
june/july 1996

G A M E D E V E L O P E R M A G A Z I N E

N
o, there’s nothing wrong with
your dials. You may have been
expecting Larry O’Brien’s
sagacious words in this space,
and here you are reading a
column by the guy who for-
merly wrote Crossfire. “Just
what the heck is going on?!”

you might be asking.
Changes are afoot here at Game

Developer, though nothing so radical as
a Spindler reorg. Larry’s been kicked
upstairs to editorial director, which
means that he gets to lean back in his
chair and watch pandemonium unfold,
rather than having to dive into the mire
with the rest of us. Oh, and he’s also
doing a lot more programming (some
people get to have all the fun). So,
instead, I’ve taken over much of the
day-to-day housekeeping here at the
magazine.

Now that I’ve been entrusted with
a smidge of power, my first goal is to
work towards beefing up the number of
articles every issue. More bang for your
buck. I’m going to try to squeeze every
inch of this magazine to fit as many
articles as possible into upcoming
issues. As my previous beat was indus-
try news and analysis, this column will
address these issues, and the Crossfire
column will slowly fade into the sunset.

This issue, we examine Microsoft’s
DirectX II SDK. If you haven’t looked
at the SDK yet, check out Robert
Hess’s article on page 24 which pro-
vides an overview of the kit. If you’ve
already started down the DirectX trail,
however, this article may be slightly
remedial. Don’t fret, Game Developer
isn’t reneging on its commitment to
high quality, technically deep content.
We did feel, however, that since there
is going to be substantial coverage in
the magazine about the current and

future versions of DirectX SDK, it
would make sense to have a base to
build upon. Besides the articles in this
issue on the Windows 95 Game SDK,
we’ll feature three articles in the next
issue on DirectDraw, DirectInput, and
Direct3D. Though our demographics
indicate that most of our readers work
on games for Intel-based machines,
we’ll also add more diverse platform
coverage. We’ll be devoting coverage to
the upcoming Macintosh Game SDK
for those of you working on Mac
games.

Beginning this fall, we’ll review
development tools. The first review was
going to cover C++ compilers, but,
wouldn’t you know it, Chris Hecker
stole my thunder with his latest series
on compilers. But look for reviews of
various 3D animation and C++ tools.

As with every byte of content that
goes into the magazine, let us know
what appeals to you and what doesn’t.
Want more space in the magazine
devoted to articles, and have us post
code on our FTP site instead of taking
up space on the pages? Or perhaps you
want more code in the magazine and
fewer articles. Are there any subjects that
we haven’t covered that you’d like to read
about? Let us know either through our
web site, http://www.gdmag.com, or
pick up a pen and scribble us a note.

I’ve just returned from the Com-
puter Game Developers Conference in
Santa Clara, Calif., which was more
packed with people than ever before—
close to 4,000. Check out the Bit Blasts
column, as well as our web site for
information about new products that
were launched at the show. ■

Alex Dunne
Senior Editor

Reboot

G A M E P L A N

6 GAME DEVELOPER • JUNE/JULY 1996

MGA EGAME

Editorial Director Larry O’Brien
gdmag@mfi.com

Senior Editor Alex Dunne
76702.1142@compuserve.com

Managing Editor Diane Anderson
dianderson@mfi.com

Editorial Assistant Jana Outlaw
joutlaw@mfi.com

Contributing Editors Barbara Hanscome
bhanscome@mfi.com

Chris Hecker
checker@bix.com

David Sieks
103302.301@compuserve.com

Web Site Manager Phil Keppeler
phil_keppeler@mfi.com

Editor-at-Large Alexander Antoniades
sander@mfi.com

Cover Photography Charles Ingram Photography

Publisher Veronica Costanza
Group Director Regina Starr Ridley
Special Projects Manager Nicole Freeman

76702.706@compuserve.com

Advertising Sales Staff

Western Regional Sales Manager

Steve Nikkola (415) 905-2256
snikkola@mfi.com

Promotions Manager/Eastern Regional Sales Manager

Holly Meintzer (212) 615-2275
hmeintzer@mfi.com

Marketing Manager Susan McDonald
Marketing Graphic Designer Azriel Hayes
Advertising Production Coordinator Denise Temple
Director of Production Andrew A. Mickus
Vice President/Circulation Jerry M. Okabe
Circulation Director Gina Oh
Associate Circulation Director Kathy Henry
Group Circulation Manager Mike Poplardo
Assistant Circulation Manager Jamai Deuberry
Newsstand Manager Debra Caris
Reprints Stella Valdez (916) 729-3633

Chairman of the Board Graham J.S. Wilson
Chairman/CEO Marshall W. Freeman
President/COO Thomas L. Kemp
Senior Vice President/CFO Warren “Andy” Ambrose
Senior Vice Presidents David Nussbaum, Darrell
Denny, Donald A. Pazour, Wini D. Ragus
Vice President/Production Andrew A. Mickus
Vice President/Circulation Jerry Okabe
Vice President/

Software Development Division Regina Starr Ridley

Miller Freeman
A United News & Media publication

http://www.gdmag.com

GAME DEVELOPER • JUNE/JULY 1996 9

Exploring
the World of
Texture Mapping

S E Z U !

KEEPING CHRIS ON HIS TOES!KEEPING CHRIS ON HIS TOES!

Dear Editor:

I
’ve enjoyed reading Chris Hecker’s series on
perspective texture mapping. His articles were
very informative, and they were very timely

with respect to my current project. Thanks!
However, there are a few things in the

February/March 1996 issue that confused me.
First, on page 24, Figure 3, should the resulting
exponent have the same binary exponent value
as the higher magnitude value? In this case
10000111 (135)?

Also, in the first paragraph of page 24, he
talks about subtracting “the integer representa-
tion of our large, floating-point shift number
from the integer representation of the number
we just converted....” What are these numbers?
The values to be subtracted are now:

0 | 10010110 | 10000000000000000000000
(1.1 *223)

-
1 | 10010110 | 00000000000000000001000
(Our 8.75 lined up)

=
1 | 10010110 | 11111111111111111111000
(This gets us our -8)

I think this is correct!

Kenneth Chao
Via e-mail

Chris Hecker replies:
Yes, this is a bug, thanks for spotting it! I must
have cut and pasted when I did the
diagram.

In regards to integer presentation, you have
got one bit wrong in your result. The .1 bit gets
borrowed from, so you end up with:

1 | 10010110 | 01111111111111111111000

Now, we’ve got a result that has our -8 embed-

ded in the bottom, but we want to get rid of the
top garbage. To do this, we just subtract our
“big number” (your 1.1 * 223) from this as an
integer:

11001011001111111111111111111000
-

01001011010000000000000000000000
=

11111111111111111111111111111000
(Which equals -8)

Thanks a lot! Keep up the good work!

X MODE MARKS THE SPOTX MODE MARKS THE SPOT

Dear Editor:

Y
our magazine is great! I use a lot of the
articles constantly. Especially the ones
about breaking into the game business. It

actually helped me land a job!
Your X mode programming optimizations

were great. Thanks for producing a much need-
ed magazine.

John Bryant
Via e-mail

I HAVE A TEXTURE MAPPING QUESTION!I HAVE A TEXTURE MAPPING QUESTION!

Dear Editor:

I
’ve been getting Game Developer magazine
since March 1995, and I’ve been especially
following your series on texture mapping.
Do you have any suggestions on how I could

make a quad texture mapper, assuming that
the points are clockwise and coplanar? Theoret-
ically, it should not be too much of a problem,
since the gradients across the quad are the
same as either of the two triangles which make
it up, or at least, should be, as far as I have
reasoned.

Also, how do games like Descent manage

such fast texture mapping, while also doing
game AI, Z buffering, and anything else that
needs to be done? When it changes detail level,
what is it doing?

Stuart Doyle
Via e-mail

Chris Hecker replies:
Well, general quads will work with a projective
mapping (they won’t with affine). But, if your
quads (or even general polygons) are coplanar,
you can use the plane equations to generate the
gradients without using the vertex texture coor-
dinates. The math is a bit much, but I might
cover it in a later article. You can derive it your-
self if you think about what you need to describe
the plane of the texture (a vector from the origin
to the texture origin, a U direction vector, and a
V direction vector, all in view space). Solve for u
and v in terms of screen space x and y (which
are view point x/z and y/z) and you’ve got it.
You’ll end up with rational linear equations that
look like:

u = (ax + by + c)/(dx + ey + f)
u = (gx + hy + i)/(dx + ey + f)

Also, Descent doesn’t Z buffer. The major
speedups in real games come from novel data-
base traversal algorithms that cull out most of
the world before they gets to the texture map-
per. The fastest texture mapped triangles are
the ones you didn’t draw.

http://www.gdmag.com

Say It!
Please send all feedback to: Game Developer
magazine, Feedback, 600 Harrison St., S.F.,
Calif. 91407 or to joutlaw@mfi.com.
Thanks!

GAME DEVELOPER • JUNE/JULY 1996 9

Exploring
the World of
Texture Mapping

S E Z U !

KEEPING CHRIS ON HIS TOES!KEEPING CHRIS ON HIS TOES!

Dear Editor:

I
’ve enjoyed reading Chris Hecker’s series on
perspective texture mapping. His articles were
very informative, and they were very timely

with respect to my current project. Thanks!
However, there are a few things in the

February/March 1996 issue that confused me.
First, on page 24, Figure 3, should the resulting
exponent have the same binary exponent value
as the higher magnitude value? In this case
10000111 (135)?

Also, in the first paragraph of page 24, he
talks about subtracting “the integer representa-
tion of our large, floating-point shift number
from the integer representation of the number
we just converted....” What are these numbers?
The values to be subtracted are now:

0 | 10010110 | 10000000000000000000000
(1.1 *223)

-
1 | 10010110 | 00000000000000000001000
(Our 8.75 lined up)

=
1 | 10010110 | 11111111111111111111000
(This gets us our -8)

I think this is correct!

Kenneth Chao
Via e-mail

Chris Hecker replies:
Yes, this is a bug, thanks for spotting it! I must
have cut and pasted when I did the
diagram.

In regards to integer presentation, you have
got one bit wrong in your result. The .1 bit gets
borrowed from, so you end up with:

1 | 10010110 | 01111111111111111111000

Now, we’ve got a result that has our -8 embed-

ded in the bottom, but we want to get rid of the
top garbage. To do this, we just subtract our
“big number” (your 1.1 * 223) from this as an
integer:

11001011001111111111111111111000
-

01001011010000000000000000000000
=

11111111111111111111111111111000
(Which equals -8)

Thanks a lot! Keep up the good work!

X MODE MARKS THE SPOTX MODE MARKS THE SPOT

Dear Editor:

Y
our magazine is great! I use a lot of the
articles constantly. Especially the ones
about breaking into the game business. It

actually helped me land a job!
Your X mode programming optimizations

were great. Thanks for producing a much need-
ed magazine.

John Bryant
Via e-mail

I HAVE A TEXTURE MAPPING QUESTION!I HAVE A TEXTURE MAPPING QUESTION!

Dear Editor:

I
’ve been getting Game Developer magazine
since March 1995, and I’ve been especially
following your series on texture mapping.
Do you have any suggestions on how I could

make a quad texture mapper, assuming that
the points are clockwise and coplanar? Theoret-
ically, it should not be too much of a problem,
since the gradients across the quad are the
same as either of the two triangles which make
it up, or at least, should be, as far as I have
reasoned.

Also, how do games like Descent manage

such fast texture mapping, while also doing
game AI, Z buffering, and anything else that
needs to be done? When it changes detail level,
what is it doing?

Stuart Doyle
Via e-mail

Chris Hecker replies:
Well, general quads will work with a projective
mapping (they won’t with affine). But, if your
quads (or even general polygons) are coplanar,
you can use the plane equations to generate the
gradients without using the vertex texture coor-
dinates. The math is a bit much, but I might
cover it in a later article. You can derive it your-
self if you think about what you need to describe
the plane of the texture (a vector from the origin
to the texture origin, a U direction vector, and a
V direction vector, all in view space). Solve for u
and v in terms of screen space x and y (which
are view point x/z and y/z) and you’ve got it.
You’ll end up with rational linear equations that
look like:

u = (ax + by + c)/(dx + ey + f)
u = (gx + hy + i)/(dx + ey + f)

Also, Descent doesn’t Z buffer. The major
speedups in real games come from novel data-
base traversal algorithms that cull out most of
the world before they gets to the texture map-
per. The fastest texture mapped triangles are
the ones you didn’t draw.

http://www.gdmag.com

Say It!
Please send all feedback to: Game Developer
magazine, Feedback, 600 Harrison St., S.F.,
Calif. 91407 or to joutlaw@mfi.com.
Thanks!

S
c
h

m
o

o
z
e

n

e
w

s
..
.

On With
the Show

B I T B L A S T S

A
fter a few days at CGDC, I
must decompress. I remind
myself other humans exist.
Pog guns, dart guns, dog tags,
mouse pads, Nerds, Lemon-
heads, silly string, neon neck-
laces, and temporary tattoos
all seem strangely normal after

a period of show saturation.

Unfortunately, we didn’t have room
to list all the products we wanted to
devote space to, so check out our web
site for a more complete scoop. Here’s a
Reader’s Digest synopsis of some products
that were announced at or around the
time of the CGDC:
• Intel threw a big party at the CGDC

to announce its MMX technology, a
major multimedia enhancement to the
Intel architecture. See http://www.
intel.com/pc-supp/multimed/mmx/ to
get MMX development information.

• Yamaha announced plans to design
hardware and software solutions to
support Intel’s MMX. Call (408)
567-2300.

• Diamond Multimedia released Dia-
mond Edge 3D, a multimedia acceler-
ator with Microsoft Direct3D support.
Call (408) 325-7000.

• Yamaha announced support for the
Direct3D API and availability of
Direct3D drivers for the RPA family
of 3D graphics accelerators. Direct3D
drivers are available to Yamaha’s
OEMs, content developers, and select-
ed beta test sites. Call (408) 567-2300.

• 3D Labs Inc. announced that its
Glint and Permedia 3D graphics
accelerators will support the new
Direct3D API. Call (408) 436-3455.

• Silicon Graphics announced Silicon-
Studio, an open-architecture for
building digital studios. StudioCentral
is its asset management companion,
Firewalker is a content authoring sys-
tem, and StudioLive is its Internet-
based studio services network. Call
(415) 960-1980.

• 3Dfx announced System3D, a
scaleable system based on 3Dfx’s
Obsidian graphics board for LBE
games; it is designed for texture-
mapped 3D arcade games. 3Dfx also
announced its Voodoo Graphics
chipset. Call (415) 934-2400.

• Apple, Netscape, and Silicon Graph-
ics recently agreed to cooperate on 3D
graphics for the Internet. The three
companies plan to develop a new
binary file format for Moving Worlds
(a leading proposal for VRML 2.0)
based on Apple’s 3D metafile format
(3DMF) technology. Moving Worlds
is an open, cross-platform specifica-
tion for dynamic 3D environments on
the Internet, which enables higher
compression, file streaming, and faster
parsing of 3D objects and virtual
worlds across the Internet.

• Apple announced Game Sprockets,
their new Game SDK. Check out
http://www.dev.apple.com/games.

10 GAME DEVELOPER • JUNE/JULY 1996 http://www.gdmag.com

For full descriptions, pricing, and contact
information on these and other products,
please surf to the new and improved
Game Developer web site located at
http://www.gdmag.com.

S
c
h

m
o

o
z
e

n

e
w

s
..
.

Game developers unhappy about
Microsoft’s $125 Pax Romana
toga party fee held the “First Annual
DirectBeer 1A Beta” party at a San
Jose microbrewery. T-shirt themes
included: “Quick, How many poly-
gons am I holding up?” and “Unrelo-
cated Crash Address:
96DIRECT:BEER”

Not only did Microsoft unwittingly
use Pax Romana (the forcible pacifi-
cation of subject states by a larger
power) as their theme, but their
Game Evangelist offended even
more developers by his “10 Reasons
DirectX Doesn’t Suck” list which
was topped with the statement that
it didn’t matter that only .01% of
toga attendees would be
female...one of them may be a
Playboy Bunny. Worse yet, he
actually showed up with a well-
endowed woman who spent the time
dropping grapes in his mouth.

CUC, the shopping network, bought
Sierra for a cool billion dollars.
What did they buy? The inventory of
old Sierra games is worth some-
thing, but they didn’t get much in the
way of game development talent
other than designer Roberta
Williams. Sierra is known for its
high turnover and regularly loses
such assets as Lori and Cory
Cole. CUC promises hands off, so
the takeover doesn’t look like it’s
providing any management fix to
stem defections.

Remember Choplifter? Developer
Danny Gorlin dropped out for four
years for a stint of African dancing
and drumming but has come back to
the fold. He’s working on Gravity's
forthcoming Banzi Bug game to be
published by Grolier.

Wanna gossip?
E-mail The Gossip Lady at:
71501.3553@compuserve.com.

Diane Anderson

I
believe it was Theodore Roosevelt
who first called the presidency of the
United States a “bully pulpit,” which
is a catchy way of saying that the
president can rant on a subject, peo-
ple will actually listen, and maybe
those people will even do something
about whatever the topic of the rant

happens to be. Magazine columns can be
bully pulpits as well, and, while a comput-
er magazine column is clearly not a pulpit
on the same level as the White House, I
don’t expect to hear Bill Clinton taking
compiler vendors to task about lame opti-
mization quality in the next State of the
Union Address, so I might as well do it
myself.

Review Problems
This article started out as a comparative
review of compiler optimizations, but the
more I learned about the various compil-
ers and how they did or did not optimize,

the more the article turned into an explo-
ration of how we as programmers have to
help the compilers do a good job with our
code. So while I’m still going to talk
about five compilers and give comparison
charts like a normal review, I’m actually
going to concentrate on how our source
code changes affect the assembly the
compiler generates.

Most other compiler reviews focus
on the compiler’s integrated development
environment, on the fancy editor with
color syntax highlighting that doesn’t even
let you write a simple macro, on the
debugger’s silly ToolTip windows (that
pop up over variable names with their val-
ues if you hold your mouse there forever),
and on the compiler supplied class library
that violates just about every precept of
good object-oriented design in C++ and is
bloated and slow to boot. Wow! As you
can see, I’m no fan of compiler reviews—I
believe most are written by either nonpro-

grammers or nonproduction programmers
writing toy programs. Compilers them-
selves are written for those reviewers, and
so we end up with the current mess,
where compiler vendors focus on silly new
features to please silly reviewers instead of
focusing on things that actually help pro-
duction programmers do their jobs well.

When I evaluate a compiler I look
for two things: C++ compliance and code
optimization. The former is basically a
lost cause at this point because the C++
draft standard is still a moving target and
there’s no solid conformance suite. I pray
this will change soon. By contrast, com-
piler writers have had years to work on
compiler optimizations, and not much
has changed since the early days.

By focusing on optimizations, we’ll
not only learn which compilers optimize
the best, we’ll also learn what we can do
to help a compiler do its best with our
code. This time, we’ll be covering compil-
ers for the PowerPC chip on the Macin-
tosh, and next time we’ll cover the Intel
x86. Even if you don’t program for the
PowerPC, reading this will help you learn
a lot about compilers and how they opti-
mize, and that knowledge will carry across
to whatever CPU you care to program.

The compilers we’ll cover this issue
are: Metrowerks CodeWarrior 8, Syman-
tec C++ 8, version 1.0f3e2 of Apple’s
MrCpp compiler (which is included with
the Symantec compiler), Motorola’s 2.1.1
PowerPC C++ compiler, and the
Microsoft Visual C++ for Macintosh 4.0
cross compiler.

The Test Code
We’ll use a simple inner product of a
three-by-three matrix and a three ele-
ment column vector to evaluate each

12 GAME DEVELOPER • JUNE/JULY 1996

PowerPC
Compilers:
Still Not So Hot

B E H I N D T H E S C R E E N

http://www.gdmag.com

Table 1. Transform Cycle Counts

CodeWarrior

Symantec C++

Motorola C++

Apple’s MrCpp

Microsoft VC++

40.7

76.6

34.5

52.0

41.6

Compiler
Listing

1

50.5

94.9

47.4

65.0

49.3

Listing
2

50.9

82.8

39.5

56.2

42.8

KAPed 1
(not shown)

34.3

50.9

33.2

36.1

31.9

Listing
4

29.7

31.9

30.8

28.8

21.9

Listing
5

19.6

25.7

20.6

19.5

22.7

Listing
6

compiler’s optimization quality. Obvi-
ously, a single function is not going to
tell the whole optimization story, but it
should give us an idea of what sorts of
optimizations we can expect from today’s
compilers.

Listing 1 shows the function Trans-
formVectors. I made it transform an array
of vectors so the compilers would have to
work a bit harder, but, even so, the code is
trivial. I used 1,000 calls to this function
with 500 transforms on each call to gather
timing information. The first column of
data in Table 1 shows the approximate
cycle counts for each product measured
with the MacOS call Microseconds for the
various compilers on my Power Comput-
ing 604. I turned on all the optimizations
I could find on each compiler to gather
this data. I made sure my test program
was producing correct results on every
compiler by making the source vectors
eigenvectors of the transform matrix and
checking to see if the transformed vector
was the same as the source—it’s always a

good idea to make sure neither you nor
the compiler has introduced any bugs
while optimizing.

Anti-Alias
If you’ve looked ahead at the other
results in Table 1 and the other listings,
you’re probably wondering what the sec-
ond column of data means, and why
Listing 2 is almost identical to Listing 1.
Even though you and I know we
wouldn’t call TransformVectors from List-
ing 1 with the source or destination
pointing to the same vector, or, worse
yet, with the destination pointing into
the middle of the matrix somewhere, the
compiler doesn’t know this, so it can’t
assume we didn’t do something silly.
When a variable points to another live
variable in the function, it’s called
“pointer aliasing,” and when the compil-
er sees a write through a pointer, it needs
to assume that the data could have land-
ed anywhere, including into variables it’s
already loaded into registers. This means

GAME DEVELOPER • JUNE/JULY 1996 13http://www.gdmag.com

Compilers. What are

they good for? Chris

Hecker steps to the

bully pulpit to rant

about the state of

current PowerPC

compilers. Sadly, these

days, most compilers

need a lot of help

optimizing code.

Chris Hecker

void TransformVectors(float *pDestVectors,
float const (*pMatrix)[3], float const *pSourceVectors,
int NumberOfVectors)

{
int Counter, i, j;
for(Counter = 0;Counter < NumberOfVectors;Counter++) {

for(i = 0;i < 3;i++) {
float Value = 0;
for(j = 0;j < 3;j++) {

Value += pMatrix[i][j] * pSourceVectors[j];
}
*pDestVectors++ = Value;

}
pSourceVectors += 3;

}
}

Listing 1. The Test Function

the optimizer has to continually reload
variables into registers in case we’re alias-
ing parameters, so I wrote Transform-
Vectors2 in Listing 2 to give the compil-
ers some help. Since aTemp is defined
local to our function, the compiler
knows it can’t be aliased, so writes to
aTemp shouldn’t cause spurious register
reloads.

Well, at least that’s what I thought,
anyway. As you can see from the tim-
ings, all the compilers got slower because

not only did they still reload all the reg-
isters, they also naively implemented the
copy loop at the end of Listing 2!

Let’s look at the code generated by
the winner of this round, the Motorola
C++ compiler. Listing 3 shows the
PowerPC assembly language generated
for TransformVectors2, our supposedly
non-aliased function. Despite some odd
ways of moving values into registers, this
code is a pretty straightforward transla-
tion of our source into assembly language,

which is disappointing. For example, the
compiler doesn’t bother to load the source
vector into registers outside the loop, even
though it’s used three times and cannot
be aliased because of our temporary
results array. Also, instead of leaving the
temporary results in registers, it actually
copies them out to the stack and then
copies the stack to the destination.

It even increments the destination
pointer in the loop with three discrete
instructions instead of using offsets and
doing one addition at the end, or even
using the PowerPC’s autoincrement
instructions. The Motorola compiler also
produced the fastest code for Listing 1,
and the difference between the timings
for Listings 1 and 2 can be attributed to
the naive compilation of the temporary
copy loop at the end of Listing 2 (even
though the temporary loop was supposed
to help by eliminating the possibility of
aliasing). Overall, not a great showing,
even by our winner in this round. Clearly,
the compilers need more help.

Bust a KAP
The Motorola compiler ships with an
interesting tool, called the Kuck and
Associates Preprocessor for C (KAP).
Basically, KAP compiles your C code (it
doesn’t support C++), optimizes it, and
then generates C code as its output

14 GAME DEVELOPER • JUNE/JULY 1996

B E H I N D T H E S C R E E N

void TransformVectors2(float *pDestVectors,
float const (*pMatrix)[3], float const *pSourceVectors,
int NumberOfVectors)

{
int Counter, i, j;
for(Counter = 0;Counter < NumberOfVectors;Counter++) {

float aTemp[3];
for(i = 0;i < 3;i++) {

float Value = 0;
for(j = 0;j < 3;j++) {

Value += pMatrix[i][j] * pSourceVectors[j];
}
aTemp[i] = Value;

}
pSourceVectors += 3;
for(i = 0;i < 3;i++) {

*pDestVectors++ = aTemp[i];
}

}
}

Listing 2. The Non-Aliasing Test Function

http://www.gdmag.com

TransformVectors2__FPfPA3_CfPCfi.b:
cmpi 0x7,0x0,r6,0 ; compare count to 0
addi r11,r0,0 ; Counter = r11 = 0
bc 0x4,0x1d,L..11 ; bail out if count = 0
addi r8,sp,24 ; allocate some stack

L..8: ori r9,r4,0x0 ; r9 = pMatrix
addi r10,r0,0 ; r10 = 0
ori r7,r10,0x0 ; r7 = 0
subfic r10,r10,3 ; r10 = 3
mtctr r10 ; ctr = 3

L..9: lfs f1,0(r9) ; f1 = pMatrix[0]
lfs f2,0(r5) ; f2 = pSource[0]
lfs f3,4(r9) ; f3 = pMatrix[1]
lfs f4,4(r5) ; f4 = pSource[1]
fmuls f1,f1,f2 ; f1 = f1 * f2
lfs f2,8(r9) ; f2 = pMatrix[2]
lfs f5,8(r5) ; f5 = pSource[2]
fmadds f3,f3,f4,f1 ; f3 = f3 * f4 + f1
addi r9,r9,12 ; pMatrix->next row
fmadds f2,f2,f5,f3 ; f2 = f2 * f5 + f3

Listing 3. Motorola C++ Assembly for Listing 2
stfsx f2,r8,r7 ; *(stack + r7) = f2
addi r7,r7,4 ; r7 next float
bc 0x10,0x0,L..9 ; branch if (—ctr)
lfs f1,0(r8) ; f1 = stack[0]
lfs f2,4(r8) ; f2 = stack[1]
lfs f3,8(r8) ; f3 = stack[2]
stfs f1,0(r3) ; pDest[0] = f1
addi r3,r3,4 ; pDest++
addi r11,r11,1 ; Counter++
stfs f2,0(r3) ; pDest[1] = f2
addi r3,r3,4 ; pDest++
cmp 0x7,0x0,r11,r6 ; flags = Counter <

NumVecs
addi r5,r5,12 ; pSource += 3
stfs f3,0(r3) ; pDest[2] = f3
addi r3,r3,4 ; pDest++
bc 0xc,0x1c,L..8 ; branch if (Counter <

NumVecs)
L..11: addi sp,sp,48 ; clear stack

bclr 0x14,0x0 ; return

instead of assembly language. When I
first got the Motorola compiler, I figured
my test would be so simple that there was
no way KAP could help out, but after
looking at the results we just discussed, I
figured anything was worth a try. Listing
4 shows the output of running Listing 2
through KAP (they call the processed
code KAPed). If you’ve never seen
machine-generated C code, don’t be sur-
prised by stuff like the “if (1)” block—
compilers output weird stuff like that for
bizarre reasons. However, you should be
surprised at how poor the code is. It
unrolls the loop, which is fine, but why
does it go to the trouble of putting the
temporaries in aTemp and then looping
over aTemp to copy them into the destina-
tion? More absurd yet is that something
as mundane as unrolling a loop in this
simple function actually helped the com-
pilers produce faster code.

You can see the timing results in
Table 1. The KAPed Listing 1 is not
even worthy of print, and as you can see
the compilers all got slower on that ver-
sion. The KAPed Listing 2 (shown in
Listing 4) actually made a positive differ-
ence, even on the best compilers, and it
made a huge difference on Symantec.
Even so, if you thought it was bad that
KAP generated the redundant loop at the
end of Listing 4, it’s even worse that every
compiler generated actual assembly lan-
guage code for that loop! The worst
offender is clearly Symantec. Symantec
ships a prerelease version of Apple’s
MrCpp compiler with their package, so
it’s unclear if I should even review
Symantec on their optimization quality
because I think they expect you to use
MrCpp if you care about run-time speed.
However, MrCpp and Symantec’s main-

B E H I N D T H E S C R E E N

16 GAME DEVELOPER • JUNE/JULY 1996 http://www.gdmag.com

_Kii1 = Counter * 3;
_Krr1 += pMatrix[0][0] * pSourceVectors[_Kii1];
_Krr2 += pMatrix[1][0] * pSourceVectors[_Kii1];
Value += pMatrix[2][0] * pSourceVectors[_Kii1];
_Krr1 += pMatrix[0][1] * pSourceVectors[_Kii1+1];
_Krr2 += pMatrix[1][1] * pSourceVectors[_Kii1+1];
Value += pMatrix[2][1] * pSourceVectors[_Kii1+1];
if (1) {

_Krr1 += pMatrix[0][2] * pSourceVectors[_Kii1+2];
_Krr2 += pMatrix[1][2] * pSourceVectors[_Kii1+2];

void TransformVectors2(float *pDestVectors,
const float (*pMatrix)[3], const float *pSourceVectors,
int NumberOfVectors)

{
int Counter, i, j;
float aTemp[3];
float Value, _Krr1, _Krr2, _Krr4, _Krr5;
long _Kii1, _Kii2;
for (Counter = 0; Counter<NumberOfVectors; Counter++) {

_Krr1 = 0.0F; _Krr2 = 0.0F; Value = 0.0F;

Listing 4. The KAPed Listing 2

line compiler are not C++ feature-equiva-
lent, so I’m not sure how they can expect
you to freely exchange them.

A Helping Hand
At this point, it was clear that the compil-
ers by themselves—and even with the
help of KAP, for what it’s worth—were
not going to be able to produce reason-
able code for these functions, so I had to

step in and give them
a hand. I looked at
what kind of
improvement KAP
got from using what
I had assumed were
brain-dead rewrites
(I can’t even bring myself to call them
optimizations), and I decided to hand
code the Transform functions to see what

would come out. Listings 5 and 6 contain
the hand-optimized versions of Listings 1
and 2, respectively. You can see from the

B E H I N D T H E S C R E E N

18 GAME DEVELOPER • JUNE/JULY 1996 http://www.gdmag.com

void TransformVectors(float *pDestVectors,
const float (*pMatrix)[3], const float *pSourceVectors,
int NumberOfVectors)

{
int Counter;
float Value0, Value1, Value2;
for (Counter = 0; Counter<NumberOfVectors; Counter++) {

Value0 = pMatrix[0][0] * pSourceVectors[0];
Value0 += pMatrix[0][1] * pSourceVectors[1];
Value0 += pMatrix[0][2] * pSourceVectors[2];
*pDestVectors++ = Value0;
Value1 = pMatrix[1][0] * pSourceVectors[0];
Value1 += pMatrix[1][1] * pSourceVectors[1];
Value1 += pMatrix[1][2] * pSourceVectors[2];
*pDestVectors++ = Value1;
Value2 = pMatrix[2][0] * pSourceVectors[0];
Value2 += pMatrix[2][1] * pSourceVectors[1];
Value2 += pMatrix[2][2] * pSourceVectors[2];
*pDestVectors++ = Value2;
pSourceVectors += 3;

}
}

Value += pMatrix[2][2] * pSourceVectors[_Kii1+2];
}
aTemp[0] = _Krr1; aTemp[1] = _Krr2; aTemp[2] = Value;
_Kii2 = Counter * 3;
for (i = 0; i<=2; i++) {

_Krr5 = aTemp[i]; _Krr4 = _Krr5;
pDestVectors[_Kii2+i] = _Krr4;

}
}
pSourceVectors += NumberOfVectors * 3;
pDestVectors += NumberOfVectors * 3;

}

Listing 4. Continued from p. 16 Listing 5. Hand-optimized Listing 1

timing results in the
last two columns of
Table 1 that it made
a big difference on all
the compilers.

Why did it
make such a big dif-
ference? I have no
idea, and the only
explanation I can
come up with is that
you need to hold
your compiler’s hand
on any piece of code
you care about. The
changes I made for
Listings 5 and 6 are
very obvious (to a
human, if not a com-
piler). I’m basically
just stating explicitly
where variables are
accessed, where pos-
sible aliasing can

occur, and which variables are constant
throughout a loop iteration. These are all
things the compiler is supposed to do for
us, so we can work on more important
stuff, like design and algorithms, or
assembly language code for our most
inner loops. We’re supposed to trust the
compiler will do a respectable job, with-
out having to optimize every line of our
code (an impossible task for all but the
smallest programs).

Now, if you’re like me, you’ve been
waiting to say something about all this
loop unrolling for a while now. You’re
waiting to say that you don’t actually
want the compiler to unroll loops all over
the place, because that makes your code
bigger and probably slower. Hah! I was
waiting for you to say that, because the
most amazing thing of all about this test
is that a couple of the compilers pro-
duced code for Listing 6 that is smaller
than the code for the original non-
unrolled Listing 2. Listing 7 shows the

B E H I N D T H E S C R E E N

20 GAME DEVELOPER • JUNE/JULY 1996 http://www.gdmag.com

void TransformVectors2(float *pDestVectors,
const float (*pMatrix)[3], const float *pSourceVectors,
int NumberOfVectors)

{
int Counter;
float Value, _Krr1, _Krr2;
for (Counter = 0; Counter<NumberOfVectors; Counter++) {

_Krr1 = pMatrix[0][0] * pSourceVectors[0];
_Krr2 = pMatrix[1][0] * pSourceVectors[0];
Value = pMatrix[2][0] * pSourceVectors[0];
_Krr1 += pMatrix[0][1] * pSourceVectors[1];
_Krr2 += pMatrix[1][1] * pSourceVectors[1];
Value += pMatrix[2][1] * pSourceVectors[1];
_Krr1 += pMatrix[0][2] * pSourceVectors[2];
_Krr2 += pMatrix[1][2] * pSourceVectors[2];
Value += pMatrix[2][2] * pSourceVectors[2];
*pDestVectors++ = _Krr1;
*pDestVectors++ = _Krr2;
*pDestVectors++ = Value;
pSourceVectors += 3;

}
}

Listing 6. Hand-optimized Listing 2

CodeWarrior version of Listing 6; it’s at
least 6 instructions smaller than any of
the compiled versions of Listing 2, and
about two to five times as fast. Motorola
produced similar code. (MrCpp decided
now was the time to unroll the entire
function, which tripled the size of the
code for absolutely no performance
increase.) Don’t for a minute think this
is a compliment for CodeWarrior or
Motorola, it’s really a damning insult to
all the compilers: on maximum opti-
mizations they didn’t find the smaller
and faster version of a basic function like
a matrix transform. Heck, just by inspec-
tion I can see how to save a couple more
instructions in Listing 7. And people
actually say that writing assembly lan-
guage is a dying art.

You Lose Some
If this was a normal compiler review, it
would be time to pick a winner, but,
instead, it’s time to point out that you and

I are the losers in this situation. Pundits
have been saying that assembly language
is dead—especially on RISC chips like
the PowerPC—and it should be eminent-
ly clear from the listings in this article
that those people have no clue what
they’re talking about. Even a beginning
assembly language programmer could
produce better code than any of the com-
pilers for Listings 1 and 2, and this is
simple code. While you might not choose
to write your code in assembly language,
you end up with C code that looks like
assembly language if you want respectable
performance, like Listings 5 and 6.

If I had to choose a winner, I’d pick
the Motorola C++ compiler, because it
seems like the least incompetent optimiz-
er of the bunch. The Microsoft compiler
showed some promising aggressiveness by
loading the entire matrix into registers
once at the top of the loop for its version
of Listings 5 and 6. Microsoft has an
option I turned on that tells the compiler

there’s no pointer aliasing that allowed
them to perform this optimization, but
they didn’t take advantage of the assump-
tion anywhere else that I could see. Given
this optimization, I’m not sure why their
version of Listing 6 wasn’t faster than the
others…it may have been a pipelining
issue, or the loop might have been cache
bound. As soon as I learn a bit more
about the subtleties of the PowerPC 604,
I’ll get back to you on this one.

In the next issue, I’ll quickly cover a
bunch of Intel x86 compilers, but we will
still have room to talk about some opti-
mization programming techniques of our
own, because the compilers clearly aren’t
going to do it for us.

This Just In: I was keeping Mike
Phillip at Motorola’s compiler group
posted on my results, and he just got
back to me with a command line switch
for KAP that will assume there’s no
aliasing. When you turn it on, KAP pro-
duces something resembling Listing 6,

B E H I N D T H E S C R E E N

22 GAME DEVELOPER • JUNE/JULY 1996 http://www.gdmag.com

so all the compilers do well. However,
not to be out-done, I decided to take this
no-aliasing assumption to the limit and
explicitly load the matrix into tempo-
raries (much like the Microsoft compiler
tried to do). The result: another 25%
speedup, with times around 15 cycles,
for something the compiler could have
done itself. The compilers lose again. ■

Chris Hecker tries to live an optimized
life, but he does about as good of a job on his
own life as the current crop of compilers does
on his code. Contact him at gdmag@mfi.com.

GAME DEVELOPER • JUNE/JULY 1996 23

TransformVectors2__FPfPA3_CfPCfi

mr r0,r6 ; r0 = NumVecs

cmpwi r6,0 ; flags = NumVecs == 0

mtctr r0 ; ctr = NumVecs

blelr ; bail if(NumVects == 0)

L1: lfs fp1,0(r4) ; fp1 = pMatrix[0][0]

lfs fp3,0(r5) ; fp3 = pSource[0]

lfs fp0,12(r4) ; fp0 = pMatrix[1][0]

lfs fp2,24(r4) ; fp2 = pMatrix[2][0]

fmuls fp7,fp1,fp3; fp7 = fp1 * fp3

lfs fp1,4(r4) ; fp1 = pMatrix[0][1]

lfs fp5,4(r5) ; fp5 = pSource[1]

fmuls fp8,fp0,fp3; fp8 = fp0 * fp3

fmuls fp6,fp2,fp3; fp6 = fp2 * fp3

lfs fp0,16(r4) ; fp0 = pMatrix[1][1]

lfs fp4,28(r4) ; fp4 = pMatrix[2][1]

lfs fp2,8(r5) ; fp2 = pSource[2]

fmadds fp7,fp1,fp5,fp7

; fp7 = fp1 * fp5 + fp7

addi r5,r5,12 ; pSource += 3

lfs fp3,8(r4) ; fp3 = pMatrix[0][2]

fmadds fp8,fp0,fp5,fp8

; fp8 = fp0 * fp5 + fp8

lfs fp1,20(r4); fp1 = pMatrix[1][2]

fmadds fp6,fp4,fp5,fp6

; fp6 = fp4 * fp5 + fp6

lfs fp0,32(r4); fp0 = pMatrix[2][2]

fmadds fp7,fp3,fp2,fp7

; fp7 = fp3 * fp2 + fp7

fmadds fp8,fp1,fp2,fp8

; fp8 = fp1 * fp2 + fp8

fmadds fp6,fp0,fp2,fp6

; fp6 = fp0 * fp2 + fp6

stfs fp7,0(r3) ; pDest[0] = fp7

stfsu fp8,4(r3)

; pDest[1] = fp8, pDest++

stfsu fp6,4(r3)

; pDest[1] = fp6, pDest++

addi r3,r3,4 ; pDest++

bdnz L1 ; branch if(—ctr)

blr ; return

Listing 7. CodeWarrior version of Listing 6

http://www.gdmag.com

Introduction
to the DirectX
II APIs

D I R E C T X I I A P I S

O
nce upon a time, developing
games for the PC wasn’t easy.
DOS allowed game develop-
ers access to low-level systems
functions, enabling good per-
formance, but few standards
were in place to support the
wide variety of hardware

found in PCs. Developing under Win-
dows 3.x wasn’t any better, due to per-
formance bottlenecks. However, with
last year’s release of Windows 95, a door
has been opened to the development of
high-performance, Windows-based
games. And the key to that door is
Microsoft’s Game Software Develop-
ment Kit (SDK).

The primary goal of the Game
SDK is to make performance on Win-

dows rival or exceed performance on
DOS-based platforms and console sys-
tems and to provide a robust, standard-
ized, and well-documented platform for
game developers. A high-performance
Windows-based game installs success-
fully and takes advantage of hardware
accelerator cards, Windows hardware
and software standards (such as Plug-
and-Play), and the Windows communi-
cations services.

The Game SDK, which you can
find in the Microsoft Developer Net-
work (MSDN) Level II, provides a con-
sistent interface for hardware manufac-
turers and game developers. It reduces
the complexity of installing and config-
uring games and uses a computer’s
hardware to the best advantage. DOS-

based games can still take advantage of
the hardware cards available to the
Game SDK developer; however, DOS-
based game developers must conform to
varying implementations of cards—
which complicates the installation.

New Standards for
Hardware Vendors
The Game SDK provides portable
access to the features of DOS today,
keeps a high level of performance, and
removes obstacles to hardware innova-
tion. The Game SDK tries to provide
guidelines for hardware companies
based on feedback from game develop-
ers and independent hardware vendors
(IHVs). Therefore, the Game SDK
components often provide specifications
for hardware accelerator features that do
not yet exist. In many cases, these speci-
fications are emulated in software. In
other cases, the capabilities of the hard-
ware are polled first, and the feature is
bypassed if it is not supported by the
hardware.

The Game SDK supports a num-
ber of video hardware features that have
already come out (or will be released in
the near future). These include:
• Overlays
• Page flipping
• Sprite engines
• Stretching with interpolation
• Alpha blending
• Z buffer-aware bit-block transfers.

Overlays will be supported so that
page flipping will also be enabled within
a window using graphic device interface
(GDI). Page flipping is the double-
buffer scheme used to display frames on
the entire screen. Sprite engines are
used to make overlaying sprites easier.

24 GAME DEVELOPER • JUNE/JULY 1996 http://www.gdmag.com

Stretching with interpolation is stretch-
ing a smaller frame to fit the entire
screen; it can be an efficient way to con-
serve video RAM. Alpha blending is
used to mix colors at the hardware pixel
level. Three-dimensional (3D) accelera-
tors with perspective-correct textures
will allow textures to be displayed on a
3D surface; for example, hallways in a
castle generated by 3D software can be
textured with a brick wall bitmap that
maintains the correct perspective. As
3D games generally need at least 2MB
of video memory, the Game SDK sup-
ports this. A compression standard to
put more data into display memory will
include transparency compression, will
be usable for textures, and will be very
fast when implemented in software as
well as hardware.

The audio hardware features that
the Game SDK supports or will soon
include are the following:
• 3D audio enhancers that provide a

spatial placement for different
sounds (particularly effective with
headphones)

• Onboard memory for audio boards
• Audio-video combination boards that

share onboard memory.
In addition, video playback will see

the benefit from Game SDK-compati-
ble hardware. Future releases of the
Game SDK will support hardware-
accelerated decompression of YUV
video.

Taking It Apart
The Game SDK is made of several
interfaces that target performance
issues of game programming under
Windows 95. The following are APIs:

• The DirectDraw API accelerates
hardware and software animation
techniques by providing direct access
to bitmaps in offscreen video memory
as well as fast access to the bit-block
transferring and buffer-flipping capa-
bilities of the hardware.

• The DirectSound API enables hard-
ware and software sound mixing and
playback.

• The DirectPlay API lets you develop
games for play over a modem line or
a network.

• The Direct3D API provides direct
low-level access to 3D hardware,
allowing DirectDraw surfaces to be
used both as 3D rendering targets
and as source texture maps.

• The DirectInput API provides joy-
stick input capabilities that are
scaleable to future Windows hard-
ware input API and drivers.

• The AutoPlay feature lets your CD-
ROM run an installation program or
the game itself immediately upon
insertion of the disc.

Note: DirectInput and AutoPlay
exist in the Microsoft Win32 API and
aren’t unique to the Game SDK.

DirectDraw
The biggest gain in performance in the
Game SDK comes from the DirectDraw
services, which are a combination of four
COM interfaces: IDirectDraw, IDirect-
DrawSurface, IDirectDrawPalette, and IDi-
rectDrawClipper. A DirectDraw object, cre-
ated using the function DirectDrawCreate,
represents the video display card. One of
the object’s member functions, IDirect-
Draw::CreateSurface, creates the primary
DirectDrawSurface object, which repre-

Robert Hess

GAME DEVELOPER • JUNE/JULY 1996 25http://www.gdmag.com

Through the use of
DirectX APIs, you can

develop with a
consistent interface;

your Windows
games can

outperform their
DOS-based ancestors

and automatically
take advantage of

hardware
acceleration where

it‘s available.

sents the video display memory being
viewed on the monitor. From the prima-
ry surface, offscreen surfaces can be cre-
ated in a linked-list fashion.

In the most common case, a back-
buffer surface is created (in addition to
the primary surface) and is used to
exchange images with the primary sur-
face. While the screen is busy displaying
the lines of the image in the primary
surface, the back-buffer surface frame is
composed by transferring a series of off-
screen bitmaps stored on other Direct-
DrawSurface objects in video RAM. Call
the DirectDrawSurface::Flip member
function to display the recently com-
posed frame, which sets a register so
that the exchange occurs when the
screen performs a vertical retrace. This
is asynchronous, so the game can con-
tinue processing after calling DirectDraw-
Surface::Flip. (The back buffer is auto-
matically write-blocked after calling
DirectDrawSurface::Flip until the
exchange occurs.) After the exchange
occurs, the game continues to compose
the next frame in the back buffer, calls
DirectDrawSurface::Flip, and so on.

DirectDraw improves performance
over the Windows 3.1 GDI model,
which does not have direct access to
bitmaps in video memory. Therefore,
bit-block transfers always occur in host
RAM and are then transferred to video
display memory. Using DirectDraw, all
processing is done on the card whenever
possible. DirectDraw improves perfor-
mance over the Windows 95 and Win-
dows NT GDI model that uses the Cre-
ateDIBSection function to enable hard-
ware processing.

The third type of DirectDraw
object is DirectDrawPalette. Because the
physical display palette is usually main-
tained in video hardware, an object rep-
resents and manipulates it. The IDirect-
DrawPalette interface implements
palettes in hardware. These bypass
Windows palettes and are therefore only
available when a game has exclusive
access to the video hardware. Direct-
DrawPalette objects are also created from
DirectDraw objects.

The fourth type of DirectDraw
object is the DirectDrawClipper. Direct-

Draw manages clipped regions of dis-
play memory by using these objects. A
bitmap is transferred to a surface using a
transparent bit-block transfer, and a cer-
tain color (or range of colors) in the
bitmap is defined as transparent. Color
keying achieves a transparent bit-block
transfer. Source color keying defines
which color or color range on the
bitmap is transparent (and therefore not
copied during a transfer operation).
Destination color keying defines which
color or color range on the surface will
be covered by pixels of that color or
color range in the source bitmap.

Finally, DirectDraw supports over-
lays in hardware and by software emula-
tion. Overlays are an easy means of
implementing sprites and managing
multiple layers of animation. Any
DirectDrawSurface object can be created
as an overlay, and any overlay has all of
the capabilities of any other surface—
plus extra capabilities associated only
with overlays. These capabilities require
extra display memory, and, if there are
no overlays in display memory, the over-
lay surfaces can exist in host memory.

Color keying works the same for
overlays as for transparent bit-block
transfers. The Z order of the overlay
automatically handles the occlusion and
transparency manipulations between
overlays.

You can find source code for a
DirectDraw application on the Game
Developer web site. The bulk of this
code comes from the generic sample
sources I wrote for the Win32 SDK. I
made minor additions and modifications
to enable this application to utilize the
DirectDraw features of the new DirectX
APIs for Windows. This code is not
meant to illustrate a great DirectDraw
application, but simply to show you how
easily DirectDraw can be added to a
Windows application model. There are
several sample applications that come
with the Game SDK that better illus-
trate some of the more advanced fea-
tures and capabilities of DirectX.

DirectSound
Game programming requires efficient
and dynamic sound production.

Microsoft provides two methods for
achieving this: MIDI streams and
DirectSound. MIDI streams are actually
part of the Windows 95 multimedia
API. They provide the ability to time-
stamp MIDI messages and send a buffer
of these messages to the system, which
can then efficiently integrate them with
its processes. More information about
MIDI streams can be found in the
Win32 SDK documentation.

DirectSound is built on the COM-
based interfaces IDirectSound and IDi-
rectSoundBuffer, and it’s extensible to
other interfaces. DirectSound imple-
ments a new model for playing back
digitally recorded sound samples and
mixing different sample sources togeth-
er. As with other object classes in the
Game SDK, you should use the hard-
ware to its greatest advantage whenever
possible and emulate a hardware feature
in the software when the feature is not
present in hardware. You can query
hardware capabilities at run-time to
determine the best solution for any
given personal computer configuration.

The DirectSound object represents
the sound card and its various attributes.
Using a DirectSound object, you create
the DirectSoundBuffer object, which rep-
resents a buffer containing sound data.
Several DirectSoundBuffer objects can
exist and be mixed together into the pri-
mary DirectSoundBuffer object. Direct-
Sound buffers are used to start, stop,
and pause sound playback and to set
attributes such as frequency, format, and
so on. Depending on the card type,
DirectSound buffers can exist in hard-
ware as onboard RAM, wave table
memory, a DMA channel, or a virtual
buffer (for an I/O, port-based audio
card). Where there is no hardware
implementation of a DirectSound
buffer, it is emulated in host system
memory.

The primary buffer is generally
used to mix sound from secondary
buffers but can be accessed directly for
custom mixing or other specialized
activities. (Use caution in locking the
primary buffer, because this blocks all
access to the sound hardware from other
sources.) Secondary buffers can store

D I R E C T X I I A P I S

26 GAME DEVELOPER • JUNE/JULY 1996 http://www.gdmag.com

common sounds that are played
throughout a game. A sound stored in a
secondary buffer can be played as a sin-
gle event or as a looping sound that
plays repeatedly. You can use secondary
buffers to play sounds that are larger
than available sound buffer memory.
When used to play a sound larger than
the buffer, the secondary buffer is a
queue that stores the portions of the
sound about to be played.

DirectPlay
One of the best features of PCs as a
game platform is their easy access to
communication services. DirectPlay
capitalizes on this and allows multiple
players to interact during game play
through standard modems, network
connections, or online services.

The IDirectPlay interface contains
methods providing capabilities such as
creating and destroying players, adding
players to and deleting players from
groups, sending messages to players,
inviting players to participate in a game,
and so on.

DirectPlay is composed of the
interface to the game, as defined by the
IDirectPlay interface and the DirectPlay
server. DirectPlay servers are provided
by Microsoft for modems and networks,
as well as by third parties. When using a
supported server, DirectPlay-enabled
games can bypass connectivity and com-
munication overhead details.

Direct3D
Direct3D is the newest addition to
Microsoft’s DirectX family of APIs and
provides developers with an API and
system services for real-time 3D graph-
ics. Direct3D is based on the Reality
Lab technology acquired by Microsoft
in 1995 when they purchased Render-
Morphics and has been significantly
enhanced to include tight integration
with the DirectDraw API. Direct3D
consists of the following components:
integrated retained mode and immedi-
ate mode APIs, extensible file format,
and a device-independent driver model
for transparent access to 3D hardware
acceleration.

Direct3D is exposed to the devel-

oper as COM-based interfaces for the
retained (IDirect3DRM) and immediate
mode APIs (IDirect3D). These interfaces
are responsible for operations including
DirectDraw rendering devices, textures,
materials, lights, viewports, animations,
and picking.

The Direct3D high-level retained-
mode API is designed for manipulating
3D objects and managing 3D scenes,
while insulating the developer from the
mesh structures and transformation cal-
culations. It is targeted at developers
who don’t want to create their own
geometry engines or object database rou-
tines but want to easily add 3D capabili-
ties to new or existing Windows-based
applications. For example, the retained
mode API supports the loading of a pre-
defined, textured 3D object with a single
API command; the application can use
additional simple API commands to
rotate, move, or scale the object to
manipulate it in the scene in real time.
The retained mode API also supports
key frame animations.

The Direct3D low-level immedi-
ate-mode API, on the other hand, is a
thin polygon- and vertex-based API
layer that gives you direct access to fea-
tures of 3D hardware in a device-inde-
pendent manner. Because the immedi-
ate-mode API does not provide its own
geometry engine (unlike the retained-
mode API), the application handles the
object and scene management. The
immediate-mode API lets you port
existing high-performance multimedia
applications, such as games, to the Win-
dows operating system. It also gives you
the flexibility to make use of your own
rendering and scene-management tech-
nologies while transparently taking
advantage of the new generation of 3D
hardware accelerators.

Direct3D provides a rich file format
for storing meshes, textures, animation
sets, and user-definable objects. This for-
mat facilitates the exchange of 3D infor-
mation between applications. Support for
animation sets allows predefined paths to
be stored for playback in real time.
Instancing and hierarchies are also sup-
ported and allow multiple references to a
single data object, such as a mesh, but

store the data for the object only once per
file. The Direct3D file format is used
natively by the Direct3D retained-mode
API, providing support for reading pre-
defined objects into an application or
writing mesh information constructed by
the application in real time. The file for-
mat will be supported by content creators
for modeling 3D objects and scenes and
defining complex animation paths, and it
will be used by title developers for incor-
poration into their titles.

The Direct3D hardware abstraction
layer (HAL) provides a driver interface
for giving developers a transparent,
device-independent means to access the
features of 3D hardware acceleration.
The Direct3D hardware emulation layer
(HEL) provides software-based emula-
tion of 3D rendering services not sup-
ported by the hardware device. For
example, Direct3D supports the acceler-
ation of any or part of the 3D rendering
pipeline including transformations,
lighting, and rasterization—many 3D
hardware accelerators on the market
today only offload the rasterization mod-
ule of the pipeline, so the transforma-
tions and lighting are handled by the
software emulation routines. This archi-
tecture ensures that services exposed by
the Direct3D APIs are always available
to the application, whether the underly-
ing hardware supports it or not. Devel-
opers can query the underlying charac-
teristics of the hardware to identify the
capabilities supported and determine
whether the hardware is providing the
rendering services, to support tuning and
scaling of the application in real time as
appropriate for the given configuration.

Direct3D integrates with Direct-
Draw to provide 2D drawing and tex-
ture services for 3D rendering. Applica-
tions use Direct3D and DirectDraw for
3D rendering in a relatively straightfor-
ward manner. For example, the steps to
set up a scene and to render a triangle
using the Direct3D immediate mode
API are as follows: First, you use
DirectDraw to create the rendering sur-
faces, which consist of the front buffer,
back buffer, and (optionally) the Z-
buffer, as DirectDraw surfaces. Next,
you use the IDirect3D COM interface to

GAME DEVELOPER • JUNE/JULY 1996 27http://www.gdmag.com

set up the world, view, and projection
matrices and to create a viewport to con-
trol the 3D clipping information. You
create a material for the background of
the viewport. You then create a Direct-
Draw surface to serve as the texture for
the triangle; then you create a material
to define the surface reflectivity and
color. Then you create a light source to
add lighting to the scene. Next, create
an execute buffer to represent the display
list for holding the vertices and to define
how the vertices are tied together into
primitives for rendering the 3D object.
You add any transformations, lighting,
and rendering state information to the
execute buffer, followed by the vertex
and primitive operation information for
representing the 3D object. Finally, you
clear the viewport and render the exe-
cute buffer, followed by a page flip oper-
ation to display the rendered scene on
the front buffer—repeat the process as
the execute buffer is modified to ani-
mate the object.

DirectInput
The joystick represents a class of
devices that report tactile movements
and actions that players make within a
game. DirectInput provides the func-
tionality to process the data represent-
ing these movements and actions from
joysticks, as well as other related
devices, such as trackballs and flight
harnesses.

DirectInput is currently another
name for an existing Win32 function,
joyGetPosEx. This function provides
extended capabilities to its predecessor,
joyGetPos, and should be used for any
joystick services. In future support for
input devices, including virtual reality
hardware, games that use joyGetPosEx
will be automatically supported for joy-
stick input services. This is not the case
for joyGetPos.

AutoPlay
AutoPlay is the feature of Windows 95
that automatically plays a CD or audio

CD when inserted into a CD-ROM
drive. Any CD-ROM product that
bears the Windows 95 logo must be
enabled with the AutoPlay feature.

Game SDK COM Interfaces
The interfaces in the Game SDK have
been created at a very base level of the
COM programming hierarchy. Each
main device object interface, such as
IDirectDraw, IDirectSound, or IDirectDraw
derives directly from IUnknown. The cre-
ation of these base objects is handled by
specialized functions in the library
rather than by the Win32 CoCreateIn-
stance function normally used to create
COM objects. The Game SDK object
model provides one main object for
each device, from which other support
service objects are derived. For example,
the DirectDraw object represents the dis-
play adapter. It is used to create Direct-
DrawSurface objects that represent the
video RAM and DirectDrawPalette
objects that represent hardware palettes.
Similarly, the DirectSound object repre-
sents the audio card and creates Direct-
SoundBuffer objects that represent the
sound sources on that card.

Besides the ability to generate sub-
ordinate objects, the main device object
determines the capabilities of the hard-
ware device it represents, such as the
screen size and number of colors, or
whether the audio card has wave table
synthesis.

By utilizing DirectX, it is finally
possible to write state-of-the-art, fast-
action, “rip the nerves from the tips of
your fingers” games for Windows. And
not only can these games far exceed the
wildest dreams of Windows program-
mers of the past, but they can leave
DOS games twitching in the dust.
Windows, it isn’t just for spreadsheets
anymore. ■

When not underwater basketweav-
ing, Robert Hess spends his time as a soft-
ware design engineer in the Developer
Relations Group at Microsoft. You can con-
tact him at gdmag@mfi.com.

An extended version of this article is
available on the Internet at the Game
Developer web site.

D I R E C T X I I A P I S

28 GAME DEVELOPER • JUNE/JULY 1996 http://www.gdmag.com

Networking
Your Game
Using DirectPlay

D I R E C T P L A Y

W
ith the advent of the Win-
dows 95 Game SDK, Win-
dows 95 is now positioned
as a powerful and interest-
ing platform for network
gaming. More specifically,
the DirectPlay component
of the Game SDK provides

a network communication protocol that
stands to make life much easier for net-
work game developers and players alike.
It provides a device- and network-inde-
pendent communications model for
multiplayer games and a consistent user
interface for establishing and maintain-
ing network connections.

DirectPlay provides all the over-
head, which enables players to connect
to each other in a consistent manner
across a wide range of network types. At
the code level, you simply call the correct

DirectPlay API functions. The one
missing element in DirectPlay, however,
is synchronization support. Because of
the many different approaches to solving
the game synchronization problem,
DirectPlay forces you to implement your
own game-specific solution. Although it
might seem like Microsoft took the easy
way out, in reality they just didn’t want
to force a specific synchronization solu-
tion on game developers.

DirectPlay Architecture
DirectPlay provides a network-indepen-
dent programmatic interface to network
game development. This network inde-
pendence means that you write game-
communication code to the DirectPlay
API, and it sends the information over
the network connection established for
the game. This saves you from needing

to learn the details of all the different
network protocols. At this point, if you
haven’t breathed a huge sigh of relief,
please feel free to. The ability to write
network games without having to learn
the details of network interfaces is truly
a giant step in game programming.
DirectPlay lets you focus on the network
aspects directly related to your game.

DirectPlay is composed of two
parts: the DirectPlay COM (Compo-
nent Object Model) object and the
DirectPlay service provider. The COM
object provides the programmatic inter-
face with which you establish network
connections, maintain available sessions
and players, and handle the details of
sending and receiving game data. The
DirectPlay service provider is a lower
level DirectPlay component that handles
the dirty work of implementing net-
work-specific communications. The ser-
vice provider is implemented as a net-
work server for each type of supported
network. Microsoft provides DirectPlay
servers for IPX, TCP/IP, and modem
networks. Third-party vendors must
develop their own DirectPlay servers for
supporting specialized network hardware
and online services.

DirectPlay servers are the network
game equivalents of drivers in other
parts of the Windows system. Servers
take on the difficulties of implementing
the DirectPlay API for a specific net-
work. This approach works well because
it maintains a consistent interface at the
application level, while allowing extensi-
bility at the network level. When a
DirectPlay COM object is created, a
DirectPlay server is specified. DirectPlay
then dynamically binds to this server,

Application

DirectPlay
Com Object

DirectPlay
Network
Server

Network
Hardware

DirectPlay
Network
Server

Network
Hardware

DirectPlay
Network
Server

Network
Hardware

Figure 1. The DirectPlay communications model.

30 GAME DEVELOPER • JUNE/JULY 1996 http://www.gdmag.com

through which all DirectPlay communi-
cations are carried out. Figure 1 shows
the DirectPlay communications model,
which illustrates how an application
communicates through DirectPlay on a
particular type of network.

DirectPlay Fundamentals
DirectPlay provides a means of estab-
lishing a connection and communicating
over a network in a consistent manner.
This is no small feat and puts a lot of
responsibility on DirectPlay network
servers. DirectPlay itself keeps up with
information regarding the network con-
nections and all parties involved. The
key components of a DirectPlay network
connection are sessions and players.

Sessions
Every DirectPlay game must establish a
session, which is a communication
channel. Multiple sessions on a given
network correspond to different multi-
player games running on the network.
The exception is a modem network,

where only one session can exist. Play-
ers in a particular network game are in
the same session. Suppose you want to
join one of two sessions of a network
Poker game. You must choose one
poker game or the other to connect to.
Players choose from a list of sessions
that DirectPlay supports.

DirectPlay can save information
about a session in the registry for future
use. With a modem network, for exam-
ple, the remote player’s name, phone
number, and optional password are
saved. Speaking of modem connections,
modem code is another huge responsi-
bility taken on by DirectPlay. Remem-
ber that DirectPlay servers handle the
details of actually making the network
connections. The DirectPlay modem
server uses the Windows 95 Telephony
Application Programming Interface
(TAPI) to manage the intricacies of
modem connections.

To join a DirectPlay game, you
connect to an existing session on the
network. Because this connection usually

takes place from
within a game, you
select from the list
of sessions that typ-
ically shows only
one type of game.
In other words, if
you run a Chess
game and try to
connect to a ses-
sion, it will only
show you other
Chess sessions on
the network. This
limiting of sessions
is implemented at
the application

DirectPlay takes care

of developing a

network-based game

while shielding you

from all those messy

network protocol and

modem details.

Michael Morrison

GAME DEVELOPER • JUNE/JULY 1996 31http://www.gdmag.com

BOOL
CGame::DPInit()
{
// Clear the players
m_dpidPlayer[0] = 0;
m_dpidPlayer[1] = 0;

// Prompt user to select a DP server, then create the DP
object
CServerSelDlg dlgServerSel;
if (dlgServerSel.DoModal() == IDOK)
return (::DirectPlayCreate(dlgServerSel.GetSelServer(),
&m_pDirectPlay, NULL) == DP_OK);

return FALSE;

Listing 1. The CGame::DPInit Member Function for TicTacToe

level, so it is technically possible to show
all available sessions of all game types,
which might be useful in a game finder
application that shows all game sessions
and then launches the appropriate one
based on the user’s choice.

How are sessions created to begin
with? The original player is responsible
for initially creating the game session to
which other players will connect. When
creating a new session, you assign a
name to it so other players can find it,
such as “Bill’s No-Holds-Barred Cage
Match.” Because all available sessions are
likely to be for the same type of game, it
is important for you to give your session
an identifiable name. Then just sit back
and wait for someone to connect to your
session so you can get down to business.

Each type of session must be
assigned a global identifier, which is
guaranteed to be unique for all sessions.
DirectPlay uses this identifier when
referring to the session internally. This is
how DirectPlay keeps up with games
created independently. You can generate
a global identifier for your game by run-
ning UUIDGEN, which is an applica-
tion that comes with the Win32 SDK. It
requires a network card to generate
unique identifiers, since all network
cards have a unique identifier associated
with them.

You might have noticed that
DirectPlay imposes a client/server model
for initially connecting to game sessions.
One of the players must perform the ini-
tial session creation. This is the server
game. All other players connect to this
game as clients. After connections are
made, it doesn’t matter who made the
initial connection. In this way, the
client/server model is in effect only dur-
ing the initial session creation and con-
nection. Figure 2 shows multiple client
players connecting to a game created by
the server player.

Players
DirectPlay maintains a list of current
players in a session and provides an inter-
face to manage them. Each player gener-
ally corresponds to other game instances
on the network. Each player has a friend-
ly name and a formal name that are set
when the player is created, as well as a
player identifier (ID). DirectPlay does not
use the player names internally; they are
solely for player communication during
the game or for a high score list. Direct-
Play always uses a player’s identifier when
working with players internally.

DirectPlay also supports player
groups, which can be thought of as
teams. A player group appears like a
player in the session. Information then

can be sent to the group, in which case
DirectPlay routes the message to each
individual player in the group.

Messages
DirectPlay manages communication
between players. DirectPlay messages are
different from Windows messages and
are sent and received through a different
protocol. A few DirectPlay system mes-
sages let you determine when a connec-
tion has been established and when play-
ers and groups have been added or delet-
ed. Other messages are custom, game-
specific messages that you define. To
send a message to another player, you
simply call the appropriate DirectPlay
function and provide the ID of the play-
er with the message to be sent. The tar-
get game then receives the message and
processes it accordingly.

DirectPlay Implementation
DirectPlay is implemented as a COM
object that represents the entire commu-
nications environment for an applica-
tion. The DirectPlay COM object,
DirectPlay, provides access to Direct-
Play’s functionality. DirectPlay contains
two API functions used to enumerate
DirectPlay servers and create DirectPlay
objects. You always use one of these
functions to create an initial DirectPlay
object. In fact, you will usually use both
functions; you will enumerate and dis-
play the available DirectPlay servers and
then create a DirectPlay object based on
the server selected by the user. The
DirectPlay API functions are DirectPlay-
Create and DirectPlayEnumerate.

DirectPlayCreate creates and initial-
izes a DirectPlay object:

HRESULT DirectPlayCreate(LPGUID lpGUID,

LPDIRECTPLAY FAR *lplpDP,

IUnknown FAR * pUnkOuter)

DirectPlayEnumerate is the other half
of the DirectPlay API function pair,
which is used to query the system for the
available network service providers:

HRESULT DirectPlayEnumerate(LPDPENUMDP-

CALLBACK lpEnumDPCallback,

LPVOID lpContext)

D I R E C T P L A Y

32 GAME DEVELOPER • JUNE/JULY 1996 http://www.gdmag.com

Server
Player

Create

Connect

Connect

Connect

Game
Session

Client
Player

Client
Player

Client
Player

Figure 2. DirectPlay client/server session connections.

Each installed network service
provider contains an entry in the reg-
istry. DirectPlayEnumerate searches for
these entries and notifies you of each
supported network server. Practically
speaking, you will always want to enu-
merate and display the available network
servers so the user can select from them.
After the user selects a server, you pass
its global identifier into DirectPlayCreate
to create the DirectPlay object and bind
it to the selected network server.

The DirectPlay object itself repre-
sents the physical network connection
and associated information about the
connection. To create the DirectPlay
object, you specify which DirectPlay
server the object will bind to for actual
communication. Once the DirectPlay
object is created, you can establish a net-
work connection. When you get a point-
er to a DirectPlay object via a call to
DirectPlayCreate, you don’t have a point-
er to the DirectPlay object itself; you
have a pointer to the IDirectPlay inter-
face of the DirectPlay object. The IDi-
rectPlay interface defines the functions
implemented by the DirectPlay object.
The most useful functions supported by
the IDirectPlay interface are: Close, Enum-
Sessions, Open, CreatePlayer, GetCaps,
Receive, DestroyPlayer, GetMessageCount,
SaveSession, EnableNewPlayers, GetPlayer-

Caps, Send, EnumPlayers, GetPlayerName,
and SetPlayerName.

The Close member function, HRE-
SULT IDirectPlay::Close(), closes the
communications channel (session) for
the DirectPlay object.

This means the session will be
closed, and all communications will be
stopped. Because Close ultimately
destroys the session connection, you
always must destroy any local players
before calling it. Some service providers
will not allow a session to close until all
players have been destroyed. This is
especially important when the player
who created the session tries to close it.

The CreatePlayer member function
creates a player for a particular session:

HRESULT IDirectPlay::CreatePlayer(LPDPID

lpDPId, LPSTR

lpPlayerFriendlyName, LPSTR lpPlayer-

FormalName,

LPHANDLE lpReceiveEvent)

After you create or connect to a ses-
sion, you call CreatePlayer to create a
local player. When you successfully cre-
ate a new player using CreatePlayer,
DirectPlay sends a DPSYS_ADDPLAYER sys-
tem message to all other players in the
session notifying them of the new player.
You are allowed to create multiple local
players, in which you use a single
machine for multiple player interaction.
An example of this scenario is having
two joysticks connected to one machine.
DirectPlay imposes no limitations on the
number of local and remote players,
although you can limit the number of
players that can be added to your game.

The DestroyPlayer member function
destroys a player from a game session:

HRESULT IDirect-

Play::DestroyPlay-

er(DPID DPId)

You must call
DestroyPlayer to
destroy any local
players you have cre-
ated before closing
the game session.
After you successful-
ly destroy a player
using DestroyPlayer,
DirectPlay sends a
DPSYS_DELETEPLAYER

system message to
all the other players
in the session notify-
ing them of the
player exiting the
session.

The EnableNew-
Players member func-
tion toggles the
capability to add new
players and groups to
a session and can be
used to keep other
players from joining
a session:

HRESULT IDirect-

Play::EnableNewPlay-

ers (BOOL bEnable)

The EnumPlayers member function
enumerates the current players in a session:

HRESULT IDirectPlay::EnumPlayers

(LPDPENUMPLAYERSCALLBACK

lpEnumPlayersCallback, LPVOID lpCon-

text, DWORD dwFlags)

The EnumSessions member function
enumerates the current game sessions:

HRESULT IDirectPlay::EnumSessions

(LPDPSESSIONDESC lpDPSessionDesc,

LPDPENUMSESSIONSCALLBACK lpEnumSes-

sionCallback, LPVOID

lpContext, DWORD dwFlags)

EnumSessions is used to build a list of
the available sessions, in which you can

GAME DEVELOPER • JUNE/JULY 1996 33http://www.gdmag.com

BOOL
CGame::DPCreateSession()
{
if (m_pDirectPlay)
{
// Get session information
CSessionInfoDlg dlgSessionInfo;
if (dlgSessionInfo.DoModal() == IDOK)
{
// Create a new DP session
DPSESSIONDESC dpsdDesc;
::ZeroMemory(&dpsdDesc, sizeof(DPSESSIONDESC));
dpsdDesc.dwSize = sizeof(DPSESSIONDESC);
dpsdDesc.dwMaxPlayers = 2;
dpsdDesc.dwFlags = DPOPEN_CREATESESSION;
dpsdDesc.guidSession = TICTACTOE_10;

::strcpy(dpsdDesc.szSessionName, dlgSessionInfo.Get-
Name());

if (m_pDirectPlay->Open(&dpsdDesc) == DP_OK)
{
// Create local player and set game info
m_pDirectPlay->EnableNewPlayers(TRUE);
if (DPCreateLocalPlayer())
{
DPCreateEventThread();
m_bMyTurn = TRUE;
return TRUE;

}
}

}
}
return FALSE;

}

Listing 2. The CGame::DPCreateSession Member Function for TicTacToe

provide an interface for the user to select
a session to join. This technique is useful
on the client end of a game connection,
because it looks for preexisting game ses-
sions to select from.

The GetCaps member function gets
the capabilities of the DirectPlay object,
which is dependent on the network serv-
er to which the object is bound:

HRESULT IDirectPlay::GetCaps (LPDPCAPS

lpDPCaps)

The GetMessageCount member func-
tion determines the number of Direct-
Play messages waiting for a particular
player and is used to determine when to
receive messages for a player:

HRESULT IDirectPlay::GetMessageCount

(DPID DPId, LPDWORD lpdwCount)

The GetPlayerCaps member function
retrieves the capabilities of a particular
player:

HRESULT IDirectPlay::GetPlayerCaps

(DPID DPId, LPDPCAPS lpDPPlayerCaps)

The GetPlayerName member function
queries DirectPlay for a player’s friendly
and formal names:

HRESULT IDirectPlay::GetPlayerName

(DPID DPId, LPSTR lpFriendlyName,

LPDWORD lpdwFriendlyNameLength, LPSTR

lpFormalName, LPDWORD lpdwFormalName-

Length)

The GetPlayerName function is very
useful if you want to notify others about
a player’s actions—for example, a player
leaving the game.

The Open member function opens
the DirectPlay object and establishes a
network connection, which means either
creating a new session or connecting to
an existing session:

HRESULT IDirectPlay::Open(LPDPSESSIONDE-

SC lpDPSessionDesc)

The user interface required to actu-
ally establish the connection is handled
by DirectPlay, such as the dialing inter-
face for a modem connection.

The Receive member function
receives pending messages for a player:

HRESULT IDirectPlay::Receive(LPDPID

lpDPIdFrom, LPDPID lpDPIdTo,

DWORD dwReceiveFlags, LPSTR lpMessage,

LPDWORD lpdwLength)

You use this function to receive
information from other players and
from DirectPlay regarding the status of
the game. Receive always processes mes-
sages with respect to a particular player.
DirectPlay has a set of system messages
with corresponding structures contain-
ing information specific to the system
message. You can access the informa-
tion in each system message first by
casting the message data to the generic
message structure, DPMSG_GENERIC, and
looking at the dwType message type
member. The message type will corre-
spond to one of the DirectPlay system
messages. Once you know the type, you
then can cast the data to the message
structure of the appropriate type to
access the message-specific data.

The SaveSession member function
saves information regarding the current
session to the registry:

HRESULT IDirectPlay::SaveSession(LPSTR

lpName)

This includes information, such as
the player’s friendly and formal names
and phone number, in the case of a
modem connection.

The Send member function is the
companion to Receive and is used to
send information to other players in the
session:

HRESULT IDirectPlay::Send(DPID DPIdFrom,

DPID DPIdTo, DWORD

dwFlags, LPSTR lpMessage, DWORD

dwLength)

The SetPlayerName member function

D I R E C T P L A Y

34 GAME DEVELOPER • JUNE/JULY 1996 http://www.gdmag.com

Figure 3. The TicTacToe sample game.

Figure 4. The TicTacToe Server
Selection dialog box.

BOOL
CGame::DPCreateLocalPlayer()
{
// Create local DP player
CPlayerInfoDlg dlgPlayerInfo;
if (dlgPlayerInfo.DoModal() == IDOK)
return (m_pDirectPlay->CreatePlayer(&m_dpidPlayer[0],
dlgPlayerInfo.GetFriendlyName(),
dlgPlayerInfo.GetFormalName(), &m_hDPEvent) == DP_OK);

return FALSE;
}

Listing 3. The CGameDPCreateLocalPlayer Member Function for TicTacToe

sets the friendly and formal names of a
player:

HRESULT IDirectPlay::SetPlayerName(DPID

DPId, LPSTR

lpFriendlyName, LPSTR lpFormalName)

Using DirectPlay in Games
The first function of a DirectPlay game
is to determine whether the user intends
to create a new session or connect to an
existing session. This function is accom-
plished through some type of user inter-
face, as determined by the DirectPlay
service provider. After the user decides
whether to create a new session or con-
nect to an existing session, the DirectPlay
object must be created and opened with
the proper settings.

The next step is to create local play-
ers for the session. After the session is
open and the players are created, the
game is ready to begin. Remember, the
same application will be running on both
ends, so all players will be visible to each
other as soon as they are created. The
game then begins, and the play carries
on in a way determined by your game-
specific messaging protocol.

In addition to handling your own
messages, you need to handle DirectPlay
system messages. This is very important
because it is possible for players to drop
out of the game, in which case you will
get a system message indicating that the
player has left the session.

TicTacToe is a sample game that
uses DirectPlay to manage network
communications for two players. It is a
very simple turn-based game that shows
the basics of DirectPlay communication.
Figure 3 shows what TicTacToe looks
like during a game.

Running TicTacToe
The TicTacToe main menu contains a
Game pull-down menu with the fol-
lowing menu choices: Create, Connect,
End, and Exit. Create makes a new
network session, Connect joins to an
existing network session, End stops a
network session, and Exit terminates
the application. To establish a two-
player network connection, one player

creates a new session and the other
player connects to it. So, the server
player first must choose Create from
the menu, which causes the Server
Selection dialog box (shown in Figure
4) to appear.

In the example in Figure 4, a
modem connection has been selected.
The Enter Session Information dialog
box appears and prompts for the name
of the new session. After you enter the
session information, the session is
opened and the Enter Player Informa-
tion dialog box appears. Here, you enter
information regarding the local player,
yourself.

TicTacToe then
creates a player using the
friendly and formal
names you entered in the
Enter Player Information
dialog box. At this point,
a new session has been
created with a player rep-
resenting you, the local
player. Now you just sit
back and wait for a
remote player to join in.

On the remote end,
the player chooses Con-
nect from the Game
menu. He or she must
choose a modem con-
nection from the Server
Selection dialog box,
just as you did. After
selecting the network
server, things change.
Instead of specifying a
new session name, the
remote player is prompt-
ed with a list of available
sessions from which to
choose. In this case,
there is only a single
entry for dialing up a
modem session.

After selecting the
modem dial session, the
remote player sees the
Dial dialog box. The
DirectPlay model server
handles this interface.

After the remote
player specifies the

phone number of the server session,
DirectPlay dials the number and estab-
lishes the modem connection. Once con-
nected, the remote player must enter his
or her own player information so that
DirectPlay can create a local player. After
entering player information, the remote
player then sees a list of players currently
in the game and must select one to play
with. Of course, in TicTacToe, there is
always just one other player. The main
reason for including this feature in Tic-
TacToe is to show how to enumerate
other players when joining a session. The
remote player must select the server player
from a Player Selection dialog box.

GAME DEVELOPER • JUNE/JULY 1996 35http://www.gdmag.com

BOOL
CGame::DPConnectSession()
{
if (m_pDirectPlay)
{
// Select a DP session
CSessionSelDlg dlgSessionSel(m_pDirectPlay);
if (dlgSessionSel.DoModal() == IDOK)
{
// Open remote DP session
DPSESSIONDESC dpsdDesc;
::ZeroMemory(&dpsdDesc, sizeof(DPSESSIONDESC));
dpsdDesc.dwSize = sizeof(DPSESSIONDESC);
dpsdDesc.dwFlags = DPOPEN_OPENSESSION;
dpsdDesc.guidSession = TICTACTOE_10;
dpsdDesc.dwSession = dlgSessionSel.GetSelSession();
if (m_pDirectPlay->Open(&dpsdDesc) == DP_OK)
{
// Prompt user to select the remote player
CPlayerSelDlg dlgPlayerSel(m_pDirectPlay);
if (dlgPlayerSel.DoModal() == IDOK)
{
// Set remote player
m_dpidPlayer[1] = dlgPlayerSel.GetSelPlayer();
// Create local player and set game info
m_pDirectPlay->EnableNewPlayers(TRUE);
if (DPCreateLocalPlayer())
{
DPCreateEventThread();
m_bMyTurn = FALSE;
NewGame();
return TRUE;

}
}

}
}

}
return FALSE;

}

Listing 4. The CGame::DPConnectSession Member Function for TicTacToe

TicTacToe is set up so that the serv-
er player always gets to go first. Even so,
it is important for the remote player to
know that the game has begun. That is
the reason for notifying the remote player
of the server player’s turn. At this point,
the game has begun, and the remote play-
er is waiting for the server player to make
the first move.

Let’s jump back to the server side of

things for a moment. When the remote
player first connected to the server ses-
sion, the server player received a connec-
tion system message. After being notified
of the remote player’s connection, the
server player is sent an AddPlayer message
containing information about the remote
player. At this point, the server side now
knows about the remote connection and
the remote player, so the game begins.

Regardless of the outcome, the
player who was to go next starts the next
game playing Xs. And the game goes on
until one of the players ends the session
by choosing End from the Game menu
or by closing the application.

Under The Hood
Now that you’ve got a feel for how Tic-
TacToe runs, let’s take a look at how it

D I R E C T P L A Y

36 GAME DEVELOPER • JUNE/JULY 1996 http://www.gdmag.com

UINT
CGame::DPEventMsgStart(LPVOID pData)
{
// Call the DP event handler
ASSERT((CGame*)pData);
((CGame*)pData)->DPEventMsg();
return 0;

}
void
CGame::DPEventMsg()
{
while(TRUE)
{
// Wait for event
if (::WaitForSingleObject(m_hDPEvent, INFINITE) !=
WAIT_TIMEOUT)

{
// Process event message
if (m_pDirectPlay)
{
DPID dpidFrom, dpidTo;
BYTE Msg[256];
DWORD dwLen = 128;
if (m_pDirectPlay->Receive(&dpidFrom, &dpidTo,
DPRECEIVE_ALL, Msg, &dwLen) == DP_OK)

{
if (dpidFrom == 0)
{
// Got a system message
DPMSG_GENERIC* pmsgGeneric = (DPMSG_GENERIC*)Msg;
CString sText;
switch(pmsgGeneric->dwType)
{
case DPSYS_CONNECT:
AfxGetMainWnd()->MessageBox("Connected!",
AfxGetAppName());

break;
case DPSYS_SESSIONLOST:
AfxGetMainWnd()->MessageBox("Session lost!",
AfxGetAppName());

DPCleanup();
break;

case DPSYS_ADDPLAYER:
// Notify of new player
sText.Format("New Player : %s", ((DPMSG_ADDPLAYER*)

Listing 5. The CGame::DPEventMsg Member Function for TicTacToe
pmsgGeneric)->szShortName);

AfxGetMainWnd()->MessageBox(sText,
AfxGetAppName());

// Set new player and start new game
if (((DPMSG_ADDPLAYER*)pmsgGeneric)->dpId !=
m_dpidPlayer[0])

{
m_dpidPlayer[1] = ((DPMSG_ADDPLAYER*)
pmsgGeneric)->dpId;

NewGame();
}
break;

case DPSYS_DELETEPLAYER:
AfxGetMainWnd()->MessageBox("Player Deleted!",
AfxGetAppName());

if (((DPMSG_DELETEPLAYER*)pmsgGeneric)->dpId ==
m_dpidPlayer[1])

{
m_dpidPlayer[1] = 0;
DPEndSession();

}
break;

}
}
else
if (dpidTo == m_dpidPlayer[0])
{
// Got a remote player turn message
if (dwLen == sizeof(POINT))
{
CPoint ptTile(*((POINT*)Msg));
DPReceiveTurnMsg(ptTile);

}
else
AfxGetMainWnd()->MessageBox(
"Unknown player message.", AfxGetAppName());

}
}

}
}

}
}

works. The code that supports Direct-
Play is mostly located in the CGame
class. Incidentally, all the source code
files for the TicTacToe game can be
found on the Game Developer web site.

The CGame class models the TicTac-
Toe game itself and maintains the
DirectPlay connection, along with the
players and the game-synchronization
logic. CGame keeps a pointer to the
DirectPlay object in m_pDirectPlay. This
pointer is set by the DPInit member
function, which is called by the applica-
tion to initialize DirectPlay services for
the game. The source code for DPInit is
shown in Listing 1.

DPInit initializes the player mem-
bers, m_dpidPlayer[2], and prompts the
user to select a network game server by
using the dialog object CServerSelDlg.
The server identifier retrieved from the
Server Selection dialog box then creates
the DirectPlay object by calling Direct-
PlayCreate.

DPCleanup is the corresponding
member function for cleaning up the
DirectPlay support. It first calls DPEnd-
Session, which destroys the local player
by calling DPDestroyLocalPlayer. It closes
the DirectPlay object and deletes the
DirectPlay event thread used to process
messages. Then DPCleanup releases the
DirectPlay object and NULLs the member
pointer.

CGame creates a DirectPlay session
through the DPCreateSession member
function, as shown in Listing 2.

DPCreateSession first prompts for
the name of the new session by using
the CSessionInfoDlg dialog object. It
then uses this name to help fill out a
DPSESSIONDESC structure that passes into
the Open member function of the Direct-
Play object. The maximum number of
players is set to 2 and the open flag is
set to DPOPEN_CREATESESSION. The session
identifier is set to TICTACTOE_10, which
specifies that this is version 1.0 of Tic-
TacToe. TICTACTOE_10 is a global identi-
fier that uniquely identifies the TicTac-
Toe game. It was obtained by running
the UUIDGEN application, and is
defined in the file GUID.H.

After opening the new session,
DPCreateSession enables the addition of

new players and calls DPCreateLocal Play-
er. The source code for DPCreateLocal
Player is shown in Listing 3.

DPCreateLocalPlayer displays a dialog
box using the CPlayerInfoDlg dialog object
to obtain the friendly and formal names
of the new player. It then uses these
names in a call to the DirectPlay object’s
CreatePlayer member function to create
the local player. You’ll notice that Cre-
atePlayer is passed a pointer to an event
handle, m_hDPEvent, as its last parameter.
This event handle specifies a Win32 Manu-
al Reset event that is signaled when the
player has waiting messages. After creat-
ing the local player, DPCreateSession cre-
ates an event thread by calling DPCre-
ateEventThread. Finally, DPCreateSession
sets the turn member variable, m_bMyTurn,
to TRUE, which indicates that the server
side of the game goes first. At this point,
the session has been created and the local
player is eagerly awaiting a connection by
another player.

So how does the remote player con-
nect to an existing session, like the one
created by the server player with DPCreate-
Session? DPConnectSession connects to
existing sessions and is very similar to
DPCreateSession. The primary difference is
that DPConnectSession displays the Session
Selection dialog box using the CSession-
SelDlg dialog object, instead of prompting
for information regarding a new session.
The DPOPEN_OPENSESSION flag is used in the
DPSESSIONDESC structure to specify that you
are attempting to open an existing ses-
sion. The source code
for DPConnectSession is
shown in Listing 4.

After opening
the session, the local
player is prompted to
select the server play-
er from the dialog box
displayed by the
CPlayerSelDlg dialog
object. The identifier
of this player is stored
away for later com-
munication, and the
local player is created
by calling DPCreateLo-
calPlayer. The player
event thread is then

created, and the m_bMyTurn member vari-
able is set to FALSE to indicate that the
client player goes second. Finally, a new
game is started.

During the course of the game, all
DirectPlay messages are processed by
the DPEventMsg member function (List-
ing 5). This function is called automati-
cally when a DirectPlay event occurs.

The first call is to WaitForSingleOb-
ject, which is a Win32 API function
that waits for an event to be signaled
before returning. The significance of
WaitForSingleObject is that it remains in a
sleep state while waiting for the event to
occur. You specify an infinite time-out
period so that it will never time out.

The first step in processing Direct-
Play messages is to receive the message
and check the identifier of the source
player to see whether it is a system mes-
sage. System messages always are sent
from player 0. If the message is a sys-
tem message, you cast the data to a
generic message structure to get the
type of message. If a player has been
added, you notify the local player, set
the remote player identifier member
variable, and start a new game. This
scenario occurs when a remote player
connects to a session created by the
local player. If a player is deleted, which
would correspond to the remote player
quitting, the local player is notified and
the session is terminated.

If the message is not a system mes-
sage, the message is cast to a POINT struc-

GAME DEVELOPER • JUNE/JULY 1996 37http://www.gdmag.com

BOOL
CGame::DPReceiveTurnMsg(CPoint& ptTile)
{
// Check remote turn message for valid tile bounds
if ((ptTile.x >= 0) && (ptTile.x <= 2) && (ptTile.y >= 0) &&
(ptTile.y <= 2))

{
// Update game with remote turn data
SetTileState(ptTile.x, ptTile.y);

return TRUE;
}

return FALSE;
}

Listing 6. The CGame::DPReceiveTurnMsg Member Function for TicTacToe

ture and passed to DPReceiveTurnMsg.
DPReceiveTurnMsg notifies the local game
of the remote player’s move, as shown in
Listing 6.

The game-specific messages sent
between players correspond to coordi-
nates on the TicTacToe grid. These coor-
dinates are used to specify each player’s
move. A POINT structure is used to pass
this information in DPReceiveTurnMsg.
DPReceiveTurnMsg receives this structure
and sets the state of the grid tile to the
appropriate value, X or O, by calling Set-
TileState.

SetTileState is the workhorse
function for maintaining the state of
the game. It is passed the X and Y val-
ues of the grid tile to be set. It first
checks to make sure that the tile is
empty. It then checks whether it is the

local player’s turn, in which case it
sends the tile coordinates to the remote
player to signify the move. This is han-
dled by calling DPSendTurnMsg. DPSend-
TurnMsg simply calls the DirectPlay
object’s Send member function with the
proper parameters. After updating the
remote game, SetTileState updates the
local game by changing turns, setting
the tile state, and updating the window
so that the new tile state is displayed.
The source code for SetTileState is
shown in Listing 7.

After setting the new tile state in
both games, SetTileState proceeds to
check for a win or draw by calling IsWin-
ner and IsDraw. These two functions con-
tain the logic for determining whether a
player has won the game or whether the
game is a draw. That’s it!

You’ve seen first hand how you can
use DirectPlay to create a fully function-
ing network game. Almost every aspect of
using DirectPlay was touched on, along
with sample code for you to reuse in your
own games.

Although a practical network game
implementation often gets messy, you
have the building blocks required to
frame up a network game so you can
focus on synchronization details. You also
have some pretty clean interface objects to
use for working with DirectPlay. You
have all you need to go write a cool net-
work game for Windows 95! ■

Michael Morrison is the co-author of
Windows 95 Game Developer’s Guide
to Using the Game SDK. You can contact
him via e-mail at gdmag@mfi.com.

D I R E C T P L A Y

38 GAME DEVELOPER • JUNE/JULY 1996

: BOOL
CGame::SetTileState(UINT uiX, UINT uiY)
{
ASSERT((uiX < 3) && (uiY < 3));
CWave wavTile;
if (m_tsGrid[uiX][uiY] == tsEMPTY)
{
// Send tile info to remote player via a turn message
if (m_bMyTurn)
if (!DPSendTurnMsg(CPoint(uiX, uiY)))
{
AfxGetMainWnd()->MessageBox("Error sending turn message.",
AfxGetAppName());

return FALSE;
}

// Change turns and set the tile state
m_bMyTurn = !m_bMyTurn;
m_tsGrid[uiX][uiY] = (m_uiTurns % 2) ? tsO : tsX;
// Update grid
AfxGetMainWnd()->Invalidate(FALSE);
// Play the tile wave
wavTile.Create((m_uiTurns % 2) ? IDW_O : IDW_X);
wavTile.Play();

}
else
{
// Play the tile error wave
wavTile.Create(IDW_ERROR);
wavTile.Play();
return FALSE;

}
// Check for winner/draw
if (IsWinner())
{

// Determine winner and notify
if (m_bMyTurn)
{
CWave wavLose(IDW_LOSE);
wavLose.Play();
AfxGetMainWnd()->MessageBox("Bummer, you lost!",
AfxGetAppName());

}
else
{
CWave wavWin(IDW_WIN);
wavWin.Play();
AfxGetMainWnd()->MessageBox("Congratulations, you won!",
AfxGetAppName());

}
// Start new game
return NewGame();

}
else
{
if (IsDraw())
{
// Play draw wave
CWave wavDraw(IDW_DRAW);
wavDraw.Play();
// Notify of a draw
AfxGetMainWnd()->MessageBox("It's a draw!", AfxGetAppName());
// Start new game
return NewGame();

}
}
return TRUE;

}

http://www.gdmag.com

Listing 7. The CGame::SetTileState Member Function for TicTacToe

DirectSound
Unplugged

D I R E C T S O U N D

S
ound is a powerful, expressive
medium—more powerful, I
believe, than even our visual
sense for conveying informa-
tion and emotion. John Rat-
cliff, designer of Seawolf and
688 Attack Sub, has a
favorite example of sound’s

impact: compare a tyrannosaurus rex
scene in Jurassic Park both with and
without the sound track.

My example is even more dramatic:
imagine you watch the great opera La

Boheme in New York City, but you wear
earplugs. Now, although you may actually
find the music tolerable under this condi-
tion, opera without sound is essentially
just a bunch of fat mimes. And who
wants to watch that for three hours?

So there’s really no doubt about how
much atmosphere sound can add to a
game. Unfortunately, the Windows APIs
traditionally have given short shrift to
audio. Well, no longer—under Windows
95, DirectSound allows you to do every-
thing you could do by accessing the hard-

ware directly, and, as a bonus, provides a
solid base for future sound technology
developments.

In this article, we’ll discuss every-
thing you need to know to add Direct-
Sound to your application. We’ve only
got four thousand words to do it—which
isn’t a lot (my bad memories of writing
class notwithstanding), so we’re going to
have to cruise. Buckled in?

This is Not an Overview
Normally, the folks at Game Developer
magazine respond to the word “overview”
like a French chef would respond to a
request for ketchup. So, to keep the edi-
torial saliva out of my alphabet soup, we’ll
zoom through this section as quickly as
we can.

First, the DirectSound API is based
on the Component Object Model
(COM). COM arrived with OLE, but it
can stand alone as a standard way to pre-
sent an API to an application. It lets C++
people access the API with nice object-
oriented code, and it lets C people access
the API with weird macros. We’ll show
both types of calling sequences in this
article.

COM-based APIs are all used the
same way. You call a Create function that
returns a pointer to an object (C pro-
grammers read “structure”). This object
contains the important data, as well as
member functions (C programmers read
“function pointers”) that operate on the
object. So, with COM, everything the
API can do is accessed through an object.

In the DirectSound COM API, we
find two objects: the DirectSound object
and the DirectSoundBuffer object. You
create the DirectSound object to gain

40 GAME DEVELOPER • JUNE/JULY 1996 http://www.gdmag.com

HRESULT CreateDSBuffer(LPDIRECTSOUND lpDS, LPDIRECTSOUNDBUFFER * lplpDSB,
DWORD SoundBytes, DWORD Frequency, int IsStereo, int Is16Bit)

{
DSBUFFERDESC dsbd;
PCMWAVEFORMAT fmt;
fmt.wf.nChannels=(IsStereo)?2:1;
fmt.wBitsPerSample=(Is16Bit)?16:8;
fmt.wf.nSamplesPerSec=((DWORD)Frequency);
fmt.wf.nBlockAlign=fmt.wf.nChannels*(fmt.wBitsPerSample>>3);
fmt.wf.nAvgBytesPerSec=((DWORD)fmt.wf.nSamplesPerSec)*((DWORD)fmt.wf.nBlockAlign);
fmt.wf.wFormatTag=WAVE_FORMAT_PCM;
memset(&dsbd, 0, sizeof(dsbd));
dsbd.lpwfxFormat=(LPWAVEFORMATEX)&fmt;
dsbd.dwSize=sizeof(DSBUFFERDESC);
dsbd.dwBufferBytes=SoundBytes;
dsbd.dwFlags=0;

In C++: return(lpDS->CreateSoundBuffer(&dsbd, lplpDSB, 0));
In C: return(IDirectSound_CreateSoundBuffer(lpDS, &dsbd, lplpDSB, 0));

}
// Sample use of the CreateDSBuffer function
LPDIRECTSOUNDBUFFER lpDSB;
if (CreateDSBuffer(lpDS, &lpDSB, TotalSoundBytes, 22050, 0 , 0)) { // Open 22050, mono,
8 bit sample
// Use the DirectSoundBuffer
In C++: lpDSB->Release();
In C: IDirectSoundBuffer_Release(lpDSB);
}

Listing 1. A Function that Creates Awesome Secondary Buffers

access to everything that DirectSound can
do. Once you have created this object, it
can (among other things) create the
DirectSoundBuffer object, which is the
object that actually plays sounds (you
knew that feature was in there some-
where, right?).

Make sense? If not, don’t sweat it—
just remember that we have to create
objects to do anything in DirectSound
(and in any other DirectX APIs for that
matter).

DirectSound Objects
The DirectSound object is the key to using
the DirectSound API. To create a Direct-
Sound object of this type, you simply call
the DirectSoundCreate function. Since this
call is one of only two functions that
aren’t member functions of an object (the
other is DirectSoundEnumerate), the calling
sequence is the same for both C and C++:

LPDIRECTSOUND lpDS;

if (DirectSoundCreate(NULL, &lpDS, NULL)

== DS_OK)

// lpDS is now a valid DirectSound

object

else

// the DirectSoundCreate call

failed (lpDS is NULL)

The first NULL in the DirectSoundCre-
ate call is the ID of the DirectSound
device that you want to open—it will
almost always be NULL. You can get a list
of other valid IDs with the DirectSound-
Enumerate function. The second parameter
is a pointer to where you’d like the
DirectSound pointer to be placed (a
pointer to an object pointer). The final
parameter must always be NULL to keep

COM happy.
Once you have the DirectSound

object, you can call any of the eleven
member functions that it currently con-
tains. However, there are really only three
member functions that you will normally
use: SetCooperativeLevel, CreateSound-
Buffer, and Release. The other member
functions are for infrequent tasks like
querying capabilities, compacting on-
board sound memory, and managing
speaker configuration. Don’t worry about
them—I’ve never had to use them and
you probably won’t either.

You must, on the other hand, use the
SetCooperativeLevel member function. If
you don’t call it after creating your Direct-
Sound object, most of the other member
functions won’t work. This silly goof has
burned me at least once, and, judging by
the CompuServe message traffic, plenty of
others. So, if you get a DSERR_INVALIDPARAM
result from one of the DirectSound func-
tions, check your code and make sure you
have set your co-op level.

Since the SetCooperativeLevel call is
our first member function, let’s stop for a
moment and discuss calling a COM
member function from C++ and C. An
example of a SetCooperativeLevel call in
the two dialects is as follows:

In C++:

l p D S - > S e t C o o p e r a t i v e L e v e l

(YourMainHwnd, DSSCL_NORMAL);

In C:

IDirectSound_SetCooperative Level (

lpDS, YourMainHwnd,DSSCL_ NORMAL);

You can see how C++ treats a

You‘ve long wanted

direct access to the

hardware within

Windows, eh?

Here ‘tis. DirectSound

prodvides a method

for playing back and

mixing digitally

recorded audio

within Windows 95.

Jeff Roberts

GAME DEVELOPER • JUNE/JULY 1996 41http://www.gdmag.com

COM object just like a normal C++
object—you call the function just like
you would a normal C++ member func-
tion. In C, however, you must use
macros to make calls to the member
function. These macros serve to make
the function calls cleaner and to mask
any changes Microsoft may make to
COM in the future.

All COM object macros follow
the same naming convention: an upper-
case “I,” the name of the object, an
underscore, and, finally, the name of
the member function that you wish to
call. For example, a BillG COM object
with a Boolean member function would
have a macro called IBillG_IsLoaded()
that always returned TRUE.

OK, back to SetCooperativeLevel—
the first parameter (besides the object
pointer itself) is a handle to your appli-
cation’s main window. Why would
DirectSound need an HWND? Good ques-
tion! Microsoft considers sound a “sys-
tem resource,” so when a user flips
away from your application, Direct-

Sound mutes all your sound! Although
this is correct behavior for most apps, I
believe it should have been under our
control—not the API’s. DirectSound 2
is supposed to fix this lapse with sup-
port for background sounds.

Anyway (I’ll make it through this
function yet), the final parameter to
SetCooperativeLevel is the priority level
you are requesting. There are several
different priority levels, but you will
almost always use DSSCL_NORMAL, which
signifies fully cooperative status (as
opposed to grumpy, pain-in-the-ass
status, I suppose). Actually, the other
priority levels mostly create primary
sound buffers, which you should rarely
need to do. So, for our purposes, just
use DSSCL_NORMAL.

The next function on my common
list is CreateSoundBuffer. This function
creates a DirectSoundBuffer object. We
will discuss these objects in the next
section—they’re where all the action is,
so let’s finish up the DirectSound object
first.

The final common DirectSound
member function is Release. This func-
tion simply frees the DirectSound object.
Call it at the end of your application to
close DirectSound. You may notice that
the Release function isn’t shown in the
DirectSound help file because Release
is one of the standard COM member
functions. It is there, though, and you
should always call it when you’re fin-
ished with DirectSound.

That wraps up the DirectSound
object—doesn’t do much, does it? It
does, however, al low us to create
DirectSoundBuffer objects, where the
true coolness of DirectSound lies.

DirectSoundBuffer Objects
DirectSoundBuffer objects are containers
for your actual audio data. They con-
tain both the sound format (bit-depth,
frequency, and so on) and a buffer for
the sound data itself. There are two
types of DirectSoundBuffer objects: pri-
mary and secondary. You will always
create secondary buffers, unless you
have a very unusual use for the primary
buffer (I know of only one, which I’ll
talk about in a moment).

Secondary buffers are nice because
you can have many open at once. Dur-
ing playback, each buffer is volume-
scaled, pan-scaled, bit-depth adjusted,
and mixed with other buffers complete-
ly on the fly. After the final buffer is
mixed, the resultant sound data is
placed into the primary buffer to be
heard. You don’t have to worry about
converting, massaging, or mixing any
of the data—you just let DirectSound
deal with it. Pretty cool!

Which, indirectly, brings us to the
only reason to use primary buffers—
because all secondary buffers are mixed
into the primary buffer, it is the prima-
ry buffer that governs the final sound
quality. For example, if you play a 16-
bit, 44 KHz secondary buffer, but the
primary buffer is only 8-bit, 11 KHz,
then your sound data will be scaled
down to the primary buffer’s format.

So, if your sound card is capable,
you can create a primary buffer and
change its output format to deal with
this problem. Usually though, the pri-

D I R E C T S O U N D

42 GAME DEVELOPER • JUNE/JULY 1996 http://www.gdmag.com

HRESULT LoadSoundData(LPDIRECTSOUNDBUFFER lpDSB, char* SoundDataPtr, DWORD TotalBytes)
{
LPVOID ptr1,ptr2;
DWORD len1,len2;
HRESULT result;
TryLockAgainLabel:

In C++: result = lpDSB->Lock(0, TotalBytes, &ptr1, &len1, &ptr2, &len2, 0);
In C: result = IDirectSoundBuffer_Lock(lpDSB, 0, TotalBytes, &ptr1, &len1, &ptr2, &len2,
0);
switch (result) {
case DS_OK: // The DirectSound buffer was locked successfully
memcpy(ptr1, SoundDataPtr,len1);
if (ptr2)
memcpy(ptr2, SoundDataPtr + len1, len2);

In C++: lpDSB->UnLock(ptr1, len1, ptr2, len2);
In C: IDirectSoundBuffer_Unlock(lpDSB, ptr1, len1, ptr2, len2);
break;
case DSERR_BUFFERLOST: // The DirectSound buffer was lost - try to restore

In C++: result=lpDSB->Restore();
In C: result=IDirectSoundBuffer_Restore(lpDSB);

if (result == DS_OK) // If the restore worked, go do the lock again
goto TryLockAgainLabel;
break;

}
return(result);

}

Listing 2. The Locking Process

mary buffer will be set in the best out-
put mode for your particular sound
card, so you’ll never need to change it.
Because of this fact, we’ll focus on the
more useful secondary buffers for the
remainder of this article. If you really
want to use the primary buffer and get
stuck, e-mail me, and I’ll try to help.

So how do we create these awe-
some secondary buffers? Well, the
example function in Listing 1 does just
that.

The first thing this function does
is set up a PCMWAVEFORMAT structure that
contains the type of sound data the sec-
ondary buffer will contain. Usually, you
will simply load this structure from the
header of a .WAV file. For a good
example of loading and parsing .WAV
files, check out an article tit led,
“Recording and Playing Waveform
Audio” on Microsoft Developer Net-
work (MSDN).

Next, the code sets up a DSBUFFER-
DESC structure that describes the
requested secondary buffer. The
dwBufferBytes field specifies how large
the secondary buffer should be in bytes.
This amount is usually extracted from
the DATA chunk in a .WAV file.

The second important field in the
DSBUFFERDESC structure is dwFlags. In
this case, we are setting dwFlags to
zero, but other useful options are DSB-
CAPS_CTRLVOLUME, DSBCAPS_CTRLPAN, and
DSBCAPS_CTRLFREQUENCY. These options
tel l DirectSound that you wil l be
adjusting the volume, pan, or frequen-
cy while the sound is playing. If you
don’t specify these options when you
create the DirectSoundBuffer, then you
won’t be able to control these sound
attributes at playback time.

The code then asks the DirectSound
object to go ahead and create a Direct-
SoundBuffer object for us. If the function
succeeds, the lpDSB variable will now
contain our DirectSoundBuffer object
pointer. As with the DirectSound object,
once we’re done with a DirectSound-
Buffer, we must call the Release member
function.

Now we know how to create a sec-
ondary buffer, but how do we get our
sound data into it?

Loading Data into a
DirectSoundBuffer
To load sound data into our secondary
buffer, we have to use the Lock, Unlock
and Restore member functions. The
locking process is a bit complicated, so
let’s start with an example function as
shown in Listing 2.

Geez, that’s a lot of code just to
load a buffer! It’s pretty simple once
we’ve walked through it though.

The Lock function gives us access
to the DirectSound buffers. Its first para-
meter is the starting byte location of the
lock you request—this will normally be
zero unless you’re streaming sound data
into the sound buffer (we’ll talk about
this later). The next parameter is the
number of bytes you are locking—this
will almost always be the same amount
that you used for the dwBufferBytes field
when you created the buffer.

Two sets of pointers and lengths
are filled in by the lock call. There are
two sets of pointers and lengths because
you could conceivably request a lock
that wraps around the end of the sound
buffer. If your lock parameters didn’t
cause DirectSound to wrap around its
sound buffer, then ptr2 will be NULL.
With these two pointers, you can use
memcpy or memmove to place your sound
data into the DirectSoundBuffer object.

So far so good, but what does the
other code do? Well, one of the trickier

parts of DirectSound is the fact that
you can “lose” your sound buffer. Los-
ing a sound buffer means that the buffer
that was holding your sound data has
been appropriated for other Direct-
Sound needs. (Even stranger, on some
new video-sound combination cards,
you can also lose your sound buffers to
DirectDraw!)

Losing a buffer is usually no big
deal—you just call the Restore member
function and reload the sound data into
the buffer. You can implement various
strategies to deal with this: reload the
sound files back off the disk, keep the
sound in another system RAM buffer
so that you can reload it at any time, or,
best of all, use streaming buffers (we’ll
talk about streaming a bit later). The
sample code above simply calls the
Restore function if the buffer was lost,
and then retries the lock.

Finally, after you’ve successfully
locked the buffer and loaded your sound
data, you must call the Unlock member
function to give the buffer back to
DirectSound. Notice that the Unlock
function doesn’t take pointers to the
pointers and lengths (like Lock does),
but accepts the pointers and lengths
themselves. (Try saying that three times
quickly.)

So, loading sound data isn’t too
bad at all. Just remember to have an
easy way to reload it if your DirectSound

GAME DEVELOPER • JUNE/JULY 1996 43http://www.gdmag.com

DWORD status;
TryPlayAgainLabel:

In C++: if (lpDSB->Play(0, 0, 0) == DS_BUFFERLOST)
In C: if (IDirectSoundBuffer_Play(lpDSB, 0, 0, 0) == DSERR_BUFFERLOST)

if (LoadSoundData(lpDSB, SoundDataAddress, TotalSoundBytes) == DS_OK)
goto TryPlayAgainLabel; // Try to play the buffer again

GetAsyncKeyState(VK_ESCAPE); // Clear the state of the Escape key
for (;;) {

In C++: lpDSB->GetStatus(&status);
In C: IDirectSoundBuffer_GetStatus(lpDSB, &status);

if (status!=DSBSTATUS_PLAYING)
break;
if (GetAsyncKeyState(VK_ESCAPE)) // If the Escape key is hit, stop the sound

In C++: lpDSB->Stop();
In C: IDirectSoundBuffer_Stop(lpDSB);

}

Listing 3. Code to Play a DirectSoundBuffer

buffer is ever lost. I try to make a stand-
alone function that I can call from any-
where in my application if my buffer
disappears.

Now that we have sound data in
our DirectSoundBuffer object, we’re
ready to play it!

Simple DirectSoundBuffer
Playback
In comparison to the set up and loading
of the DirectSoundBuffer object, play-
back is a piece of cake. The two play-
back control member functions are Play
and Stop, and they do exactly what
you’d guess. As an example, let’s look at
the code in Listing 3 which plays a
DirectSoundBuffer until you press Escape.

The Play member function actually
starts the sound. It takes three parame-
ters—the first two are reserved and
must be zero. The final parameter is a
flag field. Currently, the only flag is
DSBPLAY_LOOPING which tells DirectSound
to keep looping the DirectSoundBuffer
object over and over. The DSBPLAY_LOOP-
ING flag is also used to set up a stream-
ing sounds.

Notice that, again, you have to
watch for the sound buffer being lost. If
the buffer is lost, then this code simply
calls the LoadSoundData function that you
wrote earlier. This is a workable but
clumsy solution, because you have to
buffer the sound data twice—once in
your own buffer and once inside the
DirectSoundBuffer object. Alternatively,
you could load the sound data off the
disk to save the double memory use.
However, as I alluded to earlier, the
best solution is probably to stream the
sound data.

OK, so once the sample begins
playing, the above code simply waits
until the GetStatus member function
tells us that the DirectSoundBuffer object
is finished. This will happen if the
DirectSoundBuffer plays through to the
end of the sample, or you hit the Escape
key and cause the Stop member function
to be called.

There are other member functions
for controlling the volume, pan, fre-
quency, and playback position of the
DirectSoundBuffer object, but these are

D I R E C T S O U N D

44 GAME DEVELOPER • JUNE/JULY 1996

typedef struct DSSTREAMTAG {
int Playing; // This field will be non-zero while sound is streaming
int PleaseClose; // Set this field to stop sound streaming
char* CurrentPosition; // The next sound address that will be mixed into the DS

buffer
DWORD BytesLeft; // How many bytes are left from CurrentPosition
DWORD NoCallbacks; // When this is non-zero the timer callback won’t execute
DWORD HalfBufferPoint; // The size of half the DirectSound buffer (don’t change)
DWORD LastHalf; // The pointer to the last half buffer that we were in

(don’t change)
int CloseOnNext; // Internal flag to mark the end of playback (don’t change)
LPDIRECTSOUNDBUFFER lpDSB; // The DirectSound buffer that is handling the streaming
char SilenceByte; // The value for silence (different for 8 and 16 bit sounds)

} DSSTREAM;
static void StreamCopy(DSSTREAM* s, char* ptr, DWORD len) // Copy from buffer into DS with
end of buffer handling
{
DWORD amt;
amt=(len>s->BytesLeft)?s->BytesLeft:len; // Only copy what’s left in the main sound

buffer
if (amt) {
memcpy(ptr,s->CurrentPosition,amt);
s->CurrentPosition+=amt;
s->BytesLeft-=amt;
}
len-=amt;
if (len) { // Fill the remainder of the buffer with silence
memset(ptr+amt,s->SilenceByte,len);
s->CloseOnNext=1; // Set the “done on the next buffer switch” flag

}
}
static void StreamFillAHalf(DSSTREAM* s, DWORD half) // fill a half of the DirectSound
buffer
{
char* ptr1;
char* ptr2;
DWORD len1, len2;

TryLockAgainLabel:
switch (s->lpDSB->Lock(half, s->HalfBufferPoint, &ptr1, &len1, &ptr2, &len2, 0)) {
case DS_OK:
StreamCopy(s, ptr1, len1); // Copy sound data into the first pointer

if (ptr2) // Copy sound data into the second pointer if necessary
StreamCopy(s, ptr2, len2);
s->lpDSB->Unlock(ptr1, len1, ptr2, len2);
break;

case DSERR_BUFFERLOST: // The DirectSound buffer was lost - try to restore
if (s->lpDSB->Restore() == DS_OK)
goto TryLockAgainLabel;
break;
}

}
static void CALLBACK StreamTimer(UINT id, UINT msg, DWORD user, DWORD dw1, DWORD dw2)
{
DWORD playp,writep;

http://www.gdmag.com

Listing 4. A Streaming Example that can be Pasted into a DirectSound Application

all pretty self-explanatory so I’ll let you
experiment with them on your own.

And that’s all there is to simple
playback. No problem, right? Good,
because our final discussion will be
about streaming audio. It is a bit more
complicated, but definitely worth
understanding.

DirectSound Streaming
Sound streaming is the act of using a
tiny buffer to play a large sample a little
bit at a time. Streaming is generally
used to play sound data off a hard drive
or CD-ROM, but you can also use it to
play a large piece of sound data into a
tiny DirectSound buffer.

This is how you get around the
lost buffer problem—you load an entire
sample into system memory and then
use DirectSound to play a little bit at a
time. In this situation, if you lose the
sound buffer, it’s no big deal because
you are not losing the entire sample—
just a little piece.

As you can imagine, playing sound
data this way is more complicated than
just calling the Play member function.
The nice thing is that this technique
can be encapsulated into one function
call fairly easily, so you can just use the
same code over and over again.

Basically, DirectSound streaming
is accomplished by creating a looping
secondary buffer and placing data into
it at the right time. DirectSound
believes that it is playing the same
sound over and over, but actually we’re
placing new sound data into the buffer
each time it loops around to simulate
one long seamless sound.

The easiest way to learn streaming
is to start with an example that can be
pasted right into a DirectSound appli-
cation to implement streaming immedi-
ately. This example will play a sound
sample that is loaded into system
RAM, but you could easily modify it to
play sound off a hard drive or CD-
ROM. Let’s check it out in Listing 4
(only the C++ calls are shown to make
the code easier to read).

To start streaming with this exam-
ple code, call the StartStreaming func-
tion with a stream structure, the sound

GAME DEVELOPER • JUNE/JULY 1996 45http://www.gdmag.com

DWORD whichhalf;
DSSTREAM* s=(DSSTREAM*)user;
if (s->NoCallbacks++==0) {
if (s->PleaseClose) { // Programmer requested Close - shutdown immediately
ShutDownStreamingLabel:
timeKillEvent(id);
timeEndPeriod(62);
s->lpDSB->Stop();
s->lpDSB->Release();
s->Playing=0;
return;

}
s->lpDSB->GetCurrentPosition(&playp,&writep); // Get the current position and figure

the current half
whichhalf=(playp < s->HalfBufferPoint)?0:s->HalfBufferPoint;
if (whichhalf != s->LastHalf) {

if (s->CloseOnNext) // If we previously used up our sound data, then do a
shutdown

goto ShutDownStreamingLabel;
StreamFillAHalf(s, s->LastHalf); // Fill the buffer half that we just left
s->LastHalf=whichhalf;

}
}
s->NoCallbacks--;

}
void StartStreaming(DSSTREAM* s, void* addr, DWORD len, LPDIRECTSOUND lpDS, LPWAVEFORMATEX
format)
{
DSBUFFERDESC dsbd;
if (s) {
memset(s,0,sizeof(DSSTREAM));
if ((addr) && (lpDS) && (format)) {
memset(&dsbd, 0, sizeof(dsbd));
dsbd.lpwfxFormat=format;
dsbd.dwSize=sizeof(DSBUFFERDESC);
dsbd.dwBufferBytes= ((format->nAvgBytesPerSec/4)+2047)&~2047;
dsbd.dwFlags=0;
if (lpDS->CreateSoundBuffer(&dsbd, &s->lpDSB, 0) != DS_OK)
return;
s->NoCallbacks=1; // Don’t let the callback do anything until we’re fully setup
timeBeginPeriod(62);
if (timeSetEvent(62, 0, StreamTimer, (DWORD)s, TIME_PERIODIC)==0) {
timeEndPeriod(62);
s->lpDSB->Release();
} else {
s->HalfBufferPoint=dsbd.dwBufferBytes/2;
s->CurrentPosition=addr;
s->BytesLeft=len;
s->SilenceByte= (format->wBitsPerSample==16) ? 0:128;
StreamFillAHalf(s, 0);
StreamFillAHalf(s, s->HalfBufferPoint);
s->CloseOnNext=0; // Clear the close flag, so that the first two buffers are

played
s->lpDSB->Play(0, 0, DSBPLAY_LOOPING);
s->NoCallbacks=0;
}

Listing 4. Continued from p. 44

data address, the sound data length, the
DirectSound object to use, and the for-
mat of the sound data. From there,
everything is handled automatically,
and sound will start immediately.

If you’d like to stop the streaming,
just set the PleaseStop field to non-zero.
You can monitor the playback with the
Playing field: non-zero means that the
stream is still playing, and zero means
that the stream has been stopped and its
resources have been freed. Finally, to
track the playback position, use the Cur-
rentPosition field (it is a pointer that
increases from your starting address as
playback proceeds).

Now let’s shift from describing how
to use the streaming example to how it
actually works. We’ll begin with the
StartStreaming function.

The StartStreaming function only
has to set the appropriate values in the
DSSTREAM structure and start up the
timer callback. First it creates a small
DirectSoundBuffer that will handle one-
fourth of a second of audio data. It
then sets a timer to call the StreamTimer
function and assigns all of the initial
streaming values. Then the StreamTimer
function will be called 16 times per sec-
ond (every 62 milliseconds) to process
all of the sound data.

The StreamTimer callback contains
most of the logic for streaming. The
first thing it does is to check to see if the
PleaseClose flag is set; if so, it closes the
streaming for this sound. Next, the
timer checks where the current play
position is with the GetCurrentPosition
member function. If DirectSound has

moved from one half buffer to the next,
then the old half buffer is ready for new
sound data.

The StreamFillAHalf function is
used to load sound data into one half of
the DirectSound buffer. It handles the
locking, restoring, and unlocking of the
DirectSoundBuffer object. The Direct-
SoundBuffer object, in turn, calls the
StreamCopy function to move the data
from your large sound buffer into the
tiny DirectSound buffer.

One bit of semi-tricky logic is
found when the StreamCopy function
determines that the end of your sound
data has been reached. StreamCopy can’t
just close the stream immediately,
because you wouldn’t hear the last little
bit of sound, so it sets a flag called
CloseOnNext. This flag is checked on the
next buffer switch in the StreamTimer
function which lets you hear the last
buffer’s worth of sound.

This example code is rather sim-
ple—integrating it into your own appli-
cation should be a snap. A few cool fea-
tures to tack on: the ability to pause the
playback, a smarter callback that handles
multiple streams (instead of one callback
per stream), and the ability to stream
from a disk file. Go crazy with it—after
all, you have the source code!

This is Not a Summary
Well, you made it! You now know
almost everything there is to know about
DirectSound.

After you’ve used it a while, I
think you’ll agree that Microsoft really
did a great job on DirectSound: it is a

terrific, low-level API to play digital
sound with little to no latency response.
As this article demonstrates, however,
DirectSound is not a high-level API. A
DirectSound application must handle
buffer management, callbacks, stream-
ing, start and stop control, and such on
its own behalf.

For those who don’t want to deal
with the low-level coding that Direct-
Sound requires, there are several good
libraries that combine DirectSound’s
awesome playback abilities with a true
application-level API to give you the
best of both worlds.

Personally, I think the best thing
about DirectSound is that my com-
plaints about the old days of Windows
programming are getting better and
better.

“Back when I was a Windows pro-
grammer, we had to walk to work in
two feet of snow every morning, and
hexadecimal hadn’t been invented yet,
and we didn’t have DirectSound, and
my mouse was a real dead mouse with
wires shoved up its” ■

Jeff Roberts is a programmer at RAD
Software, publisher of Smacker and the
Miles Sound System. He can be reached
via e-mail at gdmag@mfi.com.

D I R E C T S O U N D

46 GAME DEVELOPER • JUNE/JULY 1996

}
}

}
// Streaming test code:
volatile DSSTREAM s;
StartStreaming((DSSTREAM*)&s, SoundDataAddress, TotalSoundBytes, lpDS, &SoundFormat);
GetAsyncKeyState(VK_ESCAPE); // Clear the state of the escape key
while (s.Playing) { // wait until the sound is done or the user hits escape
if (GetAsyncKeyState(VK_ESCAPE))
s.PleaseClose=1;

}

Listing 4. Continued from p. 45

or those of you who don’t
want to read this whole arti-
cle, just follow the following
easy steps to add Direct-

Sound to your application in no time:

1. Create a DirectSound object.
2. Set the cooperative level to

DSSCL_NORMAL.
3. Create a secondary sound buffer.
4. Lock the sound buffer.
5. Fill the buffer with your sound data

using the two pointers and lengths
returned by Lock.

6. Unlock the sound buffer.
7. Play the sound buffer.
8. Release the sound buffer.
9. Release the DirectSound object.

F

http://www.gdmag.com

DirectSound for the Impatient

Playing
with Waves

A U D I O

Y
ou’ve just blown away a
room full of bad guys. You
then hear a door open and a
squad of gurgling demons
behind you. A breeze carries
snatches of tinny post-apoc-
alyptic singing forced
through a wheezing old FM

radio. “The population is greatly
decreased…” You head toward it, hop-
ing to find a friend.

There’s no substitute for the plea-
sure audio gaming experiences bring to
players’ ears. Without sound, games lack
essential life-saving audio cues, humor,
character, and magic. I’ve spent much
time discussing cross-platform graphics
and user interaction, and it’s about time
I rounded things off with a bit of audio.

In this article, I will leave you with
a short demo that runs without change
on top of a small core of Windows-
and Macintosh-specific code. You will
see how to implement a simple Play-
Wave function that will allow up to
four simultaneous sounds to play using
system services, in this case the Macin-
tosh Sound Manager and Windows’
DirectSound.

Basic Wave Theory
The algorithm for mixing two waves isn’t
very difficult. Sound waves are additive:
two waves played at the same time pro-
duce a combined wave that is their sum,
as approximated in Figure 1. The goal of
a software mixer is to allow a single wave
synthesizer to play multiple waves simul-
taneously, so its job is to perform the
addition itself before playing the com-
bined wave, instead of leaving the job to
natural physics.

Electronic sound devices usually
play digitally sampled waves. A digital
description of a sound wave is created by
recording the amplitude of a wave input
at a constant frequency using a specific
number of bits to measure the wave at
each time slice. Today’s hardware gener-
ally handles 8 or 16 bits per sample at
frequencies of 11,025, 22,050, or 44,100
samples per second, with higher frequen-
cies and resolution producing a more
accurate replica of the original while
requiring additional memory and pro-
cessing power.

A one-second, 8-bit wave sampled
at 11,025 hertz is represented by a block
of 11,025 bytes, each of which describes

the amplitude of the wave at a specific
point in time with a number from -127
to 128. To mix two such waves into a
third buffer, the mixer steps through
each wave’s 11,025 samples and adds
them together, storing the result in a
third 11,025-byte block to be played out
through the speaker. This is the elemen-
tal mixing operation: adding two waves.

You can perform other operations
on sampled sound data to produce special
effects. You can change the volume of a
sound by multiplying or dividing every
sampled value by a constant. You can
fade a sound by dividing each sample
value by a number that increases or
decreases across the wave. You can create
an echo by mixing a wave with itself with
a slight delay. You can play waves back-
wards, slow them down, distort them, or
do whatever mathematical transforma-
tions you like.

Usually, a game has simple run-time
needs: it has to mix waves with different
starting and ending times into a single
continuous audio stream. When you fire
two shots in quick succession, you want
to hear the second even though the first
has started playing, and you still want
any active background music or other
noises to play through.

Generally, a game doesn’t have the
luxury of mixing the two waves together
before playing them as one combined
wave because they don’t start or end at
predefined times. Someone has to mix
new sounds into an active audio stream
by mixing in the new wave starting just
after the point from which the sound
hardware is playing.

There are other things a mixer has
to worry about, too. For instance, the

+ =

Figure 1. Two waves playing simultaneously, approximately.

48 GAME DEVELOPER • JUNE/JULY 1996 http://www.gdmag.com

mixer doesn’t have infinite memory at its
disposal, so an application may ask to
play a sound that’s too large to fit in the
buffer the mixer is using, so the mixer
may have to break the sound into pieces.
Or maybe the application wants to mix
two waves sampled at different rates or
with different resolutions. A general pur-
pose mixer has to convert them to a com-
mon format.

Books have been written on the
subject of signal processing, and numer-
ous software mixers and sound editing
tools abound. You can dig into them, but
I have neither the space, the time, nor the
expertise to write another volume on
sampling theory. As long as you under-
stand the basics of what your wave mixer
does, you don’t have to deal with the
gritty details. Unless you want to.

Pitfalls
Both DirectSound and Sound Manager
cope with playing whatever sound in
whatever format of whatever length you
throw at them. You can take their abili-
ties for granted. However, it’s important
to understand the basics of wave mixing
in order to understand a fundamental
performance difference between the two.

Programmers who write wave mix-
ers must inevitably answer the following
question: What happens when the sum
of any two samples from the waves to be
mixed exceeds the resolution of the sam-
ple? How do you mix two 8-bit samples
when their sum is greater than 128 or less
than -127? A byte simply can’t handle
that information. Digital technology has
let you down.

At this point, you have two basic
choices. You can divide every sample in

half, essentially restricting each wave to
the -63 to +64 range to guarantee the
sum to fall between -127 and 128, or
you can continue as usual, replacing any
sum greater than 128 with 128 and less
than -127 with -127. I suppose you can
always ignore the problem, too, but I
don’t recommend that option.

We know already that dividing sam-
ples in a wave by a constant (in this case
2) lowers the volume of the wave. So
basically, the first technique is to turn
down every wave to be mixed so that
they’re guaranteed never to exceed the
maximum volume. You divide each sam-
ple by the number of waves played before
adding them together. That’s the same as
adding them all together and dividing by
the number, so I call this averaging the
waves. I’m going to break my impartial
reporter front for a second to say that this
is the wrong way to mix waves for games!

The second technique guarantees
that the waves you play will always be
played at the expected volume, but if the
sum of all the waves played exceeds the
limits of the digital representation, the
highs and lows will get chopped off. If
you know you’re going to be mixing four
sounds, you may choose to author your
sounds in a reduced range so they never
distort, but that’s up to you. This mixing
technique is called clipping the waves
because it clips off the highs and lows.

Figure 2 shows these two mixing
methods at work. Looking at these dia-
grams, you can see how averaging dis-
torts the shape of the wave, squashing it
into silence. When you’ve only got
eight bits to describe a sound sample,
you don’t want to throw any of them
away by division! On the other hand,

DirectSound and

Sound Manager handle

the process

of mixing audio

differently. Knowing

each platform

will prevent your

game‘s sounds from

unexpected clipping

as well as

average to low

volumes.

Jon Blossom

GAME DEVELOPER • JUNE/JULY 1996 49http://www.gdmag.com

A U D I O

50 GAME DEVELOPER • JUNE/JULY 1996 http://www.gdmag.com

ChannelHeader[ChannelToUse].length = SampleSize;
ChannelHeader[ChannelToUse].loopStart = SampleSize;
ChannelHeader[ChannelToUse].loopEnd = SampleSize;
// Allow only 11025Hz samples
// This is just to save space. The code on
// ftp.mfi.com allows 22050 and 44100 as well
ChannelHeader[ChannelToUse].sampleRate = rate11025hz;
ChannelHeader[ChannelToUse].baseFrequency = rate11025hz;
// Allow only 8-bit samples
// Again, see the code on the ftp site
// The stdSH code indicates 8-bit samples
ChannelHeader[ChannelToUse].encode = stdSH;
// Set up the sound data to indicate
// that the channel is playing
ChannelHeader[ChannelToUse].samplePtr =
(char*)pSample;

// Play the sound!
SndCommand Command;
Command.cmd = bufferCmd;
Command.param1 = 0;
Command.param2 = (long)&ChannelHeader[ChannelToUse];
SndDoCommand(pChannel[ChannelToUse], &Command, false);
// Queue up a callback to reset the channel
// header when finished. The command gets passed

Global channel information initialized by BeginSound
SoundHeader ChannelHeader[4];
SndChannelPtr pChannel[4];
void PlayWave(int SampleSize, int SampleRate,
short BitsPerSample, short ChannelCount,
char unsigned* pSample)
{

// Look for a channel to use to play this sample
int ChannelToUse = -1;
for (int Count = 0; Count < 4; ++Count)
{

// An available channel is
// recognized by a null sample pointer
if (pChannel[Count] && !ChannelHeader[Count].samplePtr)
{
ChannelToUse = Count;
break;

}
}
if (ChannelToUse > -1)
{

// Found an unused channel...
// Set up buffer information

Listing 1. PlayWave for the Macintosh

clipping can distort the tips of the wave,
creating harsh highs and lows like the
ones you might hear escaping speakers
that have been pushed to a volume they
can’t support.

For reasons I can neither explain nor
imagine, Apple decided that Sound
Manager should average waves, even if
mixing them normally wouldn’t cause
clipping. This guarantees you will never
hear clipping from waves Sound Manag-
er produces, but it also guarantees that
individual sounds drop in volume as
other sounds begin to play.

DirectSound clips waves that exceed
the playback resolution. This guarantees
that your sounds will be played at full
volume, but it also leaves your sounds
susceptible to clipping.

Playing the Mac
Now we’re going to make some noise,
starting with the Macintosh. Two plat-
forms worth of code is too much to fit in
one article, so I’ve only printed the high-
lights here. Check out the Game Develop-
er web site for the full source code.

In spite of my exhortation against
mixing waves by averaging (shudder), I’m
going to show you a simple way to use
the Sound Manager.

Sound Channels are the essential

communication pipes
to the Sound Manag-
er. They’re essentially
queues of commands
to be processed,
including commands
to play a buffer from
memory, loop over a
specific piece of a
sample, or perform
other simple sound
operations.

To play a sam-
ple from memory, we
have to set up a chan-
nel, initialize a
bufferCmd command
that points to the
wave data to be
played, and call Snd-
DoCommand to pass the
command down the
pipe. By following

that with a callBackCmd, we can have the
Sound Manager call us back when it’s

finished playing the sample.
That’s all it takes. Every time you

send a bufferCmd, the Sound Manager
mixes all the active sounds into one audio
stream and plays it out the speaker.

For our purposes, we’ll allow four
sounds to be played at once. The Begin-
Sound function creates four sound chan-
nels using SndNewChannel, registering the
SoundCallBack function as the target of a
callBackCmd command for that channel. It
initializes a SoundHeader structure to
describe the sound wave installed in each
channel. Each header initially contains
null as the pointer to its sound, indicating
the channel is unused. EndSound cleans up
this work when we’re done playing.

The PlayWave function, shown in
Listing 1, implements the heart of the
system. It searches the four channels to
find an unused one, as indicated by a
ChannelHeader whose sample pointer is
null. If it can’t find one, it refuses to play.

If it does find a free channel, Play-
Wave fills in the associated ChannelHeader

GAME DEVELOPER • JUNE/JULY 1996 51

Listing 1. Continued from p. 50

http://www.gdmag.com

// as an argument to the callback function.
// In this case, param2 will contain a pointer to
// the memory to be zeroed when the wave terminates.
Command.cmd = callBackCmd;
Command.param1 = 0;
Command.param2 =

(long)&ChannelHeader[ChannelToUse].samplePtr;
SndDoCommand(pChannel[ChannelToUse], &Command, false);

}
}
pascal void SoundCallBack(SndChannelPtr pChannel, SndCommand*
pCommand)
{

// This function gets called when we queue up a
// callBackCmd above, to indicate that the sample
// has finished playing.
//
// The command's param2 points to the
// ChannelHeader.samplePtr of the channel that finished,
// which we zero to indicate that it is no longer playing.
((Ptr)pCommand->param2) = 0;

}

with the sample characteristics, points it
at the specified wave data, and sends a
bufferCmd command to the appropriate
channel to start the wave playing. In the
listing, I’ve restricted PlayWave to 8-bit
11,025Hz samples, but the code avail-
able on the Game Developer web site
allows for others.

Before leaving, PlayWave queues up
a callBackCmd command, which will
result in a call to SoundCallBack when the
wave has finished playing. SoundCallBack
zeroes the sample pointer in the appro-
priate ChannelHeader, making the channel
once again eligible to play a wave.

The Well-Tempered PC
The Sound Manager requires you to cre-
ate channels only for the sounds you want
to mix, implying a specific playback buffer
into which all channels are mixed. But
DirectSound has no such default. A pri-
mary buffer represents the sound moving
through the hardware, and the application
must create a primary buffer before it can
play any sound through the hardware.

The Windows BeginSound implemen-
tation handles the set-up of the primary
buffer. Because a primary DirectSound
buffer must be associated with a window,
BeginSound creates a simple static text con-

trol and sets up DirectSound for exclusive
audio access through that window before
creating the primary sound buffer. End-
Sound reverses all that and frees the addi-
tional buffers created in the process of
playing waves.

Once the system is set up, the Win-
dows PlayWave implementation follows a
pattern similar to the one described for
Sound Manager. Specifically, it looks for
an unused channel among the four
allowed, creates and sets up a buffer for
the requested sample, and calls Play.

Listing 2 shows the source code for
this function. Notice that every call to

A U D I O

52 GAME DEVELOPER • JUNE/JULY 1996 http://www.gdmag.com

// Global channel information initialized
// by BeginSound
static LPDIRECTSOUNDBUFFER pChannel[4];
static LPDIRECTSOUND pDirectSound = 0;
void PlayWave(int SampleSize, int SampleRate,
short BitsPerSample, short ChannelCount,
char unsigned* pSample)
{

// Look for a channel to use to play this sample
int ChannelToUse = -1;
for (int Count = 0; Count < 4; ++Count)
{

if (!pChannel[Count])
{
// This channel isn't in use
ChannelToUse = Count;
break;

}
else
{
DWORD Status;
HRESULT DSResult =

pChannel[Count]->GetStatus(&Status);
if (DSResult == DS_OK &&

!(Status &
(DSBSTATUS_PLAYING | DSBSTATUS_LOOPING)))

{
// This channel has finished playing -
// it's OK to free it and use it now
pChannel[Count]->Release();
pChannel[Count] = 0;
ChannelToUse = Count;
break;

}
}

}
if (ChannelToUse > -1)
{

// Found an unused channel...

// Set up buffer information
WAVEFORMATEX WaveFormat;
WaveFormat.wFormatTag = WAVE_FORMAT_PCM;
WaveFormat.nChannels = ChannelCount;
WaveFormat.nSamplesPerSec = SampleRate;
WaveFormat.wBitsPerSample = BitsPerSample;
WaveFormat.cbSize = 0;
WaveFormat.nBlockAlign = WaveFormat.nChannels *
(WaveFormat.wBitsPerSample / 8);

WaveFormat.nAvgBytesPerSec = WaveFormat.nBlockAlign *
WaveFormat.nSamplesPerSec;

// Set up a DirectSound buffer
DSBUFFERDESC BufferDesc;
ZeroMemory(&BufferDesc, sizeof(BufferDesc));
BufferDesc.dwSize = sizeof(BufferDesc);
BufferDesc.dwFlags = DSBCAPS_STATIC | DSBCAPS_CTRLDEFAULT;
BufferDesc.dwBufferBytes = SampleSize;
BufferDesc.lpwfxFormat = &WaveFormat;
// Create a new buffer using the settings for this wave
HRESULT DSReturn =
pDirectSound->CreateSoundBuffer(&BufferDesc,

&pChannel[ChannelToUse], 0);
if (DSReturn == DS_OK && pChannel[ChannelToUse])
{
// Lock the buffer and copy in the data
BYTE* pData;
DWORD DataSize;
if (pChannel[ChannelToUse]->Lock(0, SampleSize,

&pData, &DataSize, 0, 0, 0) == DS_OK)
{

memcpy(pData, pSample, SampleSize);
// Unlock the buffer
pChannel[ChannelToUse]->Unlock(pData,

DataSize, 0, 0);
// Actually play it!
pChannel[ChannelToUse]->Play(0, 0, 0);

}
}

}
}

Listing 2. PlayWave for DirectSound

PlayWave creates a new DirectSound buffer
to hold the wave you’re playing. Direct-
Sound doesn’t play waves directly from
memory like Sound Manager does, so
PlayWave has to lock the buffer, copy in the
wave data, and unlock it. That may be
time-consuming and may even involve
downloading a wave to the sound hard-
ware. A better system could avoid that by
keeping waves to be played in preallocated
and precopied DirectSound buffers.

The Echo Chamber
I’ve included a demo that uses the stan-
dard C file package to open a file called
sample.wav, assumed to be in the .WAV
file format used by Windows and read in
sampled wave data. Then, it calls Play-
Wave eight times with that data, leaving
3/4 of a second between each call, waits
another five seconds, and terminates.

Since .WAV is a PC format, con-
taining data in Intel byte ordering, the
demo uses two functions to adjust them to

the run-time format. I’ve declared Swap16
and Swap32, which swap bytes into
Motorola format on a Mac and leave bytes
intact on a PC. For a 16-bit sample, every
16 bits of the wave data will have to be
swapped around as well, a factor that

made me decide to leave this demo in 8-
bit land.

I urge you to compile and run these
on a Mac and on Windows 95 if you can.
You’ll immediately hear the difference
between averaged and clipped mixing. The

A U D I O

GAME DEVELOPER • JUNE/JULY 1996 55http://www.gdmag.com

Method 1: Averaging (Macintosh Sound Manager)

Method 2: Clipping (DirectSound)

Figure 2. Two mixing methods.

Sound Manager makes the demo sound
like an echo chamber, repeating the wave
over and over at progressively lower vol-
umes while the DirectSound demo pro-
vides eight crisp new shots. Try increasing
the number of channels allowed to 8, swap
in a loud wave, and listen as all your
sounds are reduced to one-eighth their

original volume by the Sound Manager
and clipped to distortion by DirectSound.

There are ways to combat the Sound
Manager’s dynamic volume adjustments.
You can guarantee that four sounds will
always be playing by forcing the unused
channels to loop over a buffer full of
zeroes. You can artificially turn up the vol-

ume on the channels as new waves are
mixed in. Or you can write your own
mixer that plays through a single Sound
Manager channel, but I won’t be held
responsible for the results! ■

Jon Blossom can be reached through
Game Developer magazine.

A U D I O

56 GAME DEVELOPER • JUNE/JULY 1996

// The simple Wave Mixing API
int BeginSound(void);
void EndSound(void);
void PlayWave(int SampleSize, int SampleRate,
short BitsPerSample, short ChannelCount,
char unsigned* pSample);
// Byte-swapping functions
short unsigned Swap16(short unsigned value);
long unsigned Swap32(long unsigned value);
// The demo
void DemoMain(void)
{

int SampleSize =0;
int SampleRate =0;
short BitsPerSample =0;
short ChannelCount =0;
char unsigned* pSample =0;
// Load a wave file
FILE* pFile = fopen("sample.wav", "rb");
if (pFile)
{

// We're just going to assume this file is valid
// Skip the 'RIFF' tag and file size (8 bytes)
// Skip the 'WAVE' tag (4 bytes)
fseek(pFile, 12, SEEK_SET);
// Now read RIFF tags until the end of file
unsigned long Tag;
unsigned long Size;
while (!feof(pFile))
{

// Read, watching for file end
if (fread((char*)&Tag, 1, 4, pFile) == 0)

break;
Tag = Swap32(Tag);
fread((char*)&Size, 1, 4, pFile);
Size = Swap32(Size);
if (Tag == 0x20746D66) // The 'fmt ' tag
{

// 16-bit PCM flag - assume PCM format
fseek(pFile, 2, SEEK_CUR);
// 16-bit Channel Count
fread((char*)&ChannelCount, 1, 2, pFile);
ChannelCount = Swap16(ChannelCount);
// 32-bit Sample Rate
fread((char*)&SampleRate, 1, 4, pFile);
SampleRate = Swap32(SampleRate);
// Skip Average bytes per second - (4 bytes)
// Skip padding - (2 bytes)
fseek(pFile, 6, SEEK_CUR);
// 16-bit Bits Per Sample

fread((char*)&BitsPerSample, 1, 2, pFile);
BitsPerSample = Swap16(BitsPerSample);
// Skip whatever's left
if (Size > 16)

fseek(pFile, Size - 16, SEEK_CUR);
}
else if (Tag == 0x61746164) // The 'data' tag
{

// Allocate space and read in the wave
pSample = (char unsigned*)malloc(Size);
if (pSample)
{

SampleSize = Size;
fread((char*)pSample, 1, Size, pFile);

}
}
else
{

// An unknown tag - just skip it
fseek(pFile, Size, SEEK_CUR);

}
}
fclose(pFile);

}
// Now play the wave!
if (pSample && BeginSound())
{

long unsigned Time;
// (Attempt to) play 8 times
int PlayCount = 0;
while(PlayCount < 8)
{

PlayWave(SampleSize, SampleRate, BitsPerSample,
ChannelCount, pSample);

++PlayCount;
// Wait 3/4 of a second between plays
Time = GetMillisecondTime();
while (GetMillisecondTime() - Time < 750)

;
}
// Wait 5 seconds then quit
Time = GetMillisecondTime();
while (GetMillisecondTime() - Time < 5000)

;
EndSound();

}
// Clean up
if (pSample)

free(pSample);
}

Listing 3. Code to Play a Wave Eight Times

http://www.gdmag.com

58 GAME DEVELOPER • JUNE/JULY 1996

E
ach of us interprets differently
what we read, so that even the
author cannot really know what
pictures his or her words might
paint in the reader’s mind. This
is a wondrous, pseudo-magical
thing about the written word as
a means of creative expression.

It’s also the reason a written script gener-
ally proves insufficient as a tool for cine-
matographers, animators, and game
developers, who are working largely with
graphical concepts. When the visual ele-
ment is this important to the end result,
it is crucial that everyone involved has the
same picture in mind. In most cases, the
script remains a necessity, but the very
flexibility that leaves its phrases open to
personal interpretation makes text too
inexact for the planning and sharing of
visual concepts. This is where the story-
board comes into play.

In case any reader is unfamiliar with
the term, a storyboard is a graphical rein-
terpretation of the script, using a series of
rough sketches to convey setting and
action from scene to scene, sometimes
even from one movement to the next.
Filmmakers and animators have used
these visual devices for decades. As digi-
tal graphics grow in sophistication and
importance, developers too rely increas-
ingly on this tool to communicate and
plan a game’s visual element.

In general, the storyboard is a visu-
alization aid. It helps establish the setting
and the flow of action and pinpoints the
positions of “actors” as well as the van-
tage point of the viewer. During game
development, the storyboard is used to
plan in detail the cinematic sequences
used for game intros and cut scenes. Sto-

ryboarding is also useful in mapping out
gameplay routines, such as character
movement cycles. The information cap-
tured on the storyboard then serves as a
visual shorthand for the artists who must
bring the animation to completion.

Though indispensable as a tool for
collaboration, the storyboard is of equal
importance to the lone artist. Its useful-
ness is not just to share a visual concept
but to plan the whole sequence out ahead
of time. As I’ve noted before, it is tempt-
ing for the artist to plunge into an anima-
tion, but planning ahead is crucial to
achieve the best possible results. Don’t
assume that at some point later in pro-
duction you’ll work out those issues left
unresolved when you began. Animation
is not an improvisational art. It’s much
easier to make changes before you begin
animating. The storyboard is the place
for that to happen.

Keep It Simple
Storyboarding isn’t rocket science, but
some approaches are generally more use-
ful than others and some fairly well-
established misconceptions need to be
avoided. In this column, I am talking
about the storyboard as a rough tool for
planning and sharing visual information.
I’m not concerned with presentation-
quality storyboards often used to pitch a
project or sell an idea. When called for,
such presentation storyboards are created
easily enough by making a prettified copy
of your working storyboard. It’s counter-
productive, for several reasons, to add
polish to your sketches prior to this.

The first reason is that the story-
board should be considered a work in
progress, not a work of art. It holds every

Players Bored?
Storyboard!

A low-tech tool can

help pack your high-

tech animations with

visual power. Don‘t

underestimate the

power sketches can

bring to your projects.

David Sieks

A R T I S T ‘ S V I E W

http://www.gdmag.com

GAME DEVELOPER • JUNE/JULY 1996 59

aspect of a sequence up for scrutiny before
investing time and effort in animation. It
is successful when it elicits change:
changes represent a problem or weakness
discovered and fixed at an early stage or a
good idea replaced with an even better
one. Since, due to these changes, many
sketches may need to be scrapped and
reworked, it’s best not to have invested
unnecessary time and effort into making
them look pretty only to discard them
later.

Which leads to the second reason to
keep detail to a minimum in storyboard
sketches: ego. A storyboard that survives
review without changes probably wasn’t
looked at critically enough. Suggested
changes are not a personal indictment of
the artist’s talent. This is hard for artists to
accept, though, if they have prepared a
storyboard filled with painstaking draw-
ings. Better to think of the storyboard as
visual shorthand and keep detail to a min-
imum. A lovingly detailed storyboard
sketch is akin to a beautifully carved orna-
mental wooden matchstick: it’s so pretty
you can’t bear to use it as intended.

An aside to those working with a
storyboard artist: you have entered the

Realm of Creative Endeavor. Watch
where you step: there are unexploded egos
all around.

The final reason to build the story-
board from quick sketches is something
else I’ve talked about in this space before:
flow. Anything that slows down the
process of translating written script to
visual information threatens to stifle the
creative flow. When storyboarding for
animation, you are planning something
that ultimately will move and have a pal-
pable pace to it. You need to convey that
dynamism even in the static panels of the
storyboard. If you get bogged down in the
details of a single drawing, you lose that
momentum: the end result is likely to be
disjointed and unsatisfactory. Keep it sim-
ple and energetic.

Another worthwhile observation
about detail, or lack thereof—it is a good
practice to excise repetitive information
from storyboard sketches. To establish
setting, you will want at some point to
indicate the background or portray the
general color scheme. But it is unneces-
sary to duplicate this information in
sketch after sketch if it has not changed
from one to the next. Storyboarding cap-

tures what is dynamic in the scene: spend
minimal time and effort on things that
remain static.

In keeping with the quick and dis-
posable nature of storyboard sketches,
artists probably do not want to use those
storyboard layout sheets with columns of
neat preprinted rectangles on each page.
Avoid these because it makes changes
more difficult when, for example, there are
eight sketches on a single piece of paper
and you need to replace two of them. It
also makes it near impossible for the artist
to remain unconcerned about the “quality”
of the image while drawing, especially
once there are already a couple of accept-
able sketches on the page and any slip-up
threatens the work already done.

Instead, use single sheets of small
paper—numbering them, if necessary, to
keep them in sequence. Group the sheets
on a large board afterwards or as you
work, securing them with tacks or reposi-
tionable adhesive. With single sheets, it is
easy for the artist to discard a drawing that
isn’t coming out right or to implement a
different approach to the scene. Also, on a
storyboard made up of single sheets it is a
simple matter to remove sketches during a

Storyboarding has long been a staple of TV and movie production. Artists at Tom Snyder Productions have just three weeks to turn out each new half-
hour episode of the award-winning Comedy Channel animated sit-com “Dr. Katz: Professional Therapist.” Animator Mark Usher observes that the
show’s stock characters, sets, and a signature, minimalist animation style they call Squigglevision mean that storyboards can be quickly created by
sketching in changes over preexisting frames from earlier episodes. The storyboard also guides the editor in piecing together the work of several
artists for the final edit.

http://www.gdmag.com

meeting to mark areas that need further
attention.

The storyboard needs to consist of a
series of sketches that establish setting
and action and guide the creative team
through the task of animating the
sequence. Each change of viewpoint must
be shown; each new character that
appears onscreen must be indicated.

However, you need not dwell on the
details of characters, which should already
be worked out on model sheets (for more
on model sheets, see “A Question of
Character” in the Feb./Mar. issue).

Of course, it is important to register
actions as well: movement within the
scene is one chief reason we require a sto-
ryboard rather than a single sketch. How-

ever, don’t let the flow from sketch to
sketch slow down excessively by indicat-
ing actions in great detail. More than one
sketch can certainly be used to express a
complex action, but not too many more.
For the purposes of the sequence story-
board, your aim is to capture the extremes
of the movement and leave it at that. A
separate action storyboard can show in

60 GAME DEVELOPER • JUNE/JULY 1996

A R T I S T ’ S V I E W

Terra Nova: Strike Force Centauri, the new title from Looking Glass Technologies, features numerous cut scenes blending live action video with
computer graphics sets and actors. By planning these scenes on the storyboard, artists were able to focus design and modeling efforts where they
were needed and not waste time on areas that would go unseen. The storyboard also proved useful on the set for staging actors around virtual
props that had not yet been created. Pictures courtesy Looking Glass Technologies Inc., Cambridge, Mass. Terra Nova, Looking Glass, and the dis-
tinctive logos are trademark of Looking Glass Technologies.

http://www.gdmag.com

detail how a character walks or hops or
falls down.

Explanatory text will sometimes be
unavoidable on the storyboard, but keep
it to a minimum. There will be a written
script of some sort to start with. The
storyboard is a complement to this, not a
replacement for it; nor should a story-
board repeat most of the script. The
action depicted in the storyboard should
be self-explanatory. If not, it’s probably
worth reconsidering the depiction you
have chosen. Text that indicates the
accompanying dialogue or narration,
however, can help communicate the
sequence’s pace and is routinely included
in a separate block below each sketch.

Consider This
Even more important than the form the
storyboard takes or the appearance of its
individual sketches are the considera-
tions that go into taking a written script
and turning it into an animation. The
storyboard will act as the animators’ map
on this journey. The challenge is not just
to convey the plot and action described
in the script, but to settle upon the very
best way to tell that story visually.

In laying out the storyboard, one is
dealing with the foundations of good
visual storytelling. Great modeling, ren-
dering, and fluid animated movement
can seem strangely hollow if the story is
not told with verve and style. The
groundwork for these elements is your
storyboard layout. Your task may be to
simply make a splash sequence for a
fighting robot game: the script calls for
the robots to stomp around, fly through
the air, and shoot rockets at each other,
and then the title pops up. Simple
enough, on the surface. But how can you
make that compelling?

You want to transport your audi-
ence, cast a spell over them, and even for
a few moments take them somewhere
beyond their computer screen—make
them believe and care about what they
see on that screen. You don’t have to add
to the plot or action beyond what is pre-
sented in the script, but you should chal-
lenge yourself to make the most of the
material. Maybe you show the action
from inside the cockpit of one of the

giant robots, or from down at ground
level to emphasize their great size, or
distorted by a wide-angle lens, or with a
series of quick takes from all these angles
and more.

How you tell the story affects how
the audience perceives and responds to
it. What is shown, what is only implied,
what angles you use, what actions or
moments are emphasized—these deci-
sions contribute to the overall impact of

the sequence. Always be wary of the easy
way out: avoid the obvious, hold cliché at
bay. Whether the aim of the sequence is
to amuse, frighten, or thrill, look for
opportunities to show the audience
something different and unexpected.
The storyboard phase is the opportunity
to consider all these things, to try out
different ideas, and to settle on an
approach before getting down to the
work of animating.

GAME DEVELOPER • JUNE/JULY 1996 61

A R T I S T ‘ S V I E W

http://www.gdmag.com

When the storyboard is laid out in
front of you, take a critical look at every-
thing that makes up the sequence: justify
the presence of each sketch. Your
sequence will be composed of a number
of “shots.” Even if it all takes place in
one room, it is shown first from one
angle, then another; this action occurs,
then that. Each is a shot, and your story-
board must establish every shot. Do they
all really need to be there? Is there some-

thing interesting about every shot in the
sequence? If not, you either eliminate
the shot, or you find a way to give it
more punch. Cut scenes within games
are by necessity too short to support any
dead weight.

With all that in mind, it is often
important to plan an animation with an
eye toward economy. How long will it
actually take to animate the sequence as
storyboarded? What 3D models will

need to be created, in what degree of
detail? What texture maps, back-
grounds, and special effects are called
for? The answers depend on how the
sequence has been laid out in the story-
board. Practical limitations of budget
and deadline may mean that the best
way to tell the story from a creative
standpoint just isn’t realistic from a
production standpoint.

The storyboard provides you with
an opportunity to realize limitations
ahead of time and plan around them.
For example, one might frame shots so
that it’s only necessary to model the head
and shoulders of a character rather than
the entire body. Position certain figures
at a distance, or show them in stark sil-
houette so that less-detailed models can
be used. Or, as I suggested in my article
on lighting in the previous issue, use a
cast shadow gobo to represent a figure
and thereby avoid actually modeling it at
all. A carefully considered storyboard
helps you balance at the earliest possible
stage the twin demands of what-looks-
best and what-time-allows.

Even if there won’t be any fancy
animated cut scenes in your game, the
storyboard is a valuable tool for mapping
character movement routines or action
sequences. You’ll find that most consid-
erations outlined above will still apply.
Make the movement dynamic for the
time being, keep detail to a minimum,
and above all don’t be boring. Even if
you’re just animating a running sprite for
a side-scrolling game, use storyboarding
to lay out different approaches and find a
way to make that run look interesting.

Storyboarding will probably be the
least exotic tool you use in creating digi-
tal animation, but it will also prove one
of the most valuable. I doubt any artist
who has learned to appreciate the oppor-
tunities it provides for planning anima-
tions, for optimizing animations, and for
sharing visual concepts with a team
would trade storyboarding for all the
special effects plug-ins ever made. ■

Dave Sieks is a contributing editor to
Game Developer. You can contact him at
gdmag@mfi.com.

A R T I S T ’ S V I E W

62 GAME DEVELOPER • JUNE/JULY 1996 http://www.gdmag.com

	back:

