
JUNE 1998

G A M E D E V E L O P E R M A G A Z I N E

F ollowing trends in game
development is great sport
whether you’re inside or out-
side the industry, and with E3

upon us again, prognosticating which
games will be hits next Christmas is the
order of the day. One trend that’s begin-
ning to affect game development is the
impact of the sub-$1,000 PC on game
sales.

In 1996, the average price in the
home PC market went under $1,500 for
the first time. Compaq’s Presario led the
charge, offering sub-$1,000 systems
based on Cyrix’s MediaGX that often
came in sealed cases that had no
upgrade capabilities. Since their debut,
low-priced systems (also called “com-
modity PCs” or “basic PCs”) have
become standard fare at consumer elec-
tronic stores, mass-market retail chains,
and in the mail-order channel.

A sizeable portion of basic-PC pur-
chases come from first-time buyers who
now find they can afford a computer.
An IDC/A.C. Nielson study last
Christmas estimated a total of 1.5 mil-
lion new PCs would be sold during that
holiday season, 48 percent of which
were to first-time buyers. Are these new
PC owners different than the traditional
PC owners? Perhaps so. Back in May
1997, Marketing Computers (a magazine
worth reading if you want to follow
trends in system sales) identified an
emerging two-tiered marketing strategy
by PC manufacturers: middle-income
households were being split into upper-
and lower-income categories and were
being targeted differently. If systems
manufacturers are approaching this
middle-income market in a new way, it
begs the question , should game pub-
lishers as well?

This may already be happening. As
average PC prices have plunged, average
PC game prices have come down as
well. I did some quick calculations
based on PC Data games sales numbers
going back to 1995. Here’s what I found:
in 1995, the average price of the top 20
PC games for that year was $42.30. In
1996, that figure dropped 3.4 percent to
$40.85. In 1997, it dropped 6.4 percent
further to $38.25. For the latest month’s
results available as we go to press

(February 1998), the average game price
in that same list was $35.90.

Interestingly, as I scan last February’s
list (and many of the preceding
months), the make up of the best seller
list seems to be evolving as well. Last
month I stated that the typical RPGs
and action games based on science fic-
tion and horror themes that were so
prevalent in the best-seller list two years
ago seem to be in decline, while titles
based on licensed content from the
world of children’s toys are on the rise.
There seems to be another game devel-
opment trend that’s shaping up as well.
It’s a shift toward content that, in the
words of author Ben Sawyer, “enhances
the pre-existing interests of consumers.”
It’s based on the premise that if a gamer
enjoys an activity in the real world
(such as golf, snow boarding, or base-
ball), he or she might be inclined to buy
a game based on that activity.

Sunstorm/GT Interactive’s DEER

HUNTER is an example of leveraging pre-
existing interests. Its success, however,
may also be related to the rise of the
basic PC. Perhaps fantasy role-playing
games, a traditional staple game genre,
are too esoteric to a new tier of blue-col-
lar consumers that are buying their first
system? Maybe the steep hardware
requirements of these games make a
title like DEER HUNTER (which only
requires a Pentium-75MHz and 30MB of
hard drive space) look inviting.
Certainly DEER HUNTER’s $20 price tag
helps sales if you’re trying to attract a
consumer who’s very price-sensitive to
begin with. Whatever the reason behind
DEER HUNTER’s success, this market has
apparently been identified as low-hang-
ing fruit by other developers: games
based on trap and skeet shooting are
reportedly on the way, as well as games
about duck and geese hunting.

Where this is leading is still a big
question mark. But it should give you
pause. If the demographics of PC own-
ers shifts towards those who are more
price sensitive and less interested in tra-
ditional sci-fi/fantasy game themes, is
there an opportunity there for you? ■

G A M E D E V E L O P E R J U N E 1 9 9 8

4

P L A NG A M E

The DEER HUNTER Phenomenon
EDITOR IN CHIEF

MANAGING EDITOR

EDITORIAL ASSISTANT

ART DIRECTOR

EDITOR-AT-LARGE

CONTRIBUTING EDITORS

ADVISORY BOARD

COVER IMAGE

PUBLISHER

WESTERN REGIONAL SALES
MANAGER

EASTERN REGIONAL SALES
MANAGER

SALES ASSOCIATE

MARKETING MANAGER

AD. PRODUCTION COORDINATOR

DIRECTOR OF PRODUCTION

VICE PRESIDENT/CIRCULATION

ASST. CIRCULATION DIRECTOR

CIRCULATION MANAGER

CIRCULATION ASSISTANT

NEWSSTAND ANALYST

REPRINTS

CEO-MILLER FREEMAN GLOBAL

CHAIRMAN-MILLER FREEMAN INC.

PRESIDENT/COO

SENIOR VICE PRESIDENT/CFO

SENIOR VICE PRESIDENTS

VICE PRESIDENT/PRODUCTION

VICE PRESIDENT/CIRCULATION

VICE PRESIDENT/
SD SHOW GROUP

SENIOR VICE PRESIDENT/
SYSTEMS AND SOFTWARE

DIVISION

Alex Dunne
adunne@compuserve.com

Tor Berg
tdberg@sirius.com

Wesley Hall
whall@mfi.com

Laura Pool
lpool@mfi.com

Chris Hecker
checker@d6.com

Jeff Lander
jeffl@darwin3d.com

Josh White
josh@vectorg.com

Omid Rahmat
omid@compuserve.com

Hal Barwood

Noah Falstein

Brian Hook

Susan Lee-Merrow

Mark Miller

Presto Studios

Cynthia A. Blair
cblair@mfi.com

Alicia Langer
(415) 905-2156
alanger@mfi.com

Kim Love
(415) 905-2175
klove@mfi.com

Ayrien Houchin
(415) 905-2788
ahouchin@mfi.com

Susan McDonald

Dave Perrotti

Andrew A. Mickus

Jerry M. Okabe

Mike Poplardo

Stephanie Blake

Kausha Jackson-Craine

Joyce Gorsuch

Stella Valdez
(916) 983-6971

Tony Tillin

Marshall W. Freeman

Donald A. Pazour

Warren “Andy” Ambrose

H. Ted Bahr

Darrell Denny

David Nussbaum

Galen A. Poss

Wini D. Ragus

Regina Starr Ridley

Andrew A. Mickus

Jerry M. Okabe

KoAnn Vikören

Regina Starr Ridley

Miller Freeman
A United News & Media publication

www.gdmag.com

Goodbye, mTropolis

A s a game developer and long-time
mTropolis devotee, I’m extremely

unhappy about Quark’s decision to
pull the plug on the product. We have
over a thousand hours of work in our
game, THE FORGOTTEN, all done in
mTropolis, and we aren’t the only
ones. While we continue to work with
ex-mFactory employees and third-party
developers so that we can continue to
use mTropolis for our title develop-
ment, the abandoment of mTropolis —
if the product
only sits on
the shelf
— is not
just bad
for the
mTropolis
community,
but for small
game developers
everywhere who
have a great idea and a computer, but
not the budget to hire a raft of C++
programmers or 20 seats of
Authorware.

When I started using mTropolis, I
was amazed. I said, “This is what a
multimedia authoring environment
should be.” And I’m not alone.
Anybody who’s been a dedicated user
of the product has had the same
epiphany — and developing titles the
mTropolis way, they wouldn’t use any
other approach. It’s faster, more power-
ful, more productive, and more ele-
gant. It inspired pioneering, dedica-
tion, and loyalty from third parties and
end-users. We’ve worked on large pro-
jects for high-profile clients, as well as
our own game title, and mTropolis has
always performed like a champ. It’s a
reliable, robust, mature product that
deserves a chance — it’s the most per-
fect multimedia and game title devel-
opment environment I’ve ever seen.

I beg Quark to reconsider killing
mTropolis. If Quark will not or cannot
market, maintain, sell, and update
mTropolis as a product, I ask them to
please consider a few other options:

1. Making it public domain, with ex-
mFactory folk and the general
mTropolis community responsible for
future features and support. Quark, of
course, would still hold all patent rights
so that no competitor could use the
technology. But the existing user base of

this excellent, visionary product should
not be abandoned.

2. Releasing it to the ex-mFactory
people to maintain and update in their
spare time as they work at their new
jobs. Again, Quark retains all patent
rights so there is no threat of competi-
tion, and the existing mTropolis com-
munity can continue to use it.

3. Put it up for sale or license. Terms
of sale could

include
Quark holding onto the

patents, but would allow someone
to update, maintain, and make a small
profit on the mTropolis product.

4. Make it available free on-line with
PDF documentation and a general,
work-everywhere serial number. This
supports both the existing mTropolis
community and the dedicated third-
party developers making mTools and
MODs and other products for
mTropolis 2.0. I will donate server
space for this. Others, no doubt, would
also donate server space — especially
the third party developers whose liveli-
hoods have become dependent on
mTropolis. Quark holds all the patents,
so no one would be making any dam-
aging changes or additions.

5. Market it directly on-line for a
low-price — say $299 or $199 — with
PDF-only documentation, and see how
it does. If the market grows large
enough, it might just be profitable.

If these ideas won’t work, I would
appreciate Quark letting us know what
the problems are so I, and the larger
mTropolis community, can work to
solve them in a productive way that
will work for everybody. mTropolis is a
superior environment, a great produc-
tivity tool, and a visionary product. I
want to do whatever I can to make sure
that it doesn’t just die — and that it’s
available to the greatest number of
people possible. No solution would
make me as happy as Quark developing
and aggressively marketing the product
— but if that can’t happen, I would like
to see anything other than putting the
greatest title development environ-
ment on the planet on the shelf. There

have to be better alternatives — for
Quark, the third parties, and the
mTropolis and game developer com-
munities.

K e v i n S . W i l l i s

R a n s o m I n t e r a c t i v e

Using Velocity 128 with MAX 2

Iwas just reading the March 1998
issue of Game Developer and saw Josh

White’s review of MAX 2. In the article,
he mentioned problems getting the STB
Velocity 128 running with MAX 2. I’ve
been experimenting with the same card,
and here’s what I found:

Using DirectX: Your display needs to
be set to either 640×480 or 800×600
high color (the card will only work in 16
bits). You also need the DirectX 5 dri-
vers. We’re modeling baseball stadiums
with 20+ textures on meshes under
1,000 polygons, and it zooms.

Using OpenGL: Download the beta
OpenGL drivers for STB. Your display
needs to be set to 640×480 in high
color. (OpenGL uses the current display
color depth, and the STB can only han-
dle 16-bit.)

In the summer, a RIVA chipset will be
released allowing access to 8MB — so
more people can use it with MAX 2.

I like the idea of using a consumer-
level graphics board for art and anima-
tion production. In the game industry,
we need to be able to run game products
as well as production tools. Most high-
end boards won’t run games, primarily
because of their limited driver support.

As for the MAX 2 review, I agree with
White’s assessment of the product’s UI.
I hate the idea of an interface that only
gives me access to vertices, faces, or
edges on one object at a time. In MAX
2, you need to access an object, then it’s
modifer, then it’s subobject before you
can move one vertex. All I want is to
grab a vertex and move it without enter-
ing the decathalon event of the mouse
olympics.

This system does not work for artists.
If I was sculpting in clay, I could just
pinch and pull without any extra hassle.
I have immediate access to every part of
the clay. All of the other 3D programs
have that immediate access too. Why
not MAX?

C y r u s L u m

v i a e - m a i l

t

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

7

S A Y S Y O U

Solve the world’s problems. E-mail us
at gdmag@mfi.com. Or write to Game
Developer, 600 Harrison Street, San

Francisco, CA 94107.

DirectX 6 Imminent
MICROSOFT, after beginning a gener-
al beta at its CGDC Seminar Day last
May 9, is planning on releasing
DirectX 6 for Windows 95 in July,
1998. DirectX 6 will also be available
for Windows 98 and included in the
final release of Windows NT 5.

While details at press time were still
sketchy, Direct3D 6’s planned feature
set will reportedly include: support for
multiple textures, new rasterizers, a
geometry pipeline features, the
DrawPrimitives2 DDI, a texture memo-
ry manager, flexible vertex format, ver-
tex buffers, bump mapping, standard

fixed-rate texture compression, opaque
texture surfaces, alpha in texture
palettes, luminance, stencil planes, W-
buffering, and Z-buffer clearing.

However, word from the DirectX
Group is that, in order to minimize risk
to the DirectX 6 schedule, enhance-
ments to DirectDraw have been limited
to those that support new Direct3D fea-
tures, plus the following: full–screen-
only per-channel gamma control, the
motion compensation DDI, and hard-
ware de-interlacing support.

Microsoft is recommending to hard-
ware manufacturers that they continue
to improve and refine their DirectX 5
drivers, while adding new DirectX 6
functionality for release in drivers later

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

8

BIT BBBB LLLL
N E W S F R O M T H E W O R L D

J A P A N E S E P R E V I E W O A A

M A C H I N E . LBE
Systems, a U.S.
arcade game devel-

oper, recently showed
off a prototype of a Pentium

II-based arcade game machine in Japan at
the Tokyo Game Show ‘98. The machine,
based on a 333MHz Pentium II, was running
QUAKE II ARCADE EDITION. It was the first
demonstration of Intel’s Open Arcade
Architecture in Japan.
M T R O P O L I S K I L L E D . In a blow to its
devoted but admittedly small user base,
Quark Inc. announced that it was discon-
tinuing its mTropolis multimedia develop-
ment tool. The company acquired mFactory
a year ago, and proceeded to upgrade the
product to version 2.0, which it just shipped
in March. In a strange, bittersweet
announcement, the company said that it
was both shipping the product for free to
registered mTropolis customers, as well as
discontinuing it. Quark representatives
stated that mFactory technologies would
be incorporated into future Quark multime-
dia products and may be licensed to other
companies.
N I H I L I S T S U N I T E ! A new game devel-
opment company, Nihilistic Software, was
recently formed by industry veterans Rob
Huebner, Ray Gresko, and Steve Tietze.
Nihilistic will develop a 3D RPG as its first
title, and Activision has agreed to publish it
and two more of company’s upcoming
games. Gresko and Huebner previously
rubbed shoulders at LucasArts as lead and
senior programmers, respectively, on DARK

FORCES II: JEDI KNIGHT. Tietze is an game
artist and level designer who worked for
Rogue Entertainment on QUAKE MISSION

PACK #2, DISSOLUTION OF ETERNITY.
A N D I N T H I S C O R N E R . . . Here’s a
quick look at the legal fight card this

I N D U S T R Y
W A T C H
I N D U S T R Y
W A T C H

b y A l e x D u n n e

StudioPro Adds
Windows
STRATA INC. has
announced version 2.5 of
its StudioPro 3D modeling,
rendering, and animation
program. The big news with
this release is that StudioPro
now runs under Windows
in addition to its traditional
Macintosh environment.

Enhancements with this
version include multiprocessing support, network rendering, and velocity graphs.
With support for Windows 95 and Windows NT (and soon, Windows 98),
StudioPro now supports OpenGL. If you’re creating type effects, StudioPro supports
Postscript and TrueType fonts. Animation enhancements include four types of path
splines, individual frame visualization, and time-varying polymesh. Strata has also
added collision detection for particle effects such as PixieDust and Fountains.

And, of course, StudioPro is extensible, as any good 3D package should be.
Strata is planning a whole series of plug-in Power Modules, and for a limited time,
is offering Power Module 1 for free with the purchase of StudioPro 2.5. Power
Module 1 includes effects such as Deform, Smooth, Mirror, Hair, 3D Fire&Smoke,
3D HotSpot tools, 3D PixieDust, and bones-based inverse kinematics.

StudioPro 2.5 has a suggested retail price of $1,495. The upgrade price from any
2.x version of StudioPro is $99, and Strata is offering a competitive upgrade from
select other 3D packages for $599.
■ Strata Inc.

St. George, Utah

(800) 782-8233 / (435) 652-5221

www.strata.com

I

this year. Developers planning
Christmas titles should continue
developing their applications to the
existing DirectX APIs, while planning
DirectX 6 features as soon as they
receive the beta.
■ Microsoft Corp.

Redmond, Wash.

www.microsoft.com/directx/

New Miles
RAD GAME TOOLS INC. has released
its Miles Sound System 4.0. This new
version includes full DLS-1 MIDI sup-
port and integrated ADPCM compres-
sion support.

New DLS features include an inte-
grated software synthesizer (with
optional MMX support), support for S3
hardware DLS cards, tools to compress
DLS sample files, tools to extract specif-
ic instruments from a generic DLS file,
and tools to merge MIDI files with
instruments into one song file.

The addition of IMA ADPCM com-
pression support offers sound designers
high-quality audio with four-to-one
data compression. Plus, the Miles Sound
System decompresses ADPCM data on
the fly in its digital sound mixer.

Miles includes the new Sound Player,
a freeware application that can play
MIDI, XMIDI, DLS, compressed-DLS,
and .WAV files. Miles also includes the
Sound Studio utility, which can exam-
ine MIDI files, convert MIDI to XMIDI
files, compress and expand DLS files,
examine DLS files, compress and
expand .WAV files, and merge DLS files
with XMIDI files.

The Miles Sound Player and the
Miles Sound Studio can both be down-
loaded from RAD’s web site. The Miles
Sound System SDK is available for
Windows and is priced at $3,000 per
title or $7,500 per site.
■ RAD Game Tools

Salt Lake City, Utah

(801) 322-4200

www.radgametools.com

Acid
SONIC FOUNDRY has expanded its
already impressive line of audio pro-
cessing tools with the release of Acid, a
digital audio loop sequencer.

Acid automatically matches the
tempo and pitch of the loop for instant
synchronization. Users can change the
pitch of a project by simply selecting
the desired key from a drop-down
menu. A beats-per-minute slider adjusts
the tempo, and a the included tempo
map can slow down or speed up loops.

Acid supports as many tracks as your
system RAM can handle. Each track
includes the volume, pan, and effect
envelopes for greater editing control.
Acid features DirectX audio plug-in
support for incorporating real-time
effects, as well as quick access to Sonic
Foundry’s Sound Forge and other audio
editors. Acid is flexible enough to work
with other software products and exter-
nal hardware because it generates and
chases SMPTE time code.

The product also ships with hundreds
of prerecorded loops and will import 16-
and 24-bit .WAV and .AIFF files from
other sources. Non-looping, or one-
shot, sounds are also supported. Acid
can output .WAV or .AIFF files, or can
export to Sonic Foundry’s CD Architect
or any other audio CD program.

Acid is available for Windows 95 and
Windows NT and requires a Pentium
133MHz with a Windows-compatible
sound card. It has a suggested retail
price of $399.
■ Sonic Foundry

Madison, Wis.

(608) 256-3133

www.sonicfoundry.com

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

9

AAAA SSSS TTTT SSSS
O F G A M E D E V E L O P M E N T

month. In our first bout, we have Creative
Labs taking on Aureal over the latter’s
Vortex chips. The lawsuit seeks “injunc-
tive relief and damages” for alleged viola-
tions of a patent issued to Creative’s sub-
sidiary, E-mu. A second sparring match
involves Creative yet again, which filed a
patent infringement lawsuit against
Diamond Multimedia and ESS Technology,
alleging violation of a patent issued to E-
mu. The lawsuit relates to PCI audio tech-
nology embodied in Diamond’s Sonic
Impact sound cards and ESS’s Maestro-2
audio chip. And in our main event, SGI is
suing nVidia to block the company from
making its Riva processors. The lawsuit
charges that the Riva processors infringe
upon SGI’s patent covering high-speed
texture mapping in low-priced hardware.
The lawsuit seeks unspecified damages.
nVidia said it would vigorously fight the
lawsuit, but that’s got to hurt in light of the
fact that nVidia is in the process of going
public right now.
W H E N I S A L O S S G O O D N E W S ?

When the loss isn’t as bad as expected.
Witness Acclaim, which reported a a net
loss of $1.2 million on net revenues of
$69.3 million for its second fiscal quarter,
compared with a net loss of $16.8 million
on net revenues of $52.3 million in the
comparable quarter of 1997. The compa-
ny’s uptick was due to strong sales of N64
titles such as NFL QUARTERBACK CLUB ‘98,
TUROK: DINOSAUR HUNTER, NHL BREAKAWAY

‘98, and RIVEN. The company said N64
games generated 60 percent of sales dur-
ing the quarter.
B R O D E R B U M M E D . Broderbund laid off
70 employees, representing about seven
percent of its workforce, in a move driven
by the need to trim some fat from the com-
pany’s ranks. Most of those pink slipped
worked in the product development and
product marketing divisions. The company
revealed that the axe may fall again soon,
as it is looking for ways to eliminate $5
million in spending per year. Broderbund
recently posted earnings of $3.9 million, up
from $3.2 million for the same quarter a
year ago.

The Bit Blasts section of the April 1998
issue contained an announcement of
The Duck Corp.’s TrueMotion 2.0. The
phone number listed for Duck was
incorrect. The correct phone number is
(212) 941-2400.

Errata

b y J e f f L a n d e r G R A P H I C C O N T E N T

on a game project takes much longer
than the technical creation of the game
itself. This may seem like a waste of
time, but creating effective and easy-to-
use production tools is the single great-
est thing you can do to speed up your
project. I like to think that for every
week I spend speeding up the produc-
tion pathway by creating the right
tools for the project, I’ll save months of
production work down the line.

Sometimes, this is a tough concept
for management to grasp, especially
because those early days of tool devel-
opment don’t yield much in the way of
sexy demos. In fact, boring things with
no sales appeal at all, such as user
interfaces, can be very difficult to get
right. But, if you take your time and
solicit input from the people who’ll be
using the tools, things will work out
better. Also, your level designers will
love you for it.

This brings me to this month’s topic:
user interfaces. Last month, I demon-
strated skeletal deformation of a single
mesh (“Skin Them Bones: Game
Programming for the Web Generation,”
May 1998). These sorts of demo pro-
jects bring up a real problem. For these
demo projects, I want to focus on the
specific task that I’m demonstrating.
But, in order to get the minimum func-
tionality to demonstrate the concept, I
need to create quite a bit of structural
code. I end up writing hundreds of lines
of code just to demonstrate one routine
effectively. However, as graphics pro-
gramming topics get more and more
complex, this is a problem we all just
have to live with.

This specific skeletal-deformation-of-
a-single-mesh demo required that the
user be able to select vertices on the
mesh object so the weights for these
vertices could be adjusted. Sure, that’s
easy to say, but I need to translate it

into code. So what do I really need?

Pick Box

A s the programmer, I want to create
a selection box when the user

holds the [shift] key and drags the
mouse. Depending on whether the user
holds down the left or right mouse but-
ton, I want to select or deselect vertices
corresponding to this boxed-in area.
I’m going to call this graphic effect a
pick box. A pick box is shown in Figure
1. In the Win32 GDI, this would be a
pretty easy task. I can track where the
user clicked the mouse and draw a
rectangle with the GDI command
FFrraammeeRReecctt. However, I want to use
OpenGL because the rest of my ren-
der is in OpenGL and the code will
be cleaner. The other, more impor-
tant reason for employing OpenGL
is cross-platform compatibility. I can
easily convert this tool over to the
SGI or another OpenGL platform.
It’s also accelerated by OpenGL
hardware that supports hardware
rendering of line primitives.

So, how do I go about doing this
in OpenGL? You may think that it
would be as easy as drawing some
2D OpenGL primitive lines at the

end of my normal rendering loop. I
could accomplish this with some code
that looked like Listing 1.

The problem with this plan is that
my main render window is in perspec-
tive. The call to place a 2D vertex with
ggllVVeerrtteexx22ss assumes that z = 0. So this
code would draw a rectangle in world
space in the plane where z = 0. Once
perspective is taken into account, these
lines will be nowhere near where I
want them on the screen.

I really want to draw those 2D lines in
screen space instead of 3D world space.
Fortunately for me, OpenGL has a very
easy method for doing just this. I’ll need

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

11

Picking a Pack of Pixels

M uch of the technology I develop goes into the support of a game

project and is never seen by the game player. This technology takes

the form of the game development tools actually used to create the

game, rather than play it. Many times, the tool development

When not bending the bones of some strange alien creature, Jeff can be found hang-
ing out at his studio at the beach. See if you can smack some sense into him by writ-
ing to jeffl@darwin3d.com.

F I G U R E 1 . A sample pick box.

ggllBBeeggiinn((GGLL__LLIINNEE__SSTTRRIIPP));;
ggllVVeerrtteexx22ss((((sshhoorrtt))mm__SSeelleeccttRReecctt..lleefftt,,((sshhoorrtt))mm__SSeelleeccttRReecctt..ttoopp));;
ggllVVeerrtteexx22ss((((sshhoorrtt))mm__SSeelleeccttRReecctt..rriigghhtt,,((sshhoorrtt))mm__SSeelleeccttRReecctt..ttoopp));;
ggllVVeerrtteexx22ss((((sshhoorrtt))mm__SSeelleeccttRReecctt..rriigghhtt,,((sshhoorrtt))mm__SSeelleeccttRReecctt..bboottttoomm));;
ggllVVeerrtteexx22ss((((sshhoorrtt))mm__SSeelleeccttRReecctt..lleefftt,,((sshhoorrtt))mm__SSeelleeccttRReecctt..bboottttoomm));;
ggllVVeerrtteexx22ss((((sshhoorrtt))mm__SSeelleeccttRReecctt..lleefftt,,((sshhoorrtt))mm__SSeelleeccttRReecctt..ttoopp));;
ggllEEnndd(());;

L I S T I N G 1 . 2D OpenGL primitive lines.

to change my perspective view to an
orthographic parallel projection where
the value for z won’t affect the image.
However, I need to save my perspective
projection so I can go back to it after I’m
finished selecting. I do this by manipu-
lating the Projection stack much in the
way that I manipulated the ModelView
stack for my animation. I can push my
current projection matrix onto the stack
and then play around with it. The code
to do this is in Listing 2.

I first put OpenGL in Projection
mode with a call to ggllMMaattrriixxMMooddee, then I
call ggllPPuusshhMMaattrriixx. This saves the projec-
tion so that I can restore it later. I load
in a new matrix with the call to
ggllLLooaaddIIddeennttiittyy, then the call to gglluuOOrrtthhoo22DD
creates the new projection matrix with
the screen size information. This way,
the pixels match the window settings
exactly. One thing you need to remem-
ber is that OpenGL considers y = 0 to
be at the bottom of the screen. This
isn’t the way that the Windows screen
handles coordinates, and you’ll need to
adjust accordingly.

With all this work out of the way, the
problem becomes simply drawing the
2D lines. I can quickly accomplish this
with a series of GGLL__LLIINNEE__SSTTRRIIPP coordinates.
At the end of the routine, the matrix is
popped back and the MatrixMode is set
back to GGLL__MMOODDEELLVVIIEEWW, just to be friendly.

Now that I have my nice, hardware-
accelerated pick box, I need to know
how to detect what’s inside of it. That
brings us to...

Feedback

N ow, I’m not talking about the
feedback you get when your gui-

tar gets too close to the amp or, more
likely if you’re reading this, when your
voice recognition microphone gets too
close to your PC speakers. I’m talking
about the kind of feedback by which
OpenGL lets you know what it’s doing
behind the hardware curtain.

You see, when I was dealing with my
own software renderer, it was very easy
to find out what was going on. I could
find out where the vertices were in cam-
era space, screen space, texture space —
whatever. Enter hardware. With 3D
graphics hardware, all this information
is abstracted away from me, the pro-
grammer. I just give the objects to the
API in model space with their transfor-

mation information, and away it goes.
Because any portion of this pipeline
could potentially be accelerated by
hardware, it’s all hidden from my view.
Now, because I created the projection
matrix and know all the transforma-
tions, I could recreate the 3D math
pipeline and get the information that I
need. However, this is a lot of duplicate
work and wouldn’t allow for geometry

hardware acceleration. There are times
when I need to get in this deep, for
example, when doing the deformations
last month. Thankfully, however, this
isn’t one of those times.

OpenGL provides a mechanism for
getting the results of its transforma-
tion operations. This mechanism is
called feedback. You can put the sys-
tem in feedback mode and submit

G R A P H I C C O N T E N T

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

12

glMatrixMode(GL_PROJECTION); // I WANT TO PLAY WITH THE PROJECTION
glPushMatrix(); // SAVE THE OLD ONE

glLoadIdentity(); // LOAD A NEW ONE
gluOrtho2D(0,m_ScreenWidth,0,m_ScreenHeight); // USE WINDOW SETTINGS
glColor3f(1.0f, 1.0f, 1.0f); // DRAW A WHITE BOX
glBegin(GL_LINE_STRIP);
glVertex2s((short)m_SelectRect.left,(short)m_SelectRect.top);
glVertex2s((short)m_SelectRect.right,(short)m_SelectRect.top);
glVertex2s((short)m_SelectRect.right,(short)m_SelectRect.bottom);
glVertex2s((short)m_SelectRect.left,(short)m_SelectRect.bottom);
glVertex2s((short)m_SelectRect.left,(short)m_SelectRect.top);
glEnd();

glPopMatrix(); // RESTORE THE OLD PROJECTION
glMatrixMode(GL_MODELVIEW); // BACK TO MODEL MODE

L I S T I N G 2 . Drawing the pick box.

///
// Function: SelectVertices
// Purpose: Use Feedback to get all the vertices in the view
// Arguments: Should I select or de-select?
///
void COGLView::SelectVertices(BOOL select)
{
/// Local Variables ///

GLfloat *feedBuffer;
GLint hitCount;
tColoredVertex *meshdata; // IN THIS CASE THE DATA IS COLOR VERTICES
int loop;

///
// GET A TEMP POINTER TO THE ACTUAL VERTEX DATA
meshdata = m_BaseMesh;
// INITIALIZE A PLACE TO PUT ALL THE FEEDBACK INFO (3 DATA, 1 TAG, 2 TOKENS)
feedBuffer = (GLfloat *)malloc(sizeof(GLfloat) * m_Mesh.desc->pointCnt * 6);
// TELL OPENGL ABOUT THE BUFFER
glFeedbackBuffer(m_Mesh.desc->pointCnt * 6,GL_3D,feedBuffer);
(void)glRenderMode(GL_FEEDBACK); // SET IT IN FEEDBACK MODE

for (loop = 0; loop < m_Mesh.desc->pointCnt; loop++)
{

// PASS THROUGH A MARKET LETTING ME KNOW WHAT VERTEX IT WAS
glPassThrough((float)loop);
// SEND THE VERTEX
glBegin(GL_POINTS);
glVertex3f(meshdata[loop].x,meshdata[loop].y,meshdata[loop].z);
glEnd();

}
hitCount = glRenderMode(GL_RENDER); // HOW MANY HITS DID I GET
CompareBuffer(hitCount,feedBuffer, select);

// CHECK THEM AGAINST MY SELECTION
free(feedBuffer); // GET RID OF THE MEMORY

}
////// SelectVertices ///

L I S T I N G 3 . Creating the Feedback buffer.

some buffer space to the renderer.
OpenGL then fills this buffer with the
information used in creating your dis-
play. Before you set OpenGL in feed-
back mode, you also need to tell the
renderer about the buffer that it
should fill with information. This is
accomplished with a call to
ggllFFeeeeddbbaacckkBBuuffffeerr ((ssiizzee,, ttyyppee,, bbuuffffeerr));;

where ssiizzee is the length in ffllooaatts of the
buffer you provided, ttyyppee is the format
of the information you want, and
bbuuffffeerr is a pointer to the actual buffer.
In my application, I want the users to
select the vertices needed for weight-
ing. This means that I can represent all
the vertices as GGLL__PPOOIINNTT primitives. For
this type of application, the informa-
tion type I’m interested in is OpenGL
type GGLL__33DD, as I just want the x, y, z
coordinates of the transformed point.
Next, I calculate the size of buffer that
I’ll need. Since I’m drawing all the ver-
tices with GGLL__PPOOIINNTT and I’ve set the type
to GGLL__33DD, I’ll be getting back four ffllooaatts
for each vertex. The extra ffllooaatt will be
a token, a number defined in OpenGL
to represent a operation type, which
declares what the next set of data will
be. I also want a method for knowing
which original vertex is being drawn.
If some portion of the model is off the
screen, it will be clipped and not
returned in the feedback buffer. If any
vertex were clipped, I wouldn’t be able
to count on getting information for
every vertex in order. This would make
deciding what vertex was selected a lot
more difficult.

So, I add what’s called a
GGLL__PPAASSSS__TTHHRROOUUGGHH__TTOOKKEENN for each vertex. The
token is equal to the vertex number
that I am currently drawing. This token
will mark each vertex as it passes
through to OpenGL, telling me which
vertices ended up in the view. The addi-
tion of the pass-through token brings
the total amount of data returned for
each vertex to six ffllooaatts. You can see the
layout of that information in Table 1.

Now that all this set up work is fin-
ished, I can send all the vertices to the
renderer and look through the buffer.
The final code to set up and render the
feedback buffer is in Listing 4. The final
step in the feedback rendering process is
to figure out how much data is in my
buffer after the render is complete. The
call to reset the render mode back to
normal actually returns the number of
data items placed in the buffer. I grab

that number and pass it on to the rou-
tine that compares the buffer.

Checking Your Results

O nce my feedback buffer is filled
and I know how many items are

in it, it’s time to find
out if any of these
points are within my
selection rectangle.
It’s a very straight
forward march
through the data
buffer. When I get a
GGLL__PPAASSSS__TTHHRROOUUGGHH__TTOOKKEENN, I
save the data value
as the current vertex.
The next token

G R A P H I C C O N T E N T

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

14

///
// Function: CompareBuffer
// Purpose: Check the feedback buffer to see if anything is tagged
// Arguments: Number of hits, pointer to buffer, Should I select or de-select
///
void COGLView::CompareBuffer(GLint size, GLfloat *buffer,BOOL select)
{
/// Local Variables ///

GLint count;
GLfloat token,point[3];
int loop,currentVertex;

///
count = size;
while (count)
{

token = buffer[size - count]; // CHECK THE TOKEN
count—;
if (token == GL_PASS_THROUGH_TOKEN) // VERTEX MARKER
{

currentVertex = (int)buffer[size - count]; // WHAT VERTEX
count—;

}
else if (token == GL_POINT_TOKEN)
{

// THERE ARE THREE ELEMENTS TO A POINT TOKEN
for (loop = 0; loop < 3; loop++)
{

point[loop] = buffer[size - count];
count--;

}
// CHECK IF THE POINT WAS IN MY SELECTION RECTANGLE
// FLOATS 0 AND 1 ARE SCREEN X AND Y
// NOTE: OPENGL SETS THE BOTTOM Y=0
if (point[0] >= m_SelectRect.left &&

point[0] <= m_SelectRect.right &&
point[1] <= m_SelectRect.top &&
point[1] >= m_SelectRect.bottom)
// SET THIS VERTEX TO THE CURRENT SELECTION VALUE
m_SelectFlags[currentVertex] = select;

}
}

}
////// CompareBuffer //

L I S T I N G 5 . Checking if I selected anything.

vertex number

GGLL__PPOOIINNTT__TTOOKKEENN

x (transformed to screen space)

y (transformed to screen space)

z (transformed to screen space)

TA B L E 1 . GL_PASS_THROUGH_TOKEN.

//// IINNIITTIIAALLIIZZEE AA BBUUFFFFEERR ((33 DDAATTAA,, 11 TTAAGG,, 22 TTOOKKEENNSS)) PPEERR VVEERRTTEEXX

ffeeeeddBBuuffffeerr == ((GGLLffllooaatt **))mmaalllloocc((ssiizzeeooff((GGLLffllooaatt)) **

mm__MMeesshh..ddeesscc-->>ppooiinnttCCnntt ** 66));;

//// TTEELLLL OOPPEENNGGLL AABBOOUUTT TTHHEE BBUUFFFFEERR

ggllFFeeeeddbbaacckkBBuuffffeerr((mm__MMeesshh..ddeesscc-->>ppooiinnttCCnntt ** 66,,

GGLL__33DD,,ffeeeeddBBuuffffeerr));;

The call to put OpenGL in feedback mode is

ggllRReennddeerrMMooddee((GGLL__FFEEEEDDBBAACCKK));;

L I S T I N G 4 . The final code to set up the Feedback buffer.

should be a GGLL__PPOOIINNTT__TTOOKKEENN with the x, y, z
coordinates in screen space. I simply
compare the x and y portions of this ver-
tex to the selection rectangle, remember-
ing that OpenGL considers y to be 0 at
the bottom of the screen. If the trans-
formed vertex is in the selection rectan-
gle, I set the selection flag for that vertex
according to the selection mode. You
can see this routine in Listing 5.

So What Do I Have Now?

T hese techniques prove very effec-
tive in allowing a user to select spe-

cific vertices in a 3D model. While I use
these OpenGL methods to create a user
interface for a development tool, there
are many other potential uses. It would
be very easy to use the pick box and
feedback method in a real-time strategy
game to select units. In fact, any appli-
cation that requires selection of an
object in a 3D rendered window could
benefit from methods such as these.

There is no specific demo this
month. You can look at the source
code and application from May 1998 to
see how these things turned out. Get
the goods on the Game Developer web
site (www.gdmag.com). ■

G R A P H I C C O N T E N T

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

16

I mainly relied on the Red and Blue

books for the information in this col-

umn. These are the main reference

books for OpenGL, and I recommend

them highly to anyone working in

OpenGL.

Woo, Mason, Jackie Neider, and Tom

Davis. OpenGL Programming Guide:

The Official Guide to Learning

OpenGL. Second Edition. Menlo

Park, Calif.: Addison-Wesley

Developers Press, 1997.

Kempf, Renate, and Chris Frazier (eds).

OpenGL Reference Manual: The

Official Reference Document to

OpenGL. Second Edition. Menlo

Park, Calif.: Addison-Wesley

Developers Press, 1997.

The White book also has been useful to

me, as it applies directly to OpenGL

on Windows 95 and Windows NT.

Fosner, Ron. OpenGL: Programming for

Windows 95 and Windows NT.

Menlo Park, Calif.: Addison Wesley

Developers Press, 1997.

RR EE FF EE RR EE NN CC EE SS

S everal of you have written to me pointing out that some of the commenting in

the Quaternion SLERP code in April 1998 had it all wrong. The code in ques-

tion handled a fairly rare and extremely specific case. The routine functioned

as expected, but my commenting of the special case handling was the prob-

lem. I noticed the error myself after the issue was shipped. See the corrected code below.

The first comparison checks for a special case where the two quaternions are almost

directly opposite within the angle threshold. If not, they are handled by either SLERP or

LERP depending on the change in angle. If the quaternions were directly opposite, the

sine of the angle between them would be zero, leading to a divided by zero error. So, the

routine instead creates a perpendicular quaternion and interpolates through that one.

This is a rare case. In fact, I needed to force situations to test it out. I originally thought

the test’s purpose was to ensure travel by the slowest arc. The Watt and Watt book men-

tions this but doesn’t implement it in code. I added code to do this, but found that really

wasn’t what I needed. In many situations, I wanted to travel by the exact arc I keyframed

and not the shortest. I apologize for any confusion. The lesson here is to always experi-

ment and create many sample conditions to test the limits of a routine. I’m happy that

people followed what I was talking about enough to point out problems. I hope this is a

learning process that we all gain from.

vvooiidd SSlleerrppQQuuaatt((ttQQuuaatteerrnniioonn **qquuaatt11,,ttQQuuaatteerrnniioonn **qquuaatt22,,ffllooaatt sslleerrpp,, ttQQuuaatteerrnniioonn **rreessuulltt))
{{
////// LLooccaall VVaarriiaabblleess //

ddoouubbllee oommeeggaa,,ccoossoomm,,ssiinnoomm,,ssccaallee00,,ssccaallee11;;
//

//// UUSSEE TTHHEE DDOOTT PPRROODDUUCCTT TTOO GGEETT TTHHEE CCOOSSIINNEE OOFF TTHHEE AANNGGLLEE BBEETTWWEEEENN TTHHEE QQUUAATTEERRNNIIOONNSS
ccoossoomm == qquuaatt11-->>xx ** qquuaatt22-->>xx ++

qquuaatt11-->>yy ** qquuaatt22-->>yy ++
qquuaatt11-->>zz ** qquuaatt22-->>zz ++
qquuaatt11-->>ww ** qquuaatt22-->>ww;;

//// CCHHEECCKK AA CCOOUUPPLLEE OOFF SSPPEECCIIAALL CCAASSEESS..
//// MMAAKKEE SSUURREE TTHHEE TTWWOO QQUUAATTEERRNNIIOONNSS AARREE NNOOTT EEXXAACCTTLLYY OOPPPPOOSSIITTEE?? ((WWIITTHHIINN AA LLIITTTTLLEE SSLLOOPP))
iiff ((((11..00 ++ ccoossoomm)) >> DDEELLTTAA))
{{
//// AARREE TTHHEEYY MMOORREE TTHHAANN AA LLIITTTTLLEE BBIITT DDIIFFFFEERREENNTT?? AAVVOOIIDD AA DDIIVVIIDDEEDD BBYY ZZEERROO AANNDD LLEERRPP IIFF NNOOTT

iiff ((((11..00 -- ccoossoomm)) >> DDEELLTTAA)) {{
//// YYEESS,, DDOO AA SSLLEERRPP
oommeeggaa == aaccooss((ccoossoomm));;
ssiinnoomm == ssiinn((oommeeggaa));;
ssccaallee00 == ssiinn((((11..00 -- sslleerrpp)) ** oommeeggaa)) // ssiinnoomm;;
ssccaallee11 == ssiinn((sslleerrpp ** oommeeggaa)) // ssiinnoomm;;

}} eellssee {{
//// NNOOTT AA VVEERRYY BBIIGG DDIIFFFFEERREENNCCEE,, DDOO AA LLEERRPP
ssccaallee00 == 11..00 -- sslleerrpp;;
ssccaallee11 == sslleerrpp;;

}}
rreessuulltt-->>xx == ssccaallee00 ** qquuaatt11-->>xx ++ ssccaallee11 ** qquuaatt22-->>xx;;
rreessuulltt-->>yy == ssccaallee00 ** qquuaatt11-->>yy ++ ssccaallee11 ** qquuaatt22-->>yy;;
rreessuulltt-->>zz == ssccaallee00 ** qquuaatt11-->>zz ++ ssccaallee11 ** qquuaatt22-->>zz;;
rreessuulltt-->>ww == ssccaallee00 ** qquuaatt11-->>ww ++ ssccaallee11 ** qquuaatt22-->>ww;;

}} eellssee {{
//// TTHHEE QQUUAATTEERRNNIIOONNSS AARREE NNEEAARRLLYY OOPPPPOOSSIITTEE SSOO TTOO AAVVOOIIDD AA DDIIVVIIDDEEDD BBYY ZZEERROO EERRRROORR
//// CCAALLCCUULLAATTEE AA PPEERRPPEENNDDIICCUULLAARR QQUUAATTEERRNNIIOONN AANNDD SSLLEERRPP TTHHAATT DDIIRREECCTTIIOONN
rreessuulltt-->>xx == --qquuaatt22-->>yy;;
rreessuulltt-->>yy == qquuaatt22-->>xx;;
rreessuulltt-->>zz == --qquuaatt22-->>ww;;
rreessuulltt-->>ww == qquuaatt22-->>zz;;
ssccaallee00 == ssiinn((((11..00 -- sslleerrpp)) ** ((ffllooaatt))HHAALLFF__PPII));;
ssccaallee11 == ssiinn((sslleerrpp ** ((ffllooaatt))HHAALLFF__PPII));;
rreessuulltt-->>xx == ssccaallee00 ** qquuaatt11-->>xx ++ ssccaallee11 ** rreessuulltt-->>xx;;
rreessuulltt-->>yy == ssccaallee00 ** qquuaatt11-->>yy ++ ssccaallee11 ** rreessuulltt-->>yy;;
rreessuulltt-->>zz == ssccaallee00 ** qquuaatt11-->>zz ++ ssccaallee11 ** rreessuulltt-->>zz;;
rreessuulltt-->>ww == ssccaallee00 ** qquuaatt11-->>ww ++ ssccaallee11 ** rreessuulltt-->>ww;;

}}
}}
//// SSlleerrppQQuuaatt //

Mea Culpa Code

b y J o s h W h i t e A R T I S T ’ S V I E W

Oldtimer: That’s no excuse, son. Back in
my day, we had to hand-draw the
polygons with graph paper and slide
rules. Now, with all them power steer-
ing and chrome knobs for darn near
everything, you young-uns are fat
and lazy.

Whipper: Now hold on just a minute,
Oldtimer. You’re being impolite to
my XG4000ProArtStation? Why, this
thing’s got AutoLOD, 16MB texture
RAM, and chrome spark plugs.

Oldtimer: Boy, that thing couldn’t even
draw a Cathy cartoon by itself! It’s
just a machine. Real art is drawed by
real people, not some clipart-snorting
contraption.

Whipper: Hey now, I just spent four
years slaving in the Superior Academy
of Artwork Excellence, so don’t tell
me I don’t know how to draw.

Oldtimer: Heh, heh. O.K., now hold
them horses a minute. Ain’t no doubt
you can draw. I saw that nekkid sword-
lady with the chainmail brassiere and
all that you drawed. Hoowee!

Whipper: That’s right. BondoGirl is a
honey. I guess you were on the hiring
committee, huh?

Oldtimer: Yes indeedy. I know you got
talent, or you wouldn’t even be here.
Now, all you pups need is a little
schooling in squishing all that talent
into something that your graphics
engine contraption can handle.

Whipper: Hmph. I bet modern times
have passed you by, Oldtimer. What
do you know?

Oldtimer: Skeptical, eh? O.K., take a
look at this here Figure 1. That
church only uses two 128×128 full-
color textures — it ain’t but 96K tex-
ture memory.

Whipper: O.K., not bad. So how did you
do it?

Oldtimer: Boy, I got so many different
tricks, I don’t even know where to
start. I’d talk your leg off before I
could explain all the stuff what goes
into this model.

Whipper: Sure, pops. I bet you’re going
to tell me how to match palettes, like
they did for World War II, right?
Well, guess what. This is the modern
age, and we don’t use 8-bit palettes
any more. All the new graphics
engines have 16-bit color and bucket
seats. I bet you don’t know much that
really matters anymore.

Oldtimer: Tarnation, you young things
are uppity! You just set back and let
the Oldtimer tell you how it’s done.
We’ll just talk about texture maps
today, since that’s all your fresh little
pea-brain could handle in one day.

Whipper: O.K., I’m ready.

Oldtimer’s First Lesson: Use
Symmetry When Possible

F irst off, see the two church doors
in Figure 1? They look exactly like

each other, right? Well, that’s because
they’re the same texture, used twice. I
just painted half the texture — saves a
whole heap of memory right off the
bat. Look at the textures in Figure 2
and you’ll see what I mean.

It’s especially easy to apply symmet-
ric textures when the geometry is also
symmetric, as is this church. That’s
because you can do the two steps at the
same time. Build half the geometry,
apply the texture and mapping to the
half, mirror it, and you’re done.

Also, this trick works best when the
geometry doesn’t touch the original, as
with the towers of the church. When
you’re building something like the main
body of the church or a head, things get
tricky at the centerline. The hitch? You
have to keep a few of the vertices on the
mirror plane, even if the geometry
doesn’t use them. That’s so the mapping
coordinates get stored at the centerline.

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

19

Josh White runs Vector Graphics, a real-time 3D art production company. He wrote
Designing 3D Graphics (Wiley Computer Publishing, 1996), he has spoken at the
CGDC, and he cofounded the CGA, an open association of computer game artists.
You can reach him at column@vectorg.com.

Oldtimer’s Guide

to Better Textures

O ldtimer: Hell’s bells, boy, them textures are lamer than my old sway-

backed mule.

Whippersnapper: Well, gosh, Mr. Oldtimer, what can I do? I’ve only got

100K of texture memory, and I have to texture a whole building with it.

F I G U R E 1 . Church model.

For example, you’d keep the vertices
circled in Figure 1, even though they’d
normally be useless because they don’t
define anything. But here, if you weld
them up, you’d get a nasty texture
stretch along the bottom. So reusing
textures with symmetry usually adds a
few extra vertices, but since it saves all
that memory, most folks decide it’s
worthwhile.

“O.K., sure,” quips young Whipper.
“Trading a couple of vertices for a large
memory savings makes sense. That
worked pretty well here, but what if
your model isn’t symmetric?”

That’s a problem all right, and
usually, it can’t be helped. But some-
times you can sweet-talk the designer
(if you aren’t designing the model
yourself) into changing the design so
you can get some symmetry reuse.
Obviously, however, that’s not prac-
tical for most asymmetric models.

If you can’t use symmetry, try to
think of other ways to reuse the tex-
tures. For example, maybe you can use
the doors on the long side of the
church, as well as on the front. This is
usually a lot more difficult and time-
consuming than simply building half,
texturing, and mirroring, and it’s often

not worth your time unless your tex-
ture budgets (you do know how much
texture memory you’re allowed to use,
don’t you?) are really tight.

Oldtimer’s Second Lesson: Use the
Lowest Color Depth Possible

T his is a simple one: if your graphics
engine can handle them, save

most of your textures in a simple color
format. For example, instead of saving
your textures in 24-bit, use 16- or 8-bit.

Of course, artists love 24-bit because
it gives millions of colors, no banding,
and so on. Why would you give that
up? When you don’t need it, 24-bit
color is often wasteful. Figure 3 is
intended to help you understand how
much data is used by an image: you
have to know dimensions and color
depth to know the memory usage. The
32-bit image (24-bit plus 8 bits of
alpha) on the left is using four times
the memory of the 8-bit image on the

right. For textures such as this, it’s
completely overkill. There aren’t more
than 256 unique colors in the texture,
so the 8-bit image will look exactly as
good as a 24-bit image. There isn’t any
masking or usage of the alpha channel
either, so that’s a total waste as well.

Still not sold on the idea of reducing
color depth? Think of it this way: you
could either store a single 24-bit wall, or
three 8-bit walls — one plain, one with
a window, and one with a dirt smudge.
Which option will give you a better-
looking model at the end of the day? I’ll
bet you’d rather have some windows
and dirty parts. Most textures don’t look
bad in 8-bit... and if you do find one
that curdles the eyeballs, you can always
keep that one as a 16- or 24-bit image.

But, there’s a major caveat. “If the
graphics engine can handle them” is,
right now, a really common limitation.
In a normal 1998 game, it’s rare that
the graphics engine will store an 8-bit
texture. Usually, 8-bit textures are con-
verted to 16- or 24-bit when the graph-

A R T I S T ’ S V I E W

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

20

F I G U R E 3 . Different color depths.

F I G U R E 2 . Church texture 1.

Whipper: My XG4000Model-O-Matic soft-

ware supports texture cropping. It’ll let

me tile a piece of a texture map instead

of using the whole thing.

Oldtimer: Heh heh... you young pups.

Son, you ever tried exporting that tiled

object into any graphics engine — even

a rusty old VRML browser?

Whipper: Well, not exactly… You sug-

gesting that it wouldn’t work? Why

not?

Oldtimer: Darn tooting it wouldn’t,

unless one-a-them grease monkey pro-

grammers wrote a special handler for

it, and maybe not even then. Problem

is, that tiling assumption is built into

the actual graphics hardware of your

hotrod 3D graphics card — the chip

itself does the tiling from the edges of

the bitmap.

Whipper: ...oh.

Oldtimer: There’s your first big lesson.

Don’t never think nothing in your 3D

modeling program will work in the

graphics engine, unless you know for a

fact that it does.

Whipper: Yeah, yeah, O.K., what else you

got to tell?

Unsupported Modeling Tool Features

ics engine loads them. That’s the worst
of both worlds — all the banding of an
8-bit image, with all the memory usage
of a 24-bit image.

Native support for 8-bit images is an
important feature to ask your program-
mers for, so let me say it loud and
clear: RT3D engines and hardware
should have full support for textures
with multiple color depths.

Oldtimer’s Third Lesson: Fighting the
Power-of-Two Texture Sizing

T ake a look back at Figure 2, one of
the two textures on the church.

Now look back at the church in Figure
1, especially where the tower meets the
main building. It’s hard to see, so look
closely. You’ll see that sloping-roof
part is used separately from the tower
part. That means what we really have
here is a couple of textures clumped
into one image.

Of course, it’s harder to map that
way, but I didn’t just make two sepa-
rate textures for no reason. We’re fight-
ing the limits of that graphics engine
again. This time, the rule is to use tex-
tures that are a power of two in size.

We separate the two textures on the
model by placing the mapping coordi-
nates so that each texture is used where
it belongs on the model, like the front
of the church in Figure 5. The big yel-
low lines show three vertices in mesh
and the UV coordinates of those ver-
tices on the texture. The point is that
the front faces aren’t mapped to the
edge of the texture.

This trick isn’t very convenient. It
takes more time to hassle with projec-
tion mapping icons, lining everything
up right. Still, if you want the best use
of your texture memory, it’s what you
have to do. Another problem, while
we’re thinking about drawbacks, is that
you can’t tile the texture with most
graphics engines, because they assume
that the mapping goes all the way to
the edge when it wraps around.

Oldtimer’s Fourth Lesson: Using
Stretch/Streaking

Y ou may already know this one,
but if you have a texture that nat-

urally streaks, such as the roof of the
church, it still looks O.K. if you squish

it in the streaking direction, then
stretch it back out to the original size
with mapping (Figure 6).

The lower row of roofs are images of
the textures above them, mapped
stretched-out so that they all fit the
same polygon. On the left is the origi-
nal, which looks same above and below.
In the middle, the top image is squished
50 percent, but you can hardly tell in

the bottom. On the right, the poor tex-
ture was squished 75 percent, which is
to say it lost three pixels out of four.
You can start to see banding, but it’s not
really that bad. Actually, it’s darn near
O.K. where the color doesn’t change so
much at the top of the image. It’s a
small trick, but the idea is to build your-
self a toolbox of little tricks to rummage
through when you’re stuck.

A R T I S T ’ S V I E W

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

22

F I G U R E 5 . Partially mapping a texture.

F I G U R E 6 . Stretched textures can

look O.K. for certain designs. F I G U R E 7. Ballroom floor.

Whipper: Power of two? What’s that?

Oldtimer: Well, I’ll be. Son, a power of

two is when you keep doubling two: 2,

4, 8, 16, 32, 64, 128, 256, 512, and on

and on. You’ll see them numbers every-

where in computers if you look.

Whipper: That’s so stupid! Powers of ten

make more sense to me.

Oldtimer: See, now powers of two are as

easy as powers of ten for the computer.

In base two, which is how them rattle-

traps work, you get to the next power of

two by adding a

zero, just like we

do with 10 to 100.

Computers can

handle these

powers of two

right quick-like.

Whipper: Huh, O.K.

Oldtimer: Anyway,

so we got to make

all textures pow-

ers of two in size. See how each image

is a quarter of the next in Figure 4?

Whipper: Yeah, they’re a big jump in

quality.

Oldtimer: Danged right it’s a big jump.

Each different size uses four times the

memory of the previous one. Say we got

the front texture of the church and it’s

200 pixels wide. We don’t need a

256x256 texture, but we want something

better than 128x128. What’ll we do?

Whipper: Ah, I see. That’s when we put two

images in the same

texture — like you

were saying before

we got out in this

sidebar — to fill out

the 256x256 texture.

Oldtimer: Yeehaw!

That’s right. Now

let’s get back to

the main lesson

body.

The Power of Two Thing

F I G U R E 4 . Texture scaled by powers

of two.

Oldtimer’s Fifth Lesson: Use Tiling of
Small Textures Where Possible

Do you hate tiling? You can’t abide
all those repeating patterns, right?

You’ve seen too many grasslands that
look like green linoleum?

There’s a whole art to making repeat-
ing patterns that don’t stand up and
bite you. Although tiled textures always
looks worse than untiled, sometimes
tiling is the only thing you can do —
there just isn’t enough texture memory.
Anyway, you can get nice results with
tiling — look at the floor in Figure 7.

“That’s not tiled!” protests Whipper.
“There’s gradient light on it... or is that
QUAKE lighting?” It’s a tiled image with
a blended lightmap over it. Take a look
at the components in Figure 8.

What you can’t tell from the images
is how much memory that saved. That
floor is a 2,000×1,000-pixel area, with
just four 64×64 textures. It’s using
three 16-bit marble textures that are 64
pixels square on the left: one green,
one brown, and one red (just on the
edge of the starburst). Then there’s the

lightmap, which is 64×128, but only
8-bit grayscale, so it uses about the
same memory as a 64×64 color texture.
So it used 8,192 bytes per each of the
four textures, for a total of 32K texture
memory. Compare that to a worst-case
4,194K texture memory to cover that
area in 16 bits without tiling.

Finale

W hipper: Wow, that’s pretty
darned good.

Oldtimer: Why thank you, son. Of
course, the reason it works so well is
texture blending, combining the
lightmap with the floor textures.
Turns out there’s all sorts of fancy
new ways to do that. Like see here...

Whipper: Err, unfortunately, I’m, uh,
late for an appointment. Perhaps
tomorrow you can come by and show
me what you know about texture
blending, O.K.?

Oldtimer: O.K., go run off and leave me
here. Maybe I’ll see you next month.
Kids these days... ■

23

F I G U R E 8 . Ballroom floor construction.

b y O m i d R a h m a t H A R D T A R G E T S

cutting-edge games with special sound
effects, and a whole raft of new tech-
nologies that are becoming available to
mainstream PC and add-in board man-
ufacturers,’’ said Geoff Ballew, senior
industry analyst at Dataquest.

The disappearance of the ISA bus;
the emergence of three distinct, but
complementary, audio APIs from
Microsoft; and lower-cost, higher-per-
formance audio engines are all going to
have an influence on the audio subsys-
tem. International Data Corporation
(IDC), a leading market research firm,
goes so far as to predict that, one way
or another, the audio add-in business
as it’s known today will all but disap-
pear soon after the turn of the century
in the United States, and not long
afterward internationally.

The first dramatic changeover will
occur as ISA boards disappear and are
replaced by PCI cards that use ISA
hardware for backward compatibility.
IDC predicts that PCI controllers that
maintain ISA compatibility through
software emulation will soon take the
lead, but that eventually host-based
digital audio will begin to take over.
The United States market will drive this
evolution, just as it has in other audio
trends. Sixty-two percent of all audio in
the United States will be host-based by
2001. Worldwide, only 42 percent of
all audio solutions will be host-based
by 2001, according to IDC.

Mercury Research believes that PCI
audio accounted for between 10 and 15
percent of the market, with ISA solu-
tions making up the balance towards
the end of 1997. But the company’s
forecast foresees a shift in 1998 to
approximately 25 percent PCI solu-

tions early in the year. By the end of
1998, PCI is expected to account for
about a 60 percent share of the audio
market (Figure 1).

The big volume in sound card sales
overwhelmingly favors Creative Labs,
who number among their competitors

Aztech, Diamond Multimedia, and
Turtle Beach. With over 70 percent of
the market share, Creative is going to
be hard to displace. That’s why, for so
many players in the audio market, the
transition to PCI audio (and by associ-
ation, DirectX) appears to be an enor-

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

25

Real Markets: Watching Trends

in the Audio Acceleration Market

T his is about as exciting a time as you could hope for in the audio accelera-

tion market. “The PC audio chip market is expected to top $700 million

this year and grow to over $1 billion by the year 2000. This massive

buildup is due to the need for advanced audio features for DVD movies,

Omid Rahmat works for Doodah Marketing as a copywriter, consultant, tea boy, and
sole employee. He also writes regularly on the computer graphics and entertainment
markets for online and print publications. Contact him at omid@compuserve.com.

M
ill

io
ns

 o
f U

ni
ts

 S
ol

d

100

90

80

70

60

50

40

30

20

10

0

19981997 1999�

Multi-chip Audio

PCI Audio

ISA Audio

F I G U R E 1 The PC audio market goes PCI.

mous opportunity. While the legacy
of Sound Blaster remains an important
part of the history of the evolution of
gaming on the PC platform, for game
developers this transition offers a
chance to redefine audio quality and
effects in previously impossible ways.
And anything that can enhance the
overall PC gaming experience is a
good thing.

The Players

S o, Creative Labs is the undisputed
king of the PC audio market.

However, Creative was slow to move
beyond the world of its own Sound
Blaster ISA-moribund standard to the
emerging PCI market. So, Creative used
its deep pockets to buy one of the lead-
ing PCI audio companies, Ensoniq, and
followed this move with the acquisi-
tion of speaker-maker Cambridge
Soundworks. By signing a couple of
checks, Creative has bought all of the
components of an audio subsystem,
from software algorithms to the chips
that drive them to the speakers that
make the noise. Creative also has a sub-
sidiary, E-mu Systems, which makes
audio accelerators. The company has
been quick to move from the higher-
cost audio products that it was used to
selling to lower-cost products that can
find their way into users’ hands
through PC and systems OEMs.

In its efforts to fight the tide of PCI
audio, Creative took its battles to high-
er ground when it recently announced
that the U.S. Patent and Trademark
Office had granted it a patent on PCI
wavetable audio technology (patent
number 5,698,803). Creative calls it
Digital Sampling Instrument
Employing Cache Memory, and
according to the company, this tech-
nology permits the audio chip to more
effectively utilize system memory. It
also covers methods enabling efficient
use of the PCI bus on personal comput-
ers — allowing the audio chip to han-
dle complex wavetable support with-
out significant additional memory
dedicated only to audio, and without
requiring time-consuming re-accessing
of system memory. The patent repre-
sents one in a family of patents rooted
in E-mu’s wavetable technology.

The first thing Creative did with its
patent was file a lawsuit against

Diamond Multimedia and ESS
Technology. The suit relates to PCI
audio technology embodied in
Diamond’s Sonic Impact family of
sound cards and ESS’s Maestro-2 chip.
And of course, Diamond and ESS are
vigorously defending themselves. In
the rapidly changing audio market,
what’s at stake is ownership of audio
acceleration on the PCI bus. Diamond’s
initial foray into audio was based on its
Monster Sound brand product, a board
that doesn’t have legacy support, but is
aimed at the game enthusiast who
wants wavetable synthesis, positional
audio, and all the other goodies that
come with high-end audio on the PC.

Will Strauss, president of market
research firm Forward Concepts, put
things in perspective by saying, “From
a chip standpoint, Yamaha and ESS
Technologies have dominated the
sound synthesis market in the past, but
PCI audio has brought in a host of new
players, including Cirrus Logic
(through their Crystal Semiconductor
division), Aureal Semiconductor,
EuPhonics/Analog Devices, and even
Creative Labs (through their E-mu and
Ensoniq subsidiaries).”

Yamaha, once the largest PC audio
chip supplier, is now one of the top five
suppliers. The company’s single-chip
solutions offer a good mixture of fea-
tures and performance. The OPL3-SA
has a Sound Blaster compatible interface
for legacy systems. The famous OPL3
FM synthesizer that made Yamaha’s
name is also an integrated codec (com-
pression-decompression device).

ESS Technology owns a third of the
PC audio chip market. The company
isn’t focused purely on audio products,
but has built quite a reputation and
market position for itself around the
Maestro line of PCI audio accelerators.

ESS took its market leadership position
by integrating FM synthesis in a single-
chip solution in the mid-1990s, and
although the company had to fight
Yamaha over patent issues, the compa-
ny has grown to be the supplier of one
of the largest groups of OEMs, includ-
ing IBM, Sony, and Compaq.

Cirrus Logic has a wide range of
audio products and is among the top
three PC audio vendors. Cirrus, like
Analog Devices and many other audio
chip vendors, is looking at the future
integration of audio and modem cir-
cuitry. The company also has its hooks
in the notebook market, where Cirrus
has enjoyed past successes as a graphics
chip vendor.

Aureal Semiconductor originally
spun off of the infamous Media Vision
in 1995. The company not only builds
3D audio solutions, but also licenses its
technology to Analog Devices, ATI,
Cirrus Logic, Diamond Multimedia, and
S3. The company’s first PCI controller,
the Vortex, combines Sound Blaster
compatibility, wavetable synthesis,
DirectSound and DirectSound 3D accel-
eration, as well as support for Aureal’s
proprietary A3D positional 3D solution.

EuPhonics is unique in the influence
it has on the PC audio market because
it doesn’t make PC audio chips itself.
Instead, the company provides the
software that supports DSP-based (digi-
tal signal processing) audio products,
as well as drivers and other core tech-
nologies for wavetable synthesis, 3D
spatial and localized audio, and Sound
Blaster compatibility.

Analog Devices was one of the main
proponents and developers of the AC-
97 standard for audio. Insofar as
Analog Devices has been a pioneer, the
company has failed to build a leading
business position. Still, the company is

H A R D T A R G E T S

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

26

Company Audio Expertise
Harris Semiconductor AC-97 codec.

Motorola DSPs for high-end audio cards.

Oak Technology Audio/modem chipset, and audio logic chipsets.

Opti Variety of solutions. Company has a large presence in market.

Qsound 3D audio software technology.

Rockwell Wavetable synthesis.

S3 PCI audio solution, SonicVibes.

SAL Spatializer 3D audio technology.

SRS Labs 3D audio technology.

VLSI New entrant in the PCI audio market.

Some other players in the PC audio market.

a noted player in the DSP chip market.
Using its DSP expertise to bring low-
cost, but powerful DSP audio solutions
to the PC market using EuPhonics soft-
ware technology, Analog Devices has
positioned itself very well for the
future. The company’s DSPs are found
in Diamond’s Monster Sound audio
accelerators, and it will be interesting
to see how it integrates modem and
audio functions on future products.

Microsoft has probably the most
dominant position in the PC audio mar-
ket as a result of the control they exert
over the operating system. In the
Windows 98 WDM (Windows Driver
Model), the intention is to remove the
need for Sound Blaster compatibility
hardware. This will obviously impact
the chipsets being built in the future
(provided things go according to plan).
Of course, Intel is also desperate to
increase the features of CPU-centric
audio acceleration. This may have an
impact on the market, but Intel’s desire
to eat up cycles sometimes ignores the
practical realities of the way software,
particularly game software, works. So,
whether the host is capable of process-
ing all of the features of DirectMusic,
DirectSound, and DirectSound 3D at the
same time is debatable.

Trends

F or the true game enthusiast, and
for most consumers, hardware

acceleration of audio is going to
remain a key ingredient in the PC gam-
ing experience. There are also a num-
ber of technical reasons for this.

Dr. Jeffrey Barish, president and CEO
of EuPhonics says, “Concurrency is key,
and that is why audio acceleration
should be a significant consideration
for game developers. With DirectMusic,
you have 64 voices, and you have about
32 streams of audio for DirectSound,
and finally, about 8 streams for 3D posi-
tional sound. The general MIDI stan-
dard was 24 voices, and it was up to
about 32 voices until recently. So, you
can see that the need exists to balance
the audio load between the CPU and an
audio accelerator to get the most of out
of what today’s audio standards allow.”

Todd Moore, audio product line mar-
keting manager for Diamond
Multimedia sees another dynamic in the
market, “With extreme price pressure in

the sub $1,000 PC market, OEMs and
system integrators are being forced to
use less-than-perfect audio solutions to
remain price competitive. Meanwhile,
the most exciting PC audio technology
is only available via audio add-in cards.”

DSPs have grown cheaper and more
powerful in recent years, and seem des-
tined to become even more price/per-
formance competitive in the coming
years. Some audio vendors see this as
an opportunity to consider future DSP
generations as supporting game audio,
the general AC3 standard, and maybe
even modem support. It may be diffi-
cult for vendors to create compelling
audio/modem solutions because of the
different natures of the two industries,
but the advantages of a lower-cost,
small-footprint solution are seen as
positive enhancements for those com-
panies producing DSP solutions.

And, of course, there is the question
of intellectual property rights and who
gets to own audio technology.
Creative has acquired and developed a
very strong portfolio. In the world of
3D positional audio, DirectSound 3D
has not proven to be a panacea, and so
there are likely to be a number of com-
peting algorithms in the marketplace.
DLS, the downloadable sound stan-
dard from the MMA (MIDI
Manufacturers Association), is a great
opportunity for game developers to
customize audio palettes and to build
more effective audio special effects
into their titles. The consumer is get-
ting the best of all these changes. With
Windows 98’s WDM, we will probably
say good-bye to Sound Blaster and
move into a new realm of audio devel-
opment. So, the audio market looks as
though it’s experiencing a major
upheaval for the better.

Yet, one problem remains — the
speakers and audio set-ups on the aver-
age desktop. Because of the way our ears
work, there are fundamental limitations
in 3D positional audio. That means the
effect with two speakers is very limited.
Whether users will treat PC audio solu-
tions the way they treat home theater
audio or music stereo is still open to
debate. Speakers on today’s PCs are
much better than they were even a year
ago, but the more pricing pressure is put
on the PC market, the more add-on
components suffer. So, even your great-
est audio efforts may end up lost in a
haze of distorted speaker sound. ■

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

27

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

28

A W A R D SF R O N T L I N E

T H E F I R S T A N N U A Lffrroonntt lliinnee

AAWWAARRDDSS

P H O T O G R A P H Y B Y C A R T E R D O W

P H O T O G R A P H Y B Y C A R T E R D O W

B Y A L E X D U N N E

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

29

toolboxes of game developers and
honor the best solutions inside. We
created the Front Line Awards to do
just that.

These awards, which play off the
tag line of the magazine (“On the front
line of game innovation”), recognize
the most innovative and productive
software products available for creating
professional games. Some of the
products you’ll see in the following
pages were created specifically for the
purpose of game development, while
others are more generalized tools
that happen to work particularly
well to solve problems associated with
game development. We also decided to
honor some consumer hardware prod-
ucts — we felt it would be a great
change of pace for game developers
to pat the backs of the hardware
technology companies that make
games look and sound as good
as intended.

The Front Line Awards were present-
ed in a ceremony early last month at
the CGDC in Long Beach. Because
of the lead times associated with
magazine publishing, as I write this,
this ceremony has not yet happened,
and consequently there are no thrilling
shots to show you in this issue of
people gushing tears as they accept
our awards. You can, however,
check out these pictures at our
web site.

The Categories

T he spectrum of products we recog-
nize with these awards is necessari-

ly wide; the many different disciplines
required to create games makes this
so. There are 13 categories this year,
encompassing programming, art/
animation, music/audio, production,
and the aforementioned graphics and

audio hardware. Next ye\ar, it will
likely grow to include even more — we
didn’t want to bite off more than
we could chew our first year.

In order to be eligible for this year’s
awards, products had to have been
released within 18 months prior to
December 31, 1997. That window of
eligibility corresponds to the generally
accepted notion that games take about
that long to develop; therefore game
development tools released during that
period likely had the biggest impact in
the industry prior to our cut-off date.
Each of the following 13 pages show-
cases the winning products in each cat-
egory, accompanied by a brief descrip-
tion by one of the judges as to why it
was selected.

The Judging Process

I f you ask any of the judges listed
below, they'll tell you that the

judging process was hard work. It
began last fall when we began to accept
product nominations on our web site
from magazine readers and the judges
themselves. These nominations made
up an initial ballot, which the judges
narrowed down to five finalists, then
eventually to a winner in each category
(receiving the Front Line Award) and
two runner-ups (beneficiaries of the
Preferred Product Award). In addition,
we inducted some venerable products
into our Hall of Fame.

To qualify for the Hall of Fame,
products have to be at least five years
old, and must have had significant
impact on game development. Hall
of Fame Awards have been handed
out to a number of products that no
longer exist, but it's comforting to
know that some tried-and-true tools
have stood the test of time, improving
themselves with each new version.

The Judging Cadre

D ue to the fact that the magazine
wanted to recognize a broad

spectrum of products, the judges them-
selves had to have experience in many
different areas of game development.
We drafted our columnists, advisory
board members, magazine contribu-
tors, and professional game developers
from our readership for the task,
and each person sat on one to three
categories that best matched
their skill set. The judges this
year were as follows:
Dave Bagget • Seamus Blackley
• Chuck Carr • Helen Cho • Jeanne
Collins • Scott Corley • Tzvi Freeman
• Chris Hecker • Brian Hook • Rob
Hubbard • Rob Huebner • Mike
Kelleghan • Andre Lamothe • Jeff
Lander • Mark Miller • Casey Muratori
• Larry O'Brien • Bobby Prince • Bob
Provencher • Greg Pyros • Matt Saettler
• Todd Siechen • Dave Sieks • Bryan
Stout • Dan Teven • Dave Thielen
• Josh White

It’s hard to express the gratitude that
the magazine owes each of these peo-
ple. Their input during the judging
process was insightful, educational,
and oftentimes funny. Special thanks
also go out to the magazine’s own
Wesley Hall, who helped marshall the
judging process this year and kept the
Front Line Awards on track.

You may or may not not agree
with some of the choices on the fol-
lowing pages. Just remember that all
awards, by nature, are subjective. Our
judges feel that these products exhibit
superior features and/or performance,
offer distinct advantages over their
competitors, and in no small part
have helped move the game
development industry forward.

At the end of the day, what more can
you ask?

f one thing’s for certain about game development, it’s that it never stands

still. Technology and tastes change, and as they do, the tools that usher games

along from ideas to gold masters must follow. When we relaunched this maga-

zine over a year ago, one of our editorial goals was to peek into theII

30

F R O N T L I N E A W A R D S

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

PREFERRED PRODUCTS

I n a world full of
hype one com-

piler has always hit
the mark —
Microsoft Visual
C++. Historically
groundbreaking in
Windows develop-
ment and imple-
menting the latest
technologies,
VC++ 5 is without
a doubt the best
C/C++ compiler for the PC. Version 5 has
support for just about every new and old
Microsoft technology such as standard
Windows SDK programming, MFC libraries,
ActiveX, COM, RTTI (Run Time Type
Information), and the latest STL (Standard
Template Library). In addition, the develop-
ment studio is one of the slickest in the busi-
ness, allowing incredible control over compila-
tion, optimization, multiple targets, and more.

For those of you that might be a little skeptical, I tested
VC++ 5 against Borland, Watcom, GNU, and more. Although

these other compilers, most notably Borland and Watcom,
come in a very close second, they simply don’t have the
tight integration and features that VC++ does. The only
downfall of VC++ 5 is in the area of hobbyist — the days of
DOS are dead as far as Microsoft is concerned, hence there is
absolutely no support for DOS programming. However, this
shouldn’t be that much of a surprise since VC++ hasn’t sup-
ported DOS since version 2.0. On the other hand, there is
“Console App” support making quick and dirty experimen-
tation and DOS text-like apps still feasible (with 32-bit

memory addressing!). And of course, Microsoft com-
pilers have never been known for being resource

friendly, so I suggest at least 200MB of disk
space and at least a Pentium 100mhz
to make compiling a bearable
process. Remember, VC++ is a high-
ly optimizing compiler and takes a
little longer to perform the code
analysis, but the project depen-
dencies are very smart and the

compiler supports pre-compiled headers,
to speed the process up as much as possi-
ble. So, if you want to do some serious

Windows or game programming with DirectX then VC++ 5
is the way to go! —André Lamothe

97
front line

D E V E L O P E R

A W A R DA W A R D

WATCOM C/C++ (POWERSOFT):
This product is one of the most important
tools in gaming history. It’s the compiler
that was used to write DOOM from id
Software. Not only is the compiler a “to
the metal” product that creates the most
optimized C/C++ code I’ve ever seen for
the DOS platform, it targets more operat-
ing systems than any other product. Once
it became known that Watcom C/C++ cre-
ated DOOM, developers got a copy and
started creating games like wildfire with it
and its bundled DOS Extender by Rational
Systems, DOS4GW (which also deserves
note as the kernel that made protected
mode compilers possible).

—André Lamothe
BORLAND C++ (B0RLAND):
Borland has almost always been ahead of
the technology curve. They had the first
integrated graphics, the Borland Graphics
Interface (BGI),which allowed you to write
graphics games with a single tool. Back
when compilers came on a dozen floppies
and consisted of a slew of separate editors,
compilers, linkers and debuggers,
Borland’s IDE products fit onto just one.
They don’t fit on a single floppy any more,
but their commitment to quality and
innovation remains unabated. Over the
years, no one has done it better.

—Mike Kelleghan

V I S U A L C + + 5 . 0
(M I C R O S O F T)

P R O G R A M M I N G
E N V I R O N M E N T S

C++ BUILDER
(BORLAND):

C ++ Builder pro-
vides true visual,

component-based
development. Just

plop a few controls on a form, edit
their properties in the object inspec-
tor, fill in a few event handlers, com-
pile, and run. This is the way visual
development should work.

But is it good for game develop-
ment? In a word: yes. Whether I use it
as my primary development tool, or as
a RAD platform for creating in-house
utilities, editors and the like, C++
Builder is my compiler of choice. Its
well thought-out Visual Component
Library makes creating GUI applica-
tions a snap. Builder also includes sup-
port for COM, ActiveX controls and
the Active Template Library (ATL), so
programmers aren’t limited to what’s
available in the VCL. Additionally,
with support for just about every stan-
dard that’s important to C++ program-
mers, Win32, MFC, STL and finally
COFF object files (note to DirectX pro-
grammers: no more IMPLIB!), Builder
can do everything the other guys can
do, and more. — Bob Provencher

CATALYST/TORCH (NEWFIRE):

C atalyst was very different from
the IDEs that dominate this cate-

gory. Not only was it intended for a
narrower audience (developers of real-
time 3D games), but it was intended
for a narrower part of the develop-
ment cycle. It could create VRML 2.0
worlds, or you could take assets that
you’d already created plus Java or C++

code that you’d
already written,
hook them together,
and tweak.

Catalyst’s UI had
a few rough edges, but the rendering
engine, Torch, was fast, feature-rich,
and deployable either as a DLL or a
browser plug-in. Torch could use a
variety of rasterizers and made good
use of hardware acceleration. It also
had facilities to analyze and improve
the playback speed of a scene.

Unfortunately, Newfire ceased busi-
ness operations after the Front Line
Awards judging took place. This sad
news underscores the risks inherent in
building tools for game developers.
We hope to see more products as
ambitious as Catalyst next year.

— Dan Teven

HALL OF FAME

A PI designers inevitably
have to balance the two

opposing goals of abstraction
vs. efficiency. At one end of the
spectrum, an API does little

good if it requires programmers
to deal with hardware minutiae to get decent performance.
Likewise, no programmer wants an elegant API for a
system that’s 100 times slower than code written
“down to the metal.”

OpenGL’s architects (and now the OpenGL
Architectural Review Board) met the challenge
and delivered a 2D and 3D graphics API that
performs well across the gamut of graphics
hardware, yet presents a straightforward proce-
dural interface that makes sense for
videogames, high-end modeling software, and
everything in between. OpenGL offers the pro-
grammer a sensible idiom: a ggllBBeeggiinn((XX)) call pre-
pares OpenGL to receive coordinates for a primi-
tive of type X; subsequent ggllVVeerrtteexx(()) commands
specify the vertex positions; then a ggllEEnndd(()) call
tells OpenGL to close out the primitive.
Building upon this methodology, OpenGL pro-
vides a uniform interface for drawing points, lines, triangles,

quads, n-gons, triangle strips and fans, and even NURBS sur-
faces. Programmers use the same syntax to draw to a display
list or remote machine.

OpenGL’s ggllBBeeggiinn ggllEEnndd abstraction nicely shields the
developer from hardware details, but maps onto typical ren-
dering hardware capabilities well enough that the perfor-
mance loss is tolerable. Furthermore, since its inception,
OpenGL has dictated hardware design — Silicon Graphics’
rendering hardware deliberately targets OpenGL, and now

many 3D accelerator card manufacturers do too. This
trend should continue to lessen OpenGL’s perfor-

mance penalty for video games. Interestingly,
however, one of OpenGL’s unsung

virtues is that it isn’t meant just for
games. This means that game pro-
grammers can use the same API
for (and even share code
between) a run-time game

engine meant for a Pentium, and
design tools destined for the team’s

R10000 or Alpha workstations.
Direct3D vs. OpenGL politics aside, this

API is well-designed and feature-packed,
and able to meet game programmers’

demands in both run-time and tool code. —Dave Baggett

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

31

THE MILES SOUND SYSTEM
(RAD GAME TOOLS):

Before RAD Game Tools bought
it, the Miles Sound System used to
be known as AIL. Most people sim-
ply called it the “Miles drivers.”
Regardless, this library was essential
for DOS game development because
it solved the thorny problem of
sound card compatibility. The dri-
vers just plain worked — and John
Miles arguably deserves a place in
the Hall of Fame for that alone. But
the high quality of the product
extends well beyond the drivers.
MSS features the same clean pro-
gramming interface under both
DOS and Windows, efficient resam-
pling and mixing, low playback
latency, and good documentation.
John Miles also gave great customer
support. It’s no coincidence that
Microsoft based version one of
DirectSound on the Miles mixer.
Although MSS needed little
improvement, RAD has diligently
added new features: Redbook audio,
for instance. RAD’s also continued
the tradition of great support. MSS
is nearly as valuable today as it’s
ever been. — Dan Teven

HALL OF FAME

DIRECTX 5.0 (MICROSOFT):

N aming DirectX 5 a preferred prod-
uct is a bit like naming rain a pre-

ferred weather condition. It’s some-
times inconvenient, and often messy,

but we couldn’t get
along very well with-
out it.

DirectX 5 boasted improvements in
almost every area, but the force-feed-
back API was one of the most popular
new features. And the addition of
DrawPrimitive to Direct3D took some of
the urgency out of the D3D/OpenGL
debate.

Previous DirectX releases legitimized
Windows as a game platform by tunnel-
ing through several layers of operating
system overhead, by providing standard
interfaces for hardware acceleration, by
guaranteeing a lowest common denom-
inator through hardware emulation,
and by taking the burden of device sup-
port away from applications. DirectX 5
continued these trends by giving dis-
play hardware access to DirectDraw sur-
faces, by opening up DirectSound3D to
hardware acceleration, by adding an API
for audio input, and by solving compat-
ibility problems caused by upgrading
device drivers. —Dan Teven

GLIDE (3DFX):

3D accelerator cards went from
expensive developer tools to

affordable consumer playthings when
low cost cards finally hit the market.
The outstanding cards in the batch
were all based on the same chipset, the

3Dfx Voodoo
Graphics. For devel-
opers eager to take
advantage of this
card, 3Dfx provided

Glide, a no-nonsense API that’s easy to
learn and provides the functionality a
developer needs to take full advantage
of the Voodoo Graphics chipset.

At a time when standard 3D APIs
were unsupported or in development,
3Dfx provided a way for developers to
build successful games with the Voodoo
Graphics chipset. The approach that
3Dfx took with this API was appreciated
by many developers — many wish it
was the only one required.

The game world needs its common
APIs for 3D cards, but for now, support-
ing 3D cards directly has definite perfor-
mance advantages. Glide provides a
good example of direct support without
any hassle.

—Scott Corley

97
front line

D E V E L O P E R

A W A R DA W A R D

O P E N G L 1 . 1
(O P E N G L A R B)

P R O G R A M M I N G
L I B R A R I E S
A N D A P I S

B ack in the
good old

days, game pro-
grammers could
safely ignore the
few K of code in
the ROM charita-
bly called “the
operating system”
and just code
directly to the
hardware in assem-
bly language. But not anymore — now develop-
ers must write applications that coexist with mul-
titasking operating systems and access hardware
only through APIs. Generally speaking, this means
using a high-level language (HLL) like C or C++.

High-level languages have numerous advantages
— they make most programmers more productive,
and HLL code is more maintainable and portable
than assembly language. The fact remains, howev-
er, that code designed specifically for a particular architecture
and hand-written in assembly language can often outperform
even carefully crafted HLL code by an order of magnitude.

Fortunately, most programs have only a few performance
bottlenecks. Optimize these routines, and the program will
run dramatically faster. The obvious compromise, then, is to
write the majority of a game in an HLL and a few critical sec-

tions in assembly language. The hard part is identifying those
critical sections.

Enter VTune. Run your program through VTune, and
VTune will tell you where the hotspots are. Of course, in prac-
tice it’s more complicated that that, and making full use of
VTune requires time to learn its intricate interface and mas-
tery of Intel x86 assembly language programming.

VTune exemplifies massive overkill. No one writing a
standard Windows application needs to drill down to

the assembly level and stare blearily at instruction
timings and explanations of why two opcodes

won’t pair on a Pentium.
But game programmers, almost

alone among developers these
days, often do need to do just that.
A 3D action game tangibly
improves with every cycle saved,

and VTune, more than any other profil-
er on the market, gives us what we need: the

sledgehammer of optimization tools.
VTune can analyze programs using time-based

sampling, event-based sampling (using a Pentium Pro or
Pentium II’s built-in sampling hardware), or statically, by esti-
mating the performance or a piece of source code. It even has
a “code coach” that recommends source code changes. New
to version 2.5 is JIT-compiled Java support.

Intel — you get a gold star. And in software, of all things!
— Dave Baggett

97
front line

D E V E L O P E R

A W A R DA W A R D

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

32

BOUNDSCHECKER
(NUMEGA LAB):

What strikes fear into the hearts of game
programmers everywhere? The chance
that their game engine contains a memory
leak or overwrite. Fortunately NuMega’s
BoundsChecker finds both memory and
API errors. BoundsChecker is really two
tools in one. It helps catch memory leaks,
array boundary violations, and heap over-
writes, all without recompiling the code. It
also validates all the Windows API calls
made by a program, to ensure that the
application adheres strictly to the API rules
and to avoid problems on current and
future Windows platforms. — Rob Huebner
SOFTICE (NUMEGA LAB):
Why was SoftICE — a debugger that’s
normally used on operating systems
and device drivers — selected to a game
development Hall of Fame? Because a
difficult bug in an operating system or a
driver has turned up during almost
every game development campaign. In
those situations, SoftICE is a capable
solution an much less expensive than
hardware debuggers.

This rock-solid product has signifi-
cantly improved year after year, even
though it dominates the third-party
debugger market. — Dan Teven

V T U N E 2 . 5
(I N T E L)

MSDN LIBRARY (MICROSOFT):

B ack in the early days of Windows
programming, programmers had

to struggle with somewhat incomplete
documentation and
virtually no infor-
mation about bugs

and issues that might be important to
them. But Microsoft changed all that.
MSDN Library is a quarterly compila-
tion of virtually everything they know
about their products. Well, OK, there’s
probably some super-secret information
that doesn’t make it onto the MSDN
Library, but it’s no less remarkable for
that — it’s what does go into the MSDN
Library that is astonishing.
Documentation on virtually all of
Microsoft’s SDKs as well as the com-
plete knowledge base (KB) of bugs and
information of use to programmers. All
of this packaged with an easy-to-use
viewer with powerful query capabilities
make it a must have for every program-
mer’s library of tools.

— Bob Provencher

SMARTHEAP (MICROQUILL):

SmartHeap provides two invaluable
services. First, it has the best heap

(that’s new and malloc) debugging check-
ing ever. It finds
and fixes heap
errors like over-
writing the end of the heap, accessing
Freed memory, and so on. It also pro-
vides much faster heap management
than Visual C++. In addition to the stan-
dard heap allocation routines, it pro-
vides more specialized heap allocations.

SmartHeap can create a heap where all
allocations are the same size. This makes
it blazingly fast and eliminates fragmen-
tation for that heap. It can also create
pools where you can allocate multiple
times within the pool, and then free the
entire pool in a single call (as opposed to
thousands of free calls if you called malloc
thousands of times for that pool).

SmartHeap is invisible until it either
finds a bug or you want to use one its
advanced heap management calls. Your
program will speed up because the stan-
dard heap calls are so much faster.

— Dave Thielen

F R O N T L I N E A W A R D S

HALL OF FAME PREFERRED PRODUCTS

P R O G R A M M I N G
U T I L I T I E S

T he Sound Ideas 6000 Series Extension is a collection of
sound effects. Although it was difficult to compare the

divergent products in this category, I think the results reflect
current industry practice. Most game developers don’t use
stock 3D models because they often prefer to create these
from scratch. I don’t, however, know of a single game sound
developer who doesn’t regularly use sound effect
libraries.

A good sound library allows game sound designers
to take advantage of hours of field work done by
professionals in an affordable, well organized, con-
venient format. Sound libraries come in many
configurations, some as specialized as to contain
only airplanes or automobiles. While these are
valuable if you need the exact sound of the door
opening on a 1996 Ford Taurus, they are generally
too expensive and specialized for widespread
adoption. What game developers really need is a
great, all-purpose, well recorded, comprehensive
collection of sounds at a reasonable price. In 1992,
Sound Ideas introduced just such a collection, the 40 CD
6000 series (AKA The General). The General quickly became a
cross industry (games, film and TV) standard.

Building on this success and feedback from their users,
Sound Ideas decided to put out a sequel to the 6000 series,
called the 6000 Series Extension. Over a year and a half was
put into gathering survey results from their users, planning,
and digitally recording new sounds to complement and com-

plete the original.
David Yewdell
(Starship Troopers,
Fifth Element) has
contributed over
two CDs worth of
sounds to the
Extension. As with
the 6000 series, all
of the sounds are
digitally recorded,

clean, and well mas-
tered. According to Sound Ideas,
over ten times as much material
was recorded as was used, and each
sound was quality controlled by at
least three people before being

inserted in the library.
Overall, the 6000 Series Extension

admirably fills in many of the holes that
existed in the 6000 Series with offerings such as a full comple-
ment of switch and button sounds. Ambiences are smooth,
loopable, and free from clicks and other distracting artifacts.
Impact sounds are meaty. There are nice collections of new
doors, crowd sounds, firearms, and telephones. With the
addition of the Extension, the 6000 Series from Sound Ideas is
now the single most essential piece of stock media for any
game development company. — Mark Miller

97
front line

D E V E L O P E R

A W A R DA W A R D

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

33

18 PERFECT PEOPLE (ZYGOTE):

H uman characters are one of the most difficult things to
model in a 3D program. This is where 18 Perfect People

comes in handy. This CD-ROM contains high quality 3D
meshes of perfect people. In the collection, you will find
male, female, and child meshes, both clothed and
unclothed. There are two styles of meshes, separate objects
for the body parts and single mesh versions. Best of all, the
disc contains models in all the popular 3D file formats
including 3DS, DXF, OBJ, and HRC. This makes it easy to
bring them into your favorite modeler. The polygon counts
on these models are a bit high for real-time applications:
about 10,000 polygons on average. However, they can be
easily reduced or modified to lower polygon counts. The
collection will certainly give you a great head start on creat-
ing your own 3D characters. — Jeff Lander

CONCEPT:FX (F7 SOUND AND VISION):

I have to admit that when Michael Oster con-
tacted me about his “Concept: FX” CD-ROM,

I was hesitant to take a listen. I did listen
though, and it was worth the time. This CD is a
collection of 195 “unusual” royalty-free sound

effects for the PC and Mac in five formats (AIFF @ 44.1khz, 16-bit
stereo, Internet AIFF @ 11.025khz, 8-bit Mono, WAV @ 44.1khz,
16-bit stereo, multimedia WAV @ 22.05khz 16-bit stereo and
Internet WAV @ 11.025khz 8-bit mono). “Royalty-free” is impor-
tant: This means that one can use the sounds without having to
pay for each use. The sound effects on the CD were recorded
with a microphone that mimics the human head. The result is
an effect that is “like being there.” Those recorded sounds were
then heavily processed. This is not your typical sound effects
CD. Effect file names range from the somewhat descriptive
(“Automatic Door,” “Broadcast Interference”) to the completely
non-descriptive (“Coronary SubString,” “X Glub”), so you will
want to spend some time reviewing all of the files in order to
become familiar with what’s available (make sure to take
notes). There is plenty of raw material here for further digital
editing, mixing, etc. For “Concept: FX 2 – For Professionals
Only,” I’d like to see more effects, minimal processing and one
generic file format. — Bobby Prince

S T O C K M E D I A
6 0 0 0 S E R I E S
E X T E N S I O N
(S O U N D I D E A S)

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

34

3D Studio
MAX is a

wonderfully rich
environment of
3D tools, some-
times so much so
that it becomes
rather over-
whelming. Game
development has
relied heavily on
3D Studio since the
early days, and MAX has successfully carried
over those capabilities to the new environment
for 3D content. With the wealth of new features
popping up in 3D tools over the past couple of
years, MAX has done well with its open architec-
ture and the many third-party plug-ins. The
biggest innovation in MAX has been the Modifier
Stack in which you can edit and remove multiple
modifiers applied to objects. This tool is a major
innovation in 3D interface
functionality, and one that deserves serious attention.

MAX R2 has done a tremendous job of fixing many of the
shortcomings of MAX R1, like wireframe

redraw speeds, the material editor, and the addition of the
new NURBs toolset. MAX’s competitors all seem to fall short
in one area or another, some are too expensive, some are
lacking in simple interface functionality, and some are just
too sparse on tools and features. MAX, however, has a rea-
sonable price for game development, a great toolset, and a
very open architecture for added functionality and cus-
tomization. MAX also has the largest third party plug-in

library available for any 3D software out there. It happens
to be my favorite tool at the moment, and I

plan to use it heavily on a variety of pro-
jects including game development,

movie special effects, and any
other 3D need I may have. MAX

has a very comfortable and
familiar interface that I come
back to when I know I need to
do something spectacular. It
places the limitations on the
artist, and not on the software. I

well up just thinking about how
great MAX R3 will be, considering

how much of an improvement R2 has been over R1.

— Todd Siechen

3D STUDIO 1.0
(KINETIX):

3D Studio accidentally caused a revolu-
tion in 3D game artwork. Its ported-DOS-
entangled architecture and the weird,
frustrating interface and general insensi-
tivity to real-time game developers’ needs
certainly didn’t propel it to stardom. No,
its success came from its embodiment of
the concept: Power to the people.

Power in 3D Studio meant a complete
set of 3D face editing tools: vertex, edge,
face, object, keyframe. 3D Studio didn’t
protect you from turning an edge and
making spaghetti out of your geometry,
and game artists rejoiced for this power.
Like DPaint, 3D Studio semi-accidentally
offered artists direct access to technology
limits in a visual way. The power was
extensible through plug-ins (IPAS).

Less obvious was the “to the people”
philosophy. 3D Studio offered most of the
power of workstation 3D software at a
tiny percentage of the cost. This mass
marketing approach led to the revolution-
ary idea of conveying emotion with a 3D
model. Once thought weird and “arty,”
emotion became a widespread goal.
Though it was far from perfect, 3D Studio
defined a new class of game development
tool, and made a huge difference in game
development.

— Josh White

POWERANIMATOR 8
(ALIAS|WAVEFRONT):

P owerAnimator 8 has an advanced
toolset for trimmed NURBS model-

ing. Despite the depth of the program,
the workflow is very good, possibly the
best. You can easily customize the
interface by creating resizable tool

shelves.
Configurable

marking menus give quick access to the
commands that you use frequently. In
comparison, MAX’s workflow is often
too intricate to function efficiently.

PowerAnimator has two renderers: a
raycaster and a raytracer. The two
together produce great atmospheric,
volumetric, and optical effects.

True volumetric particles in
PowerAnimator 8 create smoke, atmos-
pheric effects, sparks, and fire in a vari-
ety of realistic ways. Fluids and lava
are achieved with blobby particles.
Particles generating hair and fur can
cast shadows and respond to wind and
motion.

Though PowerAnimator 8 may be
slow with polygonal models due to the
fact that it’s NURBS-based, it’s still an
excellent choice for modelling and
rendering. — Helen Cho

SOFTIMAGE 3D 3.7 (SOFTIMAGE):

E veryone has seen the amazing work
produced by Softimage. This mod-

eling and animation software has been
the main tool in creating such hit
movies as Starship Troopers and Men in
Black. But Softimage has also become a
very strong product for game develop-
ment. In version
3.7, Softimage
really put forth
some effort in creating great tools for
games. The polygon modeling is very
strong. However, the product really
shines with its animation. The tools for
creating lifelike 3D characters are sim-
ply the best out there. The new
Rendermap feature in Mental Ray
makes creating shadow maps, used in
games like QUAKE, a breeze. The
Sapphire (SDK) and new Game
Developers Kit (GDK) make it easy for
developers to create custom plug-ins for
extracting information out of the pro-
gram. You pay for this performance
though. Softimage is much more
expensive then some other 3D pack-
ages. However, when you really need
the power to create amazing 3D charac-
ters and worlds, Softimage simply can’t
be beat. — Jeff Lander

97
front line

D E V E L O P E R

A W A R DA W A R D

3 D S T U D I O M A X 2
(K I N E T I X)

M O D E L I N G A N D
A N I M A T I O N
E N V I R O N M E N T S

HALL OF FAME

F R O N T L I N E A W A R D S

PREFERRED PRODUCTS

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

H eard of it? Photoshop is the de facto standard image
editing software in the game development industry.

This momentum is not merely the result of going with
the flow. Photoshop’s broad base also translates into a
superabundance of resources for users of all skill levels:
third-party books, articles, discussion groups, freely
shared techniques, and special effects plug-ins
abound for this ubiquitous image editor.

This atmosphere of vitality is matched by
Adobe’s improvements to the software in
Photoshop 4. Not only has the interface been
cleaned up for a smarter work environment,
it’s been standardized throughout other
Adobe products like Illustrator and After
Effects (Front Line Awards Preferred
Product, 2D Animation & Video). This helps
make Photoshop part of a well-integrated
suite of professional tools that will benefit
any game artist.

Compositing layers, a feature first intro-
duced in Photoshop 3, is made even more
powerful in this release with the addition of adjustment lay-
ers. These allow color and tonal manipulation of multiple
image layers without the need to collapse or flatten them.
Image tweaking has never been easier.

Another Photoshop
4 improvement of
particular interest to
the game artist is the
new Actions Palette
for automating repeti-
tive tasks. Macro-com-
mands for batch pro-
cessing can be created
as easily as pressing a
“Record” button.
Once recorded, these

“actions” can be simply edited in
list form without the need for
busy artists to also master a

scripting syntax.
This latest upgrade is

also peppered with
worthwhile improvements such as
more flexible selection behaviors,
broader EPS import capabilities, and

much more. The enhancements expand the professional
image-editing tool game artists have come to rely on for
texture creation, retouching of 3D renders, color indexing,
painting backgrounds and much more. — Dave Sieks

PAINTER 5 (META CREATIONS):

O ne of the first lessons profession-
al developers learn is: Use what

works. That’s why
Painter’s success against
Photoshop is so amaz-
ing. The differences in
technical capabilities
between the two — both
are Windows-based 24-
bit paint programs — are

minimal. Painter offers game artists
traditional art tools. Painter seduces
artists that love traditional natural
media. With no apologies to its digital
foundation, it offers a much closer
simulation of a real, nibbled-wood,
smearing-graphite pencil than any-
thing before or since. It combines
paper’s tooth, pencil’s nature, and
other detailed realities of natural
media into a digital painting package.
Besides simulating traditional media,
it also embraces an innovative feature
set.

All of this aside, Painter’s popularity
is strong evidence that game artists
don’t see their work as sterile chrome-
sphere graphics, but as true artwork in
a new medium, needing a new breed
of artist’s tools. — Josh White

PHOTO-PAINT 8 (COREL):

In the last five years I’ve used every
paint program in existence includ-

ing Photoshop,
Fractal Painter,
Paint Shop Pro,
DPaint, and more.
All of them have
their pros and
cons. Photoshop is
an incredible
image processor, but it lacks good
drawing capabilities. PSP is a great
program, but lacks layers and
advanced color control. But when I
got my claws on Corel Photo-Paint, I
was truly impressed. Sure it’s impossi-
ble to be good at everything, but
PhotoPaint comes damn close! It has
the coolest interface I have ever seen,
and I think it blows away Photoshop
like it’s standing still.

The image processing and lighting
filters are amazing, as is the color con-
trol. In addition, you can actual draw
and paint with Photo-Paint — it’s not
just an image processor with drawing
functions attached at the hip. If you
want an all-around high-end paint
and image processing program then
Photo-Paint 8 is it. — André Lamothe

DELUXE PAINT
(ELECTRONIC ARTS):

Deluxe Paint (DPaint) is the ideal
Hall of Fame winner. Its dominance
spanned 10 years, peaking during the
16-bit cartridge boom, and DPaint still
pulls plows for a few developers today.

What’s so great about it? By acci-
dent as much as intent, DPaint
reveals the bare wires of computer
graphics in a way artists can handle.
For example: RGB sliders go to a bit-
baring 255 (not an artificial 100%),
and they skip every few numbers
(2,3,5,6,8...). DPaint shows you what
is really being stored when you slide
the slider. Try avoiding palette entries
124-128 as you create an 8-bit image
in Photoshop, and you’ll understand
why DPaint’s stencils are supposed to
be jagged.

However, the real miracle of DPaint
was its sheer fun hiding under those
ugly icons. Turn on symmetry, hand
over the mouse, and you can silence
six-year-old visitors (the only true
benchmark for pure entertainment).
Especially since the frustration of
pixel-by-pixel painting has faded
from our memories, DPaint is truly
legendary, and DPaint in-jokes are
surefire conversation starters with any
veteran game artists.

— Josh White

97
front line

D E V E L O P E R

A W A R DA W A R D

35

I M A G E E D I T I N G
A N D M A N I P U L A T I O N
P H O T O S H O P 4 . 0
(A D O B E)

HALL OF FAME

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

36

F R O N T L I N E A W A R D S

PREFERRED PRODUCTS

D igital
Fusion 2

from Eyeon
Software, Inc.
is an extreme-
ly powerful
compositing
and special
effects pro-
gram for the
Windows NT
(Intel, and
Alpha) plat-
form. It takes
full advantage
of NT’s multi-threading and multiprocessor capa-
bilities to support its incredibly fast renderer.
Digital Fusion uses a layout system called ‘flows’ to
organize the entire composite and/or effects in a
logical and straightforward manner. Each of the
numerous tools included with the package has
full spline-based controls for smooth adjust-
ments. A built-in tracker makes it easy to com-
posite moving areas, such as replacing the sign on a truck as
it is driving down the highway, or add a lens flare or glow to
a moving light source. The tracker can also be used to stabi-

lize shaky images.
Eyeon has been successful in attracting some of the best

plug-in creators to Digital Fusion. Ultimatte’s blue-screen
matting technology is not only available as a plug-in, but is
included in the higher-end film version of the product. The
5D Monster plug-ins currently consist of six sets of high
quality Flame effects plug-ins transferred from their origi-
nal SGI versions.

Release 2 added sound support to assist in lining up the
video, as well as a more traditional timeline view into

the project. Drag and drop of clips and effects,
as well as the ability to queue up multiple

renders were also new.
The best feature of Digital

Fusion can be summed up in one
word: speed. Speed in setting up
flows and especially speed in the
rendering process itself.

Depending on how much memo-
ry you have, you can tweak the pro-

gram to load in many files in
advance, so that everything is
ready when it is time to render

the frame. This is a very professional, well designed product
that just keeps getting better, and deserves to be a part of
every game developer’s software tool chest — Greg Pyros

DEBABELIZER
(EQUILIBRIUM):

DeBabelizer has become the de
facto standard for translating, com-
positing, and batch processing multi-
ple graphics files in the game indus-
try, with support for over 100
different file types. It has handled the
graphics processing, palette optimiza-
tion, and file translation for a large
percentage of the games produced in
this decade.

Starting out as a Macintosh-only
program in 1991, DeBabelizer now has
both Mac and Windows 95/NT ver-
sions available. Until the Windows
version shipped at the end of 1996,
some game developers who had
already switched to Windows kept a
Mac around for the sole purpose of
running DeBabelizer.

Palette manipulation has always
been one of DeBabelizer’s strongest
areas. When all games were utilizing a
256-color screen, palette control was
one of most time-consuming and
thankless aspects of game production.
DeBabelizer can set palettes, remap
and reduce colors, create custom
palettes, sort, and distribute colors as
needed. The program has become a
classic and well deserves its Hall of
Fame status. — Greg Pyros

AFTER EFFECTS 3 (ADOBE):

G ame artists will appreciate Adobe
After Effects’s ability to layer and

combine rendered 3D animations,
digital video,
and static

bitmapped images with precise con-
trol, and will also be pleased by its
color correction tools.

After Effects is well-integrated with
Adobe’s other flagship products,
Premiere, Illustrator and Photoshop
(Front Line Award winner, Image
Editing and Manipulation), making it
part of a powerful suite of tools for
the game artist. Another great feature
is Bezier paths for animated masks.
These can be made to travel around
the screen and even change shape
over time. Also extremely handy is a
text tool enabling type to be animat-
ed along complex paths.

Beyond the standard feature set,
many third party plug-ins are avail-
able to provide additional functional-
ity, as are books, training videos and
online users groups. After Effects may
not be the sexiest digital video editor
available, but it is an incredibly useful
and powerful package for the money.

— Dave Sieks

PREMIERE
4.2
(ADOBE):

P remiere
4.2 is a

solid 2D digi-
tal video

editing program available on the
Windows 95, Windows NT, and the
Power Macintosh. It allows film,
video, multimedia, and web content
creators to combine still images,
movies, audio, video, and graphics on
their desktops and output to video,
multimedia formats, or the Web.

Premiere was one of the first pro-
grams with an extensible architec-
ture, allowing many third-party
developers to create plug-ins for the
product. As this is going to press,
Adobe is announcing the 5.0 upgrade
for Premiere. Promising an improved
user interface, better integration with
other Adobe products like Photoshop
and Illustrator, more control over
transitions, enhanced Edit Decision
List (EDL) support, CD-quality audio
support, and long-format editing
tools, Premiere will be an even
stronger contender in the future.

— Greg Pyros

HALL OF FAME

97
front line

D E V E L O P E R

A W A R DA W A R D

D I G I T A L F U S I O N
(E Y E O N S O F T W A R E)

2 D A N I M A T I O N
& V I D E O
S O F T W A R E

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

37

Back in the early ‘90s, the Mac dominated the audio
development landscape. PC hardware was weak. DOS

and early versions of Windows were a mess, and PC MIDI
and digital audio editing tools were lame or non-existent. Yet
all of the audio development systems for PC games them-
selves ran on the PC. It was under these oppressive con-
ditions that I added the first PC to my studio (a 286,
no less) and chalked it up as a necessary evil. While
suffering, I came across one truly great product,
Sound Forge.

Sound Forge 4 is a truly innovative product,
created by a great company (which is staffed
and run by very smart, nice, reasonable people),
which is rock solid, really easy to use, dominates
the market, and rapidly evolves to embrace and
incorporate industry standards and practices.

At first, I used Sound Forge just to open alien
files that were sent to me by other game develop-
ers. Then I discovered that the sample rate conver-
sion was actually better than my Mac editor.
Pretty soon, I found that all I was doing on my
Mac was digitizing material. I’d then take it over
to Sound Forge for editing. Much to my surprise, I was begin-
ning to prefer this upstart Windows product over my tried-
and-true Sound Designer II.

Sound Forge has remained squarely positioned at the lead-

ing edge of PC
audio develop-
ment. The new
version adds or
improves on past
versions with
DirectX audio
plug-ins, Internet
audio support
(Java, RealAudio,
and NetShow On-
Demand), multi-

level undo/redo, AVI
file support, crossfade loop function-

ality, phaser and wah-wah effects, an
input vs. output dynamics graph, multi-

band dynamics, highly accurate resam-
pling, dithered/noise shaped fades,

stereo expansion and MS mixing, and
much more. Sonic Foundry offers
tools that complement and enhance
the value of Sound Forge by creating

a comprehensive and integrated working environment.
Today, the Windows PC has become the dominant platform
in the development of game audio largely on the strength of
Sound Forge. — Mark Miller

97
front line

D E V E L O P E R

A W A R DA W A R D
A U D I O
R E C O R D I N G
A N D E D I T I N G
S O U N D F O R G E 4
(S O N I C F O U N D R Y)

RECYCLE 1.6 (STEINBERG):

R eCycle is a cross-platform audio
application that creates audio file

“slices” of imported drum loops and
grooves. By analyzing the waveform
peaks, ReCycle creates “slices” of the
loop. It will then assign each slice a
MIDI note number, create a key map,

and
trans-
mit
every-

thing to a sampler or Cubase VST as
sample files and a program file. With
my K2000 I use SMIDI to send data
back and forth, including the .MID file
that ReCycle creates from the original
loop. Since the loop’s parts are mapped
out across the keyboard and you have
a .MID file of the groove in your
sequencer, changing tempo and creat-
ing different drum fills is made easy. If
you’re unfamiliar with working with
drum loops it may not seem that excit-
ing, but if you are, you’ll find it quite
appealing. It’s definitely a new way of
working with digital audio. As far as
competition goes, there isn’t any. At
present, ReCycle is the only product of
its kind on the market. — Chuck Carr

THE NATIVE POWERPACK (WAVES):

This tool is a set of audio software
processors made up of 6 software

plug-ins and one application. The
plug-ins, available for both PC
(DirectX) and
Mac platforms,
include: C1
(compressor/gate), L1 (an awesome
look-ahead peak limiter), S1 (stereo
imager), Q10 (paragraphic EQ),
TruVerb (reverb/space processor), and
IDR (Increased Digital Resolution), a
ditherer/noise shaper. My favorite and
most used is L1. When you really
want to get a sound file with that “in
your face” sound without clipping,
it’s gold. C1’s compressor presets are
clean and warm. I suggest getting the
free update to C1+ at www.waves.com.
The speech compressor/downward
expander preset in C1+ is ideal for
voice dialogue. The price you would
pay for the hardware equivalents of
these plug-ins makes the cost very
appetizing. With more audio applica-
tions supporting plug-ins, it’s nice to
have the Native Power Pack in your
virtual rack of gear.

— Chuck Carr

SOUND FORGE 1.0
(SONIC FOUNDRY):

When Sound Forge 1.0 was released,
it offered exceptional digital audio
editing power at a price small game
developer could smile about. It creat-
ed high quality “movie-like” sound
effects and included many features
found only in high-end dedicated
tools at the time. Finally, affordable
and powerful digital audio editing
was possible on a standard PC. Today
Sound Forge still pushes the “digital
audio editing envelope” thanks to
plug-ins from Sonic Foundry or third-
party developers. — Bobby Prince

COOL EDIT 1.0 (SYNTRILLIUM SOFTWARE):
Cool Edit quietly entered the digital
audio editing market as shareware. It
didn’t seem like much. A closer look
revealed that it had the power of
some of its retail competitors. This
software handled basic digital audio
editing well and qualified as a full-
fledged sound processor. Highlights
include script/batch processing, sup-
port for many popular sound file for-
mats and excellent sample/bit rate
conversion. Because of its great power
at a minimal price, it became the
favorite digital audio editor for many
small companies. —Bobby Prince

HALL OF FAME

C onsidering its popularity and wealth of
powerful features, it’s no surprise that

Cakewalk Pro Audio took the award in its catego-
ry. It’s a 32-bit, 256-track MIDI sequencer/digital
audio workstation for Windows. StudioWare
controls any MIDI device through software
panels. Using moving sliders and knobs known
as “widgets,” MIDI-controller or system-exclu-
sive data is transmitted and can be recorded to
a sequencer track. Veteran sound designer Bobby Prince first
introduced this feature to me by creating a StudioWare panel
for my Roland Alpha Juno 1. The Juno responds to system-
exclusive data in real-time. With Cakewalk’s StudioWare, I

now have the ability to automate my aged but loved synth.
Another strong feature in Cakewalk is the ability to create
CAL (Cakewalk Application Language) programs. CAL is “an
interpreted language for writing custom editing commands.”
With CAL, it’s possible to create macros of your favorite key-
stroke commands and save them for easy reuse. More sophis-
ticated users can write CAL routines to perform tasks not

found in Cakewalk, such as creating chords from single
notes, thinning data from tracks, and creating

arpeggios. This offers unlimited possibilities in
automating tedious and sometimes com-

plicated tasks.
If you use real-time effects, you’ll

love Cakewalk’s support of DirectX
plug-ins. Effects can be inserted
into each digital track and chained
together, allowing all the tweaking
and sweetening you wish. While

composing a song for SHOOTOUT 98, I
had 16 tracks of digital audio playing
with real-time effects (reverb, compres-
sion, chorus, and so on) inserted on each
track using a Pentium Pro 200MHz with

80 MB of RAM. With its plentiful third-party support and
continuous effort to upgrade its technology, Cakewalk Pro
Audio continues to be a favored MIDI/digital audio worksta-
tion among game developers. —Chuck Carr

38

F R O N T L I N E A W A R D S

97
front line

D E V E L O P E R

A W A R DA W A R D

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

C A K E W A L K
P R O A U D I O 6
(C A K E W A L K)

A U D I O
C O M P O S I T I O N
S O F T W A R E

CAKEWALK PRO
FOR WINDOWS 1.0

(CAKEWALK):
DOS MIDI sequencing was a compati-
bility nightmare. In 1991, Windows
3.0 arrived, creating a standard way
for MIDI software to speak to sound
cards. Anticipating this, Cakewalk
launched the first truly Windows-
compatible sequencer, Cakewalk Pro
for Windows 1.0. This tool quickly
became a standard for PC game audio
developers.

Many things set this product apart
from its competitors. Foremost was its
strict compliance with Windows con-
ventions. Cakewalk was the only PC
sequencer to include integrated nota-
tion editing. Finally, Cakewalk allowed
users integrated access to Windows’
MCI commands. This allowed a crude,
but workable method for synchroniz-
ing MIDI composition to digital audio
files on a single CPU.

As testimony to its HoF status,
Cakewalk has racked up a serious list
of top game credits that include
everything from DOOM to REN &
STIMPY’S QUEST FOR THE SHAVEN YAK.

—Mark Miller

HALL OF FAME

LOGIC AUDIO 3 (EMAGIC):

This digital audio sequencer works
as effectively as a comprehensive

package as it does as a “simple
sequencer.” It’s software that allows the

user to push the
envelope for home
and project stu-
dios. Its extensive

feature set (which includes sequenc-
ing, machine control, mix automation,
notation and digital audio recording)
is flexible, and almost every feature
can be customized. For those who
don’t let sophistication stand in the
way of the possibilities, there’s almost
unlimited musical production power
here. One highlight of this software is
“Screensets,” which allow you to save
up to 99 window configurations (each
Screenset can include multiple copies
of an editor window, each with differ-
ent parameters). This can save many
hours of having to size, position, re-
size and re-position windows. With
software such as this, there’s no excuse
for not working on your (next) hit
right now. —Bobby Prince

STUDIO VISION PRO 4 (OPCODE):

O pcode has always struck the right
balance between innovation and

standardization, and between power
and ease-of-use with this product.

The tool com-
bines the latest
incarnation of
Vision with

some great bundled add-ons to offer a
fully featured, well-integrated suite of
tools for composing and editing syn-
chronized MIDI and digital audio.
You can edit MIDI and digital audio
in a synchronized and uniform envi-
ronment that supports all of the stan-
dard sequencing conventions. What
sets this product apart is the superior
integration with Digidesign’s Protools
hardware (it supports increased audio
I/O, full TDM bussing, and Samplecell
TDM), their excellent digital audio
pitch shifting and time
compression/expansion technology,
the bundled patch librarian (Galaxy
2.1), and the other CD goodies
(Waves EZ Verb, and Arboretum
Systems Hyperprism.) —Mark Miller

PREFERRED PRODUCTS

S ince almost every professional game development team
uses source control, and the vast majority of them are

using SourceSafe, it seemed a natural nominee for these first
annual awards. But does SourceSafe deliver on its promise of
project-oriented source control? Is it appropriate for a game
programming environment? This year’s judging panel
voiced a nearly unanimous “yes.”

SourceSafe began life as an third-party tool devel-
oped by One Tree Software. In 1994, Microsoft
bought One Tree and the product became Visual
SourceSafe. Newer versions of SourceSafe includ-
ed tighter integration into the Developer Studio
suite and additional features useful to web
developers. Throughout the product’s history,
it’s managed to stay one step ahead of its competi-
tion in terms of power and ease-of-use. SourceSafe
offered a GUI-based interface before many of its
competitors, and offered easier tools for adminis-
tration and setup.

SourceSafe offers the ability to store and track
revisions on binary files as well as source code,
making it a viable tool for asset management. Its ability to
merge different branched versions of a file with a minimum
of fuss continues to improve. SourceSafe is adept at working
with multiple projects, and has extensive features for tag-
ging, pinning, and sharing files across projects.

SourceSafe is not completely without warts. Its database

can some-
times become
corrupted or
suffer from
file locking
problems.
Most of these
problems are
easily fixed
using simple
repair tools,

and the mean
time between these failures is high.
Performance can be sluggish at
times. Its high network bandwidth
use also makes it cumbersome to use
over dial-up connections. Previous

update versions have suffered from
performance bugs, but
Microsoft made quick repairs.

Source control software is
an indispensable tool for most game development teams,
and SourceSafe is the best tool for the job. If Microsoft avoids
the temptation to overload the product with web-centric fea-
tures at the expense of the traditional programmer, Source
Safe is positioned to continue its reign as the source control
solution of choice for game programmers.

— Robert Huebner

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

39

97
front line

D E V E L O P E R

A W A R DA W A R D
P R O D U C T I O N
S O F T W A R E
V I S U A L S O U R C E S A F E
(M I C R O S O F T)

IMAGEBLASTER 2.2 (KEYLABS):

M any of today’s game designs involve changes to the
Windows 95 (and soon Windows 98) operating sys-

tem. Specifically, if a game needs DirectX to run, that instal-
lation changes the operating system. Since developers can’t
count on users already having this component installed and

configured correctly, they need to
test and re-test their installation
code. But how do they quickly get
the machine back in the pristine

non-DirectX environment without re-formatting the hard
drive and reinstalling everything from scratch? How do
they test multiple operating system environments without
investing in several machines? They can make an image of
the machine’s boot drive using Imageblaster before running
their installer on it then blast it back to the saved image
when they’re through.

Imageblaster has built-in file compression and fault toler-
ance. Once you’ve created a disk image, you can use it over
and over again. These images are simply files which can be
catalogued, compressed, and stored on-line for future use.
This means, given enough storage space, you can have an
image for all the various operating systems you need to test,
and virtually expand your testing lab’s capabilities tenfold.
ImageBlaster is fully file-system independent. It can handle
any PC file system including all FAT file systems, HPFS,
NTFS, and NetWare, to name a few.

— Jeanne Collins

MSDN LIBRARY
SUBSCRIPTION
(MICROSOFT):

Y ou can
choose not

to use Microsoft
compilers. You
can choose not
to use Microsoft
Office. You can
choose not to
use DirectX. But
you cannot do
without a sub-
scription to
Microsoft
Developer Network (MSDN). From its humble beginnings as
a CD-ROM when players were so scarce Microsoft bundled a
discount offer for a single-speed player the size of a pizz-
abox to its current multiheaded incarnations as CD/web-
site/bookshelf-binder-full-of-everything-Microsoftian,
MSDN is the default source for technical information. The
level of writing is surprisingly high (aside from the annoy-
ing jokes of Dr. GUI) and a great deal of the technical infor-
mation is unavailable elsewhere.

— Larry O’Brien

B ased on the RIVA 128 chipset, the STB
Velocity 128 is an outstanding 2D/3D

video card solution. It’s still early in the history
of consumer-level 3D graphics hardware, and for
performance reasons, many people are willing to
put up with 3D-only solutions. But the STB
Velocity 128 proves that you don’t have to give
up performance or an extra PCI slot. This card per-
forms well all around.

The Velocity 128 brings some serious fill rate
to the table, giving game developers some
breathing room. The 3D feature set is fairly complete,
although as a developer you’ll find a few things missing if
you’re used to the 3Dfx — and the RIVA chipset drivers do
some funky things with their automated MIP-map genera-

tion. But for a circa-1997 single card 2D/3D solution, the
3D kicks butt. For 3D to become a huge market, 2D and 3D
have to work in perfect harmony, and the Velocity 128
proves that it can be done. The pack-ins with this card
show off the speed, and the performance via Direct3D is up
there as well. STB seems to be committed to providing solid
OpenGL drivers, though like many OpenGL drivers these

days, they are constantly under development.
So what’s it got on the 2D side? The 230Mhz RAM-

DAC made me happy. High speed and good
VESA support should make everybody

happy. Compare that to some other
2D/3D cards from 1997 that

had crummy RAMDACs and
really crummy VESA support. The

4MB 100Mhz SGRAM kicks out
some nice resolutions, like

1600×1200×65k or 1024×768×16.7M.
These resolutions are easily enough for
home use, and they come with higher
than average refresh rates to boot.

The 3D card market has a long way to
go, and as with most other PC tech-

nologies, what we think is great this year will be collecting
dust next year. But for 1997, STB moved the industry one
step closer to excellent 2D and excellent 3D in every
machine. — Scott Corley

40

F R O N T L I N E A W A R D S

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

PREFERRED PRODUCTS

MONSTER 3D (DIAMOND MULTIMEDIA):

The 3Dfx Voodoo Graphics chipset changed the face of
game development on the PC forever, but it would

have been a classic case of “the best doesn’t always win” if
it weren’t for the support of some top notch video card
companies. At the start of the 3D accelerator craze,
Diamond was already at the top of their game delivering

high quality video cards,
and the Diamond Monster
3D was one of the first
3Dfx-based cards that
everybody felt comfort-
able purchasing.

The onslaught of high
quality 3D hardware at an

affordable price from a well known brand name took 3D
acceleration from speculation to certainty. The success of
this full-screen-only card that doesn’t support anything
but games has shown the world the market pull of gaming
and the importance of 3D to gamers. While many other
companies came out with 3Dfx-based cards, the Diamond
Monster was the one that got the buzz and the shelf space.
Will consumers grow up and demand more than full-
screen-only 3D this year, leaving cards like the Monster
and its successor behind? 8-ball says: not likely.

— Scott Corley

INTENSE 3D VOODOO
(INTERGRAPH):

3D Graphics hardware
is finally living up to

the hype. Of the cards I
tested, three made it to
the finals: the Intergraph
Intense 3D Voodoo, the
STB Systems Velocity
128, and the Diamond
Multimedia Monster 3D.
The Intergraph Intense
Voodoo based on the 3Dfx chipset is just amazing. The
card is both a 2D and 3D solution, plus it has an additional
video out signal for television output, which makes it a
true gaming video card. The card features all of the bells
and whistles that make games look good such as perspec-
tive correct texture mapping, level of detail, anti-aliasing,
bilinear, and trilinear texture interpolation, and a whop-
ping 6MB of VRAM. Sure, other cards may have some or all
of the same features, but the bottom line is that in this
card they all work. I without hesitation recommend the
Intense Voodoo to anyone that wants a sub $200 full
2D/3D solution with state-of-the-art 3D performance.

— André Lamothe

97
front line

D E V E L O P E R

A W A R DA W A R D
C O N S U M E R
G R A P H I C S
H A R D W A R E
V E L O C I T Y 1 2 8
(S T B S Y S T E M S)

O ut of all the products nominated for a Front Line
Award, the Diamond Monster Sound was one of the

few that truly broke new ground. As delivery media and sys-
tem memory increase in capacity, and DLS becomes a
prevalent standard, games will devote more and more space
to sound effects and instrument samples. Typical high-end
games will require fast, efficient sound mixing that’s not
limited by fixed memory on an audio card or gated by
slow download times. The Diamond Monster Sound
meets these requirements with solid scatter-gather
audio streaming over the PCI bus. This allows a
game to keep its large sound effects and sample
banks in main memory, but frees the CPU from
performing mixing and other DSP operations.
Throw in decent 3D sound spacialization, sup-
port for a second set of speakers, and a standard
extension port for upgradable wavetable synthe-
sis, and you’re looking at a great little audio
card. It’ll even pass-through your old
SoundBlaster or similar legacy card in case you
still have DOS games that won’t work with the
Monster’s SoundBlaster emulation mode.

The card was not without its shortcomings,
however. The card’s MIDI support is not very solid, and its
wavetable sample set is of poor quality. Worse, on some sys-
tems and cards, the included MIDI module daughtercard
does not work at all. Fortunately, it is replaceable, and the
card cooperates nicely with higher-quality add-on daughter-

card (such as the DBXG50,
another one of the products

nominated for this award).
Hopefully, as games begin
to use DLS for their music,
the Monster’s drivers will

begin using the card’s
native capabilities to
play the samples sup-
plied by DLS instead of

those on the daughtercard, eliminating the card’s primary
shortcomings. MIDI troubles notwithstanding, the Diamond
Monster Sound is a big step in the right direction for con-
sumer audio cards. Hopefully, the new cards of 1998 will all
follow its lead. — Casey Muratori

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

41

97
front line

D E V E L O P E R

A W A R DA W A R D
C O N S U M E R A U D I O
H A R D W A R E

M O N S T E R S O U N D
(D I A M O N D M U L T I M E D I A)

SOUNDBLASTER 1.0 (CREATIVE LABS):
In the beginning of PC sound cards,
there was the AdLib. It was a Yamaha
FM synthesizer chip that allowed soft-
ware products to include a music
soundtrack. Innovative game design-
ers of the time could program the FM
synth to make basic sound effects, but
it was not possible to have life-like
sounds in a game. This all changed
with the release of the SoundBlaster
1.0. By including a digital sound chip
in addition to the FM synthesizer
chip, the SoundBlaster revolutionized
sound for the PC computer gaming
industry. For the first time, it was pos-
sible to have life-like and believable
sound effects in a game. For quite
some time after its initial release, the
Sound Blaster was the only PC sound
card with these possibilities – a situa-
tion that not only cemented it into
the minds of many millions of users,
but also made the word
“SoundBlaster” synonymous with
“computer sound card.”

— Bobby Prince

HALL OF FAME

AUDIOTRIX 3D-XG (MEDIATRIX):

The Audiotrix 3D-XG is a PC
soundcard that features the

Yamaha
XG
sound set
for high-

quality MIDI music, and full duplex
16-bit digital audio. It also features an
on-board DSP that can be used to
process digital sample data or MIDI.

Musicians and gamers will notice a
big improvement over the sound
quality of older FM-based cards, and
cards that use much lower quality
wavetable sound sets. The 3D-XG
responds to MIDI controller messages
for reverb and chorus, as well as the
more exotic XG features such as filters
and other XG MIDI controllers.
Games that use extensive MIDI sound
tracks will roar with this card.

The board supports full duplex
audio — great for the future Internet-
based games that use speech, and also
for games that use speech recogni-
tion.

— Rob Hubbard

SOUNDBLASTER AWE64 GOLD
(CREATIVE LABS):

This card features
4MB RAM for wave

table sound sets, full
duplex audio, and
EMU’s SoundFont technology that
enables users and games to download
their own sounds. Users can download
a 4MB general MIDI sound set for high
quality MIDI music, and musicians can
utilize a further 32 voices using the
Waveguide software synth. The card is
superior for aspiring musicians who
want to get into PC music creation. It
even supports a SP/DIF digital audio
output for connection to professional
music equipment. It’s also a good
upgrade for old SoundBlaster-16 users
who are having performance problems
with DirectSound. Many games now
have dedicated SoundFont support for
sound effects or music. One minor
problem — don’t set the MDI device to
Waveguide and expect to run a game.
Finally, the card comes with lots of
software goodies at a great price.

— Rob Hubbard

Game developers are always looking for the
silver bullet that will fix their development

problems. Long delays, failed projects, low quali-
ty software, long hours, and bad morale still run
rampant in the game industry, and developers
are so shy of silver bullets that many discard
new ways of thinking outright. There is no one
way to make game development easier, so the
familiarity of status quo plus some wishful
thinking keeps many projects in the “at risk” category.

Here’s your new silver bullet. The difference here is that
the Software Project Survival Guide (SPSG) isn’t a single silver
bullet, it’s more of a silver shotgun blast.

And it isn’t as easy as just pulling a trigger. There are a ton of
things that you have to do before the SPSG considers your
project “Outstanding… virtually guaranteed to succeed in all
respects, meeting its schedule, budget, quality, and other tar-
gets.” Sound hard? Sound like an impossible goal? At around
260 pages, this book reads fast. If you’re die-hard skeptical
about any fancy new-age approach to software development,

this book is all over you. The only prerequisite for loving
this book is: you must have been on at least one hellish-

ly difficult project in your life. If you meet that
prerequisite, this book will speak to you. Do

you hate unnecessary paperwork and
superfluous processes? SPSG is
written with you in mind. You
will recognize every suggestion
in this book as something that,

at the end of some project,
you wished you had done
from the start.

This book may not have
an impact on the way
many games are made, and

for every project that succeeds because of SPSG, there will be
another smash hit that was created by disorganized, seat-of-
the-pants, garage development. But I’d be willing to bet that
in every case, the SPSG team got more sleep. — Scott Corley

42

F R O N T L I N E A W A R D S

97
front line

D E V E L O P E R

A W A R DA W A R D

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

S O F T W A R E P R O J E C T
S U R V I V A L G U I D E
B Y S T E V E M C C O N N E L L
(M S P R E S S , 1 9 9 7)

PREFERRED PRODUCTS

B O O K S

THE MYTHICAL MAN-MONTH

BY FREDERICK P. BROOKS, JR.

(ADDISON-WESLEY, 1975)

When this book came out, many soft-
ware projects were coded in assembly,
memory was scarce, and new and
changing hardware was the norm.
This is often the situation today in
game development. Brooks draws not
only on his own experience from
working on IBM mainframes, but also
uses data and observations from other
projects of the time. Readers will find
many of the items are still valid
today. — Matt Saettler
COMPUTER GRAPHICS: PRINCIPLES AND PRACTICE

BY FOLEY, VAN DAM, ET. AL.

(ADDISON WESLEY, 1990)

Those who post the question “what
one 3D book do I have to own” to
USENET seem to always get back the
same answer: “Foley and van Dam.”

This book covers a huge spectrum of
3D topics in a concise, understandable
style. The book transcends operating
systems and programming languages
to provide the 3D graphics basics in a
way that will always be relevant.
Implant this book into any brain that
is beginning a career in 3D graphics.

— Scott Corley

HALL OF FAME

MICHAEL ABRASH’S PROGRAMMING
BLACK BOOK
(CORIOLIS BOOKS, 1997)

A brash is a legend in game develop-
ment. Any book he writes receives

a lot of attention,
and rightly so. Based
on content (solid,
real information
from people who
know), relevance to
professional game
developers, and writ-

ing quality (easy to access, clear, well
written, good table of contents and
index), Abrash’s book scores well.
Despite its technical nature, nonpro-
grammers can learn a lot by reading it
— even the parts that are about 80386
optimization (in other words, totally
outdated) give insight into how pro-
grammers think, which is very valu-
able for nonprogrammers. Article-com-
pilation books often lack organization,
and compare poorly to books that
guide a reader through the points in a
premeditated, organized way. In this
case, however, it’s very convenient to
have this body of Abrash’s writing in
one place. — Josh White

THE ULTIMATE GAME DEVELOPER’S
SOURCEBOOK
BY BEN SAWYER
(CORIOLIS BOOKS, 1996)

I f you’re in the game industry, you
should already know everything in

The Ultimate Game
Developer’s
Sourcebook (UGDS).
If you’re in the
game industry and
you don’t know
everything in
UGDS, you should

brush up on the areas that you don’t
know. If you’re not in the industry, if
you read it you might be able to con-
vince girls that you make games
(whether this will help you achieve
your goals, I can’t say). This book
attempts to include every bit of infor-
mation you might need to be a game
developer, including game design,
content creation, software develop-
ment, business issues, and legal issues.
Get past the out-of-date bits, and the
fact that this 5 pound book contains
1.5 pounds of information, and see if
there’s something in there you
haven’t seen yet. — Scott Corley

game engine and work with it
effectively. Throughout this article, I
refer to the Viper game engine and to
techniques used in the development of
the first game released using Viper,
SPECOPS: RANGERS LEAD THE WAY. [See
this month’s Postmortem on page 74
for details about the game. -Ed.] It
would be useful to download and run
through the game’s demo, which is
available at www.zombie.com/games/
index.html

To determine whether motion cap-
ture is a viable solution for your title,
take my Motion Capture Preparedness
Test in Table 1. Regardless of whether

or not you pass, you’ll find this article
useful. Why? Because animation data,
regardless of its source, still needs to be
integrated into the game AI.

Creating the Data

W e used Alias’s PowerAnimator
7.5 (running on SGI High

Impact Extremes) to handle the char-
acter motion for SPECOPS. Power-
Animator is one of the best packages
available for working with anima-
tions, and it allowed our artists to
clean up animation sequences very

quickly. Late in the project, when we
needed a few animations that had
been accidentally omitted from our
motion capture list, PowerAnimator
was powerful enough to create hand-
crafted animations that were of suffi-
ciently high quality that they did not
stick out when compared to the
motion capture animations.

We chose BioVision as our motion
capture studio. BioVision has a good
reputation in the industry, was afford-
able, and provided us with animation
data that slid right into Power-
Animator. BioVision provided our
artists with an 18-bone hierarchical
skeleton, which we then scaled and
built our geometry upon (Figure 1). We
chose not to use any geometry for the
shoulder bones in order to simplify the
polygonal complexity, but the shoul-

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

44

A N I M A T I O NI N T E G R A T I N G

Incorporating Motion
Capture Animation into
an AI Engine

b y W y e t h R i d g w a y

n the game industry today, developers are much too eager to toss

motion capture into a game design just because it’s currently hip to

do so. However, before going through all the work of adding motion

capture animation to your game, make sure that motion capture is

the best solution to your problems. This article will provide pro-

grammers who are familiar with 3D programming techniques with

the information needed to get motion capture animation data into aII
Wyeth Ridgway was the lead programmer of SPECOPS and the technical director of
Zombie. He is currently on sabbatical in his hometown of Tucson, Ariz., where he’s
working on the next great thing. He can be contacted at WSR@Primenet.com.

ders still needed to be present so that
the biceps could have a reasonable
rotational pivot.

Another constraint we faced was that
there couldn’t be any animation trans-
lation data associated with any of the
bones — only the parent of the entire
hierarchy (the hips) could have an
active translation channel. Because of
this, our render loop was able to run
faster because it had less data to work
with, which is important because hier-
archical models are extremely time
consuming to draw. With all of this in
mind, we had BioVision provide us
with an animation file that fit our
needs, so we could get working on the
support code.

Getting Motion Capture Data into a
Game Engine

A fter the artists applied a basic
motion (walking) to our geome-

try within PowerAnimator, it was time
to reproduce that same animation
within the game. PowerAnimator has a
handy, if only slightly supported
export format called .RTG (real-time
games format), which contains both
the geometry and the animation data.
The contents of .RTG files can be dis-
played in text format, making the files
very easy to view and debug. In fact, I
wrote a parser for both the geometry
and animation files without any for-
mat spec (although I’m sure one is
available) — to me, this is the sign of a
great file format.

Once the hierarchical geometry files
are loading and being drawn correctly
inside an engine, it’s time to tackle the
more difficult problem of applying ani-
mation to the joints. It’s fairly easy to
hack together something that runs
through a single animation in a loop —
in fact this is a great first step in verify-
ing that your math is working correctly.
However, managing the overlaps
between a hundred animations run-
ning in response to user input or AI
can be a far more difficult organiza-
tional problem.

The first step is to identify every-
thing that your animated character(s)
needs to be able to do in the game
environment. Walking, running, jump-
ing, and firing a weapon are certainly a
common subset of this list. Once you
and your game designers have brain-

stormed the required
moves, you need to
organize this list into a
format that the game
can process.

This is where hero
positions become useful
(see “Animation Terms”
for a definition of “hero
position” and other
terms). To describe how
animations will transi-
tion into and out of
one another, we can
define a set of hero
positions from which
the character may enter
various animations.
From any given hero

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

45

F I G U R E 1 . BioVision’s 18-bone hierarchical skeleton.

Animation Sequence Listing: An AI state and the animations that need to be played to

get into and out of that state.

Base Animation: The animation that all animation sequences share at their root. Also,

the animation of the primary hero position.

Finite State Machine: A process that is described in states and their relationships.

Hand Animation: Animation data generated by an animation tool, such as 3D Studio

MAX or Softimage 3D

Hero Position: A rest position from which animations can be played.

Motion Capture: Animation data captured from a physical source, such as transmitters

attached to a person.

Primary Hero Position: The basic hero position from which all animation sequences

are described.

Secondary Hero Position: A hero position that is described in terms of its relation to

the primary hero position.

Transition Sequence: The sequence of animations that are used to move a character

between any two states.

Animation Terms

TA B L E 1 . Motion Capture Preparedness Test.

Are the majority of your

game’s animated crea-

tures going to be motion

captured?

Is there extensive charac-

ter motion, such as rolls

or gymnastics, that would

be tedious or impossible

to reproduce by hand?

Can the motions of your

characters be adequately

motion captured?

If not, motion capture might not be the best solution,

because it tends to make hand-animated creatures look

robotic and crude.

If not, hand animating the motion should be strongly con-

sidered, as today’s tools do it well. While motion capture

is an excellent resource for realistic character movement,

forgoing motion capture will save you money by not forc-

ing you to deal with some of its related problems.

A good deal of the motions you need might be too difficult

to motion capture. If your hero needs to bend, jump, or

move in an inhuman manner, motion capture might not be

an option. Once you hash out the entire motion tree for

your characters, send it to the motion capture studio so

they can tell you which animations will cause problems.

position, you can list out which anima-
tions are valid to use. Table 2 lists some
of the hero positions and animations
from SPECOPS. We needed three basic
hero positions: standing, crouching,
and lying prone.

For simplicity, you should keep the
number of hero positions fairly low. It
can be confusing to work with more
than five or six, and the transitions
between them become more time con-
suming. If you have animations that
seem to require their own hero posi-
tions, or that don’t slide right into your
list, you should strongly consider
removing or rethinking them.

From this list of all of your game’s
animations, you can create an anima-
tion sequence list. This is the primary
set of information that your game’s
engine uses at run time to figure out
how to transition between animations.
The sequence list associates a desired
state that the character wants to enter
with a sequence of animations that it
can play to get there.

The Viper engine uses a text file for
the animation sequence list, which
can be easily modified by the artists
and game designers. Table 3 shows the

entries for SPECOPS’ standing hero
position, along with a couple of ani-
mations that are played from that
hero position.

EEnnttrryySSeeqquueennccee and EExxiittSSeeqquueennccee are key-
words that denote how to get into and
out of the state that we’re describing.
The next token is the name of the
state that we’re describing — for
instance SSTTAANNDD__HHEERROO. Finally, we have a
list of any number of animation files,
which need to be played in sequence
to arrive at the desired state. Again in
Table 3, you can see that to fire the
weapon from the standing position,
the character must first play the
STANDHERO.ANI animation and then
the STANDFIRE.ANI animation.

Note that the first animation file of
an EEnnttrryySSeeqquueennccee is always the same as
the final animation file played by the
corresponding EExxiittSSeeqquueennccee statement
(see the emphasis in Table 3). This is
the primary hero position’s animation.
All transitions must either start or end
with this animation. The animation
engine uses the primary hero position
to figure out how to transition between
animations. I will explain this in more
detail shortly.

In Table 4, you’ll see the
RReeggiisstteerrCCaallllbbaacckk keyword and its
arguments. We associate callbacks
with certain animation frames to
cause game events at specific
points in a sequence. For exam-
ple, grenades need to leave char-
acters’ hands during the right
frame, and bullets must fire at a
specific time. Looking back at
Table 4, we see that we want the
character to receive a
CCAALLLLBBAACCKK__SSTTAANNDD__FFIIRREE message on
frame 10 of the STANDFIRE.ANI
animation. This message could be
a function pointer, a method
name, or many other things

depending on how you manage objects
in your game.

Once the data from these text files
has been loaded into your animation
engine and its data structures, you’re
ready to begin playing back animations
and bringing life to your character. Let’s
look at some simple ways to use the
information that we now have loaded.

Working with the Data

T o get a character to perform some
basic actions, you need to main-

tain a few additional pieces of informa-
tion. During run time, you can store
the animations that you need to play
in an animation queue. You should
also keep track of the current state that
the character is in, as well as the state
that it will be in after the animation
queue is empty.

For example, assume that the charac-
ter starts at rest, that the animation
queue is empty, and that the current
state and target state are both SSTTAANNDD__HHEERROO.
Since the animation queue is empty
and the target state is equal to the cur-
rent state, the animation engine has
nothing to do, so the character will
remain at rest in its hero position.

Now assume that the player presses
the Fire button (or the AI sends a “fire
weapon” message), causing the target
state to change to SSTTAANNDD__FFIIRREE. A transi-
tion sequence needs to be added to the
animation queue so that the character
will start to animate into the new state.

Anytime we’re starting a new ani-
mation, the animation engine will
execute a simple algorithm. It will
push the current state’s exit sequence
onto the animation queue and then
append the target state’s entry
sequence onto the queue. Let’s use
this algorithm in our example.

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

46

I N T E G R A T I N G A N I M A T I O N

Hero Position Associated Animations
Stand

Stand and Fire Weapon

Stand-walk

Stand-run

Crouch

Crouch and Fire Weapon

Crouch-walk

Crouch-run

Lay Prone

Lay Prone and Fire Weapon

Prone-crawl

TA B L E 2 . SPECOPS’ hero positions and asso-

ciated animations.

F I G U R E 2 . CCRROOUUCCHH__HHEERROO’s entry sequence.

First, the exit sequence animation
STANDHERO.ANI, which is used to
leave the current state, is put in the
animation queue. Next, the entry
sequence for the SSTTAANNDD__FFIIRREE state is
added to the queue.

Note that in SPECOPS, all exit
sequences end with the character in the
primary hero pose, and all entry
sequences begin in the hero pose. So we
know that the last animation in
SSTTAANNDD__HHEERROO’s exit sequence will be the
same as the first animation in SSTTAANNDD__FFIIRREE’s
entry sequence. As a result, we don’t
need the first animation of the entry
sequence (it would cause the animation
to stall momentarily as two identical
frames with the character in the hero
pose were played). Instead, we append
the rest of SSTTAANNDD__FFIIRREE’s entry sequence
into the queue. This assures a perfectly
smooth transition between animations.

With the target state now set to
SSTTAANNDD__FFIIRREE, we are finished setting up
the transition. The animation engine
will start playing the animations in
the queue (removing them from the
queue as they’re completed), and the
engine will eventually get to a call-
back that was set up on frame 10 of
the STANDFIRE.ANI. This is the point
at which the AI can actually do the
mathematics to fire the bullet. The
animation engine will then finish
playing the entry sequence.

Whenever an entry sequence is com-
pleted, the animation engine executes
a second algorithm. It pushes the target
state’s exit sequence into the anima-
tion queue and then appends the cur-
rent state’s entry sequence. Finally, it
sets the target state equal to the current
state. Let’s apply this to our example.

First, the animation engine adds the
exit sequence for the target state, which
is SSTTAANNDD__FFIIRREE. Next, the engine adds the
entry sequence for the current state,

which is SSTTAANNDD__HHEERROO. Because the SSTTAANNDD__HHEERROO
entry sequence has only STAND-
HERO.ANI in it, and this is already the
last element on the queue, the engine
does not add the animation to the queue
again. As before, to transition correctly,
this animation shouldn’t be added
twice. Finally, the engine sets the target
state equal to SSTTAANNDD__HHEERROO, and the engine
is finished setting up the transition.

The animation engine continues to
play the animations in the queue,
removing them as they finish playing.
When it completes the last frame of
STANDHERO.ANI, the current state is
equal to the target state, and the queue
is empty; the animation engines does
nothing more.

Notice that for nonlooped anima-
tions, the current state is never set equal
to the target state. The character is only
in the target state for a single instant
before the exit sequence is appended
and the character returns to its previous
hero position. In some instances, we
want the character to remain in the
state with which the animation is asso-
ciated, such as when we’re entering a
new hero position or when we’re play-
ing a looped animation.

Entering a New Hero Position

In SPECOPS, when we want to transi-
tion from one hero position to

another, we don’t automatically
append an exit sequence onto the
queue when an entry sequence has
completed. Instead, we set the current
state to the target state and leave the
animation queue empty. In effect, this
leaves the character on the last frame of
whatever animation sequence was last
in the queue, and it gives us the func-
tionality we need to move between
hero positions. In the Viper engine, ani-
mation sequences that result in the
character posing in a new hero position
are denoted in the text file with HHEERROO as
a suffix, such as SSTTAANNDD__HHEERROO in Table 3.

Playing a Looped Animation

I n SPECOPS, looped animation files
are denoted by the word “loop” in

their names, such as WALKLOOP.ANI
(in Table 3). After the entry sequence
is complete, if we want an animation
to play continuously until interrupted,
we use the LLOOOOPP keyword, which sets

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

47

EEnnttrryySSeeqquueennccee SSTTAANNDD__HHEERROO “STANDHERO.ANI” HHEERROO

EExxiittSSeeqquueennccee SSTTAANNDD__HHEERROO “STANDHERO.ANI”

EEnnttrryySSeeqquueennccee SSTTAANNDD__FFIIRREE “STANDHERO.ANI” “STANDFIRE.ANI”

EExxiittSSeeqquueennccee SSTTAANNDD__FFIIRREE “STANDHERO.ANI”

EEnnttrryySSeeqquueennccee SSTTAANNDD__WWAALLKK “STANDHERO.ANI” “TOWALK.ANI” “WALKLOOP.ANI” LLOOOOPP

EExxiittSSeeqquueennccee SSTTAANNDD__WWAALLKK “WALKLOOP.ANI” “WALKEND.ANI” “STANDHERO.ANI”

TA B L E 3 . EEnnttrryySSeeqquueennccee and EExxiittSSeeqquueennccee entries for SPECOPS’ standing hero position.

RReeggiisstteerrCCaallllbbaacckk “STANDFIRE.ANI” 10 CCAALLLLBBAACCKK__SSTTAANNDD__FFIIRREE

TA B L E 4 . The RReeggiisstteerrCCaallllbbaacckk keyword and its arguments

the current state equal to the target
state until the target state is changed
either by user input or an AI message.
At that point, a new transition
sequence is pushed into the end of the
animation queue.

We’ve now seen how the character
can take a simple nonlooped action,
transition to a new hero position, and
perform a simple looped animation. To
see the real power behind these
mechanics, we need to look at a more
involved solution.

A More Complex Example

L et’s look at what’s involved in ani-
mating the character into a

crouching position and getting it to
fire its weapon. First, we need to add
support for a secondary hero position.
Table 5 shows the animation sequence
for a secondary hero position called
CCRROOUUCCHH__HHEERROO. As you can see, the sec-
ondary hero position has an anima-
tion sequence that describes its rela-
tion to the primary hero position.
We’ve also appended the sequence
with the keyword HHEERROO so that the ani-
mation engine will handle the transi-
tion correctly.

Generally speaking, the player
would generate an I/O event repre-
senting his or her desire to transition
the character from stand to crouch. In
response, CCRROOUUCCHH__HHEERROO would become
the target state. As described previ-
ously, when the entry sequence for a
hero position is complete, we leave
the animation queue empty and set
the target state equal to the current
state, which, in this case, is CCRROOUUCCHH__HHEERROO.
Everything progresses as usual, except
that at the end of the entry sequence,
the character is left in the crouch
hero position, because the exit
sequence would never be placed on
the queue.

Now suppose we want to fire from
this position. The player hits the fire
button, sending an I/O message to the
character. The animation engine places
the exit sequence for CCRROOUUCCHH__HHEERROO in the
queue and sets the target state to
CCRROOUUCCHH__FFIIRREE. The engine then finds
STANDHERO.ANI in the queue (the
last entry), and adds the entry
sequence for CCRROOUUCCHH__FFIIRREE after that (with-
out duplicating STANDHERO.ANI).
Let’s look at the contents of the anima-
tion queue:
CROUCHHERO.ANI
FROMCROUCH.ANI
STANDHERO.ANI
TOCROUCH.ANI
CROUCHHERO.ANI
CROUCHFIRE.ANI.

You can see that the character will
stand up, crouch back down, and
then fire. While this would look visu-
ally correct, it would appear more
natural for the character to remain
crouched the entire time. We need to
modify the algorithm so that it finds
the shortest sequence of animations
that still transition correctly. In this
case, we would like to put only
CROUCHHERO.ANI and CROUCH-
FIRE.ANI into the animation queue.
To do this, we need to modify the
way that we add the exit sequence.
Instead of adding the entire exit
sequence at once, we must add the
animations one at a time. After
adding each element, we’ll search for
it in the entry sequence that we’re
about to add. If we find it, we’ll add
the tail end of the entry sequence
into the queue. Then we’re done.
We’ll always find STANDHERO.ANI as
the last element of the exit sequence
if no other elements are found.

So, in terms of our example, we’ll
first add CROUCHHERO.ANI to the
animation queue. When we search for
it in the CCRROOUUCCHH__FFIIRREE entry sequence, we
find that it’s the third animation.

Because we found it, we won’t add the
rest of the exit sequence. Instead, the
engine should add the tail end of the
CCRROOUUCCHH__FFIIRREE animation, skipping
CROUCHHERO.ANI because it’s
already there. As we desired, this will
result in the following animation
queue:
CROUCHHERO.ANI
CROUCHFIRE.ANI

Now, we’ve managed to enter
CCRROOUUCCHH__FFIIRREE just fine, but we still need to
make certain that we exit this sequence
and return to CCRROOUUCCHH__HHEERROO as expected.
Using the new algorithm, we’ll add the
CCRROOUUCCHH__FFIIRREE exit sequence animations
one animation at a time, looking for
the animation in the CCRROOUUCCHH__HHEERROO entry
sequence. The resulting animation
queue will only contain CROUCH-
HERO.ANI, as we would expect.

With this new algorithm for solving
for transition sequences, this anima-
tion method can handle just about
anything. You should be able to
sketch out the steps to transition from
the middle of a walk entry sequence to
a crouching fire sequence and see that
it picks the optimal path of anima-
tions. Combined with the robust sys-
tem of animation callbacks, this
method represents the majority of the
animation logic used in SPECOPS. It
should just as easily handle any ani-
mation requirements, regardless of the
source of the data or characteristics of
the skeleton.

Wrap Up

T his system describes most, but not
all, of the animation logic used in

SPECOPS. Some elements have been
simplified for clarity, but this overview
should provide an excellent starting
point for working with your own sys-
tem of animation logic. Still, a few
additional notes should be touched
upon before you get started.
INTERPOLATION. I chose not to support
interpolation of motion between ani-
mations. Interpolation is a valuable
tool in making a character seem more
responsive. It can allow an animation
to be terminated at any point, and the
motion into the new animation can be
smoothly blended so that it looks visu-
ally correct. However, I found that
interpolation posed many problems,
and I feel that it’s useful in only a small

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

48

I N T E G R A T I N G A N I M A T I O N

EEnnttrryySSeeqquueennccee CCRROOUUCCHH__HHEERROO “STANDHERO.ANI” “TOCROUCH.ANI”

“CROUCHHERO.ANI” HHEERROO

EExxiittSSeeqquueennccee CCRROOUUCCHH__HHEERROO “CROUCHHERO.ANI” “FROMCROUCH.ANI”

“STANDHERO.ANI”

EEnnttrryySSeeqquueennccee CCRROOUUCCHH__FFIIRREE “STANDHERO.ANI” “TOCROUCH.ANI”

“CROUCHHERO.ANI” “CROUCHFIRE.ANI”

EExxiittSSeeqquueennccee CCRROOUUCCHH__FFIIRREE “FROMCROUCH.ANI” “STANDHERO.ANI”

TA B L E 5 . The animation sequence for secondary hero position CCRROOUUCCHH__HHEERROO.

number of real-world cases. It should
be considered the final polish to a solid
animation system. Refer to Jeff
Lander’s column (“Better 3D: The
Writing Is on the Wall”) in the
February 1998 issue of Game Developer
as a starting point for building interpo-
lation into an animation engine.
COMPRESSION. Data compression is a
necessity for any animation system.
Without compression, you can only
store a small number of animations in
system memory. I could devote an
entire article to this subject alone, but
to point you in the right direction,
SPECOPS stores Euler yaw-pitch-roll
(YPR) values and creates a transforma-
tion matrix on demand. This takes
longer during the graphics update, but
it allowed us to load all the animations
for the game at the start of a level.
INTERRUPTING ANIMATIONS. Often it
becomes important to halt whatever
animation is playing and start some-
thing new immediately. This is called
an interrupt animation. SPECOPS

required this in a few places, where
waiting for a transition sequence to
complete just didn’t look right. For

instance, having an enemy stand up so
he could fall over dead from a bullet
looks strange. Support for interrupts is
pretty straightforward and should be
part of any animation system.
PHYSICS. Sometimes it’s important to be
able to animate a character using the
physics engine and not animation
data. After many attempts to get gun-
fire to look correct in SPECOPS, we even-
tually resorted to applying visual noise
effects to the gun and chest when the
weapon was fired and not using any
animation at all. This allows the char-
acter to fire in almost any position at
any time. You can also get your charac-
ter to look at a specific object by
adding offset values to the Euler YPR
before creating the transformation
matrix. While this isn’t useful in many
applications, you should consider sup-
porting it. Realize, however, that it can
be time-consuming to add.
GAME LOGIC. Finally, let me make a point
with regards to AI structure. I’ve allud-
ed to the fact that SPECOPS uses finite
state machines (FSMs) in conjunction
with the game AI. This is a subject to
which whole books can be devoted, let

alone another article. It has been my
continued experience that using FSMs
is easier and faster to develop than any
other AI method. Better yet, FSMs are
the easiest systems to modify once you
have a game up and running. It also
parallels the object-oriented paradigm,
which means it organizes itself won-
derfully into the code. I strongly rec-
ommend building your game logic,
whatever it may be, from FSMs.

Hopefully this article will provide
you with everything needed to get a
complex animation system into your
3D game. I’ve found 3D animation to
be one of the most complicated but
rewarding aspects of 3D game creation.
When the character finally starts mov-
ing in that true-to-life manner that
only motion capture data can create,
you really do feel like you’ve brought
something special to life. ■

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

50

I N T E G R A T I N G A N I M A T I O N

Special thanks to Mark Kreitler for proof-
ing this article, for helping me imple-
ment my mad plans, and for being my
right-hand man for the last two years.

Acknowledgements

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

53

C O M P A T I B I L I T Y T E S T I N G

from your work. However, greeting you is not the director of
sales with a big smile and a cigar, but the familiar and some-
what worried faces of the QA and the technical support
managers. It seems the game is having problems running on
a very popular 3D accelerator card, it doesn’t fully install
DirectX 5 on certain consumer systems, and the hyped
force-feedback effects don’t work for users with a certain
force-feedback joysticks. How could these problems have
happened? You tested the game on the office systems and it
worked fine. What went wrong?

Sadly, hardware incompatibility is common in PC games.
The luxuries of console hardware standards don’t apply to
the world of PC development. Developers and publishers of
PC games are burdened by a lack of definable hardware and
software standards. Add to this the explosion of new hard-
ware products in a market with thousands of possible system
configurations, and you have a compatibility black hole
waiting to suck you in.

Compatibility testing is an arduous task that requires com-
mitment and determination by all development parties. The
rewards of compatible and stable games may not always be
paramount in the minds of hurried developers and publishers.
However, hardware bugs diminish the reputation of not only
the game, but of the companies involved with it. Bad press,
poor reviews, negative word of mouth, and so on cost you
sales (and royalties) and make it harder for your next project
to attract player interest. Game players have been known to
forgive compatibility problems in a mega-hit title (given the
quick availability of the ever-needed patch update). However,
if you don’t have a “killer” title, game players will crucify you
and your company for every quality mistake. A marginal
game that’s saddled with bugs and hardware incompatibilities

Is Your Game
Compatible
with Your
Users?

fter spending 18 arduous months creating

the ultimate PC game, you immediately

take that special someone on a two-week

romp in the Bahamas. Well-tanned and

refreshed, you enthusiastically return to

your company to reap the accolades AA
b y E r i c A d a m s

Eric Adams is an associate producer and lead tester at Eidos
Interactive. He has several years of industry experience at com-
panies such as SSI, BMG Interactive, Domark, and Psygnosis.
When he is not gibing opponents along with his QUAKE II
Clan (Killer Klowns), he’s fanatically following the San Jose
Clash. He credits his industry longevity to daily doses of strong
espresso and the affection of his terrific girlfriend Janet.
Contact him at eadams@eidos.com.

is quickly relegated to the discount bin.
A marginal game that is stable and per-
forms as promised on a majority of sys-
tems has a much better chance of gain-
ing an audience.

Tales from the Front Line

A s an associate producer and lead
tester at Eidos Interactive, I have

the unique opportunity to work on
both the creative and technical sides
of development. In striving to bring
users the latest in gaming technology,
I also see the downside of pushing the
PC hardware performance ceiling.
Games with those spectacular graphics
at intense speed are ripe for compati-
bility problems.

In five years of working in this indus-
try, I have yet to see a PC game released
that didn’t exhibit some type of hard-
ware or software conflict. I’ve worked
on games that have run the spectrum
of quality. I’ve managed games with
fifty hours of compatibly testing and
endured those with none.

I recently worked on two technologi-
cally advanced (and challenging) titles:
JOINT STRIKE FIGHTER and TOMB RAIDER

II. Both received a moderate amount of
hardware compatibility testing. Their
stories drive home the sad fact that
without a global PC standard, total
compatibility is an elusive goal.
JOINT STRIKE FIGHTER. JOINT STRIKE FIGHTER

(JSF) is a combat flight simulation that
uses an advanced software engine to
render the game world and its princi-
pals in stunning detail and with excel-

lent speed. Early in this project, I knew
that we had a winner. Not only was the
game extremely stable and bug free,
but Innerloop, the game’s developer,
was dedicated to making this title a hit.

Our testing resources were limited by
two other projects that Eidos was
developing in-house at the same time. I
was the associate producer and also the
lead tester for the JSF project. I had the
part-time assistance of a couple of
internal and external testers. Mike
Mchale (the QA manager) and our pro-
ducers also lent a hand in multiplayer
testing. We were able to test the game
on over fifty system configurations,
achieving very positive results.

During testing, we focused on 3Dfx-
based 3D accelerators, force-feedback
joysticks, high-end joysticks (such as
Saitek’s X36 Control Stick), and high-
end 3D video cards (such as nVidia’s
RIVA 128). The reasoning behind our
choice of testing hardware was that the
flight simulation market was very savvy
in the selection of components. Flight
simulator fans researched and bought
only the best items. Additionally, JSF
was specifically designed to take advan-
tage of these high-end peripherals.

When the game shipped, our only
nagging concern was with JSF’s multi-
player features. Basically, we had done
very little testing on the modem and
serial portions of the game. Adding to
our concern was the fact that the packet
size transmitted between host and client
was quite high. This led to TCP games
plagued by lag and slow frame rates.

To prevent any confusion on the
proper setup and operation of the

game, I wrote a thirteen-page readme
file on every technical aspect of JSF —
from DirectX 5 installation to lists of
URLs for major hardware vendors. I
was confident that we had taken the
steps to circumvent major user prob-
lems and decrease the chances of the
game needing a patch revision. Was I
ever wrong.

After JSF had been on the market for
about two weeks, I was dismayed to
find a number of newsgroup posts and
technical support e-mails complaining
of mysterious crashes with the 3Dfx
Voodoo Rush cards, a lack of center-
ing force on Microsoft’s force-feed-
back joystick, and a DirectX 5 incom-
patibility with older 2D accelerator
cards. The perplexing aspect of these
problems was that we had checked
these hardware peripherals; in fact,
we’d used them in development. Why
and how did these problems only
occur with our users?

In the case of the Voodoo Rush
crash, we (and the hardware vendors)
never found a cause. Fortunately, we
found a workaround that worked for
most users. The Microsoft force-feed-
back problem was solved in short order
with the kind assistance of the
Microsoft Gaming Hardware team. The
DirectX issues were resolved by having
users update their hardware drivers
directly from the manufacturer with
WHQL-compliant versions.

One of the areas that we missed in
our compatibility tests was the DirectX
5 compatibility of 2D video cards.
Because the game supported 3Dfx-only
acceleration, we focused on the drivers

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

54

C O M P A T I B I L I T Y T E S T I N G

The broad market appeal of TOMB RAIDER II required that the

game be compatible with a wide range of consumer hardware.

The compatibility testing of JOINT STRIKE FIGHTER focused on

high-end hardware due to the technical sophistication of

the flight simulator market.

for the 3Dfx cards. When the game
shipped, we had users report Direct-
Draw crashes with their 2D cards.
These calls accounted for 40 percent of
our technical support call volume.

Another lesson we learned (thanks to
the force-feedback and Voodoo Rush
problems) was that you must try multi-
ple configurations and then follow-up
on subtle clues. For example, when we
tested Microsoft’s force-feedback joy-
stick, we only used two systems and
the 2.0 Gaming Devices software. I
found that the centering force was
poor (the same problem that our users
experienced), but I attributed this to
the limitations of the joystick itself. I’d
read several reviews of this joystick,
and poor centering force was a com-
mon complaint. Unfortunately, our
particular problem was due to incorrect
programming with the SDK. In retro-
spect, I should have sent the game
directly to the Microsoft Gaming
Devices testing lab for their review.

The hardware problems with JSF
prove that you can never be too com-
placent with your testing. Try to cover
as many hardware permutations as pos-
sible. Test a featured peripheral with all
if its drivers.
TOMB RAIDER II. This project was of para-
mount importance to the company.
Therefore, we not only tested the game
on our internal test bed system and our
own developments systems, but we
even enlisted the services of a local
testing lab. In the end, we covered
nearly one hundred different system
configurations. We found several hard-
ware incompatibilities that the devel-
oper (Core) promptly fixed. Mike
Mchale and Mike Schmidt (the produc-
er) worked tirelessly on a detailed
readme to address some remaining
technical issues and answer basic tech-
nical questions on the game.

The targeted user base for TOMB

RAIDER II (TR2) was much broader than
for JSF. Many first-time computer buyers

would be buying TR2 for Christmas.
These users often chose name-brand
models that ran the gamut from sub-
$1,000 bare-bones systems to Pentium II
300MHz screamers. This hardware dis-
parity made it impossible for us to
achieve our total compatibility goal. For
us to come close to guaranteeing total
compatibility, we would have needed to
hire several testing labs working weeks
on hundreds of configurations. This was
a financial and time impossibility for us.

Therefore, we had to carefully
choose our compatibility goals. We
opted to run tests on middle-of-the-
scale systems (P133-P233 MMX class
systems), with an emphasis on con-
sumer models. We also targeted the
latest crop of 3D accelerator cards
(nVidia, Voodoo Rush, ATI Rage Pro,
Permedia, and others) and a selection
of popular 2D OEM cards (Trident, S3
Virge, Matrox, and so on). Next, we ran
sound card tests on products from
Creative Labs, Ensoniq, Yamaha,

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

56

C O M P A T I B I L I T Y T E S T I N G

A Hypothetical
Test Bed

T his is a good template for

building your test bed. As

always, technology will render

many systems obsolete in the

coming months. System configurations

should be bi-annually evaluated and

updated. Employing a test technician,

who could manage the test bed, burn CDs,

and run automated testing would be

ideal.

There area some areas that are often

overlooked in testing. What happens if

you code your game as a true 32-bit

Windows 95 application that requires a

typical desktop system configuration,

and the user tries to run the game in

Windows 98, Windows NT, or on a lap-

top? What if the system is below specifi-

cation? What if the system is far above

the recommend configuration? If you

don’t support or test these systems,

make sure your customers know. Many of

them will be using these configurations,

and they’ll expect your game to run flaw-

lessly on them.

This is the configuration we used on

DEATHTRAP DUNGEON.

CORE SYSTEMS
• Intel P166 \ 32MB EDO RAM

• Intel P200MMX \ 32MB EDO RAM

• Intel P233MMX \ 64MB RAM

• Intel PII 266 \ 64MB SDRAM

• Intel PII 300 \ 80MB SDRAM

• Intel Pentium Pro 200 \ 64MB EDO RAM

• AMD K5 166 \ 16MB RAM

• AMD K6 233 \ 48MB SDRAM

• Cyrix PR200MX \ 32MB EDO RAM

You might also consider testing on a

Winchip CPU, a Cyrix Media GX CPU and

RAM configurations from 16MB up to

80MB.

Motherboards:
Test on AT, ATX, Slot 1, and Slot 7 mother-

boards.

CD-ROM Drives:
Test on drives running on speeds from 4x

up to 32x. Also try your game on IDE and

SCSI drives, as well as CD changers.

3D Video Cards:
• 3Dfx Voodoo/Rush/Voodoo II

• PowerVR PCX/PCX2

• Rendition 1000/2100/2200

• Number Nine Revolution

• Matrox Mystique/Millennium II

• nVidia RIVA 128

• 3Dlabs Permedia 2

• Oak Warp 5

PERIPHERALS
Soundcards:
Test on ISA, PCI, wavetable, and mother-

board-based soundcards.

2D Video Cards:
• S3 Virge DX/VX/GX

• Trident

• Tseng Labs

• ATI Rage II

Speakers:
Test your game using low-end (those

included in popular bundles) and high-end

(preferably with Dolby Surround or AC-3)

speakers.

Controllers:
• Analog

• Analog (programmable)

• Digital

• Digital (programmable)

• USB

Hard Drives:
Test on EIDE hard drives (including Ultra

DMA) with motherboard and PCI con-

trollers, as well as SCSI drives (SCSI2 and

up) with motherboard and PCI controllers.

Mwave, Videologic, and Diamond-
Ware. Finally, we tested all the popular
gaming control pads (from Microsoft’s
Sidewinder Pad to Thrustmaster). We
decided upon this sampling through
the invaluable research of technical
support and marketing.

After the game was released, the
waves of consumer calls that started to
hit our overworked technical support
staff were tremendous. The technical
problems that we saw began with users
trying to run the game on video cards
that were incompatible with DirectX 5,
causing the game to crash. Then we
had users running the game at high
resolution on low-end video cards with
only 2MB of VRAM, which resulted in
the game running slowly and showing
severe texture loss. We had a problem
with the game (which ran mainly from
the CD-ROM) overaccessing the CD-
ROM, which resulted in FMV prob-
lems. Finally, we even had some users
who couldn’t fully see the contents of

the CD-ROM because they weren’t run-
ning Windows 95 CD-ROM drivers.
Thanks to our compatibility testing, we
knew about the DirectX 5 and video
card problems. We were able to docu-
ment solutions in a detailed readme
file. The CD-ROM issues required a
patch to resolve the problems.

Although our attempts to prevent a
flood of calls seemed to have failed, in
retrospect, we actually did pretty well.
We sold a substantial amount of prod-
uct, but only two to four percent of the
user base (about 4,000 out of 250,000)
called with true technical problems.

By creating a profile of the typical
user that is going to buy your game,
you can tailor your compatibility test-
ing to the type of system hardware
that your game is most likely to
encounter. In the end, your goal
should be to limit calls to about two to
seven percent of your user base.
Generally, the broader the target mar-
ket, the more calls you will have.

We all learned some lessons from
this experience. First, beginning users
often don’t read or understand the
technical documentation, so it’s
important to write clearly for easy
comprehension. Second, a small per-
centage of users will have system con-
figurations (such as three CD-ROM
drives, SCSI and EIDE hard drives,
Windows NT or Windows 98 beta, and
so on) that are rarely used or recom-
mended. These users are very hard to
quantify, and their incompatibility
issues are the hardest to resolve. Third,
developers and publishers need to test
more consumer systems. The vast
majority of users are buying these sys-
tems because of their value for money.
These systems are, to put it mildly, a
compatibility challenge.

Test Bed Creation

A s you develop your title, you’ll no
doubt be testing the game on sys-

tems with quality components, a fast
processor, lots of RAM, and a superb 3D
accelerator. Some of your audience will
have systems of this quality and proba-
bly better. Nevertheless, most users will
have systems that are not as powerful
or designed for game use. Many users
will have upgraded their systems with
custom components. You’d better
believe they’re running every utility

and tweak to gain performance on their
system. The newbie game player will
most likely be running a consumer sys-
tem, designed to be easy to operate
with everything a user would need.
What the user doesn’t realize is that
most of the hardware components are
either non-standard or outdated (read
non-DirectX 5 compatible). With all
these system types, what’s a project
leader or QA manager to do?

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

57

MISCELLANEOUS
Invest in a quality test bed rack that can

hold five to ten systems. You should also

have several high-quality 17- or 20-inch

monitor, six to ten systems switch box

for monitor, keyboard, and mouse, and

multiple joystick switch box

WINDOWS SOFTWARE
• Windows 95

• Windows 98

• Windows NT (up to 5.0)

• DirectX 5, DirectX 5a, and the forthcom-

ing DirectX 6

• QEMM97

• Hard drive compression (Drivespace

3.0)

Also test your game while these common

third-party programs are running in the

background or are minimized:

ICQ, Virus scanner, Uninstall monitor,

mouse software, e-mail software, joy-

stick driver, video card configuration

software, Powertoys, MS Findfast, MS

Office Toolbar, MS System Agent

MULTIPLAYER
At least eight systems should be con-

nected via an IPX or NT network. Two

systems should be connected via serial

cable. Two systems should be connected

via modem. One system should be desig-

nated as a primary dedicated server for

TCP/IP games.

Managing a testing lab and then

coherently tracking incompatibilities

can be a daunting task. However, here

are some tactics to overcome potential

problems:

❏ Create a driver CD. Burn a CD with all

the major drivers for your peripher-

als. Include Window Cab files, virus

updates, and third-party utilities.

This CD will be invaluable if your

need to reinstall drivers or system

software.

❏ Get a sturdy file cabinent. Invest in a

large, secure file cabinet that can

store all your hardware, software,

cables, and so on.

❏ Create a system inventory. Keep an

inventory on all the systems in the

office, including the test bed, that

you could test on. In this way, you

can find targeted systems without

bothering MIS.

❏ Invest in a video tracking system.
Whether it be a camcorder or an

SVHS VCR connected to the monitor

output, you sometimes need a video

record to show to the programmer

when describe a problem.

❏ Create a multiplayer network. Make

sure the test bed systems are con-

nected on their own hub for LAN and

TCP/IP game testing. It is much easi-

er to track problems when the testers

are not scattered about the office.

❏ Get testing tools into the game.
Tracking problems is much easier if

you have testing tools (screen shots,

performance tests/monitor, multi-

player log creation, and so on). These

tools can help detemine whether that

bug is hardware or software related.

Testing Lab
Checklist

The answer is to create an internal
test bed complied from your organiza-
tion’s market research. Market research
entails retrieving data on what systems
your customers use or plan to buy.
There are two ways to get this informa-
tion. First, you can have the QA man-
ager review literature (online and mag-
azine) on the hot new peripherals and
system configurations. The second
method is to review your publisher’s
registration card data. You should be
addressing some specific questions:
• What is the typical system (40-60

percent of your target user base) that
is used by customers? A “system”
consists of CPU, RAM, CD-ROM
drive, and video and sound cards.

• What vendor (for example, Compaq,
Dell, or Micron) seems to be the lead-
ing consumer model? What’s the lead-
ing model number? Any consumer
model that has over five percent of
the user base or consistently garners
top marks needs to be in your test bed.

• What item is a “must have” for users
or is something that they definitely

plan to buy in the future? Try to get
specific information. A “3D card” is
not that relevant; an “nVidia RIVA
128 card” is relevant.
Plan to use components that account

for a sixteen-month period from the
ship date (eight months before and
after). Complete the test bed with an
updated compatibility checklist that is
used to track the configurations and
form your testing regime. In building
your test bed, mirror the hardware used
by both hardcore game players and the
general public.

Gaming magazines and web sites are
great resources for determining what
hardware game players are buying now
and what they will buy in the future.
I’ve found that the CNET and ZDNET
web sites are invaluable for this
research.

Creating a test lab requires both
space and money, but gaining a reputa-
tion for quality products is worth the
expense and effort. If you are on a tight
budget, you can get by with seven swap
systems. I’ve listed a hypothetical test
bed in the sidebar.

Allies in the Crusade

U se all of your available personnel
resources to ensure that your

game is compatible with your target
hardware.
SALES AND MARKETING. Your company’s
sales and marketing departments can
provide you with information on
potential OEM bundle deals. If they’ll
be bundling your game or demo with
an obscure video card, be sure to get
the card and the SDK needed to com-

plete the job. Sales and marketing also
have a wealth of information on cur-
rent and future demographics (includ-
ing hardware specifications) of the
gaming market.
THE HARDWARE VENDORS. Cultivating coop-
erative relationships with hardware
vendors pays many dividends. First,
you usually get free use of their current
product lines and future use of any
prototype units. Next, you get to send
your beta to them for intensive tests on
their product lines (free compatibility
testing). If a problem should arise,
they’ll lend their technical expertise to
solving it. Just make sure that you send
them some free titles and give them
credit when it’s due.
TECHNICAL SUPPORT. These folks get the
grief when products have bugs or hard-
ware conflicts. From their first-hand
experience, they are a repository of
knowledge when it comes to potential
hardware issues. They often have the
answers to those obscure problems that
can plague a game. Technical support
has a vested interest in making sure
your game works properly. Enlist them
in the testing program. Technical sup-
port can casually test the game as a
user would, spending perhaps 10-20
hours per person with the master can-
didate. Work with the technical sup-
port manager to assure that each sys-
tem in the department has a unique
system configuration. Use your techni-
cal support lab to emulate obscure
video and sound card combinations.
QUALITY ASSURANCE. Basically, your QA
personnel will be testing your game on
its own uniquely configured systems.
In the compatibility-testing phase,
have QA operate its systems normally
(that is, with typical background appli-

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

58

C O M P A T I B I L I T Y T E S T I N G

The leading culprits in hardware incompatibility are

1. Third-Party Drivers: Often you’ll find users running alpha and beta versions of

drivers or non-DirectX 5 certified drivers.

2. Background Programs: These include the mouse driver, ICQ, virus scanner,

install monitor, joystick driver, and so on.

3. Buggy Operating Systems: Windows 95 buggy? Are you surprised?

4. Video cards: You’re up against a market featuring many chips with myriad

capabilities.

5. Sound cards: Compatibility issues involve legacy support, faulty game ports, slot

specification, and so on.

6. Joysticks: You may have to consider sticks with 10 to 20 buttons, custom pro-

grammable software, and keyboard emulation.

These are your enemies. They are present in every game player’s system. They wait to

conflict with your game.

TA B L E 1 . Saboteurs to your code.

JOINT STRIKE FIGHTER taught its testers

to always be vigilant for strange

hardware permutations.

The wide variety of consumer systems

that TOMB RAIDER II’s technical sup-

port staff encountered presented a

compatibility challenge.

cations resident) as opposed to clean
(with no programs other than Explorer
in operation). With QA running your
game on systems that are configured
for day-to-day, practical use, you have
the opportunity to catch many soft-
ware incompatibilities.

As an additional benefit, your QA staff
is savvier to the workings of the game
and can more accurately pinpoint prob-
lem as coding errors or as hardware/soft-
ware conflicts. The QA team also has the
experience to duplicate hardware or soft-
ware configurations that have created
problems with past games.

Use them and trust them; they are
there to protect your company from
defective software. QA will be on point
in the detection of conflicts. If you
show them that you respect their time
and effort, they’ll give that extra effort
needed to ensure a quality game.
THE USERS. Many solutions to difficult
hardware conflicts come from industri-
ous and clever users. In many cases,
compatibility bugs in the release ver-
sion were easily solved by users, who
then posted the solution to a news-
group or e-mailed it to technical sup-
port. This is often the case when the
culprit is a missing driver, a corrupt
.DLL file, or even a DMA conflict. If
your users highlight a specific compati-
bility problem (such as ICQ messages
crashing the game), do your best to
address it. It must be important if they
bothered to call.

Be open to their ideas and credit
their assistance. If you have faith in
your users, they’ll spread the word that
you listen and care about your cus-
tomers. Such a reputation can only
help you in the long term.

90 Percent of the Market

S o, is global hardware compatibility
an achievable ideal? Frankly, no.

There are just too many hardware and
software variables with which to con-
tend. Nevertheless, we can limit the
damage. Following a thought-out com-
patibility test plan (see “Maxims for
Compatibility Success”) can
realistically verify that 80-90 percent of
the systems on the market can run
your software at the intended perfor-
mance level. Ensuring stable, compati-
ble games will earn you the respect and
appreciation of game players. ■

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

60

C O M P A T I B I L I T Y T E S T I N G

• Regardless of your talent and thoroughness, there will always be hardware con-

flicts with your game.

• Developing realistic hardware requirement specifications will alleviate the vol-

ume of conflicts. Do not give in to your marketing staff when they ask you to

lower your specifications to gain customers. The customers you gain will be

mighty angry when their systems run your beautiful game poorly.

• An excellent tenet is to start early. Many developers only request compatibility

testing on the master candidate. This is dangerous. If you do discover a com-

patibility problem, finding a solution could jeopardize your launch date or

necessitate a maintenance patch immediately after release (which equals very

bad PR). I like to allot a two-week compatibility test run on the final beta ver-

sion. The first week is to route out any problems. The second week is to verify

any revisions.

• In the development schedule, add at least two weeks for compatibility testing

and the resulting code fixes.

• Consult daily with the QA manager and the lead tester during this two-week

compatibility test phase. Try to test the game in standard and non-standard

environments.

• Include (with the assistance of QA and technical support) a detailed readme file

that aims to circumvent any technical questions or concerns. Empower the user.

• Cultivate relationships with leading hardware vendors in every component field.

They will gladly provide their hardware and knowledge in solving your prob-

lems. Send these contacts a near final beta of the game and ask them to test it

on their systems. They are a great source of free compatibility testing.

• Contract with a local software-testing lab to assist in the testing of your title

(for example, Veritest, ST Labs, Sys Labs). They are especially valuable

because they have several swap systems designed to reflect user configura-

tions. With their trained hardware technicians, they can pin down generic

incompatibilities.

• Talk to your technical support manager about his or her experience with com-

mon user problems with this (your) type of game.

• Once the game is released, assign someone to monitor user feedback. If there

are hardware problems, move quickly to solve them. Game players hate it when

companies pass the buck.

• If a game is just not compatible with a hardware device, do the right thing and

say so on the game box.

• The QA manager should have a testing checklist or documentation on how com-

patibility testing should proceed. If you have a long-term contract with a pub-

lisher with internal QA, press to have this document created.

• Functionality testing is the primary testing regime for compatibility testing.

Functionality testing encompasses:

Game installation

Game play at options default for five minutes

Game play with option changes (especially video resolution) for five

minutes

Game save

Game load

Game uninstallation

Each tester should complete functionality testing within 25 minutes.

• Compile a compatibility chart that records the daily testing configurations and

results and give this document to the lead tester at the end of the day.

Maxims for Compatibility Success

how difficult this specialized form of model building really
is. I’ve been modeling and animating for over six years and
I’d like to share some of my techniques and poly-philosophy
with you. Keep in mind that because I work at id Software
making games such as QUAKE II, my discussions and exam-
ples will be culled mostly from that area of experience.

Today is the day of real-time polygonal games such as
QUAKE II, WING COMMANDER: PROPHECY, TOMB RAIDER 2, and
multitudes of other products touting 3D game-playing expe-
riences. Whether on a PC, console, or arcade system, devel-
opers are using 3D models instead of prerendered sprites to
represent the action; and those models need to be lean.

Pre-Modeling Phase

L IMITATIONS. The first key to creating low-polygon objects
and characters successfully is to identify your limita-

tions. This may seem a constricting and pessimistic
approach, but it’s crucial. Get a target face-count from your
programmer for each character or object per situation. This
information will save you time and frustration. For example,
in QUAKE II we had around 600 faces per character — give or
take a 100 — with which to work. However, characters that
predictably appeared in relative droves (four to eight at a
time) had to have lower than average face counts — about
450 faces. And a single boss character that had only one or
two other character types had almost 2,000 faces.

Another face-limiting factor that you may have to consid-
er as a low-polygon artist is the complexity of the character’s
environment or, in our case, the level. Get together with
your designer and discuss how detailed the game level is.

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

62

T U T O R I A LM O D E L I N G

The Art of
Low-Polygon
Modeling

o say that creating low-count polygon

meshes for computer games is an art

form may be a little pretentious. But unless

you’ve been given the task of creating a

fully articulated humanoid character using

only 100 triangles, you may not know TT
b y P a u l S t e e d

After surviving adolescence and never quite growing out of it, the
author likes to think of himself as an art Samurai. Primarily a
modeler and animator serving time at Origin, Iguana
Entertainment, and Virgin Interactive, Steed currently swings a
sword for id Software, specializing in models, animations, and
cinematics. Learning, growing, and teaching his craft is the cor-
nerstone of his digital-bushido philosophy. Kicking ass in a good
game of pool is pretty important, too.

More complex levels need lower face-count monsters and/or
fewer characters. Be aware of all the variables that dictate
your face count and use them to your advantage.
APPROACH. After you’ve determined how many faces you have
to work with, you can start thinking about how to approach
your impending modeling tasks. Let’s go back to the 100-tri-
angle humanoid figure. Does this figure need to uni-bodied
(as in, all one unified piece), or can it be a group of objects
intersecting and overlapping each other as in the VIRTUA

FIGHTER games? In QUAKE II, I used a combination of both
figure types with no problem.

Ask yourself some other questions as well. Which is more
important, the total number of vertices or the total number
of textured faces? For example, in QUAKE II I based my mod-
eling tasks on the number of faces doled out to me by the
programmers. However, I should have concerned myself
with the total number of vertices, because our engine keeps
track of vertex positioning as opposed to face positioning. I
could have added a few more faces per model in QUAKE II
had I thought to ask if hidden or submerged faces could be
deleted. I just it took for granted that all the pieces of the
models had to be “closed” like an airtight balloon. Now I
know better; if you can’t see a face on the model, it gets
whacked.
TOOLS. I still use 3D Studio 4 (3DS4) because I literally can’t
make the time to learn something else. The other reason
that I’m still using this dated tool is simple: it gets the job
done and done quickly. I run 3DS4 on a Pentium 200MHz
with 128MB RAM, a Monster 3D accelerator card, and a
Matrox Millennium video card with 4MB RAM. You may use
or advocate 3D Studio MAX, LightWave, Nichimen, or some
other NT-based modeling package — what tool you use
when you’re doing low-polygon modeling really doesn’t
matter as long as you can get the job done. In the end,
what’s important is that you’re able to understand and
manipulate your mesh at the most basic level.

Any tool that you use will require you to “get your hands
dirty” — you know, move those vertices and flip and turn
those faces. So make sure that your modeling package of
choice provides that type of functionality.

My first experience with low-polygon modeling was in
1992 when I did the objects for STRIKE COMMANDER at
Origin. Using an in-house editor called EOR, I had no
primitive-making command or lofting ability. I had to lay
down vertex after vertex and play “connect the dots.” As a
modeler, this was the best thing that could have happened
to me so early in my career. Creating models in this man-
ner was tedious, but it gave me an intuitive knowledge of
mesh building, and I highly recommend you try it some-
time (schedule permitting, of course). Relying solely on an
automated process for your meshes without hands-on ver-
tex, edge, and face manipulation is like being a weapon-
proficient soldier who has no martial arts or hand-to-hand
combat training.
ACCURACY. I developed my low-polygon modeling skills mak-
ing planes and tanks and buildings. Trying to make accurate-
looking low-polygon objects is yet another part of the chal-
lenge. More often than not, you have to learn how to create
an impression — as opposed to a literal representation — of
a real-world object. For example, when I created some naval

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

63

Accommodation. What

I call model “accom-

modation” is nothing

more than making

sure the model’s

geometry supports its

animations. For exam-

ple, even low-polygon

limbs (arms, legs, tentacles, and so on) need to bend and flex

while still holding their shape. When you make these types of

appendages, create them in a bent state. I always see these

stock models you can buy with their typical outstretched arms

and legs frozen-halfway-through-a-jumping-jack looking pose.

If the model has a million faces, then this type of pose is no

problem. However, with low-polygon models, it’s actually better

to model limbs slightly or fully bent so the proper extra detail

can be given to the elbow or knee. At the very least, manually

bend these limbs at their intended joints to see if they hold their

shapes and then straighten them back up if necessary.

Attitude. This is the life and identity shown in characters. Don’t

be afraid to give your creations personality. I exercise my imag-

ination quite freely when imbuing my characters with virtual

life. Giving them identity allows for better game play, in my

humble opinion.

Tessellation.
Tessellation

is simply

adding faces

and vertices

to an object

for more detail. This is most useful with curved surfaces, but

can be used for any shape. Of course, with low-polygon objects,

the last thing you’re likely to do is tessellate an object because

it adds even more faces, which you’re trying to find a way to get

rid of.

Boolean. You’d think

that Boolean would

be the best of tools

for creating models

because it alters the

shape of an object by

using the intersection, subtraction, or union of another overlap-

ping shape to subtract or add to the original object’s geometry.

In reality, this tool can be problematic because it creates extra-

neous faces that are sometimes hard to find (at least in 3DS4),

thus adding to your face count unnecessarily. Still, Boolean is

very useful when it works the way you want it to work.

Curve angle. Curve

angle is what I call

the angle made by

meeting segments

in the edge of a

low-polygon curve.

If the curve angle is

Glossary of Terms

Continued on p. 64

warships in STRIKE COMMANDER, I had
to suggest the complexity of the masts,
wires, and loads of antennae that are
found on these vessels. Using opacity, I
textured the geometry onto two quads
and then crisscrossed them so that it
looked like there was some busy con-
ning tower present on the ship. There
was no way I could have built all those
structures with the limited number of
polygons available.

When creating characters, the chal-
lenge of accuracy is even greater due to
the complexities of simulating organic
objects and allowing for realistic move-
ments. Muscles are smooth, not
blocky. Faces are usually somewhat
round, not square. And then there’s
hair — don’t even get me started on
that subject. Even when you have

many polygons to work with, creating
hair accurately is a substantial feat. It
may be best left to some kind of proce-
dural or particle system. The bottom
line is that anything round, rounded,
or curved will eat up faces quickly.
RESOLUTION. Another factor to consider
is the required level of resolution of
your model. With regard to the ship
that I described earlier, I knew the
model would be seen while flying
quickly past it, perhaps as the player
tried to sink the vessel. Given that
known low-resolution requirement, I
concentrated on elements (such as the
mast area) of the object that made it
easily recognizable when displayed in
only a few pixels. After technological
constraints, resolution should dictate
how much detail you need to put into

your model. Obviously, close-up char-
acter models will need more faces than
angular, distant battleships.

Before I move on to the following
tutorial, read over the “Glossary of
Terms” sidebar. I’m assuming that
you’re knowledgeable in basic model-
ing, animation, and art terms.

Modeling a Quake III Monster

L et’s create a low-polygon monster
that will be used in the upcoming

QUAKE III. As in most artistic endeav-
ors, we start with a sketch. Nothing too
fancy is required — usually just an
action pose and some close-ups of the
trickier areas. Sometimes, a full-blown
orthographic breakdown is necessary,

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

64

M O D E L I N G T U T O R I A L

large enough (as in, closer to 180 degrees or flat), I’ll reduce the

segments or facets that make up the curve of the shape by merg-

ing or welding vertices. Therefore, the higher the curve angle, the

more likely the chance a shape can be optimized.

Diamonds over
squares. When

you need to

make a tube-

like shape such

as an engine

nozzle or cable, a pentagon is the optimal shape for circular low-

polygon objects. But sometimes we need to use less than a five-

sided segment, and a square or triangular cross-section is all we

can afford. If the shape is supposed to be round, however, make

it a diamond instead of a square. The reasoning for this may be

debatable, but it’s been my experience that the object will

appear more rounded with an edge along the top instead of a

flat end.

Edge Division. This

command is the

opposite of the

Vertex Merge. It is

the process of

dividing an edge

exactly in the mid-

dle, inserting a vertex, and creating the appropriate faces result-

ing from the new vertex’s addition.

Edge Turn. In Power-

Animator, it’s called

the Quad Split or

something, but basi-

cally this technique

takes the bisecting

line of a quad made

up by four vertices and turns that edge so that it goes to the

other two vertices. It’s a very useful tool, and I wouldn’t touch a

modeler that doesn’t have it.

High to low vs.
low to lower.
These are two

methods by

which I model

based on how

I’ll be using the

mesh. The for-

mer method is

usually reserved for meshes that will be in high-resolution cine-

matics as well as in the game. Initially, an unlimited face-count

approach is taken, and the model will end up being very detailed.

This high-resolution version can be used for advertisements, cin-

ematics, or whatever. It also serves as the template to model a

low-resolution version of the same model to go into the game.

The latter technique involves creating a mesh without consid-

ering a high-resolution version and keeping the face-count rela-

tively low from the beginning and optimizing on the fly.

Sometimes though, I’ll make a high-resolution version of a char-

acter or object just to have a starting point to texture. Usually,

Adrian is our texture guy, so I don’t worry too much about the

texturing process.

Level of detail (LOD). This is when an object is represented by

varying numbers of triangles at varying viewing distances. For

instance, at long range an object may be no more than a few pix-

els on the screen, and the closer you get to it, the more detail

pops into view. This technique can be done manually, but the

more levels of detail you create, the bigger the memory hit. Each

LOD is a separate object that has to be stored and tracked. A

technique called “displacement mapping” or “real-time deforma-

tion and tessellation” based on displacement map information

can overcome these LOD limitations, but has yet to be imple-

mented on a large scale.

Glossary of Terms (cont.)

though. In this case, we have a mon-
ster design from fellow artist and id
founder and co-owner, Adrian
Carmack.

Checking with Kevin Cloud, fellow
artist, project director, and co-owner of
the company, we determine that this
particular guy (called an Exterminator)

is halfway between a boss and a basic
monster. So we set the face limit for
this guy at 800 (not a small number for
a monster) because he’ll be seen rather
infrequently. Of course, anything less
than that is better, but I know we have
at least 800 faces with which to work
(and generally, if I’m given 800 faces,
I’ll use 800 faces).

We’re taking a “low to lower”
approach to building this guy, but we
don’t have to think too frugally at first.
Generally, it’s best to use whatever’s
necessary to get the shape going (with-
in reason) and optimize as you go.
PART ONE: THE ARMS. Having all the pre-
modeling information we need, let’s
start with the arms. The reason we start
there is that it’s easier to begin a model
with its most distinguishing feature.

Thus, we pick the arms. Because the
shape is rather unique, primitives
won’t work very well. So let’s create an
outline of an arm and loft it along a
path.

Since it’s bulky and organic and
needs to appear somewhat beefy, the
loft of the first arm needs two segments

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

65

Lofting/Extrusion.
Taking the outline

of a 2D shape and

lifting it into the

third dimension

along a path is

called lofting or

extruding that shape. This technique is very useful when a primi-

tive won’t fit the bill. Lofts can have as many segments or layers

as you require.

Mixed cross-sections.
This is a technique

whereby a shape is not

constrained by the

same cross-section or

lofting shape in its

length. This works

especially well with

darker or smaller

objects, or when a

cross-section is very

noticeable in the design and needs to look rounded.

Optimization.

Optimizing

your model is

the act of

reducing the

number of faces making up that model. Almost every modeling

tool has some sort of optimization feature. Some are good, some

aren’t so good. I’m a neat freak with my models, so I try to keep

some sort of order or symmetry to the design of the mesh when-

ever I can. A lot of optimization programs aren’t so aesthetically-

inclined (to say the least). Thus, I always prefer to optimize by

hand when I do low-polygon meshes (unless the mesh needs to

go from 10,000 faces to 500), because I have more control. When

I do resort to automated optimization, I’ll usually do it by split-

ting the model in half (provided it’s supposed to be symmetrical),

optimizing one half, and then welding the two pieces together.

Primitives. Most

modeling pack-

ages include a

group of poly-

gons that can be

created quickly by via a single command such as Create>Box or

Create>Sphere. Primitives are excellent building blocks for

modeling. If primitives can’t fit your shape needs, then of course

a loft or Boolean would be the next approach.

Splitting the difference.
Sometimes, you’ll get a

shape or a section of a

shape that needs to be

represented by a more

triangular shape than a

rectangular shape. A

quick and easy way to

accomplish this with

accuracy is to split the difference. Basically, you take an edge,

divide it, and merge the end vertices to that point. This technique

merges two end vertices precisely in the middle of an edge. You

could just merge the vertices and move them, but then that’d be

more work now, wouldn’t it?

Vertex Merge. To me,

vertex merging is the

best friend I have

when it comes to cre-

ating low-polygon

models. It is key to

ridding yourself of

unwanted faces and vertices, allowing you to hit that magic num-

ber given to you by your programming staff or art director.

Merging a vertex simply takes one vertex and merges it with

another vertex, effectively reducing the number of vertices by

one and the number of faces by two in the immediate area of the

merge. This technique or command, combined with Edge Division

and Edge Turn, form what I call the “Trinity” of most useful low-

polygon modeling techniques.

(normally, one is best with a low-poly-
gon object). Lofting the shapes results
in an initial 200-face arm assembly,
which we need to scale and position to
match the sketch.

Doing some quick math, a 200-face
arm isn’t good because there’s two of
them, and we still have to create some
articulated tentacles, a rounded head,
and a body structure. Budgeting 400
faces for just the arms simply won’t
work. So first let’s chop off any faces
that won’t be seen. Remove the ends of
the tendon at the top, the top faces of
the lower arm, and the base of the arm
where it will connect to the body. We
also need to rotate the tendon so the
edge is up and exercising the “dia-
monds over squares” rule.

Now things start to move pretty fast.
We split the difference on the bottom
edge of the claw and merge the vertex
at the upper end of the tendon (mixed
cross-sections), making sure that we
turn the bottom edge of the tendon for
clarity and neatness.

Then we move the outer-edge ver-

tices of the main arm object to give the
top and bottom an edge suggesting
roundness (diamonds are better…).
Merge some vertices at the top of the
main arm and go ahead and insert a
vertex by dividing an edge at either
side of the base of the main arm. Now
pull them out to give the arm a “turkey
leg” look. Given the current curve
angle of the bottom of the main arm,
we need to merge some vertices by
splitting the difference in two places.
Then merge the vertex in the middle,
underneath the “neck” of the arm.
Grab two vertices at the top of the end
of the arm and pull them down and
scale them out. Then go nuts at the
end of the arm where the lower arm
attaches. Merge and turn and move
and scale the hell out of that area.
Here’s a comparison of where we start-
ed and where we are at this point:

Now look closely at this blow-up of
the end of the main arm object. It
should be obvious how we can knock
nine faces off of this area. Which three
techniques do we use?

If you answered, “Why Paul, the
curve angle underneath and to the
right of this region easily dictates opti-
mization by nine faces by taking these
two edges…

…splitting their difference…

…and merging the vertices,”

then, voila. You are absolutely correct.
By now we’re feeling pretty good

about the arm, so we scan it for more
tweakage. (We’re down to 131 faces in
case, you haven’t been keeping track.)
Glancing at the lower arm, we see via
our hyper-keen curve-angle sense that
a couple of faces can be shaved near
where the claw is joined.

Why not get rid of the vertices
bisecting the leading edge of the lower
arm, too? We can still imply a slight
curve to the arm with the inner ver-
tices. Doing this, we also realize that
the edges look better turned because,
well, it just looks better.

Now we’re down to 123 faces; good
enough to move on. All in all, that
took maybe 25 or 30 minutes to com-
plete.
PART TWO: THE REST. The next most easily
do-able part of this monster is the ten-
tacles. Let’s look at the sketch again:

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

66

M O D E L I N G T U T O R I A L

There are three of them, and they
look as though they wave around like
an elephant’s trunk, so they need to be
articulate. Of course, they need enough
segments to accommodate their anima-
tions, so we opt for lofting a pentagon
with, say, 11 segments.

That looks good, but a single tentacle
weighs in at 116 faces (which, after
adding the other two, is too many faces
for comfort). So after deleting the faces
at the base, merging the five vertices at
the tip (a point is fine here), and mak-
ing the last segment into a square
cross-section, the tentacle is starting to
shape up.

Still, 103 faces for one tentacle puts
us at a current total of 555 faces with-
out the guns, the hose connecting the
guns, the head/body, or the brain
case. Uh, not good. Let’s get rid of the
top three segments of this rascally
appendage and see where we are.

Hmm… 73 faces. Sold! We’ll sit
with that for the time being and
move on. But first, lets adjust the ten-
tacle mesh to accommodate the ani-
mations better. From experience, I
know that the majority of the anima-
tions for this type of appendage take
place in the bottom two-thirds of the
object, so I’ll adjust the segments
incrementally to support this. Let’s
also make it less smooth and slightly
more wavy.

Notice that we’ve built the tentacle
to hang straight down. Rather than
bending it to ensure accommodation,
we’re going to rely on bending and
undulating the thing in the animation
tool with a skeleton inside the mesh.
Now to the body.

In 3DS4, we can start the body with
a primitive called a g-sphere, or geodes-
ic sphere. An l-sphere, or latitudinal/
longitudinal sphere, would be cleaner
than a g-sphere, but this is one of the
few time a less symmetrical approach is
better. Actually, g-spheres are better for
round objects when doing low-polygon
modeling because we get more bang for
our buck. Also, a g-sphere can be speci-
fied by total number of faces, as
opposed to segments. Here’s the differ-
ence between a 144-face g-sphere and a
14-segment (diameter) l-sphere:

They look about the same in resolu-
tion, but if you look at them top down
(with the g-sphere’s top edges turned as
a modest concession to symmetry)
you’ll see that the g-sphere actually has
15 segments in diameter while the
l-sphere only has 14 segments. This is
even more significant when you con-
sider that the l-sphere has 168 faces vs.
the g-sphere’s 144 — more rounded
diameter with fewer faces.

So let’s start with the brain case. It
can be a simple dome because the body
comes up over it around the edges.
Delete the vertices beneath the equator
of the sphere because the deleted faces
underneath won’t be seen. Oops — first
we need to make a copy of the sphere
so we can use it for the body as well.

Now let’s do a Boolean operation
and make the shape that we want for
the body. First, we have to create the
Boolean or cutting shape. We do this is
by drawing the outline of the shapes
around our sphere and then lofting
them into objects with which to cut.

Make sure that the Boolean shape
intersects the sphere completely and
then use it to “Boolean,” or cut away,
the parts of the sphere that it touches.

Keep in mind that doing a Boolean
operation means that the object used
to cut will be deleted. Make a copy of it
if you’re unsure whether or not you’ll
need it again.

It’s time to start optimizing again.
Let’s start with the dome on top the
body. We’ve already deleted the faces
underneath, so we don’t have to worry
about that. Since the character won’t
be seen up close in a nonattacking
manner, we can shave the top down a
little and merge the very highest point.
We can also use the high curve angle in
the front to merge those faces (for the
most part, the monster will attack head
on, so a profile can be less detailed

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

67

than a frontal silhouette). Merging
these vertices results in

Now let’s look at it from the top and
pretty it up a bit. Turn the top edge in
the middle. The curve angle in the
back is pretty high, so we’ll split the
difference and merge those vertices.
Let’s tweak the shape a little by scaling
the outlining vertices. I see some ver-
tices here that can be merged. What do
you think?

Excellent. We went from 75 to 62
faces.

On to the main body (which has 126
faces). Let’s begin by simplifying the
bottom area and front and back mouth
area. The bottom will be obscured quite
a bit by the tentacles, and the front
and back areas will have objects com-
ing out of them. So let’s start merging
vertices at the edges of these areas.

We just knocked off 34 faces. We’re
cruising right along, but that narrow
segment near the top of the body bugs
me. Lets simplify it with some more
vertex merging. Also, the back looks
overly complex. Because it won’t be
seen too much by the player in the
game, chop it up.

The body’s front area is supposed to
look like some sort of hard metal hold-
ing edge, but I bet we can merge those
side vertices, leaving the top alone, and
still get the impression of hard metal.

So, weighing-in at this corner, we
have a newly optimized body consist-
ing of 68 faces. Overall, if we have
three tentacles, two arms, a dome, and
a body, we’ve used 595 faces. This
leaves us plenty with which to do the
guns and connecting hoses. Speaking
of which…

Wait a second. There are still two
faces that can be deleted.

They’re hidden by the front plate of
the body, so they can go.

All right — we’re nearly finished.
Before we build the guns and tubes in
the back, let’s position the pieces to
approximate the sketch better. I need
to scale the arms up a little and make
the ends of the arms look knobbier.

Close, but the lower arms need to be
heavier-looking. And a little bigger…

Good enough. Let’s build the guns.
Let’s use a cylinder primitive to make

the barrel of the gun and a box to make
the connecting arm of the barrel. We’ll
use a torus to make the cable in a
minute. We’ll begin with an octagonal

cylinder and then make the box.

Rotate the cylinder and move the
box over.

Delete the end faces of the box since
they’ll be hidden. Merge the two ver-
tices closest to the box on the cylinder
to save a couple faces and viola. We
have a gun.

Let’s move it into position on the
monster…

…and make sure that it will accom-
modate its animation (swinging up and
swinging down to fire).

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

68

M O D E L I N G T U T O R I A L

Looks good. If we double the gun’s
face count to account for the gun on
the opposite side, the total face count
is now up to 657. We can make the
connecting hose now.

Let’s hide everything but the body
and the gun. Create a torus primitive
sized to matched the body and back
of the gun barrel. We begin with a
five-sided, 15-segment torus because
we’ll only be using about half of it.
Then move it into position to the rear
of the gun.

Because we only need the part of the
torus that goes from the back of the
gun to the rear of the body, delete the
appropriate vertices.

We only have 70 faces to work with
— to stay under 800 faces, we can only
use another 143 faces (70×2 = 140).
Checking the count on the hose, it has
80 faces. So…

…we delete the end vertices going
into the back. The count is now 70
faces. Did I mention how good we are?

Our model looks good in top view,
but let’s make sure it’s matched up in
all three views. From the back it looks
like we have to rotate it down a bit…

…and bend and move the vertices at
the end of the tube so it goes into the
body.

Works. Now let’s copy the gun and
hose and flip it to the other side and
guess what?

We’re done.

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

69

So we have a finished monster that’s 797 out of 800 available faces, which in real-world time would take about two hours
to create. ■

site? No problem. Need to clean up
bluescreen video and automatically
composite actors and backgrounds? No
problem. Those are the kinds of tasks
DeBabelizer Pro eats for breakfast.

How many times have you convert-
ed graphics manually by opening each
image file, clicking Save As, and then
selecting the appropriate file format,
all after mapping the colors down to
8-bit or some other equally pedestrian
machination? Long ago, in the dark
ages before I started using DeBabelizer,
I can remember having to go through
all sorts of gyrations to get palettes to
behave and files to convert (not to
mention trying to do anything
“unusual” to the files, such as applying
filters). Granted, at this point in time
there are many programs, both com-
mercial and shareware, that can run
batch processes on groups of images,

converting them to various file for-
mats. However, most of these can’t
handle video or animation files, and
none of them even come close to cov-
ering the scope of features found in
DeBabelizer Pro.

During the course of preparing this
review, I used DeBabelizer Pro 4.5 on a
number of projects at Simutronics. I
used the program’s SuperPalette func-
tions to map all of the front-end
images for one of our adventure games
down to a single 8-bit palette. When
we needed to prepare animations for
use on our web sites, I was able to
process them down to the Netscape
palette and add copyright information
to each frame. I’ve performed countless
other tasks with DeBabelizer Pro that
would have been impossible (or at
least, extremely time consuming) to
accomplish with any other tool.

How Does It Work?

The core functionality of DeBabelizer
Pro is the BatchList — quite simply

a list of image files that can be sorted,
saved, and processed as a group.
Multiple groups can be organized with-
in one BatchList, and the source files
themselves can be located anywhere on
the user’s computer (or network, for
that matter). BatchList creation is a
snap: individual files, selection sets of
files, or entire directories can be dragged
from an open Windows Explorer win-
dow to an open BatchList document.

Scripts are a powerful means of auto-
matically applying a number of actions
and effects to an image or group of
images (such as a BatchList). Scripts are
great for controlling bulk image process-
ing jobs, and the user can run multiple
BatchList operations in succession with-
out any intervention. Scripts can be
nested within other scripts and stacked
for running multiple scripts from one
master script. This system allows for

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

70

R E V I E WP R O D U C T

DeBabelizer Pro 4.5
b y G r e g H a m m o n d

he phrase “Just DeBabelize It!” is not just a mar-

keting slogan for Equilibrium. It has become part

of the common language spoken by game devel-

opers everywhere. Need a bunch of graphics con-

verted from 24-bit to 8-bit color using one palette

that best represents all of the images? No problem.

Need to stamp a copyright notice on each frame of

an animation so you can publish it on your web

Greg Hammond is the art director at Simutronics Corp. He has been working in the
entertainment software industry since 1981, when there were six colors and no one
complained. You can reach him via e-mail at gregh@simutronics.com.

TT

tremendous flexibility in how the user
chooses to process graphics.

There are two easy ways to generate
scripts in DeBabelizer Pro. The first is
to experiment with applying effects
and operations to an image and then
copy the desired steps from the
image’s log into a script. Each time an
image is altered in any way within
DeBabelizer Pro, that image’s log is
updated. Image logs allow the user to
experiment by applying various
effects to an image, and then copying
the log of those effects to a script.
This method is much more interactive
than building a script by hand.
Another quick method of script cre-
ation is to turn on the WatchMe fea-
ture, perform the required steps to
process a sample image, and then save
the resulting script.

Palette operations represent the
essence of DeBabelizer Pro. Since most
of us still have to deal with paletted
images, it’s good to have a tool like this.
Palettes can be edited in many ways,
and DeBabelizer Pro allows the user to
perform palette manipulations that
other programs can only do with
unpaletted (16- or 24-bit) images. One
of DeBabelizer’s best features is the abil-
ity to mark certain colors in a palette,
such as the default Windows colors, as
off-limits — more on this later.

DeBabelizer is perhaps best known
for its SuperPalette technology.
SuperPalettes are used to create a cus-
tom palette for a series of image files.
By right-clicking on an open BatchList
and selecting Create SuperPalette, the
user can automatically build a palette
that represents all of the images in the
BatchList. If the user needs a palette
that is stronger in some colors than
others, this is easily accomplished by
weighting the BatchList with multiple
instances of a source image with lots of
the desired color.

What Makes
DeBabelizer Pro So Good?

D eBabelizer Pro provides a compre-
hensive approach to processing

graphics. The program reads and writes
over 90 image and animation file for-
mats. The support for each of these for-
mats is really complete. I get tired of
graphics utilities that can’t read certain
versions of .TIF files, for example.

Although it’s definitely not a paint
program, DeBabelizer Pro features an
impressive array of image processing
tools. DeBabelizer can scale graphics
with a variety of algorithmic resam-
pling techniques. It can swap, rotate,
and convert channels to grayscale. And
users can apply Photoshop-compatible
filters to images.

One of my favorite tools in
DeBabelizer Pro is Filter Interpolation,
a feature that lets the user change the
numerical values in a plug-in filter’s
settings over time. This is most useful
for producing effects for animation and
video. Unfortunately, only plug-ins
that have an FltD resource will work
with this tool (so Kai’s Power Tools and
other powerful plug-in systems are not
supported — bummer). Still, game
developers can do a lot of cool stuff
with this feature alone.

Hey — I Already Own DeBabelizer
4.0! Why Would I Want to Upgrade?

S ome of the new features in ver-
sion 4.5 are well worth having,

even at the $100 upgrade price.
Enhancements to the BatchList give it
more sorting options. Separate folders
can now be maintained for better orga-
nization of large groups of files within

the same BatchList. In addition, multi-
ple batch processes can now be run in
succession without any user interven-
tion — very handy for those of us pro-
cessing video clips.

DeBabelizer Pro 4.5 includes a num-
ber of enhancements to its multi-
framed image handling and processing
capabilities. Users can now process
video and multiframed files identically
to single image files — the program
treats both types of multiframed files as
“Animations.” Version 4.5 now saves
an .AVI file to any file format support-
ing multiple frames, including .GIF
animations and vice versa. It also gen-
erates multiframe image files from
BatchLists, which users can now re-
order in any sequence. This lets users
create animations from any sequence
of image, animation, or video files and
save them to any one of the supported
animation and video formats.

Several other enhancements in ver-
sion 4.5 are also a big help for video
and animation. The Blue Screen
Removal tool now has a complemen-
tary pair of tools: Shave and Outline.
Shave is used to automatically remove
antialiased “halo” areas around objects
and actors filmed in front of a blue
screen. Outline does just the opposite,
and can add a stylized visual emphasis
to an object or actor. The Composite

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

71

F I G U R E 1 . The DeBabelizer Pro 4.5 workspace with Image, BatchList, Script,

Palette, and SuperPalette documents open.

tool lets users easily create layered ani-
mations by placing any image file on
the active image. This process can be
automated by using the new Batch
Composite command, allowing many
frames of animation to be processed
together. Batch Composite can also
generate a script that users can reuse
and modify.

Another animation tool added to
version 4.5 is Pixel Shift. This feature
shifts the contents of an image in any
direction within the image’s bound-
aries. This is a particularly useful fea-
ture for some game developers, as well
as animators and digital video produc-
ers, because it allows the user to create
a scrolling background for an animated
object automatically. The entire image
can be shifted and wrapped around, or
the unused area can be filled with the
background color. The Hanna Barbara
animators would have killed for this
tool years ago.

Documentation

T he documentation, especially the
User Guide, is very well done. The

User Guide includes introductory sec-
tions about working with digital color,
screen resolution vs. print resolution,
and other helpful topics. This book is
chock full of screen captures illustrat-
ing the program’s many functions.
Also included is a Quick Reference
Card showing all of the toolbars and
their associated icons.

A small Getting Started book pro-
vides an introduction to DeBabelizer
Pro’s features, as well as three very
helpful tutorials. The first lesson cov-
ers the fundamentals, the second is

about palettes and color reduction,
while the third lesson is essential to
understanding how the product works
with animation and digital video.
Equilibrium provides the supporting
image files for each of these tutorials,
and after completing all three, the
user can confidently use most of the
program’s features.

User Interface

E quilibrium has refined DeBabel-
izer’s user interface considerably

over the last few years. The best
evidence of this is their original inter-
face device, the ActionArrow. These
arrow icons appear at the top of each
open document window. By dragging
an ActionArrow from one document,
say a palette, to another document,
such as a BatchList, the properties of
the source document are automatically
applied to the target document.
ActionArrows can save a tremendous
amount of time over the course of one
project, as compared to the typical dia-
log boxes that would be required to
accomplish the same tasks.

The toolbars are fully customizable
— in fact, there’s an icon available for
virtually every function in the pro-
gram. Most users will probably find it
more efficient and intuitive to access
the context-sensitive menu systems via
a right-click over an active document
window. Also, some of the icons are so
abstractly designed that, unless the
user really wants to spend a lot of time
becoming familiar with their meaning,
he or she would be much better off
using the menu system anyway.

One of my complaints with this
product is Equilibrium’s decision to
prominently feature their pyramid logo
behind each of the New command
icons — New Image, Palette,
SuperPalette, BatchList, and Script.
DeBabelizer’s icons are big enough at
23×22 pixels, but these primary icons
are hard to read because of their cutesy
design. DeBabelizer is somewhat differ-
ent than other programs because it
deals with six unique types of docu-
ment (Image, Animation/Video, Palette,
SuperPalette, BatchList, and Script).
However, the company could have
made the icons for each of these larger
and then just added a sparkle or some
other simple graphic effect representing
the concept of “create a new file of this
type.” These icons are really problemat-
ic at the higher screen resolutions that
today’s game artists are likely to use.

Annoying Little Bugs

D eBabelizer Pro’s basic paint func-
tions are represented by the stan-

dard radio–button-style interface.
However, during certain operations
(for example, when using the Blue
Screen Removal tool), when clicking
between the selection tool, magnifying
glass, and eye-dropper buttons, the
program gets into a state wherein the
user has to manually deselect these
buttons to use one of the other paint
tools. These are such basic functions
for this program that it’s quite annoy-
ing for them not to work properly — it
points at what must be a fairly limited
testing program at Equilibrium.

Remember that great palette editing
feature I mentioned earlier? The one
that lets you mark colors as off-limits
(such as the default Windows colors)?
Well, it’s a terrific feature, but it cur-
rently has one nasty little bug. The
only way to maintain the position of
off-limits colors when a palette is sort-
ed is to use the Specify option in the
palette sorting submenu. But that’s not
the bug (even though it would be nice
if DeBabelizer Pro kept track of the off-
limits colors when using any of the
other 12 sorting options). The bug hap-
pens when the user clicks the check
box marked “Do NOT touch off-limit
colors,” and then proceeds to sort the
palette. Sure enough, the program
keeps the off-limits colors in their

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

72

P R O D U C T R E V I E W

F I G U R E 3 . The same photo after

being processed by DeBabelizer’s

Blue Screen Removal tool. A back-

ground pattern and drop shadow

were added.

F I G U R E 2 . A photo of a model

against a blue screen – the model’s

wispy blonde hair is a classic problem

for blue screen photography.

proper place, but the flags that indicate
their off-limits status are turned off. So
in order to save the palette properly or
to do multiple sorting operations on a
palette with off-limits colors, the user
is forced to go back and turn on the
off-limits flags on those colors. If the
user isn’t paying close attention while
sorting the palette, this subtle problem
can be missed, leading to palettes that
have the off-limits colors sorted into
the mix — a Bozo no-no when devel-
oping for Windows.

On a positive note, the customer ser-
vice and technical support people at
Equilibrium were very helpful. I threw a
few questions at them to test their
knowledge of the product, and they
passed with flying colors. Equilibrium
seems to be quite responsive to their cus-
tomers’ needs and requests, and I was
encouraged to send e-mail regarding two
of the problems I mentioned to them.

The bottom line is this: I cannot live
without DeBabelizer Pro. It simply does
things with images and animations
and palettes that I cannot do with any
other program. The automation fea-
tures (BatchLists and scripts) are true
time and sanity savers. The addition of

more video and animation tools in ver-
sion 4.5 is enough to make the upgrade
worth the cost for owners of version
4.0. The few bugs I’ve encountered are
indeed annoying, but they are certain-

ly not serious enough to keep me from
using the program every day. I highly
recommend DeBabelizer Pro 4.5 to
anyone working with lots of images,
animation, and/or video. ■

73

Rating (out of five stars): ✪✪✪✪✪
Equilibrium

Sausalito, Calif.
(800) 524-8651 / (415) 332-4343
www.equilibrium.com

Price: $599.95 (Retail); $399.95 (Direct); $375 (Street); $99.95 (Upgrade from version
4.0)

Software Requirements: Windows 95 /Windows NT 4.0
Hardware Requirements: Minimum 486, 16MB RAM, 20MB hard-disk space
Technical Support: 90-day telephone support
Money-Back Policy: 30-days money back
Pros:
1. The industry standard by which all other graphics conversion products are measured.
2. Extensive support for many graphics file formats.
3. Intuitive user interface facilitates rapid setup and execution of complex tasks.
Cons:
1. Designs of primary icons are hard to understand due to Equilibrium pyramid behind

each one — especially difficult at higher screen resolutions.
2. Palette sorting functions don’t track colors marked “off-limits.”
3. Support for .MOV files still pending Apple’s release of QuickTime 3.0.
Competitors: JASC Image Robot, JASC Paint Shop Pro, Crayon Software Magic Viewer,

Adobe PhotoShop 4.0

DeBabelizer Pro 4.5

omeone once said, “Experts are just

people who have already made

all the mistakes in their field.” If

this old saying is remotely true,

I must be well on my way. After

two years battling on the front

lines at Zombie, I look back on the cre-

ation of SPECOPS as a crusader looks back

on victory in the Holy Land. Through the

haze of past battles won and lost, I will

now try to remember what it was that we

did right and wrong, and how this product

finally hit the shelves.

To begin, let’s define the responsibilities

of our game engine. Our game engine

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

Zombie’s SPECOPS:
RANGERS LEAD THE WAY

SS
b y W y e t h R i d g w a y

P O S T M O R T E M

74

manages many aspects of the game: sound, graphics,
physics, game core, and others. Taken alone, these compo-
nents don't do anything — they’re just tools. The game-spe-
cific AI uses these tools to perform logical game actions. In
this manner, a complete game is composed of the game
engine plus the game-specific AI.

As such, the SPECOPS game is composed of the Viper game
engine and the SPECOPS AI and resources. In this article, I will
primarily focus on the design aspects of the Viper engine,
which was the first and most important step in creating
SPECOPS. In Table 1, you’ll find a description of the project
and its development environment. With these design
requirements in mind, let’s take a look at how each of the
major components of the game engine was implemented.

Game Core

T he game core provides an interface for all of the game
engine components. Among other things, it defines and

manages “objects” in the engine and allows them to be
passed between components. For example, the game core
might first send an object to the physics engine to be moved
and then to the graphics engine to be drawn.

In the Viper engine, we chose to implement the objects
hierarchically. Figure 1 shows a small portion of this hierar-
chy. The hierarchy allows memory optimizations because
objects only require allocation of the structures that they
use. It also provides some object-oriented structure to the
program. In C, there was one .C file for each object type,
with the same .H relationship as in Figure 1.

The only objects that the game core referenced and
modified were those at the top of the hierarchy: GGeenneerriicc
OObbjjeecctt,, SSttaattiicc OObbjjeecctt, and DDyynnaammiicc OObbjjeecctt. The rest of the hier-
archy is composed of game-specific data structures (such
as the CChhaarraacctteerr class). The support modules for these were
separated from the rest of the code, so that it would be
easy to remove them from the game engine code. This
helped ensure the separation of game-specific logic from
the game engine.

This design was expandable and easy to work with. While
building the engine, we could separate out the SPECOPS-spe-
cific code to create demos and even other games. Doing so at
several points during the development cycle forced us to
continually clean up any breaches of the design and main-
tain the reusability of the engine.

Game Editor

0 ur game editor let us introduce new resources into the
game engine, modify game play, debug game logic,

and print out diagnostics. An editor environment needs to
be easy to learn and use, so that the game designers and
artists can make game modifications without a program-
mers being involved. It also needs to be continually main-
tained, providing access to new features of the engine as
they are created and having bugs fixed or the interface
modified to save time.

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

Wyeth Ridgway was the lead programmer of SPECOPS and the technical director at Zombie. He is currently on sabbatical in his home-
town of Tucson, Ariz., where he is working on the next great thing. He can be contacted at WSR@Primenet.com. He wants to thank
all of the contributing programmers on the Viper engine and SPECOPS project, without which this never would have been possible.

75
Zombie’s SPECOPS development team.

Static Object

Ground Building Tree

Generic Object

Human

Character

TrackHuman

EnemyRanger

Dynamic Object

F I G U R E 1 . Hierarchical object relationship from SpecOps.

• 3D action/combat game.

• 15 month development cycle, extended to 20 during

development.

• Initially targeted for both the PlayStation and the PC, with

support for 3D hardware acceleration. Playstation dropped at

alpha.

• Developed on Visual C++ 5.0 and Sony’s development tools.

• Programmers used P166 64MB machines with 3Dfx cards and

two monitors.

• Written in C, with a little assembly.

• Core programming team: 5; total contributing programmers: 13.

• Built on the Viper engine, which was created for this game.

TA B L E 1 . Development stats for SPECOPS.

I wanted the Viper editor to be
totally integrated into the game
engine. This would help ensure that
new game engine code didn’t break
the editor code, and would allow us to
add new game engine features to the
editor environment. I created an EEDDIITTOORR
compiler switch that created an
encapsulating .DLL into the exe-
cutable game file upon compilation.
This .DLL ran the game as a child
thread, allowing us to suspend the
execution of the game and modify the
contents of the game’s memory. With
this switch, we could activate func-
tions in the game engine that we
didn’t want in the release version.

When active, the Viper editor dis-
plays a simple console (Figure 3).
Command strings can be entered into
this console to perform a variety of
actions in the game engine. For
instance, we would frequently use this
functionality to load terrain geometry,
create a binary space partition (BSP)
tree of that geometry, and save the BSP
tree to disk in the native file format.

Overall, I was pretty happy with this
editor. While it’s more cryptic than the
user interfaces of the QUAKE and
UNREAL editors, it has several benefits
that those systems don’t offer. First, all
of our programmers were able to add
functionality to it. Once our team
learned how to use the editor’s string
commands (which took about five
minutes), any programmer could add
functions to support the code they
wrote. Had I written a MFC-based GUI
editor, I would have been supporting

the editor on full-time
basis because few team
members were familiar
with Windows code.
Another point in favor of
our editor was the fact
that our geometry was
being created separately
by CAD tools, so we didn’t
need geometry creation
facilities such as those

found in the QUAKE and UNREAL edi-
tors. Simply put, our needs were differ-
ent from those games, and the com-
mand string interface fit our needs
fairly well.

Yet, the editor did have drawbacks.
Some tasks were difficult to complete
using the command string interface.
For example, to place dynamic objects
(such as enemies and pickups) in the
environment effectively, the game
designers really needed a CAD-like,
windowed interface that showed the
entire level at various angles and
allowed designers to place objects with
mouse clicks. This could have been

added fairly easily, but we lacked the
time to implement it. As we advance
the Viper engine, I’d like to see the edi-
tor seamlessly built into an existing
CAD package, such as 3D Studio MAX.
That way, we could take advantage of
an interface that the artists are already
familiar with and draw upon pre-
existing features.

Resource Handling

T he Viper engine had several very
difficult resource management

issues to overcome. Each level in the
game was composed of hundreds of
thousands of polygons, which
couldn’t possibly be loaded at once;
but we wanted the game’s load time to
be very brief. To accomplish this, we
needed the game to page in and out of
memory without affecting the frame
rate, and we needed data loaded from

disk to be ready to use with little or no
additional processing.

To achieve these goals, we used the
editor to load all the data into the
game’s native data structures and then
wrote those structures directly to
Viper’s data file. These structures then
loaded on demand at run time.
Because we knew that this was a
design requirement ahead of time, all
the data structures in the game were
designed to do this fairly easily. The
only tricky part was when pointers
were involved. We had to convert
these pointers to offsets before they
were saved to disk. At load time, Viper
converted these offsets back to true
pointers, and the data structures were
ready to use.

Once we had a system that could
efficiently load and use data, we had
to design a cache system to load only
those resources required for areas
immediately around the player’s posi-
tion. We did this by dividing the
world up into hexagonal pieces. At
any time, three of these would be
loaded in memory. The size of each
hexagon was determined by how far
the player could see in the environ-
ment (you don’t want the player to be
able to see the edge of the world).
Each hexagon had to be further across
than the viewing distance, yet small
enough to efficiently load from the
disk. The geometry for the hexagon
was stored to disk, along with the
resources (trees, pickups, enemy posi-
tions, and so on) associated with it.
We completed the system by creating
an asynchronous thread, which could
load and unload the hexagons with-
out halting the CPU. After a few opti-
mizations (such as adjusting the hexa-
gon size), we were able to load and
unload these hexagons with only a
one to two FPS impact.

Although the original design called
for a similar system to handle the tex-
tures, we didn’t have time to imple-
ment this feature. Instead, we simply

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

76

P O S T M O R T E M

F I G U R E 3 . The Viper editor console.

loaded all the textures for a level at
the start of the game, which worked
out fairly well. With the additional
RAM now available on 3D accelera-
tors, it might even be a better solu-
tion anyway.

Graphics and Animation

T he way in which Viper handles
graphics and animation is one of

our most beloved — and feared —
components of the engine. More pro-
grammer time was spent on the graph-
ics component than any other part of
the engine. Viper had to deliver up to
10,000 polygons in a single frame (for
reference, that’s an entire QUAKE

level), and still run at real-time frame
rates. It also had to be able to run
without a Z-buffer on the PlayStation,
which required a sort routine for the
polygons. Finally, it had to support
software rendering as well as 3D hard-
ware acceleration on the PC. Since this
is such a huge piece of technology, I
will only touch on the most promi-
nent issues.
BSPS. By far the biggest bane of the 3D
programmer is polygon sorting. Most
methods that are reasonably fast also
have problems. We chose to use 3D
BSP trees because they’re efficient to
process, which helps both the graph-
ics and physics engine run faster. One
big problem with the BSPs, however,
is that each one can take a long time
to create. We mitigated this problem

by using the hexagon system dis-
cussed previously. Since our world was
already divided into non-overlapping
pieces, each piece could have the BSP
created individually. Since BSP cre-
ation is an exponentially complex
problem, and our levels had hundreds
of thousands of polygons, dividing
the world into small pieces saved us
from what would have been a feasibly
insoluble problem. Furthermore, if
and when we had to modify the
world, we only had to recreate the BSP
trees for the hexagons that had
changed. Better yet, we could divide
the labor of this task, so that we’d
need each machine in the office to
create just a couple of the BSP trees
after hours. Thus, the artists could
stay late and go through several itera-
tions of BSPs in one night.

Another BSP-related problem was
how to handle moving objects. Early
on in the project, I was dismayed to
hear that the guys at id Software had
given up on solving this problem and
had resorted to Z-buffering the

dynamic objects in their QUAKE

scenes. After several painful weeks of
work, we finally had an acceptable
solution, which exhibited sorting
errors along the lines of TOMB RAIDER.
Our solution was prohibitively slow,
however, and when we reached our
PC alpha stage and discovered that
the PlayStation version was only run-
ning at five to ten FPS, we halted the
development of that version. At that
point, we switched to Z-buffering for
the software renderer as well, since
sorting errors are generally unaccept-
able on today’s PC games.

A BSP solution is a mixed blessing.
While they efficiently process algo-
rithms, BSP trees don’t handle dynamic
objects well and they don’t like to be
modified at run time. Worse yet, the
time required to create them can really
slow up the game designers and artists.
Because I won’t be targeting a platform

without Z-buffering again, I’m consid-
ering switching the Viper engine to a
different data structure.
LIGHTING. Viper doesn’t use light maps.
When I debated the use of light maps
versus an RGB vertex lighting scheme,
the vertex approach seemed to be bet-
ter supported by the hardware accelera-
tors. I didn’t like the time penalty of
creating the light map surfaces, or the
fact that the bus would be flooded with
texture data. Viper’s RGB lighting
scheme supports an infinite number of
colored light sources, combined at the
vertex level and cleverly optimized to
take almost no time penalty. The
downside to this cheap lighting
scheme is that it doesn’t always have
smooth edges along polygon borders.
I’ll probably dump this method in
favor of something better in the near
future, since processor speed is becom-
ing so impressive.
3D HARDWARE CARDS. I took a gamble and
based all of Viper’s development on
the original 3Dfx Voodoo chipset.
Two years ago, this chip had no mar-
ketshare, and cards based on it were
more expensive than their competi-
tors. However, 3Dfx had an excellent
developer support group, and its
board was fast and easy to use. Most
importantly, it supported the basic
polygon type that SPECOPS would be
based upon: Z-buffered, RGB-lit, tex-
tured, perspective-correct triangles.
When I got the API and saw that you
could start working with the board
without writing any Windows code
(through Glide), I knew I’d made the
right choice. I wrote to Glide directly
because it’s easy and it’s considerably
faster than OpenGL or Direct3D. By

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

78

P O S T M O R T E M

the time you read this, Viper will be
supporting other boards through a
minimal subset of OpenGL.
DIRECT3D. I’ve watched this API evolve
from its very first implementation and
have little (if anything) good to say
about it. While recent changes in ver-
sion 5 are a step in the right direction,
it has a long way to go before I would
ever write support for it. I’m surprised
that Microsoft could spend so long
working on this API and have so little
success with it.
IMPORTING GEOMETRY. Viper can import
geometry from Alias, Softimage,
Lightscape, and 3D Studio MAX.
Instead of supporting one package real-
ly well, we only had time to support all
of them minimally. Still, there is some-
thing to be said for letting the artists
work in the programs with which
they’re most comfortable. Also, at the
time we were designing the engine,
MAX and Softimage didn’t support
color vertex data, leaving us with few
options. I think that we might soon
work Viper into a single CAD package
and rely on file format converters to
move data around.

Physics

T he physics engine is the second
most complex component of the

game engine. It has to resolve all colli-
sions, every frame, with minimal time
overhead. Because the objects were all
dealt with in a BSP tree, the time over-
head was minimized, and collisions
with the BSP are polygon accurate.
Most of the Newtonian mechanics are
true to life, although some things were
simplified to save time.

Characters are implemented as a
hierarchical models. As such, they’re
very time consuming to work with.
Characters are often simplified to
deformed spheres for collision purpos-
es. This simplification can cause some
strange side effects and doesn’t allow

bullets to hit specific locations on the
body (this feature should have been
added but alas, we ran out of time).
Again, as processor speed increases and
more work is offloaded onto dedicated
3D hardware, better physics simulation
will become feasible.

Viper has a very impressive servo-
based system for simulating vehicles.
They are able to drive and fly over
almost any terrain. The truck in the
first level of SPECOPS navigates the ter-
rain based only on a series of vertices,
which tells the servo where the road is.
The truck applies a velocity in the
direction in which it wants to drive,

and the motion forward causes the
wheels to move a corresponding
amount. The friction model will cause
the wheels to slip on steep slopes. A
similar system of servos allows the heli-
copter to navigate over the trees in the
forest and land in the clearings. The
best part about working with servos is
that they can deal with all sorts of
environments without any additional
work. The worst part is that they can
sometimes do unpredictable things
that are hard to reproduce.

Sound

W e created the sound engine
with Microsoft’s DirectSound.

The initial implementation was fairly
easy, but we spent months twiddling
with it to deal with a variety of prob-
lems that popped up. Furthermore, we
were using DirectX 3 when we began
the project, but we shipped with

DirectX 5. While there were supposedly
no changes to the DirectSound API
between these releases, the sound pan-
ning stopped working when we updat-
ed to version 5. Furthermore, because
of some sort of multithreading issue,
the sound never quite played correctly
on Windows NT.

In response to these DirectSound
problems, we tried briefly to switch to
DiamondWare’s tools, which perform
much better under Windows NT and
have an easier-to-use API. Overall,
DiamondWare Sound Toolkit was a
better solution, but it also had a
threading problem: it was monopoliz-
ing the bus and causing the 3D accel-
erator to hiccup. The company’s tech-
nical support people said that they
were aware of the problem and had
no solution. In the end, we went back
to DirectSound and lived with its
problems.

With the spreading popularity of 3D
sound hardware (such as Aureal),
hopefully much of the sound mixing
and spatial placement will be
offloaded from the CPU. We are cur-
rently strongly considering adding
support for Aureal’s A3D, either in a
patch or an expansion pack for
SPECOPS. I think by early 1999, 3D
sound cards will be as popular as 3D
accelerator cards are today.

AI Engine

V iper’s game-specific AI is written
entirely in a scripting language.

The language’s syntax looks like a
cross between Basic and LISP. The
scripts describe hierarchical finite state
machines and are object-oriented. The
object-oriented implementation of
these AI objects mirror the C imple-
mentation of the data structures in
Figure 1. The scripts are compiled into
a byte-code binary file that is executed
at run time by the game engine. This
was time consuming to implement, but

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

79

provided us with several advantages
over a comparable C implementation.

Most importantly, it created a hard
boundary between the game-specific AI
and the game engine. If you combined
the main executable with different
compiled script files and a separate set
of resources, you would have a totally
different game. This forced modularity
saved us time and made it possible to
make significant game AI changes late
in development. The game’s AI team
was also able to work fairly indepen-
dently from the game engine program-
mers. This was successful to the point
that we were able to create numerous
demos and even start production on a
totally different title while the engine
was still being built. In fact, I arrived at
work one day to find that one of the
game designers and one of the artists
had gotten together and created a 3D
monster truck racing demo without
involving a programmer at all.

This points out another benefit of
using a script language: people with-
out programming skills can modify the
AI. Realistically, a programmer has to
write 80 to 90 percent of any given
script, but at that point the game
designers can sit down and twiddle
with it until it’s just right. That said, I
was often impressed at how adept at
working with the script language
many of the people at the office
became. Our resident sound guy added
nearly all of the sounds to the game
with next to no assistance from the
programming staff. I would often play
the game on a Monday morning and
be stunned by how much had been
added without programmers being
involved. Implementing game logic in
C doesn’t offer this.

Another benefit of using script-based
AI was that because we had one com-
piled AI file per level, we only had the

AI for a single level loaded at any given
time. Not only did this separation
make the division of labor easier, but it
also saved a fair amount of memory.

All was not rosy, of course. There
was the obvious time overhead for the
extra level of indirection in the game
AI. For the most part, the AI was so
high-level that this overhead had no
real impact on the game’s perfor-
mance. Still, more than once we had
to implement a routine in C or opti-
mize the run-time AI interpreter. Also,
since this was the initial implementa-
tion of a complex system, we made a
few design errors that had to be
worked around. For the next title,
we’ll go back and address these
changes.

The biggest problem with using a
system like this was that the AI scripts
were difficult to debug. Because they
were largely just simple logic wrapped
around calls to C functions, this prob-
lem was tolerable. Still, more than once
we wished the scripts would just gener-
ate C code so that we could use Visual
C++ to debug them. This might be a
superior implementation, and some-
thing we will consider in the future.

On Target

N ow that you have a good idea of
how the Viper engine was imple-

mented, I’ll summarize the most promi-
nent things that we did right and
wrong. As is always the case at the end
of a project, battles lost are always more
prominent than battles won. If it were
not for some key things that we did
right, we might very well have failed.

1.HARDWARE ACCELERATION SUPPORT.
Two years ago, publishers looked

at 3D hardware accelerators with skep-
ticism. Zombie made two key decisions

at this point. First, we decided to fight
tooth and nail to target a set of art
specifically for hardware accelerators.
Second, we made this art push the lim-
its of the best accelerator on the market
(at the time, the 3Dfx Voodoo 1). The
result was that by the time the game
shipped, there were many cards that
were capable of running the game. In
fact, even overshooting the graphics
complexity by as much as we did, we’re
not pushing the second generation of
accelerators at all.

2.USING A THIRD-PERSON PERSPECTIVE.
SPECOPS was designed and under

development for almost a year as a
first-person game. When we set up a
camera over the shoulder of the AI
characters as a debugging tool, it was
immediately clear that the game was
meant to be third person. The sense of
being a Ranger, the most important
element of the game, was conveyed
perfectly by seeing the character move
through the environment as a Ranger. I
thank TOMB RAIDER and RESIDENT EVIL

for establishing this as a valid game
interface. If we hadn’t been exposed to
these titles, I know we would have
thought it was too risky to change per-
spective that late in the project.

3.OUTDOOR ENVIRONMENTS. We want-
ed this title to kill the flood of

dungeon crawlers that have monopo-
lized the market for years. We also
wanted to present beautiful, realistic
environments that demonstrated the
computer’s capabilities. Our levels
were built to allow (and even encour-
age) the players to explore the world
in which we placed them. Our first
levels were more than two miles
across, had nearly 100,000 trees, and
required hours to traverse. We ended
up scaling the levels back for playabil-
ity purposes, but still managed to
retain this concept. We also chose to
create five totally different environ-
ments (forest, snow, jungle, desert,
and city). This decision had two pur-
poses: to create different tactical com-
bat situations and to keep players’
visual interest as they progress
through the game. Kudos to games
such as TERRA NOVA for helping us
break down the walls of the dungeons.

4.COMPLEX MISSION OBJECTIVES. Games
are based on levers and keys

because they’re easier to program. Most
gamers just find this insulting to their
puzzle-solving skills. As the lead pro-

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

80

P O S T M O R T E M

Audio designers actually sampled the

sounds of weapons being fired.

SPECOPS Producer Sandra Smith on

maneuvers with the U.S. Army

Rangers.

grammer, part of me likes switches and
keys. But as a game player, another part
of me (the part that, admittedly, makes
projects late) wants to constantly con-
front players with new and different
challenges. The latter required
painstakingly-created custom logic for
every mission, with little reuse between
levels. It also made debugging levels
more painful than it might have been.
Still, the end result was a big win for
players. You will never quite get famil-
iar with the game, because it will
always throw something different at
you. I hope more developers will pick
up on this and stop building tools that
spit out myriad games that all look and
feel the same.

5.REALISM. Whenever you’re making
a product that targets simulation

fans, realism is key. The executive pro-
ducer (a former Army Ranger) told us
from the start that the product “was
more like a movie than a game.” With
this as a premise, every detail in the
game was researched and reproduced
as perfectly as possible. We had
Rangers come in for the motion cap-
ture sessions and photo shoots. We
sampled sounds from the actual
weapons used in the game. SOCOM
(Special Operations Command) offi-
cers came in and reviewed our mis-
sions, and the game designers spent
the better part of a year researching
everything from environment charac-
teristics to standard equipment carried
by troops. Any one of these details
might not have made much of a differ-
ence, but as a whole they brought the
game up several notches. This atten-
tion to detail also created a very posi-
tive atmosphere for the entire team.

Off Target

A s much as some things sound like
great ideas, they often aren’t.

Here are the top contenders for our
biggest mistakes.

1.TOO MUCH, TOO SOON. The spec for
this game was more than a little

overboard. It originally targeted the
PlayStation, Macintosh, and PC. It
had networking, supported 3D hard-
ware, used motion capture, and con-
tained support for just about every-
thing else you could want in a game.
It was also on a 15-month develop-
ment cycle. To top it off, Zombie was
writing the entire engine from
scratch. On the up side, there was a
healthy budget.

We dropped the Macintosh version
right away, and we terminated the
PlayStation version at alpha (when it
was still running at five to eight FPS).
Networking support was postponed
for an expansion pack a year into
development. While setting our
sights so high was clearly the reason
we got so far, dropping this many
versions and features along the way
was worse than anyone expected. I
blame publishers as much as develop-
ers in this kind of situation.
Publishers go through more product
cycles than developers do, and
should have some past experience
telling them what is realistic to
achieve. We learned the hard way
what’s possible to accomplish in 15
months; as a result, we completed the
game in 20.

2.GETTING THE TEAM. The last thing
that I expected was that it would

be hard to find good programmers in
Seattle. I was hired at the start of
SPECOPS’ development and didn’t man-
age to bring the entire programming
staff on board for nearly seven
months. Needless to say, this caused
substantial delays. We had similar
problems hiring the art team. During
the first months, the employees we
hired burned out because they were
trying to accomplish the duties of sev-
eral people. I’m not sure what can be
learned from this, but planning around
such problems in the future will save
some headaches.

3.LOSING THE ART LEADS. About a
month before E3 ‘97 rolled

around, our art lead and a senior artist
decided to leave the company. I had
designed most of Viper’s capabilities
with them, and losing them at that
critical time really devastated the pro-
ject. With a little luck and some amaz-
ing dedication, we found people to fill
in for them. We showed up at E3 last

year with some wonderful art. Losing
key staff just happens sometimes, and
there’s little that you can do about it
but pick your chin up and wait for
someone else to come along.

4.LOSING THE PUBLISHER. Right around
E3 ‘97, we heard that our pub-

lisher, BMG Interactive, was planning
to go out of business. It was not clear if
our game would make it to the shelves,
although BMG tried to assure us that
everything was fine. After many
months of things being up in the air,
Ripcord Games came in and bought
the title. In the interim, however, we
lost morale, and there was some mis-
direction in our work effort. Ripcord
came onto the scene so late that it had
to really rush to get a marketing cam-
paign going. Nobody wants something
like this to happen, but it comes with
the territory.

5.NETWORKING. As mentioned earlier,
at one point we mitigated being

over schedule by dropping networking
capabilities from the release. I don’t
think anyone actually believed that
this was a good idea, but it somehow it
happened anyway. The fact is that as
much as 3D acceleration is the future,
so is networking. Luckily, the gaming
community has been taking it soft on
us, and we’re working hard to get out
an expansion pack that has a variety of
network play options.

That pretty much concludes the
walkthough of the major components
of the Viper engine and the problems
we had while creating the title. While
I could only really touch on the major
issues we faced and the solutions we
devised, hopefully it’s enough to
make the efforts of other developers a
little easier. If there’s a component of
the Viper engine that you would like
to see explained in further detail,
please let me know. I encourage other
developers to describe their projects in
similar detail, so that we can learn
from each other’s mistakes as well as
successes. ■

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

81

velous child they could have together:
“With your brains and my looks….” He
retorted, “But what if the child had my
looks and your brains?”

Shavian reversals — offspring that
keep the bad features of each parent
and lose the good ones — are visible in
most software products that claim to
come from a mating of education and
entertainment. To bring out the gener-
al point in a short space, I shall over-
simplify a more complex situation by
focusing on a particularly bad example.
The extension of the idea to more sub-
tle cases just needs a little thought or
perhaps a few hours reading my book:
The Connected Family: Bridging the
Digital Generation Gap.

The kind of product I shall pick on

here has the form of a game: the player
gets into situations that require an
appropriate action in order to get on to
the next situation along the road to the
final goal. So far, this sounds like ‘tain-
ment. The edu’ part comes from the fact
that the actions are schoolish exercises
such as those little addition or multipli-
cation sums that schools are so fond of
boring kids with. It is clear enough why
people do this. Many who want to con-
trol children (for example, the less
imaginative members of the teaching
profession or
parents

obsessed with kids’ grades) become
green with envy when they see the ener-
gy children pour into computer games.
So they say to themselves, “The kids like
to play games, we want them to learn
multiplication tables, so everyone will
be happy if we make games that teach
multiplication.” The result is shown in a
rash of ads that go like this: “Our
Software Is So Much Fun That The Kids
Don’t Even Know They Are Learning” or
“Our Games Make Math Easy.”

The language of these ads betrays the
way in which this software throws
away what is best about the contribu-
tion of game designers to the learning
environment and replaces it with what
is worst about the contribution of
school curriculum designers. What is
best about the best games is that they
draw kids into some very hard learn-
ing. Did you ever hear a game adver-
tised as being easy? What is worst
about school curriculum is the frag-

mentation of
knowledge into
little pieces.
This is sup-
posed to make

learning easy, but

G A M E D E V E L O P E R J U N E 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

b y S e y m o u r P a p e r tS O A P B O X

Does Easy

Do It? Children,

Games, and Learning

Most of what goes under the name “edu-

tainment” reminds me of George

Bernard Shaw’s response to a famous

beauty who speculated on the mar-

Dr. Seymour Papert is the inventor of the LOGO computer language. He currently serves as Lego Professor of Learning at MIT and is
a Disney Fellow.

Il
lu

s
tr

a
ti

o
n

 b
y

 R
ic

k
 E

b
e

rl
y

.

Continued on p. 87

often ends up depriving knowledge of
personal meaning and making it bor-
ing. Ask a few kids: the reason most
don’t like school is not that the work is
too hard, but that it is utterly boring.

The crux of what I want to say is that
game designers have a better take on
the nature of learning than curriculum
designers. They have to. Their liveli-
hoods depend on millions of people
being prepared to undertake the seri-
ous amount of learning needed to mas-
ter a complex game. If their public
failed to learn, they would go out of
business. In the case of curriculum
designers, the situation is reversed:
their business is boosted whenever stu-
dents fail to learn and schools clamor
for a new curriculum! I believe that this
explains why I have learned very little
about learning from reading textbooks
on curriculum design and have learned
a great deal from both the users (most-
ly kids) and the designers (often
“grown-up kids”) of computer games,
of construction kits (especially Lego),
and of classical Disney theme parks
and animations.

Two big lessons I have learned from
computer games are opposites of the
messages of the ads I was quoting. The
first, which I have already noted, is
echoed by kids who talk about “hard
fun” — and they don’t mean it’s fun in
spite of being hard. They mean it’s fun
because it’s hard. Listening to this and
watching kids work at mastering games
confirms what I know from my own
experience: learning is essentially hard;
it happens best when one is deeply
engaged in hard and challenging activ-
ities. The game-designer community
has understood (to its great profit) that
this is not a cause for worry. The fact is
that kids prefer things that are hard, as
long as they are also interesting. The
preoccupation in America with
“Making It Easy” is self-defeating and
cause for serious worry about the dete-
rioration of the learning environment.

The second lesson is the opposite of
the idea that somehow learning can be
encouraged by hiding the fact that it is
happening. Frankly, I think that it is
downright immoral to trick children
into learning and doing math when
they think they are just playing an
innocent game. To make the situation
worse (as if anything can be worse than
lying to children), the deception does
not achieve any purpose, since coopera-
tive learners who know what they are
doing will learn far better than children
who go mindlessly through the motions

of learning. I can imagine no better
example to support this than observing
how much more children learn in mas-
tering a tough game than in the same
amount of time in math class.

Moreover, the difference is not mere-
ly quantitative. I have also observed
that children who are heavily involved
with computer games often show an
exceptional degree of sophistication in
their ways of thinking and talking
about learning. It is easy to see why.

Serious players of videogames get
their glory largely from being the first
on the block to master the game that
just came out, and this means that kids
have a powerful incentive to get good
at learning well and quickly. But the
games provide more than incentive.
They also provide excellent exercises
for practicing the development of the
skill of learning. One factor making for
their merit is that learning a new game
is a demarcated learning project, with a
beginning, a middle, and an end. The
fact that playing a video game takes
place in a limited time period makes it
different from activities — for example
baseball — whose presence in the indi-
vidual’s life stretch far into the past
and the future and are therefore diffi-
cult to recognize as a thing apart that
one is doing well or badly. Another fac-
tor is that games are designed so that
the learner can take charge of the
process of learning, thus making it very
different than school learning, where
the teacher (or the curriculum design-
er) has made the important decisions
and the “learners” are expected to do
what they are told — which is no way
to learn to be a good learner.

By engaging children in conversa-
tions about learning new games, I
observe most directly the greater
sophistication about learning that is
developing among children — for
example, by asking a child to help me
learn. To do this, you have to listen
sensitively because most do not have a
developed vocabulary for talking about
how to learn. But if you take the time
to listen, you will find that many sur-
prisingly young people have very defi-
nite and sensible ideas on the subject.
You will also verify that the level of
discourse and the kind of help they can
give you is dramatically superior to
what you hear if you try to get them to
talk about learning school math.

These observations lead to a strategy
for those who wish to contribute to
improving “education.” Forget about
making games to teach children mul-
tiplication or spelling or any of those

old-fashioned basic skills. The really
basic skill today is the skill of learn-
ing, and the best use of games is to
leverage their tendency to enhance it.
I myself have two strategies for doing
this. Professional game designers
might add a third.

The first of my two strategies is to
recognize that talking about games and
learning is an important activity and to
give it whatever boost I can. I encour-
age parents to engage in conversations
with their kids about learning and I
work at encouraging them to do this in
a spirit of respect for the kids who have
as much to teach as to learn in this
area. I try to develop and disseminate
vocabulary and concepts for doing so.

The second of my two strategies is to
encourage children to become game
designers themselves. This requires
more technological infrastructure and
more support from knowledgeable
people. But I have found that when
they get the support and have access
to suitable software systems, children’s
enthusiasm for playing games easily
gives rise to an enthusiasm for making
them, and this in turn leads to more
sophisticated thinking about all
aspects of games, including those
aspects that we are discussing here. Of
course, the games they can make gen-
erally lack the polish and the complex-
ity of those made by professional
designers. But the idea that children
should draw, write stories, and play
music is not contradicted by the fact
that their work is not of professional
quality. I would predict that within a
decade, making a computer game will
be as much a part of children’s culture
as any of these art forms.

Finally, the third strategy suggested
for members of the game-designer
community is to be aware of the kind
of contribution their work is making to
the learning environment and to shift
it a little here and there, whenever they
can, away from deceptive Shavian mat-
ings towards empowering children as
independent learners. ■

To learn more about children making

videogames, see:

www.ConnectedFamily.com

Kafai, Yasmin. Minds in Play: Computer

Game Design As a Context for Children's

Learning. Mahwah, N.J.: Lawrence

Erlbaum Assoc., 1995

Papert, Seymour. The Connected Family:

Bridging the Digital Generation Gap.

Marietta, Ga.: Longstreet Press, 1997.

FF OO RR FF UU RR TT HH EE RR II NN FF OO

Continued from p. 88

h t t p : / / w w w . g d m a g . c o m J U N E 1 9 9 8 G A M E D E V E L O P E R

	back:

