2: CIVILIZATION: CALL TO POWER.
This latest offering in the groundbreak-
ing CIVILIZATION franchise is being pub-
lished by Activision. CIVILIZATION: CALL

TO POWER offers innovative features
such as stacked combat and battle view.
The game’s time frame runs from 4000
BC to AD 3000, giving players the
opportunity to build far into the future
and enjoy new units, wonders, and
technologies. But the increased func-
tionality and game play came at a high
development price. Each unit, city
improvement, and civilization advance
would be represented by a pre-rendered,
spinning 3D object. Mark Lamia, the
game’s producer, was looking at more
than ten man-years of modeling work
just to create the 3D versions of these

A R T I S T ’ S  V I E W

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

24

F I G U R E  3 .  An example of Zygote’s animatable humanoids. 

F I G U R E  2 .  The painstaking attention to detail in this Rhino is what sets Model

Bank apart from its contemporaries.



objects. From a budgetary standpoint,
this task, if done in-house, would have
cost the company well over $500,000.
Mark needed a solution that was faster
and cheaper than what he could do
with his own team. Here again, out-
sourcing solved the problems that the
in-house resources just couldn’t handle.
However, this was a much bigger prob-
lem than that faced by the Atari team.
Instead of generating content for mar-
keting publications, Viewpoint’s team
of modelers needed the resources to
actually build the game. There was far
less room for error — if the ploy failed,
the product wouldn’t ship. Faced with
the challenge of getting all this artwork
remotely produced under budget and
on time, Mark worked closely with his
point of contact at Viewpoint to orga-
nize the project around milestones
which separated the hundreds of mod-
els into manageable chunks. 

Aside from the sheer bulk of the work,
the development process was very simi-
lar to Atari’s situation. Starting with

black-and-white concept pieces, and
eventually moving to color comps, the
Activision team put together the
resource material necessary for
Viewpoint to complete the task. This
process turned out to have side benefits
since, as Mark put it, “Having to direct
someone remotely meant that the con-
cept material had to be clear and con-
cise, with no room for misinterpreta-
tion. It really forced us to be organized
and to examine the different aspects of
each object in extreme detail — some-
thing that, if we did the work in-house,
we would probably have been more lax
about doing.” The project further bene-
fited from the use of several stock mod-
els from the Viewpoint catalog. “Since
the game takes place in large part over a
real-world time frame,” Mark added,
“several of the architectural objects in
the Viewpoint library were directly
applicable to our project.” 

The Viewpoint team produced several
hundred animating sprites, each one a
rotating view of an in-game object, in a
little under ten months. And it cost a
fraction of the projected in-house strate-
gy. The game was completed on time
and under budget on the resource side of
the house, and everyone benefited from
the experience. 

Tips to Remember When Outsourcing

I n hindsight, both Mark and Steve
had several recommendations for a

team looking to contract work to an
outside production facility.

1. Always speak your mind about

A R T I S T ’ S  V I E W

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

26

F I G U R E  4 .  The art director for Atari’s GAUNTLET: LEGENDS used the Viewpoint team

to turn concept pieces and Photoshop edits into highly detailed models. 

F I G U R E  5 .  A concept sketch and one of Viewpoint’s finished GAUNTLET models. 



what you want. Don’t mince words, and
be tactful yet blunt. If you don’t like
what you see, the contractor probably
won’t fix the problem on his or her own.
You are the one paying for the service,
and as the customer, you are always
right.

2. Prepare, prepare, prepare. It’s always
better to give the contracting team too
much information than not enough.
The level of ambiguity in your art direc-
tion is directly linked to the level of
uncertainty in the finished product. If
you don’t know what you want, the con-
tractor can’t know either.

3. Engage the contractor in as much
communication as possible. Agree on
milestone points for each model (at least
two, one at the modeling stage and one at
the texturing stage, but the more the bet-
ter), and plan plenty of time for iterations,
especially at the beginning of the process.
Once you have developed a rapport with
your contractor, the process will go much
faster and require less footwork on the front end.

4. For large projects, designate someone in-house as the
asset manager, responsible for maintaining a database show-
ing the status of models in the approval process. This person
should be responsible for up- and downloads between you

and the contractor, and should keep tabs on where each piece
of content fits into the process. This can be an extremely
time-consuming task, and should not be left to chance, as
contractors may or may not take this responsibility upon
themselves. 

Redefining Real Time?

R esearching this article, I came across very few instances
where custom modeling was done for real-time 3D assets.

The feedback I got seemed to indicate that while the high-reso-
lution modeling and rendering were tasks which the art direc-
tors felt could be effectively managed out of house, the genera-
tion of low-polygon real-time content was something better
left to the in-house teams. The reasons for this trend varied,
but the underlying impression was that the real-time content
could be developed rapidly in-house, and since real-time mod-
eling techniques differ largely from the high resolution model-
ing methods used to generate cutscene characters, the teams
felt more comfortable doing the work themselves.

Currently, a run-of-the-mill 3D engine will put out any-
where from 2,000 to 6,000 polygons on-screen at any given
time. Consider that in a standard character-based game,
about half of this polygon budget is spent on characters,
meaning anywhere from 1,000 to 3,000 polygons in charac-
ter models alone. There are projects currently in develop-
ment with target on-screen polygon counts of 50,000 and
higher. At a similar ratio, upwards of 25,000 polygons will be
devoted to character models. This means that many of the
high-resolution models generated by companies like Zygote
and Viewpoint will have direct application for real-time 3D
games, and the hardware is only getting better. It seems obvi-
ous then, that with the constantly increasing capability of
gaming platforms, and the correspondingly complex scene
requirements for 3D content, outsourcing will become a
much larger aspect of game development.  ■

A R T I S T ’ S  V I E W

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

28

F I G U R E  6 .  Another concept sketch and finished model for GAUNTLET



H A R D  T A R G E T S

In fact, 3Dlabs has always managed
to maintain a high profile in the
industry, luring Creative Labs, Intel,
and Texas Instruments into its
embrace, and at one point having
practically every major graphics board
vendor in the world dealing with it.
Today, the company may not be so
hot. It faces its biggest challenge yet,
one that may make or break this pio-
neer of desktop 3D. That challenge is
to win the hearts and minds of game
players as well as the game develop-
ment community.

A History Lesson

T here is no doubt that 3Dlabs’s
pedigree is a good one. The com-

pany began life as Du Pont Pixel, a sub-
sidiary of Du Pont, the large, well-
known technology conglomerate. Du
Pont Pixel was specializing in supply-
ing GL-based 3D graphics tools and
applications on SPARC, and was a
founding member of Sun’s Open
Graphics Initiative, as well as one of
the first licensees of OpenGL.

In March 1994, Du Pont Pixel’s
senior management took the assets
that they needed and formed the
nucleus of 3Dlabs using assets they had
acquired from a previous company.
The initial research which led to the
development of the company’s Glint
technology actually began in 1993 as a
small development effort within Du

Pont Pixel. Management at 3Dlabs was
eager to take this technology into the
Wintel market, which was still consid-
ered a highly risky maneuver. In 1993,
the idea that the PC was going to
replace the workstation market was still
heresy.

In late 1993 and early 1994, a small
group of engineers within Du Pont
Pixel undertook initial architectural
design and product definition. The
company substantially expanded this
development effort and significantly
increased the development team, cul-
minating in the completion of the
Glint 300SX processor in the fourth
quarter of 1994. Glint got off to a
rocky start. It was the first product to
hit the PC workstation market that
met the standards of application ven-
dors, but it lacked simple features
such as support for certain texture
mapping functions. Despite misgiv-
ings about 3Dlabs’s silicon, almost
every graphics board vendor with a
yen for the PC workstation market
signed on with the company. By 1996,
3Dlabs owned 90 percent of the PC
workstation graphics market.

In connection with the acquisition of
assets from Du Pont, 3Dlabs agreed to
pay Du Pont Pixel two percent of its
total revenues each year that the com-
pany’s total revenues exceed $70 mil-
lion until the year 2000. Very shortly
thereafter, on April 18, 1994, 3Dlabs’s
management completed the buyout of
Du Pont Pixel from the Du Pont Corp-

oration and entered into a license agree-
ment with Creative Labs, under which
Creative licensed from 3Dlabs certain
Glint technology. For this license,
Creative paid 3Dlabs an initial license
fee of $1 million. In July 1995, Creative
paid the company a nonrefundable
advance royalty of an additional $1 mil-
lion in connection with the develop-
ment of certain products and reductions
in future minimum royalties. Moreover,
Creative agreed to pay minimum annu-
al royalties through the year 2000. 

In return, 3Dlabs deRaveloped the
Gigi chipset for use in Creative’s 3D
Graphics Blaster. Creative also paid the
company approximately $1 million in
contract engineering fees for the devel-
opment of Gigi. 3Dlabs retained exclu-
sive rights to the intellectual property
included in Gigi, and Creative had the
exclusive right to sell Gigi until 1998
along with the right to sublicense. The
term of the license was seven years. 

At the time, many people thought
Creative was going to sew up the 3D
graphics market the way it had the
audio market, but neither the technol-
ogy nor the support of game develop-
ers was there. However, in 1995,
Creative also licensed the Permedia
technology from 3Dlabs in considera-
tion for paying a portion of the Per-
media development costs. In addition,
3Dlabs agreed to incorporate certain
features into the Permedia chip specifi-
cally for Creative, and Creative cross-
licensed certain technology to 3Dlabs,
mostly on the API and driver front.

By the time 3Dlabs had its initial
public offering in 1996, Creative and
Intel both had shares in the company,
which was a measure of the value each

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

30

3Dlabs: Pioneering 3D 

Isn’t Always Profitable

S ince 1993, 3Dlabs has been pioneering and evangelizing 3D graphics on

the desktop. Even before it had a product offering for the mainstream

desktop, as it was on the cusp of launching its workstation graphics prod-

uct, it was active among game developers and in the general PC market.

Omid Rahmat works for Doodah Marketing as a copywriter, consultant, tea boy, and
sole employee. He also writes regularly on the computer graphics and entertainment
markets for online and print publications. Contact him at omid@compuserve.com.



b y  O m i d  R a h m a t

company placed on the 3Dlabs tech-
nology. Intel wanted to see 3Dlabs’s 3D
efforts go into its platform, and 3Dlabs
wanted to be tightly bound to the Intel
platform in the way it had been to
Sun’s in its early days. Creative was to
provide the company mass market
exposure, but without the burden of
building a consumer and mainstream
graphics business. I don’t think that at
the time there were many people out-
side of the industry who didn’t associ-
ate the PC 3D market exclusively with
3Dlabs. You have to give 3Dlabs a lot
of credit for its evangelizing efforts.
The company could so easily have cho-
sen to focus on the high-end at the
exclusion of all else, but it was ambi-
tious. Or was it hubris?

The Need for Speed — Game Speed

P ermedia should have opened up
the doors for 3Dlabs in the main-

stream. But it didn’t hit the market in
its first iteration, and missed out on
performance and some essential fea-
tures. By the time Permedia 2 came
out, the consumer market was awash in
3dfx and the promise of Rendition. In
fact, Permedia 2 became 3Dlabs’s worst
enemy, taking a chunk of its Glint
board business at much lower costs. So,
if you look at 3Dlabs in 1998 you find a
company that cannibalized its own
workstation graphics business with a
lower-cost, lower-profit-margin prod-
uct. In addition, the company’s efforts
to raise the performance bar on its high
end with its next-generation Glint
Gamma were thwarted by competitors
Evans and Sutherland, Intergraph, and
a small company called Dynamic
Pictures. To make matters even worse,
the company was not getting much
mileage out of its technology in the
mainstream, where S3, ATI, Matrox,

Nvidia, and 3dfx were doing their
thing, and where Intel was driving
prices down with its chips.

When Evans and Sutherland bought
one of its main customers,
Accelgraphics, 3Dlabs acquired one of
its competitors that was already a verti-
cally integrated board vendor,
Dynamic Pictures. In effect, the high-
end graphics market did what it has
always done for the industry: it trickled
down technologies and business direc-
tions. You can trace the merger of 3dfx
and STB back to the point when Evans
and Sutherland acquired Accelgraphics,
and caught the industry flat-footed.
The chip and board vendors knew that
the industry was going to consolidate
with the coming of Intel, and the suc-
cessful paths trodden by ATI and
Matrox, but no one wanted to make
the first move. Once the floodgates
opened, however, everyone started
making their moves. Of course,
3Dlabs’s maneuver was part forward-
looking and part defensive. The com-
pany was still determined to get into
the mainstream graphics market, but
could not see a way of doing so with a
board business. Actually, the problem
may have had more to do with the fact
that 3Dlabs couldn’t afford to buy a
board vendor like Diamond
Multimedia, and thereby retain its
autonomy.

As a result, Permedia 3 now spear-
heads 3Dlabs’s assault on the desktop.
It launched at CeBIT, Europe’s largest
computer show, and simultaneously at
the GDC. But it’s very late — by six
months or a year, depending on whom
you talk to. And it may not be a match
for Voodoo3, TNT 2, or even Savage4
in the market. In fact, 3Dlabs has an
uphill battle to get Permedia 3 con-
sumer recognition. Most board ven-
dors are committed to taking TNT 2
into the high-end gaming segment,

and beating up on 3dfx. S3 provides
the vendors with a budget-priced chip,
and a good one at that. Where does
Permedia 3 fit if it’s not significantly
faster than TNT 2?

Permedia 3: There’s the Rub

O n the surface, Permedia 3 is not a
bad chip. Whether it can take on

the likes of Voodoo3 and TNT 2 is sub-
ject to some debate, but it’s also not
certain whether it deserves to be
pigeonholed into the same market as
Permedia 2. Ultimately for 3Dlabs,
Permedia 3 must make some effective
headway into the consumer space, and
that means winning over the game
players. Without this crucial demo-
graphic behind it, Permedia 3 loses
any luster it might have, and 3Dlabs
knows this. It doesn’t help that
3Dlabs’s fortunes have taken such a hit
in the past eighteen months. The com-
pany is almost ripe for takeover, but
partners for the company are few and
far between. A good run in the market
by Permedia 3 would change all that
dramatically.

Permedia 3 has one unique selling
point: virtual textures. It’s worth noting
that Matrox used the functionality of its
bump mapping feature on the G400 in
the same vein when they launched it at
the GDC. Will it be enough, coupled
with all of the other standard 3D fea-
tures of the Permedia 3? I’m not sure
that it will. 

As of this writing, 3Dlabs didn’t
have any significant brand-name
board vendors signed on for Permedia
3. Part of the reason, as I’ve said, is
that the company doesn’t want to see
its flagship product slotted in between
TNT 2 and Savage4. But 3Dlabs needs
some glory, and quick. I don’t believe
the company will shuffle off its mortal
coil anytime soon, but it will be sub-
ject to the slings and arrows of misfor-
tune if it doesn’t boost the sex appeal
of the Permedia 3. 

You can’t count 3Dlabs out yet. It
blazed a trail, and brazenly miscued on
major product initiatives, yet it re-
mains a strong 3D brand, and the
company has the ability to muster up
some impressive engineering re-
sources. It also has some strengths in
supporting game developers. It just
needs sex appeal.  ■

h t t p : / / w w w . g d m a g . c o m J U N E  1 9 9 9 G A M E  D E V E L O P E R

31

Revenues

1995

6,594

7,992

-1,358

1996

19,695

16,904

3,091

1997

69,129

52,712

17,882

1998

42,721

68,547

-30,753

Operating Expenses

Income Before 
Taxes

(In thousands of dollars)

3Dlabs’s revenues and profits for 1995–1998. How hard will they get hit?



32

A W A R D SF R O N T  L I N E

The 1999
Front Line

mid the swirling tornado of product announce-

ments, parties, conference sessions, boxed

lunches and business dinners at the  Game

Developers Conference this past March,

yours truly hosted this magazine’s second annual Front

Line Awards. A total of 14 awards were presented to

hardware and software companies  for their innovative

contributions to the field of game development in 1998,

and one product was inducted into the Game Developer

Hall of Fame. 

B Y  A L E X  D U N N EB Y  A L E X  D U N N E

P
h

o
to

gr
a

p
h

y 
b

y 
C

a
rt

er
 D

o
w

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m



The Front Line Awards are this publication’s annual nod
to the products and companies that made the lives of
game developers easier. It’s how we say thanks to the peo-
ple and companies who make great game development
products. 

Admittedly, there were times over the past year when
many of us judging products for these awards discussed
the difficulty of pinpointing which game technologies
were the most innovative. After all, the rate of change in

the industry is phenomenal, and it’s not easy to proclaim
specific products as “winners” in this regard. However,
despite these inherent difficulties, we feel that the hard-
ware and software on the following pages are worthy of
praise and recognition. 

Products Big and Little Alike

Y ears ago, William McGowan, then CEO of MCI
Communications, was quoted as saying, “signifi-
cant progress doesn’t come from the formal plan-

ning process of an American corporation — it comes from
a couple of guys doing something that hasn’t been set
down on a list.” I can’t think an industry that proves this
sentiment more than game development. Much of the
interesting work in the field of game development tech-
nology is being done by smaller or less well-known compa-
nies such as SN Systems, Darkling Simulations, and NxN
Digital Entertainment. These companies understand the
industry, see where gaps in technology are, and then cre-
ate products that fill those voids. The combination of
industry comprehension and pragmatic product develop-
ment is powerful.

Of course, some of the stalwarts of the industry were rec-
ognized as well. The elegance of Maya earned an award for
its creator, Alias|Wavefront. Diamond Multimedia and
Creative Labs were recognized for their contributions in
the realm of consumer graphics and audio hardware,
respectively. And Digidesign’s Pro Tools, the perennial
favorite of sound designers and composers, was inducted
into the Game Developer Hall of Fame.

A Multitude of Thanks

I ’d be remiss if I didn’t take this opportunity to offer
heartfelt thanks to our distinguished panel of judges
this year. These individuals, all of whom work in the

industry, made these awards possible. We couldn’t have
done it without them. They are: Andrew Boyd, Chuck Carr,
Jeanne Collins, Ron Fosner, Mel Guymon, Mark Haigh-
Hutchinson, Tom Hays, Jim Hedges, Stefan Henry-Biskup,
Rob Hubbard, Mike Kelleghan, Jeff Lander, Spencer Lindsay,
Dominic Perricone, Wallace Poulter, Greg Pyros, Todd
Siechen, Paul Steed, Dan Teven, Ben Waggoner, Rob Wyatt,
and Halstead York.

Now onto the winners…

33

Hall of Fame
Award

Pro Tools
Digidesign

E very so often, I come across an article about a game
development team that did a hit on the cheap, and the

team’s sound person did all of the sound effects using a $200
sound card and a stereo sample editor. I then chuckle about
how tough life was before I got set up with Digidesign’s Pro
Tools.

For those who are required to create large quantities of
professional-quality audio for A-list games day in day out, it
makes good economic sense to spend a few thousand dol-
lars on some good gear. At the majority of large game devel-
opment houses, not to mention film and TV sound design
shops, this gear includes Pro Tools.

Pro Tools debuted as a successor to Sound Tools, a highly
successful stereo hard disk
recording system that used
Sound Designer II as its soft-
ware front end. Pro Tools
added the ability to use four
tracks (expandable to 16), as
well as non-destructive edit-

ing features such as fades. For a few years, Pro Tools with
Sound Designer II comprised a power pair, letting users easily
open data in both programs, apply plug-ins, edit to the sam-
ple level, and do multi-track mixes with impeccable quality.

Today’s Pro Tools 24 Mix seamlessly scales from massively
zooming in on a waveform to nail a click, out to a 64-track
mixing session with gobs of in-line DSP power. It’s great for
building and revising complex game play effects. Pro Tools
has earned its place in the Hall of Fame by setting the stan-
dard by which its competition is judged, and continuing to
raise that standard each year since its introduction. 

Pro Tools joins past Hall of Fame inductees Watcom
C/C++, Borland C++, The Miles Sound System, Bounds-
Checker, SoftICE, 3D Studio 1.0, Deluxe Paint, DeBabelizer,
Sound Forge 1.0, Cool Edit 1.0, Cakewalk Pro for Windows,
SoundBlaster 1.0, The Mythical Man Month, and Computer
Graphics: Principles and Practice. — Tom Hays

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 9 G A M E  D E V E L O P E R

Awards



G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

34

F R O N T  L I N E  A W A R D S

R endering in 3D is hot right now. To get a head start,
many companies are licensing game engines for their

development. However, many engines are too general or
too specific to a game genre and may not be well-suited to
an individual project. 

Numerical Design Ltd.’s NetImmerse is a true general
rendering scene API. It takes up where pure rendering
libraries such as Direct3D and OpenGL leave off.
NetImmerse provides scene management,
collision detection, animation support,
and many other features that make render-
ing a game environment possible. Many
such libraries could be so general that they
would not be cutting-edge. However, NDL
has a strong technical background and has
built in many features that developers real-
ly want these days: particle systems, skele-
tal deformation of skinned characters, continuous LOD,
and many others. There is also strong integration and sup-
port for 3D Studio Max.

The engine supports OpenGL, Glide, and Direct3D mak-
ing it easy to integrate into most current 3D projects.
Another wise choice NDL has made is to include full source
code and well-documented API reference manuals to
licensees. This allows developers to modify portions of the
engine easily to their own project, as well as debug strange
behavior. This open attitude is very welcome and gives NDL
a clear advantage over other game libraries. 

For the game development community at large, perhaps
NetImmerse’s greatest advantage is that it allows both new
developers and those wishing to jump-start their 3D tech-
nology easy access to the cutting edge. — Jeff Lander

NetImmerse
Numerical Design Ltd.

B igger teams, longer development cycles, more con-
tent, more interdependencies: these trends make it

ever harder for us to track the state of our projects. Kudos
to NxN for recognizing an emerging product niche, and
delivering a “complexity management” tool that’s designed
specifically for game developers.

It’s hard to describe MediaStation adequately because it
does so many things, and because it’s readily customizable.

It’s a build environment. It’s a version con-
trol system, optimized for media asset pro-
duction. It’s a multi-user project tracking
database. It’s a dessert topping.

The best thing about MediaStation is that
NxN really understands the problems of
modern game development. MediaStation
gives your whole development effort struc-
ture without becoming intrusive. You can

integrate your other tools into its IDE, or you can use the
MediaStation SDK to give a custom tool (like a level editor)
a more powerful back end. You can store meta-information
with assets, which helps when you need to create localized
versions, demos, and versions for multiple platforms from
the same pool of files. And of course, you can ensure that
everyone has access to the right version of a file at all
times, that only authorized persons can modify files, and
that the right files end up on the master CD.

The user interface is well thought out, the product is
scrupulously documented, and it’s easy to get up and run-
ning. It’s hard for me to imagine a game development team
that wouldn’t benefit from using MediaStation — I’ve
worked on several that would have killed for it.

— Dan Teven

Programming
Utilities

Programming
Libraries, APIs, Engines

MediaStation 3.0.10
NxN Digital Entertainment

FINALISTS: Code Co-Op 2.0 (Reliable Software); IPEAK Graphics
Performance Toolkit (Intel); Observation Architecture (Intel);
VTune 3.0 (Intel)

FINALISTS: Fastgraph 5.0 for Windows (Ted Gruber Software);
Motivate (The Motion Factory); RTIME 3.0 (RTIME)

1 9 9 9



h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 9 G A M E  D E V E L O P E R

35

Production
Utilities

Programming
Environments

S ometimes, the best innovations come from a system’s
interface. As a whole the SN64 PRO-DG system is

great, and now by adding a visual interface, SN Systems has
really simplified the developer’s working process. The inter-
face’s visual approach allows you to drag and drop items,
simplifies setting up project files, removes some of the intri-
cacies of makefiles, and makes it easier to add files to exist-
ing projects, along with many other benefits. This is espe-
cially helpful to new developers unfamiliar
with the make process. 

Despite these simplifications, the interface
remains customizable enough for experi-
enced programmers. Built-in scripting,
macros, and redefinable keyboard shortcuts
allow programmers to extend its functionali-
ty. Another great aspect of the SN64 PRO-DG
is its ability to update directly over the
Internet. The text editor is also one of the features which
makes the SN64 such a truly integrated environment — you
really never need to leave the program. 

Although there was no manual, the in-program help was
informative. The system’s approach is general enough to
support any future target platform, and for this it’s to be
commended (although this also means it can’t handle some
of the more subtle aspects of a specific development envi-
ronment). It costs a little more than other development sys-
tems, but its feature set exceeds that of all of its competi-
tors. 

In short, the SN64 PRO-DG is pretty much essential if
you’re doing N64 development. I suspect other console
development might be going forward, so keep an eye on SN
Systems. — Mark Haigh-Hutchinson

FINALISTS: CodeWarrior Pro 4.0 (Metrowerks); Intel C/C++
Compiler 3.0 (Intel); Visual C++ 6.0 (Microsoft)

FileMaker Pro 4.1
FileMaker

FINALISTS: MSDN (Microsoft); Norton Ghost (Symantec);
Project 98 (Microsoft)

P roducing games is hard work. There are so many
things to track: graphics, sound files, bugs, hours, and

more. Can game developers find one low-cost database
package to do it all? FileMaker Inc. (formerly Claris) has
provided the answer with FileMaker Pro 4.1. It comes com-
plete with tools to develop entry screens, reports, and even
the ability to publish them on the web. 

The interface is so intuitive and online help is so exten-
sive, most computer literate people can
develop a usable database structure without
ever reading the manual. What is particularly
amazing is how many of FileMaker’s built-in
features could only be achieved by writing
extensive scripts with other database prod-
ucts, such as the ability to set up a screen
where data entry or modification of each
field is dependent upon the user’s login

name.
Every area of production has something they need to

track in a database. With relative ease, each group can easi-
ly build their own data tracking tools to suit their needs
and publish that data to the company intranet to share
with other departments. Since game products vary greatly,
standard bug reporting systems are rarely robust enough to
handle games. FileMaker is the answer. A bug tracking tool
and reporting system can be built on-the-fly in less than a
day, and can last the whole project long. 

FileMaker works for all game production users because it
is truly cross-platform compatible. Network-stored databas-
es can be accessed by both Macintosh and Windows
clients. FileMaker Inc. also offers exceptional multi-license
discounts. — Jeanne Collins

SN64 PRO-DG 1,0,0,4
SN Systems

1 9 9 9



G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

36

F R O N T  L I N E  A W A R D S

D arkTree Textures takes the power of procedural tex-
tures and lays it out in an easy-to-use and highly

flexible format. Procedural shaders have always been a
very useful tool for rendered images, providing subtle con-
trol and endless variation for surfaces. DarkTree also pro-
vides tools to make textures that do tile, a big plus for
games use. 

The layout of the tree construction is
easy to handle. All of the modules
arranged on the left of the screen can be
dragged out to the schematic-like con-
struction area. The range of the modules
provided greatly exceeds that found in
most 3D packages. Many of the modules
provide unique methods for combining
the other elements. The ability to see the
shader plainly not only makes the tool easy to use but also
makes the reusability of complex trees as the basis for oth-
ers much more feasible. Your tree is never static. If you
decide you want to add a new module in between some
already laid out, it’s easy to move components around. A
wide array of options allows the user to visualize the tree
in useful ways, and a large selection of useful samples is
also included. The package’s library tool is very handy for
keeping track of your creations. 

Dragging files directly to the renderer, the ease of nam-
ing files, and support for batch rendering all make the
product user-friendly and well thought out. There’s even a
plug-in version available for 3D Studio Max, Animation
Master, and Lightwave. 

— Stefan Henry-Biskup

DarkTree Textures
Darkling Simulations

I have used many different 3D packages over the years,
but few have had the effect on me that Maya has in such

a short time. Upon first glance at the Maya toolset and its
capabilities, it’s easy to feel overwhelmed at the variety and
complexity of tools at your disposal, but I have yet to see
another application deliver such a wide range of functional-
ity in such a usable package. 

The first thing that becomes apparent in
Maya is its innovative object manipulation
paradigm. After only a few moments with it, I
wondered why every 3D program doesn’t use
the same or a similar technique. The ability
to work easily in a single perspective view
while maintaining the control to rotate, scale,
and transform in any locked axis without
using a hot key is wonderful. 

Maya also has a fantastic customizable interface that is
easily tunable to the individual artist’s needs. These simple
revolutionary features will save you a great deal of produc-
tion time. Maya still has a few rough edges, but the features
I have struggled with in other programs such as inverse
kinematics, constraints, skinning, deformations, and
NURBS are all very easy to use and implement with Maya —
and they work. 

It should be noted that all this great functionality comes
to us in Maya’s infant first version. Version 2.0 promises
many refinements, improvements, and increased usability
to an already strong package. All these wonderful features
combined with the product’s recent price decrease make
Maya the clear winner. 

— Todd Siechen

3D Modeling & 
Animation Environments

Image Editing &
Manipulation

Maya
Alias|Wavefront

FINALISTS: 3D Studio MAX 2.5 (Kinetix); Lightwave 3D 5.6
(NewTek); Rhinoceros (Robert McNeel & Associates);
Softimage|3D 3.8 SP1 (Softimage)

FINALISTS: KnockOut 1.0 (Ultimatte); Painter 5.5
(MetaCreations); Photoshop 5.0 (Adobe)

1 9 9 9



h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 9 G A M E  D E V E L O P E R

37

Video Editing &
Compositing

3D Modeling &
Animation Plug-Ins

A s a digital artist, I’ve been modeling for years in poly-
gons and have tried many different ways of manipulat-

ing them in a fluid and organic way. I’ve tried patch model-
ing, NURBS packages, and lofting. All of these methods have
their advantages, but Surface Tools gives me the most freedom
to work with for the price.

With Surface Tools, Digimation offers an excellent modifi-
cation to the existing patch topology tools
already in 3D Studio Max. The once unattain-
able (or at least very difficult) organic surface is
now a breeze to create and modify. By creating
Bézier splines to define the basic shape and
form of a model, a modeler can quickly gener-
ate very tunable patch sets that can then be
converted to a number of different resolutions.
It’s like modeling with just the edges of patch-
es. The learning curve is relatively shallow, and once you get
the hang of it, Surface Tools is very easy to move around in.
Depending on how you set your work up, the quick sketch
feel of Surface Tools allows you to make a lot of iterations
while always letting you go back to a good old version. I have
used Surface Tools extensively in modeling everything from
cars to mountains. 

While I was at Atari, my team was responsible for generat-
ing the new cars for RUSH 2049. I had the art team use Surface
Tools because we could get excellent control over the smooth
surfaces. We were also able to generate both high-resolution
models for cutscenes and then just crank down the resolution
for the real-time versions. 

All in all, Surface Tools is one of the coolest tools in my
arsenal. — Spencer Lindsay

FINALISTS: Character Studio 2 (Kintetix); MetaReyes 4.0 (REM
Infográfica); ProMotion (LambSoft); Surface Suite (Sven
Technologies)

Ultimatte Software
Ultimatte Corp.

FINALISTS: Automasker AE2.0 (Automedia); effect* (Discreet
Logic); ICEfx2 for After Effects (Integrated Computing Engines);
MediaStudio Pro 5.2 (Ulead Systems)

T he Ultimatte chroma-compositing workflow has
existed in the post-production arena for many years.

Indeed, Ultimatte blue and green are colors recognized
throughout the industry. With the Blue ICE-accelerated
version of their After Effects plug-in, Ultimatte brings the
power and speed of a multi-million dollar post-produc-
tion environment into the reach of small, independent

shops.
The Ultimatte plug-in’s interface is

extremely simple and intuitive for trained
After Effects users. The manual is extremely
informative, but even without it every-
thing is just where you think it should be.
The more advanced features are easy to
access for advanced users, and easy to hide
for beginners. Absolutely beautiful chroma-

keying is only a few mouse-clicks away. Matte clean-up is
more difficult, but even a newcomer to compositing can
easily get results far better than they could with just
about any other tool on the market, no matter what the
price.

Ultimatte has delivered the holy grail: an extremely 
useful and rock-solid piece of software that extends the
capabilities and professionalism of anyone who uses it.
It’s not so much a revolutionary product, but ICE’d
Ultimatte is robust, thoughtful, and mature. If you need
to get professional quality compositing done today, get
yourself After Effects, a Blue ICE card, and the Ultimatte
plug-in. It offers that greatest of gifts — the chance to go
home early and do it with a clear conscience.

— Halstead York

Surface Tools
Digimation

1 9 9 9



G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

38

F R O N T  L I N E  A W A R D S

T he Wildcat 4000 is a great scalable video card for high-
end graphic systems. Up to four cards and a geometry

accelerator can be used in a single machine. If required,
each card can drive a separate monitor or work in unison
with the others. With four cards, the memory limit is
256MB of frame buffer and 1GB of texture memory. For the
first time on the PC, the whole OpenGL pipeline is imple-
mented in hardware. If your application uses OpenGL’s
advanced features, you’ll be pleased to know
that anti-aliasing, stencil buffers, overlay
buffers and OpenGL accumulation buffers
are all fully supported in hardware. Exten-
sions include volumetric fog, volumetric
lighting and 3D textures. 

The card has a full complement of drivers,
supporting OpenGL, RenderGL, DirectDraw
and Direct3D in Windows NT and 95. I ran
the GL conformance tests which all passed, and then tried
some real applications (including 3D Studio Max and
Maya), and they all performed flawlessly. QUAKE 2 also ran
with no problems. 

The downsides are its maximum resolution of 1280×1024
and the texture fill rate of 90 million pixels with all features
enabled — which was apparent when playing QUAKE at
maximum resolution. The fill rate may not be an issue for
the you, however, as most things are modeled and animat-
ed in wire-frame or flat shaded; geometry processing is far
more important. 

User control is supported via an applet to set up multiple
cards and monitors. Intergraph usually provides regular dri-
ver updates and their tech support is good. The base price
for the 48MB version (16MB frame buffer and 32MB of tex-
tures) is $2995, which is significantly cheaper than the
competition. — Rob Wyatt

Wildcat 4000
Intergraph

A pparently Diamond has some great karma. Just as its
once-close ally, 3dfx, shifted strategies and became

Diamond’s arch nemesis, Nvidia showed up on Diamond’s
doorstep with the Riva TNT. How’s that for timing?

The Riva TNT chip was the biggest advancement in con-
sumer 3D hardware last year, beating out the old champ,
Voodoo2. Combined with the fantastic TNT is Diamond’s
know-how in the card business. Simply put, Diamond

knows how to take chips and turn them into
excellent consumer solutions. Last year we
recognized Diamond for its fine work with its
Monster 3D card, and it earned the Front
Line Award again this year for the Viper
V550. Available in both AGP 2X and PCI fla-
vors, Diamond’s Viper V550 features a long
list of features that made for great game play-
ing last year: full screen anti-aliasing, a trian-

gle set-up engine, anisotropic filtering, bump mapping, a
24-bit Z-buffer, an 8-bit stencil buffer, MPEG, TV output,
and 16MB of 125MHz SDRAM. The 2D acceleration is excel-
lent as well, which means no sacrifices once you jump out
from game land to take care of some business.

I’ve always had smooth setup experiences with Diamond
hardware, and the Viper V550 is no exception. The 3D con-
trol panel and the desktop utilities that come with the card
are great.

The card outperformed other TNT-based cards in synthet-
ic benchmarks like Winbench 98 and 3D Winbench 98, and
certainly held its own in real-world tests too. It was definite-
ly a hardware highlight in 1998, and I look forward to what
Diamond and Nvidia will bring us this year with the forth-
coming TNT2-based Viper V770. — Alex Dunne

Consumer
Graphics Cards

Professional
Graphics Cards

Viper V550
Diamond Multimedia Systems

FINALISTS: All-In-Wonder Pro AGP (ATI Technologies);
Millennium G200 (Matrox Graphics); Monster 3DII (Diamond
Multimedia Systems); Terminator BEAST SuperCharged
(Hercules Computer Technology)

FINALISTS: Gloria-XXL (ELSA); Oxygen GMX (3Dlabs); TITAN II
(MaxVision)

1 9 9 9



h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 9 G A M E  D E V E L O P E R

39

Consumer 
Sound Cards

Professional
Sound Hardware

T he Mark of the Unicorn (MOTU) 2408 hard disk
recording system includes a PCI card, a single rack-

space I/O unit, a 12-foot cable, software drivers for both
Windows and MacOS, and a complete audio workstation
software package for MacOS called Audio Desk. It has
eight analog inputs/outputs with 20-bit converters, 24
channels of ADAT optical input/output, 24 channels of
TDIF input/output and stereo S/PDIF in/out (with an extra
stereo out). It provides word clock, ADAT
Sync and Digital Timepiece Control Track
sync, which achieves sample-accurate dig-
ital transfers between digital tape decks
and the computer. 

The MOTU 2408 supports stand-alone
format conversion so you can transfer any
format (ADAT, TDIF, or analog) to any
other, up to 24 channels at a time. The
24-bit internal data path of the MOTU 2408 supports 24-
bit recording via 24-bit hardware (mixer, preamp, FX
processor, or other device) connected digitally. So what’s
the bottom line? It sounds great! I’m using it with my
400MHz PC and a Panasonic DA7 with two ADAT cards
connected to the 2408 and getting 16 channels of pristine
digital audio. I’m also using the analog outs of the 2408
going to the first eight channels of the DA7. All of my
software applications such as Cakewalk Pro 8, Acid, Sound
Forge 4.5, and Cool Edit Pro 1.1 support it. My only com-
plaint is that it doesn’t have Windows NT drivers yet. 

With its excellent sound quality, features, and list price
of $999, the 2408 is a solid choice for people using PCs or
Macintoshes for professional audio applications.

— Chuck Carr

FINALISTS: DSP Factory (Yamaha); Layla (Event Electronics);
Paris (Ensoniq); Pro Tools|24 MIX (Digidesign)

Sound Blaster Live!
Creative Labs

FINALISTS: EMU8710 PS (E-Mu Systems); Monster Sound
MMX300 (Diamond Multimedia Systems); Waveforce 192 Digital
(Yamaha)

C reative Labs’s Sound Blaster Live! is the definitive
sound card for game players. Notable features include

32 channels of DirectSound3D hardware acceleration,
downloadable sounds (DLS) and environmental audio
extensions (EAX) for reverb and echo effects. The card uses
PCI bus mastering and the advanced EMU10K1, a 1000MIPS
digital signal processor, which delivers audiophile-quality
sound.

For games using DirectX, the card performs
very well, with very little impact on things
such as frame rate and graphics. This is very
important, as some other cards take up a lot
of the host CPU when doing DirectSound3D.

The card boasts a very good feature set con-
sidering the low cost ($99 for the value card).
It supports multi-speaker output as well as
EAX, which adds different reverbs and echoes

according to the location or environment that the game is
in. This can be very effective in first-person games such as
HALF-LIFE or UNREAL. The standard card ($199) has digital
output (SPDIF) and a daughter card containing standard
MIDI ports.

The installation is simple, the card is reliable, and it
comes with a good manual. The card also comes with an
extremely useful software bundle, including a good audio
customization utility. The speaker configuration application
is the most useful, allowing the user to select two or four
speakers or headphones.

Creative plans on future driver enhancements for the
Sound Blaster Live!, so it can support over 70 voices of
DirectSound3D and new features such as AC-3 Dolby Digital
decoding and eight-speaker support. — Rob Hubbard

MOTU 2408
Mark of the Unicorn

1 9 9 9



G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

40

F R O N T  L I N E  A W A R D S

T he Macintosh has long been considered the standard
platform for professional audio development. With

products such as Pro Tools (this year’s Hall of Fame inductee)
as well as excellent sequencers and librarians, robust MIDI
and audio support, QuickTime, and so on, Macintosh has
been the platform of choice for anyone serious about audio
production. Yet in all this, basic two-track editing seemed to
get lost. Innovation was absent from the slow,
unstable applications available. File format sup-
port was inconsistent, while interfaces were
unattractive and unintuitive.

Well, there’s finally a really good, general-
purpose two-track audio editor on the
Macintosh. Peak 2.0 is miles ahead of its prede-
cessors in terms of features and interface, and
significantly better than its other Macintosh-
based competitors, too. It’s easy to use, reasonably quick,
sounds great, and integrates with surprising ease into a pro-
fessional audio production system.

It has all the right features: non-destructive editing, a long
list of supported formats, batch processing, integrated
QuickTime video support, good-sounding standard DSP
functions, and sampler support. Peak offers some really cool
additions, too: fun effects such as “convolve” and “phase
vocoder,” handy real-time application of file-based Premiere
plug-ins, and best of all, the ability to handle TDM and
Audiosuite plug-ins.

But what really makes Peak stand out is the fact that all
this quality and functionality are now available on the Mac-
intosh, able to live on the same machine with all the other
great tools you’re probably already using.        — Andrew Boyd

Peak 2.0
Berkeley Integrated Audio Software

A cid is arguably the most innovative digital audio soft-
ware to come along in years. If you use digital audio

loops, you want Acid. It’s that simple. 
Unlike other programs that can change a loop’s tempo

by changing its pitch, Acid keeps the original pitch when
changing tempos. Acid does an almost magical job when
speeding up or slowing down tempos, and it works best

when speeding up a loop from its original
tempo. 

Although you can record individual
tracks with Acid, I liken songwriting with
Acid to drum pattern creation on a drum
machine. Create the parts of a song you’re
working on (like your drums, guitar parts,
and bass lines) as two-,four- or eight-bar
loops. Then add the loops in Acid to build

the song. It’s also great for experimenting with different
arrangements by changing the chorus and verses to dif-
ferent places in a tune. 

Doing remixes with Acid is amazing. If you want to mix
your tune and you have a multi-track audio card or hard-
ware box, Acid lets you assign your tracks to whatever out-
put you want. If you want to add some real-time effects or
compression to your tracks, go ahead — with the support
of DirectX plug-ins it’s a no-brainer. Sonic Foundry’s
Virtual MIDI Router (VMR) is the perfect “missing link” for
synching Acid with a software sequencer. 

I use Cakewalk for all my MIDI and non-loop-based
audio and Acid for the loop-based digital audio. Perhaps
this sounds like a dream scenario, but believe me, the
dream is real. — Chuck Carr

Audio 
Composition

Audio 
Recording & Editing

ACID PRO
Sonic Foundry

FINALISTS: Cubase VST/24 4.0 (Steinberg); Logic Audio
(Emagic); Pro Audio Deluxe 8 (Cakewalk); Studio Vision 4.1
(Opcode Systems)

FINALISTS: Pro Tools 4.3 (Digidesign); SonicWORX (Prosoniq
Products Software); Sound Forge 4.5 (Sonic Foundry)

1 9 9 9



During the few years since then, though, our market has
reached a point of stratification with non-accelerated
Pentium “Classic” machines on the low end and the latest
and greatest pixel crunchers on the high end. The range is
enormous. As game developers, it’s important to support
high-end consumers, and yet we’d prefer not to abandon the
low-end players. From this desire was a new industry trend
born: scalable geometry.

Scalable Geometry

S calable geometry is any kind of geometry that can be
adapted to run either faster with decreased visual quality

or slower with increased visual quality. There are a number of
ways of doing this, so we’ll briefly cover the more popular
methods.

One of the earliest methods used in games to scale geometry
involved hand-generated level-of-detail models. You can see this
principle at work in games like BATTLEZONE and GRAND PRIX LEGENDS.
In the case of a race car, artists create a very high-detail model of the
car, then a lower-detail model, and then continue down to a very
low-detail model. Then, at run time, factors like the speed of the
machine and the distance of the car to the viewer determine which
model you use each frame. One of the benefits that hand-tuned
LOD models have over other approaches is that the models can have
more actual polygonal detail at the higher levels, since they’re creat-
ed by hand. There are many drawbacks, though. For instance, the
switch from one model to another can manifest itself as an abrupt
visual “popping”, and can therefore be distracting to the viewer. A
solution to this is to increase the number of LOD models, but this
exposes another drawback: it takes a lot of an artist’s time to make
several versions of every object.

Another method of implementing  scalable geometry is in using
dynamic mesh reduction techniques. Shiny’s upcoming title,
MESSIAH, reportedly uses a technique like this for their character ani-
mation system. The idea here is that you store one high-detail ver-

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

42

S U R F A C E SC U R V E D

Implementing
Curved
Surface
Geometry

B y  B r i a n  S h a r p

When Brian’s not coding for CogniToy or sleeping through
classes, he’s writing up crazy stuff like this. Keep him busy by
writing to him at brian_sharp@cognitoy.com with questions or
comments, or else he might find the time to write again. Don’t
say we didn’t warn you.

emember QUAKE? Back when it was first

released, consumer-level 3D accelera-

tion was nearly unheard of, and id’s

software renderer scaled in speed with

the clock speed of your Pentium

processor.RR

QUAKE 3: ARENA is one of the first games to take advantage

of curved surfaces in a real-time 3D setting.



sion of a model. Then, based on the distance
of the model from the viewer and the
desired framerate, you use some kind of
detail reduction algorithm to generate an
appropriate mesh. There are a number of
ways to perform the detail reduction; if the
high-detail model is stored as a polygon
mesh, algorithms like the quadric error met-
rics described by Garland and Heckbert are
perfect for the task. The advantages to
dynamic mesh reduction are that many of
the techniques can be very fast with some
precalculation, and it can produce very
good-looking results. There are, again, a
number of drawbacks. It can be tricky to get
texture coordinates to reduce with the mesh
without making the texture slide around on
the model. Also, algorithmically reducing a
model from 10,000 polygons to 50 polygons
still generally won’t look as good as a 50-
polygon model hand-crafted by an artist.

Curved Surfaces

T he final method we’ll mention,
then, is the topic of this article.

Curved surfaces are one of the most
popular ways of implementing scalable
geometry. There is a good reason for
that, too; in games we’ve seen them in,
they look fantastic. UNREAL’s characters
looked smooth whether they were a

hundred yards away, or coming down
on top of you. QUAKE 3: ARENA screen-
shots show organic levels with stunning
smooth, curved walls and tubes. There
are a number of benefits to using curved
surfaces. Implementations can be very
fast, and the space required to store the
curved surfaces is generally much small-
er than the space required to store either
a number of LOD models or a very high-
detail model.

The downside of curves and curved
surfaces is that they are perhaps the
most difficult of the three methods to
learn and understand. There’s a lot of
reference material out there, but a lot of
it is not easy reading, even if you know
the material and are just using the
books for reference. Therefore, in this
article, we’ll look at the basics of curves
and curved surfaces. We’ll cover the
concept of the basic polynomial curve,
and then onto two example curve repre-
sentations: Hermite curves and Bézier
curves. From there, we’ll move onto sur-
faces, covering the Bézier patch. In this
article, we’ll take the most straightfor-
ward approach possible to rendering the
curves and patches. While this does
mean that our implementations will be
very slow, they will hopefully be more
legible for it. Next month, we’ll contin-
ue our examination of patches by delv-
ing into optimization techniques to
make them truly useful.

Remedial Curve Concepts

J ust to be absolutely sure we all start
off on the same wavelength, we’ll

start by reviewing some of the basic
math principles that we need as a foun-
dation for working with curves and
curved surfaces. Feel free to skip this sec-
tion if this is remedial.

At its core, any of the curves we’ll dis-
cuss can be represented as a parametric
polynomial function. Following con-
vention, we’ll use the parameter u. Our
curves will look something like this:

Generally, we’ll refer to f(u), which is
the 3D point on the curve at u. Now, as
long as at least one of c0, c4, and c8 are
non-zero, the curve will be a cubic

curve, and cubic curves are the ones
we’re most interested in. After all, since
we’d like to keep computation to a min-
imum, we’d like to use the lowest-
degree curve possible (since a higher
degree requires more multiplication
every time it’s evaluated). So, we might
try using a zero-degree curve (which
would be fast to compute). But a zero-
degree curve is simply a point, which
doesn’t do us too much good.

Moving on, a one-dimensional curve
is simply a line. It’s pretty clear that
lines are insufficient for our purposes.
So, we move on to quadratic curves.
These are parabolas, which might seem
sufficient for representing curves and
curved surfaces. Unfortunately, second-
degree curves will always lie in a plane,
and we’re working in three dimensions,
so it would be better to have a space
curve, a curve that isn’t confined to two
dimensions or less. Therefore, our cubic
curve is the curve of choice.

Representations

S o all a programmer needs to do is
code up a quick tool for the artists

consisting of a view window and four
text entry boxes for them to type in the
coefficients of curves, right? Of course
not — artists demand flexibile, intu-
itive tools, and it’s clear that creating
curves by typing in coefficients lacks
that certain ease-of-use factor for most
of us. Therefore, we need another rep-
resentation for the curve that makes
creation and manipulation more intu-
itive. We’ll touch on two such repre-
sentations, the Hermite curve and
Bézier curve.

The Hermite curve we cover both
because it’s fairly common, but also
because it doesn’t require any specialized
formulae to understand it. Then, as
Bézier curves are somewhat more versa-
tile, we’ll move on to them. While we
won’t discuss it here, converting from
Bézier curves to Hermite curves and vice
versa is very straightforward and is
explained in the references at the end of
the article.

There are plenty of other curve repre-
sentations that we aren’t going to touch
upon. Notably, we are not going to cover
B-Splines or that family (including the
pervasive NURBS), of which Bézier
curves are simply a special case. I chose
the Hermite and Bézier curve models as

x u c u c u c u c

y u c u c u c u c

z u c u c u c u c

f u x u y u z u

( )

( )

( )

( ) ( ( ), ( ), ( ))

= + + +

= + + +

= + + +
=

0
3

1
2

2 3

4
3

5
2

6 7

8
3

9
2

10 11

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

44

C U R V E D  S U R F A C E S

F I G U R E S  1  A N D  2 .  The top figure is

a Hermite curve. Tangent vectors are

magenta, endpoints are red, and the

curve itself is blue. The second figure

is a cubic Bézier curve. Its control

points are red, and the curve is blue.



a good starting point, because they can
be represented and understood with a
fair degree of ease. Once you have a firm
grasp on Bézier curves, picking up one of
the references at the end of this article
and learning more about other curve
models is much easier.

Hermite Curves

A Hermite curve is a cubic curve
described by its endpoints p0 and

p1 and the tangent vectors at the end-
points, v0 and v1. You can see in Figure 1
what an example curve looks like.

The question, then, is how we get the
cubic equation from the points and vec-
tors. Hermite curves are nice this way, as
the derivation of the cubic is possible
with just a little calculus. Let’s say our
cubic equation is

Note that f(u), a, b, c, and d are vec-
tors. Then, we have that:

Then, we can express the endpoints as
f(0) and f(1), and the tangents as f’(0)
and f’(1).

Solving now for a, b, c, and d, we get: 

Eq. 1

Then we’ll solve for what are called the
“basis functions.” The basis functions
are simply functions of u that determine
the contribution of the endpoints and
tangents along the curve. So, for
instance, the basis function that corre-
sponds to p0 determines how much p0
contributes to points along the curve.
Just by rearranging terms once again, we
have the basis functions.

Then, we can express the curve as the
sum of the basis functions times the
components:

This provides us a handy way of
expressing the curve. Furthermore, basis
functions become far more important
when we discuss Bézier curves, and so
the Hermite curve provides a good intro-
duction to the idea of a basis function.

So, as we see here, a basis function is
nothing more than a function associat-
ed with a component of the curve that

f u B p B p B v B v( ) = + + +0 0 1 1 2 0 3 1

B u u

B u u

B u u u

B u u

0
3 2

1
3 2

2
3 2

3
3

2 3 1

2 3

2

= − +

= − +

= − +

= −

a p p v v

b p p v v

c v

d p

= − + +
= − + − −
=
=

2 2

3 3 2
0 1 0 1

0 1 0 1

0

0

p f d

p f a b c d

v f c

v f a b c

0

1

0

1

0

1

0

1 3 2

= =
= = + + +
= ′ =
= ′ = + +

( )

( )

( )

( )

f u au bu c( )′ = + +23 2

f u au bu cu d( ) = + + +3 2

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

46

C U R V E D  S U R F A C E S

void genCubicFunction()
{

// Do this so we can treat each endpoint and tangent vector as a separate array.
float* p0 = points;
float* p1 = points + 3;
float* v0 = tangents;
float* v1 = tangents + 3;
// Do this so we can treat each vector coefficient of the function as a separate array.
float* a = functionCoeffs;
float* b = functionCoeffs + 3;
float* c = functionCoeffs + 6;
float* d = functionCoeffs + 9;
// Now, generate each coefficient from the endpoints, tangents, and the predefined
// basis functions.
// Note that we loop once each for the x, y, and z components of the vector function.
for (int lcv = 0; lcv < 3; lcv++)
{

// a = 2p0 - 2p1 + v0 + v1
a[ lcv ] = (p0[ lcv ] + p0[ lcv ]) - (p1[ lcv ] + p1[ lcv ]) + v0[ lcv ] + 

v1[ lcv ];
// b = -3p0 + 3p1 - 2v0 - v1
b[ lcv ] = - (p0[ lcv ] + p0[ lcv ] + p0[ lcv ]) + (p1[ lcv ] + p1[ lcv ] + 

p1[ lcv ]) - (v0[ lcv ] + v0[ lcv ]) - v1[ lcv ];
// c = v0
c[ lcv ] = v0[ lcv ];
// d = p0
d[ lcv ] = p0[ lcv ];

}
}

L I S T I N G  1 .  Code to generate a cubic parametric equation from a Hermite

curve's endpoints and tangents.

// This function simply computes au^3 + bu^2 + cu + d for a 
// specific u and stores the vector result in out.
void evaluateAt(float u, float* out)
{

// Do this so we can treat each vector coefficient of the function as a separate array.
float* a = functionCoeffs;
float* b = functionCoeffs + 3;
float* c = functionCoeffs + 6;
float* d = functionCoeffs + 9;

// Note that we use Horner's rule for computing polynomials (which is the way
// we nest the multiplies and adds to minimize the computation we need.)
out[ 0 ] = ( ( ( a[ 0 ] ) * u + b[ 0 ] ) * u + c[ 0 ] ) * u + d[ 0 ];
out[ 1 ] = ( ( ( a[ 1 ] ) * u + b[ 1 ] ) * u + c[ 1 ] ) * u + d[ 1 ];
out[ 2 ] = ( ( ( a[ 2 ] ) * u + b[ 2 ] ) * u + c[ 2 ] ) * u + d[ 2 ];

}

L I S T I N G  2 .  Code to evaluate a cubic parametric equation at a given value of u.

F I G U R E  3 .  Bézier basis functions for

a cubic Bézier curve. Each function is

associated with a control point.



determines the contribution of that
component to points along the curve.

Implementing Hermite Curves

A s handy as the basis functions are
for expressing the curve, it’s easier

for our naïve implementation just to
calculate the cubic equation of the
curve by finding the coefficients using
Equation 1. The code that does this is
shown in Listing 1.

Then, we just run along the curve by
starting u at 0 and incrementing it by
some fixed amount until we reach 1. We
evaluate the curve at each value of u,
save each result as a point on the curve,
and then render the curve as a line strip.
The code to evaluate the curve at a
given value of u is quite simple and is
shown in Listing 2. 

It’s worth noting that even though
the curve is recalculated fairly slowly
every frame, the frame rate is still in the
high hundreds (well, on my Voodoo2
graphics card, at least). Since we’re
doing nothing but calculating a hun-
dred or so points along a curve every
frame, the speed hit as a result of this
inefficiency is not yet apparent.

Bézier Curves

N ow that we understand the cubic
Hermite curve and its implementa-

tion, we can move on to Bézier curves.
Whereas a Hermite curve is defined by
endpoints and tangents, a cubic Bézier
curve is simply described by four
ordered control points, p0, p1, p2, and p3.
Figure 2 shows an example curve.

Our problem now is that it’s not
immediately clear how we define the
curve based on these four points. With
Hermite curves, we could use some basic
calculus to get a cubic parametric equa-
tion. But even if we say that p0 and p3
are the endpoints, the points p1 and p2
seem to have little bearing, analytically,
on the curve. It’s easy enough to say
that the curve should “bend towards”
the points, but what does that give us in
terms of our cubic equation? Here’s
where the importance of our basis func-
tions comes in. We need to find a set of
functions that blend the control points
together in ways that give us the curve
that we want.

To do that, of course, we need to

define the properties we’d like the curve
to have. We can summarize these with
three qualities:

1. We’d like the curve to interpolate
the endpoints. That is, we’d like the
curve to start at p0 and end at p3. That
makes curve creation more intuitive.

2. We’d like the control points to
have local control. That is, we’d like the
curve near a control point to move
when we move that control point, but
have the rest of the curve not move as
much. Again, this gives us better intu-
itive control when crafting a curve.

3. We’d like the curve to stay within
the convex hull of the control points so
we can cull against it quickly if we’re
doing visibility culling or hit testing. 

Luckily for us, there exists just such a
set of functions. These functions are
called the Bernstein basis functions, and
are defined as follows:

The parenthesized block with the n
and the i is the mathematical phrasing
of the binomial coefficient normally
phrased “n choose i” or “n nCr i”. The
formula for n choose i is:

If we were considering general Bézier
curves, we’d have to calculate that. Since
we’re only considering cubic curves,
though, n = 3, and i is in the range [0,3].
Then, we further note that n choose i is
the ith element of the nth row of Pascal’s
triangle, and so we have our values,
{1,3,3,1}. So we can just hard-code that,
no computation necessary.

While the Bernstein basis functions
are a little odd looking at first, they’re
not that bad. To show that they really
do satisfy our three conditions, we refer
to Figure 3. This is a graph of the cubic
basis functions. The red curve corre-
sponds to p0, the green to p1, the blue to
p2, and the magenta to p3. They’re pretty

n
i n i

!
!( )!−

B u
n

i
u u i ni

n i n i( ) ( )=






− ≤ ≤−1 0  for 

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

48

C U R V E D  S U R F A C E S

void UniformCurveTessellator::tessellate( const std::vector< CurvePoint >& controls, 
const std::vector< BasisFunction >& bases ) const

{
// We break the curve into 100 even increments of u.
int numSteps = 100;

// We can multiply by this in our loop instead of dividing by (numSteps-1) every time.
double invTotalSteps = 1.0f / (numSteps - 1);

// Start drawing our curve.
::glBegin( GL_LINE_STRIP );

for ( int step = 0; step < numSteps; step++ )
{
// Generate the parameter for this step of the curve.
float u = step * invTotalSteps;

// This holds the point we're working on as we add control points' contributions to it.
float curPt[ 3 ] = { 0, 0, 0 };

// Generate a point on the curve for this step.
for ( int pt = 0; pt <= 3 ; pt++ )
{
// Get the value of this basis function at the current parameter value.
float basisVal = bases[ pt ]( u );

// Add this control point's contribution onto the current point.
curPt[ 0 ] += controls[ pt ].getX() * basisVal;
curPt[ 1 ] += controls[ pt ].getY() * basisVal;
curPt[ 2 ] += controls[ pt ].getZ() * basisVal;

}

// Draw this point.
::glVertex3fv( curPt );

}

::glEnd();
}

L I S T I N G  3 .  Code that tessellates and renders a Bézier curve as an evenly-

spaced series of line segments.



looking, but what do they mean? Recall
that the basis functions determine the
contribution of each point over the
curve. Also, the horizontal axis on that
graph is u. So, when u is zero, the value
of the basis function for p0 is 1, and all
the others are 0. Therefore, the starting
point of the curve is:

Therefore, we have that the curve
starts at p0. Looking at the basis func-
tions, it’s obvious that the curve ends
on p3. Our first condition is satisfied.

As for the local control, we can con-
vince ourselves that this holds by star-
ing at the basis functions for long
enough. It’s obvious that p0 and p3 have
local control, because as we move them,
the curve moves, and they have very lit-
tle influence over the rest of the curve.
We can also see, then, that p1 and p2
have local control, since they have the
most influence over the curve 1/3 of the
way and 2/3 of the way along the curve,
respectively. That means that if we
moved p1, it would pull the section 1/3
of the way along the curve with it, and
affect the rest of the curve much less.

Then, we have our final condition:
the curve must remain within the con-
vex hull of the control points. With the
Bernstein basis functions, this is true.
The proof, however, is fairly complicat-
ed, and ends up dragging a bevy of new
concepts into the fray. For the interest-
ed, Farin does a reasonable job of
explaining this. It has to do with the
fact that the Bernstein basis functions
are nonnegative for u in the range [0,1],
and also that if you sum up the values
of all the basis functions for any value
of u, the result is always 1.

Then, the formula for calculating a
point on our Bézier curve is:

Eq. 2

Implementing Bézier Curves

O ur approach to rendering a Bézier
curve is similar to that for render-

ing Hermite curves. We find a series of
points along the curve, and render that
series as a line strip. We’ll do it, once
again, by evaluating the curve at even
intervals of u. Listing 3 shows this clear-
ly: UniformCurveTessellator::tessellate takes
a vector of four control points and a

p B ui i
i o

3
3

( )
=
∑

1 0 0 00 1 2 3 0p p p p p+ + + =

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

50

C U R V E D  S U R F A C E S

void UniformPatchTessellator::tessellate( const std::vector< std::vector< CurvePoint > >&
controls, const std::vector< BasisFunction >& bases ) const
{
// We break the patch into a numSteps x numSteps array of points.
int numSteps = 10;
// First, we need to make the basis functions for our normals, which just involves
// taking the derivative of each basis function.
std::vector< BasisFunction > bases_deriv( bases );
for ( int i = 0; i <= 3; i++ )
{
bases_deriv[ i ].differentiate();

}
// Now we generate the points and normals.
float* verts = new float[ 3 * numSteps * numSteps ];
float* norms = new float[ 3 * numSteps * numSteps ];
double invTotalSteps = 1.0f / (numSteps - 1);
for ( int stepU = 0; stepU < numSteps; stepU++ )
{
// Generate the parameter for this step of the curve.
float u = stepU * invTotalSteps;
for ( int stepV = 0; stepV < numSteps; stepV++ )
{
// Generate the parameter for this step of the curve.
float v = stepV * invTotalSteps;
// This holds the point we're working on as we add control points' contributions to
//it.
float curPt[ 3 ] = { 0, 0, 0 };
float curNorm[ 3 ] = { 0, 0, 0 };
float curUTan[ 3 ] = { 0, 0, 0 };
float curVTan[ 3 ] = { 0, 0, 0 };
// Generate a point on the curve for this step.
for ( i = 0; i <= 3; i++ )
{
for ( j = 0; j <= 3; j++ )
{
// Get a few basis function values and products thereof that we'll need.
float bu = bases[ i ]( u );
float bv = bases[ j ]( v );
float dbu = bases_deriv[ i ]( u );
float dbv = bases_deriv[ j ]( v );
float bu_bv = bu * bv;
float bu_dbv = bu * dbv;
float dbu_bv = dbu * bv;
// Add this control point's contribution onto the current point.
curPt[ 0 ] += controls[ i ][ j ].getX() * bu_bv;
curPt[ 1 ] += controls[ i ][ j ].getY() * bu_bv;
curPt[ 2 ] += controls[ i ][ j ].getZ() * bu_bv;
// Add this point's contribution to our u-tangent.
curUTan[ 0 ] += controls[ i ][ j ].getX() * dbu_bv;
curUTan[ 1 ] += controls[ i ][ j ].getY() * dbu_bv;
curUTan[ 2 ] += controls[ i ][ j ].getZ() * dbu_bv;
// Add this point's contribution to our v-tangent.
curVTan[ 0 ] += controls[ i ][ j ].getX() * bu_dbv;
curVTan[ 1 ] += controls[ i ][ j ].getY() * bu_dbv;
curVTan[ 2 ] += controls[ i ][ j ].getZ() * bu_dbv;

}
}
// Now get our normal as the cross-product of the u and v tangents.
curNorm[ 0 ] = curUTan[ 1 ] * curVTan[ 2 ] - curUTan[ 2 ] * curVTan[ 1 ];
curNorm[ 1 ] = curUTan[ 2 ] * curVTan[ 0 ] - curUTan[ 0 ] * curVTan[ 2 ];
curNorm[ 2 ] = curUTan[ 0 ] * curVTan[ 1 ] - curUTan[ 1 ] * curVTan[ 0 ];
// Normalize our normal (ouch!)
float rInv = 1.0f / sqrt( curNorm[ 0 ] * curNorm[ 0 ] + curNorm[ 1 ] * curNorm[ 1 ] + 
curNorm[ 2 ] * curNorm[ 2 ] );
curNorm[ 0 ] *= rInv;
curNorm[ 1 ] *= rInv;
curNorm[ 2 ] *= rInv; Continued on page 52.

L I S T I N G  4 .  Code that tessellates and renders a Bézier patch as an evenly-

spaced grid of triangles.



vector of four associated basis functions,
and renders the curve in 100 steps.

To generate each point, it calculates
Equation 2 for the input — it adds up
the sum of each point times that point’s
basis function. For our cubic curve, this
is certainly not the most optimized way
to calculate the curve. However, because
it’s only 100 points, it’s not noticeable
and the demo still runs quite fast.

Surfaces: The Bézier Patch

I t might seem more consistent to
cover not only Bézier patches but

also Hermite patches, as well. The rea-
son we’re skipping straight to Bézier

patches is that we’re trying to cover the
curves and curved surfaces in the most
intuitive order possible. Whereas it
makes sense to cover Hermite curves
and then Bézier curves, Hermite patches
are somewhat more difficult to learn
than Bézier patches.

Since a Bézier curve was a function of
one variable, f(u), it’s logical that a sur-
face would be a function of two vari-
ables, f(u,v). Following that logic, since a
Bézier curve had a one-dimensional
array of control points, it makes sense
that a patch would have a two-dimen-
sional array of control points. We’ll now
discuss bicubic Bézier patches. The
phrase “bicubic” simply means that the
surface is a cubic function in two vari-
ables — it is cubic along u and also
along v. Then, since our cubic Bézier
curve had a 1×4 array of control points,
our bicubic Bézier patch has a 4×4 array
of control points. Figure 4 shows an
example of a surface.

Now, with that, we need to take our
equation for evaluating a Bézier curve at
some u and extend it to allow us to eval-
uate our patch at some (u,v). The exten-
sion is fairly straightforward. We just
evaluate the influence of each of the 16
control points, yielding:

Eq. 3

We can see by inspection that our

properties from the Bézier curve extend
to the patches. Why? For the following
reasons.

1. The patch interpolates p00, p03, p30,
and p33 as endpoints.

2. Control points have local control,
that is, moving a point over the center
of the patch will most strongly affect
the surface near that point.

3. The patch remains within the con-
vex hull of its control points.

Implementing Bézier Patches

R endering a Bézier patch is more
complicated than rendering a

Bézier curve, even when doing it in the
simplest possible way. With a Bézier
curve, we could just evaluate a number
of points and render a line strip. With a
patch, we need to evaluate strips of
points and render triangle strips. Also,
with a patch we have to worry about
lighting. After all, an unlit patch will just
look like an oddly-shaped splotch of red
on the screen. To see the contours, we
need lighting. For our naïve implemen-
tation, that means we’ll need to light
each vertex. To light a vertex, we need
its normal. So, for every (u,v) pair, we
need to solve for the point on the sur-
face, and then solve for its normal. 

Equation 3 tells us how to find the
point on the surface, but how do we
find the normal? Well, we know we can
take the derivative of the surface with
respect to either u or v, which would
yield the tangent vectors to the surface
in the direction of either u or v, respec-
tively. If we find both of those tangents,
we know that they both lie in the plane
tangent to the surface. Then, taking
their cross product will yield a mutually
perpendicular vector, the surface nor-
mal. Finally, we’ll have to normalize it
since it most likely won’t be unit length.

So, how do we find df(u,v)/du and
df(u,v)/dv? As it turns out, we can just
take the derivatives of the basis func-
tions. That is,

Eq. 4

df u
du

d p B u B v

du

p
dB u

du
B v

ij i
j

j
i

ij
i

j
ji

( )

( ( ) ( ))

( )
( )

=

===

==

∑∑

∑∑

3

0

3
3

0

3

3
3

0

3

0

3

  

 

p B u B vij i
j

j
i

3

0

3
3

0

3

( ) ( )
==
∑∑

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

52

C U R V E D  S U R F A C E S

// Store these.
memcpy( verts + ( stepU + ( stepV * numSteps ) ) * 3, curPt, 3 * sizeof(float) );
memcpy( norms + ( stepU + ( stepV * numSteps ) ) * 3, curNorm, 3 * sizeof(float) );

}
}
// We render each strip of the surface out as a triangle strip.
for ( int stepV = 0; stepV < numSteps - 1; stepV++ )
{
int y0 = stepV;
int y1 = stepV + 1;
::glBegin( GL_TRIANGLE_STRIP );
for ( int stepU = 0; stepU < numSteps; stepU++ )
{
int x0 = stepU;
glNormal3fv( norms + ( x0 + ( y0 * numSteps ) ) * 3 );
glVertex3fv( verts + ( x0 + ( y0 * numSteps ) ) * 3 );
glNormal3fv( norms + ( x0 + ( y1 * numSteps ) ) * 3 );
glVertex3fv( verts + ( x0 + ( y1 * numSteps ) ) * 3 );

}
::glEnd();

}
// Clean up after ourselves.
delete[] verts;
delete[] norms;

}

L I S T I N G  4 .  (Continued from page 50.)

F I G U R E  4 .  A bicubic Bézier patch.

The green grid connects the control

points.



The same holds for the derivative
with respect to v. Therefore, before
rendering, we calculate the derivatives
of the basis functions and store them.
We use Equation 4 and its v analogue
to find the tangents, and then proceed
to find the surface normal. The code
for the loop is shown in Listing 4. 

Now, while the curves didn’t slow
down from our naive implementa-
tions, this patch demo shows quite
painfully why optimization is very
necessary. It runs at a steady 30 or so
frames per second (again, on my
Voodoo2), but that’s just one patch. If
you tried to base a terrain system on
this implementation, it would be
painfully slow. After all, consider the
work we’re doing. By default, the tes-
sellator breaks the surface into 100
points. At each point, we’re evaluating
32 cubic functions and 32 quadratic
functions, then doing a vector cross-
product and a vector normalization
(ouch!). Then, for each point, we’re
asking OpenGL to light it, which is
not cheap either. Plus, we’re not
caching any of this between frames,
and we’re actually allocating and then
deallocating the space every frame. So
we’re doing a lot of work, much of it
entirely unnecessary.

Nonetheless, it works. We’re render-
ing a lit Bézier patch, and even if it is
a bit sluggish, it looks pretty good.
Now, if only we could do something
with it...

Moving from Theory to Application

T here are certainly a number of
loose ends. We’ve covered Bézier

and Hermite curves and Bézier patch-
es, but the implementations so far are
entirely unoptimized and the patch
demo is rather sluggish even for what
little it is supposed to do.

Furthermore, we haven’t seen an
example of using these things in a real
application. The demo code is just
that — a demo of a curve or surface
floating in black space. There is still a

fair amount of material to cover
before we can turn these into some-
thing real. 

Next month, I’ll cover some opti-
mization techniques for Bézier curves
and surfaces. We’ll also see how to
form other surfaces and objects by
joining Bézier patches together, and
look at some of the properties of such
objects, as well as some of the prob-
lems that can arise from the new tech-
niques. Finally, having covered all of
this, I’ll finish off the article with a far
more interesting demo. ■

h t t p : / / w w w . g d m a g . c o m J U N E  1 9 9 9 G A M E  D E V E L O P E R

• Farin, Gerald. Curves and Surfaces for

CAGD, A Practical Guide. New York:

Academic Press, 1997.

• Garland, Michael and Paul Heckbert.

“Surface Simplification Using Quadric

Error Metrics.” Proceedings of SIG-

GRAPH (1997): pp. 209-216.

• Mortenson, Michael E. Geometric

Modeling. New York: Wiley Computer

Publishing, 1997.

• Watt, Alan and Mark Watt. Advanced

Animation and Rendering Techniques:

Theory and Practice. New York: ACM

Press, 1992.

• The full source to the Hermite curve

demo, Bézier curve demo, and Bézier

patch demo are available from my web

site at http://www.cs.dartmouth.edu/

~bsharp/gdmag/

RR EE FF EE RR EE NN CC EE SS



G A M E  D E V E L O P E R J U N E  1 9 9 8 h t t p : / / w w w . g d m a g . c o m

54

ne seldom hears the true story of what happened at the

place where the world changed. How it began. What

were the reasons? What were the costs?

—John Parker Hammond

This quote from TRESPASSER’s opening movie

serves just as well to open the real story of a game

development team’s struggle to create a breakthrough dinosaur game as

it does to open the fictional story of Hammond’s struggle to develop a

biotechnological breakthrough and clone dinosaurs. 

An Ambitious Project

T he parallels between the TRESPASSER project and Hammond’s
cloning project were numerous: ambitious beginnings, years

of arduous labor, and an eventual tragic ending. Hammond’s
diary, as related in the game itself, dwells on the past and never
attempts to explain Hammond’s future direction now that he has
failed so grandly. This postmortem is intended to be much more
forward looking.

TRESPASSER was begun by two former employees of Looking Glass
Technologies, Seamus Blackley and Austin Grossman. By the time
the game was rolling, two more ex-Looking Glass employees would

DreamWorks
InteractiveÕs
TRESPASSER

P O S T M O R T E M

Richard Wyckoff was a designer on TRESPASSER who worked previously at Looking Glass Technologies in
small roles on projects like FLIGHT UNLIMITED and TERRA NOVA. He’s currently applying what he learned from
TRESPASSER to an unannounced project at Knowledge Adventure. Contact him at rwyckoff@loonygames.com.

OO
B y  R i c h a r d  W y c k o f f



55

h t t p : / / w w w . g d m a g . c o m J U N E  1 9 9 8 G A M E  D E V E L O P E R

join the team, and our common background was instrumen-
tal in setting the direction for the project.

The Concept

T he pie-in-the-sky concept for TRESPASSER was an outdoor
engine with no levels, a complete rigid-body physics

simulation, and behaviorally-simulated and physically mod-
eled dinosaurs. The underlying design goal was to achieve a
realistic feel through consistent looks and behaviors. Having
an abandoned island setting was a useful way to exclude
anything which did not seem possible to simulate, such as
flexible solids like cloth and rope, wheeled vehicles, and the
effects of burning, cutting, and digging.

The game would play from a first-person perspective, and
you would experience the environment through a virtual
body to avoid the “floating gun” feeling prevalent in the
WOLFENSTEIN breed of first-person games. Combat would be
less important than in a shooter, and dinosaurs would be
much more dangerous than the enemies in traditional first-
person shooters. The point of the game would be exploration
and puzzle solving, and when combat happened, it would
more often involve frightening opponents away by inflicting
pain than the merciless slaughter of every moving creature.

The original plan for TRESPASSER certainly seemed like a
good one. It was very ambitious, but the team made trade-
offs on implementation and execution time from the very
beginning. For instance, the team wouldn’t attempt to do
multiple or moving light sources or QUAKE-style shadow gen-
eration in order to accommodate arbitrary numbers of mov-
ing objects and long, wide-open views. Unfortunately, there
is a difference between having a plan and successfully exe-
cuting it, and the product that we eventually shipped was as
disappointing to us as it was to the great majority of game
players and game critics.

Some have dismissed TRESPASSER altogether because it was
such a visible failure. Respected industry columnists and edi-
tors use it as a reason why physics is bad, or make it the butt
of their jokes (“at least it wasn’t as bad as TRESPASSER!”).
However, from a project perspective there were a number of
successes. Before we get into the problems which ended up
sinking the ship, let’s look at these successes.

What Went Right

1.USE OF LICENSE. Making a new story with someone else’s
licensed property is often creatively stifling for design-

ers and ultimately disappointing for fans of the original
work. The Jurassic Park license could have been an especially
limiting one, representing some of director Spielberg’s and
novelist Crichton’s weakest work. However, TRESPASSER’s
Hammond diary actually contains lots of interesting tidbits
about the early days of characters like Henry Wu (the scien-
tist from the beginning of the first movie) and Dennis Nedry
(Wayne Knight’s character who basically caused the first dis-
aster), which made the game world a richer environment.
The player can also check out locations on the island which
imply backstory which isn’t explicitly told, like Henry Wu’s
house with its 1980s executive bachelor stylings, Nedry’s

office with its poster for the fictional computer game series
“Swords of Kandar,” and Hammond’s lavish mansion. The
settings and the diary itself serve to reveal much of
Hammond’s motivation and personal reactions to the build-
ing of Jurassic Park, creating more of a character than exists
in either the books or the movies. (Crichton killed
Hammond off in the first book, anyway.)

The overall plot of our game is as simplistic as most others
(the character must find a way to escape a death trap), but
the details revealed about the Jurassic Park world extend it in
a way which is faithful to the originals. Although it is quite
likely that the next Jurassic Park movie to be released will
make TRESPASSER non-canon, for now it stands as the only
real extension of the series published. If there are such
things as Jurassic Park fanatics and they were able to look
past the game play flaws, they hopefully enjoyed our devel-
opment of the world.

2.ART AND MUSIC. On an individual basis, the models cre-
ated for TRESPASSER rank with the best-looking work

done for computer games. We limited the largest texture size
to 256×256 pixels, and at model import time textures were
converted to 8-bit paletted images. But artists worked with
their models using 24-bit art in 3D Studio Max, applying the
textures using any mapping methods that Max supported.
We had the standard limits on visible polygons, so most
models were made with as few as possible: dinosaurs ranged
from 300 to 500 polygons and trees from 50 to 120, for

DreamWorks Interactive
Los Angeles, Calif.
http://www.dreamworksgames.com

Release date: December 1998
Intended platform: Windows 95/98/NT
Project budget: Estimated $6-$7 million
Project length: 32-36 months
Team size: 39 Including a full-time staff of 7 engineers, 5 game

designers, and 10 artists.
Critical development hardware: 266MHz Pentium II with 128 0r

256MB RAM
Critical development software: 3D Studio Max 1.2 and 2.5,

Photoshop 4.0, Microsoft Visual C++  6.0, Visual SourceSafe 5.0

TRESPASSER

Concept art for TRESPASSER.



example. But this still gave our artists
more complexity than was standard at
the time.

Many of TRESPASSER’s artists had never
worked on games or done 3D modeling
before, and some had never even used
computers at all. This was a fairly delib-
erate decision, in an attempt to achieve
a much higher standard of art than we
were used to seeing on previous prod-
ucts. The number and resolution of tex-
tures we were able to support called for
painting skills far beyond the average
game-trained artist.

The music is one of TRESPASSER’s best
accomplishments. Originally, we were
slated to use John Williams’s score, but
the cost proved to be execessive.
Fortunately, our sound effects
company, SounDelux, put us
in touch with one of their sta-
ble of composers who special-
ized in “imitation” music.
With very little prompting, he
recorded about 30 minutes of
music for us which in some
parts far exceeds the rather
forgettable work Williams
himself did for the Jurassic
Park movies. 

Some reviews still accused
us of having spotty or inap-
propriate music, but this was
more an implementation
problem than a problem with
the music itself. The music was
recorded as a couple dozen short sec-
tions which were scattered through the
world on location-based triggers. Much
like the voice-overs, more attention
could have been paid to their placement
so that they only played at appropriate
and regular intervals. Even more desir-
able would have been a system with the
ability to play tension or combat music
loops and fade them in and out of the
special-event songs to make it seem
more like a continuous musical score.

3.INNOVATIVE SYSTEMS. Our artists
were able to paint textures with

near-total disregard for common memo-
ry-conservation practices, thanks to the
texture caching system which one of
the last programmers to be hired created
fairly late in the project. 

Textures for our game were MIP-
mapped by our helper application,
GUIApp, as part of the process of build-
ing level data (curved bump maps were
also created at this time). A level could
have a nearly unlimited amount of tex-

tures, and once MIP-maps were created,
all textures and their MIP-maps were
saved into a single swap file. GUIApp
automatically organized the swap files
into pages based on texture size, with
the lowest couple of MIP levels for all
textures on a set of pages which were
always committed.

As the player moved through the
level and objects came into view, the
appropriate pages from the swap file
were accessed. In any circumstances
where an appropriate texture hadn’t
been loaded in yet, the always-commit-
ted MIP-maps could be used until the
higher-resolution texture had been
loaded. In theory, this could result in a
frame or two where an object was tex-

tured at a lower resolution than desired,
but in practice it rarely happened, even
on the most texture-intensive levels.

Another major system for TRESPASSER

was its audio system, which we
described as “real time Foley” because
of its ability to generate collision and
scraping effects between differing
sound materials in real time. Although
the system could have used more sound
material data, even with what it had it
resulted in some wonderfully immer-
sive sound effects which most other
games do not duplicate — things like
scraping a board down a concrete sur-
face or hitting an oil barrel with a metal
bat sound almost perfect. The system
doesn’t just play two stock effects but
actually chooses from several samples
and sets volumes based on the strength
of the underlying physics collision,
with very natural-sounding results.

Finally, our image caching system,
which rendered groups of distant
objects into single 2D bitmaps to speed

rendering, while responsible for the
most disturbing visual anomalies in the
game, was also by its own right an
amazing piece of work. Image caching
allowed scenes with tens of thousands
of polygons to be rendered in near-real
time, and it is the first technology
which has allowed outdoor scenes to
have a reasonable fraction of the com-
plexity of the real outdoors.

4.OUTDOOR LEVEL DESIGN. When we
created our terrain geometry,

we were deliberately trying to avoid the
“marbles in rubber” look of a lot of bad
fractally-generated outdoors. To this
end, we decided that we needed to base
our island on real-world terrain rather
than build it from scratch. Luckily, we

had a real-world model to go
from: Costa Rica’s Cocos
Island, the same island which
Crichton used as his inspira-
tion for Site B. Unfortunately,
no relief maps of sufficient
detail existed for the island, so
we ended up having our lead
artist sculpt a large model of
the entire island, had it laser
scanned, and did all our final
work on it in 3D Studio Max.

Modeling was only the first
step to creating a level. After
most of the terrain was estab-
lished, it took significant time
to populate the levels with

objects. There were 10-15,000
trees, shrubs and rocks in most levels,
and a few thousand man-made objects
as well. Every object could be placed
individually, but for time-saving rea-
sons we generally used groups of
objects for areas off the gamepath and
only spent a lot of time hand-placing
items in places we knew the player
would go. The rolling terrain and a ran-
dom-delete tool we often ran for opti-
mization generally kept the repetition
from seeming obvious.

In the end, although our levels did-
n’t quite fulfill our personal expecta-
tions, they usually look more like real
environments than previous games.
Starting from a real map seemed to be
the most useful tactic for this, and
looking for a real-world starting point
for vegetation placement is the next
obvious step for outdoor games.

5.REALISTIC PHYSICS IN A FIRST-PERSON

PERSPECTIVE. The first discovery
we made as our physics simulation was
slowly implemented was that it was an

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

56

P O S T M O R T E M



engrossing toy. When we finally got
support for compound object physics
(so that a bench could consist of a top
and two legs instead of a single block,
for instance), it was possible to spend
an hour just dropping the bench onto
things to see how it would catch on
edges and flip and slide around. Toys
do not make games, however, and try-
ing to establish game play that would
work with our simulation was our
major challenge.

Due to the vagaries of our particular
physics simulation and interface, we
eventually arrived on game play that
primarily involved knocking things
over rather than stacking things up.
Knocking over will probably be the first
application of realistic physics to see
widespread use, as it will work even
with a less-than perfect physics model
(such as TRESPASSER’s). It is also a behav-
ior which easily shows off the differ-
ence between realistic physics and
what we usually referred to as “fake”
physics — compare pushing a box off a
ledge or hill in any game which actual-
ly lets you move boxes to the same
action in TRESPASSER.

Since our game play was supposed to
revolve around the physics, however,
we needed to apply that knocking-over
behavior in slightly more sophisticated
ways than just using it as eye candy.
The best uses that we found in the
small amount of time we had involved
knocking stacks of boxes down to fill
holes, or unbalancing something rest-
ing on a high ledge in order to get it or
use it as a step. It also quickly became
apparent that building even a seeming-
ly simple knocking-down puzzle
required a much more highly refined
sense of physical laws than many of us
had.

What Went Wrong

It might seem as though TRESPASSER

deserves more entries in its “what went
wrong” section than the usual project
postmortem. However, TRESPASSER’s
failings are actually few in number.
Unfortunately, the failings that we did
have were serious enough to more than
outweigh our successes.

1.SOFTWARE-ORIENTED RENDERER.
TRESPASSER was begun before the

original Voodoo started the wave of 3D
hardware popularity. The TRESPASSER

engineers set about to create an engine
in the old-school manner: they picked
some previously-unseen rendering
technologies and implemented them,
ignoring any issues of compatibility
with hardware cards. Our engine’s two
most incompatible features were its
bump mapping (which used a true geo-
metrical algorithm that could take sur-
face curvature into account) and its
image caching. Image caching was
intended to allow real-time rendering
of huge numbers of meshes, but it was
also the system almost solely responsi-
ble for the graphical anomalies of pop-
ping, snapping trees in the game. The
other primary visual artifact of the
game was the frequent sorting errors,
but this was a result of poorly-con-
structed levels which continually
handed our depth-sort algorithm more
polygons than its limit, and not a
direct result of image caching itself. 

The image cache system worked by
rendering distant objects into 2D
bitmaps on the fly, and then updating
them when the angle or distance
changed enough so that the 2D repre-
sentation was no longer sufficiently
accurate. This may sound familiar to
those who remember Microsoft’s
Talisman architecture, and there was a
hope at one time that our game would
be a “killer app” for Talisman accelera-
tors, but resistance from key figures in
the industry and 3dfx’s sudden popu-
larity pretty much put an end to
Talisman.

TRESPASSER ended up slipping by
more than a year, as did many games
of its time. Our hardware programmer
put in a valiant effort in the last half
year of the project, and managed to get
much more use out of 3D hardware
than we initially thought possible. We
ended up with a fairly unique mixed-
mode renderer which drew any bump-
mapped objects in software and the
rest of the scene with hardware.

Unfortunately, the large number of
bump-mapped objects present in our
game, such as all the dinosaurs and
nearly every crate, meant that the fill
rate advantages of accelerators were
often negated.

In addition to being a costly soft-
ware-only rendering method, our
bump mapping was never very evident:
we could have used multiple, moving
light sources and had the art staff make
better use of bump maps in their
objects. Many of the bump maps were
created by simply converting the origi-
nal texture to grayscale, an artist’s hack
that works for rendered images and
animations but not in real-time 3D.
Image caching was an even bigger
problem than bump mapping, because
although it was the key technology
that we were using to try to improve
scene complexity, the game’s visual
quality was also the source of most
people’s complaints. It seems clear in
retrospect that we should have made a
tradeoff somewhere along the line and
either dropped the physics technology
and physics game play in favor of the
rendering technology, or more likely
dropped the rendering technology and
the ability to do complex scenes in
favor of the physics technology.

2.GAME DESIGN PROBLEMS. The
biggest indication that

TRESPASSER had game design problems
was the fact that it never had a proper
design specification. For a long time,
the only documents which described
the game play were a prose-style walk-
through of what the main character
would do as she went through the
game, and a short design proposal list-
ing the keys which would be used and
some rough ideas of what game play
might actually be. 

Our experiences on TRESPASSER made
it clear that it is worse not to have a
design specification at all than to have
one which becomes out of date and is

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

58

P O S T M O R T E M



frequently rewritten. TRESPASSER started
and finished weak in the game design,
and this affected every other part of
the project.

When it became clear that the tech-
nology was not going to exist to sup-
port the initial high-concept design, it
would have been best to throw out all
our existing notions and reinvent the
game. Unfortunately, our license made
it all but impossible to throw out the
original TRESPASSER concepts. The only
major deviations from the original idea
were the change from constructive,
stacking-based physics puzzles to

destructive, knocking-over puzzles, and
an attempt to make combat more
prevalent in order to shore up the
weakness of the destructive physics
puzzles. Since no part of the TRESPASSER

code was written to be good at doing
first-person shooter game play, this
attempt to make shooting a more
important feature only ended up
flaunting some of the weaker points in
the game, like the lack of an inventory
system and the slow frame rate.

3.TOOLS PROBLEMS. TRESPASSER was
built entirely in 3D Studio Max.

There was no level editor, only the
generically-titled GUIApp, which was
the game with a debugging shell — not
really a tool at all. Our level creation
procedure consisted of arranging
20–25,000 meshes in Max, using
dummy meshes to represent game play
objects like triggers, and typing trigger
code into these objects’ “object proper-
ties” buffer. 

There were two unexpected and
incredibly severe drawbacks that we
discovered only after it was far too late
to change our method of building the
game world. The first problem was that
Max is basically unfit to work with

more than about 5,000 objects at a
time. TRESPASSER levels averaged 40MB
in size, and could take a couple min-
utes to load on the systems our design-
ers used (Pentium II-266 with 256MB
RAM). When all objects in a level were
visible, it could take from 30 to 60 sec-
onds to respond after clicking on an
object to select it, making fast work dif-
ficult (to say the least).

The second problem with the Max
method was our use of the object prop-
erties text buffer. The buffer seems to
be one of those features which no one
ever used before, because we discov-
ered that if more than 512 characters
were typed into an object’s properties
buffer, Max could become unstable. If
Max didn’t crash outright and a file
was saved with one of these bad
objects, it would become unloadable.
TRESPASSER’s technical artist wrote
many design tools in MaxScript and
also coded warning scripts to guard
against problems such as properties
buffer overflows, but these solutions
only made designing in Max tolerable
— not enjoyable.

There was an additional wrinkle to
the process of using Max to create lev-

60

P O S T M O R T E M

Level design in Max was tolerable, not

enjoyable, for the TRESPASSER team.



els, and this was the export step. A Max
plug-in converted data into the game
format, but our particular exporter
caused a lot of problems. It was devel-
oped by a programmer who worked
from home, an hour away from the
office, and used a separate code base
with unique classes and a different ver-
sion of the compiler. This was also his
first project in 3D, and it became the
second-most delayed part of the pro-
ject after physics. Until the last year of
the game, there were significant bugs
in the exporter which required time
consuming work-arounds. Important
functionality, such as the ability to
export object properties, also was not
delivered until very late in develop-
ment, which prevented designers from
implementing game play. In the end,
the exporter was assigned to another
programmer and rapidly brought up to
usability, but it had already delayed
level building significantly. 

4.AI PROBLEMS. The largest prob-
lem with the AI system was

that its progress was blocked by a lack
of dinosaurs with which to test it. The
first time a dinosaur made the transi-
tion from a separate test application

into the game was in early 1998, with
significant missing functionality which
prevented the completion of visually-
important AI behaviors, like howling
and glaring. The first quadruped went
in around the early summer of 1998,
about four months from the then-
intended ship date (as it turned out we
slipped by about another month).

The dinosaur AI was a state-based
system, based on the creatures’ emo-
tions. It became apparent once
dinosaurs were working well enough to
put into levels that the differences
between the activity states were not
discrete enough. Dinosaurs were gov-
erned by a set of emotions which theo-
retically would prompt them to pick
appropriate responses at any time.
However, in practice they would end
up oscillating rapidly between many
activities, sometimes even literally
standing still and twitching as they
tried to decide what to do. Making a
usable dinosaur required disabling all
but one or two of their activities. This
allowed aggressive dinosaurs to really
be aggressive, but it also meant that
most dinosaurs were as single-minded
as the traditional videogame monsters

we were trying to one-up.
The AI system suffered from the lack

of a clear game design. There are two
scenes in the Jurassic Park movies
which demonstrate quintessential
dinosaur game play: the scene in
Jurassic Park where the kids hide from
raptors in a kitchen, and the scene in
Lost World where Jeff Goldblum deals
with several cautious raptors in the
ruins of the town. Both of these scenes
rely on dinosaurs which can be fooled
by ducking behind objects and which
can home in on or be distracted by
localized noises. Neither of these two
fundamental abilities is actually pre-
sent in the TRESPASSER dinosaur AI.
Instead, the dinosaurs have a simpler
and more industry-standard detection
radius which doubles as sight and hear-
ing and is not blocked by objects in
any way. Without a design specifica-
tion calling for these kind of behaviors,
though, the AI development went in
directions which ended up being large-
ly unsuitable for game play. This prob-
lem wasn’t even discovered until a few
months before we shipped, when there
was only time to work around it rather
than completely rework it. 

61



5.PHYSICS PROBLEMS. The box
model was TRESPASSER’s most

significant physics innovation: it was
intended to be a complete simulation
of any arbitrarily-sized box interacting
with a number of other boxes. The
approach used in TRESPASSER was what
is known as the “penalty force”
method. In incredibly simple terms,
when boxes collide, they are allowed to
intersect with each other (mathemati-
cally), and then they push each other
apart until they are no longer intersect-
ing. The penalty force model is general-
ly believed to be an unworkable one by
the few other people in the industry
attempting real-time solids models, but
our physics programmer believed he
could make it work.

There were several notable flaws with
TRESPASSER’s solids model as shipped: it
ended up only working well when used
with roughly cube-shaped boxes with
dimensions between 0.5 and 1 meter
on a side, it did not model friction well,
it was extremely slow, and it was not
free of interpenetration even within the
size constraints. 

We were aware that physics would be
slow, and that ten boxes at once would
represent the practical upper limit, but
we had not expected that so much of
that physics overhead would be eaten
up by the dinosaur body physics, which
used five boxes in the worst cases: head,
body, tail, and two feet. Although the
dinosaur physics boxes executed faster
because they did not interact with each
other, it turned out that in common
cases (like a scene displaying two rap-
tors and the player holding a gun), the
physics budget was completely con-
sumed and there were no were no
processor cycles left to handle knocking
over a stack of boxes.

Physics speed was an issue, but other
problems were more severe. The game
design depended on boxes of sizes
other than small cubes, and we ended
up including many objects outside that
safe range. Unfortunately, all objects
outside the safe range, even large cubes,
were more prone to reveal the most
egregious problem with the physics sys-
tem: interpenetration. At best, these
interpenetration bugs completely blow
the consistency of simulation we tried
to set up, and at worst they make the
game unplayable. If it was not clear
before shipping TRESPASSER, it is clear
now: no amount of interpenetration is

acceptable, and preventing it absolutely
should be the number one concern of
any physics coder.

TRESPASSER’s dinosaurs and the arm
itself were inverse-kinematic (IK) sys-
tems controlled by physical models.
Originally, the dinosaurs were sup-
posed to be full physically-modeled
bipeds whose physics actually knew
how to use legs to stand, walk, run, and
jump. They ended up with more stan-
dard game movement physics and an
IK animation system very similar to
Looking Glass’s TERRA NOVA. Just like
in TERRA NOVA, the dinosaur legs fre-
quently stretched, bent, and popped as
the IK system struggled to handle the
physically impossible movements that
the simplified physics generated.

This movement problem was a case
of lacking realistic boundary condi-
tions. The joints of the arm never had
realistic limitations put on their rota-
tion or even limitations on the dis-
tances between joints. A system written
by a different programmer sat on top of
the underlying arm system and contin-
ually tried to make sure it had not
moved into an impossible position, but
as a separate system it could only be
partially successful at best. The arm as
shipped would often go almost out of
control for a few frames, stretching or
spinning in impossible ways. During
this time the fragile feeling of connec-
tion between the player and their char-
acter would be shattered.

The arm suffered not only from its
unbounded model but also from bad
design choices. Its creator intended it to
be wholly context-insensitive. The fact
that guns, unlike other objects, get held
fairly steadily and away from the body
was only a result of some key members
of the test staff adding their voices to
the cries which had been coming from
within the team to fix shooting so that
it was easy to hit a desired target. It
should have been obvious from the
mere fact that a 2D interface was being
used to move in 3D space that an even
larger amount of context sensitivity was
needed. If a truly successful virtual arm
is ever to be implemented, simple
mouse movements will have to be
translated into complicated arm move-
ments based on what is in or near the
hand, or it will be as impossible to use
as TRESPASSER’s arm. That there was a
conscious decision to avoid context
sensitivity in our project is indicative of

the larger problems with physics in our
project. The physics code was largely
written in a vacuum and tested in sepa-
rate applications and non-representa-
tional levels, and not enough attempts
were made to analyze it from a player’s
perspective and design it to support
game play in every way.

Lessons Learned

H ow did TRESPASSER end up ship-
ping with the number of prob-

lems that it had? TRESPASSER was a pro-
ject with management problems at all
levels. It suffered from being an innova-
tive, technologically ambitious project
produced by a team with little previous
management experience at a company
which had not yet gained institutional
experience from publishing significant,
less-ambitious projects. 

It has been nearly half a year since
TRESPASSER shipped. In that time it has
gone from a gigantic Christmas letdown
to an occasionally-referenced joke. The
team has mostly disintegrated. Some
quit, some were let go, and those re-
maining were distributed across several
different projects. The engine is effec-
tively dead, and the new DreamWorks
motto is “licensed technology” — prob-
ably a good idea for the company but
pretty disheartening for the engineers
who created last year’s most innovative,
if not quite best, engine. A group of
Internet fans proclaimed themselves the
TRESPASSER Hacking Society and have
taken up the lunatic task of trying to fig-
ure out how to build a mod for an
engine which was barely usable with its
in-house tools.

That TRESPASSER shipped at all is a tes-
tament to the strength of the individual
members of its team. In looking back at
my own experience, I find that I learned
a lot about game development, and I’m
already putting that knowledge to
work. Although the game does not ful-
fill the many high hopes I had for it (or
even my base expectations), I am happy
with the work I put into it. I also hope
that every other person who con-
tributed to the massive effort is equally
proud of their work, and that sometime
in the future we all have a chance to
make a major project that succeeds
where TRESPASSER failed.  ■

Editor’s Note: A longer version of this
article is available on Gamasutra.com.

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

62

P O S T M O R T E M



waiting for that big recording deal to
come through, these developers don’t
realize the true potential of games as an
artistic medium. Even some of the high-
est-profile game industry personalities
seem more interested in using
games as a stepping stone into
Hollywood than they do in
making games a first-class art
form that can stand along-
side movies, music, books,
painting, and the other
accepted media. 

Why do I get so aggravat-
ed by these grass-is-greener
developers? Because they
don’t see games as a creative
medium worthy of respect.
Yes, one needs a bit of imagi-
nation and optimism to see
how games will someday be as
mature as literature or painting.
However, people also needed imagi-
nation back in 1900 to foresee how film
would be the mature art form it is today.
I’d bet the filmmakers who lifted movies
up from The Great Train Robbery to
today’s standards didn’t do it because
they all secretly wanted to be play-
wrights, painters, and musicians. They
did it because they could see the poten-
tial of motion pictures for creative and
artistic expression — and wide sociolog-
ical impact.

Developers often complain about the
limitations of games as an expressive
medium. We can’t have graphics as
detailed as Pixar’s animations, our audio
is lame compared to what you can get

out of a CD on your stereo, and so on.
Yes, there are loads of technical and aes-
thetic limitations to games. But you
don’t hear painters complaining that oil

paints aren’t

water solu-
ble, or that water
colors don’t create texture on the can-
vas. Artists who work in mature media
— like the different genres of paint,
film, and writing — revel in the differ-
ences between their media. They don’t
complain about them! Constraints and
limitations are part of a medium’s
charm and character — not to mention
its identity. If you want the characteris-
tics of oil paints, go use oil paints. If you
want a new medium that has the best
characteristics of both oil and water col-
ors, then go invent it — but don’t be

surprised if it doesn’t quite work out. 
Enough about other media. What is

the defining characteristic of games as
an artistic medium? The answer is clear:
interactivity. We finally have an art
form where the work of art itself can
respond to the viewer. Everyone in our
industry pays lip service to interactivity,
but this ability for each audience mem-
ber to create his or her own intimately
personal experience is the critical reason
why games will impact society at large,
not just testosterone-addled 16-year-old
boys. Interactivity is a completely novel

artistic opportunity, and it’s clear
from our crude attempts to

harness it that we have a
long way to go before our
craft matures. But it will
happen. 

In that poetically ironic
sort of way, interactivity is
the basis for all of our limi-
tations as a medium as well.
Films will always be more
graphically detailed than
games because they don’t
have to generate scenes in
real time. That’s an inherent

fact of interactivity. Yes, we
can always work towards more

realism and higher graphical
standards — but we will never catch
film on that front. Rather than sending
our resumes to Digital Domain, we
should recognize this limitation and
appreciate that in return, we’re gaining
something film will never achieve — a
true two-way dialog with the viewer.

We have a responsibility to our
nascent art to help it grow into a full-
fledged medium. Someone among us,
or someone who has yet to join the
game industry, will develop our equiva-
lent of Birth of a Nation and the world
will never be the same again. As a game
developer, you can either help this
medium reach maturity, or hinder this
process by viewing it solely as a step-
ping stone to other creative arenas. If
you’re not committed to the growth of
games as an art form, then don’t let the
door hit you on your way out.  ■

G A M E  D E V E L O P E R J U N E  1 9 9 9 h t t p : / / w w w . g d m a g . c o m

72

b y  C h r i s  H e c k e rS O A P B O X
So You Want to Do

Movies? Good Riddance!

Nothing annoys me more than game devel-

opers who long to work in a different

medium. From the artist who dreams of

working at ILM to the musician who’s

Chris Hecker hopes somebody does the game equivalent of Birth of a Nation soon, so
somebody else can do the game equivalent of Casablanca, his favorite movie. He can
be reached at checker@d6.com.


	back: 


