
June 1994

G A M E D E V E L O P E R M A G A Z I N E

N
ow that game developers are
faced with the largest storage
device in the history of their
industry, what are they going
to do with it. Just as the com-
mand line gave way to the
GUI, this shiny ethereal disk is
muscling its dull, flimsy, mag-

netic ancestors out of the way. Lower
manufacturing costs were one of the first
benefits, as low as a dollar a unit. They
were lighter to ship and harder to dam-
age—no more damaged PC disks. They
can be repackaged without threat of cor-
ruption or infection. And, as far as piracy
goes, in the words of one developer,
“Nobody ever downloaded 500MB from
a BBS.”

But are they, as they are marketed
now, a software platform separate from
disk-based games, or are they merely a
storage medium and should be treated as
such? When I ask developers what plat-
form they’re writing for, more are saying
CD-ROM. When asked to clarify, they
usually say, “Well, MPC2 and Macin-
tosh first, then Sega CD and maybe
3DO or CD-I.” Clearly, they’re talking
about high-end authoring systems
manipulating either captured video or
rendered images with CD-quality sound
files—a development process where the
main emphasis is on raw data that can be
used across a variety of platforms.

Playability
The problem is, many newer CD-ROM
games have the playability equivalent of
Pong games with captured video images
of professional tennis players and CD
quality sounds of bouncing balls. This is
because high-level authoring systems
available can deliver the kind of perfor-
mance that is needed on every platform,
so most cross-platform CD-ROMs rely
on a variety of kludges, just to get a sim-
ple game manipulating video to work.

Games need to be more tightly integrated
into specific platforms to get good playa-
bility, and more of the CD-ROM’s cross
platform identity will be lost.

Stand or Fall?
The potential of the CD-ROM as a
platform is tremendous because it is
viewed as a superset not subset of the
existing computer game industry. Every-
one’s hoping that nontechnical people
who would never buy an Ultima, flight
simulator, or Doom will be willing to buy
a CD-ROM game designed to appeal to
a wider audience—changing the comput-
er into interactive VCR. If these techni-
cal neophytes’ first experience is a bad
one, for $60 a disk, they’re not going to
continue making the same mistakes.

It will be this next year as these con-
sumers make their first CD-ROM pur-
chases that will determine the shape of
the industry. If CD-ROM games are
able to vary more in subject matter than
traditional computer games, retain their
platform independence, and capture new
demographics, they will attain the status
of new platform. If not, they will just be
another means to get product to market
and will just be another label on the side
of the box. Regardless of the outcome, it
looks as if the CD-ROM is here to stay.

Alexander Antoniades
Associate Editor

CD-ROM: Package
or Platform?

G A M E P L A N

2 GAME DEVELOPER • JUNE 1994

Editor Larry O’Brien
76702.705@compuserve.com

Associate Editor Alexander Antoniades
aantoniades@mfi.com

Production Editor Barbara Hanscome
73611.633@compuserve.com

Editorial Assistant Andrea Pucky
apucky@mfi.com

Cover Photography Carter Dow Photography

Publisher Veronica Constanza
Project Coordinator Nicole Freeman

76702.706@compuserve.com

Group Director Regina Starr Ridley

Advertising Sales Staff

New England/Midwest

Angela Barnett (415) 905-4983
abarnett@mfi.com

West/Southwest

Yvonne Labat (415) 905-2353
ylabat@mfi.com

Marketing Manager Susan McDonald
Art Director/Marketing Christopher H. Clarke
Advertising Production Coordinator Denise Temple
Director of Production Andrew A. Mickus
Vice President/Circulation Jerry M. Okabe
Group Circulation Director John Rockwell
Circulation Manager Gina Oh goh@mfi.com

Circulation Assistant Philip Payton ppayton@mfi.com

Newsstand Manager Pam Santoro
Reprints Andrea Varni (415) 905-2552

Chairman of the Board Graham J.S. Wilson
President/CEO Marshall W. Freeman
Executive Vice President/COO Thomas L Kemp
Senior Vice Presidents H. Vern Packer, Donald A.
Pazour, Wini D. Ragus
Vice President/CFO Warren (Andy) Ambrose
Vice President/Administration Charles H. Benz
Vice President/Production Andrew A. Mickus
Vice President/Circulation Jerry Okabe
Vice President/Software Development Division

Regina Starr Ridley

MGA EGAME

MillerFreeman
A MEMBER OF THE UNITED NEWSPAPERS GROUP

Game Over!
We need your feedback! Send your cards,

letters, and article suggestions to:

Game Developer
600 Harrison St., 4th Floor
San Francisco, CA 94107

Atten: Larry O’Brien

E-mail is even better:

Get Your Game
on a CD-ROM

C D - R O M G A M E S

T
he concept of developing games
specifically for CD-ROM or
porting existing products onto
CD-ROM is appealing and a bit
frightening. There are advan-
tages to using the CD-ROM as
a delivery platform, and there are
technological barriers as well.

Your managers see CD-ROMs as an
economical alternative to floppy disks,
and the lure of 550MB of storage to play
around with makes programmers drool.

Unfortunately, most companies are
unfamiliar with the practical step-by-step
processes involved with actually produc-
ing a disc—and what the pitfalls are. I

will guide you around some of the pitfalls
inherent with CD-ROM development
and demystify the process somewhat.

Not Just for
Aerosmith Anymore
While CD-ROMs have been around
since the mid-1980s, most products pro-
duced for the medium have been fairly
plain, unimaginative text-based reference
works. Almost 90% of the discs available
are plain-vanilla DOS products with no
graphics, sound, and animation. Only in
the past few years have CD-ROM play-
ers penetrated the market enough to
make broad-based consumer-oriented
software financially viable.

Not that a single dominant platform
has emerged. CDI, 3DO, SegaCD,
CDTV, CD-32, Jaguar, FM-Townes,
and a few other TV-top or stand-alone
systems are still trying to establish a
foothold in the home market (none is a
clear winner yet), while Apple, IBM,
Tandy, Atari, and Commodore all sup-
port CD-ROM drives as add-ons to
their PC products.

There are also hybrid systems like
Laser Active just introduced last fall that
plays video laser discs, game cartridges,
and CD-ROM-based software. All these
systems have their idiosyncrasies when it
comes to writing code for them, but for-
tunately there are some commonalties.

One common thread that runs
through these systems is that the discs all
adhere to the ISO-9660 standard. The
ISO standard describes the physical lay-
out of data on the surface of the disc and
some of the structure the data must con-
form to. Beyond that, it is up to the indi-
vidual system firmware or device drivers

Cool graphics are just one advantage to writing your game specifically for CD-ROM. But a
high-end clip like this can cost a lot in terms of money and staff resources—several hun-
dred clips can put your project out of business. Carefully planned and placed, though, you
can make efficient use of your resources and still come out with a visually superior game.

4 GAME DEVELOPER • JUNE 1994

to read that data and translate it into a
form the native operating system can
understand.

In other words, all CD-ROMs that
adhere to the ISO-9660 standard can be
read by all CD-ROM players. That’s the
good news. The bad news is that, like
Apples to IBMs, just because you can
read the disc does not mean your system
can do anything meaningful with the
data. Animation files saved in Com-
modore’s ANIM.7 format still cannot be
played on an Apple Macintosh; code
written for the Windows environment
won’t run under OS9 (the basis of
Philip’s CDI operating system).

As the developer, you may have to
write different versions of your program
for each system. You can store multiple
versions on the same CD-ROM, and
each platform should be able to use the
same disc. The other bonus to the ISO
standard is that, unless you really need to
write code “down to the plastic” (for a
custom video playback routine or to
squeeze the absolute maximum perfor-
mance from a disc), you don’t really have
to worry about file structure. (You do
have to worry about track layout and
organization, but we’ll get to that a bit
later.)

The Need for Speed
Another common element to all CD-
ROMs is that they are slow. A single
speed CD-ROM drive boasts a whop-
ping data transfer rate of just under
150K per second. Compare that to a
medium speed hard-disk drive with
transfer rates approximately 10 times
faster. Another perhaps more crippling
factor is seek times. When CD-ROM

drive vendors claim a 150K transfer rate
(or double, triple, or quadruple rates),
they somehow conveniently neglect to
mention that almost all CD-ROM dri-
ves have atrocious seek times. If you are
just loading data from a text-only refer-
ence CD, it doesn’t make that much dif-
ference. For game developers who want
to load sound, animation, video, and
data in as close to real time as possible,
those seek times can be a nightmare.
Also, different systems vary the default
chuck sizes.

Let’s look at a worst case scenario.
When you send a read command to the
drive, it must first move the read head to
where it thinks the file probably is. It
reads a 4K or 8K header chunk (depend-
ing on the firmware or hardware config-
uration) to see if it’s got the correct file.
If it’s the right file, it has to wait for the
disc to spin around again, then reads
80K chunks (regardless of how big the
file is) until the entire file is read.

Let’s say you are reading a 30K file.
Seek times on some CD players, going
from the outer edge of a disc to the
inner, can take up to 1.2 seconds! Yes,
seconds! (I have personally worked on
systems like this. TV-top systems trying
to appeal to the masses and are highly
cost conscious tend to put the least-cost-
ly and thus least-efficient drives in their
machines.)

So, 1.2 seconds plus .03 sec. for the
header read, plus .5 sec. for the actual
data (remember, it reads an 80K chunk
no matter how big or small the actual file
may be), and we are at 1.73 seconds to
read a 30K file! All this is assuming it
hit the correct spot the first time. If not,
add a bit more time. Suddenly our 150K

CD-ROMs have blown

open the game mar-

ket with the potential

for high-end sound,

video, even multime-

dia. But beware the

pitfalls of technolo-

gy! You need to plan

carefully to create

a superior game.

by Guy Wright

GAME DEVELOPER • JUNE 1994 5

per second transfer rate has dropped to
20K per second. Imagine you are trying
to double-buffer sound files while load-
ing something else, and you begin to see
where the biggest CD-ROM bottleneck
occurs.

Granted, this is a worst case situa-
tion, but ignore this warning at your own
peril. You may think your program is
fine until you start getting irate calls
from people who say that the audio is
garbled or the QuickTime video
sequence is annoyingly jerky on their
system.

If you are producing a product for a
TV-top system like 3DO or CDI, there
are ways to get around some of these
problems. You can force the drive to read
certain size chunks (assuming you know
exactly how big each file is before you
issue a read command) or just tell it to
start dumping raw data into RAM where
your code will sort everything out on the
fly. But if you are developing for a PC
platform where you don’t know what
kind of CD-ROM drive the user is likely

to own, you have to resort to other tricks.
The first, simplest, and most valu-

able trick for teasing performance out of
a CD-ROM drive is physical layout of
the data on the disc. If you are careful
about the physical layout of the files on
the disc (keeping sequential files close to
each other), you can minimize the seek
time problems. If the read head doesn’t
have to travel as far, it won’t take as long
to start transferring your data into RAM.

Of course, you must change some
traditional ideas about how you organize
your data during development. For
instance, don’t put all your sound files in
one directory, your pictures in another,
and your animations in a third. When
you transfer those directories to a CD
disc your files will end up far apart on the
disc, causing longer seeks.

Instead, put sound, picture, and
animation files that will be used at the
same time in their own directory. That
way you can be certain they will be near
each other on the disc when it comes
time to read them. For some systems,
there are even optimization utilities that
will track file use during emulation and
tell you which files should be closer to
each other.

Down to the Plastic
This is a good time to run through the
traditional steps in making a CD-ROM
disc.

Step 1: Design your product. You
should already have a good idea about
how to do this (if not, you probably
shouldn’t be in the business). What do
you want? What will it look like? Create
a wish list and go back and modify it
based on cost, resources, development
time, and so on. It’s tempting to think
of a CD-ROM as a panacea for all the
problems you face with traditional game
design and production. But before you
finish your design, look at your original
idea and some of the cold, hard numbers.

If you want video in your product,
you must invest in a whole new world of
hardware that most of the programmers
on your team don’t know anything
about. There are VCRs, editing decks,
SMPTE time code generators, editor-
controllers, cameras, and, of course,

actors, costumes, scripts, lighting, audio,
directors, and video editing. I’m not say-
ing you shouldn’t include video, but
think back to those cheesy car-dealer
commercials on your local TV channel.
Those obviously shoe-string budget,
low-quality, 30-second spots cost tens of
thousands of dollars to produce!

If you think you can do it for less,
take a look at your own home videos and
decide if that is the quality you want in
your new game. Call a few video produc-
tion companies, costume houses, and so
on, and run some of the numbers your-
self. You may end up spending $100,000
or more for a few minutes of video before
you get it into the computer.

Once you have the video, you have
to capture it and convert it into a video
format for your particular platform.
QuickTime and Video For Windows
charge a run-time fee per product (and
you can’t count on your buyers already
having them). In addition, there is the
cost of the video capture equipment and
its learning curve. You can plan on
adding a few months to the development
cycle if you are including video in your
game.

If you can overcome all these obsta-
cles and manage to get the video into the
computer, a good rule of thumb is to fig-
ure on a megabyte of storage for each
three to five seconds of video. You can
have a spiffy intro video of two minutes
that should only take about 60M (in a
small window, that is, not full-screen and
not quite VCR rental movie quality).

If you consider that a 70-minute
movie can barely squeeze onto a CD-
ROM using MPEG hardware compres-
sion, you begin to realize why there
aren’t a lot of interactive video games out
there (exactly none at last count). But
don’t let all this discourage you. A few
well-placed 10-second clips here and
there can mean the difference between
award-winning software and just another
shovelware port. Investigate the prob-
lems, costs, and eventual benefits of
video, and then make up your mind
whether to include it or not.

If you want a complete CD-quality
soundtrack, there is more bad news and
good news. CD-quality audio (at a

C D - R O M G A M E S

6 GAME DEVELOPER • JUNE 1994

A few well-placed

10-second

clips can mean

the difference

between award-

winning software

and shovelware.

22KHz sample rate in stereo) ends up
gobbling CD-ROM space as hungrily as
video. (That’s why you can only fit 70
minutes of music on a CD-audio disc).

There is another problem with CD-
audio. Because of government regula-
tions brought about by the record indus-
try, there is a special hardware feature
built into all CD-ROM drives. When
the drives switch to CD-audio playback
mode, they automatically cut in digital to
analog converter circuitry before the sig-
nal gets to output. This was done so no
CD drive would send out pure digital
signals—if they did, people could make
perfect, digital byte-for-byte copies of
CDs.

When you issue a CD-audio play-
back command to the drive, it switches
into an analog output. In simple terms,
while the CD-audio is playing, you can-
not read any digital information off the
disc at the same time. So, you must pre-
load all the code, pictures, animations, or
whatever before you start that totally hip
soundtrack playing and wait until it fin-
ishes before you can load anything else.

The good news is that 95% of the
people who will be running your game
on a PC or Macintosh will not have their
system hooked up to a $4,000 audio sys-
tem. More than likely, they will just have
a SoundBlaster card running through
dinky little Radio-Shack speakers that, at
their best, can only reproduce audio in
the 8KHz to12KHz range. (For a point
of reference, a telephone earpiece speaker
operates at about 6KHz or voice quality,
AM radio is about 8KHz to 10KHz, a
very high-end stereo system can only go
up to about 18KHz, and most normal
human beings can only distinguish dif-
ferences in sounds up to about 20KHz.)

Why is that good news? You can
have your digitized audio, music, voice,
and sound effects and sample it at
12KHz to 14KHz, which is more than
adequate for 95% of the systems out
there. You will have remarkably clean
sound in digital format that you can load
from disc and play back at the same time.
Sound still costs about 1MB for each
minute, but you don’t need to overdo it
on sound. (If you are just doing explo-
sions and laser blasts, you can easily drop

down to 8KHz sample rates with no loss
of clarity and still sound better than disk-
based games.)

You will however have to be careful
during the recording and sampling stages
of development. You should do a num-
ber of tests first to determine recording
formats, sample rates, and so on. It’s also
a good idea to digitally audition your
narrators because there are some human
voices (particularly women’s voices) that
require 15KHz to 16KHz sample rates
to reproduce clearly.

It is also a good idea to get your
audio recording done in a professional
sound studio. The costs are not that high
($50 to $100 per hour), and you won’t
end up with an hour’s worth of audio
tape that has the hum of an air-condi-
tioner in the background, cars driving by
the office, or 60-cycle florescent lights
buzzing throughout. You need to invest
in decent sound digitizing equipment
and software, although sound editing is
remarkably easy in digital form as
opposed to traditional sound-editing
techniques.

You can store hundreds or even
thousands of images and animations on a
CD-ROM disc, but where are you going
to get them? I know of companies that
have spent $1,000 for a single computer

graphic screen. It was nice, but imagine
buying hundreds of them. Maybe you
have an in-house graphics department.
How many screens does it produce in a
week? One...two...ten? How long will it
take to generate a hundred...three hun-
dred...a thousand? How much would it
cost to buy a hundred graphics screens?
How long will it take your people to
generate 20 animation sequences or
more?

More and more companies are turn-
ing to stock houses for images, and some
of the smart companies are looking into
licensing existing artwork. Some comic
book illustrators get paid very little com-
pared to traditional computer artists, and
their talents rival the best computer
graphics anywhere. It might be worth-
while to investigate hiring traditional
artists and scan their pencil, pen, and ink
work into the computer. It would mean
buying and learning the intricacies of
scanner technology, but it may be worth
it in the end.

Your design specifications now
include a few dozen animations, some
well-chosen video clips, 10 to 20 minutes
of sampled sound, and something less
than a hundred graphic screens. Once
you are ready with a full design specifica-
tion, you are ready to move on to the

GAME DEVELOPER • JUNE 1994 7

Civilization of the Future or Memory Eater?

next step.
Step 2. Develop your product. Here is

where the hard-core programming,
graphics creation, animation, music,
sound effects, digitized voices, and every-
thing else gets done.

Step 3. Hard disk image. Create an
image of the product on a separate hard
disk partition, complete with boot code,
installation code, and so on. This is a
very important step in devel-
oping for CD-ROM because
what you put in that parti-
tion is what will end up on
the disc. This is a good
time to clean up unused
code, tools, errata, pro-
grammer’s notes, inter-
nal documentation,
trapdoors, and all the
thousand-odd files
that end up on a
hard disk during
the development
process. Remem-
ber, if you acci-
dentally burn a
copy of your
c o m p i l e r ,
source code,
font, or favorite paint
program onto the CD-ROM,
you might be in for some legal problems,
the least of which would be paying a roy-
alty to the originator of those products.

Just because all those files appear in
nice alphabetical order when you do a
directory listing does not mean they are
sequentially laid out on the drive. Some
premastering software creates a complete
byte-for-byte image of the hard drive as
it stands, not as it appears. Remember
that file number 2.pic appears between
19.pic and 20.pic, so you may want to
number files 001.pic, 002.pic, and so on.
This may not be a problem for you or
your system, but some people spend
weeks trying to figure out why the CD-
ROM image is different from what they
think is on their hard disk.

Step 4. Hard-disk testing. At this
point, it’s a good idea to test the product
from that hard disk partition. If possible,
boot straight into that partition and see if
everything works. You may have to cre-

ate a floppy boot program that simply
transfers control to that partition and see
if it works. You will probably find that
when booted from that partition, the
program fails because you omitted a
DLL, initialization process, or some
code that exists on your development
platform but may not exist on your target
platform.

This testing will also help you build
your install routines (if you have any).

This is particularly important on
TV-top systems, many

of which

t r a n s f e r
total control to the CD-
ROM and count on it to do every-
thing including boot the system. Once
everything seems to work off the hard
disk partition it is time to premaster the
disc.

Step 5. The gold disc (premaster).
Before you actually start producing discs,
you go through a premastering phase
that’s divided into two steps: a build and
a premaster or gold disc.

After you have your program fin-
ished and all the picture, sound, and
other data files just the way you want
them, you go through a build phase. A
build is where a separate program reads
through your hard disk and creates a
build file, which is simply a text file with
the proper header information and a list
of all the files on the hard disk drive that
you want copied in the order that they

will appear on the CD.
Once the build file is created,

another program creates an ISO format
image of the data, ordered according to
the build file. That image is then written
to a write-once disc. This is called the
premaster or gold disc. These discs use a
very, very thin film of real gold and a
laser to create the pits. The gold disc is
then used for final testing in a real CD-
ROM drive on a real system.

There are two ways to create a gold
disc. You can either send your data to a
CD-ROM mastering house or you can
do it yourself. Most CD-ROM master-

ing facilities can accommodate
data in just about

any format,
such as

s t r e a m i n g
tape, Syquest

data cartridges,
Bernoulli drives,

even hard disks.
They will, of

course, charge you
for a premaster

(usually under
$100), and some

houses will let you
apply that charge

toward the actual mas-
tering charges later.

You should already
be checking into mastering

and duplication charges by
this time anyway, so perhaps

you can work out a deal. If you are let-
ting a CD-ROM mastering house do the
premastering for you, be sure that it
knows what format you are sending and
what the target platform is. Most CD-
ROM duplication houses are more than
happy to accommodate you no matter
what the technical considerations are
(after all, they want your business when
it comes time for duplication).

If you plan to do a lot of future pro-
jects on CD-ROM (or a lot of premas-
ters), it’s probably a good idea to look
into the purchase of a WORM drive of
your own. Write once drives fall into the
$2,000 to $5,000 range, with various fea-
tures and software. It is probably worth
looking into the various configurations

C D - R O M G A M E S

8 GAME DEVELOPER • JUNE 1994

LucasArts High-End CD-ROM Game Rebel Assault

carefully before you purchase one. If you
go the do-it-yourself route, you must do
the build phase on your own, which
actually does give you more control over
the finished product.

If your premastering or build soft-
ware is good, it will let you edit the build
file. Here is where you may find file
organization and ordering problems. You
may also be able to correct them here by
editing the build file. Remember to keep
track of your changes because, no matter
how smoothly things have gone up to
this point, you generally have to go
through the build phase at least a few
more times. When you have the build
file the way that you want (organized so
that frequently used files are grouped
together and near the beginning of the
file), you can cut a gold disc with a com-
mand or two. Depending on the
WORM drive, this can take minutes or
hours.

Step 6. Testing. When you get your
gold disc back from the duplicator or
from your WORM drive, it is time for
real-world testing. Here is where you
will find CD-ROM specific problems,
read and seek time bottlenecks, and
other things you never counted on. The
gold disc is in every way exactly like the
disc that you will be shipping to your
customers, so if it doesn’t work on your
target platform system at home, it cer-
tainly won’t work on your customer’s
machine.

Test the gold-disc version to death
because this will be your last chance to
solve any problems. Try it on an actual
low-end system that doesn’t have your
developer tools loaded (or anything else
for that matter). Test it at home. Test it
in the field. Test it everywhere you can
think of, even if you have already gone
through beta testing on hard disk.

If you end up having to make
another gold disc, go through the whole
testing process again with the new disc.
You would be amazed at how often fix-
ing one problem causes three more to
crop up. Even if you are under the gun,
it’s 4:45 and the UPS truck is about to
leave, don’t give into the temptation to
send out a new gold disc that hasn’t been
tested! Gold discs are not perfect! A sin-

gle speck of dust at the factory can create
a flaw in the disc, and gold discs aren’t as
durable as final CDs. One bad byte in
the wrong place can destroy a program,
and, if it’s bad on the gold disc, you’ll
end up with a thousand copies of a bad
disc.

Step 7. Mastering. If the gold disc
works the way you want, you can then
send the gold disc, (or magnetic tape, or
Bournelli or Syquest cartridge, or even
your hard disk drive along with your
build file) to a duplicator who then
makes a master. You can’t make your
own CD-ROM master discs. CD-ROM
mastering is one of those dark, arcane
artforms roughly equivalent to mass-pro-
ducing VLSI chips that only a few com-
panies in the world can accomplish.

It involves millions of dollars worth
of highly specialized equipment, highly
trained engineers dressed in air-tight
space suits and a class 2 cleanroom. For-
tunately, duplication houses only charge
about $1,200 for each master. Don’t
expect to get the master back either.
Most duplication houses will store them
for you if you need another run, but nor-
mally they don’t give copies back to the
customer.

Once a master is created, the dupli-
cation process is pretty much like stamp-
ing out a vinyl LP record. The master is
mounted on a press, the CD-ROM
inner layer is stamped, the plastic coat-
ing, label and whatnot applied, and the
disc is popped into a jewel case (or what-
ever you specify). Depending on the
quantity and turnaround time, CD-
ROM discs can be produced for under
$1.50 each. If you want the duplicator to
insert your discs into jewel cases, insert
instructions, and shrink-wrap them for
you, each disc will cost about $2.00 each.
The duplicator will even ship the product
for you.

You must work out the particulars
with your individual CD-ROM duplica-
tion house, and all will be very happy to
meet your needs. You may be able to get
a dime or two with a volume discount,
but disc prices are pretty low, so don’t
expect 50% off if you order 10,000
copies. If you are developing for some
systems you may find that the duplicator

will charge you an additional platform
license fee that goes back to the system
manufacturer. You may also encounter a
setup fee of a few hundred dollars. Some
duplicators will wave this fee the first
time, but charge you if you need to go
back on press at a later date.

Treasures and Traps
So, while CD-ROM may seem like the
end-all, be-all for software developers, it
is a mixed blessing. Yes, you do get tons
of storage space, but you have to count
on additional load times. Yes, it is almost
like shipping your product on a very large
read-only hard disk and yet, because of
physical layout constraints, you have to
be careful how you premaster for opti-
mum performance. Yes, you can add
video, digital audio, animation, and
skads of graphics, but each comes with
added development costs, headaches, and
design considerations.

If and when you decide to jump
into the CD-ROM development venue,
you are bound to find hidden treasures
and traps. There is a whole new world of
interactive entertainment waiting to be
explored. You will find those rewards
and pitfalls sooner than any other soft-
ware developers because, as you and I
know, it takes 10 times more sophistica-
tion and elegance to develop a good
game than it does to develop just another
word processor or spreadsheet. Game
developers are the ones who test the lim-
its of technology. No other software pro-
ducers can do that or have to live up to
the standards that game buyers and
developers set for themselves. ■

Guy Wright has designed, produced
and developed nearly a dozen interactive
multimedia CD-ROM products for various
companies. He has designed games, video
production software, and multimedia
authoring languages and founded two soft-
ware companies. He has written two books
on desktop video and is currently working
on a killer CD-ROM cyborg simulation
game that should put all others to shame.
He can be reached via e-mail at
gwright@mfi.com or through Game Devel-
oper magazine.

GAME DEVELOPER • JUNE 1994 9

Target Your
Game: Computer
vs. Console

C O M P U T E R V S . C O N S O L E

W
ant to quickly compare home
video and computer games?
Tally up sales. Six to seven
billion dollars worth of video
games were sold in North
America in 1993 vs. $410
million in computer games,
according to the Software

Publishers Assoc. That ratio, about 15 to
1, is an order of magnitude and a half.

But wait—nobody counts retail sales
of IBM compatibles and Macintoshes or
even joysticks and soundcards, yet Super
Nintendo Entertainment Systems and
Sega Genesis and Sega CD units are

lumped into the home video game or con-
sole totals. And aren’t the chip innards of
cartridges more properly counted as hard-
ware? Maybe we should factor out their
difference in cost from all the floppy disks
in an average game box or the stamping
cost of a CD-ROM. More to the point,
how do computer and console games dif-
fer, and how are the two suddenly grow-
ing together?

The Two Worlds
The biggest difference between computer
and console games is the people who play
them. Their preferences appear to dictate
the kinds of games you find on either
platform. Part and parcel of that content
are the interfaces, which differ strikingly.
The hardware available is largely responsi-
ble. It accepts player inputs, generates
compelling graphic output, and processes
the one while supporting the other.

Any console developer must pur-
chase a development system to accommo-
date that dedicated CPU and its architec-
ture, but every developer employs some
variety of software tools and a balance of
two separate languages. Finally, the
process by which a video or computer
game, once commissioned, reaches the
hands of consumers also subtly differs.

Younger people play video games,
while older people play computer games.
Nintendo Power editor Scott Pelland calls
the core video game-playing group 12- to
14-year-old males. At Sega of America,
associate director of third-party licensing
Steve Ackrich offers “6 to 16 vs. 18 to 35”
as a ballpark age breakdown.

The game platform of choice for
economically dependent consumers is
clearly the video game console or set-top

Games like Sega of America’s Eternal Champions will sell to millions (zillions?) of consumers
this year, but is it a video or computer game. With delivery mediums like the CD-ROM, tradi-
tional video games are crossing the line and being played not only in the arcades and on TV-
top consoles, but on the PC and Macintosh as well. As the computer and video markets con-
verge, opportunity arises for everyone!

10 GAME DEVELOPER • JUNE 1994

box. “Right now computer games seem to
be more involved, more complex, and
more for older people just because of the
target platform. It’s an older audience.
You don’t have 10- to 14-year-old kids
going out and spending $2,000 on a PC,”
says Robb Alvey, a producer at Virgin
Interactive Entertainment.

The dominant appeal of video games
is the promise of instant gratification.
There are indeed “two different types of
gamers,” claims Maxis producer Michael
Perry, who began his career at Hudson
Soft USA in video games. Video gamers
are “action or sports oriented. They want
to put the cartridge into the machine, turn
it on, and play without having to read a
manual, or study it, or know anything
about the game. They just go for it.”

Sega producer Tony Van has also
worked in both worlds, including Activi-
sion and LucasArts. He says, “The PC
and video games are different markets.
On the PC side, they are more forgiving
because most of them are hackers. You
cannot install a PC game these days with-
out hacking your AUTOEXEC.BAT and
CONFIG.SYS files.”

One thing video gamers are not is
hackers. As investors in their own enter-
tainment, one experiential venture at a
time, they are risk-averse. One unpleasant
episode with a faulty product, and their
pleasure capital could be wiped out, as
Nintendo learned from the early 1980s
Atari market and created zero-defect fun.

Video games are fad items, based on
fast-moving technology, and even the best
can be outdated within a year. You can
hold a cartridge in your hands, but make
no mistake—video games have been suc-
cessfully transformed from a good into a

service, like all entertainment always was
and like more and more software is. And
as any good service-provider knows, an
annuity is better than a lump sum. The
recent stir over video cartridge rentals is
ironic because a video game console is
really just a subscription and cartridges the
renewals. With video games, we already
rent our fun.

By comparison, computer games are
more opportunistic; few would admit to
buying a PC to play games. As a market,
they are an afterthought. What can they
offer an audience of greater wealth, matu-
rity, and sophistication? Tony Van knows:
“The trade-off is instant gratification vs.
variation and depth of play. They all want
the best game experience, on both sides.
The PC side is willing to wait for it.”

Michael Perry agrees, it is “depth of
gameplay. A lot of video games are very
topical. You have a very simple purpose.
In a fighting game, it’s to beat the hell out
of the other guy. On PCs, you can just
dive in deeper and deeper. Users like that;
they spend a lot of time with the game,
seeing how deep they can go. It’s not a
one-shot thing like a video game.”

Successful console game categories
are action and puzzle: sports, fighting,
racing, side-scrolling and vertical shooters,
and platform versions of the adventure
genre. PC games are more typically simu-
lation, strategy, role-playing, and first-
person graphic and text adventures, as
well as solitary sports like golf. After pro-
ducing more than 30 cartridge games,
Alliance Interactive president Gordon
Walton has chosen to return to the plat-
form with a keyboard: “PC games are
more fun anyway. You see a lot more cre-
ativity, more robust games. There is a

What‘s the best plat-

form for your game?

Consoles are in the

limelight–but wait–

isn‘t there a PC in half

the homes in Ameri-

ca? Market strate-

gies play an impor-

tant role in where

your game ends up.

by Jim Cooper

GAME DEVELOPER • JUNE 1994 11

limited input bandwidth that constrains
what you can do with a console game.
This limits size not so much as depth.”

Design
Yet the keyboard is not the key. Says
Walton, “The mouse has a practically
infinite input bandwidth to click on. It’s
the size of the screen in pixels divided by
some size factor. A mouse interface is also
more intuitive than ‘Y-button plus Up
arrow.’” The margin for error is awfully
slim without that mouse; ask Alexandria
designer Paul O’Connor. “You can’t be
sloppy when you’re doing a console game.
You’ve got three to six buttons, maxi-
mum, plus the directional pad. On a com-
puter game you’ve got a keyboard with
how many keys, a mouse with how many
mouse buttons, and maybe a joystick on
top of that. What it comes down to is the
interface. It’s almost the difference
between a short story and a novel.” The
other half of an interface is the output—
the graphics.

Rich O’Keefe of the Starwave Corp.
explains the difference between character
and bit-mapped displays, starting with
video games. “Character-mapped displays
break the screen down into 8-by-8-pixel
characters and put those characters in tile
positions on the screen. You can reuse
characters in drawing the screen; that’s

where you save the memory. Computers,
on the other hand, tend to be bit-mapped
(unless you’re talking about the Amiga).
What that means is each pixel on the
screen has a location in memory. Com-
puters have character modes, they just
don’t get used because they are two-color:
black and white. Video game characters
tend to be multicolor.”

O’Keefe continues, “Sprites are a
special case of character that are indepen-
dently placeable over the top of that back-
ground, to a pixel boundary. Sprites are
supported in hardware; that is, they have a
priority, and it’s usually based on what’s
called their sprite number. Whether they
appear on top of the background or
behind the background, or one sprite
appears on top of another, is basically
dependent on some attributes you can set
or their sprite number.

“To emulate a sprite on a computer
display, say I have this character that I
want to walk across this background. I
have to draw the sprite and then, before I
move him, erase the sprite, fill in the
background, then move the sprite, saving
a copy of the background where that
sprite’s going to be drawn. This is a very
software-intensive chore. With real
sprites, in a video game, the hardware
does it all. It’s completely unnoticeable.
When the scan line is being drawn, it

draws the background scan line, then the
first sprite if it happens to be there and on
top, and then layers it up like a sandwich.
It happens automatically, and that’s why
you very rarely see real nasty shooting
games on computers: the amount of
processor required to do the erase and fill-
in and move-the-object and all that is
costly. It takes a lot of CPU cycles and a
lot of memory.”

Perry offers one design implication:
“On a video game platform, you typically
design your characters at least a fifth to a
quarter the size of the screen. Say your
screen is 224 pixels tall; you want your
character to be 55 pixels in height. Just
because of the low resolution of the TV,
you want to be able to see that guy. But
on the PC, since the resolution is much
more dense and sharper as an image, you
can use smaller graphics and get a lot
more on the screen.”

Consoles don’t just come without
keyboards or a mouse, they have to bor-
row your TV. This difference in resolu-
tion is key. One medium can be symbolic,
using fine details of expression. The other
has been necessarily literal, based on
action; the only nuance is kinesthetic and
goes by the name of “gameplay.”

Perry continues, “NTSC is not as
dense a resolution as the typical computer
monitor. On a PC in DOS, we can have
640-by-480 pixels. On television, we are
back down to 320-by-224. That makes a
big difference when you design games for
both platforms, especially if you are using
something like a toolbar. On the DOS
machine, that toolbar can be the full
length of the screen. On a video game
machine, you’ve got to really be careful
and slice that toolbar up about a quarter of
its size to fit. And then will the buttons be
big enough?”

Text in games demonstrates this dif-
ference, in Tony Van’s experience, “On
the PC, text is O.K. Adventure, the origi-
nal role-playing adventure game, was text-
based. But it doesn’t work on video, and
that’s one of the reasons role-playing
games are nowhere near as popular on
consoles as you would expect. Text is just
not fun. But it is important in a game of
any depth.

“When I showed Shadowrun, a role-

C O M P U T E R V S . C O N S O L E

12 GAME DEVELOPER • JUNE 1994

Sega’s Ren and Stimpy–Interactive Hollywood

playing game, at the Consumer Electron-
ics Show, what do you think were the first
words out of a reviewer’s mouth? ‘Sure is a
lot of text.’ And you can’t blame people.
On TV, pixels blur! Computer VGA is
high resolution. Somebody put it this way:
you don’t sit seven inches in front of the
TV when you play on the Genesis.” This
medium, defined by action and hostile to
the written word, is home to pictograms,
multimedia ones.

“Consoles are built with just two
things in mind: to entertain and to do it
inexpensively,” says Steve Ackrich. The
Sega Genesis uses the old Motorola
68000 running at 12MHz with 512K of
RAM. The Super Nintendo Entertain-
ment System uses the 65816, an older,
slightly inferior chip. Both are proven,
available, inexpensive, and quite a bit
older than the Intel 80386s, 80486s, and
Pentiums that drive PCs today.

Development Systems
Just as video gamers have to own a con-
sole, developers must buy a development
system, although it need not be from the
actual platform provider. Systems for the
16-bit platforms from Sega and Nintendo
cost around $15,000. According to Greg
Tavares of Crystal Dynamics, they have
the best hardware, which is required to
perform tracebacks, but their software is
so poor they are not the best systems to
work on. Among the newer platforms, a
Sega CD development systems costs
$40,000; 3DO costs $15,000. Rumors of
the price tag for Nintendo Project Reality
and Sega Saturn are in the $100,000
range. By contrast, Atari development kits
are $7,500 for the Lynx and $5,500 for
the Jaguar.

In both worlds, the software engi-
neering technology is constantly evolving.
Console developers once started out equal,
but every shop has built up its own arsenal
of tools. Steve Ackrich is well positioned
to observe the field: “You don’t have
everyone going down one clear path. You
walk into one shop, and they have this
bizarre setup. And you walk into another
shop, and they have this completely dif-
ferent bizarre setup. In general, the pure
developers have very ‘clean’ environments.
We couldn’t keep track of what everybody

is doing even if we wanted to. After all,
even we [Sega of America] are considered
the competition. Sharing is limited; com-
munication has a long way to go, but it is
getting better. The industry is a very
close-knit community.”

Sculptured Software has even started
selling parts of its own proprietary devel-
opment technology, although director of
software development John Emerson adds
it sells only to approved developers of the
Sega and Nintendo systems.

The first thing to realize is that video
games quote their size in bits of memory,
while computer games are quoted in
bytes. A bit is one eighth of a byte. Video
games are small; Street Fighter II, a mon-
ster cartridge at 24MB, would almost fit
on two floppy disks. Gregg Tavares of
Crystal Dynamics: “With video games
you have to squeeze so much into a small
amount of space that you take a vastly dif-
ferent approach. PC developers don’t have
to deal with it, so they don’t even try.”

How much can be squeezed? “Super
Mario III from Nintendo was a 384K
cart, and it had 88 levels. By comparison,
Aliens Ate My Babysitter from Apogee,
available for download from any BBS,
takes up 2.3MB, and it has 13 levels.
That’s the difference,” says Tavares.

This incredible parsimony is moti-
vated by the memory cost. As Rich
O’Keefe says, “Silicon memory is very
expensive per bit.” Cartridges cost
between $15 and $20, compared to 75¢ to
$1 for a floppy disk or CD. Using a
1.44MB floppy as the baseline, cartridges
are 10 times more expensive per byte (or
bit). CD-ROMs are 400 times cheaper.

According to Clyde Grossman, vice
president of publishing for Spectrum
HoloByte and former group director of
software development at Sega, this is the
difference: “ ‘Gee, product got a little bit
bigger? Guess we have to go to another
disk.’ 8MB and 1 byte means the next size
cart. What does that cost? Let’s just say it
means another $10 to the consumer at
retail. It happens often enough. You want
them to fill the cart, after all.” The 7th
Guest shipped on two CDs; the second
wasn’t planned, but didn’t kill the project.

The two primary computer lan-
guages for games are assembly language

and C. Assembler is the machine code
native to a particular processor—no code
is tighter. John Emerson says most PC
code is in C, which is easier to work with.
“Any high school kid could do it,” he says.

Sculptured Software cartridges are
written 75% to 100% in assembly lan-
guage. In fact, all its Super Nintendo
Entertainment System games are 100%
assembler. Maxis uses “assembler when
target platforms are 286 or a 68000-based
Mac, and that’s just because of speed, pure
speed,” says Michael Perry. “On the DOS
side and Mac side and in Windows, we
always program in C and use assembly
language just for some of the bottlenecks
to speed up some graphics process or
some intense calculations. But as we get
these more powerful machines, like the
PowerMac, we can use straight C or C++,
and it will run fast enough.”

Anarchy vs. the State
The Software Publishers Assoc. does not
police PC software content. Among con-
soles, however, Sega and Nintendo are
candid about doing so. Steve Ackrich
explains Sega’s reasoning. “People don’t
realize this, but we have a very fragile
marketplace. We’ve seen what can happen
twice, once with the [Atari] 2600 and
once with the 8-bit Nintendo. Nintendo
let down their guard. Our customers don’t
know when a game is done by Sega and
when it’s done by a third-party publisher.
We get letters all the time about John
Madden Football [published by Electron-
ic Arts].”

Ackrich continues, “Becoming a
licensed publisher or developer is free, but
not easy. We make it very hard to become
a licensee. SOA [Sega of America] needs
to see everything: the ability to develop
games, the ability to distribute, market,
and support games, and the ability to
make quality games. We exercise two
checks on individual game quality: first at
the concept approval stage, and then in
testing before final approval. We assign
publishing slots; there is no limit to the
slots, but the quality has to be there. All
this is not to stifle competition because
that competition gives you the best games.
Most people at Sega come from third-
party licensees, so they appreciate that we

GAME DEVELOPER • JUNE 1994 13

are supporting them.”
Atari vice president of software

business development Bill Rehbock
describes a laissez-faire approach to
Jaguar licensing, for those who have also
satisfied the stringent standards for
becoming licensees. “We do not require
our licensees to let us know what they’re
doing, but we request it. We keep a scat-
ter chart of types—not titles—of games
being worked on by all our licensees. We
do not prohibit anybody from proceeding
on a title, but we will be honest: ‘Acme
Software, we recommend you don’t pur-
sue this tennis game because it is worse
than the three already in the works.’ If
they go ahead and proceed, God bless
’em. If they get eaten alive, that’s O.K.
too. Buyers for the big chains like Toys
R Us know quality when they see it. The
industry is a little more self-regulating
than it used to be.”

“We also won’t reject—or slowly
approve—your 3D polygon racing game
because ours isn’t ready yet. All third-
party games get tested independently of

our own projects. In fact, on the day that
Tradewest announced their Jaguar Troy
Aikman football game, we canceled our
in-house football project.”

Testing is easier for the more stan-
dardized video consoles, although not
trivial. With direct responsibility for test-
ing all—and only—Sega’s third-party
games and experience as a producer of
PC as well as cartridge titles, Steve Ack-
rich says, “Testing is a nightmare on the
PC, not as much so on the Mac, and
almost but not quite painless on consoles.
At Sega, we want to make sure that any
game that comes out is compatible not
only with all our existing machines, but
with all future machines.”

Rehbock describes a less ambitious
process comprising all Jaguar title testing
and approval. It begins when a publisher
“submits the code to Atari, where we
simply do 100 staff-hours of what we call
sanity-check testing. The game just has
to meet our cursory style outline: the
Reset button works, Fire buttons are
software-reconfigurable, Pause pauses

the game, and while the game is paused
you can adjust the soundtrack and sound
effects volume levels. We turn over the
code in two or three days.”

Says Michael Perry, “We do really
big simulations on the PC side. With our
quality assurance process, sometimes
products can stay in there for months.
We’ve got a strict QA department.

Of course, updates to released prod-
ucts are unique to the computer game
realm. You cannot download a patch to
your cartridge from CompuServe. Gor-
don Walton says, “Carts have to be per-
fect. PC updates are cheaper, and the
infrastructure is set up for it; people are
trained in software updates. It’s under-
stood that everything is a work in
progress.”

A unique lag exists between when a
cartridge game is finished and when peo-
ple buy it. Clyde Grossman notices the
difference: “You lose the immediacy of
releases with video games. At Sega, I
would honestly lose track of what was
shipping because we had finished with it

C O M P U T E R V S . C O N S O L E

14 GAME DEVELOPER • JUNE 1994

three months before. With a floppy or
CD game, it can be on the shelves in two
weeks from QA.”

The Future
Console and computer games are con-
verging. Today, they share the CD-
ROM delivery vehicle. Soon, they will
share full-motion video via compression
and decompression technology; witness
Sigma Designs’ ReelMagic PC add-on
board and an MPEG adapter slated for
release for the Atari Jaguar later this year.

Gregg Tavares ventures the opinion
that there are now three categories of
electronic games: cartridge, PC, and
CD-ROM multimedia running on a PC,
Sega CD, 3DO, or whatever. The chal-
lenge is to fill up a CD-ROM—with
gameplay, not just memory-hungry digi-
tized sound—and access all that data
quickly.

Hugh Bowen, of the Bowen Associ-
ates multimedia video game marketing
consulting firm in Half Moon Bay,
Calif., would agree: “The PC CD market
is exploding in sales. It used to be minus-
cule compared to video games. Rebel
Assault from LucasArts has sold 400,000
worldwide since last fall. Activision’s
Return to Zork sold 300,000 in the last
six months.”

At this year’s March Symposium of
the Software Publishers Association in
San Francisco, Calif., he chaired a panel
on multimedia platforms that ranked
their attractiveness to developers in the
following order: Sega Saturn, PC and
Macintosh CD, Nintendo Project Reali-
ty, Sony PS-X, 3DO, Jaguar, and Sega
CD. In the PC world (including Macin-
toshes), five to seven million CD-ROM
drives are expected to be in American
homes by the end of 1994, and 10 to 12
million by the end of 1995; there are
already 700,000 Sega CDs.

Nintendo has announced that its
Project Reality machines will use high-
capacity data cartridges instead of CD-
ROMs. Gregg Tavares is skeptical:
“Their carts are supposed to hold 150MB
to 250MB? Crash ’N‘ Burn took up
300MB without the animated sequences,
and Total Eclipse took 40MB.” It’s not
that hard to fill a CD-ROM.

And Rich O’Keefe recalls his expe-
riences while in Japan for Atari, Elec-
tronic Arts, and NEC: “The PC Engine,
what we call the Duo over here that plays
carts and CDs, sells almost no cartridges
any more. CDs are cheaper, and you can
get them back overnight—in a week in
the worst case. You can gauge the mar-
ket, take fewer risks, and there’s no gam-
bling on inventory.”

On the other hand, in the not too
distant future: “with a set-top box, there
is no reason for CD-ROM: you get it
through cable. Cable delivery is going to
be much more important in the next 10
years than CD-ROM delivery is now. I
think there’s going to be this conver-
gence of cable boxes, telephones, PCs,
and video games. It’s going to be an
interesting little mixture. Right now,
video games lack two-way connectivity.
And you can get that over a cable system
at a high enough bandwidth to be truly
interactive. Not 9600 baud modems;
that is too slow, except for very simple
games and strategic games. To do the
VR thing, you need high-bandwidth
communication.”

If you ask Gordon Walton for
another reason why he got out of video
games, he’ll say the console market is
about to crash, and the new platforms
will arrive too late. “If you are currently
in the 16-bit market, that’s fine as it
trails down. But if you’re not developing
for these new platforms right now, it’s
two years before any product comes out
for them—3DO, a year and a half.”

Robb Alvey would not argue: “A lot
of people don’t understand that it takes a
while for people to develop on and learn
a system. When the Sega CD first came
out, everybody was saying, ‘Oh, this is a
dead system. Noone’s going to buy it.
The games are horrible,’ and they were.
It always takes something on a system to
make me want to buy it. With the Sega
CD it was Silpheed. I played Silpheed at
a friend’s house and said, ‘I gotta have a
Sega CD now.’ ”

And he is clearly eager to use what
comes along. “For Aladdin [a Sega Gen-
esis cartridge], we had to say, O.K.,
we’ve got a limited amount of RAM
buffering, and we’ve got a limited

GAME DEVELOPER • JUNE 1994 15

amount of cartridge space, just depending
on how good compression routines are
and how much stuff we can cram into a
2MB cartridge as opposed to a 600MB
disc. We sat down with the Disney ani-
mators and said, ‘Alright, you have to
create feature film quality or at least the
feel of it, given all of our limitations:
characters can’t have facial expression,
and they can’t have fingers or toes.’ That
was a blow to them; they’re used to being
free with their animation and artwork.
But: if we were to do a CD-ROM
Aladdin, in the same form that you
would do a Dragon’s Lair and have the
luxury of MPEG out there now, we could
have done anything we wanted with the
Disney animators. We could have let
them run wild and be free with it.”

Into Overtime
Whatever comes along, designers and
producers and technical directors will be
bending it to their creative visions. Paul
O’Connor is typical: “As a player, I enjoy
computer games more because they pro-

vide intellectual challenge, and they have
deeper levels of play. But for a racing
game or a fighting game, it’s hard to beat
that oomph of a top-flight video game. I
think computer game designers can learn
a lot from the interface design of some of
the best console games because they can
get complex designs across. A person can
pick up a controller and understand how
to play first time through without read-
ing any documentation. When’s the last
time you did that with a computer game,
short of Wolfenstein?”

“There is a crossover between set-
top boxes and PCs; they’re growing
together,” says Michael Perry. “As set-
top boxes and PCs grow more and more
powerful, it’s going to be hard to distin-
guish between the two platforms. We
may end up in the future being able to
run a game on a PC and on a set-top box
with very few modifications at all.”

Looking ahead, David Walker, a
technical director at Electronic Arts, says
he used to place computer and video
games along a continuum of complexity

versus simplicity. That is changing with
the introduction of full-motion-video
and MPEG chips. “We’re seeing a new
genre of game, the interactive movie.
Nobody knows what it means, but every-
body is using the term. And it can live on
both the PC and set-top boxes.” ■

James Paul Cooper sold decision support
software to institutional investment managers
for a global consulting firm. In 1978, he
joined an Arizona computer game company
instead of matriculating at the University of
California. Since then, he has founded or co-
founded several game and software ventures
and acquired an M.S. in Industrial Adminis-
tration from Carnegie Mellon University,
where he taught marketing. He can be reached
via e-mail at 72147.2102@compuserve.com or
through Game Developer magazine.

F E A T U R E H E A D I N G

16 GAME DEVELOPER • JUNE 1994

The Fat
Man Sings

T H E F A T M A N

N
estled in Texas hill country,
Austin is a city jam-packed
with musicians, but it’s not
necessarily an easy town for a
musician to make a living in.
In fact, for the amount of
money they make, some musi-
cians might as well be playing

music as a hobby. George Sanger has
gone about the whole business of making
music and making money in a completely
different way. Now, he’s making money
playing music, and he’s making money at
his favorite hobby: playing games. In
fact, he and the three other musicians
who work with him carry a lot of weight

in the game business. They are the Fat
Man. “We’re huge,” says Sanger.

Fat Man central is Sanger’s small,
tree-shaded red brick house in North
Austin. The entire front room is taken
up with computers, sound equipment,
and Sanger’s collection of guitars.
Swiveling around in a high-backed blue-
padded chair behind a giant desk, Sanger
barks into the phone, fiddles with equip-
ment, and, in general, lives large.
Sanger’s family reigns in the rest of the
house, where Linda Sanger manages the
household, the couple’s two kids, and the
Fat Man’s books.

Family is important to Sanger. He
got his start in the game business when
his brother’s roommate Dave Warhol,
who was writing games for Intellivision,
commissioned him to write a 10-second
tune for $1,000. The tune was called
“Carnival of the Penguins,” and it was
used in a game called Thin Ice. Since
then, games boomed and busted, and
they’re booming again.

George’s brother David Sanger
became the drummer for Grammy
Award winning Asleep at the Wheel,
and George Sanger’s career in the game
business took a hiatus. As he puts it, “I
wasn’t writing 12 seconds of music for a
thousand dollars anymore, I was writing
something like up to three minutes for
commercials for $79.95.” At that time,
Sanger was also running a recording stu-
dio for Austin musicians, which is how
he met the musicians he now collaborates
with. At his brother’s wedding, he ran
into Dave Warhol again, and, once
again, he got a break. Warhol put him in
contact with Brian Moriarty, who asked
Sanger to create music based on Swan

The Fat Man might not be familiar to those of you who follow the pop charts, but this Dallas-
based band has been heard by millions if not billions of game players. From writing three-
minute jingles for commercials to nominee for best soundtrack at the March Game
Developers conference for Origin’s Wing Commander, George Sanger and his team provide
music for the game players of the world. The Fat Man is (from left to right) K. Weston
Phelan, George Sanger, Dave Govett, and Joe McDermott.

18 GAME DEVELOPER • JUNE 1994

Lake for the LucasArts game Loom.
The next big break and a big evolu-

tionary step for the Fat Man came when
Sanger was asked to write music for Ori-
gin’s Wing Commander. He didn’t have
time to work on it, so he subcontracted it
to Dave Govett who, conveniently, had
the kind of grand World War II meets
Star Wars theme Origin wanted already
floating around in his head. It was some-
thing Govett had worked out in high
school. Then, Origin producer Chris
Roberts made several decisions that made
Wing Commander a significant mile-
stone in gaming history and also helped
propel the Fat Man into the big time.

Roberts decided to make Wing
Commander more interactive with the
addition of characters and a storyline.
Also, Origin refused to compromise
game quality for the lowest common
denominator market. Wing Commander
required a Sound Blaster, the best com-
mercial sound board available at the
time, and it required at least a 386 com-
puter, plenty of room on the hard disk,
and a reasonable amount of RAM. It
was a huge success. That year, two titles
Sanger worked on, Loom and Wing
Commander (nominees for best sound
track at the Game Developers Confer-
ence in San Jose, Calif.; Origin won the
category), were Sanger clients, and the
Fat Man became “the biggest name in
music for multimedia.”

The Style is No Style
Sanger says there is no such thing as a
patented Fat Man sound. For one thing,
he says, he doesn’t have the chops (a
musical bag of tricks to fill in any blank),
but also because the Fat Man is really

four people: Joe McDermott, K. Weston
Phelan, Dave Govett, and Sanger. Joe
McDermott has produced several albums
of children’s music. He was also a mem-
ber of Grains of Faith, one of Austin’s
best undiscovered bands and, says
Sanger, “he’s created some of the most
ear-bleeding music for Nintendo games.”

Kevin Phelan used to run sound for
Austin musicians including Asleep at the
Wheel, was a member of the punk/funk
band One Bad Pig, and he still special-
izes in the eclectic, weaving world of
music with jazz and pop. (McDermott
and Phelan are now members of a new
band called Caterpillar.) Dave Govett
specializes in grand epic themes à la John
Williams or Danny Elfman. As for
George Sanger, the original Fat Man, he
says his job is to bring it all together. “I
specialize in music salad. I don’t ever just
play what’s under my fingers because
there’s nothing there.”

Sanger says he does not play key-
board well, and he deprecates his guitar
playing talents. “What I have,” he says,
“is the ability to drink a beer and lead a
jam so that everyone has fun. On the
keyboard side, I have the ability to feel
an emotion and slowly and painstakingly
sculpt it out on the keyboard and the
computer. Also, I have the ability to
coach other folks through the process of
performing it.”

Depending on the developers, the
Fat Man can enter a project at any stage.
In the case of IndyCar Racing, the game
was already completed, and the Fat Man
was hired by the developers at Papyrus to
come up with a theme. To illustrate how
early he can come into a project, Sanger
reaches across that broad expanse of a

Ever wonder who

writes those nifty

soundtracks, heart-

pounding scores, and

catchy tunes for your

favorite game?

Read how one man

and his band are

shaping the future of

music in gaming.

by Kathleen
Maher

GAME DEVELOPER • JUNE 1994 19

desk and comes up with a thick script for
a new project and flips through
pages of index,
story-

lines, and
storyboards. “This is a

little more than we need, but it gives us
the fall and lay of the land.” Obviously,
Sanger and the Fat Man would rather
come into the project as early as possible.

In the case of Putt Putt goes to the
Moon, the Fat Man worked with the
developers at Humongous Entertain-
ment every step of the way. “They would
send us a new update of the game with
the music integrated. That was a won-
derful way to work because I didn’t have
to work with any fancy technology at all.
I didn’t have to use any screwy tools and
kill my computer by loading up proto-
type software. All I had to do is put the
game on and see how it was playing so
far and send them feedback.”

The sound environment for Elec-
tronic Arts’ SSN-21 Sea Wolf created in
collaboration with John Ratcliff is one
Sanger and his team are most proud of
because it uses sound in such an innova-
tive way. “I wish I had been even more
involved in creating sound for that one,”
says Sanger wistfully. All the sound asso-
ciated with a real submarine has been
recreated and helps create a three-dimen-
sional sound environment. Sound is also
used to lead and misdirect the player. For
instance, if some threat passes by the
submarine, the music might change to an

omi-
nous

s o u n d
and then, as it passes,

the sound environment might
revert to normal. The player who pays
attention to the sound will do better at
the game.

Sanger is also pleased with the
effect of the music for 7th Guest, since
the music throughout most of the game
is not stereotypical “scary” music but
rather cool jazz. In this way, Sanger
hoped to heighten the effect of the game
by working in a counterpoint to the
game’s ostensible horror aspects.

Methodology in
the Madness
An interesting element of writing music
for games is the structure of the game. In
general, says Sanger, the team is asked to
write a few themes: you win, you lose,
you wander around. Consideration has to
be given to what happens when the play-
er changes course. In Wing Commander,
the style of the music allows changes to
occur without too much distraction. It
draws on the conventions of early film-
making that also had the same problem
in terms of cutting film together. There-
fore the music is a pastiche of bombastic
warlike themes and lyrical transition pas-
sages. Likewise, 7th Guest’s jazzy style
lends itself well to changes in tone that,
while sometimes abrupt, are not unduly
distracting.

In contrast, game developers at Ori-
gin are taking a different approach. They

are going for a Disney model that relies
on in-house talent. At the South by
Southwest music conference in Austin
this year, Richard Garriot chronicled the
progression of sound in his titles and
described a system called NIM (Neno’s
Intelligent Music) developed at Origin
by Nenad Vutrinic that incorporates a
transition theme to move the user, the
action, and the sound to a new course.

As Garriot describes it, when a user
makes a decision or chooses a new course
of action, the music plays to the next bar,
picks up the transition theme, and moves
to the theme appropriate to the user
choice without any jarring shift in
mood. The difficulty of working this

way, according to Randy Buck, a pro-
grammer at Origin, is that instead of
working in a linear fashion, music is
composed in a matrix.

For his part, Sanger believes fast
changes emphasize the player’s control
over the game, and therefore he prefers
it, though he’s also investigating other
approaches. “Transitions are cool,” he
says, “if the composer writes them. But if
they get into the hands of the program-
mers, they can lose some of their musical
impact.” The Fat Man can write transi-
tions, and the members are discussing
the development of tools to make it easi-
er to write music in a matrix as Buck
describes it. “We want to make sure
we’re not getting lazy and fat. Just fat.”

Sanger believes his success in the
computer game business is directly relat-
ed to his liking for games. He can identi-
fy with the player of a game he’s working
on. “Some poor schmuck is stuck in a
room with my music, and I want it to be
good music so they don’t hate me.”
Many musicians, he feels, hold games in
contempt, and they’re not interested in
writing music for games because of the
limitations of the hardware and software.

Sanger seems to welcome limita-
tions as a challenge. Perhaps that’s why
he’s such a game player. No doubt learn-
ing from Origin’s experience with Wing
Commander, Sanger encouraged the
developers of 7th Guest to write to Gen-
eral Midi standards, giving the game an
extension on life as sound boards adopt-
ed the new standard and actually

T H E F A T M A N

20 GAME DEVELOPER • JUNE 1994

improved the sound of 7th Guest.
Nevertheless, given present levels of

development, a sound board in a com-
puter can only sound so good, and not all
sound boards, even those that conform to
General Midi standards, sound alike.
Sanger says that in his early work with
companies such as Trilobyte, LucasArts,
and Origin, the developers would take
his music and optimize it for all sound
boards. “I thought I was really good,”
says Sanger. But then, on another pro-
ject, Sanger was horrified to start up the
brand new game and “the music literally
sounded like farts, squeaks, and beeps,
and there was my name—music pro-
duced by the Fat Man—and all of a sud-
den I realized I have got to get into the
sound business.”

Sanger and The Fat Man are enter-
ing the sound business in a couple of
ways. Not content to simply supply
musical themes for game players, the Fat
Man and primarily Kevin Phelan are
developing a library of tones to ensure

that games players, developers, and
musicians are working with the same
basic elements. Yamaha has licensed the
Fat Man’s General Midi patch set for the
opl2 and opl3 FM synthesizers, which
are the heart of Sound Blasters. The Fat
Man is working with Yamaha on the
development of drivers to be included
with boards using the opl4.

The Sound Business
Also, the Fat Man has become a consul-
tant. Board manufacturers can hire the
Fat Man and win a seal of approval that
promises users the boards will produce
the proper tones for specific instruments
and make no demands on the CPU. For,
as far as Sanger is concerned, if the
sound board slows down the CPU, it can
stop a game dead without one explosion,
dead Nazi, or passage explored.

In addition to ensuring that com-
puters play the game and music correctly,
the Fat Man’s entrance into the realm of
standards and hardware has another

GAME DEVELOPER • JUNE 1994 21

”Some poor

schmuck is stuck in

a room with my

music, and I want it

to be good, so they

don‘t hate me.“

advantage. “We get our name plastered
all over everything. If there’s not some-
thing in it that feeds my ego, I just can’t
get out of bed in the morning.” In other
words, says Sanger, “I’m doing the right
thing for the wrong reasons, and that’s
what I like to do.”

Sanger now composes on the
Roland Sound Canvas, and he encour-
ages other composers to use it. Not only
does he believe that it is the best wave
table synthesizer (“so far”), it is now the
de facto standard that gives manufactur-
ers a common ground to work on. If
manufacturers develop products with the
expectation that most composers will be
composing on the Sound Canvas, the
sound balance will work as they intend it.
“I’m trying to turn the tide on this [the
proliferation of sound boards and varying
standards]. Instead of having software
developers burdened with having to sup-
port lots of different cards, I want the
hardware companies to support the way
developers are writing music.”

Turning the Tide?
Sometimes when The Fat Man players
get together, they play surf music. When
George Sanger was asked to perform at
the Interactive Conference in San Jose,
Calif., this year, he wasn’t able to bring
the rest of the team with him. So, he
brought his guitar and got together with
keyboard player Dave Javelosa of Sega,
bass player Michael Land of LucasArts,
drummer Neil Grandstaff of Sierra On-
Line, guitar player Dave Albert of Sega,
saxophonist Albert Lowe (who is not
only Sierra On-Line’s first composer, but
also the man who created Leisure Suit
Larry), and independent composers Jim
Donofrio on guitar, and Don Griffin on
trumpet. And yes, they played surf music.

It’s appropriate. George Sanger is
one of many trying to stay on top of a
very quickly changing market. He’s
doing it by branching out rather than
protecting his turf. “Every time I give
something away I get more back.”
Enthusiastically describing the jam in

San Jose, Sanger confesses to being ini-
tially nervous about meeting and work-
ing with competitors but, as it worked
out, “I made some very nice friends and
cemented some very good relationships.”

Likewise, Sanger admits, “I was
nervous when I started giving jobs to the
guys on the team, but that’s what turned
it into a team instead of just one com-
poser.” Staying on top, staying ahead of
the trend, that’s surfing. It’s that ability,
over and above songwriting, that has
allowed George Sanger to make money
at something he loves. ■

Kathleen Maher is a freelance writer
in San Francisco, Calif., specializing in
media and culture. She is also the executive
editor of Cadence Magazine. But, Kath-
leen’s true talent may be her ability to find
the best barbeque in Texas and Lucinda
Williams on the jukebox. She can be reached
via Internet at kmaher@mfi.com or
71154.76@compuserve.com.

T H E F A T M A N

22 GAME DEVELOPER • JUNE 1994

I
n the past, game players faced quite
a dilemma. I’m sure you know
what I’m talking about. You’re
standing there at the counter,
preparing to plunk down your
hard-earned money for a video car-
tridge. Only one thing left to
decide. “Do I want a game I can

play at home? Or do I want a game I
carry with me and play when I’m stuck
in traffic?” A minute seems like an eter-
nity. You finally make what seems to be
an intelligent choice, but suddenly
everything’s in black-and-white, and
Rod Serling is saying something about
some poor sap entering the Twilight
Zone. Hey, wait! No need to sweat or
hallucinate any longer.

Nintendo has announced the release
of Super Game Boy, which transforms
Game Boy cartridges into full-size, color
video games. Super Game Boy is a Super
Nintendo Entertainment System (NES)
cartridge that contains a Game Boy
adapter. When you insert a Game Boy
cartridge into Super Game Boy, it is
transformed from a 2- by 2-inch, black-
and-white game to a bright, multicolored
image on a big television screen. It even

has stereophonic sound. In other words,
you can now play over 350 Game Boy
cartridges on Super NES.

Super Game Boy displays all Game
Boy action in varying shades of four col-
ors. And, as if this instant colorization of
black-and-white Game Boy cartridges
isn’t enough to make Ted Turner green
(with envy, that is), players may cus-
tomize several prestored color palettes to
change the appearance of the screen and
may place different, animated, decorative
borders around the central game-play
screen. Using a Super NES control or a
Super NES mouse, players either select
one of several prestored designs or create
their own through a paint-type program,
drawing not only on the borders but on
the game-play screen itself.

New titles specifically designed for
Super Game Boy will be able to display
up to 256 colors. All of you popular-cul-
ture theorists out there know what the
first new Game Boy title to capitalize on
Super Game Boy’s capabilities will be.
Yes, it’s time to relive the magic once
again—Donkey Kong, bigger and badder
than ever, will be released at the same
time as Super Game Boy. That’s right,
the big, hairy ape returns to video game
screens in a set of new adventures.

In the new Donkey Kong, Mario (I
think we can safely say that the poor guy
has some really bad karma) must once
again fend off the advances of his old
nemesis, Donkey Kong, in an effort to
rescue damsel-in-distress Pauline. Mario
returns first to the familiar surroundings
of a construction site complete with lad-
ders and speeding barrels. Then, he must
chase down the gorilla through a variety
of urban obstacles as Donkey Kong is let

The Return of
A Legend

New releases. New

versions of

old releases.

Books, gameware, tips

from the gurus. All this

and more in a

roundup of

what‘s hot in the game

industry

right now.

by Andrea Pucky

B I T B L A S T S

GAME DEVELOPER • JUNE 1994 23

Donkey Kong is back in a Game Boy car-
tridge that goes from hand-held black-
and-white to a full-size, color game.

loose in the Big City. Okay, it’s not exact-
ly the same game we remember from the
early ’80s, but still, it seems that Donkey
Kong is well on his way to closing the
generation gap. (Hey, at least I didn’t say
anything about the “missing link” or the
Planet of the Apes.)

More games will soon be on the
way, as Nintendo’s licensees and game
developers will receive development specs
immediately. According to Nintendo,
Super Game Boy will be available June 6,
at a suggested retail price of $59.99

For more information contact:
Nintendo of America Inc.
4820 150th Ave. N.E.
Redmond, Wash. 98052-5111
Tel: (206) 882-2040

Push Your Sega to the Limit
And now, the winner of the “God, I wish
I could upgrade my car that easily” cate-
gory is Sega of America Inc. How would
you like to upgrade your 16-bit hardware
to 32-bit and get arcade-quality game
play for less than $150? Sega of America
can help you do just that. Sega has
announced introduction plans for the
Genesis Super 32X hardware upgrade,
allowing video game fans to get 2 by 32-
bit arcade-quality game experiences from
their existing 16-bit Genesis hardware.

Genesis Super 32X is the first prod-
uct from Sega that will use the Hitachi
SH2 RISC chips destined for Saturn.
(No, that’s not some new conspiracy the-
ory. It’s the code name for Sega’s future
hardware platform.) The two SH2 chips
in Genesis Super 32X will complement a
newly-designed video digital processor
(VDP) chip to bring to the Genesis the
fast processing speed, high-color defini-
tion, texture-mapping, improved comput-
er polygon graphics technology, ever-
changing three-dimensional perspective,
software motion video, enhanced scaling
and rotation, and CD-quality audio that
gamers have come to expect from arcade
machines and the most advanced home
systems technology on the market.

Genesis Super 32X will enhance
both Sega CD discs and Sega Genesis
cartridges designed and developed to
incorporate this new technology. Con-

sumers can still play the more than 500
games available for the Sega Genesis and
the more than 100 games available for the
Sega CD, while the Genesis Super 32X is
attached to the Genesis hardware unit. In
other words, it’s an instant upgrade.

Sega has more than 30 titles under
development and expects its software
licensees to add a similar number in the
first year of the new product’s introduc-
tion. Titles playable on Genesis Super
32X are expected to be priced for con-
sumer sale at levels comparable to current
software prices for Sega’s home systems.
According to Sega, the Genesis Super
32X hardware booster will be available in
the fall of 1994 and will carry a recom-
mended retail price of $149.

For more information contact:
Sega of America Inc.
130 Shoreline Dr.
Redwood City, Calif. 94065
Tel: (415) 508-2800

The Wise Ones Tell All
Guru: a personal spiritual teacher or a
recognized guide or leader. (Just a note to
any hip-hoppers out there. We’re not
talking about Gifted Unlimited Rhymes
Universal.) I think we can safely say that
if you’re going to call yourself a guru, you
really should know what you’re talking
about. Although the title may simply be a
marketing ploy, the authors of Tricks of
the Game Programming Gurus really do
have the experience and knowledge to fit
the definition of guru.

Ken Allen is currently programming
with Spectrum Holobyte and is on the
development team of its latest combat
flight simulator. André LaMothe, who
specializes in graphics and animation, has
been employed by Visions of Reality, Alli-
gator Communications, Concurrent
Logic, Versasoft, and NASA Ames
(RIACS). Graeme Devine, who is writing
a chapter on multimedia for the book, is
the president of Trilobyte, makers of The
7th Guest and the upcoming The 11th
Hour. Devine also designed and pro-
grammed the arcade version of Atari’s
Pole Position while in high school. (Does
that make him a guru or a genius?)

The book provides the building

blocks necessary to create your own inter-
active games. It explains the basic and
advanced ideas and topics behind the
development of a flight simulator, a
three-dimensional walkthru game, and
many utilities used to manipulate video,
audio, and input devices. The book also
includes a foreword by John Carmac,
Technical Director of ID Software, mak-
ers of Castle Wolfenstein and Doom.

Tricks of the Programming Gurus
comes with a CD ROM that includes all
the source code from the book, shareware
games, commercial software demos, and
utilities for game design and image
manipulation, including paint/texture
software, sound editors, sprite editor,
screen map designer, Castle Wolfenstein,
Doom, and The Commander Keen series
from ID software.

The book includes: building an
authentic flight model, the physics of
flight, graphics behind the simulator, air-
craft avionics, building a user interface,
assembly language basics, I/O basics, two-
dimensional graphics, VGA card manipu-
lation, three-dimensional space, bitmap
graphics, sound and effects, game struc-
tures, synthetic intelligence, user-defined
graphics, adding multiplayer capabilities,
and testing the game. We can only hope
that these gurus have a few more tricks up
their sleeves for their next book.

Tricks of the Game Programming
Gurus will be released in July 1994 and
will be priced at $49.95.

For more information contact:
SAMS Publishing
Prentice Hall Computer Pub.
201 W. 103rd St.
Indianapolis, Ind. 46290
Tel: (317) 581-3500

Practically Total Reality
Are you an unsatisfied game developer?
Yes, even game developers get the blues.
Wavefront Technologies may not be
able to offer you a magical cure-all, but
they have introduced GameWare, a
software package designed to satisfy the
demands of game developers. Game-
Ware runs on Silicon Graphics worksta-
tions and, according to Wavefront
Technologies, provides developers with

B I T B L A S T S

24 GAME DEVELOPER • JUNE 1994

graphics tools for creating games with
realistic three-dimensional objects and
terrain, three-dimensional synthetic
actors with realistic motion, and stun-
ning special effects.

GameWare addresses the color
bandwidth problem of game consoles by
allowing the developer to render to
reduced color palettes. It resolves geome-
try bandwidth problems by providing
three-dimensional geometry reduction
algorithms and a “flatten” tool that con-
verts a three-dimensional object into an
identical two-dimensional version. Open
architecture allows developers to integrate
their existing software tools with Game-
Ware to an extent that is not possible
with systems based on a proprietary archi-
tecture and data structure.

In addition to modeling, animation,
and rendering capabilities, GameWare
provides synthetic actor animation by
integrating forward and inverse kinemat-
ics with skin behavior. For those of you
who haven’t brushed up on the jargon
lately, animators can bring a static model
to life by directly manipulating a user-
defined skeleton like a marionette. To
maintain a natural form as the skeleton
moves, GameWare incorporates a
behavioral model, called Smart Skin,
that can be taught to behave according
to skeletal position. Clothes can be
taught to bunch up as a character flexes

its arm, for example. Wavefront Tech-
nologies says that GameWare combines
everything character animators need—
three-dimensional kinetics motion,
skeletal intelligence, and skin behavior—
in an intuitive system.

GameWare Hyper Plug-ins are
available to provide advanced levels of
special effects, compositing and paint-

ing. GameWare Dynamation is a Hyper
Plug-in that uses the principles of
physics to ensure that special effects are
highly realistic. Dynamation allows
users to create realistic, natural images
of dynamic events. The animator

defines the laws of a particular dynamic
world and releases objects into it. (Don’t
you wish you had this to play with in
your high school physics class?) The
software can create realistic effects so
that players in a race-car game, for
example, can drive through a realistic
bank of fog or a burst of exhaust from
the car ahead. Dynamation comes with
a library of prebuilt effects, called Clip
F/X, that makes it possible to create
physically based phenomena, such as
explosions, cloth modeling, terrains, and
plants. Other Hyper Plug-ins are
GameWare Composer, GameWare
Paint, and GameWare Hidline/Reline.

GameWare is available for all SGI
workstations, including the entry-level
Indy. It is priced from $15,000.

For more information contact:
Wavefront Technologies Inc.
530 E. Montecito St.
Santa Barbara, Calif. 93103
Tel: (805) 962-8117

Director, Director!
So, have you guessed the leitmotif? If you
guessed upgrade, you’re right. Macrome-
dia recently announced (what’s the secret
word of the day?) an upgrade to Director
for Macintosh, an authoring tool for cre-
ating multimedia productions. Here’s
what’s up with the new version.

The scripting language, Lingo, is
compiled for faster script execution, and
the improved memory management pro-

vides developers with control over remov-
ing cast members from memory. Accord-
ing to Macromedia, the new version opti-
mizes data retrieval from storage devices
and a revised file layout reduces disk access
time. Plus (yes, there’s more), within
Lingo, new object-oriented commands
provide reusable code and simplified
scripting. The new “movie in a window”
feature allows multiple Director movies to
play at the same time while each individ-
ual movie maintains full interactivity.

Further, within the Score, the num-
ber of channels increases to 48, doubling
the number of interactive elements on
the screen at one time. The number of
case members per movie has increased
significantly from 512 to 32,000, and the
file size has grown from 16MB to an
unlimited size.

Director 4.0 has a few more
improvements worth mentioning here. A
new security feature eliminates the view-
ing of proprietary Lingo code. Color has
been added to the Score (okay, maybe the
leitmotif is Ted Turner) to help organize
and track cast members within a produc-
tion, and users can drag-and-drop cast
members directly from the Cast into the
Score for faster animation creation and
production development. Version 4.0 has
a binary-compatible file format with the
soon-to-be-released Director for Win-
dows, providing cross-platform authoring
and playback.

But that’s not all! You also get step-
by-step tutorials, sample movies, on-line
help, and Lingo Expos, which highlights
commonly used Lingo in real-world
examples.

Macromedia’s suggested retail price
for Macromedia 4.0 is $1,195. The really
good news is that all registered users of
Director (versions 2.0, 3.0, or 3.1) or even
its predecessor, VideoWorks, may
upgrade to Director 4.0 for $199. (But
you have to do it before August 31, 1994;
starting September 1, 1994, the upgrade
will cost $249.)

For more information contact:
Macromedia Inc.
600 Townsend St.
San Francisco, Calif. 94103
Tel: (800) 457-1774

GAME DEVELOPER • JUNE 1994 25

Zap! Bang! Yow! No Batman effects
here—Hyper-Plug-ins create realistic,
natural images for maximum animation.

Live video of an office interior, combined
with computer-generated animation,
creates a new horizon in special effects.

T
he latest development in the
PC audio arena is the standard-
ization efforts of the Video
Electronics Standards Associa-
tion or VESA. This standard-
ization effort called the VESA
VBE/AI (VESA BIOS Exten-
sion / Audio Interface) has

recently been approved. Initially, this
standardization effort was brought
about by the requests of the entertain-
ment industry that creates products for
the DOS environment.

At the April 1993 Game Develop-
er’s Conference in Santa Clara, Calif., a
group of prominent entertainment soft-
ware developers held a meeting to dis-
cuss the problems in developing audio
support for game titles. The quagmire
of existing audio hardware architectures
and the introduction of new ones, all of
which compete for attention, was more
than most developers and their compa-
nies could afford to bear. In some
cases, adding support for each audio
board represented about 15% to 20% of
a total game development project in
staff resources.

Until recently, audio standards for
the PC consisted of a loose interpreta-
tion of an old industry standby: Cre-
ative Labs first Sound Blaster architec-
ture. Based on 8-bit digital mono audio
and two-operator (OPL2) FM synthe-
sis provided by Yamaha, this pseudo-
standard has been in place since the late
1980s. However, feeling the pressure of
consumers, most developers couldn’t
afford to support just this one simple
architecture.

It is not uncommon to find 16-bit
CD-quality stereo digital audio and
high-quality digitally sampled instru-

ments replacing the lower quality and
performance of the original Sound
Blaster architecture in PCs. These
higher performance and usually more
advanced feature set PC audio add-in
boards have met consumer expectations,
but with a higher price tag. Clearly a
standardized audio API for the enter-
tainment industry is required to endure
the explosive growth of the past two
years.

The Standard Takes Shape
The VESA VBE/AI work group leader
is Rick Allen of Media Vision Inc. The
group consists of 30 representatives
from PC audio hardware, PC entertain-
ment software, and other interested
companies. Although the group has
been around for less than a year, its first
specification passed VESA general
member approval in Feb. 1994. This
quick turnaround from concept to
approval was a great achievement, as
anyone familiar with industry commit-
tees can attest. More importantly, this
speed emphasizes the PC audio indus-
try’s need to have such a standard in
place—now.

The VESA VBE/AI specification
provides for basic audio services, such
as:
• Digital (WAVE) audio (8 or 16 bit,

mono or stereo)
• MIDI (not just FM synthesis)
• Volume control
• Minimal three-dimensional sound

effect positioning.
The standard is targeted at DOS

platforms or DOS-box environments if
the application is run from Windows
3.1, OS/2 2.x, or Windows NT
through virtual services such as a VxD,

Sounding Out
the VESA
Audio Standard

Worried about how

your game will sound?

With the advent of the

VESA Audio Standard,

you‘re game will

sound the same on

any system—read

on to learn the ins and

outs of this ground-

breaking standard.

by Jon Burgstrom

T H E V E S A A U D I O S T A N D A R D

GAME DEVELOPER • JUNE 1994 27

T H E V E S A A U D I O S T A N D A R D

28 GAME DEVELOPER • JUNE 1994

INT 10 subfunction #0
Check if a VBE/AI compliant device driver is loaded.

Parameters:
AX = 0x4F13 The VESA assigned audio interface ID (0x13).
BX = 0x0 The VBE/AI subfunction number.
CX = 0x0 Reserved for future use.
ES:DI = 0x0 Reserved for future use.

On return:
AX != 0x004F Used if the call was not successful.
AX = 0x004F Used if the call completed without error.
BL = The VESA VBE/AI driver version in packed nibble format, where the high nibble is the major version and the low

nibble is the minor version.
CX = Undefined.
ES:DI = Unchanged.

Note: BH, DX, and SI are undefined and assumed to be trashed.

INT 10 subfunction #1
Locate a handle to the device.

Parameters:
AX = 0x4F13 The VESA assigned Audio Interface ID (0x13).
BX = 0x01 The VBE/AI subfunction number.
CX = 0xn Initially set to 0 for the first call, subsequently set this to the handle of a device class instance that is returned for

future calls.
DL = 0xn Device class ID or 0 for all device class queries. Possible values are:

0x00 All device class types.
0x01 WAVE audio device.
0x02 MIDI device.
0x03 Volume control device.

On return:
AX != 0x004F Used if the call was not successful.
AX = 0x004F Used if the call completed without error.
CX = If CX != 0, it holds the handle to a valid device class instance. This handle will be used for other INT 10 and VBE/AI

function or subfunction calls to the device. If CX = 0, there are no more devices available that fit the specified
device class.

Note: BX, DX, and SI are undefined and assumed to be trashed.

INT 10 subfunction #2
Query the device for information.

Parameters:
AX = 0x4F13 The VESA assigned audio interface ID (0x13).
BX = 0x02 The VBE/AI subfunction number.
CX = Device handle As returned from subfunction #1.
DL = Query number A total of six types of queries are possible:

0x01 Get the length in bytes of the general device class structure in SI:DI.
0x02 Return a copy of the general device class structure pointed to by SI:DI.
0x03 Get the length in bytes of the volume information structure for the device in SI:DI.
0x04 Return a copy of the volume information structure for the device in SI:DI. (DX is NULL if the device class

doesn’t have a volume control.
0x05 Get the length in bytes of the volume services structure for the device in SI:DI. (DX is NULL if the

Figure 1. First-Level Services for the VBE/AI Audio Interface (Continued on p. 30)

which has yet to be implemented.
These audio services are provided

by a VESA VBE/AI compliant device
driver contained in a ROM BIOS,
loaded from the user’s CONFIG.SYS
file, or, a DOS terminate-and-stay resi-
dent (TSR) program supplied by the
audio board or other third-party manu-
facturer. The latter method will initially
be the widest implementation of the
standard.

The device driver or TSR provides
a hardware abstraction layer (HAL) that
keeps the messy particulars of registers,
port addresses, and other hardware
implementation details abstracted away
from the primary issue of providing
audio support. This layer has been kept
as thin as possible to provide for the best
performance.

The architecture that provides
these services is very robust in its ability
to support such diverse audio hardware
implementations as standard plug-in
boards, such as the Sound Blaster, Pro
AudioSpectrum, and so on, and the
more unusual audio hardware that is
typically connected to external ports
such as Media Vision’s Audio Port or
Disney’s Sound Source. In fact, the
VBE/AI audio specification will allow
upcoming hardware expansion interfaces
such as PCMCIA and PCI to have a
supported software base without provid-
ing any fragile hardware or software
alteration to achieve compatibility.

Implementation Issues
The VESA VBE/AI architecture has
been implemented using two functional
levels. The first level consists of the
general API for device interrogation,
acquisition, and termination. An appli-
cation uses the VESA INT 10 services
software to gain access to this level of
functionality. The second level, FAR,
calls to the device’s API services, using
the Pascal calling convention.

Once a device is opened, the appli-
cation is provided a list of entry points
to functions contained within the
VBE/AI-compliant device driver. Since
it is possible that multiple instances of
audio hardware may exist in one
machine, the VBE/AI allows for multi-

ple instances of each device class API
and defines one unique API for each
device type, where each device type is
defined as a device class. Each device
class API may be implemented as an
individual device driver or combined
into one device driver. The organiza-
tion of device driver and device class
API issues is still kept completely trans-
parent to the application.

To gain access to the device driver,
which is assumed to be preloaded in
memory, your application will perform
the following functions. This is the
only level that does not use the Pascal
calling convention. All parameters are
passed in CPU registers, and all calls to
this level of the API are executed with
the software interrupt instruction, so all
returns are done using an IRET instruc-
tion.

All devices will chain into a linked
list of VBE/AI drivers found by the
VESA INT 10 services. The linked list

approach allows for an almost unlimited
number of VBE/AI drivers to be loaded
at any one time. Figure 1 shows the
parameters and return values for these
subfunction calls.

Step 1. Perform an INT 10 subfunc-
tion #0 to see if a VBE/AI compliant
device driver is loaded. This subfunc-
tion lets you initially test to see if
VBE/AI services are available to your
application. One of the most common
technical support calls answered by
sound board manufacturers is about the
configuration of the user’s audio hard-
ware for each entertainment product he
or she installs.

Remembering DMA, IRQ, and
port address settings, much less their
meanings, can be absolutely maddening
for the novice or even intermediate PC
user, causing them to scurry around
looking for a long since misplaced man-
ual. Many developers have realized that
it’s unwise to depend on environment

GAME DEVELOPER • JUNE 1994 29

V
ESA, once known only for its PC graphics standards, hence the original name of
Video Electronics Standards Association (with the majority of its members making
up the best-known people in video hardware manufacturing), has faced similar
standardization problems before. As with the original Super VGA standardization
effort, lower-level standards, such as IBM’s VGA and 8514a standards, previously

existed.

The standardization problem surrounded the implementations of other modes such as 800-
by-600, high color, and true color by several video card manufacturers. These new
extended or Super VGA modes had to be addressed for them to be useful on a broad basis.
The VESA committee created what is now commonly referred to as the VESA VBE (Video
BIOS Extensions) specification to standardize the programming interface to these extend-
ed modes.

Recently, the VESA membership has grown to cover all aspects concerning the PC. VESA
has tackled several standardization efforts; the VESA Local Bus or VL Bus is probably the
most recognized VESA standard by consumers. VESA has evolved into a capable standard-
ization forum that provides manufacturers with an arena to compete in, while consumers
can purchase compatible hardware peripherals as a result of these standards.

To acquire the written VESA BIOS Extension / Audio Interface (VBE/AI) v. 1.0 document con-
tact:

Video Electronics Standards Assoc.
2150 N. 1st St., Ste. 440
San Jose, Calif. 95131-2029
Tel.: (408) 435-0333
Fax: (408) 435-8225

W E D O N ‘ T J U S T D O V I D E O A N Y M O R E

T H E V E S A A U D I O S T A N D A R D

30 GAME DEVELOPER • JUNE 1994

device class doesn’t have a volume control.)
0x06 Return a copy of the volume services structure for the device pointed to by SI:DI. (DX is NULL if the

device class doesn’t have a volume control.)
SI:DI = Points to a buffer of n bytes in length.

Note: The application is responsible for allocating the correct buffer size to hold the return values. The size of the various structures can
be found by using queries 0x01, 0x03, and 0x05.

On return:

The most important query is 0x02. This query returns the general device class structure in the buffer you allocated and is pointed to by
SI:DI. Following is the structure of 0x02:

typedef struct {
// Housekeeping...
char gdname[4]; // Name of the structure.
long gdlength; // Structure length.
// Generalities....
int gdclassid; // Type of device.
int gdvesaver; // Version of VBE/AI implementation.
union {

WaveInfo gdwi;
} u;

} GeneralDeviceClass, far *fpDC;

Note: char = 8-bit byte, int = 16-bit word, long = 32-bit word. The union may also contain structures of type MIDIInfo and VolumeInfo.

INT 10 subfunction #3
Open the device.

Parameters:
AX = 0x4F13 The VESA assigned audio interface ID (0x13).
BX = 0x03 The VBE/AI subfunction number.
CX = Device handle As returned from subfunction #1.
DX = 0x0. For the device drivers 16-bit interface and the only one currently supported.
SI = Points to a segment of memory of the size required by the device driver. The memory offset is assumed to be 0.

On return:
AX != 0x004F Used if the call was not successful.
AX = 0x004F Used if the call completed without error.
SI:CX = If SI:CX != 0, it contains a far pointer to a structure of service functions. If SI:CX = 0, the requested device is

unavailable.

Note: BX and DX are undefined and assumed to be trashed.

INT 10 subfunction #4
Close the device

Parameters:
AX = 0x4F13 The VESA assigned audio interface ID (0x13).
BX = 0x03 The VBE/AI subfunction number.
CX = Device handle As returned from subfunction #1.

On return:
AX != 0x004F Used if the call was not successful.
AX = 0x004F Used if the call completed without error.

Figure 1. First-Level Services for the VBE/AI Audio Interface (Continued from p. 28)

variables that are easily deleted, poten-
tially contain misinformation, or are not
loaded into memory based on the user’s
environment space configuration.

If VBE/AI services are available,
your application can take advantage of
the fact that the device driver handles
these issues, so there is no need to pro-
vide an audio hardware setup screen
with DMA, IRQ, and port address
choices to confuse users. Developers
will probably want to display the manu-
facturer and product name as part of the
system configuration or information
screen to reassure users that their
installed hardware has been located and
is supported.

Step 2. Perform an INT 10 subfunc-
tion #1 to locate a handle to the device.
A handle as defined in the VBE/AI
specification is a number that represents
each device class API instance. A typi-
cal audio board that has digital audio,
MIDI, and volume and mixing control
capabilities will provide three handles.
Each handle represents the individual
capability: handle 1 represents the first
occurrence of a digital audio device class
API, handle 2 represents the first occur-
rence of a MIDI device class API, and
so on.

Step 3. Perform an INT 10 subfunc-
tion #2 to query the device for informa-
tion. This subfunction allows you to
interrogate and, in certain instances, set
values for an installed device class. Your
application uses this query subfunction
on a device class to find out its capabili-
ties without actually opening the device.

For example, the title you are creat-
ing may use the latest in voice recogni-
tion technology, which, of course,
requires the recording capabilities of a
digital audio device class API. It is pos-
sible that the user’s machine is equipped
with audio hardware providing only a
MIDI device class API. This subfunc-
tion provides the easiest way for your
application to find out and provide the
user with the necessary feedback.

Step 4. Perform an INT 10 subfunc-
tion #3 to open the device. When your
application opens a device class API, it
becomes the exclusive owner of the
device until the application closes it.

Types of device class APIs normally
opened by your application are digital
audio (WAVE) and MIDI. Volume
devices are not usually opened, as their
information and service structures can
be acquired via subfunction #2.

Your application is not allowed the
exclusive ownership of volume devices,
as the user may override your settings
with a volume TSR program or other
mechanism. When selecting a device,
the application should base the selection
process on these criteria:
• Does the device have the right feature

set?
• Does this device have the highest

user preference?
• Is this device currently available?

(That is, does another application
already have this device opened?)

Step 5. Perform an INT 10 subfunc-
tion #4 to close the device when your
application finishes. It is very important
that your application close all the device
class APIs it opens. Unless your appli-
cation does so, the memory the device
class API allocates is never freed and is
still used by the device class API.

After this subfunction is called,

which depends on whether the device
class API is a digital audio or MIDI
device, the device class API will stop
playing digital audio or turn off all voic-
es, free the DMA, and clear any pend-
ing interrupt requests, return all queued
buffers to the caller, or free any of the
applications patch data memory blocks.

These steps constitute just a small
sample of how to check for VESA
VBE/AI compliant devices. For infor-
mation on how to use the capabilities of
VBE/AI, a copy of the specification and

software development kit is available;
these details go beyond the scope of this
article.

Changes on the Horizon
The entertainment software industry is
one of the fastest to evolve in technolo-
gy. Developers must be competitive on
all levels of an entertainment title’s
design, including storyline, graphics,
playability, and audio. Every aspect of a
potential successful title pushes the per-
formance of PC hardware to its limits
(and sometimes beyond) to vie for con-
sumer dollars. Many developers have
been forced to forsake the long-faded
8088 markets and, in some cases, 286
compatibility in their products, along
with the limitations of the DOS 640K
memory barrier to compete for market
share.

The use of DOS memory extenders
teamed with a fast 386 or better proces-
sors has pushed game development
ahead into the protected mode environ-
ment. Protected mode enables develop-
ers to program in a flat 32-bit address
space, allowing for multimegabyte
entertainment titles that do not require

users to have a proficiency memory
management and pushing the PC’s per-
formance to new levels.

Clearly, protected mode is the wave
of the future as 386 and 486 PC systems
continue to proliferate the installed base.
Some examples of protected-mode
entertainment titles are Id Software’s
Doom and LucasArts’ Rebel Assault.
These cutting edge products would have
suffered tremendous performance hits if
they were required to run under real
mode; it’s even possible they may not

GAME DEVELOPER • JUNE 1994 31

VESA VBE/AI and Plug-n-Play is a combination that can’t be beat. This architecture is
timely, as most manufacturers will eventually implement their device driver in read-only
memory (ROM). As the advent of another noncompeting standard, the Microsoft and Intel
Plug-n-Play specification for automatically configuring expansion boards into a PC envi-
ronment (which is bolstered by the existence of a device driver in ROM) has also recently
been completed. These two factors could drastically reduce costs associated with enter-
tainment software and audio hardware technical support, adding to the profitability of
software titles and fueled hardware sales.

V E S A A N D P L U G - N - P L A Y

have been created at all.
A potential performance problem

exists with the current VESA VBE/AI
standard when used in conjunction with
a DOS extender, which does not have
native protected mode support. Hooks
are already in place to provide such sup-
port, but the standard’s current version
relies on a device driver or TSR operat-
ing in a real-mode DOS environment.
The VESA VBE/AI standard is usable
under protected mode, but at the cost of
some performance, a major benefit in
selecting a protected-mode environ-
ment. Developers must choose carefully
between performance, compatibility,
and technical support requirements.
Titles that demand the highest perfor-
mance may require an alternative to the
VESA VBE/AI standard until the
VESA VBE/AI group addresses this
issue.

Others have switched to the conve-
nience found in Microsoft’s Windows
Multimedia APIs. This environment
contains the needed hardware abstrac-
tion layers to provide compatibility for
the audio portion of its products. Most
of the more demanding entertainment
titles require greater response from the
PC and cannot afford the overhead of a
graphical shell operating system to
achieve the playability users demand.

Microsoft is addressing this issue
and developing an environment better-
suited to an entertainment developer’s
needs. But, as is always the case in
Windows, applications will not be
exclusive to the users of this operating
system, with the penalty being giving up
CPU cycles to other tasks running with-
in this environment.

Third-Party Alternatives
For years, third-party vendors have
offered sound libraries and tools to help
entertainment title developers support
the myriad array of audio choices for the
PC entertainment market. Help to pro-
duce sound from everything from the
PC’s loathsome speaker to audio expan-
sion peripheral boards is available with
varying degrees of support and cost.
Some require the purchase of a one-time
licensing fee, others require a fee based

on a per-title or per-piece basis or both.
What do you get for your money?

A survey of the three top sound-library
providers includes products such as John
Miles’ AIL (Audio Interface Library)
and The Audio Solutions’ DIGIPAK
and MIDPAK (whose proprietor, John
Ratcliff along with John Miles have
been in the entertainment title creation
business for many years). Filling out the
top three is Human Machine Interfaces
Inc.’s Sound Operating System (SOS).

In most cases, these products out-
strip the basic sound services provided
by the VESA VBE/AI standard. Some
have very robust APIs, allowing devel-
opers to perform on-the-fly digital mix-
ing of wave forms. Others have top-
rated MIDI support, such as John
Miles’ AIL, and all have reasonable
hardware support for the current
installed base of audio boards.

Each company’s product has its
own strengths and weakness. A good
examination of each product and the
company that supports it will most likely
yield the results required of just about
any project. Most companies, along
with providing native protected mode
support, plan to add or have in place
VESA VBE/AI support, giving devel-
opers alternatives to their products
longevity path.

An example of putting the flexibili-
ty offered by third-party sound libraries
that incorporate VBE/AI support to use
is a recent trend in the entertainment
software business to increase individual
product revenues and gain as much
advantage from research and develop-
ment costs as possible. Many publishers
are releasing slightly updated or
revamped older top-selling titles bun-
dled into a single low-cost high-profit
package and provided on CD-ROM.

These products are usually geared
toward consumers entering the PC mul-
timedia marketplace for the first time or
are used for seasonal promotions, such
as the holiday season or summer’s usual
sales doldrums. These strategies provide
a longer-term sales path that incorpo-
rates the current installed base of audio
hardware along with VESA VBE/AI
support for future audio hardware with-

out the need to retouch the title’s audio
portion for updates.

Developers who want to provide
the broadest level of audio support and
reduce their customer’s technical sup-
port issues will find the VESA VBE/AI
specification a welcome addition.
Third-party sound libraries that support
the VBE/AI standard contain additional
functionality and features above those
that are provided in the basic sound ser-
vices of VBE/AI, and most third-party
sound libraries include a transitional set
of device drivers.

These device drivers provide for
compatibility with the majority of the
existing installed base of audio hard-
ware, while the VBE/AI component
provides the support needed for future
audio hardware. A VESA VBE/AI
SDK targeted toward application devel-
opers is available electronically on Com-
puServe (GO GAMERS) and technical
questions can be fielded on America
On-Line (keyword: VESA). ■

Jon Burgstrom is the ISV developer
support engineer at Media Vision Inc. The
views and opinions expressed are not neces-
sarily those of Media Vision Inc. Some are
definitely not. He can be reached via e-
mail at 71726.2335@compuserve.com or
through Game Developer magazine.

T H E V E S A A U D I O S T A N D A R D

32 GAME DEVELOPER • JUNE 1994

Human Machine Interfaces Inc.
757 W. N St.
Springfield, Ore. 97477
Tel.: (503) 747-2314
Fax: (503) 747-2627

The Audio Solution
P.O. Box 11688
Clayton, Mo. 63105
Tel.: (314) 567-0267

Miles Design Inc.
10926 Jollyville #308
Austin, Texas 78759
Tel.: (512) 345-2642

V E S A V I S

A
video game is more than a
collection of images moving
around the screen. It is a con-
duit into another dimen-
sion—a dimension synthe-
sized by the imagination and
brought to life through the
computer. These electrical

worlds are places where the laws of
physics and reality are ours to toy with.
We have the power of gods, to do as we
wish. However, it would be most excel-
lent if we could place more than one
player into our virtual worlds. They
could be friends or foes, the choice
would be theirs.

This would add to the texture of
the game and allow another level of
interactivity to emerge. Even with the
most advanced artificial and “synthetic”
intelligence systems, we can’t yet mimic
a human or the depth of game play that

a human can emote. Two-player games
have been around for a long time; how-
ever, they are mostly played on a single
computer. Using a single computer to
cater to two players has its shortcom-
ings. First, each player has the same
view. Second, both players have to be
physically near each other because they
are sharing the same hardware.
Advances in networks and modems have
made it possible to run multiplayer
games with multiple computers. Phone
lines and computer networks now have
the bandwidths necessary to send the
large amounts of information needed to
run a multiplayer game in real time.

This ability to “link-up” multiple
players and coexist in the same game is
truly incredible. It brings game play one
step closer to reality. The whole idea of
a video game is to experience something
that is either difficult, dangerous, or

Net-Play: A
High-Energy
Network Solution

One of the most

challenging aspects of

multiplayer game

programming is keep-

ing the action on

different machines in

sync. You can master

this challenge with

some crafty program-

ming techniques.

by André LaMothe

N E T - P L A Y

GAME DEVELOPER • JUNE 1994 33

A Multiplayer Modem Game

impossible to experience in our own uni-
verse. Having two or more players in a
world together, each with his or her own
agenda (as in real life) can make a game
an order of magnitude more fun and
rewarding.

We’re done talking about the philo-
sophical aspects of multiplayer games, so
let’s get down to business and talk about
how these ideas are implemented and
what a game developer needs to take into
consideration to create a multiplayer
game. We won’t get into the actual
implementation of a multiplayer game or

discuss any code. It is best to first
become familiar with the language and
design techniques of multiplayer games
before you jump into coding.

The Multiplayer Game
Creating a multiplayer game is not like
creating a single-player game or even a
multiplayer game on a single machine.
Some constraints are imposed by the
fact that more than one computer will
be in the game. When designing a mul-
tiplayer game, you must consider many
issues, such as communications, subsys-

tems, and game architecture and adhere
to many laws of programming. This
methodology must be in flux from the
beginning of the game development all
the way to the end; otherwise, havoc
will dance all over your code! Rule one
to making multiplayer games is: design
the game as a multiplayer game from
the beginning. Don’t try to hack it in
later.

For this article, we will use a
model based on two computers and two
players (one on each computer), as
shown in Figure 1. This model can be
extended to multiple players using the
same fundamental techniques to link-
up two players. Moreover, we aren’t
going to concentrate too much on the
type of communication channel we are
using. It could be Ethernet, modem, or
homing pigeons. The communications
layer is irrelevant, at least at this point
in our evolution.

Realize that there are about
1,000,000,000,000 ways to do anything
on a computer. Even though many
techniques and algorithms are mappable
to another (an isomorphism exists that’s
one to one and onto), many are not. I
say this because the techniques and
methodologies we will discuss are only a
couple of ways of looking at the prob-
lem. They are not the only viewpoints
and solutions. The problems we will
cover aren’t an exhaustive list, either.
We just want to get the basics down,
then you can learn and extend them
from there.

Video Game
Communication Strategies
To link up two players, we need to
somehow keep both computers in syn-
chronization. We need to somehow
turn both computers into one computer
so that each player is unaware of the
physical discontinuity between the
machines. We need to keep both game
worlds in synchronization by using the
communications channel to send infor-
mation about each game to the other
machine. As an example, let’s talk about
a Pong game. To keep a two-player
Pong game in synchronization we
would somehow need to make certain

N E T - P L A Y

34 GAME DEVELOPER • JUNE 1994

Figure 1. The Multiplayer Model

PC 2PC 1 (Physical representation)

Com Link

Serial, modem,
ethernet, etc.

(Abstract representation)

PC 1

Player 1 Player 2

Com
Link PC 2

Figure 2. Information Transfer in a Simple Pong Game

Pong on PC 1 Pong on PC 2

PC 1 Info

PC 2 Info

Local Player

Remote Player

Puck
Puck

Local Player

Remote Player

pieces of information common to both
machines. This would include the posi-
tions of each player’s stick, the position
of the puck, and finally the scores, illus-
trated in Figure 2.

All right, that doesn’t seem too
bad. But what if we wanted to have a
game that had thousands of objects and
actions going on, such as a space battle
with zillions of ships and asteroids.
Then, we would quickly get to a point
of complexity that wasn’t so easily fath-
omable. Moreover, all the complex
interactions of the game system would
have to be synchronized. As you can
see, we need a plan, or at least some
ideas of how we are going to relay the
state of each game to the other comput-
er and vise versa. Whatever we do, it
must be done on a cycle-by-cycle basis
and must never let the two games get
out of synchronization. Two methods
can accomplish this goal. I call them
I/O space synchronization and vector-
positional space synchronization.

I/O Space Synchronization
As its name implies, I/O space synchro-
nization uses the I/O state stream of
the other computer to accomplish syn-
chronization. Imagine, if you will, two
computers, each running almost the
exact same game program. I’ll get to the
“almost” part in a second. Each game is
a tank game. You have two little tanks,
one red and one blue. Each player con-
trols one tank. Each tank can move or
fire a missile, and that’s it. Now, let’s
come up with some naming conven-
tions. We will call the local player the
game object that is controlled by the
local computer. We will call the remote
player the game object that is supposed
to be controlled by the other remote
computer, as shown in Figure 3.

For a moment, let’s forget about the
other player and concentrate on Player 1
and Computer 1. Also, let’s assume that
the software is designed in such a way
that the two game objects in the game
(one represents the local player, and the
other represents the remote player) are
controlled by the output of two functions.
These functions are Get_Input_Local()
and Get_Input_Remote(), respectively, and

are shown in Listings 1 and 2. As you
can see, we have the keyboard tied to the
local player; however, the remote player
has nothing tied to it (yet), and so it
does nothing. If we run the game, the
player will be able to move around the
local tank, but the remote tank will just
sit there. Now here’s the catch. What if
we were to feed the Get_Input_Remote()
function with the keyboard of Comput-
er 2? Or in other words, use Computer
2’s keyboard as another input device.

We would, in essence, be taking
the input of another computer as the
control for Player 2. This is the basic
idea behind I/O space synchronization.
We send the I/O state of each machine
(their keyboards in this case) to the
other machine. Therefore, each
machine thinks it is running a two-
player game on a single computer, but
with one input coming from the key-
board and the other input coming from
another “virtual” keyboard that is, in
fact, the other computer!

This kind of synchronization will
work fine as long as the exact same
game runs on each machine, save one
little caveat. The local player on one
machine is the remote player on the
other. If you run the exact same piece of
software on two machines, the follow-
ing problem will occur: the local player
and remote player will always be in the
same starting position. That may seem
confusing, let me clarify.

When the game runs on Computer
1, it places the red player (local) at
(10,10) and the blue player (remote) at
(100,100). Then, the game running on
Computer 2 does the exact same thing;
however, from Player 1’s point of view
the remote blue player is at (100,100).
But the remote blue player on the other
machine should be the local player from
that machine’s point of view, and,
therefore, be at (100,100) and blue!
Alas, this won’t happen because the
exact same software is running! To
remedy this, each game must be slightly
different because the remote player on
one machine is the local player on the
other. Each game program must have
been compiled slightly differently and
have a file that is read or something to
ensure that this is taken into considera-
tion, as shown in Figure 5.

Now that we have discussed I/O
space synchronization, let’s briefly go
over it one more time. Each computer
runs a two-player game. Each computer
obtains the input control for one player
from a physical input device such as a
keyboard or mouse. The other input
that controls the other player is
obtained from a virtual input that is
retrieved via the communications port.
So, all that each local player must do is
send the state of its input device over
the communications channel with each
game cycle, and the other computer will
interpret this as the remote player’s

GAME DEVELOPER • JUNE 1994 35

Figure 3. A Setup for a Tank Game

Local User Local User

Note how the
Local on PC1
is the Remote
on PC2 and
vise versa.

Com
Link

Local Player

Local
Player

Remote
Player

Remote Player

input. Because each game is exactly the
same (except for the start-up positions),
each game should stay in synchroniza-
tion. For example, if the local player on
Computer 1 rotates a tank to the right,
this input will be sent to the other com-
puter as the remote input, and the tank
on that computer will be rotated also.
Don’t worry if all this local and remote

stuff confuses you. It’s like time travel;
it’s kind of weird!

I/O space synchronization will usu-
ally work fine; however, it can go amiss.
Obviously, a problem can occur if infor-
mation is lost during transmission, but
another more subtle problem can occur
if one machine is much faster than the
other. Just food for thought, we’ll cover

problems like these later. I didn’t want
you to think that this was a perfect
world...even for a minute!

Vector-Positional
Space Synchronization
The second tactic we can use to link up
two computers is through vector-posi-
tional space synchronization. Instead of
sending the state of the input devices as
we do in I/O space synchronization, we
send the state of the entire universe, or
at least enough of a subset so that the
games have a current copy of all the
positions and states of the objects in the
game universe. This method is similar
to keeping a globally shared game space
in two computers, like shared memory.
This game space and all the objects in it
are continually updated via the commu-
nications link. For example, let’s use a
three-dimensional, asteroids-type game.
Each game has a collection of asteroids;
however, there must be a copy of the
remote asteroids on the local machine
and vise versa. So, whenever an asteroid
is created or destroyed, its new state is
sent to the remote machine. Again, this
is done on a cycle-by-cycle basis. Vec-
tor-positional space synchronization is

N E T - P L A Y

36 GAME DEVELOPER • JUNE 1994

Figure 4. The Software Architecture of an I/O Space Linked Game

int Get_Input_Remote(void)
Keyboard Mouse Joystick

Keyboard Mouse Joystick

Output Output
PC 1 PC 2

Com
Link

int Get_Input_Local(void)

int Get_Input_Remote()

int Get_Input_Local()

Game Logic
Player 1 Player 2

Game Logic
Player 1 Player 2

Figure 5. The Proper Setup of Two Machines

PC 1 PC 2

Game.EXE Game.EXE

Two PCs with
the exact same

copy of game.EXE.
Note how the Remote

and Local players
are in the wrong place.

Note how the role
of Local and Remote

was switched on
the version of

the game running
on PC 2

Local Player

Remote
Player

Local Player

Remote
Player

Game_1.EXE Game_2.EXE

Local Player

Remote
Player Local Player

Remote
Player

more powerful than I/O state synchro-
nization. We know that both universes
are always in perfect unison because we
always send the state of almost every-
thing.

This technique has one drawback:
the amount of information we must
continually blast over the communica-
tions channel. You will be making
games that use a modem to communi-

cate because this is the device that our
commercial audience owns. The
modem has an average bitwidth of 2400
baud. Therefore, sending tons of state
information can be a problem.

The best method of synchronizing
two games is to use a mixture of each
technique. For instance, I/O space syn-
chronization doesn’t allow new objects
to be created in the universe because the

other machine wouldn’t know about it.
However, if we sent this new state infor-
mation to the remote machine when a
creation event occurred, the game play
could continue without losing synchro-
nization. I suggest you figure out what
you want to happen in each game and
create a communication strategy that
takes the best of both worlds. However,
I tend to rely mostly on I/O space syn-
chronization for my games.

We have a couple of tricks under
our belts, but it’s time to let the harsh
walls of reality come crashing down and
cover some of the problems that will
occur and how to remedy them.

Types of Distortion
Two types of distortion (or missynchro-
nization) can occur in a linked game:
temporal aliasing and nondeterministic
aliasing. Temporal aliasing occurs when
one computer is faster than the other
and is further in the game than the other
computer. As an example, say we have
two players pointing guns at each other,
as shown in Figure 6. Player 1 fires and
destroys Player 2 in Player 2’s world;
however, on the other machine, Player 2
moves fast enough to avoid the missile
and lives.

Now, both machines are out of sync.
To rectify this problem, we must ensure
that both games run at the same speed
regardless of the speed of the machines.
The two machines must synchronize to
the lowest common denominator.

GAME DEVELOPER • JUNE 1994 37

int Get_Input_Remote(void)
{
// look at the data port and see if
there is a packet there

if (data ready at COMM port)
{
// grab data from queue and pack it

return packed information

} // end if data ready

} // end Get_Input_Remote

Listing 2. Get_Input_Remote

Int Get_Input_Local(void)
{
// query the input device and return status to caller

switch(input_device)
{

case MOUSE:
{
// get mouse direction and status of buttons
if (mouse has changed)
{
return packed information;
} //end if mouse moved
else
return NO_MOTION;
} break;

case JOYSTICK:
{
// get joystick direction and status of buttons
if (joystick has changed)
{
returned packed information
} // end if joystick moved
else
return NO_MOTION;
} break;

case KEYBOARD:
{
// get keyboard state
if (a key is down)
{
return packed information;
} // end if a key idd pressed
else
return NO_MOTION;
} break;

default:break;

} // end switch
} // end Get_Input_Local

Listing 1. Get_Input_Local

Two methods will help us accom-
plish this: the first method locks the
game to a specific frame rate, such as
15 or 20. Each machine is guaranteed
to operate at this frame rate and no
faster. The game logic will then operate
at the same speed. The second method
sends a token back and forth between
each machine. Only when the computer
sends the token and gets it back can it
proceed to the next frame or cycle. This
will synchronize the game to the slower
machine.

The other type of distortion or
nondeterministic aliasing occurs when
something happens in one game that

isn’t reflected in the other. This is more
of a problem when using I/O space syn-
chronization. Imagine if Players 1 and 2
were both in a room with each other.
All of a sudden a monster pops out and
dodges right; however, on the other
machine it dodges left! This would
occur if a random number generator
were used to drive the monster’s logic.
The moral to the story is, if you use I/O
space synchronization, everything in the
game must be completely deterministic.
At least as far as each instance of the
game is concerned on each computer.
As a developer, you must use patterns or
look-up tables with precomputed ran-

dom numbers. However, free-running
random number generators cannot be
used on each computer.

Conclusion and Reflections
That wasn’t so bad. Creating linked-up
games is not magic, but it is a formida-
ble task. You must take many factors
into consideration and make a lot of
design decisions from the beginning of
your game design. Otherwise, your
code will look like a bundle of fiber
optic cable! ■

André LaMothe, pictured here after a
long day of multiplayer game programming,
holds degrees in math, computer science, and
electrical engineering. He has worked in
neural networks, three-dimensional graph-
ics, virtual reality, and robotics, but now
he’s doing serious research—he’s writing
computer games. His latest book, Tricks of
the PC Game Programming Gurus, will
be published by SAMS Publishing. He has
no e-mail address (he’s worried the FBI
will bust him for pirating video games at
age 12), but you can contact him through
Game Developer.

N E T - P L A Y

38 GAME DEVELOPER • JUNE 1994

Figure 6. The Effects of Time Lag

PC 1

PC 2

T0
Time

At T1 and T2 the
PCs become
un-synchronized
due to temporal
distortion.

T1 T2

I
n an industry where the life of a
product can often be measured in
months instead of years, the idea
that a particular program would stay
in the limelight long enough for
people to spend months writing
extensive utilities for it seems
unlikely to say the least. But to one

company, Id Software, it happened twice.
The first time was with its smash hit

game Wolfenstein 3-D. After the release
of Wolfenstein, level editors sprang up,
and the flood gates burst open. Utilities
were made for changing the bitmaps of
the characters, the walls, and pretty much
anything else as long as the basic level
and episode structure (six episodes with
10 levels per episode) remained in tact.
Hacked levels were turning up all over the
place. When you saw somebody starting
a game of Wolfenstein, you never knew
what to expect.

Fame or Fortune
This unexpected fame represented a
problem to Id and its distributor; at the
time, it was Apogee. The game and the
first episode were in the public domain,
where money was made from people
ordering the remaining five episodes from
Apogee. If people could create their own
levels, who would order the final game?
Apogee went on the warpath threatening
to sue the authors of the various cus-
tomization utilities, and Id designers stat-
ed that nobody would be able to hack the
maps in their next game. In the midst of
this concern, sales of Wolfenstein kept
going strong. The game was on its way to
becoming the best-selling shareware
game of all time.

By the time I visited the Id design-

ers during the creation of Doom, I asked
them if they were going to allow the kind
of modification to Doom that had hap-
pened to Wolfenstein. They said not only
were they going to allow it, they were
going to encourage it. “If people get satis-
faction out of modifying our code, it’s just
another form of entertainment that they
derive from buying our games,” said John
Romero. “We fully expect people to be
blowing away Barneys soon after the
game is released,” echoed John Carmack.

They had been surprised when the
first slew of editors came out for Wolfen-
stein because they thought the compres-
sion algorithms that compressed the lev-
els would be some of the hardest code to
crack. So, after Doom was finalized, they
planned to release some level specifica-
tions and the Binary Space Partitioner
they used, so that wannabe Doom hack-
ers wouldn’t have to write their own.

But Carmack’s vision of a Barney
holocaust was realized soon after the
shareware version of Doom v. 0.99 was
released on Dec. 10, 1993. Within weeks,
there were saved game editors, map view-
ers, and a slew of other hacks, including
BarneyDoom, which turned the main vil-
lains into giant Barneys complete with
sound effects.

Barney in Hell
There’s something about Doom that
inspires people like Bill Neisius, a profes-
sional aerospace programmer who works
mainly on manufacturing and inventory
control on Apollos and VAXs, to hack
BarneyDoom in his spare time. You
know its serious when two other people
(David Lobser and Aaron Blackwell)
rerender the Barney images in 3D Studio

The Doom
of Doom

Last month, we

brought you the story

of Doom. This month,

we follow up with a

look at how Doom is

faring in the market

—and its unusual

band of followers who

are creating their own

descent into Hell.

by Alexander
Antoniades

T H E D O O M O F D O O M

GAME DEVELOPER • JUNE 1994 39

and touch them up with paint programs
so that Barney looks even better.

Bill Kirby, another professional busi-
ness programmer, was bored playing
Wolfenstein, but he was still fascinated by
the technology. He wrote two of the map

editors for Wolfenstein, which earned
him a nasty letter from Apogee. When
Doom came out, although he doesn’t usu-
ally modify games, he figured he’d check
it out. He got the program by calling the
folks at Id Software. They sent him some

source code, and he made one of the first
map utilities for Wolfenstein. His experi-
ence with Wolfenstein was helpful
because he found similarities in the file
formats between the two games.

Moving up the ladder of Doom is
game hacker whose goal is to make every
game he gets modifiable so his two-year
old daughter can play and win. With his
arsenal of disassemblers and knowledge of
programming, he has made utilities for
many commercial games. One of his utili-
ties, RA Easy (a utility used to modify
LucasArts game Rebel Assault), worked
so well he got a call from LucasArts, ask-
ing if he’d gotten hold of a beta copy. His
opinion was that Id designers had gone
out of their way during the development
process to make Doom easily modifiable
because there were a lot of hooks, and the
main data was easily accessible.

As it stands now, one of the key
Doom utilities is Deu, a level editor, writ-
ten by a Raphael Quinet, a Belgian elec-
trical engineering student. This utility has
been passed from author to author
because the source code has been included
with every release. As one person’s inter-
est wanes, another picks it up. Using this
editor in conjunction with one of the
binary space partitioners (preferably Id’s
own) makes the creation of levels very
easy, leading to a proliferation of Doom
levels over on-line networks and Internet.

Why Is This So Easy?
What makes the data easy to change is the
way Doom is written. The main exe-
cutable, DOOM.EXE, loads a data file
called DOOM.WAD or DOOM1.WAD.
This file contains all the level, image, and
sound data for the game. By modifying
the .WAD file, most of these independent
utilities work. What Id added to Doom
that wasn’t in Wolfenstein is a disclaimer
that would pop up on the screen if the
.WAD file isn’t the original file that came
with the program.

The best resource of information
about .WAD file structure is a text file
called “Unofficial DOOM Specs” by Matt
Fell, who, together with other Internet
denizens, has compiled most of what’s
inside a .WAD file.

Another good source of information

T H E D O O M O F D O O M

40 GAME DEVELOPER • JUNE 1994

A Journey to Hell with BarneyDoom

The best place to start is with the official Doom FAQ file, which contains more than you
ever wanted to know about Doom and includes the e-mail addresses of most Doom spe-
lunkers.

The file is available on the following Internet news groups:
• comp.sys.ibm.pc.games.action
• comp.sys.ibm.pc.games.announce
• comp.sys.ibm.pc.games.misc

Additionally, the FAQ is available at the following Internet sites:
• ftp.uwp.edu in either /pub/incoming/id or /pub/msdos/games/id/home-brew/doom
• ocf.unt.edu in either /pub/incoming or /pub/doom/text
• wuarchive.wustl.edu in /pub/msdos_uploads/games/doomstuff

Alternately, the FAQ is available from the Software Creations BBS: (508) 365-2359 at 2400
baud, (508) 368-7036 at 9600 to 14.4k v. 32bis, or (508) 368-4137 at 14.4 to 16.8k HST/DS.

Outside these sources, the FAQ is available on most commercial on-line services.

If you’re interested in contacting any of the Doom tool authors mentioned in this article,
you can reach them at the following e-mail addresses:
Bill Neisius bill%solaria@hac2arpa.hac.com
David Lobser lobser@csn.org
Aaron Blackwell aaron525@denver.relay.ucm.org
Bill Kirby bkirby@netcom.com
Raphael Quinet quinet@montefiore.ulg.ac.be
Matt Fell matt.burnett@acebbs.com
Hank Leukart ap641@cleveland.freenet.edu

W H E R E D O I G E T T H I S S T U F F ?

about Doom is a text file called the “Offi-
cial DOOM FAQ.” It’s written by Hank
Leukart, a beta tester for Apogee, who
noticed that there were questions about
Doom that would end up getting asked
over and over again, so he compiled a
FAQ (frequently asked questions) file. He
works with Id in compiling this document
that’s swelled to over 200K and lists over
80 after-market Doom utilities.

What about Id
If you’re wondering where Id is in all of
this, it’s moving forward like nothing’s
happening. The Id team is working on
various Doom ports, including Windows,
Atari Jaguar, and Linux/X; preparing new
levels for the commercial version of Doom
called Hell on Earth; and starting up its
next project called Quake.

The Doom after-market has made
the product more marketable now than
when it was first released. With all the
new levels and graphics available, players
who found the original game not enough
can get their fill with all the add-on utili-

ties. The only stipulation that Id has made
so far is that created levels only work on
the registered version. This is done by
placing an item that only exists in the reg-
istered version on that level. Most people
have abided by this rule, so there haven’t
been any problems.

It will be interesting if this move
makes other developers think more about

potential after-markets of computer
games. As Id CEO Jay Wilbur put it:
“Our fans used to be our salespeople, but
now they’re our developers as well.” ■

Alexander Antoniades is associate editor
of Game Developer and assistant editor on
OS/2 Magazine.

GAME DEVELOPER • JUNE 1994 41

The Original Doom

Programming an intri-

cate game like bridge

has thwarted enthusi-

asts for years. Using

a sophisticated AI

engine and some

ingenuity, you can add

complex rule- and

logic-based features

to your card games.
42 GAME DEVELOPER • JUNE 1994

C
ase after case can be cited to
show how tasks people perform
without thinking, like recogniz-
ing a face or carrying a package
while running, present almost
impossible challenges for pre-
sent AI techniques. Yet, human
difficulties, such as remember-

ing long strings of numbers or complex
connections among events or objects,
have simple computer solutions.
Nowhere is this more obvious than in the
game of bridge.

Bridge presents some formidable
tasks for humans who wish to excel. You
must learn to count cards and determine
where each of the 52 cards is. You need
to be aware of probabilities of distribu-
tion and card placement and how these
change with each play.

When I started playing duplicate
bridge, I marveled at the players who
could recall hands they played last month
or last year and describe not only what
each person held but how the hand
played. It took practice, but my partner
and I, over the course of a year, became
proficient enough that we could sit down
after a session of 24 hands and reproduce
every hand we played—recapitulating

what card every player held and how the
cards were played. That mental effort is
trivial for a computer.

Bridge differs from other card
games in that it consists of two distinct
phases: bidding and play. During the
bidding, you describe your hand to your
partner in a coded language. Then, the
hand is played out, with one hand
exposed for all to see.

These two phases present vastly dif-
ferent mental and computer challenges.
It’s relatively easy to teach a beginner the
essentials of a bidding system. It turns out
to be one of the more difficult tasks to do
the same for a computer. Before you can
define a rule, you need to be sure the
computer understands such basic con-
cepts as suit, distribution, and point
count. Part of the intelligence required
for a bridge AI relies on a shared back-
ground. Most new bridge players are
familiar with the now-standard 52 card
deck, the four suits, and the names and
values of the various cards. Many players
are familiar with the concept of the trump
from other games like pinochle or Rook.

False Starts
and Blind Alleys
Bridge AI tends to be less theoretical
than much of chess AI has been. It’s
messy and heuristic. But the problems go
deeper. Chess is a simple zero sum game
of complete information. Not only are
the rules explicit and invariable, but, at all
stages, both sides know exactly what the
entire universe looks like.

This is not the case in bridge. The
scoring is not precisely zero sum—my
making a contract is not the same as an
opponent going down in defense. Even

AI to the
Rescue

by Steve Estvanik

A I T O T H E R E S C U E

The three
Laws of Thermodynamics
have been summed up as:

You can’t win.
You can’t break even.

You can’t get out of the game.

The first two
Laws of Artificial Intelligence

should be:
The hard stuff is easy.
The easy stuff is hard.

in the best bid hands, the opponents can
find a sacrifice. And the value of that sac-
rifice depends on the randomly dealt
hands that follow. The same hand dealt at
different times can have drastically differ-
ent effects on the final score.

There are the other large elements of
probability that must be accounted for.
Each player bids while knowing only 25%
of the cards. Through the use of a coded
system, opponents and partners exchange
information. But even if all hands were
exposed, there would not be consensus on
the best bidding and play. What works on
one hand might not be suitable for all
others. Players must constantly calculate
not only this hand, but the style and cur-
rent abilities of their partners and oppo-
nents and the current state of the game.
What works with one partner or against
some opponents might not be proper
against or with other players.

Previous Attempts
at Bridge AI
Early commercial bridge games were ter-
rible. They made mistakes no beginner
would even think of. Over the last several
years, stronger bridge programs have
emerged. Since this is a discussion of the
AI techniques I used in my game, I’ll
limit my general comments on other
approaches.

One of the first approaches to show
strong results was the use of flow-charts.
This requires all possible types of hands
be considered. The engine first does an
analysis to decides which chart is applica-
ble, then the engine processes the selected
flowchart.

The beauty of this system is that it’s
very easy to show the player how the pro-

gram arrived at its conclusion. It’s less
useful as a teaching tool if the flowchart
branching is not self explanatory. The
down side is that alternate systems are
more difficult to add. Conventions pose a
particular difficulty, since so many con-
ventions would require alternate flow-
charts. As the number of conventions
increases, and as each side can choose
which of the many conventions they want

GAME DEVELOPER • JUNE 1994 43

B
ridge is played by four players. All cards are dealt so each player has 13 cards that
are kept hidden from other players. Players are designated as the four directions:
north and south, east and west, with players sitting across from each other being
partners. A hand of bridge is divided into two parts: bidding and play. During bid-
ding, you try to describe your hand to your partner and make a claim to the number

of tricks you can take. During play, you try to make the contract that you bid.

To decide how strong your hand is, we assign points to certain cards. These are called
high card points (HCPs). We rate an ace (A) at 4 points, a king (K) at 3, a queen (Q) at 2,
and a jack (J) at 1. To count, though, a king must be accompanied by at least one other
card in the same suit. We show this as Kx and describe it as a “king doubleton.” Similarly,
to count for HCPs, the queen must have two other cards, and the jack needs three other
cards of the same suit.

Bidding starts with the dealer and proceeds clockwise around the table. The suits are
arranged in the following order: clubs (C), diamonds (D), hearts (H), and spades (S). Thus
1S can be bid over 1H, but over 1S, you must bid 2H. Bidding a suit usually means you wish
to use that suit as trump. Bidding normally starts at the lowest level possible, but there
are also times when the bidder jumps the bidding. (For example, an opening bid of 2H or
3H shows a very different hand from 1H.)

Playing in a suit contract makes that suit the trump suit. During play, you must follow the
suit played. But, if you lack any cards in the suit played (this is called a void), you may
play a trump and win the trick. You want to play in trump if you and your partner have at
least eight of the cards in a suit. You may also play without trump (NOTRUMP or NT).

Bidding continues until everyone has had a chance to bid, and there are three passes in a
row. The person who first bid the suit of the final bid becomes the declarer. The person to

B R I D G E B A S I C S

Using an AI engine allows you to pro-
gram complex rules structures and bid-
ding strategies into your game.

(Continued on p. 44)

to use, the set of possible flowcharts
becomes an unwieldy matrix.

Another more recent approach
allows you to teach the program bidding
systems. You bid a series of deals, giving

the bids for each hand, and the game
learns the bids by observation. There are
several problems with this neural network
approach. First, if you make a mistake,
due to faulty memory, boredom, or per-

haps even your own mistaken ideas, the
computer learns your system incorrectly.
This problem is compounded if you never
discover you made the error.

A larger problem is that you have to
spend dozens if not hundreds of hours
bidding deals so the game can learn your
system. Even after that time, there’s no
simple way to know if it has really inter-
preted the deals or situations correctly.
Beyond these problems, it’s easy to create
hands that experts would disagree about.

Mere copying of what was done on a
particular hand doesn’t guarantee there’s
any learning of the principles behind why
a particular bid was made. Sometimes it
may be a simple rule: “Bid your longest
and strongest.” Other times, a response
may be based on everything that’s hap-
pened thus far: “I opened, and the oppo-
nents bid a little. My partner didn’t bid,
but must have some points or the oppo-
nents bid should be much higher. There-
fore, I can make a stronger bid than my
cards justify by factoring in partner’s pre-
sumed strength.”

Many rules are analogous to irregu-
lar verbs in a natural language translator.
You can’t deduce a particular rule, you
just have to learn it. A regression analysis
or neural network approach would still
need to have all the special cases
designed.

Beyond these concerns, there’s a
more fundamental problem. Much of
bridge is codified, not natural, so there’s
no way to figure out even the simplest
conventions without playing many many
hands. Just to teach it Jacoby, you’d have
to give it dozens of hands, as shown in
Table 1. Then, there’s the additional
problem that there’s no consensus on
many tougher hands. Bridge World ’s
monthly Master Solver hands often have
at most 30% to 40% of the experts in
agreement.

The Solution
When I first started this project, I hoped
to let users configure the system by defin-
ing their own conventions and even
telling it certain preferred ways of bid-
ding. Instead, MVP Bridge lets you
choose from several basic bidding sys-
tems, and you have options to use any of

44 GAME DEVELOPER • JUNE 1994

A I T O T H E R E S C U E

After the transfer, subsequent bids by the responder describe the player’s hand:

• Pass shows a bust.
• 2S shows 5-5 in majors, invitation to game.
• 3H after spade transfer shows 5-5 in majors, forcing to game.
• 2NT is invitation: with three of the transfer suit, opener bids game with big hand,

three of suit with minimum. With only two of transfer suit, bid 3NT with maximum.
• Raise to three of transfer suit is invitation.
• 3NT offers choice of game contracts.
• Four of the transfer suit promise six-card suit.
• 4NT is quantitative. Partner can bid slam or five of the transfer suit.

Table 1. The Jacoby Convention

(Continued from p. 43)

the left of declarer is the leader for the first trick. The declarer’s partner is dummy—
those cards are turned over for everyone to see, after the opening lead.

Your goal in rubber bridge is to win two games to make a rubber. A game is scored 100
points made by bidding. This can be the result of one or more hands. Scores vary by suit.
Clubs and diamonds are the minor suits and worth only 20 points each. Hearts and spades
are the major suits and worth 30 points each. Thus, a contract of 4H would give you 120
points, which is a game, but a contract of 4D gives you only 80 points. No trump is a spe-
cial case. The first NT level is worth 40 points, and successive levels are worth 30 each.
Thus, 2NT is worth 70 points, and 3NT is 100, a game. If your contract does not give you a
game, it remains as a partial score until one side makes a game. If a contract is set, the
defenders gain points.

A convention is a bid that carries additional information and does not promise anything in
the suit actually bid. For example, in the Stayman convention, a 2C bid over 1NT says noth-
ing about the responder’s club suit, but does promise at least four cards in at least one of
the major suits. Conventions are used to describe your hand more accurately. Any conven-
tions in use must be known by all players—you may not have secret arrangements with
your partner.

The person who first bid the suit that becomes the final bid is the next declarer. To make a
contract, you must take six tricks plus the number you bid. Thus, a 3H contract requires
you to take nine of the 13 tricks. The person to the declarer’s left is the leader.

The leader selects a card and places it so everyone can see it. At this point, the partner of
the declarer lays down his or her cards for everyone to see. The partner is now the dummy
and his or her cards are played by the declarer. In MVP Bridge, when north is the declarer,
you get to play as declarer, and your original hand becomes the dummy.

Play proceeds in a clockwise fashion. You must follow suit. If you are void (have none of
that suit), you can play any card. In a trump contract, the highest trump played on the
trick wins. The winner of the trick leads the following trick.

B R I D G E B A S I C S

the dozen conventions available. You can-
not add conventions (yet) or modify exist-
ing rules.

The system that evolved for bidding
is a combination of rules (17 aspects
defined, but on average only to six used in
any particular rule) and hard-coded
heuristics coded. Aspects include factors
such as high card points; total points esti-
mated between partners; distribution; last
actions by opponents, me, and partner;
vulnerability; level of bidding; trump sup-
port; and quantity and quality of defensive
stoppers in each suit.

If you were teaching someone ele-
mentary bridge, a basic description of a
rule for opening at the second level might
look like this:

“With a six-card suit and six to 12
high card points (but not with a six-card
club suit), when no one has bid yet, give
strong consideration to an opening bid at
the second level in your longest suit if
you’re using the Weak 2 style of play.”

Some of the difficulties are immedi-
ately clear. Each rule may depend on a
variety of conditions. Some are constant
(you’ll always have six cards during this
hand; you either are or are not playing the
Weak 2 system); others are more variable
(someone may or may not have bid; your
partner’s bid may change the value of your
cards). The difficulty comes in defining
the priorities and resolving clashes among
several rules. In a computer system, the
AI must be flexible enough to deal with
any of the billions of hands possible, yet
strong enough to be able to make a rea-
sonable bid.

In practice, while it might be simple
to add each rule to the list, a fair amount
of testing is required to see that the rule
actually works as planned and, more
importantly, that by adding this rule,
other rules are not adversely affected. The
resulting testing and debugging of new
rules is iterative and recursive and not the
sort of system that is easily given to users.
It’s too easy to enter a wrong rule, and,
without a thorough understanding of the
rule and heuristics systems, debugging
would be difficult.

When I turned to conventions, I
first used the same rule-based generalized
system I had used for standard bids, but

GAME DEVELOPER • JUNE 1994 45

#define HCP 1 /* ASPECT 1 — High Card Points (HCP) */
#define G0x7 1
#define G0x10 2
#define G4x8 3
#define G6x10 4
#define G6x12 5
#define G8x10 6
#define G8x12 7
#define G10x12 8
#define G13x15 9
#define G15x17 10
#define G16x18 11
#define G20x21 12
#define G21x22 13
#define G24x25 14
#define G25x26 15
#define G8P 16 /* >= 8 */
#define G10P 17 /* >= 10 */
#define G13P 18
#define G16P 19
#define G18P 20
#define G21P 21

#define TCP 2 /* ASPECT 2 — Total Card Points (TCP) values are */
/* same as for HCP */

#define DIST 3 /* ASPECT 3 — Distribution */
#define FLAT 1 /* 4-4-3-2 or 4-3-3-3 */
#define MAJOR4 2 /* 4 card major */
#define MINOR4 3 /* 4 card minor */
#define MAJOR5 4 /* 5 card major */
#define MINOR5 5 /* 5 card minor, balanced (at least */

/* two cards, each suit) */
#define UNBAL 6 /* for example, 4-4-4-1, 4-4-5-0 */
#define SUIT5 7
#define SUIT6 8
#define SUIT7 9
#define SUIT8 10 /* >= 8 card suit */

#define OPP 4 /* ASPECT 4 — Opponent Status */
#define NB 1 /* no bid yet */
#define BOP 2 /* both opponent passed */
#define LHOP 3 /* LHO passed */
#define RHOP 4 /* RHO passed */
#define OO 5 /* opponent opened */
#define LHOO 6 /* LHO opened */
#define RHOO 7 /* RHO opened */
#define OOV 8
#define LHOV 9 /* LHO overcalled */
#define RHOV 10 /* RHO overcalled */
#define ONT 11 /* opponent opened NT */
#define LHONT 12 /* LHO opened NT */
#define RHONT 13 /* RHO opened NT */
#define OS 14 /* opponent showed strong hand */
#define LHOS 15
#define RHOS 16
#define OD 17
#define LHOD 18 /* LHO doubled */
#define RHOD 19 /* RHO doubled */
#define OPR 20 /* opponent preempted */
#define LHOPR 21 /* LHO preempted */
#define RHOPR 22 /* RHO preempted */

Listing 1. Formal Descriptors for a Hand (Continued on p. 46)

realized that heuristics or, in some cases,
specific code would be better, since con-
ventions are so constrained. I use rules to
start all conventions, but then switch to
coded modules for each convention, since
the possibilities can be rigidly defined.
Obviously, this is just one solution, and
other bridge programs will surely arrive
that use vastly different techniques.

MVP Bridge
The result, MVP Bridge, was released
earlier this year. I started with a single
approach for bidding and play: the use of
a rule-based bidding engine. The bidding
engine required some tweaking, and
adding conventions eventually required
more algorithmic approaches. It also
became clear that play was more heuristic
than rule-based, especially since it is so
much more constrained. This eventually
resulted in two completely distinct
approaches to the AI.

This article focuses on the bidding
algorithms. I originally planned to let
people add their own conventions and
even bridge bidding style, but they would
have to learn how to teach new rules to
the engine. At present for MVP Bridge,
this consists of working with the debug
logs, which can run to several hundred
thousand K per hand, detailing the deci-
sions made, and rules selected.

Each rule has up to 17 conditions
that must be met to be triggered. When it
came to conventions, I first started to use
this same system, but it soon became clear
that I would just be coding some very
explicit situations, so I switched to a more
conventional coding approach. The result
is a hybrid system that can be adapted to
very specialized bidding, while still retain-
ing a lot of flexibility to handle hands
never considered before.

Design of the AI
Unlike more abstract topics, such as nat-
ural language or vision, in bridge and
chess, the identification of relevant fea-
tures is straightforward. Possible solutions
are reasonably clearcut. Thus, it’s poten-
tially possible to create a program that
outplays humans, even the creator. This is
true even if the program does not play
perfect bridge at all times. I used a fairly

46 GAME DEVELOPER • JUNE 1994

A I T O T H E R E S C U E

#define ORV 3 /* opponent reversed */
#define LHORV 24 /* LHO reversed */
#define RHORV 25 /* RHO reversed */
#define ORD 26 /* opponent redoubled */
#define OBG 27 /* opponent bid game */
#define ONS 28 /* opponent showed new suit */
#define OST 29 /* opponent supported trump */
#define LHOB 30 /* lhop bust */
#define RHOB 31 /* rhop bust */
#define LASTO 31

#define PARTNER 5 /* ASPECT 5 — Partner Status statPart[] */
#define NB 1 /* no bid yet */
#define PP 2 /* partner passed */
#define PO 3 /* partner opened */
#define POV 4 /* partner overcalled */
#define PN 5 /* partner showed new suit over opening */
#define PS 6 /* partner showed strong hand */
#define PRV 7 /* partner reversed */
#define PNT 8 /* partner opened NT */
#define PPR 9 /* partner preempted */
#define PBG 10 /* partner bid game */
#define PST 11 /* partner supported my trump */
#define PD 12 /* partner doubled */
#define PRD 13 /* partner redoubled */
#define PB 14 /* partner bust */
#define LASTP 14

#define ME 6 /* ASPECT 6 — my status */
... similar to the above

#define VUL 7 /* ASPECT 7 — vulnerability */
#define WE 1
#define THEY 2
#define ALL 3
#define NOTUS 4 /* that is, either neither or just them */

#define EXCEPT 8 /* ASPECT 7 — exceptions */
#define SCLUBS 1 /* clubs — longest suit is clubs */
#define SVCLUBS 2 /* longest suit is clubs and no void */
#define SMINORS 3 /* minors — longest suit is a minor */
#define SMAJORS 4 /* majors — longest suit is a major */
#define NCLUBS 5 /* longest is not clubs */
#define NVCLUBS 6 /* longest is not clubs, and no void */
#define NMINORS 7 /* not minors longest is not minor */
#define NMAJORS 8 /* not majors longest is not major */
#define NOVOID 9 /* does not have a void */
#define NSINGLE 10 /* does not have a singleton */
#define NSECMAJ 11 /* second suit is not a major */
#define T1MAJOR 12 /* agreed trump is major */
#define T2MAJOR 13 /* agreed 2nd trump is major */
#define NSUIT5 14 /* no suit of 5 or more */
#define NJACOBY 15 /* not playing JACOBY */

....

#define TRUMPS 13 /* ASPECT 13 — trump support */
#define POOR 1
#define FAIR 2 /* 2+ trump, or < 4 HCP */
#define GOOD 3 /* 3+trump, or 4-5 HCP */
#define EXCEL 4 /* 4+ trump, or 6HCP in trump */
#define GOODOPP 5 /* 4+ of opp’s trump */

Listing 1. Formal Descriptors for a Hand (Continued on p. 47)

standard approach to the design of the AI:
1. Characterize the task, analyze task and

actions of the program, and construct
the system domain as a collection of
objects, properties, and operations.

2. Design a formal representation so
bridge knowledge is stated explicitly.

3. Embody the representation in the
computer system. It’s important that
the operations of the computer are
consistent with the rules of the formal
system.

4. Create a search procedure and operate
on the computerized data structures to
carry out the task.

Let’s look at each of these in detail
for the MVP Bridge AI.

Bridge Bidding AI
The nature of the game immediately sug-
gests that the AI should be divided into
two separate sections. The play of the
hand is to some extent dependent on the
bidding, but, by the time the play starts,
the bidding information has become his-
tory and is easily worked into the AI as
starting conditions. It makes sense to
consider the bidding system first.

1. Characterize the Task. Since we’re
working with a constrained universe in
which explicit laws and rules apply, much
of the task is already done. The goal is to

find ways to analyze each hand that’s dealt
and propose legal and appropriate bids.

2. Design a Formal Representation.
Now the work begins. Obviously, some
representation for the cards and hands is
required. I chose to structure each player’s
hand as an array, turning cards on or off
within that array:

Card[NHANDS][NSUITS][NCARDS]

where:

NHANDS equals 4 (the number of players)
NSUITS equals 4 (the number of suits)
NCARDS equals 13 (the number of cards in
each suit)

This representation has the addi-
tional advantage of being flexible enough
to work for alternate games in which
there are different numbers of players,

suits, or cards. In bridge, this is not a con-
sideration, but in a game like hearts it
would be, since the game is often played
by three, four, or five people.

In addition to cards, facts about each
hand need to be codified. Listing 1 shows
some of the aspects identified. Eventually,
I came up with 17 aspects that described
the hand. Some were obvious, like high
card points or distribution. Others
evolved over time, such as exceptions or
level of bidding.

Defining Aspects
High card points (HCPs) describe the
value placed on a particular hand. The
first series of values such as G6x10 mean a
range of 6 to 10 inclusive, while G13P
means 13 or more points. These could

GAME DEVELOPER • JUNE 1994 47

#define EXCELOPP 6 /* 5+ trump, or 4 with more than Q */

#define PRIORITY 14 /* ASPECT 14 an actual value */

#define CONVENTION 15 /* ASPECT 15 */
enum { TAKEOUT=1, STAYMAN, BLACKWOOD, GERBER, WEAK2, STRONG2, NEGDBL, JACOBY,

NTFORCE, GAMBLING, TEXAS, UNUSUAL, WKJUMP, MICHAELS, MINORTFR};

Listing 1. Formal Descriptors for a Hand (Continued from p. 46)

ABCD

1xCx C=1, PASS, 2=DOUBLE, 3=REDOUBLE

2xxx new suit
2Bxx B = 0 relative level for D

1 = absolute level (eg,
preempts)

2xCx C = 1 longest suit
2 No trump
3 4 card major
4 second suit
5 transfer (bid 1 lower than actual

suit)

4xxx raise of suit previously bid
4Bxx B = 0 relative level for D

1 = absolute level (eg,
preempts)

4xCx C = 1 partner’s first
= 2 NT
= 3 my first
= 4 partner’s second suit
= 5 my second

4xxD D = # of levels (next eligible
bid)

Listing 2. Decoding Rules

AI Bridge Player Updates

have been actual numbers, but that would
have enormously increased the number of
possible rules to be considered.

If a rule was valid for either 6, 7, 8,
9, or 10 points, five separate rules would
need to be written. For the limits such as
“greater than 10,” there would be dozens
of possibilities. Instead, I created relevant
ranges. The actual values are a function of
the bidding system in use and would vary
slightly with other systems.

For example, either 15 to 17 or 16 to
18 can be used in rules for deciding when
to open “1 no trump,” depending on the
system in use. A hand can easily have
more than one value for a particular
aspect. This is a vital element of the
design and a reason for its robustness.

Thus, a hand that had precisely 17 HCPs
is rated as G15x17; G16x18; and G8P, G10P,
G13P, and G16P.

In addition to HCPs, another factor,
total card points (TCPs) includes an
assessment of how the distribution of the
hands adds to its value. The values for this
aspect are identical to those for the HCPs.

Next to consider is distribution,
which is straightforward. Hands are
described as flat, unbalanced, long suited,
or having long majors or minors. Again,
hands can have multiple values; a long
suited hand, by definition, is unbalanced.

The next series of aspects describes
the status of the various players. It’s often
important to know who opened the bid-
ding (me? my partner? which opponent?).

Sometimes, you need to know which
opponent did something; other times, just
the fact that something happened.

Aspect 4 covers all possibilities for
the opponents. Aspects 5 and 6 cover
similar ratings for my partner and ME, that
is, the computer player who’s doing the
evaluation. Aspect 7 is a simple one. Vul-
nerability is dependent on previous hands.
Some bids are only made if the vulnera-
bility is favorable.

Exceptions need to be coded, also.
Some bids are made whenever X is true or
if Y is not the case. Most rules are general
and apply to any suit. But there are some
instances where a suit is used for special
bids. Clubs are a particular problem.
Thus, SMAJORS says the hand does not have
a long major suit. The usefulness of this
feature becomes clear later.

Several of the less important aspects
aren’t shown. The last few in the listing
show trump support (aspect 13), and
whether a rule is part of a convention.
Thus, if a rule contained the coding
BLACKWOOD, it would only be considered if
the partners are playing that convention.

Aspect 14 is unique. Priority is used
to resolve clashes among rules. It’s an
entirely subjective value, determined by
the rule designer. It’s not used when
selecting rules to be evaluated. Rather it’s
used in the decoding phase.

Defining Suggested Bids
Rather than have the AI spit out a specif-
ic bid, I designed the system so it would
give a more general result. Thus, the AI
might suggest: “Bid the stronger of your
two unbid suits,” or “Bid your longer
major.” This allows the same suggestion
to be made on many different hands.

Listing 2 shows some of the rules.
Each result is a four-digit number. The
1000 series contains special cases. 1010 is a
PASS, 1020 is a DOUBLE, and 1030 is a REDOU-
BLE. When these rules are found, no
decoding is needed.

The 2000 series is used to indicate a
new suit should be bid. This suit can be
specified as either a relative or absolute
level. Thus, some rules require that the
bid be at the second level. Other rules
require that it be two levels above the pre-
vious bid. Thus, a result of 2110 would

48 GAME DEVELOPER • JUNE 1994

A I T O T H E R E S C U E

A. REGULAR BIDS

/* ———— OPENING BIDS */
/* standard opening */
0,G13x15, SUIT5, NB, NB,NB, 0,0, 0, 1,0,0,0, 4,0,0,0, 2011, “OPEN-NB-1”
0,G13P, SUIT6, NB, NB,NB, 0,SMAJORS, 0,1,0,0,0, 6,0,0,0, 2011, “OPEN-MAJ6”
0,G13P, MAJOR5, NB, NB,NB, 0,0,0, 1,0,0,0, 4,0,0,0, 2011, “OPEN-NB-MAJ5”
0,G13P, 0, NB, NB,NB, 0,0, 0, 1,0,0,0, 2,0,0,0, 2011, “OPEN-NB-MAJ4”

/* ———— RESPONSES*/
/* raise of partner’s suit */
G6x10,0,0, 0,PO,NB, 0,T1MAJOR,0,1,0,0, GOOD, 4,0,0,0, 4011, ”RA-MAJ-1LVL”,
G10x12,0,0, 0,PO,NB, 0,T1MAJOR,0,1,0,0, GOOD, 3,0,0,0, 4012, ”RA-MAJ-2LVL”,
G6x10,0,0, 0,PO,NB, 0,0,0,1, 0, 0, GOOD, 3,0,0,0, 4011, ”RA-1LVL”,
G10x12,0,0, 0,PO,NB, 0,0,0,1, 0, 0, GOOD, 2,0,0,0, 4012, ”RA-2LVL”,
0,0,0, 0,PO,0, 0,0,0,2, 0, 0, EXCEL,3,0,0,0, 4011, ”RA-1LVL-WK1”,
0,0,0, OOV,PO,0,0,0,0,2, 0, 0, EXCEL,3,0,0,0, 4011, ”RA-1LVL-WK2”,
/* rebids */
0,0,0, 0,PO, IST, 0,0,0,0,LT25,0, 0, 4,0,0,0, 4113, “IFIT-GAMETRY”,
0,0,0, 0,PO, IST, 0,0,0,0,GE25,0, FAIR, 4,0,UNBID,0,NT3, “IFIT-NT”,

B: CONVENTIONS

Conventions are handled differently from other bids. Only the initial conventional
bid is generated from these rules. Once the convention is triggered, the responses
and rebids are handled by special convention routines.

Lowest priority for a convention is 7.
HCP TCP DIST | OP PT ME |VL EXC QT LVL TP LAST | TR PR CONV Stp 2nd VObj | name

/* ============= STAYMAN */
/* start Stayman sequence? */
G8P,0,MAJOR4, NB,PNT,0, 0,0,0,2,0,LPART, 0,8,STAYMAN,0,0, C2, “STAY-2C-1”,
0,G8P,MAJOR4, NB,PNT,0, 0,0,0,2,0,LPART, 0,8,STAYMAN,0,0, C2, “STAY-2C-2”,
G4x8,0,MAJOR4,NB,PNT,0, 0,0,0,2,0,LPART, 0,8,STAYMAN,0,0, C2, “STAY-2C-3”,
G8P,0,MAJOR4, NB,PNT,0, 0,0,0,3,0,LPART, 0,7,STAYMAN,0,0, C3, “STAY-3C-2”,
G8x10, 0,FLAT, 0,PNT,0, 0,0,0,2,0, 0, 0,6,STAYMAN,0,0, NT2, “STAY-NT-RSP”,

/* ============= JACOBY 5 */
0,0,SUIT6, NB,PNT,0, 0,NMINORS,0,2,0,LPART, 0,9,JACOBY,0,0, 2051, “JACOBY-MAJOR6”,

Listing 3. Examples of Bidding Rules

require a bid of your longest suit at the
first level, while a result of 2010 would
require a bid of your longest suit at the
one level higher than the current bid. The
4000 series shows similar coding for a raise
of previously bid suits.

Specify a specific bid, for example, 2
CLUBS when a convention calls for it. With
these essential tools and descriptions
defined, we can move to the design of the
actual rules.

3. Embody the Representation in the
Computer System. Transferring these con-
cepts to a computer representation con-
sisted of two steps: codification of rules
and analysis of a hand. The designer spec-
ifies the rules external to the program, so
the compiled program can be updated by
adding a new rule set.

Listing 3 shows excerpts from the
bidding rules (the actual game uses more
than 250 rules for each bidding system).
Each rule is given an internal mnemonic
for easier debugging. OPEN-NB-1 is a rule
for opening when no one has bid yet. It
requires total card points of 13 to 15
(G13x15), at least a five-card suit, no bids
by opponents or partner, and is given a
priority of 4 (about average).

If this rule is chosen, it returns a
result of 2011, which means to bid your
longest suit at the first level. Thus, the
rule will also work for a six-, seven-, or
eight-card or longer suit if no more spe-
cific rule is found. HCPs are irrelevant (0)
in this rule. This lets us use as many or as
few of the aspects as we need and is an
important feature of the AI’s rule deter-
mination system.

Under the opener’s rebids section,
we’ll look at two more examples. IFIT-
GAMETRY says that when my partner opens
(PO) and I supported the suit (IST), but we
have less than 25 points total between us
(LT25) and the bidding is below the fourth
level, return 4113.

This decodes as an instruction to
rebid the agreed suit at the third level. If
the opponents have interfered and the
bidding is higher, this rule won’t apply.
The next rule, IFIT-NT is similar. Again,
my partner opens and I support the suit,
but this time my trump support is fair, we
have more than 25 points, and I have
stoppers in the unbid suits. In this case,

GAME DEVELOPER • JUNE 1994 49

int AI_build_master_tran(int who)
{
int jcards[] = { 84, 74, 81, 75, 65 }; /* asc equiv of honors */
int side, partner, lopp, ropp, tp, lbid;
int x, z, i, j, k, nr, zlen;
char bidder[6];
int dcard, oppSuit;

side = getSide(who);
partner = getPartner(who);
lopp = getLHO(who);
ropp = getRHO(who);

/* set aspect 1 (HCP) */
if(hcp[who] >= 0 && hcp[who] <= 7) setAsp(side,HCP,G0x7);
if(hcp[who] >= 0 && hcp[who] <= 10) setAsp(side,HCP,G0x10);
if(hcp[who] >= 4 && hcp[who] <= 8) setAsp(side,HCP,G4x8);
if(hcp[who] >= 6 && hcp[who] <= 10) setAsp(side,HCP,G6x10);
if(hcp[who] >= 6 && hcp[who] <= 12) setAsp(side,HCP,G6x12);
....
if(hcp[who] >= 8) setAsp(side,HCP,G8P);
if(hcp[who] >= 10) setAsp(side,HCP,G10P);
if(hcp[who] >= 13) setAsp(side,HCP,G13P);
if(hcp[who] >= 16) setAsp(side,HCP,G16P);
if(hcp[who] >= 18) setAsp(side,HCP,G18P);
if(hcp[who] >= 21) setAsp(side,HCP,G21P);

/* set aspect 2 (TCP) */
.....
/* same as for HCP */

/* set aspect 3 (DIST) */
AI_build_dist_pattern(who);

/* all hands with singleton or void are unbalanced */
if(pattern[3] < 2) setAsp(side,DIST,UNBAL);
if(pattern[3] >= 2 && pattern[0] < 5) setAsp(side,DIST,FLAT);
for (i=CLUBS; i<=DIAMONDS;i++) {

if (dist[who][i] >= 4) setAsp(side,DIST,MINOR4);
if (dist[who][i] >= 5) {

setAsp(side,DIST, MINOR5);
setAsp(side,DIST, SUIT5);

}
}
for (i=HEARTS; i<=SPADES;i++) {

if (dist[who][i] >= 4) setAsp(side,DIST,MAJOR4);
if (dist[who][i] >= 5) {

setAsp(side,DIST, MAJOR5);
setAsp(side,DIST, SUIT5);

}
}
if (pattern[0] >= 6) setAsp(side,DIST,SUIT6);
if (pattern[0] >= 7) setAsp(side,DIST,SUIT7);
if (pattern[0] >= 8) setAsp(side,DIST,SUIT8);

/* set attribute for aspect 4 (OPP) */
if (statLHO[who] >= LHOP) setAsp(side,OPP, statLHO[who]);
if (statRHO[who] >= RHOP) setAsp(side,OPP, statRHO[who]);
if ((statLHO[who] <= LHOP && statRHO[who] <= RHOP)) {

setAsp(side,OPP, NB);
statOpp[who] = BOP;

}
if (statRHO[who] == RHOO || statLHO[who] == LHOO) statOpp[who] = OO;

Listing 4. AIBUILD (Continued on p. 50)

the program bids 3 NT. My partner then
has the option of pulling to four of the
suit or playing the 3 NT game.

Conventions are started in a similar
fashion. Thus, STAY-2C-1 says that with
eight or more HCPs and a four-card
major, if the opponents haven’t bid and
my partner has opened with 1 NT, the
result is a bid of 2 CLUBS with priority 8,
and that this will be noted as the start of a
STAYMAN sequence. Subsequent bids are
extremely controlled and handled by
hard-coded routines for each convention.

Similarly, JACOBY-MAJOR6 is triggered

when I have a six-card major (SUIT6 +
NMINORS) and any number of points. If the
opponents haven’t bid and my partner has
opened with 1 NT, the result is 2051, which
is the code for a transfer bid. This
instructs the player to bid one less than
the longest suit. If my suit is hearts, I bid
diamonds; if it’s spades, I bid hearts.

My partner must bid the next suit.
My partner, with, presumably, the
stronger hand bids the chosen suit first,
and the hand remains concealed. Subse-
quent Jacoby conventional bids are han-
dled by programmed functions. The logic

for the response to a Jacoby bid is shown
in Table 1.

All rules must be prepared in
advance and live in a reference file called
during the game. Whenever a bid is called
for, the program builds a new transaction
record, since information and status
change during each round of bidding.
One important element that changes is
the estimate of the points held by others.

If my partner opens, I know he or
she has at least 13 HCPs. But I also know
the opponents have at most 27 points
minus whatever I hold. Thus, each player
has a different estimate at any time.
These estimates by each player of mini-
mum and maximum holdings for each
other player are constantly updated.
They’re also available for the human play-
er to reference.

The construction of a master trans-
action is shown in Listing 4. Many terms
are relative, so we start by finding the cur-
rent values for our side, my partner, left
hand opponent (lopp), and right hand
opponent (ropp). Then, current values for
each aspect are determined. For hcp, this
is a series of compares. It’s possible for a
given aspect to take several values.
Aspects are stored as bits. Each value of
the aspect turns its bit on or off.

For distribution, we first check the
pattern of the hand, sorting the cards by
length of suit. pattern[0] holds the
longest suit. We can set the aspects for
minors, majors, five-card suits, and longer
suits. In similar fashion, we work through
the various status aspects. In some of
these cases, multiple aspects are triggered.

For example, if the status of LHOP and
RHOP is PASS, we also set the opponent sta-
tus to BOP (both opponents passed). Alter-
natively, if either opponent has overcalled
or opened, we can set that aspect. This
increases the flexibility of rule writing and
allows more concise rules, while retaining
the ability to specify an opponent for
those rules that require it. Usually, we
don’t care which opponent opened when
we’re deciding on a bid. But, if we’re con-
sidering a double, it makes a difference
whether it was the left or right opponent.

4. Create a search procedure. By now,
most of the work is behind us. What
remains is to find a rule that matches the

50 GAME DEVELOPER • JUNE 1994

A I T O T H E R E S C U E

if (statRHO[who] == RHOV || statLHO[who] == LHOV) statOpp[who] = OOV;
if (statRHO[who] == RHOPR || statLHO[who] == LHOPR) statOpp[who] = OPR;
if (statRHO[who] == RHONT || statLHO[who] == LHONT) statOpp[who] = ONT;
setAsp(side,OPP, statOpp[who]);

/* set aspect 5 (PARTNER) */
if(statPart[who] == PP) setAsp(side,PARTNER,NB);
setAsp(side,PARTNER,statPart[who]);

/* set aspect 6 (ME) */
setAsp(side,ME,statMe[who]);
if(statMe[who] == IP) setAsp(side,ME,NB);

/* set aspect 7 (VUL) */
if(vul[who] == 1) setAsp(side,VUL,WE);
if(vul[getRHO(who)] == 1) setAsp(side,VUL,THEY);
if(vul[who]==1 && vul[getRHO(who)]==1) setAsp(side,VUL,ALL);
if(vul[who] != 1) setAsp(side,VUL,NOTUS);

/* set aspect 13 (TRUMPS) */
setAsp(side,TRUMPS,0); /* reset */
z = getSuitBid(partner, 1);
if (z >= CLUBS && z <= SPADES) {

switch(support[who][z]) {
case POOR: setAsp(side,TRUMPS,POOR); break;
case FAIR: setAsp(side,TRUMPS,FAIR); break;
case GOOD: setAsp(side,TRUMPS,GOOD); break;
case EXCEL:

setAsp(side,TRUMPS,EXCEL);
setAsp(side,TRUMPS,GOOD);
break;

}
}
if (getSide(lastBidder) == getSide(getLHO(who))) {

oppSuit = getSuit(lastCall);
if (oppSuit >= CLUBS && oppSuit <= SPADES) {

if (dist[who][oppSuit] > 4) {
if (holding[who][oppSuit] > Q) setAsp(side,TRUMPS,EXCELOPP);
else setAsp(side,TRUMPS,GOODOPP);

}
if (dist[who][oppSuit] > 5) setAsp(side,TRUMPS,EXCELOPP);

}
}

setAsp(side,PRIORITY,2); /* set aspect 14 (PRIORITY) to 2 */

Listing 4. AIBUILD (Continued from p. 49)

current evaluation of the hand as closely
as possible. This is done in the main rou-
tine of the AI engine. Since each aspect is
a series of bits, we can test it against all
the rules by performing a logical AND. The
engine works by matching the master
transaction that represents the individual
hand against all possible rules, sifting out
the ones that apply. The resulting list is
then sorted by priority, and the best rule
is applied.

A decode function then takes the
result of the matching. If it’s a direct bid
(PASS, 2 CLUBS, and so on), it just returns
the bid. Otherwise, the bid is deciphered,
and the result passed back. In either case,
the bid is first checked to be sure that it is
legal. Thus, if the current bid is 3 CLUBS,
and the suggested bid is 2 HEARTS, the bid
will be rejected, and the next potential
rule will be considered. In practice, this is
a rare occurrence. A summary of the AI
engine is shown in Figure 1.

Completing the Bridge
Since the bridge world is tightly con-
trolled by a limited number of cards and a
restricted set of rules for bidding, it’s pos-
sible to build a program that plays a credi-
ble version of the game. Whether the

program is truly intelligent is less likely.
Its very strength is a reason why broader
AI fails.

The circumscribed description of the
world causes the program to be blind to
outside effects. The essence of intelligence
is to act appropriately when there is no
simple predefined problem or task domain
in which to search for solutions. For these
reasons, it’s a giant, perhaps impossible
step from a bridge game player to a com-
mon-sense program. This is almost a defi-
nition of common sense—we accuse peo-
ple of lacking common sense when some
situation has blinded them to a task space
of potentially relevant actions. ■

Steve Estvanik is a professional game
designer in Seattle, Wash. He can be reached
via e-mail at 76703.3046@compuserve.com.
General questions on this article can be left on
CompuServe in section 11 (Games Design) of
the GAMERS forum for open discussion.

GAME DEVELOPER • JUNE 1994 51

Figure 1. The AI Engine

Standard rules

Possible rules

Illegal bid

Validate
rule

Build transactions
and find best rule

Special rules

Conventions

Current hand

Legal bid

For further gameplay, MVP Bridge is
available in the file MVPBR.ZIP in LIB13
of the GAMERS forum on CompuServe.

M V P B R I D G E

The sheer number of

skills necessary to

exploit 3D Studio

makes for a highly

lucrative skill set—

you‘ll find tools and

techniques in this

complex package to

launch your game into

another dimension.
52 GAME DEVELOPER • JUNE 1994

T
here are two ways to get three-
dimensional effects in your
game. The first is by program-
ming with high-performance
three-dimensional algorithms.
This is the only way that allows
players to interact with environ-
ments in real time for simulators

or arcade games. While fast bitmap
manipulation à la Doom and fast texture
mapping à la IndyCar Racing are vast
improvements over the original Flight
Simulator, photorealistic three dimen-
sions updated in real time are years away.

How many years? About 20, if a
trend that’s held true for the past 20
years continues. Moore’s Law states that
every 18 months you get twice the com-
puting power per buck. Today, it takes
the typical home PC about 16 minutes
to create a view into a moderately com-
plicated scene. In 18 months that will be
8 minutes, in three years only 4 minutes,
and so on. Now, keep in mind that this
is for full-screen video at SuperVGA
resolutions and 24-bit color—in five
years or less, we should be able to
achieve real-time three dimensional ren-
dering in viewports that take up, say, a
quarter of the screen.

What you can do today is render
three-dimensional movements at devel-
opment time, creating predefined paths
through the game’s environment. These
animations can then be linked at run
time to create turn-based games.

What Is It?
Autodesk’s 3D Studio is a tool for creat-
ing and animating three-dimensional
objects. Although the majority of
broadcast and film computer animation

is still done on UNIX workstations, such
as those produced by Silicon Graphics,
3D Studio Release 3, which shipped in
the second half of 1993, has a competi-
tive feature list, runs on (relatively) cheap
Intel-based hardware, allows for C-based
extensions, and, with its network render-
ing features, blows away UNIX systems
on a price-per-frame basis.

Who Uses It?
Typically, 3D Studio is used throughout
the creative process. On the set of the
upcoming Mechadeus production The
Daedelus Encounter, we saw 3D Studio
used in a number of ways:
• As a production design tool to

demonstrate the dark look of the vir-
tual sets the actors were moving
through.

• As a three-dimensional storyboard to
rough out interiors and character
placement on the set floor itself.
Instead of hitting marks taped to the
floor of a set, actors Tia Carrere and
Christian Bouchet moved against a
bluescreen, were Chromakeyed
against a 3D Studio created interior,
and made sure their motions inter-
sected two 3D Studio characters ren-
dered in gold metal that looked mys-
teriously like Academy Award statues.

• As the only medium in which some
creatures existed (Mechadeus mod-
eled the creatures in clay, made com-
puter wireframes of them in 3D Stu-
dio, and animated them there).

The most impressive thing was that
everything we were seeing was flexible
and contingent—the final virtual sets
would be redone with higher resolutions,
moodier lighting, and adjusted for the

What is
3D Studio?

by Larry O’Brien

3 D S T U D I O

motion subtleties of the human actors.
The ubiquitous nature of 3D Studio

on the set points out a double-edged
aspect of the product. 3D Studio is no
magical shortcut to astonishing effects.
Many roles of a traditional production lot
have been captured in a single product
and, while this makes it an amazing tool,
just think of the roles a 3D Studio tech-
nician has to play.

Production Designer. You’ve got to
design not just the virtual sets but every
aspect of the virtual world, and, unless
you’re doing something like the
Mechadeus project, you may be design-
ing every single thing in that world, from
the main characters’ look to the molding
on a picture frame hanging in the back-
ground of a single shot.

Props Master. Once you know all
those things, you have to create them.
For some things, you’ll be able to use
commercially available (but not cheap)
meshes intended primarily for architects.
You want a chair? You got it. You want
a cyborg? You’ll have to sculpt it in 3D
Studio.

Director. You’ll have to figure out
the movement of cameras, objects, and
actors within the virtual set.

Actor. There’s no yelling “Action”
and watching what happens in 3D Stu-
dio. You have to specify every discontin-
uous motion. However, once you specify
a path, 3D Studio can automatically cal-
culate the intermediate stages (tweens),
so, to some extent, you only have to spec-
ify master scenes. Unfortunately, 3D
Studio doesn’t have the knowledge of the
real world of a professional fill-in anima-
tor, so you can’t say “he sneezes” and let
someone else do the work—a sneeze may

require 10 master scenes, manipulating
dozens of control points on the eyes,
cheeks, nose, and mouth.

Cinematographer and Lighting Tech-
nician. You place cameras, specify their
lenses, and move them in pans and
swoops (and some things, like complex
rotations and extended zooms, that are
impossible with real cameras). Lights
work the same way and can be controlled
in terms of color, drop off, and hotspots.

Editor. Cameras are invisible in 3D
Studio, so you can place a dozen in a
scene and create something with enough
jump cuts to outdo Oliver Stone.

Printer. Finally, getting the final
animation into a delivery medium (gen-
erally, a series of FLC or FLI animations
that will be tied together with authoring

GAME DEVELOPER • JUNE 1994 53

Figure 1. The Shaper

The latest Trilobyte release relied heavi-
ly on 3D Studio for its exciting visual
elements.

software such as Director) may not be a
trivial matter. You may generate hun-
dreds of large files that need to be
tracked and organized.

One way or another, the sheer num-
ber of skills necessary to exploit 3D Stu-
dio fully represents a formidable barrier
to entry but makes for a highly lucrative
skill set. If you build up a portfolio of
impressive 3D Studio animations, you’ll

have game companies knocking down
your door trying to hire you.

Working with 3D Studio
3D Studio is a dongle-protected extend-
ed DOS program built with the Phar
Lap DOS extender. Installation will take
up the better part of 40MB of hard disk
space, with a CD-ROM full of addition-
al material thrown in for good measure.

The Phar Lap DOS Extender is more
stable than most and well supported, so,
unless you’re running really bizarre hard-
ware, you should be alright.

3D Studio requires VESA graphics
extensions, but most high-end graphics
cards go beyond this to provide special
drivers (it uses the same drivers as Auto-
CAD, so check your card’s installation
disk for those). One of the smartest
things you can do first, though, is call
Vibrant Technologies (US: 800-937-
1711, Europe: +44-0-91478-1016, Tai-
wan: +886-2-593-5201) and buy the
appropriate Liquid Speed driver for your
video card. This will speed up rendering
time significantly and, if you value your
time at all, will quickly pay for itself.

Speaking of things that will pay for
themselves, many 3D Studio users favor
OS/2 for running the program. It’s easy
to configure (follow the instructions in
3D Studio’s READ.ME file), there’s no
conflict with the DOS extender, and,
most importantly, you can switch out of
3D Studio and use other programs while
rendering in the background, which you
cannot do under Windows. RAM
requirements vary. The more complicat-
ed a scene and the more bitmaps used for
texture mapping, the more RAM is
needed. Some of the high-resolution
examples on the example CD couldn’t be
rendered even by a system with 24MB of
RAM. For high-end production, plan
on 32MB or even 64MB of RAM.

I should emphasize here that all
these requirements only apply to the
developer. The animations produced by
3D Studio are just data files and can be
rendered at a resolution appropriate for
whatever target machine you choose.

3D Studio comes with a tutorial
that, even though it takes several days to
get through, gives only a cursory
overview of the product. If you’re a free-
spirited soul with no time deadlines, you
can get away with just jumping in and
asking a lot of questions on on-line
hotbeds of 3D Studio users such as
CompuServe’s ASOFT forum. But if
you’re under deadline, you’ll certainly
want to check out training resources such
as AutoDesk University (Call 415-905-
2354 for more information. In the “Don’t

54 GAME DEVELOPER • JUNE 1994

3 D S T U D I O

Figure 2. The Lofter

Figure 3. 3D Editor

call me a whore” department, this is
jointly produced by AutoDesk and Miller
Freeman Inc., the company that publish-
es Game Developer) and the highly
regarded book Inside 3D Studio Release 3
by Steven Elliott, Phillip Miller, and
Greg Pyros, by New Riders Publishing
(I’d tell you more, but they haven’t sent
us a review copy—hint, hint!)

To create an animation in 3D Stu-
dio, you work through a series of sub-
programs. These programs are the
Shaper, the Lofter, the Material Editor,
the 3D Editor, and the Keyframer. The
general interface for all these programs is
similar, with a number of viewports
showing different perspectives on the
object and a telescoping menu system on
the right-hand side.

The interface wouldn’t get any
awards from a computer-human interface
expert, but it does minimize the interfer-
ence of the menu with the screen ele-
ments. The basic metaphor is to work
down through the menu structure: create,
select, modify, configure, and render. It
takes a while to get used to that basic
structure and familiarize yourself with the
use of the various subprograms, but even-
tually the whole thing starts to seem
almost coherent.

Shaper
The Shaper is used to create two-dimen-
sional objects that serve as starting points
for more complex structures. In Figure
1, you can see the single large viewport of
the Shaper as well as the menu telescop-
ing down the right-hand side of the
screen. In this view, I’m in the Create
mode, and, as you can see, I just finished
with the Create/Text/Place option.

The text I’ve created (“Game Devel-
oper” in a calligraphic font) shows in the
Shape viewport, with control points
determining the vertices of the polygon.
The numbers in the upper left-hand cor-
ner reflect the position of the mouse
(represented by the crosshairs) and hide
the various system menus that choose
between sub-programs, load and unload
projects, and configure the overall sys-
tem. The control buttons in the lower
right basically control the various zoom-
ing options as well as some selection and

undo options. Finally, there is a message
bar along the bottom of the screen.

The capabilities of the Shaper
should be familiar to anyone who has
used a structured, vector-based illustra-
tion tool. Basically, any object is made of
straight lines and curves. If you want a
really organic shape, you must spend a lot
of time working on the details.

The Lofter
Once you’ve created a base shape in the
Shaper, you turn it into a three-dimen-
sional object in the Lofter. I think of the
two basic options in the Lofter as extrud-
ing an object and lathing it. Figure 2
shows the Lofter as I specify how to
extrude the logo I created in the Shaper.
On the right, you can see I’m in the mid-
dle of a Deform/Scale/Move action. In the
upper left corner, you can see I’m at
Level 1 of the path along which I’ll be
extruding the logo, symmetry is on, and
the smaller end of the logo will be
41.39% of the long end.

Along the left of the screen, you see
a view looking straight down on the logo
showing the path the object will be
extruded from front to back. (If I’d cho-
sen to lathe the logo instead of having it
extruded from front to back, it would be
extruded in a circle.) Below that, you can
see the head-on view of the logo, and
below that is the Y-scale that, because
symmetry is on, will be deformed in the
same way as the X-scale, which is shown
in the large viewport.

I could continue to work on the
path in either of the viewports, twisting
the logo, making it expand or contract,
and so on, along as many control points
as desired. For me, this and the Material

Editor are the hardest of the subpro-
grams of 3D Studio to master. However,
once you get what you desire, you hit a
button and wait a few seconds while the
object is created. Even a moderately
complicated shape may have thousands
of vertices, but 3D Studio has the ability
to optimize the shape to simplify it.

3D Editor
Once you’re satisfied with the product of
the Lofter, it’s time to use the 3D Editor
to set the virtual stage. Simple geometric
figures such as boxes and tubes do not
need to be created in the Shaper and
Lofter, but can be created directly in the
3D Editor. 3D Editor is where much of
the work in 3D Studio gets done. The
default viewports shown in Figure 3
show a Top view, a Front view, a Left
view, and a Camera view.

To do any three-dimensional
manipulation, you generally have to
manipulate the object in two viewports.
Remember those tests you took in eighth
grade that tried to determine whether
you’d be an engineer, a doctor, or a
homicidal maniac? It’s sort of like one of
those. (When I took those tests, I had
significantly below-average tendencies
toward everything. This brought me
great acclaim in my peer group.)

After you’ve placed your objects, you
assign materials to them. Materials can
be uniform (plastic or metal), while oth-
ers are textured and need mapping coor-

GAME DEVELOPER • JUNE 1994 55

Figure 4. Rendering an Image Figure 5. A Complex Image

dinates to be applied. For instance, Fig-
ure 3 shows me selecting a Marble tex-
ture map for the logo. With mapping
coordinates, you can rotate the map, pro-
ject it out onto a sphere, or project it
onto a cylinder.

This is also the point where you
play cinematographer and lighting tech-
nician. There are a variety of lights that
can be modified either by RGB or HLS
values. The cameras come with stock
lenses, but you can modify these to your
heart’s content.

Finally, you can render a still from
this editor. You can configure the ren-
derer to whatever output resolution you
want (obviously, the lower the resolution
the faster the rendering). On a 486/33
with 16MB of RAM running OS/2, the
renderer took about two minutes to pro-
duce Figure 4 at 800-by-600 resolution.
On the other hand, complex illustrations
with bitmaps, such as that in Figure 5
from Trilobyte Production’s upcoming
11th Hour, probably would take the
same machine an hour or more to render.

Materials Editor
Although 3D Studio comes with a num-
ber of material libraries, eventually you’ll
want to move beyond them (especially
when it comes to texture maps). For
this, you use the Materials Editor. The

Materials Editor sports an entirely differ-
ent interface from the other subprograms
of 3D Studio, as you can see in Figure 6.
This interface is much more centered on
dialogues and sliders.

In Figure 6, I have three materials
that I am working with and have current-
ly selected Blue Glass, the material in the
third frame. To judge materials, they are
rendered onto a sphere or a cube (I’ve
selected the sphere) with a number of
shading options. You adjust the ambi-
ent, diffuse, and specular colors (mid-left
in the figure) to set the basic characteris-
tic of the material and use the various
modifiers in the center and bottom of the
screen to create effects and specify the
bitmap you want to be the basis of what-
ever texture map the material uses. When
you’re done with a material, you place it
in a library, from which you can select it
in the 3D Editor.

I mentioned previously that for me
this is a difficult program to master, but I
do not think that the different interface is
entirely to blame for that (although it
doesn’t help). It’s just that, of all the
skills needed in 3D Studio, this is the
one I have the least experience with.

Keyframer
Once you’ve created the set, it’s time to
play director. This is where the

Keyframer comes in. Figure 7 shows the
Keyframer working on an animation with
the Game Developer text. (To speed up
the screen refreshes, you can use the Dis-
play/Geometry/Box option to display all
objects in their bounding box, as can be
seen in the Camera viewport on the
lower right of Figure 7.) In the lower
right, there are now some VCR-style
controls.

In Figure 7, we’re at the 15th of 30
frames, and I’ve dollied the camera for-
ward (you can see its original location in
blue in the Left viewport). As you can
see in the menu, I could have moved the
camera anywhere in three-dimensional
space, rolled it, or adjusted its field of
view or perspective. Similar things can
be done with objects and lights. 3D Stu-
dio takes care of tweening intermediate
frames, and you can make sure that noth-
ing is jerky by using spline-based paths
for everything.

The first item in the menu is Hier-
archy. This is a great aid in animation.
You use the Hierarchy Editor to link
together the various objects created in the
3D Editor. Once objects are linked, you
can constrain their movement in a variety
of ways. For instance, if you had a per-
son, the thigh bone’s connected to the
shin bone, the shin bone’s connected to
the (you got it!) ankle bone, and so forth.
Once you’ve linked them, you basically
want to constrain those things so they
only move through one plane (unless
you’re animating Joe Theissman getting
tackled). This is easily done with the
Hierarchy Editor. More complex hierar-
chies require the use of dummy objects,
and, if you’re interested in creating ani-
mations of complex objects, you’ll be
spending a good deal of your time mas-
tering this feature.

Hierarchies are good for mechanical
objects, but three-dimensional morphing
gives better results for living creatures (or
anything that you want to have a flexible
skin). The morphing in 3D Studio is not
to be confused with that used in those
$100 morphing toys. Those are strictly
two-dimensional (and some cheat and
use simple bitmap fades instead of mor-
phing, but that’s another story), while 3D
Studio will transform one three-dimen-

56 GAME DEVELOPER • JUNE 1994

3 D S T U D I O

Figure 6. The Materials Editor

sional object into another as long as the
two have exactly the same number of ver-
tices (a nontrivial restriction). You can
move the camera wherever you want dur-
ing this transformation, so 3D Studio can
handle Terminator-style shots where the
camera follows the object as it moves by,
transforming as it goes.

The Keyframer has a Preview
option for creating low-resolution, non-
color versions of the sequence, and you’ll
be using this a lot, because rendering a
full scene is going to tie up your worksta-
tion (or workstations) for a long time.
3D Studio has become a hit with game
developers because of its network render-
ing capabilities. For no extra money, you
can install 3D Studio on a number of
machines and, when you render a scene,
your master workstation will send out the
job to the slaves.

Every time one finishes a frame, it is
given a new one. So you still can’t gener-
ate a frame at the rate of a UNIX work-
station, but if you’re generating 10 frames
in parallel, you can achieve much higher
overall throughput. The slave machines
can be anything—a dozen rack-mounted
486DX4s would make a nice system and
could be put together for less than the
cost of a single loaded UNIX workstation
(and, if you placed it near an air duct,
could serve as central heating for your
offices). Such a system is called a “ren-
dering farm,” (doesn’t that phrase make
you think of Silence of the Lambs?) and is
becoming a standard way of generating
animations.

Extending 3D Studio
No product can do everything, especially
in a field as rapidly evolving as computer
animation. Luckily, 3D Studio provides
for this with external C processes called
IPAS routines. Many such routines are
available from such companies as the
Yost Group Inc. (you can ask for a cata-
logue by writing to them at 3739 Balboa
St. #230, San Francisco, Calif. 94121).

Some of the routines they provide
include special effects, such as flip,
clamp, crumple, smoke, water, and spat-
ter; procedural modeling, such as twist,
stretch, reshape, and melt; image pro-
cessing, such as lens flare, blur, glow, and

highlight filter; and—the hot topic—par-
ticle system procedures for snow, rain,
explode, disintegrate, fireworks, and
spurt.

We’ll be reviewing existing IPAS
libraries as well as telling you how to
build your own in future issues of Game
Developer, but that all lies outside a gen-
eral review of 3D Studio. So, if you’ll
excuse me, it’s 6:00 p.m. on a Friday
night, and I don’t have a network of Pen-
tiums slaved to my system, so I have to
fire up the renderer and get started on

the Klingon warbird flyby. Maybe it’ll be
done by Monday. ■

Larry O’Brien is the editor of Game
Developer. He’s also been known to pro-
gram for Windows in C++, write the occa-
sional screenplay, and play Ultimate Frisbee
for 40 hours straight, none of which are
options on eighth-grade career aptitude tests.
He can be reached via e-mail at
76702.705@compuserve.com or through
Game Developer magazine.

GAME DEVELOPER • JUNE 1994 57

Figure 7. The Keyframer

Autodesk Inc.
2320 Marinship Wy.
Sausalito, CA 94965
(800) 525-2763

Price: $2,995

Run-time fee: N/A

Support: Only available through dealer channel
(approximately 500) who provide support

Money-back policy: 90-day limited warranty

Operating system support: MS DOS 3.3 or later

Hardware requirements: 8MB of RAM, Intel math coprocessor, SuperVGA
display device (at least 640 by 480 by 256),
and pointing device (mouse, SummaSketch-
compatible table, or ADI pointing device)

Minimum hard disk space: 20MB

3 D S T U D I O R E L E A S E 3

	back:

