
T H E L E A D I N G G A M E I N D U S T R Y M A G A Z I N E

F E A T U R E : T O P 5 0 D E V E L O P E R S R E P O R T

0905gd_cover_vIbs.indd 10905gd_cover_vIbs.indd 1 5/19/09 7:57:13 PM5/19/09 7:57:13 PM

Proton Pact

©2009, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the
U.S. and other countries. *Other names and brands are the property of their respective owners. Image courtesy
of Terminal Reality and Sony. Ghostbusters is a registered trademark of Sony Pictures LTD in the United States
and/or other countries. The ratings icon is a registered trademark of the Entertainment Software Association.

Mark Randel, CEO Terminal Reality
is putting on his best threads with Intel®

and crossing streams with confidence.

“Spectrally speaking, teaming up with Intel on the development
of Ghostbusters: The Video Game was the ecto-logical choice.
I can't wait until everybody has fully threaded games on their
desktop, because what's possible and what’s going to happen

in the game environment is going to blow peoples’ minds.”

Stay current on the latest software
developments in visual computing at:

www.intel.com/software/visualadrenaline

http://www.intel.com/software/visualadrenaline

GAME DEVELOPER | XXXXX XXXX 1
COVER SOURCE ART: TOMB RAIDER UNDERWORLD ART TEAM

CONTENTS.0609
VOLUME 16 NUMBER 6

P O S T M O R T E M

34 CRYSTAL DYNAMICS' TOMB RAIDER: UNDERWORLD
TOMB RAIDER: UNDERWORLD was originally planned as an "easy" sequel
to the previous game in the series, using the same toolchain—but
it never quite works out that way. Eric Lindstrom describes the
process, highlighting instances in which the team wasn't able to
avoid known problems. By Eric Lindstrom

F E AT U R E S

6 TOP 50 DEVELOPERS
Our second annual Top 50 Developers report uses metrics such as
review scores, revenues, and reputation surveys to determine the
best and brightest developers that released games in the past year.
By Trevor Wilson

15 INFINITE SPACE
Most MMOs use multiple shards to break up their game universes. EVE
ONLINE, by contrast, uses a single shard. Here, various members of the
team, from programmers to designers, share why they feel one shard is
the way to go. By the EVE Online team.

22 STAYING POWER
Microsoft researcher Bruce Phillips finds that players often quit
single-player campaigns before they're complete. Citing psychology
and exclusive statistics, Phillips proposes that "learning goals" can
help keep players from getting discouraged. By Bruce Phillips

D E PA R T M E N T S

 2 GAME PLAN By Brandon Sheffield [E D I T O R I A L]

The Personality Problem

 4 HEADS UP DISPLAY [N E W S]

Thinking After Dark conference report, GP2X Wiz launch,
GDC: THE GAME, and more.

 41 TOOL BOX By Greg Snook [R E V I E W]

Blade Games World's Blade3D

 43 THE INNER PRODUCT By Noel Llopis [P R O G R A M M I N G]

Mock Objects: Friends or Foes?

 46 PIXEL PUSHER By Steve Theodore [A R T]

Metagames

 49 DESIGN OF THE TIMES By Damion Schubert [D E S I G N]

Tactical Transparency

 51 AURAL FIXATION By Jesse Harlin [S O U N D]

Thinking Outside the Booth

56 ARRESTED DEVELOPMENT By Matthew Wasteland [H U M O R]

Ask a Pizza

WWW.GDMAG.COM 1

0905gd_toc_vIbs.indd 10905gd_toc_vIbs.indd 1 5/19/09 7:25:42 PM5/19/09 7:25:42 PM

http://WWW.GDMAG.COM

GAME PLAN // BRANDON SHEFFIELD

HEADLINE
DEK

Think Services, 600 Harrison St., 6th Fl.,
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

 www.gdmag.com

SUBSCRIPTION SERVICES

FOR INFORMATION, ORDER QUESTIONS, AND
ADDRESS CHANGES
t: 800.250.2429 f: 847.763.9606
e: gamedeveloper@halldata.com

EDITORIAL

PUBLISHER
Simon Carless l scarless@gdmag.com
EDITOR-IN-CHIEF
Brandon Sheffield l bsheffield@gdmag.com
PRODUCTION EDITOR
Jeffrey Fleming l jfleming@gdmag.com
ART DIRECTOR
Joseph Mitch l jmitch@gdmag.com
SENIOR CONTRIBUTING EDITOR
Jill Duffy l jduffy@gdmag.com
CONTRIBUTING EDITORS
Jesse Harlin l jharlin@gdmag.com
Steve Theodore l stheodore@gdmag.com
Noel Llopis l nllopis@gdmag.com
Soren Johnson l sjohnson@gdmag.com
Damion Schubert l dschubert@gdmag.com
ADVISORY BOARD
Hal Barwood Designer-at-Large
Mick West Independent
Brad Bulkley Neversoft
Clinton Keith High Moon Studios
Ryan Lesser Harmonix
Mark DeLoura Independent

ADVERTISING SALES

GLOBAL SALES DIRECTOR
Aaron Murawski e: amurawski@think-services.com
t: 415.947.6227
MEDIA ACCOUNT MANAGER
John Malik Watson e: jmwatson@think-services.com
t: 415.947.6224
GLOBAL ACCOUNT MANAGER, EDUCATION
AND RECRUITMENT

Gina Gross e: ggross@think-services.com
t: 415.947.6241
COORDINATOR, EDUCATION AND RECRUITMENT
Rafael Vallin e: rvallin@think-services.com
t: 415.947.6223

ADVERTISING PRODUCTION

PRODUCTION MANAGER
Robert Steigleider e: rsteigleider@ubm-us.com

REPRINTS

WRIGHT'S REPRINTS
Ryan Pratt e: rpratt@wrightsreprints.com
t: 877.652.5295

THINK SERVICES

CEO THINK SERVICES Philip Chapnick
GROUP DIRECTOR Kathy Schoback
CREATIVE DIRECTOR Cliff Scorso

AUDIENCE DEVELOPMENT

GROUP DIRECTOR Kathy Henry
e: khenry@techinsights.com
DIRECTOR Kristi Cunningham
e: kcunningham@techinsights.com
LIST RENTAL Merit Direct LLC t: 914.368.1000

MARKETING

SERVICES MARKETING COORDINATOR Laura Robison
e: lrobison@think-services.com

UBM TECHNOLOGY MANAGEMENT

CHIEF EXECUTIVE OFFICER David Levin
CHIEF OPERATING OFFICER Scott Mozarsky
CHIEF FINANCIAL OFFICER David Wein
CHIEF INFORMATION OFFICER Kevin Prinz
CORPORATE SENIOR VP SALES Anne Marie Miller
SENIOR VP, STRATEGIC DEV. AND BUSINESS ADMIN. Pat Nohilly
SENIOR VP, MANUFACTURING Marie Myers

W W W . C M P G A M E . C O M

THE PERSONALITY PROBLEM
THE IPHONE’S APP STORE AS A MICROCOSM OF THE INDUSTRY AT LARGE

A FRIEND OF MINE RECENTLY
released a game for iPhone by
the name of TRIXEL. It’s a fine
puzzle game, somewhat similar
to LIGHTS OUT, in which you flip
mismatched colored tiles to
match an existing tile image.
People who play it definitely
seem to like it. But visually this
game has almost no personality.
Certainly, the tiles are large and
colorful, there are power-ups
and collectables, and the audio
was carefully attended to. But if
you look at a screenshot and a
description, you would likely not
be compelled.

Another group of friends, the
folks at Capybara Games, put out
an iPhone game called CRITTER
CRUNCH. This is a puzzle game as
well, similar to MAGICAL DROP, and
starring a cute frog-thing that
eats cutely animated characters.
Now, I can’t really speak to which
of these two games is more
successful, but I can say that if I
look at a screenshot of each, one
compels me with characters and
bright colors, whereas the other
looks either a bit kiddie or a bit
math-oriented, depending on how
you feel about it (and in reality,
the game can get a bit hardcore).

Taken as a microcosm of the
industry, the iTunes App Store
emphasizes some larger industry
truths. In the case of something
so impulse-buy-oriented as
iPhone games, when a number
of free titles already exist, one
really needs a hook to succeed.
But then, hooks are necessarily
oriented toward certain audiences.
Some folks may really like the cute
characters in CRITTER CRUNCH, but
others may be completely turned
off. Both TRIXEL and CRITTER CRUNCH
are good, and both lie within the
puzzle genre. So how do you get
people interested in TRIXEL, when
CRITTER CRUNCH is sitting next to it
in the virtual shelves?

Looking at the bigger picture,
console games are only on the
store shelves for a limited time,

before they’re shuffled away to
make room for something new.
They have very limited space in
which to get the interest of the
consumer who just wanders
into a GameStop looking for
something new to play, which
happens more than most of us
realize. Someone like you or I will
go to the store with a head full of
previews, trailers, screenshots,
story descriptions, and maybe a
few behind-the-scenes stories.
But the average consumer is just
showing up at a store, looking to
be entertained. These games need
to grab consumers immediately as
well, and have something the idle
browser can latch on to.

CASUAL CONSUMERS
» I recently overheard a
conversation in a GameStop—a
late-teens customer walked in,
and found the box art for FINAL
FANTASY XII appealing. He brought it
to the cashier and asked what kind
of game it was. “An RPG,” was the
response. “Oh. What’s that?” “Um,
you know, a role-playing game.
You have a group of guys, and you
go on a quest, and you level up
and stuff.” “Oh. Is that fun?”

This anecdote just shows that
we can’t rely on the store itself
to sell our products. Developers
complain about releasing games
on Apple’s App Store amidst a
sea of other titles, with no way
to distinguish a title other than
getting featured by Apple. Well
shouldn't we be used to dealing
with that by now? The same thing
happens in retail. And indeed,
isn’t it better than a situation in
which your game drops out of
the store entirely after a couple
months, as with retail? And
there are no used games there
to cannibalize your actual sales
(though one could argue that free
games might take a chunk away).

So at this point it becomes
a marketing issue. I wouldn’t
say that independent iPhone
developers need a marketer,

but they do need to do some
marketing themselves. I’m not
just talking about sending out
free review codes to folks you
might know in the media, though
that helps a lot. The reason a
personality-free game like SUDOKU
is so popular now is likely because
of this kind of marketing—the
mom-oriented media got ahold of
it, and it took off.

What I’m talking about is
“marketing” in the actual planning
phase. If you want the game to
sell, realize you’re not just making
it for people who innately get it,
like you—you’re making the game
for people like that GameStop
customer. People who don’t
understand your game, because
they haven’t played it, and have
maybe never played anything
in the genre. For these people,
you need appealing screenshots
that make your game look like
something. You need a compelling
description, and possibly a demo.

That’s the kind of marketing
I mean—marketing at the base
level. Questions like “Who will
this appeal to visually? How
can I describe my game in three
sentences?” should be at the
front of your mind. The kinds of
questions publishers would ask,
if you had one. Show the game
to your mom, or your kid, or your
neighbor, and see what they think.

MARKET IN FOCUS
» A lot of companies and
developers want to reach larger
mainstream audiences, and the
iPhone takes all the elements of
the wider game industry and puts
a greater focus on it. The game
has to look pretty, but simple.
The concept has to be easy to
understand, but difficult to master.
It’s everything we’re doing for AAA
titles, but under a microscope. I
think there are a lot of lessons to
learn here, and the iPhone could
potentially be used as a test
market for larger concepts.

—Brandon Sheffield

GAME DEVELOPER | JUNE/JULY 2009 2

0906gd_gameplan_vIbs.indd 20906gd_gameplan_vIbs.indd 2 5/19/09 7:28:47 PM5/19/09 7:28:47 PM

http://www.gdmag.com
mailto:gamedeveloper@halldata.com
mailto:scarless@gdmag.com
mailto:bsheffield@gdmag.com
mailto:jfleming@gdmag.com
mailto:jmitch@gdmag.com
mailto:jduffy@gdmag.com
mailto:jharlin@gdmag.com
mailto:stheodore@gdmag.com
mailto:nllopis@gdmag.com
mailto:sjohnson@gdmag.com
mailto:dschubert@gdmag.com
mailto:amurawski@think-services.com
mailto:jmwatson@think-services.com
mailto:ggross@think-services.com
mailto:rvallin@think-services.com
mailto:rsteigleider@ubm-us.com
mailto:rpratt@wrightsreprints.com
mailto:khenry@techinsights.com
mailto:kcunningham@techinsights.com
mailto:lrobison@think-services.com
http://WWW.CMPGAME.COM

HEADS-UP DISPLAY

GAME DEVELOPER | JUNE/JULY 2009 4

IN LATE APRIL I WAS FORTUNATE
enough to participate in Thinking
After Dark: Welcome to the World of
Horror Video Games, a conference
organized by a research group
from the University of Montreal
called Ludicine and run by Bernard
Perron, who has written at length
about horror games. Held in what
appeared to be an old church
(of which Montreal is in no short
supply), the small conference
attracted a wide range of academic
scholars from around the world, a
couple of industry folk, and some
hard-core fans. The event lasted
three days and covered a wide
swath of topics related to horror
games; titles like RESIDENT EVIL,
SILENT HILL, and FATAL FRAME were

recurring topics of discussion. In
true Canadian fashion the talks
were split almost evenly between
French and English, and translated
slides were provided on a separate
screen. Here are a few highlights
from the event.

Dominic Arsenault and Carl
Therrien, both part of Ludicine,
discussed the difficulty of using
a single genre to categorize
horror games. Both separated
genre into mechanical and
thematic components (“survival”
vs “horror”), and discussed
how the division between the
two makes categorizing horror
games in this way particularly
problematic. Arsenault drew from

research in film studies to show
that mechanical genres evolve
with iteration (the “DOOM clone”
genre was replaced by the “first
person shooter” genre around
1998, according to his research),
while thematic genres draw from
other mediums and are primarily
concerned with aesthetics. Both
Arsenault and Therrien concluded
that the only true definition of
genre is popular consensus.
Aresnault has made his slides
available: www.le-ludophile.com/
Files/Arsenault-Thinking_After_Dark_
paper.ppt

Alexis Blanchet, from the
Université Paris Ouest Nanterre
La Défense, shared details of
his three-year research project

aimed at compiling
a database of all
games based on films.
One of his many findings was
that horror is a fairly infrequently
adapted genre (there have
only been 51 horror film game
adaptations to date, compared with
232 action films, 222 adventure
movies, and 169 comedies), and
that the majority of adaptations
come from films that are rated PG
and have original screenplays.
Curiously, spikes in the release of
film-based games seem to occur
just before new console hardware
launches. Blanchet’s findings are
available online (in French) at:
http://jeuvideal.com/?p=215

Richard Rouse III, lead designer
of THE SUFFERING series and current
lead single player designer at Kaos
Studios, gave a postmortem of
the development process behind
THE SUFFERING. He discussed the
difference between making a
“survival horror” game and an
“action horror” game (as he put
it, the difference between the
films Alien and Aliens), as well
as the difficulty in trying to use
a commercial game as a vehicle
for social commentary without
making his team or publisher
uncomfortable.

Referring to The Shining during
development, along with feedback
from his publisher, led Rouse to
change the focus of his game and
produce something that had a
much more healthy dose of horror
than it would have otherwise
achieved. Rouse also pointed out
that horror is uniquely positioned
to deal with taboo or controversial
topics (in the case of THE SUFFERING,
capital punishment) because it is
able to “fly under the radar.”

Angela Tinwell of the University
of Bolton presented her research
about which aspects of horror

game characters are most
directly tied to the uncanny
valley effect. Her thesis is
that the uncanny valley
might actually be beneficial

for horror games, as it
can make characters subtly

disconcerting. Her research found
strong correlations between
the intonation of speech, the
synchronization of speech with
mouth animation, and animation
of the forehead and feelings of
uncanniness. It also showed that
fantastical characters were usually
found to be more convincing than
realistic humans.

William Huber from the
University of California San Diego
talked about his method of data
mining video of FATAL FRAME II
play sessions to learn about the
tempo and rhythm of the game.

His system uses image recognition
software to identify each frame
of a play session video as one of
several game play modes (combat,
navigation, cut scene, pause
screen, etc). The output can be
graphed in terms of types of play
over time, and lead him to dub the
formula used in FATAL FRAME II “catch
and release,” in which tension
that is built by cut scenes is then
incompletely released through
navigation and combat play.

Denis Bélise and Alexandra
Munger from the Université de
Sherbrooke presented very early
findings based on their study of
the physiological effects caused
by horror games. They hooked
test subjects up to equipment
and applied lessons from lie
detection research to monitor
changes in physical state as the
subjects played. Though they are
still collecting and analyzing the
data, one subject in particular
has already made the study
worthwhile: during a play session
of FATAL FRAME II, the subject’s
heart actually stopped for three
seconds. This kind of data can
only be collected by accident
because of the ethical problems
related to scaring people for the
purposes of research, so they are
extremely lucky to have recorded
such a result (the test subject
was unharmed).

Despite its seemingly narrow
focus on horror video games, the
talks at the Thinking After Dark
conference were very diverse and
thought provoking. A selection
of papers from the conference
are to be published in a special
issue of Loading..., the journal
of the Canadian Game Studies
Association. A book collecting the
work of many of the speakers
called Gaming After Dark is also
scheduled to be published this
spring. More details can be found
at the conference web site: http://
conference2009.ludicine.ca/en

—Chris Pruett

HAUNTED SCHOOLYARD
A REPORT ON THE THINKING AFTER DARK HORROR GAME CONFERENCE

0906gd_hud_vIbs.indd 40906gd_hud_vIbs.indd 4 5/19/09 7:31:43 PM5/19/09 7:31:43 PM

http://www.le-ludophile.com/files/arsenault-thinking_after_dark_paper.ppt
http://jeuvideal.com/?p=215
http://conference2009.ludicine.ca/en
http://www.le-ludophile.com/files/arsenault-thinking_after_dark_paper.ppt
http://www.le-ludophile.com/files/arsenault-thinking_after_dark_paper.ppt
http://conference2009.ludicine.ca/en

WWW.GDMAG.COM 5

THE KOREA-ORIGINATING GP2X WIZ IS THE LATEST IN GAME PARK
Holdings’ line of handhelds, which includes the GP32 and GP2X series of
consoles. Like its immediate predecessor, the system is Linux-based,
and this time around includes a 533 MHz ARM9 3D accelerator as its CPU,
64 megs of SD RAM, 1 gig of internal flash memory, and a 320x240 2.8
inch AMOLED touch screen.

The most striking element of this new handheld is its dual d-pads.
Technically the left pad is a real d-pad, and the right “pad” is actually four
independent buttons in the configuration of a d-pad, but for ambitious
developers looking to make ambidextrous games or experiment with
alternate control schemes, this is an intriguing platform.

The system’s SDK is quite similar to that of the GP2X, so hobbyists
with experience on that platform should feel right at home. Blogger from
Play-Asia-Rulez and amateur coder Ed Mandy described the experience:

“Writing code for the GP2X Wiz has been a breeze. I’m actually fairly
impressed that Game Park Holdings was able to use the same binary
format on the Wiz that the GP2X used. That allowed me to use the same
compiler, toolchain, and libraries that I had for developing on the GP2X
(from the Open2X project: www.distant-earth.com/open2x). The only real
change that I made was specifying the use of shared libraries instead of
statically-linking libraries as I had done with the GP2X.”

The company is
trying to turn the console
into a viable sales platform as
well, selling both proprietary games
and flash games for the console through its
own iTunes-like download service, which had not
yet launched as of press time. The console comes with
12 embedded games and demos, notably a fighting game
and beat-em-up from acclaimed Korean indie developer Byulbram. The
console has the financial support of the government-run Electronics and
Telecommunications Research Institute (ETRI).

With the GP2X Wiz, there will be three open source, emulation-
fueled handhelds on the market at the same time, including the
Pandora and the Dingoo A-320, both mentioned previously in
these very pages. Whether the hobbyist culture is large enough
to support all three remains to be seen. Will the factions become
compartmentalized? Will regional origins give each system its own
flavor? Regardless, it’s a good time to be a hobbyist developer, if you
want to see your work end up on consoles, with XNA Creators Club and
now three handheld vehicles through which to display new creations.
The GP2X Wiz is available now, for $180. —Brandon Sheffield

GP2X WIZ
AN OPEN-SOURCE LINUX-BASED HANDHELD

WANT TO REPLICATE THE GDC
experience for free, and without
the pesky smells and sounds of a
convention center? Now you can!
Think-Service’s game-oriented blog
GameSetWatch commissioned

interactive fiction author Jim
Munroe to make a GDC-specific
text adventure, which winds up
being more of a simulation than an
adventure game.

GDC: THE GAME, contains in

Munroe’s own words: “A bunch of
randomly generated convention-
goers wandering around the
Moscone Center, annoying and
impressing each other, talking
about things they know about

and things they know nothing
about, and as the player character
you can stand there and watch it
happen or jump in.”

The desired end result is to
assemble a virtual team, and be

able to make a game, which is
a bit meta if you think about it.
“I wanted to try something that
was more of a ‘text game’ rather
than ‘text adventure game,’”
said Munroe. “Think of it as a

round of cards rather than
an immersive and colorful
narrative. If you don’t like
the hand you’re dealt, you
can always reshuffle with
a restart. If you find you’re
playing “guess-the-verb” (IF’s
most infamous minigame),
restart and read the beginning
carefully.”

GDC: THE GAME is available
for free at www.gamesetwatch.
com/gdcgame, which plays in
a browser and requires Java, or
with Google Parchment, which

does not require Java: http://
tinyurl.com/q5both. Good luck
finding a coder! They’re as tough to
nail down in the game as they are
in the real world.

—Brandon Sheffield

GDC: THE GAME
» Paris Game AI Conference
CNAM, Amphi C Abbé Grégoire
Paris
June 10–11
Price: Free
http://aigamedev.com

» 2009 Game Education Summit
Carnegie Mellon’s Entertainment
Technology Center
Pittsburgh, PA
June 16–17
Price: $349–$399
www.gameeducation
summit.com

» Develop Conference
Hilton Brighton Metropole
Brighton, U.K.
July 14–16
Price: £250–£600
www.develop-conference.com

» Casual Connect Seattle 2009
Benaroya Hall
Seattle
July 21–23
Price: $450–$750
http://seattle.casualconnect.org

0906gd_hud_vIbs.indd 50906gd_hud_vIbs.indd 5 5/19/09 7:31:45 PM5/19/09 7:31:45 PM

http://www.distant-earth.com/open2x
http://aigamedev.com
http://www.develop-conference.com
http://seattle.casualconnect.org
http://WWW.GDMAG.COM
http://www.gameeducationsummit.com
http://www.gameeducationsummit.com
http://www.gamesetwatch.com/gdcgame
http://www.gamesetwatch.com/gdcgame
http://tinyurl.com/q5both
http://tinyurl.com/q5both

GAME DEVELOPER | JUNE/JULY 2009 6

0906gd_top_50_developers_vIjm.in6 60906gd_top_50_developers_vIjm.in6 6 5/19/09 8:14:39 PM5/19/09 8:14:39 PM

THERE ARE A LOT OF GAME DEVELOPERS OUT THERE, DOING A LOT OF GOOD
work. Those that weather this worldwide economic storm will reap greater
profits when it ends, but for now, it remains a difficult time.

In the latest in our long-established Top 50 Developers countdown, we
honor fifty game creation studios, worldwide, that did stellar work in the past
year. We specifically honor companies releasing major titles or updates in
calendar year 2008. Thus, the effects of development cycles on single-studio
developers means this list is going to look very different from year to year.

Developers were ranked according to a composite score influenced
by number of 2008 releases, average review score (per Metacritic), the
sales data kindly released by Media Create (JP), NPD Group (U.S.), and Gfk-
ChartTrack (U.K.), and generalized and detailed survey responses.

Our survey, which collected over 500 responses from readers of Game
Developer and Gamasutra.com, asked responders to rate the reputations of
any developers of their choice on a 1–10 scale. It also asked responders to rate
developers with which they have worked directly in terms of overall impression,
pay and perks, professionalism in production, and likeliness to work the
developer again.

It is worth noting that the imperfect nature of sales reporting regarding
online downloads, microtransactions, and subscriptions means that the Top
50 Developers list is potentially more retail-heavy than we might like it to be.
But we’re working on ways to improve that going forward, and you’ll see a
number of notable online-centric firms on the list nonetheless.

Developers newly added to the Top 50 this year include: Success, Rare,
Funcom, SCE Studio San Diego, Ironclad Entertainment, Mythic Entertainment,
Criterion Games, Monolith, Marvelous Interactive, Yuke’s, Intelligent Systems,
Visual Concepts, SCE London Studio, SCE Japan Studio, Omega Force, Volition,
Atlus, Ready at Dawn, Vicarious Visions, DICE, Lionhead Studios, Media
Molecule, Kojima Productions, Treyarch, Koei, Rockstar North, and Treasure.

An enhanced paid version of this report with full feedback, charts, and
stats is available at www.gamedevresearch.com.

T R E V O R W I L S O N

WWW.GDMAG.COM 7

0906gd_top_50_developers_vIjm.in7 70906gd_top_50_developers_vIjm.in7 7 5/19/09 8:14:56 PM5/19/09 8:14:56 PM

http://Gamasutra.com
http://www.gamedevresearch.com
http://WWW.GDMAG.COM

50) TREASURE
(BANGAI-O SPIRITS)
» Sitting at the end of our ranking is
the cult-favorite developer Treasure.
It put out two solid DS releases in
2008—including the quirky sequel
BANGAI-O SPIRITS—and ended up
with an average review score of
82%. Treasure didn’t get excessive
attention on our reputation survey,
but even so, devoted fans granted it
a cool 10-point average.

49) RARE
(VIVA PIÑATA: TROUBLE IN PARADISE)
» The Microsoft-owned Rare
had a prolific year, with sterling
critical reception for two VIVA PIÑATA
titles and a new BANJO-KAZOOIE,
making for an 81% review average.
Commenters gave Rare mediocre
reputation scores, but noted that
the studio “always tries to innovate”
and considered Rare a “great
company to work for.”

48) SCE STUDIO SAN DIEGO
(MLB 08 THE SHOW,
NBA 09 THE INSIDE)
» Sony’s sports-focused subsidiary
produced two multiplatform titles in
2008: MLB 08 THE SHOW and NBA 09
THE INSIDE, which resulted in multiple
SKUs, and this studio’s first showing
on our survey. These titles were well-
received critically, making for a 77%
review average, the highest score of

which was an 85% Metacritic score for
the PlayStation 3 version of MLB 08.

47) FUNCOM
(AGE OF CONAN: HYBORIAN ADVENTURES)
» The Norwegian developer, known
for adventure games like DREAMFALL
and THE LONGEST JOURNEY released
the online action-RPG AGE OF CONAN:
HYBORIAN ADVENTURES in early 2008.
The title received an 80% average
review score and positive initial
sales, giving Funcom our number
47 spot, though it subsequently
ran into update- and subscriber
retention-related issues. Funcom
employees scored the developer
well and praised it for “a lot of effort
put into helping employees” and for
having “almost no overtime.”

46) MONOLITH
(CONDEMNED 2: BLOODSHOT)
» The narrative-oriented,
Warner Bros.-owned Washington
State developer of NO ONE LIVES
FOREVER and F.E.A.R. released the
multiplatform survival-horror first
person title CONDEMNED 2: BLOODSHOT
in 2008, which earned Monolith an
81% review average for the year. In
our reputation survey, scores for
the studio were found somewhat
wanting, but ratings given by those
who have worked with the studio
were strongly positive.

45) OMEGA FORCE
(DYNASTY WARRIORS: GUNDAM)
» Koei’s DYNASTY WARRIORS-
focused studio did not place on
2007’s ranking, but a 15-game
release schedule—not all of which
were WARRIORS games—secured
Omega Force a place on this
year’s list. Still, the years-long
slide in critical opinion of these
games continued in 2008, and
this developer’s games averaged
a paltry 54% (compare that with
parent Koei’s 68%). These games
do continue to sell, of course, and
WARRIORS OROCHI 2 and DYNASTY
WARRIORS: GUNDAM proved potent on
Japanese charts.

44) INTELLIGENT SYSTEMS
(ADVANCE WARS: DAYS OF RUIN, FIRE
EMBLEM: SHADOW DRAGON)
» The two 2008 games developed
by this wholly-owned Nintendo
developer were new entries in the
perennially acclaimed ADVANCE WARS
and FIRE EMBLEM series, both of
which were appreciated by critics.
The games brought the developer
an 84% average review score, and
FIRE EMBLEM: SHADOW DRAGON made
a strong showing on Japanese
sales charts. Survey respondents
also showed their appreciation for
IntSys’s work on “the best turn-based
strategy games in the industry.”

43) VISUAL CONCEPTS
(NBA 2K9)
» NBA 2K9 for Xbox 360 proved
the biggest seller for Take Two’s
sports-specialized studio, which
takes on EA’s sports imprint head-
to-head. The PlayStation 3 version
also charted well, and a plate
of eight titles across a variety
of platforms in 2008 gave this
California developer a 73% review
average and its first-ever Top 50-
ranked position on our survey.

42) SCE LONDON STUDIO
(SINGSTAR VOLUME 2 and 3.)
» Sony Computer Entertainment’s
largest internal developer comes
in with a significant number of
retail releases, all of them SINGSTAR-
related. The studio continues to
support the PlayStation 2 more
heavily than any of Sony’s other
developers, though SINGSTAR has
found a home on PS3 as well.
The successful series made a
reasonably favorable showing with
critics in 2008, and came home with
a 72% average review.

41) YUKE’S
(WWE SMACKDOWN VS. RAW 2009,
THE DOG ISLAND)
» WWE titles were the driving
force that brought Osaka-based
Yuke’s onto our survey this year.
The developer released WWE

GAME DEVELOPER | JUNE/JULY 2009 8

0906gd_top_50_developers_vIjm.in8 80906gd_top_50_developers_vIjm.in8 8 5/19/09 8:15:25 PM5/19/09 8:15:25 PM

WWW.GDMAG.COM 9

SMACKDOWN VS. RAW 2009 on
multiple platforms to respectable
commercial success, and last
year’s edition of WWE brought
Yuke’s some success in the U.K.
market. 2008 also saw U.S. release
of Yuke's' insidiously cute THE DOG
ISLAND for PlayStation 2 and Wii. All
of the above combined to give the
studio a 75% Metacritic average.

40) MARVELOUS INTERACTIVE
(HARVEST MOON: TREE OF TRANQUILITY)
» A combination of Western and
Japanese releases of HARVEST MOON
games gave this Tokyo publisher’s
internal studios multiple notable
releases in 2008. The titles that saw
U.S. release earned fair-to-middling
favor with critics and gave MMV
an unremarkable 69% composite
review score. HARVEST MOON seems
an evergreen series, and is what
brings Marvelous onto our list.

39) IRONCLAD GAMES
(SINS OF A SOLAR EMPIRE)
» Ironclad, a fully-independent,
Burnaby, BC-based developer
released its PC strategy
title—heavily co-produced with
Stardock—SINS OF A SOLAR EMPIRE to
critical acclaim and sales of over
600,000 copies, which perhaps
unexpectedly made the game
one of the top twenty best-selling
PC titles of the year in U.S. retail,

according to NPD. Though piracy is
always a trouble, fans carried the
game through, and the game sports
an 88% review average.

38) SCE JAPAN STUDIO
(SIREN: BLOOD CURSE, PATAPON 2)
» A stable of sometimes quirky,
acclaimed titles brought Sony’s
Japanese home studio onto
our lineup this year. Japanese
retail releases for PATAPON 2 and
ECHOCHROME, plus the horror title
SIREN: BLOOD CURSE and several
niche-focused releases, garnered
an overall Metacritic score of 76%.
Readers praised SCEJ’s “fantastic,
interesting, artistic, compelling
games” and gave the developer a
9.0 reputation score.

37) SEGA
(MARIO & SONIC AT THE OLYMPIC GAMES,
VALKYRIA CHRONICLES)
» Sega’s home development
studio, based in Tokyo, rose to
#37 from last year’s #44. This
was driven by double the number
of titles compared to last year’s
schedule, better review scores, and
sales of the runaway Wii hit MARIO
& SONIC AT THE OLYMPIC GAMES. The
feudal YAKUZA sequel RYU GA GOTOKU
KENZAN and the WWII-ish fantasy
SRPG VALKYRIA CHRONICLES also
proved themselves in the Japanese
marketplace.

36) VOLITION
(SAINTS ROW 2)
» In 2008, this THQ-owned
developer released SAINTS ROW 2,
which sold about two million copies
across all platforms and brought
home an average review score
of 81%. Based in Champaign, IL,
Volition also received favorable
marks on both our reputation and
specific surveys, and received
praise for its quality of life “for
families in particular.”

35) FIRAXIS
(CIVILIZATION: REVOLUTION, CIV IV:
COLONIZATION)
» Firaxis released four titles in
2008 after two in 2007. CIVILIZATION:
REVOLUTION and CIV IV: COLONIZATION
sold and scored well for the Hunt
Valley, MD studio, though review
scores fell just under 2007's to a
still-impressive 83%. Firaxis has
evidently earned goodwill from the
community at large, as it received
quite favorable reputation scores
and praise for CIV IV’s “unparalleled
refinements for the genre.”

34) MYTHIC ENTERTAINMENT
(WARHAMMER ONLINE: AGE OF
RECKONING)
» Last fall’s WARHAMMER ONLINE:
AGE OF RECKONING sold over 1.3
million copies in its first quarter
of release and became the fifth-

best-selling U.S. PC retail game in
2008. The experience from DARK
AGE OF CAMELOT that this Fairfax, VA
EA subsidiary rolled into WAR also
secured an 86% review average.

33) TOSE
(CHRONO TRIGGER DS)
» This developer generally shuns
the spotlight, preferring to let its
clients take the credit for its games,
but TOSE has once again made it
onto our ranking on the strength of
a refreshed DS version of CHRONO
TRIGGER and other stealthy titles.
Thanks to higher profile releases,
Kyoto-based TOSE rose by one spot
this year, despite a review average
that fell by ten points and a slightly
trimmed release schedule (public
releases, at least!).

32) CRITERION GAMES
(BURNOUT PARADISE)
» Criterion comes in at slot 32 on
the strength of the high-scoring
and commercially successful
BURNOUT PARADISE, which gave
this Guildford, U.K. division of
Electronic Arts an 87% review
average. Criterion was a favorite
on our survey and received
high reputation marks and
special praise for the way it has
“surpassed DLC and [has] reached
something altogether new and
different.”

0906gd_top_50_developers_vIjm.in9 90906gd_top_50_developers_vIjm.in9 9 5/19/09 8:15:34 PM5/19/09 8:15:34 PM

http://WWW.GDMAG.COM

GAME DEVELOPER | JUNE/JULY 2009 10

31) ATLUS
(ETRIAN ODYSSEY II, PERSONA 4)
» This Tokyo developer makes our
list on the strength of its home-grown
RPGs. PERSONA 3: FES, PERSONA 4,
and ETRIAN ODYSSEY II each found
an appreciative audience with U.S.
critics, making for a review average of
82%. The majority of the company's
titles also found sales success within
Japan and the U.S., and this fan
favorite received strongly positive
reputation scores and comments.
One commenter praised the
developer for always giving the fans
“something completely unique.”

30) READY AT DAWN
(GOD OF WAR: CHAINS OF OLYMPUS)
» This Irvine, CA independent rides
in on the strength of the acclaimed
GOD OF WAR: CHAINS OF OLYMPUS for
PSP. Survey commenters called the
“up and coming” Ready at Dawn,
which is believed to be readying
original IP, “sure to be an amazing
studio.” CHAINS OF OLYMPUS sold over
300,000 copies in the first month
of its release, and this studio was
a critical darling, scoring a 91%
average review score.

29) SUCCESS
(THE DARK SPIRE)
» Fourteen 2008 titles help
this Japanese maker of THE DARK
SPIRE skate onto our lineup this

year. Tokyo-based Success has
had several of its titles published
by Atlus in the U.S. of late, but its
publishing and developing efforts in
Japan are varied and prolific, with
many original and non-licensed
IPs. However, the titles that did see
U.S. release in 2008 only managed
a 68% Metacritic score overall. In
Japan, the adventure game AOISHIRO
saw a respectable showing on
weekly sales charts.

28) DIGITAL ILLUSIONS (DICE)
STOCKHOLM
(BATTLEFIELD: BAD COMPANY,
 MIRROR’S EDGE)
» The combination of solid
sales performance brought by
BATTLEFIELD: BAD COMPANY and the
innovation shown in MIRROR’S EDGE
gave DICE a respectable spot this
year. MIRROR’S EDGE didn’t make
the same initial sales splash as
BAD COMPANY, though owner EA
claims the former has sold over
a million copies worldwide as of
this writing. Both titles performed
well critically, giving the Swedish
developer an average review score
of 81%.

27) SQUARE ENIX
(CRISIS CORE FINAL FANTASY VII)
» Square Enix worked with outside
parties so much on its development
in 2008 that relatively few internally-

developed titles were left on its plate,
but this also drove up average review
scores—PSP titles CRISIS CORE FINAL
FANTASY VII and DISSIDIA: FINAL FANTASY
both performed well in the Japanese
marketplace. Survey response to
the developer has shifted somewhat
since 2007, causing Square Enix’s
average reputation score to drop to
7.5 from 8.7.

26) GAME FREAK
(POKEMON PLATINUM)
» The Tokyo developer best known
for POKEMON released only one title
in 2008: the DIAMOND/PEARL remake
POKEMON PLATINUM, which lived up
to the series’ reputation with an
84% average review score. That title
came out only in Japan in 2008, but
those sales alone amounted to over
two million copies and made the
title one of the top-selling games in
that territory.

25) NEVERSOFT
ENTERTAINMENT
(GUITAR HERO: AEROSMITH)
» Neversoft’s second year with the
GUITAR HERO series saw continued
strong sales year round for this
Los Angeles-based developer.
Reputation and detailed survey
scores slid a bit this year, yet
readers called the Activision-owned
studio “great to work with” and
“stable, reliable, professional.”

24) MAXIS
(SPORE)
» SPORE, the second-highest-selling
game on PC in 2008, gave Maxis
a boost to #22 this year. Spinoffs
of the new IP and continued sales
of Maxis-created original THE SIMS
SKUs bolstered Maxis’ commercial
performance, and for next year,
interesting questions remain as to
what form a Will Wright-less Maxis
will take.

23) VICARIOUS VISIONS
(GUITAR HERO WORLD TOUR)
» Located in a suburb of Albany,
NY, this Activision subsidiary
makes a respectable showing on
the back of strong sales of GUITAR
HERO WORLD TOUR (Wii) and ON
TOUR (DS), plus strong marks from
survey respondents with direct
experience of the developer, which
gave VV a spot just inside the top 25.
Reputation survey scores were less
kind, coming out to an average of 6.5,
but commenters called the developer
a “very well-run studio” and an
“awesome environment for working.”

22) LIONHEAD STUDIOS
(FABLE II)
» Lionhead, based in Guildford, U.K.
released FABLE II this year, which
became the best-selling RPG for
the Xbox 360, and the 89% average
review score the game earned gave

0906gd_top_50_developers_vIjm.in10 100906gd_top_50_developers_vIjm.in10 10 5/19/09 8:16:19 PM5/19/09 8:16:19 PM

Microsoft-owned Lionhead the
seventh-highest overall score on
our survey. Commenters seemed
pleased with how FABLE II “deliver[ed]
on [its] promise,” and one claimed
it was “a big jump from the
disappointing FABLE.” A respectable
8.2 average developer reputation
score bore this out.

21) MEDIA MOLECULE
(LITTLEBIGPLANET)
» Also located in Guildford, U.K.,
this new developer makes a virgin
showing on our ranking on the heels
of the release of its acclaimed and
award-winning LITTLEBIGPLANET. LBP
sold over a million copies worldwide
and earned a 95% review average.
It also earned Media Molecule
quite a bit of goodwill, judging
by the average 9.0 score survey
respondents gave the developer on
our reputation survey.

20) HARMONIX
(ROCK BAND 2)
» Boston-headquartered
Harmonix’s mainstay ROCK BAND
and its expansions remained strong
in 2008. The developer received
quite a few favorable comments
from our survey, and readers
praised Harmonix for “thinking of
the fans in almost every situation.”
Several commenters had praise for
quality of life at the dev, and one in

particular called the studio “one of
the best companies I have had the
chance to work for.”

19) KOJIMA PRODUCTIONS
(METAL GEAR SOLID 4)
» METAL GEAR SOLID 4’s resounding
success gave this Tokyo-based
Konami studio its first appearance
in our ranking. MGS4 sold over a
million copies in its first day of
release and went on to sell more
than three million in 2008. Plus, it
was a critical darling and received
a whopping 94% average review
score. Readers took note of the
Hideo Kojima-headed studio’s
success, praising it for leading “the
way in cutscene animations and
engine development.”

18) KOEI JAPAN
(OPOONA)
» Those non-WARRIORS titles that
Koei developed in-house in 2008
saw few releases in the U.S., but the
publisher/developer’s combined
Japanese and Western schedule
encompassed 22 titles in various
genres, which sold respectably in
Japan. Those titles that did see U.S.
release brought in a 68.7% overall
Metacritic ranking. The Yokohama
studio has seen a downward slide
in goodwill in recent years, and it
received a reputation score of 6.6
from readers.

17) EA REDWOOD SHORES
(DEAD SPACE)
» A string of SIMS-related
expansions and spin-offs sold very
well for EA’s Redwood City campus,
allowing the developer to move
up from last year’s spot at #21.
In particular, survey respondents
praised Redwood Shores’ “incredible
work” on the multiplatform DEAD
SPACE, which sold respectably and
pleased critics.

16) NAMCO BANDAI GAMES
(SOUL CALIBUR IV, TAIKO NO TATSUJIN)
» This merged publisher releases
many games developed out-of-
house, but still retains formidable
in-house talent. 2008’s SOUL CALIBUR
IV lived up to expectations critically
and commercially, and DS and Wii
versions of the TAIKO NO TATSUJIN
series did particularly well in Japan.
Critical reception to Bandai Namco’s
games improved to 69% over last
year’s 61%, but a compressed
released schedule and slightly
lower reputation scores caused the
company to fall one spot from its
2007 rank.

15) INSOMNIAC GAMES
(RATCHET & CLANK FUTURE: QUEST FOR
BOOTY , RESISTANCE 2)
» 2008 sequels to the Burbank, CA
developer’s best-known franchises
kept Insomniac on the list this

year, and average review scores
rested at 81%. Survey commenters
gave glowing praise similar to last
year’s remarks—employees of the
company called it a “fantastic place
to work,” while external developers
noted “consistently high quality
titles every year.”

14) BETHESDA GAME STUDIOS
(FALLOUT 3)
» This Maryland developer’s
reinvention of the FALLOUT
franchise became a massive
critical and commercial success
and pushed Bethesda up to #14
from last year’s #26 slot. Bethesda
scored an 86% overall review
average and some none-too-
shabby marks from our survey
respondents, who praised the
developer’s “detailed story work,”
“excellent ambition,” and “quality
large open world gameplay.”

13) TRAVELLER’S TALES
(LEGO INDIANA JONES, CHRONICLES OF
NARNIA: PRINCE CASPIAN)
» Warner Bros.-owned developer
Traveller’s Tales knows how to work
a good thing. LEGO INDIANA JONES
and LEGO BATMAN have brought the
English house further improved
sales and review scores (from 66% to
72%) compared to last year, bringing
Traveller’s Tales all the way up to
#13 from #31. TT also expanded its

WWW.GDMAG.COM 11

0906gd_top_50_developers_vIjm.in11 110906gd_top_50_developers_vIjm.in11 11 5/19/09 8:16:28 PM5/19/09 8:16:28 PM

http://WWW.GDMAG.COM

GAME DEVELOPER | JUNE/JULY 2009 12

lineup from 2007, diversifying with a
CHRONICLES OF NARNIA: PRINCE CASPIAN
licensed multiplatform release.
Survey commenters noted how TT’s
LEGO titles “continue to be better
crafted and more fun to play with the
whole family.”

12) CAPCOM OSAKA
(MONSTER HUNTER FREEDOM UNITE)
» Capcom ended up with the sixth-
best slot in sales this year, powered
by massive Japanese sales of
MONSTER HUNTER titles (including
over 2 million of MONSTER HUNTER
FREEDOM UNITE alone) and Western
sales of DEVIL MAY CRY 4. Lower
review scores kept the developer
down a bit compared to last year,
and reputation scores were not as
high (down to a 7.7 average from
8.7), but this juggernaut keeps
moving forward.

11) HAL LABORATORY
(SUPER SMASH BROS. BRAWL, KIRBY
SUPER STAR ULTRA)
» Tokyo-based developer and
Nintendo second-party HAL
developed one of the best-selling Wii
games this year. SUPER SMASH BROS.
BRAWL sold over six million copies
worldwide in 2008 and managed
an average review score of 93%.
POKEMON RANGER: SHADOWS OF ALMIA
and KIRBY SUPER STAR ULTRA also sold
well for HAL across all territories.

10) TREYARCH
(CALL OF DUTY: WORLD AT WAR)
» Treyarch rides in on the strength
of CALL OF DUTY: WORLD AT WAR, one
of the top ten best-selling games of
2008. This Santa Monica subsidiary
of Activision received lower-
than-average reputation survey
marks, but COD’s sales across four
platforms—generating the fourth-
highest sales of any developer on
this survey—and a respectable 77%
review average makes Treyarch
nothing to sneeze at.

9) EA TIBURON
(TIGER WOODS PGA TOUR 09, MADDEN
NFL 2009)
» EA’s sports-focused Florida
campus held even with last
year’s #9 position. The studio
inherited TIGER WOODS PGA TOUR
from EA Salt Lake, and Tiburon’s
2008 multiplatform iteration of
the series further boosted sales,
alongside the latest entries of
MADDEN and NCAA FOOTBALL.
Tiburon ranked #7 overall in sales,
yet received some less-than-
favorable marks from our survey
respondents.

8) EPIC GAMES
(GEARS OF WAR 2,
UNREAL TOURNAMENT III)
» GEARS OF WAR 2’s “epic” sales
and sterling critical reception,

along with UNREAL TOURNAMENT 3’s
none-too-shabby performance,
pushed this Raleigh, NC
developer up ten spots this year.
Commenters had even more praise
than last year: one mentioned
how “[the company’s] engine
empowers a lot of developers”
and another called Epic “the best
studio to work for ... anywhere!”

7) VALVE
(LEFT 4 DEAD)
» The runaway hit zombie shooter
LEFT 4 DEAD assured that Valve
had a place on our chart this year.
Both versions of L4D scored an
89% review average and gave
Valve the seventh-highest overall
review score on this survey. The
multiplayer FPS also sold over a
million copies in 2008 alone, and
the PC version was one of the top-
selling games of the year for the
platform.

6) KONAMI
(PRO EVOLUTION SOCCER, CASTLEVANIA:
ORDER OF ECCLESIA)
» Tokyo-based publisher/developer
Konami held rock-steady with its
2007 position. Perennial sales of
PRO EVOLUTION SOCCER titles and a
healthy and diversified plate of 28
releases—including many licensed
titles, new DANCE DANCE REVOLUTION
and BEATMANIA entries, and a new

CASTLEVANIA—kept Konami buoyant.
Review scores and reputation scores
from our respondents both fell
slightly this year, but the developer
received higher specific survey
marks from those that had worked
with the studio.

5) EA CANADA
(FIFA SOCCER 09)
» EA’s Burnaby, BC studio
released four fewer titles than
2007’s 35, but the developer’s
release schedule is still
impressive. FIFA SOCCER 09
broke U.K. sales records, selling
over two million copies in that
territory alone, becoming the top-
selling console title in the region
according to Gfk-ChartTrack.

4) ROCKSTAR NORTH
(GRAND THEFT AUTO IV)
» The release of GRAND THEFT AUTO
IV across three platforms propelled
this Scottish development house
high onto our ranking for the first
time. An average review score of
95%—the highest on our list—and
the fifth-highest sales of any
developer in 2008 gave Rockstar
North the #4 spot. Commenters
gave the developer a slightly lower
reputation score of 7.6, but one
notably commented that “GTA4
helped bring the games-as-art
debate to the general public.”

0906gd_top_50_developers_vIjm.in12 120906gd_top_50_developers_vIjm.in12 12 5/19/09 8:16:41 PM5/19/09 8:16:41 PM

T R E V O R W I L S O N is a web developer, freelance journalist, occasional game developer, and amateur photographer based in Salt Lake

City, Utah. Email him at twilson@gdmag.com.

WWW.GDMAG.COM 13

3) UBISOFT MONTREAL
(RAINBOW SIX VEGAS 2, FAR CRY 2)
» Brisk sales and a beefed-up
schedule of twenty-five releases
in 2008 gave Ubisoft’s Montreal
campus the number-three slot, up
from #12 in 2007. Ubisoft titles
also gained a more favorable
critical reception in 2008—its
average review score rested at
71%, up seven points from the
previous year. RAINBOW SIX VEGAS 2,
FAR CRY 2, and ASSASSIN’S CREED
were all successful critically and
at retail, and commenters were
mostly favorable to the developer,
calling it “not perfect,” but “not
afraid to try new things.”

2) BLIZZARD
ENTERTAINMENT
(WORLD OF WARCRAFT: WRATH
OF THE LICH KING)
» Even though this Irvine, CA-
based fan favorite only released one
title in 2008, and an expansion pack
at that, sales of WORLD OF WARCRAFT:
WRATH OF THE LICH KING and legacy
titles gave Blizzard the #2 spot in
sales and the #2 overall position, up
from #3 in 2007—impressive even
without its massive subscription
revenues. Respondents gave the
developer the highest marks of any
other, and glowing comments, noting
how the company “consistently lives
up to expectations.”

 NAME OVERALL AVERAGE REVIEW GAMES DEVELOPED IN 2008 REPUTATION

 1 NINTENDO 1 72% 8 8.1

 2 BLIZZARD ENTERTAINMENT 2 91% 1 8.8

 3 UBISOFT MONTREAL 3 71% 25 7.9

 4 ROCKSTAR NORTH 4 95% 3 7.6

 5 EA CANADA 5 71% 31 7.0

 6 KONAMI JAPAN STUDIO 6 70% 28 7.5

 7 VALVE 7 89% 2 9.0

 8 EPIC GAMES 8 87% 2 8.1

 9 EA TIBURON 9 71% 25 5.6

 10 TREYARCH 10 77% 6 7.0

 11 HAL LABORATORY 11 77% 4 8.5

 12 CAPCOM OSAKA 12 71% 14 7.7

 13 TRAVELLER’S TALES 13 73% 19 8.0

 14 BETHESDA SOFTWORKS 14 86% 4 8.3

 15 INSOMNIAC GAMES 15 81% 2 9.1

 16 BANDAI NAMCO GAMES 16 69% 17 8.0

 17 EA REDWOOD SHORES 17 73% 15 7.7

 18 KOEI JAPAN 18 69% 22 6.6

 19 KOJIMA PRODUCTIONS 19 94% 1 8.6

 20 HARMONIX 20 77% 8 8.1

 21 MEDIA MOLECULE 21 95% 1 9.0

 22 LIONHEAD STUDIOS 22 89% 1 8.2

 23 VICARIOUS VISIONS 23 73% 6 6.5

 24 MAXIS 24 71% 5 8.0

 25 NEVERSOFT ENTERTAINMENT 25 75% 5 8.4

1) NINTENDO
(WII FIT, MARIO KART WII)

» The current hardware market leader holds onto the top spot for
a second year in a row, thanks entirely to absolutely massive retail
sales that were matched by none. Nintendo released four fewer in-
house created games in 2008—eight compared to 2007’s twelve—
yet perennial sales of its Wii and DS powerhouses MARIO KART WII,
WII FIT, and WII PLAY—along with slightly higher review scores (72%
overall)—were more than sufficient to keep the Kyoto company’s
internal development house on top.

0906gd_top_50_developers_vIjm.in13 130906gd_top_50_developers_vIjm.in13 13 5/19/09 8:18:43 PM5/19/09 8:18:43 PM

mailto:twilson@gdmag.com
http://WWW.GDMAG.COM

http://www.insomniacgames.com/careers

MOST OF THE LARGER MASSIVELY MULTIPLAYER ONLINE GAMES USE SEPARATE INSTANCES, OR SHARDS,
of the game's universe in order to manage player populations and server issues. We feel that a single
shard should be the natural choice of any MMO developer, and that's what we do with EVE ONLINE. When
you ask the question “Why a single-sharded architecture?” it’s also informative to look at the deeper
question: “Why have shards?” There are two main reasons why a developer chooses a sharded
implementation of a game—lack of content and technical challenges. These are actually inter-related.

C O N T E N T
» Most current MMOs take place in environments essentially limited by strong physical constraints: avatars moving
across earth-like landscapes or within enclosures like buildings. Furthermore, within these specific environments, players
are confronted with a multitude of scripted activities such as quests and NPC encounters that only take place there. The
most limiting physical constraint concerns avatar density. This is both a technical
problem and a usability problem. Players do not want to constantly navigate an
overcrowded environment. In order to keep avatar density within reasonable limits,
you either need a very large playing field or a limitation on the number of players
in a given field. Both of these options are restricted by the amount of content you
can design, and since content is the biggest cost in modern games, this quickly
becomes a financial limitation.

The obvious solution is to have procedurally-generated content, such that you
can essentially have a playing field as large as you want. The drawback with that
approach is that you will most likely never reach the same artistic level displayed
in hand-crafted environments, and scripted activities might become repetitive and
lack context.

The real solution to this problem is to embrace the notion that in an MMO, just like in any other social network, players
are the content. Once that is accepted as a fundamental design guideline, it becomes easier to navigate the challenges
involved in creating and maintaining a single shard architecture and actually gives the advantage to that design model.

Looking more closely at this assumption, we can identify two types of content generated by people: material content,
which we describe as persistent user-created assets within the world, and social content, here considered as persistent
patterns of social interactions.

WWW.GDMAG.COM 15

»

D R . K J A R T A N E M I L S S O N A N D C C P T E A M

-

0906gd_shards_vIjf.indd 150906gd_shards_vIjf.indd 15 5/19/09 7:32:50 PM5/19/09 7:32:50 PM

http://WWW.GDMAG.COM

GAME DEVELOPER | JUNE/JULY 2009 16

society rather than a disjointed one based on smaller
server populations. Furthermore, gaining fame becomes
much more rewarding due to the size of the audience,
thus strengthening the impetus to do so. The technical
challenges to creating a single shard communication
infrastructure should not be underestimated and we
address them later in this article.

Early last year, as part of CCP's efforts to nurture the
development of the functioning society formed by EVE's
player base, a democratically-elected player council was
formed to act as representatives of player interests in the
development process. The single-sharded nature of the
game enables the formation of a single coherent society
and makes it much more likely that the elected players
will form a representative cross-section of the interests
of the electorate. Because everyone is sharing a single
server, and thus a single social context, the community
has a common baseline for discussion and debate, and
famous figures are more likely to be known to the entire
player base rather than just fragments thereof.

We have also seen the benefits of single-sharding
with combat, in the form of increased complexity of
conflicts in terms of both space and time. This heightened

The first one is easy to comprehend. However it is implemented, persistent player-created
content can populate large playing fields and make the world more “meaningful” for large groups
of other players. This is the case in RTS games, where the backdrop may be relatively bland and
automatically generated.

In EVE, for example, a lot of the high-end gameplay revolves around conquest and control of
territory in unregulated areas of the map. By choosing where to place primary space stations,
players shape the topography of the strategic battlefield. In selecting the position of those stations’
supporting starbases and the configuration of their offensive and defensive systems, they shape
the tactical context in which critical battles occur.

The second type of content, social content, is the most potent, but also requires careful design.
The field of social interaction encompasses a very wide range of activities and concepts:

• Pure socialization, such as chat and messaging
• Combat between players or cooperative combat against the environment.

This scales all the way from 1v1 combat to conflicts between factions
numbering thousands of players

• Economic activities

With socialization, the main “content” is the social tapestry that materializes in buddy lists,
membership of player associations, or guilds and forums. For all of these, a single shard adds
to the richness of the content because players don’t need to be split between servers; they can
discuss issues and share experiences that arise in the shared world that are relevant to the whole
player base rather than a specific server—essentially giving them a shared history as a whole

0906gd_shards_vIjf.indd 160906gd_shards_vIjf.indd 16 5/19/09 7:32:56 PM5/19/09 7:32:56 PM

complexity results in a variety of roles within a conflict
and less routine in waging it. In EVE we have had wars
involving tens of thousands of players, pitched against
each other for several years. Whether a player contributes
as a grunt on the front, a middle-man in logistics or as a
long term strategic planner is up to them. The size and

longevity of such conflicts clearly sets them apart as true content. Instead of
being ephemeral and soon-to-be-forgotten skirmishes, these have become
epic stories that fascinate players and build up reputation and true in-game
power. Again, providing for the sheer scale of these encounters involves
technical challenges, both on the server and client side.

For instance, the current pivotal war in EVE (referred to without apparent
irony as "The Great War") is generally agreed to have started in late 2005
when an old, established alliance of player corporations decided to eliminate
a new but growing power for political and ideological reasons. The conflict
snowballed, expanding its theatre of war, ebbing and flowing as some groups
surrendered or collapsed and fresh ones joined the fray. Today—just over
three years later—it appears to be entering its final stages, with many ancient
grudges and vendettas being resolved. The organizations directly involved
in the fighting at this stage contain, between them, just over 30,000 player
characters. And, just as many groups were drawn into the fighting by the
opportunity to settle old debts from previous wars, events from these three
years of continuous warfare will likely fuel future conflicts.

Finally, there is the economy. Even though many people don’t realize it, the
economy is truly the pinnacle of social interaction. This is of course assuming
that it is player-driven rather than being dictated by the designers. It is only in
a truly player-driven economic environment that price fluctuations of items and
commodities realistically start to reflect the sum total of the socio-economic
landscape of the world. The market becomes a mirror of the activities of all

participants in the game and it acts to change players’ actions by its reflection.
Such a player-driven system doesn’t strictly require a single shard to

function, but it is catalyzed by the extended size inherent to single-sharding.
A small economy will be manipulated by a few strong players and exposed
to large fluctuations and instabilities. The larger the economy gets, the
more resilient it becomes. Once beyond those instabilities, it truly starts to
reflect the macro-economic landscape of the game-world, becoming an all-
pervading, autonomous, and ever-changing mass of social content that no
designer could ever think of hand-crafting.

E V E A R C H I T E C T U R E O V E R V I E W
» In line with our design goal to have a single shard in EVE, we quickly
decided to go with procedurally generated content for the physical landscape
of the game’s universe. Fortunately, space lends itself rather well to that. The
natural distance scales in a typical galaxy make aggregation points emerge
naturally, so that the whole logic of a solar system can easily be run within
one process space. For clients this goes down to an even finer granularity, as
they only need to physically simulate their closest surroundings.

But apart from that, the whole back-end logic abstracts the notion of
servers, such that requests within specific game logic (either on client
or back-end) are transparently mapped to different nodes depending on
context. We have a distributed logic running on top of a cluster of nodes. All
data manipulated by these nodes is read and written to a single database that
binds the whole world together (see Figure 1).

Some might argue that a single solar system thus acts as a kind of shard,
but that is not correct. Any player from the global player base can enter any
solar-system, and all economic activities will have immediate repercussions
to the whole economy. Furthermore, all the social structures mentioned
above are truly global and transparently cross system boundaries. The solar

WWW.GDMAG.COM 17

FIGURE 1: The EVE universe server architecture. Each node in
the diagram does not necessarily map to a computer blade in
the server cluster. Blades are typically multiprocessor and
multicore and many of them are configured to run multiple
proxy or solar system (SOL) nodes.

0906gd_shards_vIjf.indd 170906gd_shards_vIjf.indd 17 5/19/09 7:33:00 PM5/19/09 7:33:00 PM

http://WWW.GDMAG.COM

GAME DEVELOPER | JUNE/JULY 2009 18

to implement this in practice in such a way that it’s actually beneficial for military commanders to
split their forces under the majority of common circumstances.

P R O GR A M MI N G C H A LL E N GE S
» A large-scale single-sharded environment is not without its unique challenges on the code side
either. Here are several of the problems we faced in our implementation.

Running out of memory. Over the years, maximum memory usage on the nodes that run
EVE’s solar systems (Sol nodes) have been steadily increasing with the increased population and
expansions to the game. In particular, solar systems such as Jita have been pushing the process
memory usage up. When EVE launched, it ran on 32-bit Windows Server 2003, giving us a virtual
memory limit of 2GB for each process. Later we upgraded to a 64-bit OS and this increased the
limit to 3GB. But sometimes even this would not be sufficient, so we decided it was time to make
the server processes 64-bit.

Initially we were slightly worried, as the physics simulation has to stay in sync on the client and
the server. We were uncertain whether it would drift apart due to different code being generated
for the complex mathematics involved. Eventually careful testing revealed that this would not be a
problem and that the algorithms were numerically stable in such a mixed environment.

The release of the 64-bit binaries was without incident. In fact, performance increased quite
a bit, due to the better optimization possible with a larger number of registers in 64-bit mode.
Baseline memory consumption did rise, of course, because all pointers were now twice the size.
However, we were finally free from the virtual memory constraint of 3GB. Now each process can
allocate as much as it wants and never run out of address space.

As for physical memory, it turns out that the 4GB of physical memory on each machine—
which typically runs two Sol node processes—is quite sufficient (as seen in Figure 1). Most of the
allocated virtual memory lies dormant and there is little paging. We still haven‘t seen a node die

because of page thrashing.
Programming asynchronous

systems and distributing
execution. Running logic on top
of a cluster of distributed nodes
means that a typical function call
might cross process boundaries
and even go across the public

internet before returning. This calls for a lot of asynchronous programming, which is notoriously
cumbersome to implement. This is where Stackless Python comes to the rescue. At CCP we firmly
believe that we need to make programming as simple and intuitive for the game programmer as
possible. We decided early on that in order to create a complex game such as EVE we would need
some kind of multi-threaded programming. We also recognized that using scripting for game-level
code was necessary simply to get things done. We were very fortunate to come across Stackless
Python at a very early stage in development and ended up using it for all game logic.

Stackless Python is a variation of the Python programming language that introduces the
concept of "tasklets" and "channels." A tasklet is a thread of execution that is independent
of OS threads, and tasklets communicate and synchronize with the help of channels. They
consume no more memory than their execution stack and don‘t require kernel mode switching,

system does introduce "crowding" problems, but these
are problems that cannot really be solved except by
game design.

For all practical purposes, the whole cluster acts and
feels like a single process space. But this is not to say that
this approach hasn’t had its challenges. Here are a few.

G A M E D E S I GN C H A LL E N GE S
» As we noted earlier, player density can be a real
challenge from a technical perspective as well as a
game usability perspective. In EVE, we run into two
general kinds of harmful player clustering which cause
design headaches. The first is what used to be called
the “Yulai problem.”

A few smart players determined that the Yulai solar
system was particularly well connected to the various
areas of the star cluster, and started selling their wares
there in bulk. Those few canny marketeers on their
own weren’t a problem, but it didn’t stay that way for
long—as more buyers visited the system more sellers
set up shop there. As more sellers flocked in it became
more desirable to buy there. Pretty soon it seemed like
the entire playerbase was shopping in Yulai, and that
system’s population made up a noticeable percentage of
the total online playerbase at any given time.

In an effort to curb the growth of this trade hub
before it started causing serious server issues, we
made some changes to the map by shifting jump
routes around to lessen the appeal of Yulai. Within a few
months the “Yulai problem” became the “Jita problem,”
as players figured out the new best location and moved
all their business there instead. The formation of such
hubs seems to be an inherent human phenomenon,
and while we still have regular design discussions
about effective ways to distribute market activity
more evenly without distorting the market itself, it’s
eventually something that we solved with hardware
and software solutions.

The second clustering issue is almost the polar
opposite to the problem of market hubs—that of huge
battles for strategic objectives. Whereas hubs are
permanent and predictable fixtures, fleet-sized combat
tends to be transitory and unpredictable. In our case at
least, the emergent gameplay that delivers such value

regularly compels huge political power blocs numbering
thousands of players to make spirited attempts to beat
the life out of their rivals. Without warning a particular
system’s population will shoot up from maybe half a
dozen players to over 1200, generating a huge spike
in server load before rapidly dropping back down to
its original level. The abstract design solution to this
is to spread the combat out across multiple systems
simultaneously, but this is directly opposed to the
ageless military principle of “hit them with everything
we’ve got.” It is an ongoing challenge to figure out how

We are running a real-time game on a huge scale which means
that speed is top priority, and we can use tricks which would not
be allowed in other situations—similar to the operations of a bank
(although recent events in Iceland might suggest otherwise).

0906gd_shards_vIjf.indd 180906gd_shards_vIjf.indd 18 5/19/09 7:33:06 PM5/19/09 7:33:06 PM

One example of Matinee, Kismet and AI all working
in tandem can be seen in the epic battle between
Wolverine and the 100-foot-tall Sentinel robot.

Players will pit the tiny, but powerful, Wolverine
against this monster in a three-pronged battle that will
start on the ground and then take to the air.

Vondrak said that all of the sequences, including what
traditionally would have been cut scenes, were made
playable thanks to Unreal.

X-Men Origins: Wolverine by Raven Software

“Unreal Engine 3 was just fantastic to work with,” said
Doug Smith, senior technical artist on Wolverine at
Raven.

“One of the challenges with Wolverine is that we
wanted to make a game that’s true to Wolverine
without spending a ton of time building up our tech.
The Unreal Engine was a great stepping stone to make
that happen quickly,” Smith remarked.

“It was a great way to actually give something to
artists and designers that was mature and fully �ushed
out. We knew we could make a good-looking game if
we worked it right, and I loved working with Unreal.”

Thanks to Raven Software for speaking with freelance
reporter John Gaudiosi for this story, which will be posted
in full at www.unrealtechnology.com.

WHO NEEDS RETRACTABLE CLAWS WHEN YOU
HAVE UNREAL ENGINE 3?

Activision’s Raven Software recently shipped X-Men
Origins: Wolverine for PC, Xbox 360 and PlayStation 3 in
tandem with the 20th Century Fox �lm starring Hugh
Jackman. It’s the �rst Unreal Engine 3-powered game
from the studio, although Singularity is coming out, also
from Activision, later this year.

“We had struggled to make Marvel Ultimate Alliance
next-gen, and then we saw Singularity and we were
like, ‘Holy crap, that’s the type of tech we want to
use,’” said Dan Vondrak, project lead on X-Men Origins:
Wolverine at Raven Software.

The new action game puts players in control of one of
Marvel’s most popular characters, Wolverine, and o�ers
a full array of abilities and attacks ripped straight from
the comic books.

Vondrak said that during production, UE3 allowed
the artists to jump ahead of the rest of the team. They
were able to create huge jungles with sun rays coming
through and leaves blowing and water puddles.

“Working with Unreal allowed us to add depth to the
game. That’s why we were able to create a Wolverine
model with three layers of regeneration. We have the
skeleton, the meat, and the muscle and skin, plus the
clothing on top of that. That’s all made possible using
Unreal materials and shaders. It’s really powerful
when we coupled it with our smart tech guys who put
everything together to make it work.”

Vondrak said the designers utilized Unreal Matinee to
create the bigger moments from the game, some of
which were original and others were expanded from
the movie.

Matinee allowed the team to create action sequences
featuring moving trucks and �ying helicopters. While
the �nal animations were done by animators, Unreal
aided them in getting everything just right – like
Wolverine’s perfect landing atop a whirring helicopter
in mid-air.

“The Kismet tech is really powerful,” added Vondrak.
“When you look at what Epic has been able to do with
this technology with the Gears of War games and then
look at Wolverine, you can see the type of meaty combat
that translates across genres.

“Kismet allowed us to throw all of these huge sequenc-
es into our game, which gives players a very cinematic
experience. All of these set pieces like when Wolverine
is in the air skydiving from helicopter to helicopter were
created by our designers using Kismet.”

Canadian-born Mark Rein is
vice president and co-founder
of Epic Games based in Cary,
North Carolina.

Epic’s Unreal Engine 3 won
Game Developer Magazine’s
Best Engine Front Line Award
for three consecutive years,
and it was inducted into the
Hall of Fame this year.

Epic’s internally developed
titles include the 2006
Game of the Year “Gears of
War” for Xbox 360 and PC;
“Unreal Tournament 3” for
PC, PlayStation 3 and Xbox
360; and “Gears of War 2” for
Xbox 360.

Upcoming Epic
Attended Events:

GameHorizon Conference
Newcastle, England
June 23-24, 2009

Develop Conference
Brighton, England
July 14-16, 2009

SIGGRAPH
New Orleans, LA
August 4-6, 2009

GDC Europe
Cologne, Germany
August 17-19, 2009

Please email:
mrein@epicgames.com
for appointments.

For UE3 licensing inquiries email:

licensing@epicgames.com

For Epic job information visit:

www.epicgames.com/epic_jobs.html

W W W . E P I C G A M E S . C O M

Unreal Technology News
by Mark Rein, Epic Games, Inc.

Epic, Epic Games, the Epic Games logo, Gears of War, Gears of War 2, Unreal, Unreal Engine, Unreal Technology, the Powered by Unreal Technology logo, and the Circle-U logo are trademarks or registered trademarks of Epic Games, Inc. in the United States of

America and elsewhere. Other brands or product names are the trademarks of their respective owners.

Advertisement

mailto:mrein@epicgames.com
http://www.unrealtechnology.com
mailto:licensing@epicgames.com
http://www.epicgames.com/epic_jobs.html
http://WWW.EPICGAMES.COM

GAME DEVELOPER | JUNE/JULY 200920

DR. KJARTAN EMILSSON is managing director, CCP Asia. HALLDOR FANNAR is CTO. KRISTJÁN JÓNSSON is senior software

architect. JÖRUNDUR MATTHÍASSON is a programmer/DB captain. MATTHEW WOODWARD is a game designer. JAMES

WYLD is a virtual worlds administrator. Email them at ccp@gdmag.com.

which makes them very fast (see "Asynchronous
Programming" by Javier Blazquez, May 2009). With
impunity, a programmer can create a new tasklet to
fork off any processing he or she needs to. Tasklets
in EVE use cooperative scheduling, meaning that we
only switch to another tasklet at known switching
points. This virtually eliminates the need for complex
locking and synchronization, as is often the case with
multithreaded programming.

A particular case where this programming model
shines is with I/O. Efficient I/O makes use of a non-
blocking interface to the OS. On Windows, this often
takes the form of sockets and I/O completion ports:
A thread starts an I/O operation and then polls an
I/O completion port to see when it is done. But from
the programmer‘s perspective this is extremely
complicated and error prone. A programmer just wants
to send() and recv() and not worry about event loops
and such things.

To facilitate this, we present the Python programmer
with a blocking I/O interface that is in fact only tasklet-
blocking. When a tasklet executes
a s o c k e t . r e c v () function we
issue an asynchronous I/O request
to WinSock. We then suspend the
tasklet, allowing another tasklet
to run. Later, when we notice that
an I/O request has completed, we
prepare the result for the blocked
tasklet and make it runnable again.

This way we can program
discrete pieces of game logic
with their own straightforward
execution paths that just behave
as you would expect, whi le
behind the scenes we suspend
and reschedule their execution,
making good use of the operating
system‘s resources.

Designing and maintaining
a real-time database. We chose
a relational database to be at the
center of the server architecture.
The key focus with our database
design is to keep things simple, as
we strongly believe that simple is incredibly powerful,
and easier to maintain. All important DB usage goes
through stored procedures to make things as efficient
as possible. There is not a single trigger or a cascading
foreign key in the database, simply because we don’t
want complex magic happening behind the scenes. We
want things to be visible from the source code, whether it
is a child record delete or an update of related records.

We also have strict coding guidelines for DB code
that we have generated over the years. We have in-
house experts reviewing DB code checkins and forcing
developers to fix code not done correctly. Monitoring
the database usage is extremely important, and we
store all kinds of statistics for that purpose in the
database as well. We track how often each stored
procedure is called per day, how often an index is
scanned, and so on. Looking at such statistics usually
tells us right away if a developer has committed code

that has sent the database into a frenzy. We are running a real-time game on a huge scale,
which means speed is top priority, and we can use tricks which would not be allowed in other
situations—similar to the operations of a bank (although recent events in Iceland might
suggest otherwise). One example of this would be when we use “read uncommitted” when
loading a solar system configuration, knowing there won’t be any inserts or updates to the
data we are reading so we can allow ourselves to read with no locking. Another trick would be
that we most often only need to allow the user to filter data within a day. For example, we do
not need to allow a user to select all records from the player journal between 14:00 and 15:35;
it is sufficient to allow filtering by only a date. In that case we simply need to keep track of the
clustered key at 00:00 every day and use that in our queries. This means we don’t need to
index on date/time columns in every nook and cranny, making things faster and slimmer.

While having only one database creates performance challenges, it also makes some things
easier. Having a distributed database system, where one database stores all characters and other
databases store each shard, brings all kinds of complexities that we don’t have to deal with. There
is no need to replicate data between databases, nor to call multiple databases nor move characters
and belongings between sharded databases and so on.

O P E R AT I O N A L C H A LL E N GE S
» With the performance demands above, maintaining excellent performance of the database
hardware can be quite a task. It is the central point of our virtual world, so any latency or slowness
at this level reflects across the entire universe of EVE. Ensuring that the database servers have

headroom in all of the key performance areas is critical—the main bottleneck
that we have had to overcome is I/O performance of database storage.

Over time, we have successively moved away from traditional fiber channel
disk array storage to much faster solid state storage devices. Initially this was
done for our hottest tables only, but we have recently moved the entire database
to solid state drives. This approach has helped us to maintain an environment
of virtually no database lag, and we still have a huge ability to scale up.

An area that has required constant attention and work from our
operations team is how much we can break down a heavily laden area of
the game world into chunks, and spread this load over multiple nodes.
Currently at this level we can allocate a maximum of one server node to
power an entire solar system, and one server node runs mostly on a single
CPU core, splitting off networking and other asynchronous operations to
another core.

The design headaches that occur around the “Jita problem” mentioned
above are specifically where we start to run into this limitation. When
thousands of players go into the Jita system, or engage in fleet battles, we
have often had trouble finding enough CPU power to handle the immense
amount of processing required to keep the game simulation running lag-free.
In the server room we keep Jita running on its own dedicated machine—the
biggest, meanest blade server that we can get our hands on.

Software-based improvements like StacklessIO and 64-bit server code (see
“running out of memory” above) really made a huge difference to our capacity
in this area. Last year saw a three-pronged assault in our “War on Lag,” where

we rolled out StacklessIO, EVE64, and some top of the line server hardware almost simultaneously.
The result was that our capacity in Jita went from around 600 players to 1,200 players—a 100%
improvement in capacity in under 6 months. Work continues in this fashion in order to again double
this number, because we know that we will need to.

C O N C L U S I O N
» As we have seen, running an MMO in a single shard introduces strains on system architecture, low-
level runtime, databases, and operations, and it even affects the game design level. Moreover, as the
number of players grow, the strains will show up in different, sometimes unexpected places. As such,
the development of a single shard game is a never-ending task, constantly needing innovations and
clever solutions to keep it growing. But pushing the limits is also a source of innovation, and leads to
discoveries that are both enjoyable from a professional point of view, and also add new dimensions
to the player’s experience. So the answer to question "Why a single shard?" could simply be "Because
it’s challenging and rewarding for everybody"—and that is what gaming is all about, isn’t it?

Database size: 1.4 TB

Number of tables: 775

Number of stored procedures: 2,715

Transactions per second: 2,500

Number of DB calls to the database
per day: 175 million

Number of inserts per day into the
hottest log table: 12 million

Number of items created per day in
the items table: 10 million

EVE Database Statistics

0906gd_shards_vIjf.indd 200906gd_shards_vIjf.indd 20 5/19/09 7:33:11 PM5/19/09 7:33:11 PM

mailto:ccp@gdmag.com

http://www.siggraph.org/s2009

MOST GAMES ARE CHALLENGING BY DESIGN. WINNING EVERY TIME ISN’T FUN, BUT NEITHER IS
always losing. The typical user experience is somewhere between these two, with most players
experiencing some degree of failure. Players will lose races, blow up, fall to their deaths, get lost,
or fail in thousands of different ways. Some will persevere and continue to play, while others will
get discouraged and give up.

As we game developers seek to expand our audiences, some traditional methods of keeping
players engaged are becoming less effective (according to Microsoft’s databanks, which I use as
the main source throughout this article). Fortunately, we can do some relatively simple things to

motivate players.
Keeping players motivated is

difficult. The most popular solution
is to manipulate the game’s difficulty
using tutorials, dynamic difficulty
adjustment, player-selected difficulty
settings, feedback systems, user-
fr iendly controls, and in-game
hints. The goal is to strike the right
balance between difficulty and player
ability, thereby always keeping the
player within arm’s reach of a new
achievement.

Despite these attempts to balance difficulty for a wide range of people, the players will still
experience failure. More importantly, many of these folks will stop playing because of these
failures. It’s rare for people to leave a restaurant because they don’t like the food, and it’s not
too common for people to walk out of a movie because it’s bad—but game players do put down
the controller and leave the game all the time. What’s worse, when game players have a negative
experience, they are likely to tell their friends, family, and community.

When someone quits a game prematurely, we haven’t just lost a player; we’ve created a
detractor.

QUITTER TALK
» How serious an issue is quitting? It’s worse than you might have guessed.

Table 1 shows the average Gamerscore completion for each of the top 13 Xbox Live games for
2008. The data was drawn from about 14,000 players. As you can see, even the games with the
highest achievement completion rates (FABLE II and CALL OF DUTY 4) had players who, on average,

GAME DEVELOPER | JUNE/JULY 2009 22

B R U C E P H I L L I P S

attained less than half the possible Gamerscore.
This particular sample tends to be more hardcore

than the average player, and I would expect the actual
completion rates for the entire population to be lower
than the numbers recorded here.

Of course, the Gamerscore tells only part of the story.
Players could finish a game and do little else, resulting in
a low Gamerscore but high completion rates. However,
most games award achievement points for completing
the single-player campaign.

Table 2 (pg 25) shows how many players finished
a sample of the games listed in Table 1 as determined
by whether they earned a campaign completion
achievement (on any difficulty). For even the most
popular games on Xbox Live last year, about 30 percent
of players didn’t play to the end.

Players don’t finish games for many reasons, but
no matter what explanations arise, it’s also likely that a
significant number of players stopped out of frustration
and that is what we will discuss here.

What leads some people to persevere after
experiencing failure and others to give up? Why do some
people anticipate eventual success where others only
see continued failure?

There are probably many answers to that question,
some of which are out of the game designer’s control.
However, there are at least two things we can and should
do. The first has to do with how we word feedback to
players, and the second is related to the goals we provide.

THE PSYCHOLOGY OF FEEDBACK
» Research on motivation, primarily in education,
suggests that an important factor for explaining how
people respond to failure is their perception of why the
failure occurred. Those who believe that their failure is

0906gd_motivating_players_vfjm.i22 220906gd_motivating_players_vfjm.i22 22 5/20/09 12:35:31 PM5/20/09 12:35:31 PM

the result of stable factors, such as native ability or intelligence, which they
cannot easily change, are most likely to give up or not even try. However,
people who believe that a failure is the result of unstable factors that they
can change through effort or strategy are more likely to believe they can
overcome initial setbacks. The determining factor is the person’s mindset
about his or her ability.

The same holds true for video games. Players who believe they can learn
and master the game persevere, while those who think they lack a particular
game-playing ability, or that some other stable factor lies between them and
success, are likely to quit.

Fortunately, this is susceptible to change. There are things we game
developers can do to encourage a mindset that anticipates success rather
than failure. But before we get to that, consider these two studies, both of
which illustrate the simple and subtle means through which we can shape
players’ perception of ability.

M. L. Kamin and Carol S. Dweck (see References) conducted a study in
which they had students take a difficult test. After the test, they praised half
the students for being smart (the “ability” group) and the other half for their
effort or strategy (the “learning” group). The participants were then given the
choice of two new tasks to complete: a simple one at which they were likely
to succeed but learn little, or a difficult task that would be more interesting
but would likely result in mistakes. Most of the ability group chose the simple
task, while the learning group tended toward the more difficult task.

As far as psychology experiments go, this was a very simple manipulation.
The researchers merely changed a few words in their feedback, which
produced significant changes in the students’ attitudes.

In another experiment, two Stanford University researchers manipulated
the attitudes of participants before a task. Craig Anderson and Dennis
Jennings (see References) told half their subjects, prior to having them take
a test, that their success on the test was likely dependent on innate ability—
either they had the ability to perform well, or they didn’t. The other half of
the subjects were told that doing well was a matter of determining the right
strategy—anyone can do it, but it takes effort.

However, Anderson and Jennings designed the test so that everyone
would initially fail (does this sound like a game you’ve played?). After taking

the test once, the subjects were asked how they thought they would do on
another, similar test. Those who were led to believe that success depended
on strategy and effort were more likely to expect future success. Those who
believed that success was a matter of ability did not.

Interestingly, this manipulation had an even more dramatic effect. The
subjects with the strategic mindset were more likely to have monitored their
own methods for completing the tasks so that they were able to modify them
in subsequent attempts. That is, they were able to learn from their experiences.
The participants with the ability mindset did not monitor their strategies and
therefore did not learn as much as the other group from their experiences. In
short, the manipulation affected both the participants’ anticipation of success
(or lack thereof) as well as what they learned when taking the test.

TABLE 1 The percent completion is found by dividing each player’s Gamerscore by the total
possible Gamerscore for the title; those numbers are then averaged.

WWW.GDMAG.COM 23

0906gd_motivating_players_vfjm.i23 230906gd_motivating_players_vfjm.i23 23 5/20/09 12:36:15 PM5/20/09 12:36:15 PM

http://WWW.GDMAG.COM

PERCEPTION MANAGEMENT
» Intuitively, these results make sense. If people believe that success is
dependent on ability, then no matter how much effort they expend on the
task, they believe they are going to fail again. When people say things like,
“I can’t cook,” or “I can’t draw,” or “I’m no good at first-person shooters,” they
don’t typically then sign up for a cooking class or begin carrying a sketchbook
everywhere or practice playing HALO. “Why bother trying to improve if you
don’t have the innate talent?”

What is less intuitive, and what we need to leverage as game developers,
is our ability to manage expectations and mindsets.

To do this, we have to change our mindsets as well. I strongly suspect
that most designers spend very little, if any, time considering what the player
experience should be in the 10 seconds between a failure event, such as
dying or losing a race, and the moment when play resumes—or worse, the
moment the player quits. (There are some notable exceptions, including TEAM
FORTRESS 2 and CALL OF DUTY, which I discuss in the following section.)

Given the opportunities to keep players involved and motivated, it’s
unfortunate that game developers rarely take advantage of these moments.
In fact, they might be the most important 10 seconds of your game. While we
spend weeks creating a few seconds of a cut scene and hours perfecting a
texture, we spend very little time considering and implementing appropriate
feedback at those very moments when a player decides whether to continue
playing (See also research summarized in “GDC: Top 10 Video Game Research
Findings,” by Jill Duffy, www.gamasutra.com/view/feature/2645/gdc_top_10_
video_game_research_.php).

 Let’s take a quick look at some of the player experiences surrounding

defeat. Historically, these moments have been brutal. The “game over”
screens for most arcade games were terse, bordering on insulting: “You Lose,”
“Game Over,” “You’re Dead.” How far have we come since then? Not very. Most
games fade to black, switch cameras to provide a view of the corpse, or simply
pop the player back to a save point.

But we still see ghosts from the arcades. Some of these are intentionally
reminiscent of the past, though most are just thoughtless designs. Language
such as “You Suck” (yes, I’ve seen it), “Failed,” and “Game Over” encourages
players to put down the controller and do something else.

I’m not suggesting we swap in touchy-feely or overly encouraging
language. In fact, there’s a fine line between providing appropriate feedback
and being patronizing. What we should be doing is focusing on the player’s
actions and emphasizing improvement.

EXAMPLES OF FEEDBACK
» There are several good examples of feedback in games that teach strategy. The
most common are the in-game hints players get at appropriate moments, such
as after a death. The CALL OF DUTY series has been doing this for a while, leaving
a message for players when a they die from a grenade in MODERN COMBAT, for
example, or are stabbed in WORLD AT WAR. These messages ask players to focus on
developing strategies to avoid dying in similar situations in the future. (Although
in practice, these indicators can be frustrating as well, if the player sees a grenade
death but feels it was unfair—the message then becomes insult to injury.)

Less common are feedback systems that inform players about their
improvement at the game. One great example happens in TEAM FORTRESS 2.
When players die, a message informs them about how they did relative

GAME DEVELOPER | JUNE/JULY 2009 24

0906gd_motivating_players_vfjm.i24 240906gd_motivating_players_vfjm.i24 24 5/20/09 12:37:11 PM5/20/09 12:37:11 PM

http://www.gamasutra.com/view/feature/2645/gdc_top_10_video_game_research.php
http://www.gamasutra.com/view/feature/2645/gdc_top_10_video_game_research.php
http://www.GDCEurope.com
http://www.GDCEurope.com

to previous attempts, for example: “On the bright side... You came close to
your record for time alive as a Scout in that round.” The message goes on to
indicate how long the player lived that round and what his previous personal
best was. This is excellent feedback.

We also may want to shift our thinking about tutorials. Tutorials should
not be considered the 10 minutes of instruction players get when they first
start playing, or the part of the game we develop at the last minute after we
finish making the “real” game.

Tutorials (perhaps we should stop using that word, too, as instruction needn’t
simply be text-based information) are the game and should occur over the
course of the entire experience. Players are constantly learning to play, right until
the end, and we need to provide relevant and informative feedback to them.

When we think about the game this way, we force ourselves to think
about what players need to know at each point in the game, when to deliver
that information, and how to track the data we need to provide this feedback.
Sure, the bulk of what the player needs to know to get up and running happens
early, but most good games require players to learn and adapt throughout. We
should be doing our part to feed players the information and encouragement
they need to keep up with these changes (though the “how” of this could take
up an entire article on its own).

CREATING GOALS
» The second thing we need to get better at is creating goals for players.
Research has shown that the goals created for people—by teachers, bosses,
parents, and game designers—go a long way toward shaping their mindsets
about prospects for success and how they respond to setbacks. Most relevant to
game developers are two types of goals: performance goals and learning goals.

Performance goals. Performance goals (or outcome goals) represent
the most prevalent goal type in video games. There are three defining
characteristics of performance goals.

WWW.GDMAG.COM 25

CONTINUED ON PAGE 26

Series Editor: ERIC LENGYEL

An IGDA Partner Program member

See them all at www.jbpub.com

New series covers rendering techniques, shaders, scene
organization, visibility determination, collision detection,

audio, user interface, input devices, memory
management, artifi cial intelligence, resource
organization, and cross-platform considerations.

Submit papers at www.gameenginegems.com

Jones & Bartlett is also pleased to announce
the acquisition of

including best sellers like:

TABLE 2 The bar graphs show how many players earned a campaign completion
achievement—in other words, finished the game—for the titles listed.

0906gd_motivating_players_vfjm.i25 250906gd_motivating_players_vfjm.i25 25 5/20/09 12:37:58 PM5/20/09 12:37:58 PM

http://www.gameenginegems.com
http://www.jbpub.com
http://WWW.GDMAG.COM
http://www.spiel-s.com
mailto:info@spiel-s.com

GAME DEVELOPER | JUNE/JULY 2009 26

First, either people achieve the goal or they
don’t. There is no middle ground. Examples of
performance goals include finishing a level in a
platformer, getting the “Overkill” achievement in
HALO 3, or finishing a race in FORZA MOTORSPORT in
under two minutes. Examples of performance goals
outside games are grades in school, or medals
at the Olympics. There is no reward for progress
toward the goal; you don’t get half a driver’s license
for denting only one side of the car.

Second, the criteria for success are typically not
defined by the goal-seekers.

Third, performance goals are usually complex
activities that encompass a variety of smaller
component skills. Passing a driver ’s license
test requires many different skills, such as
understanding the rules of the road, parallel parking,
and braking safely.

What’s wrong with performance goals? While
performance goals are pervasive in school, work,
and games, research on learning and motivation
has shown that they often produce perceptions of
lack of ability as well as decreased motivation. This
is particularly true in cases where rewards or praise
are contingent on successful completion. Further,
negative feelings resulting from failed performance

goals are more likely when a person’s perception of
their ability is already low, as may be the case with
novice game players.

Consider this example. A child gets an A on his
math test (a performance goal) and his parents tell
him how smart he is. Maybe he even gets a reward.
These are good parents. It is a popular belief that
rewarding and praising abilities in situations like this
is good parenting. However, this kind of feedback
can also have negative results. If the child’s parents
have consistently rewarded him for his ability, and
because his parents made their praise contingent on
a performance outcome (success on tests), it may
backfire in situations where performance is poor. He
will view his failures, like his successes, as a measure
or indicator of ability, and failure equals lack of ability.

Now consider a player who believes he has low
game-playing ability. A performance goal, such
as completing a level in a shooter, will lower his
motivation to continue trying, if he fails repeatedly.
When the goal focuses on ability, and the individual
believes he does not have that ability, motivation and
performance suffer. To extrapolate from the research
further, he is less likely to focus on strategies for
improvement if he views success as being contingent
on a skill or ability he doesn’t have.

CONTINUED FROM PAGE 25

RESEARCH FINDINGS
ABOUT PERFORMANCE
VS. LEARNING GOALS
» Performance goals elicit a failure-

avoidance pattern.
» Performance goals elicit a negative

emotional reaction to failure.
» Single episode failures of learning

goals tend not to affect perceptions
of future success, while failing at
performance goals leads to self-
attributions of lacking ability.

» People who adopt learning goals show
a higher rate of success on a task than
those who pursue performance goals.

» Learning goals make people spend
more time on tasks.

» People pursuing learning goals show
more persistence in the face of
difficulty.

» Learning goals create a preference for
challenge and risk in future tasks.

0906gd_motivating_players_vfjm.i26 260906gd_motivating_players_vfjm.i26 26 5/20/09 12:38:31 PM5/20/09 12:38:31 PM

http://www.GDCAUSTIN.COM

I don't think we should remove performance goals from games. A lot of players enjoy these
types of challenges, and most games are structured around activities such as levels, rounds,
races, and so on. However, we should consider incorporating other types of goals into games, too,
specifically those focused on learning.

Learning goals. In many ways, learning goals are the opposite of performance goals. While
performance goals focus on ability, learning goals focus on effort. It’s not so much about doing as
it is about trying. Improvement and progress toward the goal is as important as success.

It’s important to explain that learning goals are not simply smaller or more frequent
performance goals. Rather, they involve a philosophical shift in thinking about how we reward
player progress.

To illustrate the differences between these goals, consider the performance goal of finishing
a level in a FPS. At a low level, a player typically has to cross some boundary that triggers the level
completion event, or maybe has to reduce a boss’ hit points to zero. These events either happen
or they don’t. Additionally, the player is usually rewarded—the story advances, the player gets a
new weapon, and so on.

However, despite whether they complete the level, most players will improve their abilities
over the course of playing. Some will finish faster and experience fewer frustrations, some will
take longer, and some will eventually give up, but most will show signs of improvement.

This is good stuff to call out. It stands to reason that adding learning goals—which focus on
the skills and abilities that, when improved, make it possible for players to achieve performance
goals—would enhance players’ appreciation of their own abilities. All this takes is a little more time
focusing on the journey, versus the destination.

Learning goals make people try harder, take more risks, spend more time on a task, become
less discouraged when facing setbacks, and, in the end, succeed more frequently (also see the
sidebar). Doesn’t that sound like the kind of player we should be cultivating?

MEASURE FOR MEASURE
» One likely reason we don’t often incorporate learning goals is that implementing them into a
game is more difficult and requires more thought than traditional performance goals. It requires
breaking from molds and doing something new. It’s much easier to pop up a “level completed”
message, a story cinematic, or an “achievement unlocked” notification after the player hits a
predefined milestone in the game than it is to integrate learning goals that reflect the improvements
players make. Only recently have games been tracking player data in a way that could support
learning goals, which could also be a contributing factor. But most likely, we have simply been

stuck following conventional wisdom about how
we reward players and provide feedback.

There are ways to start implementing
learning goals in your games. One of the easiest
(and most likely to have a significant effect on
player motivation) is to tell the player how he
has improved. While this is not a goal per se, it
provides the player the information he requires
to track his progress and set his own goals, and
also provides the foundations upon which you
can build actual learning goals.

First, break the game down into component
skills. What skills does the player need to be
successful? Does he need to do double-jumps?
Does he need to master aiming? Does he need
to figure out how to counter an attack? Learning
goals should focus on behaviors or skills that, when
combined, give the player tools to complete more

complex activities. Of course, these also need to be skills or strategies that your game can track. For
example, if the player needs to understand how to play with stealth, it might be impossible to track
<understands the stealth system>, but you could track <was hit by enemy> or <used crouch>.

Then display progress on these component skills to the player. Rather than listing how many
times x or y event happened, communicate metrics that relate to improvement, much like the
example cited previously from TEAM FORTRESS. The obvious places to display progress information
to players are 1) at the end of a level, 2) when they pause or quit the game, and 3) when they die.

Better yet, display a progress chart that players can access whenever they want. One example
from GEARS OF WAR 2 are the messages that appear as a player nears a new achievement.

Another example from GEARS OF WAR 2 is the “war journal” which keeps track of the player's current
campaign status. There’s no reason we couldn’t put similar messages in other games to keep players

informed about their progress in mastering basic skills.
Of course, people have their own motivations and

mindsets that they bring to games. Some people have a
learning mindset and are likely to focus on getting better
at a game. Others prefer goal-based achievements and do
in fact feel motivated by them. In both cases, players are
likely to have some preexisting beliefs about their game-
playing abilities. However, the type of goals presented
and the feedback they receive during both success and
failure can have a significant effect on how they respond
to those setbacks.

Through better feedback and goal-setting, we can
encourage a mindset of competence, reduce frustration,
and encourage players to play longer, try harder, and feel
more confident about future gameplay challenges.

resources
Anderson, C. A. & Jennings, D. L. (1980). “When
experiences of failure promote expectations of
success: The impact of attribution failure to ineffective
strategies,” Journal of Personality, 48, 393–407.

Ames, C. & Archer, J. (1981). “Competitive versus
individualistic goal structures: The salience of past
performance information for causal attributions
and affect,” Journal of Educational Psychology, 73,
411–418.

Butler, R. (1987). “Task-involving and ego-involving
properties of evaluation: Effects of different feedback
conditions on motivational perceptions, interest, and
performance,” Journal of Educational Psychology, 79,
474–482.

Clifford, M. M. (1986a). “The comparative effects of
strategy and effort attributions,” British Journal of
Educational Psychology, 56, 75–83.

Clifford, M. M. (1986b). “The effects of ability,
strategy, and effort attributions for educational,
business, and athletic failure,” British Journal of
Educational Psychology, 56, 169–179.

Elliott, E. S., & Dweck, C. S. (1988). “Goals: An
approach to motivation and achievement,” Journal of
Personality and Social Psychology, 54, 5–12.

Kamins, M. L., & Dweck, C. S. (1999). “Person
versus process praise and criticism: Implications for
contingent self-worth and coping,” Developmental
Psychology, 35, 835–847.

Seijts, G. H., & Latham, G. P. (2006). “Learning
goals or performance goals: Is it the journey or the
destination?” Ivey Business Journal, 70, 1–6.

WWW.GDMAG.COM 27

Feedback can help teach players more effective
strategies.

B R U C E P H I L L I P S has been a member of the User Research

team at Microsoft Game Studios since 2001. He received his BA

in Psychology from Carleton University and his Ph.D. from the

University of Victoria. Email him at bphillips@gdmag.com.

0906gd_motivating_players_vfjm.i27 270906gd_motivating_players_vfjm.i27 27 5/20/09 12:39:08 PM5/20/09 12:39:08 PM

mailto:bphillips@gdmag.com
http://WWW.GDMAG.COM

The jokes and warnings about crossing streams
are inevitable, the sense of expectation building
steadily, the growing interest throughout the gaming
world predictable as the June 2009 release date nears.
The Ghostbusters* phenomenon has spanned more
than two decades since the original movie release in
1984, but the iconic symbol of the ghost-fi ghting team,
the “No Ghosts Logo,” is one of the most recognized

emblems in the world. With the mantle of responsibility
high, the decision makers at Atari turned to the
talents of an experienced, savvy, game development
company—Terminal Reality—headed by Mark Randel
to bring the fondly remembered spirit-fi ghting
troop to the screens of gamers around the world.

In the process of developing the game, the
technology pros at Terminal Reality recognized the
potential of releasing their proprietary game engine,
dubbed the Infernal Engine*, as a product. Atari’s
distribution plan for Ghostbusters*: The Video Game
includes a bevy of platforms, a challenge that matched
well with the cross-platform capabilities of the Infernal
Engine. The game also extends the storyline presented

in the original Ghostbusters
movie and then continued in the
sequel, Ghostbusters II, essentially
representing the third installment
in the series and incorporating
script direction from two of the
original cast members from the fi lm,
Dan Akyroyd and Harold Ramis.

The Lure of Games and High Technology
Mark Randel’s interest in computer video games

surfaced early and eventually led to an educational
path that combined electrical engineering and computer
engineering. “I had always wanted to write video
games ever since I got my fi rst Atari* 2600 VCS when

“The Intel® Graphics Performance Analyzers have been priceless in
helping us improve our PC graphics performance. [Intel®] VTune
[Performance Analyzer] was also used to help clear away the multi-
threading bottlenecks we were having on the Vista* platform, but
not on the XP platform.” —MARK RANDEL, CEO, TERMINAL REALITY

INTEL-SPONSORED SUPPLEMENT

1

PERFORMANCE TUNING WITH INTEL GPA

The release of Intel® Graphics Performance Analyzers
(Intel® GPA) in March 2009 opens up opportunities for game
developers to precisely evaluate and optimize performance for
notebook computers and mainstream desktop equipment
featuring Intel® Graphics chipsets. Residing unobtrusively on a
network-based architecture, the two key tools of this solution—
System Analyzer and Frame Analyzer—support DirectX* 9
implementations, with DirectX 10 support available before the
end of the year.

The System Analyzer presents a broad overview of system
performance, while the Frame Analyzer allows developers to

inspect API-level transactions, offering details down to the
draw-call level for each individual frame. Aaron Davies, senior
marketing manager in the Intel Visual Computing Software
Development group, described it in these terms: “The tool
provides a performance delta between your original frame and
your experimental frame, without recompiling code.”

Intel GPA is available for free to members of the Intel® Visual
Adrenaline Developer Program. For more details about the
capabilities of this solution, visit: www.intel.com/software/gpa.

I was in middle school,” Mark
recalled. “I saw a chance to go
to work with Bruce Artwick,
one of the computer game
pioneers while I was at the
University of Illinois, so I took
the time to learn all I could about
making computer games.”

Despite the rigors of university coursework in two
demanding fi elds, during the span of his formal
education Mark also concurrently developed the highly
respected Microsoft Flight Simulator* engine, a
remarkable achievement by itself.

“Although my graduate degree is in electrical
engineering,” Mark said, “I did my thesis work in the
Quantum Electronics and Ultrahigh Speed Digital
Computer Research Laboratory at University of Illinois,
which was then doing pioneering work with gigahertz
frequency hardware. I gained a lot of experience—and
a pretty good peek at what's coming and how
computer chips, memory, and busses are going to
interconnect with each other in the future.”

His fi rst commercial game release in 1995, Terminal
Velocity*, became a runaway hit, selling more than
a million units. Developing cutting-edge game engines
remained a strong interest and a focal point of the
development path at the company Mark co-founded,
Terminal Reality. Mark’s educational and commercial
accomplishments have been effective preparation
for understanding and exploiting the performance
capabilities of new platforms. These insights are

refl ected in Terminal Reality’s cross-platform game
engine work—ranging from the parallelization of
game physics routines for the Sony PlayStation* 3
console to multi-threading work to accommodate
the trend-setting, performance achievements of
computers powered by Intel® Core™ i7 processors.

INTEL-SPONSORED SUPPLEMENT

2

http://www.intel.com/software/gpa

“I really think in-depth knowledge of how computer
chips work—from microprocessors down to the
memory and I/O—has given us a distinct advantage
with the coding of the Infernal Engine,” Mark said.

The Power of Slime
Give a group of innovative game developers enough

processing power and a few ideas from a chart-
topping movie from twenty years back, and you
may be surprised by what develops. In the case of
Ghostbusters: The Video Game, the programming team
at Terminal Reality started playing around with slime,
the ectoplasmic tie that binds, and ended up with an
addition to the gameplay sure to amuse and entertain.

Playable demos of the game at Comic-Con 2008 and
the New York Comic-Con 2009 offered a taste of the
gameplay built into the upcoming title, which takes
place three years after the last Ghostbusters episode,
an interval that has allowed technology updates to
the equipment wielded by the ghostbusting team,
including the familiar paragoggles, Pk meters, and
proton packs. The Dark Matter generator includes
a freeze beam and a shock blast. The Slime Blower
includes both the Slime Stream and the Slime Tethers.

The highly destructible environment (made possible
by Terminal Reality’s VELOCITY* physics) also depicts
creatures that are spontaneously assembled out of
fragments of nearby objects, presenting a fresh
challenge to gameplayers. In demo presentations, Mark
has commented on this feature, saying, “Anything can
become a monster.”

While on the demo circuit, Mark also highlighted a
game addition called Slime Tethers, which allows
players to fi re off long, sticky strands of slime and hook
objects in a scene—whether a bookcase, annoying
pedestrian, parking meter, or street sign.

Heavy use of artifi cial intelligence is necessary to
handle the crowd scenes, which can include as many as a
1,000 people interacting in the fi eld of view and another
500 or so whose activities are tracked offscreen. The
realism of many of the catastrophic street scenes owes a
debt of gratitude to the skillful artifi cial intelligence
directing milling crowds of individuals.

Imaginative, innovative special effects, advanced
physics, extensive use of artifi cial intelligence to control
the actions of people within the game: all of these
characteristics promise a lively and entertaining game
environment that will introduce new twists to the
classic fi lm storyline.

Adding More Threads to the Mix
Terminal Reality has worked closely with Intel over

the past year to get Ghostbusters: The Video Game
running optimally on a wide range of PC platforms.
Recently the development team had the opportunity to
test game behavior on the Intel Core i7 processor and
put together a series of demos showing just what can
be accomplished when a higher plateau of performance
is available.

“We've put together some demos,” Mark said, “that
show what you can do on an Intel Core i7 processor
that you can't do on any other system right now. We
have specifi c demos with over 2,500 objects,

THE PINNACLE OF HIGH-END GAMING:
INTEL® CORE™ i7 PROCESSOR MAGIC

The growing complexity and increasing photo-realism of
modern video games call for advanced platform technologies
that scale to the processing demands. The Terminal Reality
development team was so impressed by the capabilities of
the Intel Core i7 processor, they created a number of
pre-release demos of the game to showcase special effects
and new features. Currently creating a buzz across the
gaming world, the Intel® Core™ i7 processor Extreme Edition,
the highest performing desktop processor on the planet1,
features intelligent multi-core technology that accelerates
performance in response to increasing workloads.

New features enhance the overall gaming experience,
such as Intel® Turbo Boost Technology (to maximize speed
for demanding applications), Intel® Hyper-Threading
Technology (for advanced multi-tasking and support for up
to eight threads), and Intel® Smart Cache (to provide a
higher performance, more effi cient cache subsystem). To
experience Ghostbusters: The Video Game in its best light,
take advantage of the processor that has become prized
and sought after in the gaming world, the Intel Core i7
processor Extreme Edition.

1Performance based on select industry benchmarks, game titles,
and multimedia creation applications. Actual performance may
vary. See www.intel.com/performance/desktop/extreme/ for
additional information.

INTEL-SPONSORED SUPPLEMENT

3

http://www.intel.com/performance/desktop/extreme/

simultaneously colliding and making great use of eight
threads. Basically, I can't wait until everybody has at
least eight hardware threads on their desktop or in
front of their TV because the immersion—what's
possible and what’s going to happen in a game—is
going to dramatically increase. The number of objects,
number of characters, everything on the screen . . . It’s
like a glimpse into the future.”

The collaborative engineering work with Intel included
use of both long-standing tools, such as the Intel®
VTune Performance Analyzer, and more recent
additions to the software development products, such

as Intel® Graphics
Performance
Analyzers (Intel®
GPA). Mark noted
that during
development, the
programming team
was encountering
multi-threading
issues under
Microsoft Windows
Vista*. The game
was scaling poorly
under Vista, even
though it was
running well under
Windows* XP.
Using the Intel

VTune Performance Analyzer, the developers quickly
identifi ed and eliminated the performance bottlenecks.
The problem, it turned out, was because of an obscure
threading bug in the Ghostbusters code that affected
Vista but not XP. The Intel VTune Performance
Analyzer made it easier to pinpoint the bug and fi x it.

As is the case with many game developers these
days, Terminal Reality is designing the game to run
on the widest range of platforms, including notebooks
equipped with Intel® Graphics chipsets. The challenge,
of course, is to expand the customer base to the
universe of notebook users without dramatically
compromising the quality of the game graphics when
running on mainstream hardware, rather than tricked-

THE INFERNAL ENGINE GOES PUBLIC

One of the side benefi ts of the work on Ghostbusters*:
The Video Game has been the realization by the
development team at Terminal Reality that they have a
winner on their hands with the in-house-developed
Infernal Engine*, which takes advantage of multi-
threading on a variety of very different platforms—from
the Sony PlayStation* 3 with its special-purpose units
(SPUs) to the gamer’s nirvana—a PC powered by the Intel®
Core™ i7 processor Extreme Edition. The Infernal Engine,
created to exploit parallelism and extend cross-platform
compatibility to the widest extent, can be licensed from
Terminal Reality in the second quarter of 2009.

The Infernal Engine combines rendering capabilities
suitable to constructing photo-realistic environments; a
fl exible, leading-edge physics solution; and a powerful and
adaptable particle system. The emphasis is on cross-
platform interoperability and streamlining the production
pipeline to boost productivity.

Why create a new game engine when there are so many
strong competitors already in the market? “First,” Mark
responded, “I want to say that there are some very good
engines out there for very specifi c purposes. The Infernal
Engine is the fi rst engine that brings rendering, physics,
artifi cial intelligence, sound, scripting, and particles
together that runs on most platforms, including PS3, 360,
PC, Wii, and PSP. Infernal was designed from the ground
up to run major systems in parallel with the PS3 in mind.
Once we had the PS3 working well with our multi-
threading model, the 360 and PC came together naturally.”

“We also retained our original single-threaded solution
to be compatible with the Wii and PSP,” Mark continued.
Specifi cally, the Infernal Engine does three main tasks
very well in parallel, which frees up the main game thread
for C++ game coders. Physics and animation run
completely in the background, even on the PS3 system,
where they run on SPUs. The rendering for one full frame
is also queued up, so the GPU is never starved, and no
thread is ever waiting on the GPU FIFO.”

Joe Kreiner, vice president of sales and marketing with
Terminal Reality, commented in an article for IGN.com,
“Terminal Reality’s Infernal Engine is a breakthrough in
effi ciency for game development middleware. Our
licensees can leverage their work across more platforms,
in less time, than any other engine—giving them a
competitive edge critical for success. Our licensees get
stunning visuals, fast time to market, and the support of
Terminal Reality—one of the most experienced
independent game developers in the industry.”

“With Intel’s help, we both
took on the challenge of
getting Ghostbusters* to run
well on Intel® Graphics. This
enables Ghostbusters to run
on the widest selection of
PC platforms on the market.
The graphics only mildly scale
back for this platform, but
then can scale up way past
what the consoles can do
for those with SLI-enabled
graphics cards.”—MARK RANDEL,

CEO, TERMINAL REALITY

4

INTEL-SPONSORED SUPPLEMENT

http://IGN.com

out, high-end gaming machines. “Right now we're using
the Intel GPA to dramatically improve the performance
on integrated graphics chipsets. It's still a work in
progress but we're coming along, and we're able to get
a really good idea now of what shaders are taking a lot
of time and where the bottlenecks are in the game.”

“The goal, of course,” Mark said, “is to have the game
looking as sharp graphically as possible. I want to turn
off the fewest number of details and preserve all the
graphics features of
Ghostbusters on the
integrated graphics
hardware. We're really
close to being able to
do that now.”

During the tuning
process, Terminal Reality
provided Intel
application engineers
with the executables of
the game. The engineers
then used Intel GPA to
gain a dynamic view of
the execution of the
game code—down to
the level of pixels,
shaders, and routines.
Areas in which the code is taking an unreasonable
amount of execution time are identifi ed graphically.

“Not only are we able to see where the bottlenecks
are,” Mark said, “but we can even see on a primitive
basis—a per rendering primitive—with spikes indicating
what's taking the most time.”

Targeting Slowdowns—Intel® GPA Goodness
Investigating the reasons behind performance

slowdowns is an area where Intel GPA excels, as
the Terminal Reality development group and a team
of Intel application engineers discovered. A recent
engagement initiated to tackle performance issues in
running Ghostbusters: The Video Game on computers
equipped with Intel Graphics found problems with
a particular scene in a library containing 200,000
books—each an individual object. Smooth gameplay

became impossible during this scene as the frame rate
dropped to the point that video playback stuttered.

Disabling the Z-test allowed the development team
to identify objects that should have been occluded (for
performance reasons). Frame analysis of the library
scene—made possible with Intel GPA—showed 12,565
Draw() calls (other scenes typically have about 3,000
Draw () calls). Digging deeper to fi nd a technique to
suppress rendering of occluded books, single-frame

analysis using Intel GPA
confi rmed the frame-
rate hit in rendering
the books; Intel and
Terminal Reality
began experimenting
with a software
switch to dynamically
control rendering of
the books. Further
analysis with Intel
GPA showed that the
frame rate increased
by 3.3 times with book
rendering turned off.

To minimize the
unnecessary rendering
of books (without

designing a full-scale occlusion culling system), Terminal
Reality created a pixel height test. Objects that
contribute less than a full pixel to the frame (based
on test code run by the processor) are not sent to the
graphics subsystem for rendering. Intel GPA offered a
clear picture of frame-rate increases—showing a 2X
improvement in rates. The fi nal code implementation—
informed by the frame data acquired by Intel GPA—
demonstrated scene-rendering improvements between
2–2.5X fps in the level containing the library scene.

Better Graphics, Enhanced Physics
The complexities and expense of producing Triple-A

game titles continues to grow, forcing game developers
to choose platforms and tools wisely, adapt on
the fl y to changes in market sectors, and leverage
innovations that help streamline production and exploit
performance opportunities. Mark said, “Ghostbusters

“The VELOCITY* physics engine runs “The VELOCITY* physics engine runs
almost completely in parallel. Every almost completely in parallel. Every
collision detection can be done on fi ve collision detection can be done on fi ve
threads. Every Jacobian calculation can be threads. Every Jacobian calculation can be
done on fi ve threads, and the solver can done on fi ve threads, and the solver can
be run on fi ve threads, even with huge be run on fi ve threads, even with huge
physics islands. Running a large island physics islands. Running a large island
in parallel was a very diffi cult problem in parallel was a very diffi cult problem
to solve and being able to subdivide it to solve and being able to subdivide it
evenly across multiple processors makes evenly across multiple processors makes
it automatically load balanced.” it automatically load balanced.”

—MARK RANDEL, CEO, TERMINAL REALITY—MARK RANDEL, CEO, TERMINAL REALITY

INTEL-SPONSORED SUPPLEMENT

5

To get more great articles like this one,
subscribe today to Intel® Software Dispatch

for Visual Computing at:
www.intelsoftwaregraphics.com

Intel does not make any representations or warranties whatsoever regarding quality, reliability, functionality, or compatibility of third-party vendors and
their devices. All products, dates, and plans are based on current expectations and subject to change without notice. Intel, Intel logo, and Intel Core are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others. | Copyright ©2009. Intel Corporation. All rights reserved. 05/09/SM/CS

For More Information
To learn about licensing the Infernal Engine*, visit:
www.infernalengine.com

For more details about the breakthrough performance of the
Intel® Core™ i7 processor Extreme Edition, visit:
http://www.intel.com/products/processor/corei7ee/

To see the Gamespot* perspective on the Ghostbusters game,
go to http://www.gamespot.com/pc/action/ghostbusters08/
index.html?tag=result;title;8

For more information about Ghostbusters*: The Video Game,
visit http://www.ghostbustersgame.com/

For benchmark data on the Intel Core i7 processor
Extreme Edition, go to:
http://www.intel.com/performance/desktop/extreme

For an entertaining retrospective on the evolution of
computers, including notable games, visit the Computer Time
Line, part of the Atari Archives, at:
www.atariarchives.org/deli/Time_Line.php

will have been in development over three years by the
time it is released. Gamers expect more and more out of
their title. When we started Ghostbusters, multiplayer
wasn’t very important, but we realized later on that we
needed a strong multiplayer component in the game to
be successful. The graphics bar for 2009 is a very high
one, and we feel we have hit the bar for graphics and
raised it considerably for physics-based gameplay.”

Despite some good-natured prodding, Mark declined
to provide specifi c details of upcoming projects at
Terminal Reality, speaking only in generalities. “We
have lots of cool stuff coming up in the BlackOps
room of Terminal Reality,” he said, “as we are already

deep into development of the
next-generation version of the
Infernal Engine. Unfortunately,
we cannot yet talk specifi cally
about the upcoming advances . . .”

In the meantime, there is plenty
of action and entertainment to
enjoy in Ghostbusters: The Video
Game, an experience that is a
bit like taking a step inside a fi lm

and becoming a character along with the other actors.
With snappy dialogue, smart gameplay guided by the
latest artifi cial intelligence, groundbreaking physics,
and special effects, Ghostbusters: The Video Game is
bound to win over a whole new generation of fans and
expand the expectations of the gaming community.

Intel and Terminal Reality are also cooperatively
evaluating the possibilities of future game
enhancements that will be made possible by Intel’s
next-generation visual computing architecture, code-
named Larrabee. “Once we have access to this new
graphics platform,” Mark said, “we are hoping to take our
code base over to it and get some really cool results.” •

6

INTEL-SPONSORED SUPPLEMENT

http://www.infernalengine.com
http://www.intel.com/products/processor/corei7ee/
http://www.gamespot.com/pc/action/ghostbusters08/index.html?tag=result;title;8
http://www.intelsoftwaregraphics.com
http://www.ghostbustersgame.com/
http://www.intel.com/performance/desktop/extreme
http://www.atariarchives.org/deli/Time_Line.php
http://www.gamespot.com/pc/action/ghostbusters08/index.html?tag=result;title;8

GAME DEVELOPER | JUNE/JULY 2009 34

THE CONCEPT PHASE OF TOMB RAIDER: UNDERWORLD BEGAN WHILE ITS PREDECESSOR, TOMB RAIDER: LEGEND, WAS IN FINAL QA AND
nearing submission. Previews for TOMB RAIDER: LEGEND were very encouraging, and we felt that there was still plenty of unrealized potential to
tap in the existing feature set. Enough so, the reasoning went, that we could focus on content and leveraging existing functionality to develop
a bigger and better Lara Croft adventure in less time. In many ways this is what the team accomplished, but as is always the case in game
development, reality was more complex than we anticipated.

It is particularly interesting to note that much of what went wrong in development involved pitfalls that we anticipated but still fell into
despite our efforts to avoid them. It’s important to note that most postmortems talk about “What Went Wrong” and not just “What We Did
Wrong” because sometimes you make mistakes, but other times you suffer from acts of god and do your best to cope. A Game Developer
article last year (“What Went Wrong?” December 2008) specifically questioned why game development seems to make the same mistakes
over and over. In light of that, some of the “wrongs” will be discussed in terms of how our methods to avoid known issues fell short.

w hat went r ig ht

1) LONG ALPHA. We scheduled an unusually long Alpha to deal with unresolved pre-production issues and to set ourselves up for a
shorter Beta to make room for more polish time at the end. This paid off handsomely with respect to art production, and it’s one of the

reasons the game looks so good. We also recovered from a fair amount of design deficit that had carried over from pre-production, and on the
code side we managed to get most of our core functionality up to scratch.

Another thing we did right during this long Alpha was to have multiple scope reductions. This was our first “next-gen” title, and we
repeatedly underestimated issues of complexity. We would assess and determine that the game was too big, and then cut enough content
to bring it under with margin to spare. Then two months later we would see that we were again coming in too big, necessitating further scope
reductions. The game was designed to be able to handle this degree of reduction, as seen by the fact that almost all the features and areas
originally planned for the game made it into the final version, only smaller, and connected to each other in fewer ways. We managed to
reduce the scope by trimming branches everywhere without having to uproot any of the trees entirely.

E R I C L I N D S T R O M

0906gd_pm_tomb_raider_vIjf.indd 340906gd_pm_tomb_raider_vIjf.indd 34 5/19/09 7:52:40 PM5/19/09 7:52:40 PM

WWW.GDMAG.COM 35

0906gd_pm_tomb_raider_vIjf.indd 350906gd_pm_tomb_raider_vIjf.indd 35 5/19/09 7:52:59 PM5/19/09 7:52:59 PM

http://WWW.GDMAG.COM

GAME DEVELOPER | JUNE/JULY 2009 36

2) FOCUS. When making a sequel, producing a game
just like the last one with slightly different content

and a few more features is an easy mistake to make.
Despite the fact that we had some significant new goals,
like making the traversal less linear and bringing back
more free exploration, we almost fell into this trap. But
many on the team saw that we needed an additional focal
point to both rally the team around and to use as a unique
selling proposition for the game. The result of this was the
concept of epic exploration puzzles.

Making large-scale in-game devices and areas with
multiple layers of connected puzzles gave the game
an exceptional expression even compared to previous
TOMB RAIDER games, and it also gave us a litmus test for
spending production effort across the game. This led
to the creation of a sub team devoted to these puzzles,
which proved to be complicated constructs. While we
would have been better off had we foreseen this need
and planned for it properly from the start, the fact that we
saw the growing concern, created this special sub team,
devoted more staff and resources to it, and assigned a
dedicated producer was an example of how well we solved
unforeseen problems in development.

3) PRODUCTION FLEXIBILITY. Even though it was hard
to significantly redirect the juggernaut that was

TOMB RAIDER: UNDERWORLD, we made a lot of successful
changes when confronted with breakdowns of production
processes. We started out thinking that we knew the best
way to design the ruined jungle gyms that form the bulk
of a TOMB RAIDER playground, based on lessons we had
learned from the previous game, but reality confounded
us again, and we made changes accordingly.

One clear example is related to level design and art.
From the beginning we all agreed that it was critical
to have both disciplines work in tandem from day one
to make environments that were fun, beautiful, and
credible. Prior outings had either started with design-
generated block mesh, leading to geometry that was
extremely difficult to turn into plausible ruins, or with
beautifully architected tombs that did not provide fun
climbing opportunities or properly authored gameplay.
Our solution was to pair level designers and environment
artists together by location in the world; such as Mexico
or Thailand, and have them work together, iterating
on environment architecture to make it both fun and
aesthetically appropriate.

While this proved to be the right direction, many
of our earlier processes didn’t work out. But our
willingness to accept the reality that these initial
attempts were flawed allowed us take the big step
of changing production workflows in progress, often
multiple times. It sometimes felt chaotic and frustrating
to change process so frequently, but had we stuck
with broken paradigms the situation would have been
far worse. In the end, our production methods weren’t
perfect, but they were superior to what we thought
would see us through from the outset.

4) METRICS. In a game like TOMB RAIDER: UNDERWORLD,
where the player can interact with so many

different elements of the environment in so many

0906gd_pm_tomb_raider_vIjf.indd 360906gd_pm_tomb_raider_vIjf.indd 36 5/19/09 7:53:04 PM5/19/09 7:53:04 PM

ways, metrics are hugely important. They form the basis of getting Lara Croft off the grid and eliminating the tractor controls that kept
her from evolving into the fluidly moving character we have today. TOMB RAIDER: LEGEND suffered from changes in jump distances, ledge
parameters, and other metrics until late in development, resulting in countless hours of rework for both designers and artists (it was the
most painful for the latter), and we were determined to avoid this in the sequel.

Our lead level and systems designers collaborated to establish metrics for every aspect of player interaction until a full set was defined
early in development. Some changes were made later, and holes were discovered and needed to be filled, but on the whole the degree to
which we maintained and enforced metrics without major changes was a huge improvement over past efforts. If not for this success,
the amount of game real estate we included in the game would have been significantly reduced.

5) SANITY. Most people working on the game had never been on a project this large, in terms of team size, degree of coordinating
efforts, and the amount of game assets we had to fit into the timeline. Add to that how passionate and invested such talented

people are in the quality of the final game, and the mixture could have been explosive. Yes, there were differences of opinion, often
strong ones, and certainly there was plenty of stress and the occasional meltdown, but the professionalism rate was extremely
high, and this had a large positive impact on the production in ways that went far beyond people getting along.

When scope reductions had to be made, when work had to be redone or discarded, or process changes were needed,
maturity was high and ego was low. We had no tantrums over trying to cut someone’s favorite elements of the game.
Everyone remained rational and evenhanded throughout the length of the project, right into the manic bug-fixing days before
submission. Lesser projects with weaker stresses have broken people and teams, and that is why this deserves to be on
this list of what went right—because on a project like this, navigating the many and lengthy trials and tribulations intact
contributed as much to its ultimate success as any other element.

w hat went w r ong

1) SHARED TECHNOLOGY. At the start of TOMB RAIDER: UNDERWORLD, Crystal Dynamics as a studio decided to pursue
the Holy Grail of internal development: a robust and powerful shared code base to use as a jumping off point for

all future games. This proprietary engine would be augmented and maintained by dedicated engineers who could
provide the common functionality our games would need, while team programmers could focus on features specific
to their games. The studio believed that because TOMB RAIDER: UNDERWORLD and the shared code base would both
be based on TOMB RAIDER: LEGEND code, the efforts could be combined even given our tight production timeline.

A lot of talented and hardworking programmers were put on the shared code team, including many of those
who engineered TOMB RAIDER: LEGEND, so skill was not an issue. The biggest problem here turned out not to be
over-ambition or complicated dependencies (though these were certainly issues). The problems were much
more related to ownership and priorities. Within a team, when schedules begin to slip and need to be put back

WWW.GDMAG.COM 37

0906gd_pm_tomb_raider_vIjf.indd 370906gd_pm_tomb_raider_vIjf.indd 37 5/19/09 7:53:09 PM5/19/09 7:53:09 PM

http://WWW.GDMAG.COM

GAME DEVELOPER | JUNE/JULY 2009 38

on track, the entire team can get together, redefine its mission, and make whatever collective
changes are needed to bring production back into alignment with the calendar. But the shared
technology group was not on the team. While its charter was to serve the teams, it had to
serve multiple teams with conflicting needs. From the point of view of each team, the shared
technology group was a cadre of programmers that didn’t report to our lead engineer. It was an
enormous dependency that we could only influence via petition and persuasion, and frequently
could not even schedule around as we had limited visibility into their progress.

We knew from the beginning that basing TOMB RAIDER: UNDERWORLD on a nascent and evolving
code base was an enormous risk, a big potential pitfall. So why did we walk into this trap with our
eyes wide open? At the time, it seemed that the potential payoff was worth the risk, and that we
had the right people working on the problem, so we marched along with the shared technology
group and did the best we could knowing that some of the challenges we were facing could
ultimately yield more efficiencies down the road. Ultimately, however, some of our fears were
realized as we had indeed overestimated our ability to overcome all the known risks.

2) REFACTORING. One of the earliest engineering tasks involved refactoring the player
code to make it more robust and more able to accept new functionality. This effort was

important to be able to efficiently expand our feature set, but it wasn’t understood at the time
that this refactoring meant taking apart the engine and putting it back together in such a way
that it became unplayable for the duration.

The design team had been anticipating a comfortable period of working on layouts,
experimenting with interactions, creating more evolved setups, and otherwise engaging in
exploratory and iterative design that wasn’t possible on TOMB RAIDER: LEGEND. But our pre-
production hopes disappeared as much of the player functionality went offline. The usual delays
and schedule slips prolonged this dark period, during which the engine parts were scattered
across the lawn. The problem was compounded when we had to move into production and deeper
into Alpha without many core player functions working. This had a big chilling effect on early
design and layout efforts, and the effects of this lasted all the way to the final product.

0906gd_pm_tomb_raider_vIjf.indd 380906gd_pm_tomb_raider_vIjf.indd 38 5/19/09 7:53:21 PM5/19/09 7:53:21 PM

WWW.GDMAG.COM 39

Fundamentally this was an issue of miscommunication, which is a traditional gremlin lurking
on every project. We fought this gremlin from the start, and given the size of our production
did a fair job of it, but this particular mishap was unique in how irreversible it was. Improving
communication is about better information trafficking up front, but just as importantly, quickly
addressing miscommunication when it arises, so we don’t consider this one of those traditional
mistakes that we repeated. You can’t catch everything, and the effects of refactoring slipped
through the net, and once started, there was no going back. It was a particularly bad piece of
miscommunication to have, and we just had to ride it out. In the end, a lot of valuable hands-on
design time was lost at the start, and we would have had a significantly better layout in the
shipped game had we caught the issue earlier.

3) PREPRODUCTION. Our preproduction got rocked by the previous two issues—the
shared technology effort and how refactoring rendered previously playable mechanics

unplayable—but we didn’t have the option at the time of moving our ship date. This meant
getting much less out of preproduction than we hoped for in two major areas.

First, it put us in a position similar to our time with TOMB RAIDER: LEGEND, with designers
creating layouts based on paper metrics, where the mechanics would not be playable until
later. Though this is a clear violation of good design practice, we felt that the damage could be
contained because the design team had just finished making a TOMB RAIDER game with many of
these same mechanics, so we could get by for longer without them. But the situation was far
from optimal.

Second, aside from porting TOMB RAIDER: LEGEND to the Xbox 360, this was our first project
made for what were then next-generation consoles. It turned out to be far more complex and
content-intensive than we anticipated, and because our capacity to create layouts was so
compromised in preproduction, we couldn’t adequately test, measure, or scope the art side of
the production equation. Because we needed to enter production by a certain date to have a
reasonable chance at shipping on time, we ended preproduction before we had an adequate
understanding of our art production needs and processes, and just as critically, before we had
developed the pipeline and support structure we would need later for outsourcing art.

We were also understaffed in certain areas due to slots on our team being held for team
members who were still finishing up TOMB RAIDER: ANNIVERSARY. In the end it was as though
we planned to have a concept phase, a prototyping phase, and a preproduction phase, but in
practice only did some concept, some prototyping, and then jumped straight into production
before finishing preproduction. Much of this pressure came from the collision between ambition
and capacity, made worse by the cognitive dissonance between seeing a game on paper that
you want to have, and knowing that the production data indicates you can’t have it by the
prescribed date, but being unwilling to change either one.

At the time, and indeed throughout the project, we knew it was risky to move on to the next
phase of production before the previous one had completely finished, yet we did so anyway.
This is one of those repeated mistakes, so why did we do it? Cognitive dissonance is part of the
answer. Wishful thinking is another part. But mostly, in an imperfect world, every risk you take
is a gamble that may fail, and at the end of the endeavor, you end up needing to explain only the
risks you took that didn’t pan out, like this one.

4) ACTS OF GOD. This is the category that some postmortems title “Too Many Demos” or
some other problem that comes at a team from the outside. We certainly had the problem

of too many demos, but those were only one entry in a class of problems that dropped on us
unprepared.

Demos were particularly aggravating because we specifically set out to avoid this issue from
the start. We demanded long term demo schedules, and we received them. We refused to bow to
some requests for demos that weren’t on the schedule, and this was honored by the publisher. But
there was also a slippery slope, where some unscheduled demos were accommodated because
of various circumstances. We sometimes faced a dilemma where marketing gave us a choice
in which a particular demo, at the expense of two weeks of production time, seemed like the
better long term choice for the success of the product. There are too many stories of great games
disappearing into the noisy marketplace to ignore the importance of demos and good PR.

Yes, these demos often result in a reduction of product quality, and yes they distract from
team focus, but in the end, as painful as it feels, it’s sometimes best to do the demo. This is a clear
example of walking into a trap with eyes wide open—making a mistake that you know about in
advance—but it happens repeatedly because the answer isn’t to refuse demos, or to plan for them
better. The answer is to make a game that doesn’t come together only at the end.

We also had an unusual number of weddings, honeymoons, production babies, and
untimely departures on this project throughout the team, but most painfully among the
discipline leads. We lost our art director midway through production; not to another company,

Video Game Spaces
IMAGE, PLAY, AND STRUCTURE
IN 3D WORLDS
Michael Nitsche
“Video Game Spaces takes readers on a

fantastic journey
that resonates
with what we
love best about
games—their
double identity
as places to both
ponder and play.
Richly researched
and well-written,
the book delves
deeply into the
interdisciplinary

nature of Game Studies, off ering key insights
along the way.” — Katie Salen, co-author
of Rules of Play and editor of The Ecology of
Games
312 pp., 27 illus., $35 cloth

Racing the Beam
THE ATARI VIDEO COMPUTER SYSTEM
Nick Montfort and Ian Bogost
“Racing the Beam presents not just the techni-

cal challenges
but the fi nancial,
bureaucratic, and
scheduling consid-
erations that har-
ried the Atari 2600
VCS programmers.
Modern game
designers should
read this book.”
— Chris Crawford,
former head of
Atari’s Games

Research Group, and co-founder of Storytron

The Ethics of
Computer Games
Miguel Sicart
Why computer games can be ethical, how

players use their
ethical values in
gameplay, and the
implications for
game design.

The MIT Press

To order call 800-405-1619 http://mitpress.mit.edu

0906gd_pm_tomb_raider_vIjf.indd 390906gd_pm_tomb_raider_vIjf.indd 39 5/19/09 7:53:34 PM5/19/09 7:53:34 PM

http://mitpress.mit.edu
http://WWW.GDMAG.COM

but to another industry, so there wasn’t much we could have done about that. We lost our lead designer toward the
end of production when she had a baby; also something we couldn’t have done much about (nor would we have
wanted to, as the baby is beautiful!). And most tragically, our lead level designer died suddenly during the first
half of production. These key figures in our effort were extremely valuable not only because they were smart and
capable, but also because they were a part of the success of TOMB RAIDER: LEGEND, and therefore knew intimately
how to make this kind of game. People like that are rare, because TOMB RAIDER games are hard to make for many
reasons, and in the timeline we were under, they were irreplaceable. We compensated for these losses with people
on the team assuming new responsibilities to fill in the gaps, and some of these team members did amazing work
and really saved us, but there’s no denying that we would have had a much smoother production and a better end
product without these losses.

5) SCOPE. Yes, we tried to do too much. It’s human nature to reach as far as you can, and to think your arm is longer
than it really is, but some games are more sensitive to scale than others. If you make a sudoku game, you can

keep making grids until time runs out and you’re done, but with games that have interlocking feature sets, plus a
beginning, a middle, and an end, it’s much harder to scale properly, and harder still to change scale during production.

There were success stories with respect to our scope, and with reductions we made all the way to Beta, but in
the final analysis we tried to do too much, got locked into needing to do it, and scrambled to get it all done to the
quality standard we hold ourselves to. The reason why scale kept outdistancing our deadlines is mostly because

we underestimated the
complexity of next-gen
development and did not
spend enough time in
preproduction smoking out
all the issues.

The biggest casualty
of making too much game
wasn’t the crunch time—we
had less crunch than on past
games—and it wasn’t that
we left parts of the game
undone, since there are
no holes in the experience.
The most damage was to
an element that was very
important to us: polish. We
padded our schedules an
unprecedented amount,
and then some, in order to

have sufficient time to polish. Unexpected complexities in next-generation development, along with communication
throughout a team larger than the studio had ever seen, consumed our polish time and more. This makes the
mistake of underestimating our polish time more understandable, even though this is also one of those repeated
“what went wrong” scenarios, because we were dealing with a whole new class of unknowns. This won’t be the case
going forward, however, so the team should be equipped next time to avoid the usual mistake of not scheduling
enough polish time.

risks and rewards
» Our game was intended to be a strong sequel that drafted heavily off the successes of TOMB RAIDER: LEGEND, but
turned into a major product in its own right; bigger and more lush than anyone could have reasonably expected at
the outset, because of the hard work, talent, flexibility, commitment, and level heads of the many team members
who created it. It’s very gratifying that some reviews have hailed TOMB RAIDER: UNDERWORLD as the best TOMB RAIDER
game since the first one, and the fan response has been phenomenal.

So why did so many things that we guarded against go wrong anyway? The categories described here are
only five of many more. (Broken builds and long build times get honorable mentions, and the added distinction
of raising blood pressures more than probably all other issues combined.) Doesn’t the foreknowledge of pitfalls
make possible the absolute avoidance of them? No, it doesn’t. Creative endeavor by its very nature is chaotic,
and where creative chaos, ambition, and dedication collide with production concerns and the hard walls of a
publisher’s deadlines and goals, you’re going to fall into many of the same holes, or worse, get steered into them.
The answer isn’t to do everything possible to avoid all known traps, because doing so would kill innovation and
creativity; the trick is to be aware of potential pitfalls, and to be prepared to quickly and nimbly mitigate the
negative impact of stepping into one.

GAME DEVELOPER | JUNE/JULY 2009 40

PUBLISHER
Eidos

DEVELOPER
Crystal Dynamics

NUMBER OF DEVELOPERS
84 internal staff, 15 contractors, not
including shared technology staff

LENGTH OF DEVELOPMENT
2.5 years

RELEASE DATES
November 18th USA, November 21st EU

HARDWARE
Quadcore PCs with 64-bit OS, 4 GB RAM,
500 GB RAID 1

SOFTWARE
Turtle rendering package, Bableflux,
Perforce, MotionBuilder, Maya 8.0,
Zbrush, Photoshop, Bink, FMOD, Test
Track Pro, and proprietary graphics and
physics engines

PLATFORM
Xbox 360, PS3, PC (also Wii, PS2, and
Nintendo DS)

GAME DATA

E R I C L I N D S T R O M is the creative director of TOMB RAIDER: UNDERWORLD. Previously he was the story designer of TOMB RAIDER: LEGEND, and

he's been a game designer for nearly twenty years. Email him at elindstrom@gdmag.com.

0906gd_pm_tomb_raider_vIjf.indd 400906gd_pm_tomb_raider_vIjf.indd 40 5/19/09 7:53:43 PM5/19/09 7:53:43 PM

mailto:elindstrom@gdmag.com

TOOLBOX

WWW.GDMAG.COM 41

[OUR RATING SYSTEM] EXCEPTIONAL GREAT FAIR POOR UNFORTUNATE

BUILT UPON THE XNA FRAMEWORK,
Blade Games World's Blade3D
eases the process of game
development for independent and
professional developers alike. While
the XNA Game Studio products have
been a boon to whose who want to
rapidly prototype ideas and craft
full Xbox Live Community Games,
these products are primarily
a programmer’s development
environment. For the average
developer, generating the tools and
infrastructure needed to develop
a complete game or prototype can
still be a daunting task requiring
significant programming ability.
Blade3D seeks to alleviate this
burden by housing a rich set
of development, editing, and
debugging tools in a well designed
WYSIWYG scene editor.

THE BLADE3D EDITOR
» Blade Games World’s goal for
Blade3D is to allow anyone to
create a game with a reasonable
investment of time and energy.
As such, the interface of the 3D
development environment is
designed to contain all the features
and amenities of the Blade3D
engine without becoming an
intimidating mess of dialogs and
deeply-nested menus. The layout
is clean, easily readable, and
surprisingly intuitive to navigate.
While there are an ample number
of tutorial videos available to walk
users through the most common
tools, the design lends itself to
exploration. Common elements are
easy to locate, making the tool easy
to use without needing to keep a
crib sheet of keyboard commands
on hand.

The layout is limited to a
single viewport window, which
can be distressing to content
creators accustomed to using

multiple viewing angles at once.
In practice, I didn’t find this to be
too much of an issue, but a second
window would be useful when
debugging AI behavior over a large
environment or when trying to
align objects along multiple axes.
The single viewport does allow
for the live frame rate monitor to
give a fairly accurate depiction of
your scene’s performance, and
swapping between active cameras
is simple enough. Thankfully, all
menus are user-positionable, and
can be docked or left free-floating.
This can help multi-monitor users
capitalize on the single viewport
by pushing all extraneous menus
to another display.

Prominent in the layout is
the unified object browser and
property editor. All raw content
items and game entities are
shown here in a tree view
hierarchy. This combines the
properties of a scene graph with a
complete content browser. Simple
drag and drop controls allow users
to place items from this browser
into the scene or the visual
scripting system. Materials can
be dragged directly onto models,
models can be dragged into visual
scripts, and so on.

Also notable is that all entities
in the scene browser can be
edited at runtime using a uniform
property editor. Any game entity
or content asset can expose a
set of tunable parameters to the
property editor for live editing.
This simple concept is in some
ways the greatest part of the
Blade3D package. While your game
is running, you can inspect and
tweak the properties of all game
and content items. For iteration and
tuning, this is a huge time saver.

 To round out the tool, Blade
Games World has also added

support for multiple levels of
undo and redo, the building and
deployment of binaries, integrating
content from the Blade Games
World community marketplace,
taking screenshots, and navigating
tutorials. There is even a menu
button to submit bugs directly to
the Blade3D development team.
Clearly, Blade Games World has
gone through a lot of effort to
make this a comprehensive tool for
game developers.

ENGINE FEATURES
» The editing environment is
clean and intuitive, but developers

need functionality above all
else. Luckily, Blade3D covers all
the basics admirably. Skeletal
animation, kinematics, physics,
particle systems, terrain and
audio subsystems are all provided
as well as more esoteric items
like lens effects and character
inventory management. On the
graphics front, the engine provides
a rendering system which
supports HLSL shader authoring
(with integrated editor) and a
data-driven material system.

All subsystems are functional,
but some are still under
development. For example, while

BLADE GAMES WORLD
BLADE 3D
REVIEWED BY GREG SNOOK

size matters

RTPatch and Pocket Soft are registered trademarks of Pocket Soft, Inc.

www.rtpatch.com

0906gd_toolbox_vIjf.indd 410906gd_toolbox_vIjf.indd 41 5/19/09 7:44:00 PM5/19/09 7:44:00 PM

http://www.rtpatch.com
http://WWW.GDMAG.COM

TOOLBOX

the engine supports twenty
different model formats, all skeletal
animations for a given model must
be laid out in a single FBX file and
imported in bulk. Upon import,
the user can specify the frame
ranges of individual animations to
carve them back up into individual
assets. While the remainder of
the runtime animation system is
well-crafted, this odd quirk in the
content pipeline can take some
getting used to.

Similarly, the embedded
physics system has been hand-
crafted by Blade Games World and
is “still a little rough” (to quote
its web page) when compared to

traditional physics middleware
packages like Havok or PhysX. For
basic physical interactions between
collision volumes, however, I found
it to be more than adequate. Rag-
doll support is still in the planning
stages, but the current offering
supports rigid body collisions
between arbitrary meshes as well
as spheres, boxes, capsules and
height maps. A custom physics
solution handling four-wheeled
vehicles is also provided to ease
the creation of driving games.

VISUAL SCRIPTING
AND EXTENSIBILITY
» Blade3D provides a visual
scripting system in the form
of what it calls Visual Logic
Diagrams. Using a flow chart-
like representation, this system
allows users to define logic by
dragging objects and operators
onto the design surface and
hooking them together to achieve
the desired result. These data
flow diagrams allow authors to
create animation blend trees,
specify gameplay logic and define
character behaviors. Like most
other subsystems in Blade3D,
these Visual Logic Diagrams can
be edited in real time for easy
debugging and tuning.

In addition to the Visual Logic
Diagrams, Blade3D also provides
an embedded script editor
complete with syntax highlighting.
Here users can craft C# game
components to provide custom
extensions to existing game
objects. The entire engine and
scene editor is also extendable
using .NET languages and the
provided Blade3D SDK.

MARKETPLACE
AND COMMUNITY
» Blade Games World has created
a development community of
it’s own around Blade3D. The
current user forum and wiki are
sparsely populated, but growing
at a healthy pace. Thankfully,
this means new users have great
access to the Blade Games World
staff, who reply to most forum
questions within 1–2 business
days. The wiki contains many

empty entries, which Blade Games
World will hopefully remedy in the
near future. In the mean time, the
Blade3D documentation, including
both written and video tutorials,
handles most common questions
and gets users started quickly.

Blade Games World has also
launched its own marketplace
to allow users to buy, sell and
distribute their games and game
content. Marketplace browsing
and downloads are handled
directly through the scene editor,
allowing content to be directly
embedded into your game project.
Like the forum and wiki, the
marketplace is just getting off the
ground. As a result, the content
available is on the slim side.

PRICING
» Blade Games World has opted
for a novel subscription-based
model for Blade3D. Rather than
purchasing or licensing the engine
with a one time fee or royalty
system, users pay a monthly fee
to keep the editor operational.
Several subscription tiers are
available ranging from $14.95
to $99.95 a month ($149.95 to
$999.50 if paid yearly).

The tiers all provide the same
feature set and editor functionality,
but differ in the level of support
provided. Lower-priced tiers also
require Blade3D watermarks
or splash screens, while the
higher tiers require no identifying
marks and enjoy discounts to all
Marketplace content.

The subscription model
is innovative in that it allows

independent developers to get
started for very little investment
and step up their subscription
level as needed over the course
of development. The subscription
is also tied to the ability to use
the editor, not the game product
created. This means that once your
game is complete, you can freely
distribute your product without
maintaining a Blade3D subscription.
Likewise, the monthly subscription
model allows developers the
flexibility to cancel and reinstate
their subscriptions when the project
needs to go on the back burner.

CUT TO THE CHASE
» Blade3D is a rich toolset for the
indie game creator or the seasoned
developer looking for a quick way
to prototype ideas. The Blade
Games World team has created a
simple yet solid world editor, and
packed into it a host of features
to aid game developers of all skill
levels. While some systems lack
depth, all facets from animating
user interface screens to managing
game character inventories are
provided in one form or another.
When coupled with a responsive
community and innovated pricing
structure, the result is a welcome
addition to any developer’s toolbox.

G R E G S N O O K is a development lead

at Microsoft Game Studios, currently

working on an unannounced project.

He is also the author of Real-Time 3D

Terrain Engines using C++ and DirectX

9 as well as a contributor to the Game

Programming Gems book series. Email

him at gsnook@gdmag.com.

GAME DEVELOPER | JUNE/JULY 2009 42

BLADE GAMES WORLD
BLADE3D

¤ STATS
Blade Games World
PO Box 1329
Issaquah WA 98027-0053
www.bladegamesworld.com

¤ PRICE
Tiered subscription model starting
at $14.95 per month

¤ SYSTEM REQUIREMENTS
Minimum:
Windows XP with Service Pack 2,
2.0GHz CPU, 1GB RAM, SM 2.0b
graphics card, 128MB, display
resolution: 1280x1024 or higher,
internet connectivity for activation
and monthly verification

Recommended:
Windows XP with Service Pack 3 or
Windows Vista, 3.2GHz CPU, 2GB RAM,
SM 3.0b Graphics Card, 256MB, display
resolution: 1600x1200 or higher,
32bit color depth, full-time internet
connection for community access

¤ PROS
1 Well designed, comprehensive

scene editor
2 User extendable through visual

script, custom components, and
.NET development.

3 Innovative subscription model

¤ CONS
1 Relatively new community and

marketplace needs time to mature
2 Some content pipeline quirks to

overcome
3 Single-viewport interface limits

scene visibility

0906gd_toolbox_vIjf.indd 420906gd_toolbox_vIjf.indd 42 5/19/09 7:44:02 PM5/19/09 7:44:02 PM

http://www.bladegamesworld.com
mailto:gsnook@gdmag.com

WWW.GDMAG.COM 43

MOCK OBJECTS:
FRIENDS OR FOES?
UNIT TESTING WITH MOCKING FRAMEWORKS

LAST MONTH WE COVERED ALL THE DETAILS
necessary to start using unit testing on a real-
world project. That was enough knowledge to
get started and tackle just about any codebase.
Eventually you might have found yourself
doing a lot of typing, writing redundant tests, or
having a frustrating time interfacing with some
libraries and still trying to write unit tests.
Mock objects are the final piece in your toolkit
that allow you to test like a pro in just about
any codebase.

TESTING CODE
» The purpose of writing unit tests is to
verify the code does what it’s supposed to do.
How exactly do we go about checking that?
It depends on what the code under test does.
There are three main things we can test for when
writing unit tests:

• Return values. This is the easiest thing to
test. We call a function and verify that the
return value is what we expect. It can be
a simple boolean, or maybe it’s a number
resulting from a complex calculation. Either
way, it’s simple and easy to test. It doesn’t
get any better than this.

• Modified data. Some functions will modify
data as a result of being called (for
example, filling out a vertex buffer with
particle data). Testing this data can be
straightforward as long as the outputs are
clearly defined. If the function changes
data in some global location, then it can be
more complicated to test it or even find all
the possible places that can be changed.
Whenever possible, pass the address of the
data to be modified as an input parameter
to the functions. That will make them easier
to understand and test.

• Object interaction. This is the hardest effect
to test. Sometimes calling a function doesn’t
return anything or modify any external data
directly, and it instead interacts with other
objects. We want to test that the interaction
happened in the order we expected and with

the parameters we expected.
Testing the first two cases is relatively simple,
and there’s nothing you need to do beyond
what a basic unit testing-framework provides.
Call the function and verify values with a CHECK
statement. Done. However, testing that an object
“talks” with other objects in the correct way is
much trickier. That’s what we’ll concentrate on for
the rest of the article.

As a side note, when we talk about object
interaction, it simply refers to parts of the code
calling functions or sending messages to other
parts of the code. It doesn’t necessarily imply
real objects. Everything we cover here applies as
well to plain functions calling other functions.

Before we go any further, let’s look at a
simple example of object interaction. We have
a game entity factory and we want to test that

the function CreateGameEntity() finds
the entity template in the dictionary and calls
CreateMesh() once per each mesh.

We can write a test like the one in Listing 1, but
after we call the function CreateGameEntity() ,
how do we test the right functions were called
in response? We can try testing for their results.
For example, we could check that the returned
entity has the correct number of meshes, but
that relies on the mesh factory working correctly,
which we’ve probably tested elsewhere, so we’re
testing things multiple times. It also means
that it needs to physically create some meshes,
which can be time consuming or just need
more resources than we want for a unit test.
Remember that these are unit tests, so we really
want to minimize the amount of code that is
under test at any one time. Here we only want to

TEST(CreateGameEntityCallsCreateMeshForEachMesh)
{
 EntityDictionary dict;
 MeshFactory meshFactory;
 GameEntityFactory gameFactory(dict, meshFactory);

 Entity* entity = gameFactory.CreateGameEntity(gameEntityUid);
 // How do we test whether it called the correct functions?
}

listing 1 trying to test object interactions

TEST(CreateGameEntityCallsCreateMeshForEachMesh)
{
 MockEntityDictionary dict;
 MockMeshFactory meshFactory;
 GameEntityFactory gameFactory(dict, meshFactory);

 dict.meshCount = 3;

 Entity* entity = gameFactory.CreateGameEntity(gameEntityUid);

 CHECK_EQUAL(1, dict.getEntityInfoCallCount);
 CHECK_EQUAL(gameEntityUid, dict.lastEntityUidPassed);
 CHECK_EQUAL(3, meshFactory.createMeshCallCount);
}

listing 2 using mock objects to test object interactions

THE INNER PRODUCT // NOEL LLOPIS

IL
LU

ST
R

AT
IO

N
 B

Y
JO

N
 K

IM

0906gd_inner_product_vIbs.indd 430906gd_inner_product_vIbs.indd 43 5/20/09 12:49:02 PM5/20/09 12:49:02 PM

http://WWW.GDMAG.COM

THE INNER PRODUCT // NOEL LLOPIS

test that the entity factory does the right thing,
not that the dictionary or the mesh factory work.

INTRODUCING MOCKS
» To test interactions between objects, we need
something that sits between those objects and
intercepts all the function calls we care about.
At the same time, we want to make sure that the
code under test doesn’t need to be changed just
to be able to write tests, so this new object needs
to look just like the objects the code expects to
communicate with.

A mock object is an object that presents the
same interface as some other object in the system,
but whose only goal is to attach to the code under
test and record function calls. This mock object
can then be inspected by the test code to verify all
the communication happened correctly.

Listing 2 shows how a mock object helps us
test our game entity factory. Notice how there
are no real MeshFactory or EntityDictionary
objects. Those have been removed from the test
completely and replaced with mock versions.
Because those mock objects implement the

same interface as the objects they’re standing
for, the GameEntityFactory doesn’t know that
it’s being tested and goes about business as
usual.

The mock objects themselves are shown in
Listing 3. Notice they do no real work; they’re just
there for bookkeeping purposes. They count how
many times functions are called, record some
parameters, and return whatever values you fed
them ahead of time. The fact that we’re setting the
meshCount in the dictionary to 3 is how we can then
test that the mesh factory is called the correct
number of times.

When developers talk about mock objects,
they’ll often differentiate between mocks and
fakes. Mocks are objects that stand in for a
real object, and they are used to verify the
interaction between objects. Fakes also stand
in for real objects, but they’re there to remove
dependencies or speed up tests. For example,
you could have a fake object that stands in for
the file system and provides data directly from
memory, allowing tests to run very quickly and
not depend on a particular file layout. All the

techniques presented in this article apply both
to mocks and fakes, it’s just how you use them
that sets them apart from each other.

MOCKING FRAMEWORKS
» The basics of mocking objects are as simple
as what we’ve seen. Armed with that knowledge,
you can go ahead and test all the object
interactions in your code. However, I bet you’re
going to get tired quickly from all that typing
every time you create a new mock. The bigger
and more complex the object is, the more tedious
the operation becomes. That’s where a mocking
framework comes in.

A mocking framework lets you create mock
objects in a more automated way, with less
typing. Different frameworks use different
syntax, but at the core they all have two parts
to them:

• A semi-automatic way of creating a mock
object from an existing class or interface.

• A way to set up the mock expectations.
Expectations are the resulting interactions a
successful test will produce: functions called
in that object, the order of those calls, or the
parameters passed to them.

Once the mock object has been created and
its expectations set, you perform the rest of
the unit test as usual. If the mock object didn't
receive the correct calls the way you specified
in the expectations, the unit test is marked
as failed. Otherwise the test passes and
everything is good.

GOOGLE MOCK
» This is the free C++ mocking framework
provided by Google. It takes a very
straightforward implementation approach and
offers a set of macros to easily create mocks for
your classes, and set up expectations. Because
you need to create mocks by hand, there’s still
a fair amount of typing involved to create each
mock, although they provide a Python script that
can generate mocks automatically from C++
classes. It still relies on your classes inheriting
from a virtual interface to hook up the mock
object to your code.

Listing 4 shows the game entity factory test
written with Google Mock. Keep in mind that in
addition to the test code, you still need to create
the mock object through the macros provided in
the framework.

MOCKITNOW
» This open-source C++ mocking framework
written by Rory Driscoll takes a totally different
approach than Google Mock. Instead of
requiring that all your mockable classes inherit

GAME DEVELOPER | JUNE/JULY 2009 44

struct MockEntityDictionary : public IEntityDictionary
{
 MockEntityDictionary()
 : meshCount(0)
 , lastEntityUidPassed(0)
 , getEntityInfoCallCount(0)
 {}

 void GetEntityInfo(EntityInfo& info, int uid)
 {
 lastEntityUidPassed = uid;
 info.meshCount = meshCount;
 ++getEntityInfoCallCount;
 }

 int meshCount;
 int lastEntityUidPassed;
 int getEntityInfoCallCount;
};

struct MockMeshFactory : public IMeshFactory
{
 MockMeshFactory() : createMeshCallCount(0)
 {}

 Mesh* CreateMesh()
 {
 ++createMeshCallCount;
 return NULL;
 }
};

listing 3 mock objects for the previous test

0906gd_inner_product_vIbs.indd 440906gd_inner_product_vIbs.indd 44 5/19/09 7:33:25 PM5/19/09 7:33:25 PM

WWW.GDMAG.COM 45

from a virtual interface, it uses compiler support
to insert some code before each call. This code
can then call the mock and return to the test
directly, without ever calling the real object.

From a technical point of view, it’s a very
slick method of hooking up the mocks, but
the main advantage of this approach is that
it doesn’t force a virtual interface on classes
that don’t need it. It also minimizes typing
compared to Google Mock. The only downside is
its very platform-specific implementation, and
the version available only supports Intel x86
processors, although it can be re-implemented
for PowerPC architectures.

PROBLEMS WITH MOCKS
» There is no doubt that mocks are a very useful
tool. They allow us to test object interactions in
our unit tests without involving lots of different
classes. In particular, mocking frameworks make
using mocks even simpler, saving typing and
reducing the time we have to spend writing tests.
What’s not to like about them?

The first problem with mocks is that they
can add extra unnecessary complexity to the
code, just for the sake of testing. In particular,
I’m referring to the need to introduce a virtual
interface for each object that we want to mock.
This is a requirement if you’re writing mocks by
hand or using Google Mock (not so much with
MockItNow), and the result is more complicated
code: You need to instantiate the correct type,
but then you pass around references to the
interface type in your code. It’s just ugly, and
I really resent that using mocks is the only
reason those interfaces are there. Obviously,
if you need the interface and you’re adding
a mock to it afterward, then there’s no extra
complexity added.

If the complexity and ugliness argument
doesn’t sway you, try this one: Every

unnecessary interface is going to result in an
extra indirection through a vtable with the
corresponding performance hit. Do you really
want to fill up your game code with interfaces
just for the sake of testing? Probably not.

But in my mind, there’s another, bigger
disadvantage to using mocking frameworks.
One of the main benefits of unit tests is that
they encourage a modular design, with small,
independent objects that can easily be used
individually. In other words, unit tests tend
to push design away from object interactions
and more toward returning values directly or
modifying external data.

A mocking framework can make creating
mocks really easy, to the point that it doesn’t
discourage programmers from creating a mock
object any time they think of one. And when you
have a good mocking framework, every object
looks like a good mock candidate. At that point,
your code design is going to start looking more
like a tangled web of objects communicating
in complex ways, rather than simple functions
without any dependencies. You might have saved
some typing time, but at what price?

WHEN TO USE
MOCKING FRAMEWORKS
» That doesn’t mean that you shouldn’t use
a mocking framework though. A good mocking
framework can be a lifesaving tool. Just be very,
very careful how you use it.

The case when using a mocking framework
is most justified when dealing with existing
code that was not written with unit testing
in mind—code that is tangled together, and
impossible to use in isolation. Sometimes that’s
third-party libraries, and sometimes it’s even
(yes, we can admit it) code that we wrote in the
past, maybe under a tight deadline, or maybe
before we cared much about unit tests. In any

case, trying to write unit tests that interface with
code not intended to be tested can be extremely
challenging. So much so, that a lot of people give
up on unit tests completely because they don’t
see a way of writing unit tests without a lot of
extra effort. A mocking framework can really
help in that situation to isolate the new code
you’re writing, from the legacy code that was not
intended for testing.

Another situation when using a mocking
framework is a big win comes if you use it as
training wheels to get started with unit tests
in your codebase. There’s no need to wait until
you start a brand new project with a brand new
codebase (how often does that happen anyway?).
Instead, you can start testing today, and using
a good mocking framework will help isolate your
new code from the existing one. Once you get the
ball rolling and write new, testable code, you’ll
probably find you don’t need it as much.

Apart from that, my recommendation is to
keep your favorite mocking framework ready
in your toolbox, but only take it out when you
absolutely need it. Otherwise, it’s a bit like using
a jackhammer to put a picture nail on the wall.
Just because you can do it, it doesn’t mean it’s a
good idea.

Keep in mind that these recommendations
are aimed at using mock objects in C and C++.
If you’re using other languages, especially
more dynamic or modern ones, using mock
objects is even simpler and without many of
the drawbacks. In a lot of other languages, such
as Lua, C#, or Python, your code doesn’t have
to be modified in any way to insert a mock
object. In that case you’re not introducing any
extra complexity or performance penalties by
using mocks, and none of the earlier objections
apply. The only drawback left in that case is
the tendency to create complex designs that
are heavily interconnected, instead of simple,
standalone pieces of code. Use caution and
your best judgment and you’ll make the best
use of mocks.

N O E L L L O P I S has been making games for just about

every major platform in the last ten years. He's now going

retro and spends his days doing iPhone development from

local coffee shops. Email him at nllopis@gdmag.com.

resources
Google Mock
http://code.google.com/p/googlemock

MockItNow
http://www.rorydriscoll.com/
mockitnow

TEST(CreateGameEntityCallsCreateMeshForEachMesh)
{
 MockEntityDictionary dict;
 MockMeshFactory meshFactory;
 GameEntityFactory gameFactory(dict, meshFactory);

 EXPECT_CALL(dict, GetEntityInfo())
 .Times(1)
 .WillOnce(Return(EntityInfo(3));

 EXPECT_CALL(meshFactory, CreateMesh())
 .Times(3);

 Entity* entity = gameFactory.CreateGameEntity(gameEntityUid);
}

listing 4 test using Google Mock

0906gd_inner_product_vIbs.indd 450906gd_inner_product_vIbs.indd 45 5/19/09 7:33:27 PM5/19/09 7:33:27 PM

http://code.google.com/p/googlemock
http://www.rorydriscoll.com/mockitnow
mailto:nllopis@gdmag.com
http://WWW.GDMAG.COM
http://www.rorydriscoll.com/mockitnow

SOME YEARS AGO YOUR HUMBLE
correspondent was racing to meet
a milestone, frantically hunting for
files that needed updating before
a big demo. After an hour of angry
wrestling with the windows file
dialog (you know, the one with
helpful the ability to accidentally
create new folders while opening
files) I hurled my mouse across
the room, spewed a stream of
profanities, and loudly proclaimed
my intention to hunt down and
eviscerate the creator of the
offending dialog who, I quickly
discovered, was now working two
desks away as our lead designer.
Although it didn’t end up in fisticuffs,
it was still disheartening to hear that
Windows team hated the damn thing
too. From that day to this, every time
I type a file backslash, something
inside me dies.

The main moral of the story is,
of course, think ahead before you
start cussing in an open plan office,
particularly if you work two miles
from the Microsoft main campus.
However, it also illuminates the
seamier underside of game artist
life. We’ve spent many column

inches in Pixel Pusher pondering
the subtle inflections of the word
“art.” It’s a safe bet, though, that the
none of the competing definitions
of art revolve around efficient
file management or solid naming
conventions. What art school
kid wakes up in the morning and
dreams of a cleanly organized

check-in list? Nobody comes away
from a group critique thinking
“damn, I really need to brush up on
my file naming skills or I’ll never
make lead!” File handling rarely
tops your artistic agenda.

METACRITICAL ISSUES
» So naturally, it sounds like
just the sort of thing you’d love to
read about in Game Developer. No,
seriously! Before your eyes glaze
over completely, here’s a very quick
pitch about why you should spare a
little thought for this humble aspect
of the artistic life:

First, you spend a lot of time
dealing with files. Each interaction
is pretty negligible in itself—but
there are lots of them. How many
times a day do you have to start
digging around for something
buried five or ten layers deep in
your game directory, or worse
in a clunky, slow, source control
browser app? Those seconds
can add up to a sizeable chunk
of your day. Worse, those little
clerical delays also break your
concentration instead of keeping
you on task. You shouldn’t have

to care about the files, you should
care about the artwork.

Second, poorly organized
files make debugging difficult,
frustrating, and costly. Debugging
your work in the game is tricky
enough to begin with, with all the
thousands of things that could go
wrong in your art package, or in

the game itself. If you aren’t 100
percent certain that the art file
you’re looking at is actually the
source of what you see in the game,
it quickly becomes impossible.
Poor organization also means
that changes of direction can be
prohibitively expensive. There is
an embarrassingly large number
of companies which can’t actually
recreate their game content
because nobody knows what files
really produced the in-game assets.
If your company is one of those
with a big storage closet of artists’
hard drives kept “just in case,” you
know what we mean.

Third, and most importantly for
the artistic soul, file-mongering is
drudgework. Nobody ever picked
up a box at GameStop and said
“wow, these screenshots really
show beautifully maintained
naming conventions!” You may
take professional pride in the
neatness and thoroughness of

your organization, but in the end
your real job is to tell stories and
fire up players’ imaginations, not to
shuffle binary data around in tidy
parcels. Managing your files well
is dreadfully important, because it
can really get in your way if done
poorly; but a good solution is one
that occupies as little of your time
and attention as possible.

To sum up: good organization is
critically important, but no fun. The
best thing to do about it, therefore,
is to automate and regularize the
management of your files in every
way you can. You need the safety
of a reliable audit trail and the
convenience of quickly getting to
your stuff; but you don’t want to
waste precious artistic synapses
deciding what to call things and
where to put them.

METASTASIS
» To tackle the problem seriously,
it’s worth thinking a little about
the basic assumption we bring to
the problem. The idea of putting
“files” into “folders” as a way of
organizing digital information goes
all the way back to the 1950s.
It’s held up a little better than
paper punch cards as a storage
medium—but only just. It has
serious limitations—we’re just so
used to them that we don’t always

GAME DEVELOPER | JUNE/JULY 200946

PIXEL PUSHER // STEVE THEODORE

METAGAMES
THE HIDDEN LIFE OF FILES

Poor organization also means that changes of direction
can be prohibitively expensive. There is an embarrassingly
large number of companies which can’t actually recreate
their game content because nobody knows what files really
produced the in-game assets.

ILLUSTRATION BY HARVEY JAMES

0906gd_pixel_v3jm.indd 460906gd_pixel_v3jm.indd 46 5/20/09 12:46:37 PM5/20/09 12:46:37 PM

www.developconference.com

14 -16 JULY 2009

Organised byMember DiscountsMedia Sponsor

Media Sponsor Media Sponsor Media Sponsor Media Sponsor

Media Sponsor

Media SponsorMobile Sponsor

gamesindustry.biz

Make sure you stay ahead of the game – come to Develop in Brighton!

The Develop Conference is an inspiring place – over 80 great sessions given by a host of international development experts
and around 1200 developers getting together to share ideas, learn from each other and socialise.

Plus this year there’s innovative new content with the launch of Evolve – a new one-day event
which will open the Develop Conference on Tuesday 14 July and a new track within the conference on
Wednesday 15 July.

Here’s a taste of this year’s programme:

Other speakers confirmed include:

Autodesk • Bizarre Creations • Blitz Games • Chillingo • Climax • Creative Assembly • comScore • Crytek • Denki • Disney Black
Rock Studios • Eutechnyx • Fishlabs • FluffyLogic • Glu Mobile • Google • Guerrilla Games • Gusto Games • ICO Partners • Kerb
• Lightning Fish Games • Lionhead • Matmi • MySpace • Nokia • Mediatonic • Microsoft • ngmoco • Playfish • Rare • Team 17
• The Mustard Corporation • Silicon Knights • Sidelines • Tag Games • Zoe Mode

Media SponsorMedia Sponsor

KEYNOTE

be inspired

Conference Keynote
David Jones, Founder,
Realtime Worlds

Keynote The Art of
LittleBigPlanet - A Big
Medley
Kareem Ettouney and Mark
Healey, Co-founders, Media
Molecule

Keynote The Runtime
Studio in Your Console:The
Inevitable Directionality of
Game Audio
Guy Whitmore, Director of
Audio, Microsoft Game Studios

Keynote Out of the Box(ed
Product): Thinking for an
Online Age
Jeff Hickman, Executive
Producer, Mythic
Entertainment

Open Software for Closed
Hardware
Steve Goodwin, SGX Engine

Keynote Building LEGO
Worlds - online, offline,
and everything in between
Jonathan Smith, Development
Director, Travellers Tales

Keynote Resetting the Game
David Perry, Industry
Consultant

Keynote Bridging The Gap
Experiences Learned with
Agile Project Management
across Multisite,
Multicultural and
Multilingual Project
Lisa Charman, Ubisoft and
Patric Palm, Hansoft

Making Videogames
History: Starting the
National Videogames Archive
Iain Simons, National
Videogame Archive

ART

AUDIO

BUSINESS

CODING

DESIGN

PRODUCTION

THE DEN

evolve

International Media Sponsor

EVOLVE

GD Develop Advert 6 6/5/09 14:57 Page 1

http://www.developconference.com
http://gamesindustry.biz

PIXEL PUSHER // STEVE THEODORE

perceive them as problems we
can fix.

The fundamental problem with
folder hierarchies is that they are
better at hiding information than
finding it. In a real production,
every game asset falls into lots of
categories. We try to use folders to
reflect this, hence familiar paths like
“objects\characters\human\allied\
grenadier.ma” This is descriptive,
sure—it’s an object, it’s a character,
and so forth. But different people
who care about that asset care
about different aspects. The level
designer placing enemies cares
about the faction the asset belongs
to. The character artist wants to see
all the characters and not worry
about level files. The animators
want to distinguish between game
animations and cinematics. The
engineers may want to shuffle files
around for efficient disk loading. Not
surprisingly, each of these groups
will have different ideas about the
right way to organize the file tree.

Fighting over the “right” way to
organize a project’s folder hierarchy
is a grand old game business
tradition. Every team starting out
fresh on a virgin project is certain
they can design a file tree that really
works (not like that shambolic mess
they had last time!). It’s a quaintly
noble ambition; but it’s not going
to happen. Folder hierarchies can’t
reconcile the competing agendas
of different groups within the team.
Moreover, the folks setting up the
hierarchy at the beginning of the
project have only a vague idea
about what the real contents of the
shipping game will be like. Character
names and roles will change,
working files with joke names will
turn into critical assets, and big
areas of the game will be cut. The
end result is like a trackless jungle—
without an experienced guide, you’ll
get lost inside.

This messiness has real costs.
Programmers who work with tree
structures for a living say that the
ideal tree is “balanced”—the number
of choices at each sub-level is more
or less the same. The goal of course
is that the path to anything in the
tree should be as short as possible.
If you’re sick of typing things like
“C:\documents and settings\myself\
project\content\art\models\objects\

vehicles\damaged\alien” into the file
box, you can see the point. However
the “efficient” arrangement may not
be the same as the understandable
one, or the one that groups things
logically for any individual task.
Typing time isn’t the only cost: your
tools also have to contend with
this haphazard structure. If your
scripts include page after page of
hard-coded path strings and arcane
“up two folders and over one” rules,
bugs are the inevitable result. Worst
of all, organizational awkwardness
increases the likelihood of lost
files, duplicated work, and broken
dependencies.

METAPHYSICAL INSIGHTS
» So, we know this is a tough
problem, and we know it’s
important. Does this mean we must
all become file Nazis, or start hiring
file-management interns? No. Even
if we wanted to tackle it manually,
the demands of managing a
modern game project are too harsh.
It’s not realistic to think it can be
handled with email memos and
threats from management. It’s a
database problem, and it should be
handled by computers—not artists
with more important, human tasks
to do.

Actually, everyone already
knows the technological answer
to this problem. It doesn’t depend
on 1950’s-era office practices.
It doesn’t demand a degree in
computer science, either. Most
of us maintain music libraries
with thousands, or even tens of
thousands of songs. But only the
hardest of the hard core users
actually design a folder tree to sort
those files into a tidy hierarchy—
we all let iTunes or Windows Media
Player or WinAmp handle the
physical location of the files, while
we browse through the library
using many different cues for
sorting and organizing. We can find
things by genre, by date, by artist
and so on. We can even create
playlists containing any random
collection of stuff we like. This
seems mundane, but in fact it is a
sophisticated database system. It’s
sophisticated in the best sense—so
good we take it for granted.

Obviously we can’t manage
our games in WinAmp. But the

underlying tech that makes music
libraries manageable is something
we can and should introduce into
our studios. Music players use the
mp3 tag information to record the
relevant information about each file
or album. The nerd term for this is
“metadata.”

Using metadata, files aren’t
defined solely by their physical
location; they can be found by
many different types of clues.
Unlike folders, metadata “tags”
aren’t mutually exclusive: Bits of
my Louis Armstrong collections
might be available under “Jazz”,
“Swing”, “Vocals” or “Blues,” or
by date, or by rating. Your Alif
Tree remixes might appear under
“Electronica” or “French Hip Hop,”
or you might just look for the name
of the song or album. Organizing by
metadata turns the rigid, hidebound
business of filing into the much
more efficient process of finding
what you need by whatever route
suits your memory at the moment.
It doesn’t force you to actually
shuffle things around on disk if
your needs change.

GOOD METABOLISM
» It’s easy to see how good
metadata can help teams manage
enormous masses of art content.
Instead of wrangling folder
arrangements, you can concentrate
on finding and working with the
data you need. You can design a
set of metadata tags that match
the needs of your production. Your
animators care a lot about which
files are animations and which are
models, but they don’t care much
if a model file is a level or a vehicle;
your producers will want to sort by
production status; your art leads
may want to browse work by author
at review time. Happily, you can add
new metadata as new needs arise,
without having to physically shuffle
files around on disk.

Metadata also lets you tackle
one of the nastiest problems in
game art management: tracking
the relationships between files.

Most companies recognize that
accounting for files which get
exported into the game is a life-
or-death issue. However, plenty
of critically important files never
go into the game directly. Many
teams, for example, do a terrible
job of dealing with the high-res
source art that is used to generate
normal maps—since the zillion-
poly Mudbox models never go into
the game directly, they often end
up completely outside of source
control, and their vital role in
the game resides entirely in the
memory of individual artists. I’ve
personally had the experience of
asking where the Zbrush source for
a character was kept and hearing
that it lived in a folder called “junk
drawer” in somebody’s email drop
box. It's far too common for artists
to check in complex assets without
remembering to check all of their
incoming references, leaving files
that can only be opened on the
author's machine. Metadata helps
to keep tabs on the myriad bits of
information that really make up the
final game assets.

METADORS
» Good file tracking is like clean
underwear—most of the time
nobody knows if you’ve got it, but
should you get run over by a bus,
people will be grateful that you
were prepared. Hopefully, by this
point you’re convinced of two basic
points. First, that file management
(dowdy and dull as it may be) is a
critical part of game art production.
Second, that there’s a better way to
handle it than with old-fashioned
folders and ham-handed naming
conventions, by using the power
of metadata. Next month we’ll look
at some practical steps you can
take to actually build a metadata
based pipeline and realize some of
these benefits in your daily work.
Until then, remember that the LEFT
hand yellow folder icon goes up
one folder, and the RIGHT hand one
makes a new folder. Sheesh.

STEVE THEODORE has been pushing pixels for more than a dozen years. His credits

include MECH COMMANDER, HALF-LIFE, TEAM FORTRESS, and COUNTER-STRIKE. He's been a

modeler, animator, and technical artist, as well as a frequent speaker at industry

conferences. He’s currently content-side technical director at Bungie Studios. Email him

at stheodore@gdmag.com.

GAME DEVELOPER | JUNE/JULY 2009 48

0906gd_pixel_v3jm.indd 480906gd_pixel_v3jm.indd 48 5/20/09 12:46:04 PM5/20/09 12:46:04 PM

mailto:stheodore@gdmag.com

DESIGN OF THE TIMES // DAMION SCHUBERT

WWW.GDMAG.COM 49

TACTICAL TRANSPARENCY
EXPOSING THE BOARD STATE TO PLAYERS

A LOT OF EXPLANATIONS HAVE BEEN
given for the explosion of poker in the
early part of this decade. Factors cited
have included in the rise of online poker,
the surprise victory of amateur Chris
Moneymaker in the 2003 World Series
of Poker, the success of the movie
Rounders, and even the NHL lockout
which left ESPN scrambling for cheap
content to show in winter months. I’d like
to propose one additional reason: the rise
of a superior form of poker.

For decades, when you saw a game
of poker being played in a movie, what
you saw being played was probably
Five-Card Draw—all players are dealt a
hand, may replace some cards in a single
draw, and then reveal, with opportunities
to bid along the way. The dirty secret
of Five-Card Draw is that it’s not a very
good strategy game. Players have little
information to base their strategy on—
their own hand, how many cards their
opponents draw, and how nervous their
opponents seem. Draw poker is entirely
about bluffing and luck. This makes for
classic cinema, but from a gameplay
perspective, it’s hardcore and fairly
unsatisfying to play.

But that’s not what they play on
ESPN2 at 2 AM. As poker exploded, Texas
Hold’em was the game of choice. In Texas
Hold’em, all players must make a five-
card hand out of two cards they have
privately (their ‘hole’ cards) and five
others that everyone shares. Suddenly,
you have very good information about
what your opponents can do—three-fifths
of their final hand is on the table, after all.
The odds of victory and defeat becomes
as much a math problem as one about
bluffing and luck.

Bluffing is still important, but it isn’t
the dominant path to victory. Strategy
is—and this strategy is created by the
amount of information given to the player.
As game designers, we must understand
that the level of information we give
players affects how strategic or tactical
our games are.

ILLUSTRATION BY DEREK YU

INTRODUCING TACTICAL TRANSPARENCY
» When discussing games, the term "board state" refers to the current state of variables in the game.
In chess, the board state is the location of all of the pieces. In poker or Magic: The Gathering, the board
state is what’s on the table as well as in the player’s hand. In a first-person shooter, it would be the
health, weapons, and ammo available to both you and your opponent.

Tactical transparency is a description of how much of the board state is exposed to each player. In
classic chess or checkers, the board state is entirely exposed to both players. Every piece of information
a checkers player could use is in front of him. Surprises are failures on the part of the player to foresee all
possible outcomes of the current board state. The information available to the player is perfect.

IMPERFECT INFORMATION
» Of course, most games do not expose their entire board state. Many successful games shroud some
of the board state, forcing players to adapt tactically as the game unfolds. In many cases, however, you
offer them hints. These hints are imperfect information that allow the players to make informed decisions
without necessarily ensuring they will make the right one—or even that a winning move exists.

Blackjack is not perfectly tactically transparent—the dealer’s second card is hidden—and the
game would be quite broken if it were transparent. That said, the player knows two key pieces of
information about the dealer’s board state: the dealer’s top card, and that the dealer is bound by the

0906gd_design_vIjf.indd 490906gd_design_vIjf.indd 49 5/19/09 7:32:49 PM5/19/09 7:32:49 PM

http://WWW.GDMAG.COM

DESIGN OF THE TIMES // DAMION SCHUBERT

rules as far as when he can hit or stay. These
two bits of information are enough that a smart
player playing optimally can very nearly erase
the house edge in the game.

In Magic: The Gathering, you normally have
no idea what cards your opponent has in his
hand. However, you do know what resources are
available to him—primarily the mana base he
has on the table. If he has nothing but red mana,
you know that he could cast direct damage spells
like Lightning Bolt and Disintegrate. Even more
importantly, you know what he can’t do—he
can’t, for example, cast a Counterspell, as those
require blue mana. This information allows the
player to build a battle plan.

Game resources are often a good way for
a designer to create imperfect information.
If a missile goes whistling over your head in
QUAKE 2, you know your opponent has a rocket
launcher, which is useful information. You don’t
know how much ammo he has, but you do know
that a player can’t carry more than 50 rockets.
Sometimes, imperfect information can be made
more perfect if the player is willing to track
it. The resources that a player has drawn in
Settlers of Catan are kept hidden, but if you’re
willing to track them as they are distributed
and spent, you can gain a pretty good idea of an
opponent’s capabilities.

TACTICAL TRANSPARENCY IN
NON-STRATEGY GAMES
» The concept of tactical transparency is most
strongly adhered to in turn-based strategy
games, of course, as fans of the genre value
information highly. However, even games well
outside of the strategy genre can benefit from
the philosophy. One example is the "light meter"
in games like THIEF or SPLINTER CELL.

The light meter is a UI element that shows if
the player is successfully hiding in the shadows,
and how likely the AI is to detect the player.
I’m sure that some designer on the THIEF team
tried to argue that having an extra GUI element
displaying this information was unrealistic
and immersion-breaking. But the opposite is
true—by giving the player perfect information
about how visible the game thinks the player is,
the player learns much quicker what is actually
good stealth and what is not, and ceases to
worry about external forces that could affect
their perceptions: camera angle, monitor glare,
or glitches in the game’s lighting algorithm. The
player’s focus may be on an artificial UI element,
but he is much deeper into the stealth experience
as a result.

In platformers or first-person shooters
almost every bad boss fight I can think of is
ultimately a failure of tactical transparency. Boss
creatures tend to be about megahits from the

creature, or moments of unique vulnerability.
In bad boss fights, these aren’t communicated
well to the user. When the player defeats such
a creature, he feels that it is more due to luck
than skill. And while winning due to luck is fun, it
doesn’t nearly match the sense of mastery that a
victory based on skill or tactics provides.

Tactical transparency can affect even basic
decisions a player has to make. In most games
with a height field, there is an angle at which
the terrain is simply too steep to climb—let’s
say 60 degrees. The problem is that slopes
at 59 and 61 degrees look identical. Trying
to climb both will make the world feel wildly
inconsistent.

To ensure there is no ambiguity, world
builders should painstakingly ensure that steep
terrain is clearly visually different, such as being
painted with a different texture. Slopes near the
non-climbable threshold should be forbidden
(i.e. no slopes between 50 and 70 degrees).
Designers may argue that it limits their freedom
create immersive environments. However, few
world building decisions break immersion more
than hitting an unclimbable slope the player
wasn’t expecting while he’s desperately running
for his life.

CASE STUDY: CLASSES IN MMOS
» One of the classic design debates is whether
MMOs should have rigid classes, or whether
players should be able to combine skills with
freedom. While there are good arguments on
both sides, one interesting way to look at the
debate is to see how tactical transparency
affects PvP.

In WARHAMMER: AGE OF RECKONING, if you see a
Witch Elf, you know her capabilities—she can use
stealth, debuff via poisons and deadly kisses,
and do a lot of burst damage. She also is a lot
less deadly if kept at range. This information is
still imperfect: you don’t know her mastery path,
her gearset, or any of the other ways she’s fine-
tuned her character spec. Still, if you run across
a Witch Elf, the strategy and tactics you employ
are going to be very different than if you stumble
across a Sorceress.

If you couldn’t tell a Witch Elf from a
Sorceress, strategy would become impossible
until combat engaged and you saw what
abilities your opponent was using—and then
the decisions that you made would be purely
twitch-speed tactical. In a pure classless
environment, in which any character can
have any combination of abilities, strategy
disappears. You know nothing about the
combat capabilities of your opponent, and
cannot proactively make adjustments to deal
with them. Without good information on which
to base tactical decisions, most players will

devolve their tactics to a single abilities rotation
that works the majority of the time.

This is not to say that classes are the right
answer. But advocates of classless systems
need to understand that if they don’t increase
tactical transparency in the absence of what
classes have to offer, PvP tactics may be
throttled in the crib.

INFORMATION WANTS TO BE FREE
» Too many designers try to keep too much
hidden. Many are in love with the idea of
surprising the players. The problem is that such
surprises often feel unfair and capricious, and
force the player into a pattern of trial and error
to learn their limits. Perhaps if we called this
pattern "die-and-quickload," designers will finally
understand how unfun it is.

Another culprit is the urge to hide numbers
and information. This can be a good urge—too
many numbers, and you risk making the
game overly complex and, by extension, more
hardcore. Still, hiding the numbers is a case
of treating a symptom, not the problem. The
problem, all too often, is that there are too many
variables, and that too much information is
necessary to understand the board state.

 Hiding the number is the wrong approach.
Making the players choose between a ‘strong
upgrade’ and a ‘great upgrade’ is much more
frustrating than making them choose between
+6 or +8 strength. Rather than hide the
information, designers should expose it, while
still ensuring that the mechanics are as simple
as possible, so players don’t have to be a Mensa
member to understand the trade-offs.

Finding the right balance of tactical
transparency for your game is a balancing act.
If a game requires no tactics or strategy and
success is guaranteed, then it risks becoming
a forgettable exercise in button mashing. If a
game awards victory only in limited conditions,
but does not give players enough information to
strive toward that condition, the game becomes
an exercise in luck, as is the case in Five Card
Draw. How much should you expose? This will
vary from game to game, but in my experience,
the designer should err on the side of more.
Sometimes it may seem like you’re exposing
too much, but let’s not forget, chess is often
considered the greatest game of all time—and it
shows everything.

D A M I O N S C H U B E R T is the lead combat designer

of STAR WARS: THE OLD REPUBLIC at BioWare Austin. He has

spent nearly a decade working on the design of games,

with experience on MERIDIAN59 and SHADOWBANE as well as

other virtual worlds. Damion also is responsible for Zen of

Design, a blog devoted to game design issues. Email him at

dschubert@gdmag.com.

GAME DEVELOPER | JUNE/JULY 2009 50

0906gd_design_vIjf.indd 500906gd_design_vIjf.indd 50 5/19/09 7:32:51 PM5/19/09 7:32:51 PM

mailto:dschubert@gdmag.com

THINKING OUTSIDE
THE BOOTH
AS MUCH AS THE PRACTICES AND
tools for Audio continue to evolve
with every new game the industry
produces, one area of our discipline
that remains fairly static is voice.
For the most part, voice work in
games is patterned after the model
established by the animation
industry. Voice directors cast roles
with an eye toward actors familiar
with the idiosyncrasies of voice-over
work. The talent is recorded one at a
time, in isolation, while standing in
front of a microphone with the voice
director in the control room at the
other end of the talkback mic.

That’s the traditional approach—
but there are other approaches
to game voice recording that can
help to bring much needed realism,
sincerity, and believability to your
actors’ performances.

A DIFFERENT DIRECTION
» With the performance of
cinematic game dialogue moving
from one of audio-only into the
realms of facial and full-body motion
capture, the goal across the board
becomes increased attention
to realism. Additionally, these
changes in technology are driving a
secondary change away from solely
using voice-over actors, and instead
bringing more on-camera actors into
the world of game voice production.

To help achieve a more true-to-life
performance out of the actors, one
step the voice director can take is to
move away from the standard practice
of recording actors in isolation. Actors
are used to not only acting but also
reacting to the performances of other
cast members. This is particularly true
of on-camera actors. Directors can
choose to record actors performing
together in groups, or to have the
other actors present at the session,
off-camera. This process is called a
cast record. Another option is for the

talent director to sit in the same room
with the performing actor and read
the lines of the other characters. This
approach to direction can yield a much
more realistic performance because
the actors are no longer working in
a vacuum, but rather reacting to the
performance and delivery of another
human being. The vocal performances
are often more dramatic, more
dynamic, and more convincing.

However, if you’re working with
seasoned voice-over actors, this
approach to direction will most likely
frustrate them more than it will help
the process along. Know your actor's
skill set and what will get the best
performance out of them before
forcing experimentation upon them.

A SEAT AT THE TABLE
» Another approach that can be
helpful for improving the quality of
the voice assets in your game is
simply the use of rehearsal. Most
voice actors read their lines cold,
meaning they’re handed the script
when they walk into the session, and
the first time they’re performing it is
as it goes into Pro Tools. However, in
some instances, a great opportunity
toward having your cast understand
the scope of their characters and
how they fit within the larger game
is to conduct a table read. A table
read is a rehearsal where the core
character actors literally get together
around a table and read through
the script alongside of the voice
director, and usually a few key team
members such as the creative lead
of the project, the scriptwriter, and a
producer or two.

A table read is a great tool to use
when the game has a group of no
more than seven core characters and
a fairly involved cinematics script.
There’s no point in sitting around
and rehearsing AI grunts and barks
such as “He’s over there!”—but if

your game is centered around a rich
story, a table read will help to create a
cohesive performance that allows the
actors to know the full context of their
performances. Again, as with a cast
record, a table read works best for on-
camera actors, as voice-over actors
are much more used to cold reading
their scripts as final performances.

BLOCK IT OUT
» Lastly, with the ever-increasing
practice of motion capture being
used not only for in-game animations
but also cutscene performances,
voice directors may find themselves
tasked with directing both actors
and stuntmen on the motion capture
stage. As such, voice directors should
consider holding rehearsals the day
before a major cutscene motion
capture session in order to establish
and rehearse the physical blocking of
the scenes. Once your actors become
mobile, pre-determined blocking
becomes a crucial tool in constructing
the scene and avoiding awkward or
unsuccessful improvisations from
your moving characters.

Even if your game won’t include
new technologies such as digital
facial scanning and motion capture,
consider this less-isolated approach
to voice recording. Perhaps more
than any other element, the
current generation of games is
pushing the boundaries of realistic
virtual worlds. At the heart of
any compelling virtual character
performance is a convincing
vocal. Any steps the voice director
can take toward maximizing
believability will help to sell not only
the character, but also the entire
world in which they live.

TAKE YOUR VOICE ACTORS OUT OF ISOLATION

JESSE HARLIN // AURAL FIXATION

J E S S E H A R L I N has been composing

music for games since 1999. He is currently

the staff composer for LucasArts.You can

email him at jharlin@gdmag.com.

WWW.GDMAG.COM 51

0906gd_aural_fix_vIbs.indd 510906gd_aural_fix_vIbs.indd 51 5/19/09 7:32:17 PM5/19/09 7:32:17 PM

mailto:jharlin@gdmag.com
http://WWW.GDMAG.COM

http://www.ccpgames.com/jobs

http://www.neversoft.com

Game Design at Vancouver Film School
shows students how to make more
enemies, better heroes, cooler levels,
and tighter connections to the industry.

In just one year, you’ll learn every
aspect of game design. Your portfolio
project is a playable video game.

VFS grads get snapped up by top
companies like BioWare, Radical, Relic,
and Ubisoft, and the LA Times named
VFS a top 10 school "most favored by
video game industry recruiters".

 vfs.com/enemies VFS student work by
Thaddeus Maharaj

>>
GE

T
ED

UC
AT

ED

54 J U N E 2 0 0 9 | G A M E D E V E L O P E R

GDP_05012009_00054 5/18/09 4:34 PM Page 44

http://vfs.com/enemies
http://meigamesim.intronetworks.com

Financial assistance and career services available.
Now accepting applications.

J U N E 2 0 0 9 | G A M E D E V E L O P E R 55

Game Developer (ISSN 1073-922X) is published

monthly by United Business Media LLC, 600 Har-

rison St., 6th Fl., San Francisco, CA 94107, (415) 947-

6000. Please direct advertising and editorial inqui-

ries to this address. Canadian Registered for GST

as United Business Media LLC, GST No. R13288078,

Customer No. 2116057, Agreement No. 40011901.

SUBSCRIPTION RATES: Subscription rate for the U.S.

is $49.95 for twelve issues. Countries outside the

U.S. must be prepaid in U.S. funds drawn on a U.S.

bank or via credit card. Canada/Mexico: $69.95;

all other countries: $99.95 (issues shipped via air

delivery). Periodical postage paid at San Francisco,

CA and additional mailing offices. POSTMASTER:
Send address changes to Game Developer, P.O. Box

1274, Skokie, IL 60076-8274. CUSTOMER SERVICE:
For subscription orders and changes of address,

call toll-free in the U.S. (800) 250-2429 or fax (847)

647-5972. All other countries call (1) (847) 647-5928

or fax (1) (847) 647-5972. Send payments to Game
Developer, P.O. Box 1274, Skokie, IL 60076-8274.

For back issues write to Game Developer, 4601 W.

6th St. Suite B, Lawrence, KS 66049. Call toll-free in

the U.S./Canada (800) 444-4881 or fax (785) 838-7566.

All other countries call (1) (785) 841-1631 or fax (1)

(785) 841-2624. Please remember to indicate Game
Developer on any correspondence. All content,

copyright Game Developer magazine/United Busi-

ness Media LLC, unless otherwise indicated. Don’t

steal any of it.

CCP North America52

Center for Digital Imaging.55

Epic Games . 19

Havok. 3

Image Metrics .C3

Insomniac Games 14

Intel . C2, 28–33

Jones and Bartlett Publishers25

Neversoft .53

Pocket Soft. 41

Rad Game Tools.C4

Santa Barbara City College.54

Spiel Studios .25

The MIT Press. .39

Vancouver Film School54

>> GET EDUCATED

GDP_06012009_00055 5/19/09 9:16 AM Page 47

http://cdiabu.com
http://www.gamasutra.com/jobs

ARRESTED DEVELOPMENT // MATTHEW WASTELAND

ASK A PIZZA
STRAIGHT TALK WITH GAME DEVELOPMENT’S MOST CONSUMED FOOD

IF YOU’VE BEEN IN GAME DEVELOPMENT, IT’S A GIVEN THAT YOU’VE EATEN
more than your fair share of pizza. This month, Game Developer magazine
was fortunate enough to land an interview with this widely eaten foodstuff
– and one of our industry’s unsung heroes.

What’s it like being the crunch food of choice for game developers?

It’s pretty cool. I like knowing that my calories are going to a good cause
instead of, say, a local frat party. It’s really exciting that there’s a chance
my carbs and fats will turn into the fuel for the next great advance in
video games. Of course I know that most of the time I’ll be the fuel to just
barely ship an inferior sequel to some insipid licensed title. But I have
to hold out hope just like everyone else in this business, right? Plus, in
comparison to the frat party, there’s a reduced chance I’ll be vomited
back up later.

Do people on the team ever get upset that the producers just order pizza
over and over?

Oh, sure, there are complaints. I’ve endured my share of the sarcastic, “Oh,
awesome, freaking pizza again!” comments. I try not to let that affect me.
Obviously, anyone would get tired of the same thing over and over, even a
food as delicious as myself. To deal with it, I rationalize. I know that part of
the reason I appear so often is that I’m easy to order and I can be ready at
a moment’s notice, which is important since the producers usually forget
until the evening, even though it’s totally obvious the team will be there
late. Oh, and I’m cost effective, too! So that’s a plus as well.

Seems like you’ve really been around the block! What are the different
ways you’ve been consumed?

Well, I’d say the main way is what I call the “shovel,” which kind of looks like
what it sounds like! (laughs) Most people tend to eat pizza the same way
—put as much as you can in your mouth and just freaking chew, know what
I mean? It’s not like people think about it much. They’ve got so much else
on their minds anyway. I guess there’s a little variation, now that I think
about it. Some people leave the crusts, and other people do weird stuff like
put mayonnaise on me. I think that’s a European thing. What else? Oh yeah,
smokers can’t taste anything so they load up on the crushed red pepper
and Tabasco. That’s about all I can think of right now.

Do you have any particular advice for people ordering you in the future?

Hmm. I’d say, try to vary it up a little. Sure, your favorite might be the
Extreme Meat Supreme, but other folks might appreciate the Mega Meat
Combo, and still others might want the Jumbo Cornucopia of Meats with
the Meat-Stuffed Crust. All of those are legitimate choices, so a selection
between them will go a long way to pleasing as many people as possible in
a single order.

Oh yeah, and don’t forget those hippie vegetarians. I can’t tell you how
many times those whiny people have come into the kitchen and recoiled in
horror at the sight of me. So you might want to do something for them just

so they freaking pipe down, if you feel me. And don’t even get me started on
lactose intolerance.

Recently, there’s been concern about “Quality of Life” in certain
sectors of–

You mean the people who are mad about crunch and don’t want to do
it? Yeah, I’ve heard of those folks. I’ve got something to say to them, so
I hope they’re listening. You can talk all you want about working nine to
five and how the long hours are burning people out, but as long as I’m
around, I think it’s gonna be pretty difficult to change anything. What
game developer could possibly turn down the prospect of a fresh, mouth-
watering pizza? I mean, seriously.

So you’re saying that you make crunch tolerable to—

Tolerable? Look, eating pizza is a communal thing. People do it together.
There’s a certain camaraderie that comes into play when it’s late at night
and game developers are huddled around the table shoving me down
their throats together. As long as I’m there to “grease” the wheels, so to
speak, I don’t see why it would change. I’m as much a part of the system as
anything else.

Oops, looks like we’re out of time. Well, thanks for chatting with us!

My pleasure. See you all during your next crunch!

M A T T H E W W A S T E L A N D is a pseudonymous game developer who has a fairly

common first name. Email him at mwasteland@gdmag.com.

GAME DEVELOPER | JUNE/JULY 2009 56

ILLU
STR

ATIO
N

 B
Y CH

R
IS FO

R
D

0906gd_arrested_dev_vIjf.indd 560906gd_arrested_dev_vIjf.indd 56 5/19/09 7:31:31 PM5/19/09 7:31:31 PM

mailto:mwasteland@gdmag.com

http://image-metrics.com

http://www.radgametools.com

	Contents
	Postmortem
	Crystal Dynamics' Tomb Raider: Underworld

	Features
	Top 50 Developers
	Infinite Space
	Staying Power

	Departments
	Game Plan
	Heads up Display
	Tool Box
	The Inner Product
	Pixel Pusher
	Design of the Times
	Aural Fixation
	Arrested Development

