
June/July 1995

G A M E D E V E L O P E R M A G A Z I N E

G
oing to the Computer Game
Developer’s Conference is like
having your brain ripped from
your skull, spun up to 90% of
the speed of light, and fired into
a reaction chamber filled with
2,000 other brains moving at
relativistic speeds. It’s just as

hard recreating the CGDC from business
cards, press releases, and scrawled notes as
it is seeing the signature of a Top quark in
the spirals and parabolas of a reaction
chamber photograph.

Above any other impression, the
overwhelming support for Game Developer
from the community was both gratifying
and humbling. To have so many people
known to us only from their credits on
shrinkwrap games come up and tell us that
they read the magazine was amazing
enough, but when they continued with
specific comments about this column or
that feature, I realized that our magazine’s
editorial staff isn’t what’s on the masthead,
it’s 20,000 strong.

Despite the overload of informa-
tion that makes it impossible to say
what the story of the show was, I think
there were three candidates: sound, 3D,
and Windows.

The sound story was a howl of rage
against FM synthesis and its gaming syn-
onym “SoundBlaster compatible.” To
many at the CGDC, the chirpy voice of an
FM card through the molded plastic
speakers bundled with a $60 card repre-
sents the jackboot of tyranny on the throat
of the gaming public.

Although “rendered on the fly”
sounds like what happens when an acceler-
ated brain hits a screen door, it’s also
where the action is in terms of software.
Although demos that don’t have to bother
with little things like gameplay always
achieve higher frame rates, vendor after
vendor was showing convincing evidence
that the bar’s been raised (or extruded) for

popular graphics.
But why fight it? The truly amazing

thing is that all of this—the sound work,
the three-dimensional graphics with
incredible frame rates, the hottest con-
tent—was running under a single platform.
Windows. You heard me right, bunkies.
Microsoft has decided it wants the home
market and will do what it takes to make
the successor to Windows 95 (Windows
95++?) the number one game platform.

Like anyone in the press, I’m used to
getting a lot of opinions about major
Microsoft initiatives. You expect some
people to love it on technical merit, some
people to hate it on technical merit, and a
lot of people to hate it on the general prin-
ciple that Microsoft’s a big, successful
company and therefore is evil. But no mat-
ter who I talked to about the Microsoft
Game SDK, with its four APIs for graph-
ics, input, network connection, and sound,
it was a love story.

Not one to be swayed by public sen-
timent, I put on my sunglasses with the
special Anti-Hypnosis coating and met
with Microsoft’s Game SDK advance
team. What can I say? They ripped off the
glasses and made me stare at a screen with
three objects composed of approximately
8,000 Gouraud-shaded polygons rotating
at dozens of frames per second. Then they
made me watch other displays with alpha
channels, specular highlights, and smooth
panning. They overlayed three-dimen-
sional sounds. They did it all, okay? And
all of this in well-behaved Windows
applications.

Maybe it is hypnosis, though. I need
perspective and some feedback from you,
our 20,000 editors. E-mail us at
gdmag@mfi.com and tell us what to do.
More graphics, more Windows, more AI,
more design, more channel issues? It’s your
magazine—tell us what to do. ■

Larry O’Brien
Editor

Brain
Goes Whoosh!

G A M E P L A N

4 GAME DEVELOPER • JUNE/JULY 1995

Editor Larry O’Brien
gdmag@mfi.com

Senior Editor Nicole Freeman
76702.706@compuserve.com

Managing Editor Nicole Claro
71743.452@compuserve.com

Editorial Assistant Deborah Sommers
dsommers@mfi.com

Contributing Editors Alex Dunne
75010.2665@compuserve.com

Chris Hecker
checker@bix.com

David Sieks
dsieks@arnarb.harvard.edu

Wayne Sikes
70733.1562@compuserve.com

Editor-at-Large Alexander Antoniades
sander@mfi.com

Cover Photography Charles Ingram Photography

Publisher Veronica Costanza
Group Director Regina Starr Ridley

Advertising Sales Staff

West/Southwest

Yvonne Labat (415) 905-2353
ylabat@mfi.com

New England/Midwest

Kristin Morgan (212) 626-2498
kmorgan@mfi.com

Marketing Manager Susan McDonald
Advertising Production Coordinator Denise Temple
Director of Production Andrew A. Mickus
Vice President/Circulation Jerry M. Okabe
Group Circulation Director Gina Oh
Group Circulation Manager Kathy Henry
Circulation Manager Mike Poplardo
Newsstand Manager Pam Santoro
Reprints Stella Valdez (415) 655-4269

Chairman of the Board Graham J.S. Wilson
President/CEO Marshall W. Freeman
Executive Vice President/COO Thomas L. Kemp
Senior Vice Presidents Warren (Andy) Ambrose, H.
Verne Packer, Donald A. Pazour, Wini D. Ragus
Vice President/Production Andrew A. Mickus
Vice President/Circulation Jerry Okabe
Vice President/Software Development Division Regina
Starr Ridley

MGA EGAME

Miller Freeman
A United News & Media publication

Dear Editor:

Thanks for a magazine for developers of
games. I just finished reading the
April/May issue and have to question

your editorial. What does Delphi have to do
with game development? The magazine is
thin enough without extra noise being put in.

I also hope the magazine stays away from
articles that compare games unless it’s
going to help me or someone else develop a
game. Comparing Tetris on the SNES to Tetris
on Sega doesn’t do me any good, and I can
read that in the hundreds of magazines
devoted to games.

Other than these few complaints, I really
l ike the magazine. I hope it grows and
becomes very successful. I feel that this
magazine will be a valuable resource for my
library.

Brien King
via e-mail

Editor Larry O’Brien responds:
Close your eyes and visualize this: “Games.
Windows.” What do you see? A virtually empty
universe, with Solitaire the brightest star.
Now close your eyes and visualize this: “Win-
dows. Home market.” What do you see? The
fastest growing sector in the computer
industry. Vast clouds of money being sucked
faster and faster into the pockets of those
who create digital entertainment. Delphi is a
tool for those who want to become little neu-
tron stars of dense money.

DON’T FORGET THE MACINTOSHDON’T FORGET THE MACINTOSH
Dear Editor:

Acharter subscriber, I’ve been reading
Game Developer since your premiere
issue, and while you generally do a

fine job on the article topics and writing in
general, I am concerned about your blatant
pro-DOS and Windows bias. (Why not just
change the name to Windows Game Develop-
er and avoid confusion?)

I’ve developed on both PCs and Macin-
toshes and greatly prefer the latter. The fact
that there is a much larger market for DOS
and Windows software than for Macintosh
software is a tribute to Microsoft’s market-
ing abilities. However, Macintosh developers
do exist, and we would like to read some
articles pertinent to us...Mode 13 and Sound
Blaster programming techniques are all well
and good, but how about an article on pro-
gramming .mods using Sound Manager? How
about “Getting the Most Out of CopyMask?”

Also, it would be a welcome addition if
you’d state the platform on which a review or
article is based. And please, try to get
Alexander Antoniades to ease up—his com-
ments in the April/May issue(“It’s a Sim,
Sim, Sim, Sim World,” By Design) suggested
that Maxis was losing scads of money by
developing on Macintoshes first. Maxis’s
success was probably due to the fact that it
did write for the Macintosh, thereby avoiding
the glut of games already available for the
PC and distinguishing itself in a smaller
market. Many other superior games (most
notably, Myst) were developed on the Macin-
tosh, and this platform should be given
some consideration by your otherwise excel-
lent publication.

Geoffrey Reiss
via e-mail

Larry O’Brien responds:
How about the best of both worlds, Macintosh
and Windows? Jon Blossom shows how, starting
on page 28.

Delphi Why?

This column is for your

feedback. Send us

queries, suggestions,

complaints, and praise

(especially praise).

You want code? We‘ve

got code. (Really.

Check the end of this

section for a special

clip-and-save piece.)

by Our Readers

S E Z U !

GAME DEVELOPER • JUNE/JULY 1995 7

IF I HAD MY OWN MAGAZINE...IF I HAD MY OWN MAGAZINE...
Dear Editor:

Your magazine needs more mass to be
worth buying. There are many things I’d
like to see in future issues:

• Two or three long interviews per issue (8-
10 pages each). There are hundreds of
people with much to say—designers,
businesspeople, and the like. I’d like to
read about Carl Stone’s, Yoshihide
Otomo’s, Kim Cascone’s, Mason Jones’s,
and Fumio Kosakai’s electronic music
recording methods.

• I’d like a big report—interviews on Ultima 9
Development, the Japanese game scene,
Psygnosis’s staff, and New World’s staff.

• I’d like to know what happened to Bill
Hogue, Reflections, and Wizardry.

• I’d like six to ten reviews and dissections of
games new and old, game structure, archi-
tecture, and the like. I’ve noticed that any-
thing over two years old is being thrown off
the shelves or deleted. Maybe you could
print code architecture from these discon-
tinued games.

• I’d like 30 to 40 pages of articles on port-
ing PC code to game systems, how it’s
done, and the troubles and costs of hard-
ware. I’d like four to five pages per issue of
screen shots from upcoming games, works
in progress, and info on CD-ROM pressing
and costs.
Add in this junk and your mag will improve

greatly.

D. Godat
Fort Wayne, In.

Editor Larry O’Brien responds:
Okay...we’ll get right on that junk.

WELL, SOMEONE LIKES USWELL, SOMEONE LIKES US
Dear Editor:

Thanks for such a great magazine. It is
great to have articles from people who
take the “theory” and put it into real

world practice. In the April/May issue, I really
liked Matt Pritchard’s article, “Supercharging
your Sprites” and Chris Hecker’s column on
perspective texture mapping. I also appreci-
ate the business articles that talk about the
game industry itself.

Bruce Burkhalter
Berkeley, Calif.

Editor Larry O’Brien responds:
Chris Hecker has a lot more to say on the sub-
ject. See page 18 of this issue and look for
more in the future.

SOMEONE ELSE LIKES US, TOO!SOMEONE ELSE LIKES US, TOO!
Dear Editor:

Ijust wanted to say I like the direction in
which Game Developer is going. In the
April/May issue, you had not one, not two,

but three great, informative articles—Chris
Hecker’s Under the Hood column, the first of
two parts on texture mapping (“Perspective
Texture Mapping Part I: Foundations”); “Pro-
gramming Digitized Sound on the Sound
Blaster” by Keith Weiner and Erik Lorenzen;
and “Supercharge Your Sprites” by Matt
Pritchard. Congratulations.

The only thing I didn’t like were Dean Ois-
boid’s opinions of Andre LaMothe’s books
Tricks of the Game Programming Gurus (SAMS
Publishing, 1994) and Teach Yourself Game
Programming in 21 Days (SAMS Publishing,
1994). In contradiction to what the cover
says, I think these books “do suck.” But that
is just a difference of opinion, not the fault of
your magazine.

Robert Zawarski
via e-mail

WE GOT YOUR CODE RIGHT HEREWE GOT YOUR CODE RIGHT HERE
Dear Editor:

Inormally do not offer unsolicited opinions,
but in this case, I will. I used to be a game
developer (I programmed The Last Files of

Sherlock Holmes for 3DO).
You should have it prominently displayed

somewhere in your magazine that source is
available via ftp. I learned this from your let-
ters section. This could be my fault; I might
have missed it somewhere. But it’s a very
handy piece of information.

This last thing is a compliment. Your arti-
cles were excellent—they all covered subjects
that were interesting, up to date, and relevant
to game programming today. There’s no
“Faster drawing in Mode X” stuff that was
covered in Dr. Dobb’s Journal three years ago.
Texture mapping, ripping apart Tie Fighter,
push-button game design...Yes! But, as I
said before, give us more.

Jeff Miller
via e-mail

S E Z U !

8 GAME DEVELOPER • JUNE/JULY 1995

(c l i p - n - s a v e)

❁❁❁❁
IS THIS
PROMINENT
ENOUGH???

❁❁❁❁

ftp://ftp.
mfi.com
/gdmag/
src
❁❁❁❁

(c l i p - n - s a v e)

@@@@@@@@e?
@@@@@@@@e?
@@h?
@@h?
@@h?
@@h?
@@h?
@@h?

@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e
@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e

@@@@@@@@
@@@@@@@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

?@@
?@@
?@@
?@@
?@@
?@@

?@@@@@@@@
?@@@@@@@@

?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@
?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@

@@g
@@g
@@g
@@g
@@g
@@g
@@@@@@@@
@@@@@@@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

Y
esterday, as I was cleaning out a
bookshelf in our office, I came
upon an issue of Byte magazine
from Aug., 1987. Although I
was throwing everything away,
I had an urge to flip through its
pages—there’s something com-
pelling about a computer mag-

azine that’s over seven years
old. Volume 12, number 9
of Byte may only have been
49 in dog-years, but it was
much older in computer-years.
I couldn’t believe it—ads for
386 16Mhz computers sell-
ing for $4,400, 9600-baud
modems for $1,000, and
articles about EGA graphics. It’s
amazing we got through those rough
times. (Some know-it-all will read this in
2002 and say the same thing about 1995,
no doubt.)

One article that caught my eye
focused on the technique of transferring
cartoon-quality film (a clip from Disney’s

Snow White and the Seven Dwarves) into
digitized EGA display. Yeeeesshhh, the
final result looked horrible. So, maybe the
time wasn’t right back then for creating
digital media from live footage. But, like a
rolling snowball picking up size and
speed, the graphics industry is maturing
to the point where there’s not too much

anyone can’t do at an affordable
price. Microsoft and Silicon

Graphics (SGI), thanks to
recent acquisitions and merg-
ers, are helping to fuel this
momentum.

Competitive Partners
The relationship between
Microsoft and Silicon

Graphics has changed enormously over
the past 12 months. Silicon Graphics is
the dominant player in the graphics
workstation market, and Microsoft is the
giant in the PC software market. Howev-
er, when Microsoft acquired Softimage
last summer, Microsoft gained a powerful

3D Graphics
Goliaths
Square Off

Microsoft‘s Softimage

is suddenly chal-

lenged by Silicon

Graphics‘s merger

with Alias and Wave-

front. What can game

developers expect

from these two?

Alex Dunne

C R O S S F I R E

GAME DEVELOPER • JUNE/JULY 1995 11

Man in the boat overboard! Softimage Toonz, which was used to create this animation cel, is
one product in a suite that Microsoft acquired last year. The software currently runs on the
SGI platform, but Microsoft has stated its plans to port Softimage tools to Windows NT.

suite of IRIX-based animation, editing,
compositing, and cel animation tools. It
instantly became a key partner of SGI.
Eight months later—last February—SGI
merged with Alias and Wavefront, two
companies that compete against Softim-
age on the SGI platform. How have these
developments changed the relationship
between Silicon Graphics and Microsoft?
More importantly, how does it affect their
customers?

I spoke with Andrew Wright, group
product manager of advanced authoring
tools for Microsoft/Softimage, and Dave
Larson, director of marketing for Silicon
Studios, a wholly owned subsidiary of Sili-
con Graphics, about the actions their
companies have taken recently in the digi-
tal entertainment industry.

The most recent event, Silicon
Graphics’ merger with Alias and Wave-
front, achieved two objectives for
SGI, according to Larson.

“We felt that by merging
with Alias and Wavefront,” Larson
explained, “we could get two of the
most important groups of engineers
together with our engineers and accom-
plish two things. [The first objective] is to
drive the development of our 3D software
environment... [Second,] we don’t have
expertise in entertainment and industrial
[software] markets at the customer level
like we do with hardware. We’re getting a
sales force that knows the customers really
well at the application level, a sales force
that has a much greater depth of knowl-
edge.”

What was Wright’s reaction to the
SGI merger?

“Surprise,” he said. “From
[Microsoft’s] perspective, it actually puts
us in a stronger position because we feel
that for our customers a cross-platform
solution is important. Where they want
the performance of SGI, we provide it,
where they want the price-to-performance
ratio and openness of a Windows NT sys-
tem we’ll provide that to them. We’ll be
the only high-end 3D animation vendor
that’s effectively able to execute a cross-
platform strategy.”

I sensed no edginess from either
Wright or Larson about the relationship
between Microsoft and SGI, and both

played up the positive aspects of their
new product lines. Wright stressed the
fact that many of SGI’s partners, not just
Microsoft, were now competitors, but
that it wouldn’t make sense for SGI to
consider them as such: “Yes, we are a
competitor to [Silicon Graphics], but
they’re also a competitor to a number of
their other ISVs [independent software
vendors]. Companies like Side Effects,
Discreet Logic, Avid... One thing I can
say absolutely outright is that if SGI loses
their third-party applications as a result
of this merger, they’re dead in the water.
I think they’ve almost got to overcom-
pensate to make sure that their third
party ISVs are treated fairly,” Wright
commented.

Dave Larson adamantly agreed.
“We’re going to treat [Microsoft] as we do
a whole category of partners who will get

early access information, and it’s
based on business parame-
ters. These guys, as well as
other 3D vendors, are still
selling SGI software and

we’re going to do whatever we can to
make sure they continue to do so. That’s
our business.”

Softimage off
the SGI Platform?
Upon acquiring Softimage last year,
Microsoft stated its intention to port the
Softimage tools over to Windows NT. I
asked Wright whether Microsoft had
plans to pull Softimage products off the
SGI platform at a later date and focus
exclusively on its own operating system
implementation.

“No. One of the key reasons
Microsoft bought Softimage is that Soft-
image had a tremendous presence in the
community that was producing the
world’s best content. ILM [Industrial
Light and Magic]. Greenberg. Rocket
Science. For those companies, the SGI
platform is absolutely critical because they
need that level of performance... We think
Windows NT and the associated hard-
ware developments are going to provide a
very price-attractive alternative. But in no
way is that going to put SGI out of busi-
ness. They are going to continue to do
very well and we need to be there.”

Microsoft looks at its partner/com-
petitor relationship with SGI in the same
light as its association with Apple. “We’ll
continue to invest in SGI,” Wright stated.
“It’s very similar to our situation on the
Macintosh. Microsoft makes a lot of
money on the Macintosh and it’s a very
vital platform for us at the application
level, even though we don’t own the oper-
ating system. The fact that we’ve got
applications on Windows 95 as well does
not in any way affect our investment in
the Macintosh platform.”

Wright sees Silicon Graphics
remaining the superior platform for high-
end digital video and three-dimensional
animation over Windows NT, just as the
Macintosh held its position as the superior
platform for graphic design when Win-
dows 3.0 was introduced.

“Macintosh had a very strong posi-
tion in graphic design. Windows came in
and everybody thought that it was going
to completely take over the market. As a
result, companies like Aldus and Adobe
developed their applications first on Win-
dows and second on Macintosh. But they
realized over time that the Mac wasn’t

going to go away... We think a simi-
lar thing is going to hap-
pen in the SGI world,”

Wright said.

Porting Softimage
Products to Windows NT
Upon acquiring Softimage, Microsoft
announced that it would port the compa-
ny’s toolset to Windows NT. Wright
indicated that Softimage products would
be available on Windows NT this year,
but he declined to be more specific, fear-
ing that divulging an estimated date could
raise false hopes.

I wanted to know what strengths
Windows NT could offer over the SGI
platform to game developers. After all,
SGI has been targeting this market for
years and has optimized its hardware for
high-end graphics and animation. Wright
responded: “We think that the Windows
NT platform will offer very attractive
price-to-performance ratio in the range of
performance that it delivers. We also feel
that for people who have PC-based net-
works, for example developers who are

C R O S S F I R E

12 GAME DEVELOPER • JUNE/JULY 1995

using [Autodesk’s] 3D Studio, it will be
important for them to run a high-quality
3D product in the same environment that
they’re running their other tools. I think
that’s going to be key to the games devel-
opment area.”

Downward
Pressure on Prices
In addition to announcing the porting of
Softimage tools over to Windows NT,
Microsoft announced in January that it
was slashing the price of all Softimage
software by up to 50%. What was behind
this aggressive move? Wright explained:

“Over the last couple of years, inter-
active developers [have
begun to] require [high-
end] tools as games have
become more sophisticated. We looked at
our pricing structure and said, ‘Well, those
prices make sense if we continue to main-
tain our high-end feature set for our tradi-
tional market.’ But if [Microsoft] really
wants to penetrate the market for game
developers as well as other emerging inter-

active media, it’s important to have more
aggressive price points and maintain that
leadership position.”

A large number of graphics
and animation products have
been launched for the Windows,
DOS, and Macintosh platforms
recently by companies like Caligari
and Strata. Although these products
aren’t in the same class of function or
performance as either the Microsoft or
SGI tools on IRIX, they seem to be exert-
ing pressure on software prices for the
entire market, regardless of platform. I
asked Dave Larson how Silicon Graphics
viewed these lower-priced products, and
how his company would respond.

“We’re moving down in
terms of markets,” declared Lar-

son. “As our price points come down,
we’re cutting deeper into various mar-
kets... Historically, SGI has been per-
ceived as vastly more expensive and out of
reach, a boutique kind of machine. We
think we’re rapidly expanding beyond
that, and that we’re within reach for a lot

of people [developing digital entertain-
ment] for a living. It’s all about how much
time you have to get your work done. For

instance, a friend of mine just
came up who’s been doing a lot

of audio work on the Mac,
and he just started using a
new audio application on
our platform. He says it’s

dramatically affected his work just after a
few days of working with it. What he used
to think ahead to do he now does in real
time. He can test his decisions as he goes.
That’s the metaphor for performance
change. Everything happens so much
more quickly [on the SGI platform], and
your creativity can increase.”

Sega and
Nintendo Choose Sides
There’s an interesting sidebar concerning
SGI and Microsoft. The two archrivals in
the game cartridge market, Nintendo and
Sega, have gone to separate corners for
their respective development tools, and you
can probably guess whom each has enlist-
ed. In 1994, Nintendo selected Alias
(whose software was used to create the
Super NES blockbuster Donkey Kong
Country) as the authorized graphics devel-
opment system for both current games and
next-generation 64-bit games. Last Janu-
ary, Sega chose Softimage 3D as the offi-
cial three-dimensional development tool
for the new SegaSaturn game platform.
I’m not saying that this is an instance of
“any enemy of my enemy is my friend,” but
it is predictable political maneuvering.

As long as the Softimage tools on
IRIX don’t take a distant second priority
to their Windows NT version, users stand
to gain from a price war between two
resource-rich companies like Silicon
Graphics and Microsoft. Feature sets and
performance should evolve more rapidly,
and it undoubtedly will spur other SGI
platform competitors to keep up.

You’d better get used to seeing more
companies merging or acquired as the dig-
ital entertainment market expands—it’s a
natural consolidation that should continue
for the next couple of years. ■

Alex Dunne is contributing editor for
Game Developer magazine.

C R O S S F I R E

14 GAME DEVELOPER • JUNE/JULY 1995

Live from
the CGDC
Show Floor!

B I T B L A S T S

F
or those souls lucky enough to
get in, the CGDC usually has
enough information to make it
the best show for both the sea-
soned and prospective game
developer, and 1995 was no
exception. Mushrooming up to
2,500 attendees, the CGDC

irked prospective conference goers by
severely underestimating demand for the
second year in a row, so anyone who
didn’t buy tickets (or register as press)
well in advance of the show has to read
about it here and hope they didn’t miss
out on too much.

The main buzz was about the
CGDC show itself and revolved around
founding member Chris Crawford’s talk
on the second day. Crawford railed
against show management and admitted
that he had been kicked off the board of
directors. It was a sad note to this show,
which started nine years ago in someone’s
living room and has grown larger than
anyone would have thought possible.

While last year’s “unofficial” theme
was the invasion of Hollywood money
and fear of ratings, the definite themes
this year would have to be three-dimen-
sional development and the move to
Windows. Most of the exhibitors were
hawking three-dimensional tools (both
sight and sound), offering to turn you
into the next industry superstar if you’d
just buy their tool (and the box—usually
a RISC one—it runs on). On the Win-
dows side, Microsoft explained its new
write-to-the-device-drivers interface and
showcased its recent acquisitions Render-
Morphics and Softimage.

Lurking in the shadows, other plat-
form vendors vied for a piece of the home

entertainment pie, hoping that Microsoft
might stumble in the rocky transition
from DOS to Win32. Apple showed
Doom and Dark Forces running native
on Power Macintoshes, and IBM
announced an OS/2 Warp game devel-
oper’s kit and help from Argonaut and
Macromedia. Dave Taylor of Id put the
whole platform thing in perspective when
he said the fastest version of Doom is the
Linux version, so maybe there are
untapped opportunities after all.

In an industry with its share of egos
and superegos, the Freudian slip still
crossing most developers lips remains Id.
The folks from Mesquite, who received a
standing ovation from awestruck devel-
opers last year, were out in force this year
offering private showings of their next
project, Quake, to developers deemed
worthy. For an industry that uses Doom
as benchmark, Quake becoming a hit is
probably the only prediction that anyone
can make for sure.

Low-Cost Wavetable Sound

A
MD, the fourth-largest supplier of
ICs in the U.S., was showing its
new AM78C201 InterWave audio
processor, a kick-butt, single-chip

audio system. At its hospitality suite,
AMD demonstrated prototype sound
boards with component costs as low as
$40 (implying a sub-$100 street price)
running under popular games such as Tie
Fighter and recreating beautiful sym-
phonic arrangements. AMD is enthusi-
astic about the Microsoft Game SDK, as
was Origin’s Zachary Simpson, who said
“The InterWave chip and the Microsoft
DirectSound API will allow...unprece-
dented levels of audio quality and realism

16 GAME DEVELOPER • JUNE/JULY 1995

It was some show!

Alexander Antoniades

kept an eye on the

tenor of the show.

Larry O‘Brien and

Barbara Hanscome

checked out new prod-

ucts. And Nicole Claro

ran into her costar from

the high school play.

Game
Developer Staff

at consumer price points.” Hoo doggie,
this is one nice chip with its 16-bit, 32-
voice wavetable synthesis and on-chip
support for vibrato, tremolo, chorus,
echo, phase shifting, and reverb. Look for
boards with this chip to be available and
flying off the shelves for Christmas.
For more information contact:
AMD Inc.
1 AMD Pl.
P.O. Box 3453
Sunnyvale, Calif. 94088-3453
Tel: (408) 732-2400

The O.J. Files

B
ioVision, of San Francisco, is a
turnkey motion capture service
provider. Inverse kinematics isn’t
time-effective for complex human

motion, but with BioVision’s low-cost
service, you can have rotoscoped actors
that can be disturbingly realistic (you
might have seen BioVision’s work in the
frightening recreation of the murder of
Nicole Simpson and Ronald Goldman
that’s making the rounds on the Internet)
or thrilling (as in a certain wildly popular
football game). For every day of shooting,
BioVision estimates two days of post-
processing to massage the data into for-
mats for popular animation packages such
as Alias, Softimage, Wavefront, and
Nichimen Graphics. BioVision will even
supply the actors! If you don’t need cus-
tom work, BioVision has partnered with
Viewpoint DataLabs to provide over 200
standard motion sets.
For more information contact:
BioVision
1580 California St.
San Francisco, Calif. 94109
Tel: (800) 866-3463

GAME DEVELOPER • JUNE/JULY 1995 17

I
f you were at the right place at the right time at the CGDC this year (the lobby of the
Westin Hotel at 5:30 on Sunday), you might have been asked to join an informal round-
table discussing game strategies that appeal to a broader audience—namely women
and nontraditional game players. Just what kind of games appeal to game players who
aren’t 18-to-35-year-old men? And what can game designers do to reach them?

Jessica Miller, game designer and president of Spirit Games in Salem, N.H., and myself were
lucky enough to be so well positioned in the lobby, and for the next two hours we chatted
with three game designers interested in bursting out of the “shoot-and-kill,” model: Alex
Uttermann, game designer and author of several game strategy books (including Dragon
Lore: the Official Strategy Guide), Rusel DeMaria, game industry journalist and president of
DeMaria Studio, and Dennis Hescox, vice president of Lightside Inc.

Hescox organized the roundtable in hopes to build a network, share information, and discuss
marketing development and research strategies for alternative games. He came armed with
psychological and academic theories and studies relating to differences between male and
female game playing styles, neurophysiology, and perceptual physiology. “By understanding
these differences, “ Hescox explained, “we can attempt to design entertainment based on
some solid ideas rather than vague and cosmetic guesses”—like pink interfaces and ponies
on a box.

The conversation quickly jumped from theories to games that are simply fun to play. Utter-
mann, who is working on a game with DeMaria that she hopes will have an internal logic
that appeals to both genders, summed it up nicely in saying, “Violence is fine in games, but
what else is there?”

Puzzles that are fun to solve on their own but connect to help solve a larger puzzle; interac-
tive games that require good communication skills and diplomacy to “win,” rich plots that
unfold like a novel, role-playing games, “safe environments” that allow the player to con-
quer the task at hand comfortably before moving on to the next challenge, and networked
play were all mentioned as games and elements that would appeal to female as well as
male game players.

By the time we got around to how to convince the big companies in the industry to take
some risks with these types of games, the hospitality suites were calling our names. But I
think we could have talked all night. And I also think more people in the lobby would have
joined us if they could. Perhaps we needed to hold up a big sign—if only we had a name for
just what it was we were discussing. It was obvious by the end of our chat that “games for
women” wasn’t exactly it.

If you have thoughts and comments pertaining to women’s games and alternative gaming
strategies, contact Barbara Hanscome at 73611.633@compuserve.com.

V I O L E N C E I S F I N E — B U T W H A T E L S E I S T H E R E ?

Perspective Texture
Mapping, Part II:
Rasterization

B E H I N D T H E S C R E E N

D
id I say I ’d be doing two
columns? Silly me—I meant
four or five columns. Our
topic, perspective texture
mapping, is so huge I don’t
know what I was thinking
when I said we could cover it
completely in two columns.

Luckily, the topic has enough variety
that it should keep everyone glued to
these pages for the duration.

In Part 1, we covered most of the
math behind the perspective projection
and triangle gradients (those neat num-
bers that let us interpolate without
recalculating at each scanline), and we
quickly went over polygon fill conven-
tions and stepping on pixel centers.
That’s a lot of information for a single
article. In fact, there’s so much material
still to cover I’m not even going to
summarize my last article beyond say-
ing, “Read it.” If you haven’t read Part
I, you’ll still get a lot out of Part II, but

you might have trouble seeing how this
information fits in perspective (cough).

This time around we’re going to
focus on the triangle rasterization stage,
and we’ll expand on the math for the
fill convention we derived last issue.

As I did last time, I encourage you
to get out a piece of graph paper and
join in the fun. Speaking for myself, I
find it impossible to learn math with-
out scribbling all over the place.

If you don’t like math, well, com-
puter graphics is math for the most
part, so I’m not sure what to tell you.
My goal is to describe the math in an
accessible way, but I’m not going to
hide the fact that math underlies every-
thing about computer graphics, espe-
cial ly three dimensional computer
graphics. If you like programming you
will definitely like math...heck, math’s
even better than computer program-
ming because there are no compiler or
operating system bugs! (Of course,
there’s no compiler or operating system
to tell you when you’ve done something
wrong, either.)

Raster Blaster
When I say rasterization, I mean taking
the continuous geometric triangle—
defined by its vertices—and displaying
it on the monitor’s discrete display grid,
or “raster.” The rule we defined for
doing this is called a top-left fill con-
vention, where we light all pixels that
are strictly inside the polygon bound-
aries and any pixels that are exactly on
the polygon boundary if they’re on the
top or left edges (remember, pixels are
boxes with a center, not just points).
Figure 1 shows this fill convention in

18 GAME DEVELOPER • JUNE/JULY 1995

Figure 1. The Fill Convention

109876543210

0

1

2

3

4

5

6

7

8

action. Pixel (5,2) is lit, but pixel (9,4)
is not, even though our polygon edge
intersects both (within the limits of the
magazine’s printing accuracy, at least).
This is because (5,2) is on a left edge
and (9,4) is on a right edge. A fill con-
vention lets abutting polygons share an
edge without either polygon overwrit-
ing any pixels of its neighbor, or leav-
ing any unlit holes—called dropouts—
between the two.

A top-left fill convention for a left
edge from x0,y0 to x1,y1 is defined
mathematically by the ceiling function:

In my last column, I presented this
equation without much explanation, so
this time we’ll go into it in more detail.
First, we can derive the equation for
the line in Figure 2 by setting the slope
of the entire line equal to the slope of
any line segment on that line (the seg-
ment from x,y to x0,y0 is on the line, so
its slope is equal to the line’s) and solv-
ing for x:

We can use Equation 2 to give us the x
value for any y value on the line. You
can see that if y = y0, then x = x0 as
you’d expect, and likewise for the other
endpoint. This equation generates real
(as opposed to integer) values for x, so
we need to use our fill convention to
tell us how the real x maps to an inte-
ger pixel. This is where the ceiling

function comes in.
The ceiling function is defined as

bumping a real value up to the next
highest integer if the value has a frac-
tional part, or leaving it alone if it is
already an integer. For example:

and:

Notice how the ceiling behaves with
negative numbers—it bumps the value
to the next highest value, not to the
next highest absolute value.

The ceiling is the perfect function
to realize a top-left fill convention for
left edges (and top edges if you solve
for y instead of x in Equation 2). If
we’re exactly on an integer pixel center
we will light the pixel, but if our x is at
all greater than the integer—to the left
of the pixel center—the ceiling will
bump us up to the next pixel that’s
strictly inside the edge. It should be
pretty obvious that the equations for
right and bottom edges are the same as
for top and left edges with the addition
of a minus one outside the ceiling.
That is, if the edge is on the integer
pixel, the ceiling won’t affect it, but the

-È ˘ = -4
3 1

-È ˘ = -4
4 1

5
2 3È ˘ =

3
4 1È ˘ =

4
4 1È ˘ =

y y
x x

y y
x x

x
x x
y y y y x

1 0

1 2

0

0

1 0

1 0
0 0

2

-
- = -

-

= -
-

Ê
Ë

ˆ
¯ - +

()

()

x
x x
y y

y y xint ()= -
-

Ê

Ë
Á

ˆ

¯
˜ - +

È

Í
Í
Í

˘

˙
˙
˙

1 0

1 0
0 0

Perspective texture

mapping is a huge

subject—much too

big to cover in one or

even two articles. In

Part II of his series on

the subject, Chris

Hecker tackles

rasterization, an

essential concept.

Chris Hecker

GAME DEVELOPER • JUNE/JULY 1995 19

minus one will knock us back one pixel
following our fill convention. If the
edge is greater than the pixel, the ceil-
ing will bump it up one (to the first
pixel outside the edge) and the minus
one will bump it right back inside the
polygon. Another way of looking at it
is if we have two polygons with an
abutting edge, the edge will be the left
edge of one and the right edge of the
other (or the top and the bottom), and
they’ll draw the same set of pixels,

except offset by a single pixel for one
polygon.

The code to implement this was
pretty straightforward in our floating
point rasterizer (shown in last month’s
listing):

int XStart = ceil(pLeft->X);

We call the ANSI standard
math.h function, ceil(), and use the
integer returned for our starting x coor-
dinate. As we step from one scanline to
the next our real x value steps by the
inverse slope, as Equation 2 shows
when you set y = y + 1.

While floating-point math cer-
tainly is convenient when you’re trying
to get code up and running, it’s proba-

bly not the best choice for a produc-
tion rasterizer. First, even though
floating point coprocessors are com-
monplace on today’s machines and are
even faster than the integer processor
for some operations, converting from
floating point to integer is still slow.
Because a rasterizer is where the real
three-dimensional coordinates get
mapped to the integer hardware
bitmap, we end up converting a lot.
Also, functions like ceil() are actual
function calls in floating point, but fall
out of the math almost for free with
integer coordinates.

In addition, it’s hard to get the
math just right for floating point num-
bers; there’s a whole field in mathemat-
ics dedicated to figuring out how float-
ing point numbers accumulate error.
Finally, we’ll see there are some bene-
fits to using integer digital differential
analyzers (DDAs) when we discuss
pixel centers.

Integers from
Floor to Ceiling
Before we convert our rasterizer to use
integers, let’s learn a couple of neat
tricks for manipulating the ceiling
function and its companion, the floor.
The floor of a value is—you guessed
it—the next-lowest integer if the value
has a fractional part, or the value if it’s
already an integer. You could also think
of this as truncating the fractional part
for positive values. Following are some
floor examples:

and

Again, notice the behavior when the

value is negative.
We can convert from ceiling to

floor easily if a and b are integers:

Equation 3 also shows that we can
move integers in and out of the floor
(or ceiling). We obviously can’t move
fractional values in and out, though,
because they can affect the result. Run
through a few examples on your own to
see why Equation 3 works.

Now that we have a working
knowledge of floors and ceilings, let’s
convert the rasterizer to use integer
coordinates. Because we are defining
x0,y0 and x1,y1 in Equation 1 to be
integers, we can manipulate the equa-
tion to our advantage. We can bring x0
outside the cei l ing function, for
starters. This means any x generated by
our fill convention will be the integer
x0 plus the integer result of the ceiling
function for a given y. Now, let’s use
Equation 3 to turn the ceiling function
into a floor.

Let:

and:

so:

If our initial y value is y0, it’s easy to see
the initial value in the floor is -1/dy.
The floor of this is -1, and -1 + 1 + x0 =
x0, as we expect. We’ll be doing for-
ward differences to step our edges, so
after we generate the initial value for x,
we’re going to want to step y by 1 to
the next scanline and generate the next
x from our previous x value, without
recalculating it from scratch. I will
assume you are already familiar with
forward differences, which are covered
in any decent computer graphics book,

x
dx y y

dy xint
()

()= - -Í
ÎÍ

˙
˚̇

+ +0
0

1
1 4

dy y y= -1 0

dx x x= -1 0

a
b

a
b

a
b

a b
b

È ˘ = -Î ˚ + =

- +Î ˚ = - +Î ˚

1 1

1 1 1
3()

-Î ˚ = -4
3 2

-Î ˚ = -4
4 1

5
2 2Î ˚ =

3
4 0Î ˚ =

4
4 1Î ˚ =

B E H I N D T H E S C R E E N

20 GAME DEVELOPER • JUNE/JULY 1995

Figure 2. A 2D Line

x0,y0

x1,y1

x,y

so I’m just going to point out the inter-
esting parts of this algorithm.

Perhaps the most interesting thing
about this particular equation is how the
floor interacts with the forward differ-
ences, especially when dx is less than 0.

Mod Squad
To thoroughly analyze Equation 4’s
behavior, we need another trick for
manipulating floors:

You’re probably familiar with the modu-
lus operator, mod, from programming in
C or other languages (in C, % is the
mod operator). As long as two numbers,
a and b, are positive, a mod b is the
integer remainder after dividing the
numerator a by the denominator b.
Equation 5a says we take the real num-
ber a/b and subtract its remainder over b
and to get the floored value, an integer.

The mathematically defined mod
usually behaves differently, in subtle
ways, than the mod in your program-
ming language of choice, and because
we’re using the “math-mod” in the defi-
nition of our fill convention we need to
make sure we don’t let an ill defined
programming language muck up the
works. For example, ANSI C (and
C++) defines the mod operator to be
the same as the math-mod operator
when both operands are positive, but
when either operand is negative the
result is implementation dependent—
the standard only defines the relation-
ship of a/b and a%b, not their values, in
this case. Fortunately our denominator,
dy, is always positive because we step
down the polygon from top to bottom,
so we only have to deal with the case
where the numerator, dx, is negative.

We saw how the floor function
behaved with negative values, so if
Equation 5a is true (it is, trust me), that
dictates how the math-mod behaves as
well. Assuming b is positive (our dy), a
little thought and some scratch paper
will show you that a mod b is always
positive regardless of whether a is posi-
tive or negative. This is because the

floor of a negative number goes to the
next lowest number, so the mod term
must be positive to bring it back up to
the real value of a/b. Figure 3 shows a
graph of x mod 3. Here’s Equation 5a
rearranged to make that more clear:

Equation 5b shows a fraction as we
sometimes think of it with an integer
part and a fractional part, since a mod b
is always smaller than b.

Even if we want to ignore the
ANSI standard and hope our platform
calculates mod correctly, we’re out of
luck on most machines, including Intel
x86 processors. The x86 signed divide
instruction, idiv, truncates towards 0
when dividing negative numerators,
which is exactly the opposite of the real
floor function. It appears we need to
develop a flooring divide and mod
function that works on any standard
platform, that is, any platform that
computes positive mods and divides
correctly.

If a ≥ 0, then we’ll just do the nor-
mal divide and mod. On the other
hand, if a < 0, let m = (-a) mod b:

In other words, Equations 6 and 7 say
that if m = 0 (there is no remainder),
then we do the flooring divide and mod
differently than if there is a remainder.
This probably seems really complicat-
ed, but if you sit down with a piece of
paper and refer to the equations and
Figure 3 you’ll see how this works in no
time (okay, maybe five or ten min-
utes...it took me a while, too). Our
C++ function to correctly compute
flooring divides and mods looks like
this:

inline void FloorDivMod(long Numerator,

long Denominator,

long &Floor, long &Mod) {

assert(Denominator > 0);

// we assume it’s positive

if(Numerator >= 0) {

// positive case, C is okay

Floor = Numerator / Denominator;

Mod = Numerator % Denominator;

} else {

// Numerator is negative,

a b
m

b a b m
mod

,

(() mod),
()=

=

- - π
Ï
Ì
Ó

0 0

0
7

a
b

a
b m

a
b m

Î ˚ =
- -Í

ÎÍ
˙
˚̇ =

- -Í
ÎÍ

˙
˚̇ - π

Ï

Ì
ÔÔ

Ó
Ô
Ô

()
,

()
,

()
0

1 0

6

a
b

a
b

a b
b= Î ˚ + mod (5b)

a
b

a
b

a b
bÎ ˚ = - mod (5a)

GAME DEVELOPER • JUNE/JULY 1995 21

Figure 3. x mod 3

x

x mod 3

do the right

thing

Floor = -((-Numerator) / Denomina-

tor);

Mod = (-Numerator) % Denominator;

if(Mod) {

// there is a remainder

Floor—; Mod = Denominator - Mod;

}

}

}

Why?
Let’s take a step back and ask ourselves
(as you’re probably already asking your-
self), “Why do we care?” People have
been rasterizing polygons since shortly
after the beginning of time, and they
never went through all this, you say.
Well, if their polygons don’t have
dropouts and consistently light the cor-
rect pixels, then they went through all
this or its equivalent for another fill
convention.

The vast majority of rasterizers
don’t work properly, and that’s why the
vast majority of games have dropouts
and overwrites at abutting polygon
edges. We’re taking the time up front
to get the math exactly right, so we can
implement our rasterizer with total
confidence that it will light exactly the
right pixels; no more, no less.

This is my personal crusade to
eliminate dropouts and poor quality
rasterizers everywhere, and I’m hoping
you’ll help me accomplish it. The best
part about doing it right is it looks bet-
ter and isn’t any slower at run time
than doing it incorrectly, there’s just
more to understand beforehand.

Vive La Différence
Now that we’ve got an algorithm for the
correct divide and mod on any platform,
we can go back to our original goal,
which was to implement our fill conven-
tion with integer forward differences.
We can use Equation 5b to manipulate
Equation 4. Let n = dx(y - y0) - 1:

and

(We can take the floor of n/dy out of
the enclosing floor because it’s an inte-
ger; see Equation 3.)

This is our initial state. We calcu-
late n from our starting y value, do the
flooring divide and mod (with our cor-
rect algorithm if n is negative), and use
the n mod dy term’s numerator as our
initial error term for our forward differ-
ence. (We don’t actually do the divide.
It’s implicit in the way the DDA func-
tions.) Since n mod dy is positive and
less than dy, we know that the floor of
the n mod dy term is 0 and doesn’t
affect the initial x. As y steps by 1, our
floor term steps by dx/dy (calculated by
substituting y = y + 1 in our original
equation). Our new x (call it x'), is cal-
culated from:

We use Equation 5b on the dx/dy step
to get:

Equation 8 says that as y steps by 1, x
steps by the floor of dx/dy, and our
error term steps by dx mod dy. Note
that mod is always positive, so when
our error term numerator exceeds our
denominator, dy, we add 1 to the
resulting x regardless if we’re stepping
left or right. This probably differs from
other DDAs you’ve used before—the
mathematically defined floor and mod
terms work out so that you’re always
adding 1 when your error term rolls
over, not just when you’re stepping in
the positive direction.

Look Before You Jump
Those of you who have written fixed-
point edge rasterizers instead of error-
term DDAs are probably wondering
why we’re going to the trouble of doing
a DDA, with its accompanying jumps

when the error term rolls over. Even
though the jump is in the scanline
loop, not the pixel loop, jumps are get-
ting more and more expensive as
processors get deeper and deeper
pipelines. In fact, on more recent Intel
architectures the jump prediction logic
makes mispredicted jumps that fall
through even more expensive than
jumps that are taken on earlier proces-
sors. Fear not, there is a good reason to
use an error-term DDA instead of
fixed-point to scan our edges.

Remember the following lines
from our floating-point texture mapper

¢ = + Í
ÎÍ

˙
˚̇

+

+Í
ÎÍ

˙
˚̇

x x dx
dy

n dy
dy

dx dy
dy

int int

mod mod
()8

¢ = + +Í
ÎÍ

˙
˚̇

x x
n dy

dy
dx
dyint int

mod

x n
dy

n dy
dy xint

mod= Í
ÎÍ

˙
˚̇

+ Í
ÎÍ

˙
˚̇

+ +1 0

x n
dy

n dy
dy xint

mod= Í
ÎÍ

˙
˚̇

+Í
ÎÍ

˙
˚̇

+ +1 0

B E H I N D T H E S C R E E N

22 GAME DEVELOPER • JUNE/JULY 1995

On recent Intel

architectures,

jump prediction

logic makes mis-

predicted jumps

that fall through

more expensive

than jumps on

earlier processors.

in Part 1:

int XStart = ceil(pLeft->X);

float XPrestep = XStart - pLeft->X;

float OneOverZ = pLeft->OneOverZ +

XPrestep * Gradients.dOneOverZdX;

When we start a scanline, we need
to step in to the first pixel center from
the real edge before we can start draw-
ing, and our interpolants (like 1/z in this
snippet) need to step with us. We had to
calculate XPrestep every scanline, and
multiply it by the gradients of all our
interpolants to get to the starting pixel
center before we could draw. This is
because we didn’t know how far we were
from the first pixel center until we did
the ceil() call.

Now think about how this works
with a DDA. We are stepping from one
pixel center to the next directly, and we
know exactly how far we had to come
from the last pixel center: the floor of
dx/dy in x plus 1 in y, or that step plus 1
in x when our error term rolls over (see
Equation 8). We never need to calculate
our prestep to a pixel center because
we’re always stepping on pixel centers!
Take a minute to think this through—it
means we get the advantages of sampling
from pixel centers, and we don’t pay the
prestep multiply. As I’ve mentioned
before, these advantages include rock
solid textures that don’t swim when you
rotate and no “hairy texture” artifacts.

Listing 1 shows the salient parts of
the integer rasterizer. Because of space
constraints, I’ve only included the dif-
ferences from last column’s listing. You
can pick up the entire listing on Com-
puServe in the Game Developer section
of the SD Forum or from
ftp://ftp.mfi.com/gdmag/src/.

The code is in a weird state because
I left the texture coordinates as floats,
while the edge rasterization is in integer
coordinates, as we’ve been discussing.
This bizarre combination doesn’t affect
the rasterizer, and it will be fixed in the
next article when we address the texture
mapping itself. One thing you may or
may not notice when you run this raster-
izer is how jerky it is compared to the
original floating point rasterizer. If you

24 GAME DEVELOPER • JUNE/JULY 1995

struct edge {
edge(gradients const &Gradients, POINT3D const *pVertices,

int Top, int Bottom);
inline int Step(void);

long X, XStep, Numerator, Denominator; // DDA info for x
long ErrorTerm;
int Y, Height; // current y and vertical count
float OneOverZ, OneOverZStep, OneOverZStepExtra;// 1/z and step
float UOverZ, UOverZStep, UOverZStepExtra; // u/z and step
float VOverZ, VOverZStep, VOverZStepExtra; // v/z and step

};

inline int edge::Step(void) {
X += XStep; Y++; Height—;
UOverZ += UOverZStep; VOverZ += VOverZStep;
OneOverZ += OneOverZStep;

ErrorTerm += Numerator;
if(ErrorTerm >= Denominator) {

X++;
ErrorTerm -= Denominator;
OneOverZ += OneOverZStepExtra;
UOverZ += UOverZStepExtra; VOverZ += VOverZStepExtra;

}
return Height;

}

void DrawScanLine(BITMAPINFO const *pDestInfo, BYTE *pDestBits,
gradients const &Gradients, edge *pLeft, edge *pRight,
BITMAPINFO const *pTextureInfo, BYTE *pTextureBits);

/******** TextureMapTriangle **********/

/********** handle floor divides and mods correctly ***********/

inline void FloorDivMod(long Numerator, long Denominator, long &Floor,
long &Mod)

{
assert(Denominator > 0); // we assume it’s positive
if(Numerator >= 0) {

// positive case, C is okay
Floor = Numerator / Denominator;
Mod = Numerator % Denominator;

} else {
// Numerator is negative, do the right thing
Floor = -((-Numerator) / Denominator);
Mod = (-Numerator) % Denominator;
if(Mod) {

// there is a remainder
Floor—; Mod = Denominator - Mod;

}
}

}

/********** edge constructor ***********/

edge::edge(gradients const &Gradients, POINT3D const *pVertices.
int Top, int Bottom)

{
Y = pVertices[Top].Y;
Height = pVertices[Bottom].Y - Y;
int Width = pVertices[Bottom].X - pVertices[Top].X;

if(Height) {
// this isn’t necessary because we always start at TopY,
// but if you want to start somewhere else you’d make
// Y your start
FloorDivMod(Width * (Y - pVertices[Top].Y) - 1,

Listing 1. The Integer Rasterizer (Continued on p. 26)

B E H I N D T H E S C R E E N

compile two test programs, one with each
rasterizer, and run them side by side,
you’ll easily see the quality difference.

The texture mapping is jerky
because we use the endpoints of the tri-
angle to compute the gradients, and the
endpoints are changing by relatively large
amounts as the triangle moves because of
the integer truncation. You also see simi-
lar jerkiness in a lot of game rasterizers,
and it’s probably caused by the same
thing (compounded with the artifacts
generated by not stepping on pixel cen-
ters). Even in the low 320 by 200 resolu-
tion game world, this jitter is visible sep-
arately from the normal aliasing. In
accordance with our quest to increase
rasterization quality around the world, I
find this unacceptable. The solution hap-
pens to be simple: fractional endpoints.
Unfortunately, I was out of space a while
back, and my editor is beginning to hate
me, so the description of this solution
will have to wait until next time.

Summing Up
Once again, I’m over my word budget,
and I still haven’t covered everything. I
simply must give credit where credit is
due, however—without my friend Kirk
Olynyk’s help and tutelage I’d still be
lighting the wrong pixels without know-
ing the difference. If you’re into this
kind of discrete math (it’s so useful for
raster graphics) and you want to learn
more, Concrete Mathematics (Addison
Wesley, 1994) by Ronald L. Graham
and Oren Patashnik is great.

Also, while discussing my article
“Changing the Rules for Transparent
Blts” (Under the Hood, Feb. 1995) on
rec.games.programmer, Rich Gorta-
towsky (rg@raster.kodak.com) mentioned
that for best results, your RLE compres-
sor should try to compress vertically as
well as horizontally. I totally agree.

Finally, I promise we’ll get back to
the actual texture mapping portion of
the texture mapper next time. ■

Chris Hecker wants a single-cycle
integer multiply on future x86 processors so
bad he can taste it. Yum yum. You can con-
tact him via e-mail at checker@bix.com or
through Game Developer magazine.

B E H I N D T H E S C R E E N

26 GAME DEVELOPER • JUNE/JULY 1995

Listing 1. The Integer Rasterizer (Continued from p. 24)
Height,X,ErrorTerm);

X += pVertices[Top].X + 1;

FloorDivMod(Width,Height,XStep,Numerator);
Denominator = Height;

OneOverZ = Gradients.aOneOverZ[Top];
OneOverZStep = XStep * Gradients.dOneOverZdX

+ Gradients.dOneOverZdY;
OneOverZStepExtra = Gradients.dOneOverZdX;

UOverZ = Gradients.aUOverZ[Top];
UOverZStep = XStep * Gradients.dUOverZdX

+ Gradients.dUOverZdY;
UOverZStepExtra = Gradients.dUOverZdX;

VOverZ = Gradients.aVOverZ[Top];
VOverZStep = XStep * Gradients.dVOverZdX

+ Gradients.dVOverZdY;
VOverZStepExtra = Gradients.dVOverZdX;

}
}

/********** DrawScanLine ************/

void DrawScanLine(BITMAPINFO const *pDestInfo, BYTE *pDestBits,
gradients const &Gradients, edge *pLeft, edge *pRight,
BITMAPINFO const *pTextureInfo, BYTE *pTextureBits)

{
// assume dest and texture are top-down
assert((pDestInfo->bmiHeader.biHeight < 0) &&

(pTextureInfo->bmiHeader.biHeight < 0));

int DestWidthBytes = (pDestInfo->bmiHeader.biWidth + 3) & ~3;
int TextureWidthBytes = (pTextureInfo->bmiHeader.biWidth + 3) & ~3;

int XStart = pLeft->X;
int Width = pRight->X - XStart;

pDestBits += pLeft->Y * DestWidthBytes + XStart;

float OneOverZ = pLeft->OneOverZ;
float UOverZ = pLeft->UOverZ;
float VOverZ = pLeft->VOverZ;

while(Width— > 0) {
float Z = 1/OneOverZ;
int U = UOverZ * Z;
int V = VOverZ * Z;

*(pDestBits++) = *(pTextureBits + U + (V * TextureWidthBytes));

OneOverZ += Gradients.dOneOverZdX;
UOverZ += Gradients.dUOverZdX;
VOverZ += Gradients.dVOverZdX;

}
}

A C++ Class for Cross-
Platform Double-
Buffered Graphics

D O U B L E - B U F F E R E D G R A P H I C S

W
hat if someone told you that
you could release a game
simultaneously on Win-
dows, Macintosh, and DOS
with no more effort than it
takes you to release a DOS
game now? Of course, you’d
kick the person off your

staff, find a loophole in his or her con-
tract, or refuse the project proposal.
There are no freebies in software devel-
opment.

But what if someone said you could
release your product on Macintosh and
Windows with very little extra work and
showed you how to do it?

This article takes the first step in
that direction by defining a simple dou-
ble-buffering architecture that will lever-
age your existing three-dimensional ren-
dering, animation, sprite composition,
and other custom 8-bit graphics code
onto Windows and Macintosh systems.
Using the small C++ class implemented
here, you will be able to write 32-bit
graphics applications that compile and
run without changes on Macintosh Sys-
tem 6.0.7 and 32-bit Windows (includ-
ing Win32s and Windows 95).

Double-Buffered Graphics
Double-buffered graphics provide the
core graphics technology that power
almost all high-performance desktop
multimedia and entertainment software.
From simple card games to immersive
three-dimensional environments, such
graphics use offscreen memory to hide
image composition from the user and
provide smooth transitions between
frames of animation. Most games
today—and probably most games created

in the near future—will rely on copying
or page-flipping 256-color graphics from
offscreen memory to display memory.

Full-screen 8-bit double buffers
such as these are chunks of RAM man-
aged in such a way that a one-to-one
mapping exists between pixels on the
screen and bytes in the buffer. That’s all
double buffering is, so why not abstract it
in a platform-independent interface?

All it takes to create an image in the
offscreen buffer is a definition of the
screen-to-offscreen mapping and a
method to describe the image in the off-
screen buffer to the screen. For all the
platforms game developers generally deal
with, this requires at most four pieces of
information:
• pBits, a pointer to the offscreen buffer

byte that maps to the screen point (0,
0).

• Stride, the number of bytes between
the buffer byte that maps to the screen
point (x, y) and the buffer byte repre-
senting (x, y+1).

• Width, the width in pixels of the rec-
tangle represented by the offscreen
buffer.

• Height, the height in pixels of the rec-
tangle represented by the offscreen
buffer.

Given these four pieces of informa-
tion, you can implement any graphics
algorithm to render three-dimensional
texture-mapped environments, animate
complex action sequences, or present tic-
tac-toe at 30 frames per second. To make
those graphics routines work on any plat-
form, all you need is that magical inter-
face that provides these four elemental
pieces of information and a way to dis-
play completed images on the screen.

28 GAME DEVELOPER • JUNE/JULY 19954

Listing 1 shows the public aspects
of this dream interface in a simple C++
declaration of a class called COffscreen-
Buffer. All operations on the class except
GetBits are declared const because they
do not allow change to the buffered
image or to the size of the buffer. I’ve
added the Lock and Unlock methods,
which I’ll explain.

Before digging into various imple-
mentations of COffscreenBuffer, let’s take
a look at how we can use such an inter-
face. Say I have a pointer called pBuffer
to a COffscreenBuffer object, and I want
to set a single pixel to a given color index.
From the definition of pBits and Stride, I
can deduce that for any point (x, y) in the
buffer such that x ≥ 0 and y ≥ 0 and x <
Width and y < Height, the memory loca-
tion pBits + Stride * y + x holds the
corresponding byte of offscreen memory.

Using this definition, I can con-
struct a SetPixel function using the fol-
lowing lines of code:

char unsigned *pPixel =

pBuffer- >GetBits()

+ pBuffer->GetStride() * y + x;

*pPixel = Color;

Of course, this doesn’t include any
validation or clipping tests, and it’s also
not very useful in the inner loop of an
optimized rendering engine. But you get
the idea.

Another simple graphics function
would be to fill the buffer with a solid
color. Using the four atomic offscreen
data, I could perform this buffer clear
with a few simple instructions:

char unsigned *pBits =

pBuffer->GetBits();

for (int y = 0;

y < pBuffer->GetHeight();

++y, pBits += pBuffer->GetStride())

memset(pBits, Color,

pBuffer->GetWidth());

For every line in the buffer, this fills
as many bytes with the specified color as
there are horizontal pixels, then skips
down to the beginning of the next line. If
I know that the buffer occupies contigu-
ous memory, that any additional bytes
included as padding are ignored, and that
Stride is positive, I can make a small
optimization and write the buffer clear
like this:

long BufferSize = pBuffer->

GetHeight() * pBuffer->GetStride();

memset(pBuffer->GetBits(),

Color, BufferSize);

This would, however, be a bad idea,
as Stride has been defined as a signed
long value and will often be negative on
Windows machines.

A third simple example would be to
draw a 45-degree line from the point (x,
y) to the point (x+n, y+n), where n is
positive. No problem:

char unsigned *pPixel =

pBuffer->GetBits() + pBuffer->

GetStride() * y + x;

// Adding Stride+1 moves the

//pointer from (x,y) to (x+1,y+1)

for (int i=0; i<n; ++i, pPixel +=

pBuffer->GetStride() + 1)

*pPixel = Color;

With some extrapolation on the

Double-buffering is

the heart of high-

performance

graphics. With this

C-- class, you‘ll be

able to write your

code once and com-

pile it for Windows or

the Macintosh!

Jon Blossom

GAME DEVELOPER • JUNE/JULY 1995 29

part of the reader, these simple examples
show that the COffscreenBuffer interface
shown in Listing 1 provides all the essen-
tial elements for a complete graphics sys-
tem. Further, none use any code outside
the accepted ANSI C++, supported by
any compiler worth its salt.

In other words, as long as your tar-
get platform can transfer an 8-bit packed
pixel image from memory to the screen
and supports an ANSI C++ compiler,
you can write a COffscreenBuffer imple-
mentation and support the drawing func-
tions above without changes.

Making It Macintosh
So let’s get down to the business of
implementing COffscreenBuffer on the
two platforms most likely to be the mul-
timedia systems of the future: Windows
and the Macintosh. On both, I’ll show
you how to exploit system-supported
double buffering to do everything you
ever wanted—or at least start you along
that path.

Color 32-bit QuickDraw intro-
duced a new architecture for offscreen
drawing support on the Macintosh called
a GWorld, which became a reliable part
of the operating system in version 6.0.7.
This extension allows the use of Quick-
Draw functions to draw into structured
offscreen memory, and it enables the
Macintosh version of COffscreenBuffer
declared in Listing 2 and implemented in
Listing 3.

Constructing a buffer from a
GWorld requires a single call to the
handy function called NewGWorld. This

API requires a rectangle describing the
dimensions of the desired buffer and a
color table, both of which the COffscreen-
Buffer constructor swipes from the active
window. The dimensions come directly
off the CGrafPort structure, and the color
table comes from the associated PixMap.
For good measure, I’ve chosen to lock
down every handle ever used here,
though you may not always have to do
so.

The constructor’s task finishes with
the call to NewGWorld, at which point the
calling application becomes the proud
parent of a COffscreenBuffer object. So
far, so good. However, gaining access to
the bits of that GWorld proves to be a
trifle difficult because the operating sys-
tem has allocated the buffer in moveable
memory. Enter Lock and Unlock, those
traditional commands that prevent data
from moving in a linear address space.

Before our application can touch the
bits of the offscreen buffer, the Lock
method has to guarantee that the bits
won’t move during pixel access. Apple

provides the GetGWorldPixMap and LockPix-
els functions to handle this, and Get-
PixBaseAddr provides the magic pBits
pointer when all the locking is done.
Apple provides the Stride value in the
rowBytes field of the PixMap structure, but
the system tacks on the two high bits to
make things difficult. A simple mask of
0x3FFF pulls them off the top.

In addition to locking the image in
memory and masking off the high bit of
the scanline offset, I’ve heard off and on
that it’s also a good idea to make sure the
memory management unit is in true 32-
bit access mode. SwapMMUMode handles this,
storing the current mode for restoration
by the Unlock method.

The Unlock method mirrors the
locking function, allowing the operating
system to move the offscreen buffer
around when the application doesn’t
need it. The aptly named system call
UnlockPixels handles this task, after
which I reset the cached pBits value to
zero to avoid being bitten by an attempt
to access the bits when the buffer is

D O U B L E - B U F F E R E D G R A P H I C S

30 GAME DEVELOPER • JUNE/JULY 1995

class COffscreenBuffer
{
public:

// Basic information access
char unsigned *GetBits(void);
long GetStride(void) const;
int GetWidth(void) const;
int GetHeight(void) const;

// Displaying the buffer
void SwapBuffer(void) const;

// Pixel access control
void Lock(void) const;
void Unlock(void) const;

};

Listing 1. Public Functions

#include <QDOffscreen.h> // For GWorld stuff

class COffscreenBuffer
{
public:

// Basic information access
char unsigned *GetBits(void) { return pBits; };
long GetStride(void) const { return Stride; };
int GetWidth(void) const { return Width; };
int GetHeight(void) const { return Height; };

// Displaying the buffer
void SwapBuffer(void) const;

// Pixel access control
void Lock(void) const;
void Unlock(void) const;

// Constructor and Destructor
COffscreenBuffer(void);
~COffscreenBuffer(void);

private:
// Common implementation data
char unsigned *pBits;
long Stride;
int Height;
int Width;

// Macintosh implementation data
GWorldPtr OffscreenGWorld;
char StoredMMUMode;

};

Listing 2. Macintosh Declaration

unlocked.
In debug versions, I also add an

integer LockCount member variable incre-
mented by Lock and decremented by
Unlock, and I assert it is zero when the
COffscreenBuffer destructor is called.

The Macintosh requires the
Lock...Unlock pair, and other platforms
may require it as well. All implementa-
tions of COffscreenBuffer must include
both methods, whether they do anything
or not, and all functions written for COff-
screenBuffer must operate between a
Lock...Unlock pair to be completely
portable. This includes the previous
examples and calls to SwapBuffer.

SwapBuffer provides the memory-to-
screen transfer for the application when it
finishes its graphics processing and wants
to display the image. SwapBuffer will call
out to CopyBits to do the job, copying the
entire offscreen image into the current
CGrafPort, using the visRgn as a mask.
The operating system will handle all the
work of clipping to the visible window
area.

The COffscreenBuffer destructor is
the easiest of all to implement on the
Macintosh. It’s just a call to
DisposeGWorld, which ditches the GWorld
for good.

To use the COffscreenBuffer class
properly on the Macintosh, be sure to
turn on the pmExplicit and pmAnimated
flags of all entries in the palette of the
target window to ensure that the color
indices used in the offscreen buffer will
properly match the colors on the screen,
yielding highest copying speeds and
proper color matching.

Windows
Like GWorlds on the Macintosh, WinG
is the obvious candidate for implement-
ing a double-buffering architecture for
Windows. WinG lets us create a buffer,
access its bits, and copy it to the screen
quickly. The Windows declaration of
COffscreenBuffer appears in Listing 4.
The following implementation appears in
Listing 5.

WinG allocates an offscreen buffer
for us when we use a
WinGCreateDC/WinGCreateBitmap call pair.
The buffer memory allocated this way

GAME DEVELOPER • JUNE/JULY 1995 31

COffscreenBuffer::COffscreenBuffer(void)
{

// Use the current GDevice and GrafPort to make a GWorld
CGrafPtr CurrentPort;
GDHandle CurrentDevice;
GetGWorld(&CurrentPort, &CurrentDevice);
// Get the color table from the current port
PixMapHandle CurrentPixMap = CurrentPort->portPixMap;
HLock((Handle)CurrentPixMap);
CTabHandle ColorTable = (*CurrentPixMap)->pmTable;
// Create a new GWorld with this information
NewGWorld(&OffscreenGWorld, 8, &CurrentPort->portRect, ColorTable,

CurrentDevice, noNewDevice);
// Store data that doesn’t change
Width = CurrentPort->portRect.right - CurrentPort->portRect.left;
Height = CurrentPort->portRect.bottom - CurrentPort->portRect.top;
// Release the current PixMap
HUnlock((Handle)CurrentPixMap);

}

COffscreenBuffer::~COffscreenBuffer(void)
{

// Free the allocated GWorld
if (OffscreenGWorld)

DisposeGWorld(OffscreenGWorld);
}

void COffscreenBuffer::Lock(void) const
{

PixMapHandle OffscreenPixMap = GetGWorldPixMap(OffscreenGWorld);
if (OffscreenPixMap)
{

// Lock the PixMap memory and pull some info off the PixMap structure
LockPixels(OffscreenPixMap);
Stride = (*OffscreenPixMap)->rowBytes & 0x3FFF;
pBits = (char unsigned *)GetPixBaseAddr(OffscreenPixMap);

// Make sure the MMU is in true 32-bit access mode
StoredMMUMode = true32b;
SwapMMUMode(&StoredMMUMode);

}
}

void COffscreenBuffer::Unlock(void) const
{

PixMapHandle OffscreenPixMap = GetGWorldPixMap(OffscreenGWorld);
if (OffscreenPixMap)
{

// Unlock the PixMap memory and reset Stride and pBits
UnlockPixels(OffscreenPixMap);
Stride = 0;
pBits = 0;

// Restore the previous MMU mode
SwapMMUMode(&StoredMMUMode);

}
}

void COffscreenBuffer::SwapBuffer(void) const
{

// Copy all bits from the offscreen GWorld to the active GrafPort
// Note: The offscreen GWorld should be locked!
CopyBits(&((GrafPort)OffscreenGWorld)->portBits,

&((GrafPort)thePort)->portBits,
&OffscreenGWorld->portRect, &thePort->portRect,
srcCopy, thePort->visRgn);

}

Listing 3. Macintosh Implementation

will always map to the same address. It
will never move in memory as far as our
applications can see, so the unneeded
extra limbs Lock and Unlock can be com-
piled out by declaring them as empty
inline functions. Only the constructor,
destructor, and swap functions remain.

WinG supports both top-down
and bottom-up buffer orientations, as
discussed in every piece of WinG litera-
ture to date, so the first step in con-
structing an offscreen buffer is to deter-
mine the orientation that will make
memory-to-screen blts fastest. WinG
provides this information through the
WinGRecommendDIBFormat function, called
by the constructor before creating the
offscreen buffer.

Once it has the optimal Device
Independent Bitmap (DIB) orientation,
the constructor fills in the biWidth and
biHeight fields of the BITMAPINFOHEADER

structure containing the optimal format,
preserving the sign of biHeight. A color
table stolen from the current system
palette completes the information neces-
sary to create a WinGBitmap and an accom-
panying WinGDC, which the COffscreen-
Buffer constructor does for us. Selecting a
WinGBitmap into a new WinGDC pops out a
stock monochrome bitmap that the
destructor will need later, so I store it in
the COffscreenBuffer object until then.

The Width and Height of the buffer
came from the foreground window, and
WinGRecommendDIBFormat returns the pBits
for the buffer. Only the Stride remains,
and it’s easily calculated because we
know the WinG buffer is actually a stan-
dard Windows DIB. Every scanline of a
DIB begins on a 4-byte boundary, and
since our offscreen buffers are one byte
per pixel, Stride is just the DWORD aligned
Width:

// Align to the highest 4-byte boundary

Stride = (Width + 3) & (~3);

If WinG recommends a top-down
DIB, that’s all the calculation needed to
set up the buffer. pBits points to the top
of the buffer, coinciding with (0,0), and
Stride indicates a positive step through
memory.

For bottom-up DIBs, however,
things must be switched around. As it
stands, pBits would point to the last
scanline in the buffer, and Stride would
be the offset from (x, y) to (x, y-1). If
you’ve used WinG before, you’ll know
that flipping these values around to point
in the correct direction requires only two
lines:

// Point to first scanline (end

of buffer)

pBits = pBits + (Height - 1) * Stride;

// Orient Stride from bottom to top

Stride = -Stride;

With that, the constructor has fin-
ished its work, and the calling application
is the happy owner of a WinG-based off-
screen buffer, wrapped in a COffscreen-
Buffer object. Your application can draw
into this buffer however you choose, call-
ing SwapBuffer when you’re ready to dis-
play an image.

The Windows SwapBuffer imple-
mentation grabs the Device Context from
the active window and uses a straightfor-
ward WinGBitBlt call to copy the image
from the offscreen WinGDC to the topmost
window on the screen. Nothing could be
easier.

The call to GetDC returns a virgin
device context that will not reflect selec-
tions you may have made to previous
DCs from the window. It contains no
palette information. If you have gone
through the effort to create an identity
palette for the window (or are using the
WinG halftone palette), your work will
be in vain unless you register the Win-
dow with the CS_OWNDC style, which pre-
serves device context settings over
GetDC...ReleaseDC call pairs.

When it comes time to destroy the
COffscreenBuffer, only three steps need to
be taken: selection of the original mono-

D O U B L E - B U F F E R E D G R A P H I C S

32 GAME DEVELOPER • JUNE/JULY 1995

#include <wing.h> // For WinG stuff

// Note that this is supposed to be for Win32, so there are no FAR types.
// However, it could be adapted easily for 16-bit Windows.

class COffscreenBuffer
{
public:

// Basic information access
char unsigned *GetBits(void) { return pBits; };
long GetStride(void) const { return Stride; };
int GetWidth(void) const { return Width; };
int GetHeight(void) const { return Height; };

// Displaying the buffer
void SwapBuffer(void) const;

// Pixel access control - these are no-ops in Windows
void Lock(void) const {};
void Unlock(void) const {};

// Constructor and Destructor
COffscreenBuffer(void);
~COffscreenBuffer(void);

private:
// Common implementation data
char unsigned *pBits;
long Stride;
int Height;
int Width;

// Windows implementation data
HDC OffscreenDC;
HBITMAP OffscreenBitmap;
HBITMAP OriginalMonoBitmap;

};

Listing 4. Windows Declaration

chrome bitmap back into the WinGDC,
destruction of the WinGBitmap, and
destruction of the WinGDC.

Extending the Buffer Class
The COffscreenBuffer class I’ve developed
here provides only the most basic ele-
ments of a double buffering system,
barely enough to be useful. Many other
features could make it a very useful tool
in cross-platform game development,
but I have left them out for the sake of
brevity.

One important thing missing from
this COffscreenBuffer class is the explicit
connection of an offscreen buffer to a
window. As implemented here, COff-
screenBuffer uses whatever window hap-
pens to be active at the time a method is
invoked. When your application isn’t in
the foreground, this can be a messy
thing!

It’s easy to store a platform-specific
window identifier in the COffscreen-
Buffer structure, and you can hang a
pointer back to the buffer object on the
window, too. Under Win32, try using
Set/GetWindowLong and GWL_USER to store
the pointer. On the Macintosh,
Set/GetWRefCon performs a nearly identi-
cal task.

Of course, attaching a buffer to a
resizable window means you’ll have to do
something smart when the window
changes size. Matching the buffer
dimensions to the new dimensions of the
window wouldn’t be a bad idea.... You’ll
need to look at UpdateGWorld on the Mac-
intosh, and you’ll most likely have to cre-
ate a new WinGBitmap under Windows.

Many applications don’t want an
API as clumsy as SwapBuffer. You want
to optimize your screen accesses by
writing only the areas that haven’t
changed. A SwapRect method would do
the trick very nicely. Implement it on
both platforms, and remember to make
the rectangle description platform
independent!

And what about colors? Both con-
structors use the current palette to initial-
ize the offscreen color table, but wouldn’t
it be nice to enable color animation? Just
be sure to maintain that 1:1 offscreen
mapping for speed.

GAME DEVELOPER • JUNE/JULY 1995 33

// This is here to keep it off the stack during the constructor call
struct {

BITMAPINFOHEADER Header;
RGBQUAD ColorTable[256];

} BufferInfo;

COffscreenBuffer::COffscreenBuffer(void)
{

HWND ActiveWindow = GetActiveWindow();

// Make the buffer the same size as the active window
RECT ClientRect;
GetClientRect(ActiveWindow, &ClientRect);
Width = ClientRect.right - ClientRect.left;
Height = ClientRect.bottom - ClientRect.top;
Stride = (Width + 3) & (~3);

// Set up the header for an optimal WinGBitmap
if (WinGRecommendDIBFormat((LPBITMAPINFO)&BufferInfo))
{

// Preserve sign on biHeight for appropriate orientation
BufferInfo.Header.biWidth = Width;
BufferInfo.Header.biHeight *= Height;

// Grab the color entries from the current palette
HDC hdcScreen = GetDC(ActiveWindow);
if (hdcScreen)
{

PALETTEENTRY Palette[256];
GetSystemPaletteEntries(hdcScreen, 0, 256, Palette);

ReleaseDC(ActiveWindow, hdcScreen);

// Convert the palette entries into RGBQUADs for the color table
for (int i=0; i<256; ++i)
{

BufferInfo.ColorTable[i].rgbRed = Palette[i].peRed;
BufferInfo.ColorTable[i].rgbGreen = Palette[i].peGreen;
BufferInfo.ColorTable[i].rgbBlue = Palette[i].peBlue;
BufferInfo.ColorTable[i].rgbReserved = 0;

}
}

// Create the offscreen DC
OffscreenDC = WinGCreateDC();
if (OffscreenDC)
{

// Create the offscreen bitmap
OffscreenBitmap = WinGCreateBitmap(OffscreenDC,

(LPBITMAPINFO)&BufferInfo, (void * *)&pBits);

if (OffscreenBitmap)
{

// Adjust pBits and Stride for bottom-up DIBs
if (BufferInfo.Header.biHeight > 0)
{

pBits = pBits + (Height - 1) * Stride;
Stride = -Stride;

}

// Prepare the WinGDC/WinGBitmap
OriginalMonoBitmap = (HBITMAP)SelectObject(OffscreenDC,

OffscreenBitmap);
}
else
{

// Clean up in case of error
DeleteDC(OffscreenDC);

Listing 5. Windows Implementation (Continued on p. 34)

Wrapping it Up
To compile the code presented in this
article, I used Microsoft Visual C++ 2.0
on Windows NT version 3.5 and Syman-
tec C++ 7.0 on Macintosh System 7.0. I
ran the applications created on Windows
3.11 with Win32s, Windows NT v. 3.5,
and Macintosh System 7.0. The graphics
code implemented on top of the COff-
screenBuffer API did not change.

If multiplatform graphics program-
ming can be this easy, the excuses for
writing DOS-only games begin to look
silly. Take, for example, that it took only
a weekend (with no sleep) to create a
graphics-only version of Doom for Win-
dows using WinG because of the struc-
tured design chosen by the programmers
at id Software. Most of the third-party
three-dimensional rendering systems on
the market today have at least three ver-
sions—DOS, Windows, and Macintosh.
Why shouldn’t you?

The Microsoft machine has finally
started cranking up and facing the prob-
lems of providing real game support in
Windows, much of it promised for Win-
dows 95. More and more Macintosh
games are appearing on the market, and
maybe one day someone will actually
come up with a decent Macintosh joy-
stick. DOS continues to score with game
programmers, but users hate the configu-
ration problems.

Using a simple system like the COff-
screenBuffer class introduced here will
enable all of your existing graphics rou-
tines on all three platforms and may help
you reach more users. With the advent of
Windows 95 and its promised support
for sound mixing and joystick input, and
with the multimedia capabilities already
provided on Mac and Windows, your
reasons for sticking exclusively to DOS
begin to look shortsighted. Why not take
the cross-platform plunge? ■

Jon Blossom is the coauthor of the
WinG graphics library for Windows and is
the author of Gossamer, a free three-dimen-
sional polygon engine for the Macintosh. He
currently works for Maxis and can be
reached at blossom@mobius.net or through
Game Developer magazine.

D O U B L E - B U F F E R E D G R A P H I C S

34 GAME DEVELOPER • JUNE/JULY 1995

OffscreenDC = 0;
}

}
}

}

COffscreenBuffer::~COffscreenBuffer(void)
{

// Delete the offscreen bitmap, selecting back in the original bitmap
if (OffscreenDC && OffscreenBitmap)
{

SelectObject(OffscreenDC, OriginalMonoBitmap);
DeleteObject(OffscreenBitmap);

}

// Delete the offscreen device context
if (OffscreenDC)

DeleteDC(OffscreenDC);
}

void COffscreenBuffer::SwapBuffer(void) const
{

// Use the DC of the active window
// NOTE: You’ll lose the 1:1 palette mapping if the Window isn’t CS_OWNDC
HWND ActiveWindow = GetActiveWindow();
if (ActiveWindow)
{

HDC ActiveDC = GetDC(ActiveWindow);
if (ActiveDC)
{

// Perform the blt!
if (ActiveDC)
{

WinGBitBlt(ActiveDC, 0, 0, Width, Height, OffscreenDC, 0, 0);
ReleaseDC(ActiveWindow, ActiveDC);

}
}

}
}

Listing 5. Windows Implementation (Continued from p. 33)

Game Play
Benchmarks
for 3D Graphics

G R A P H I C S B E N C H M A R K S

I
magine you have just purchased
the top-of-the-line three-dimen-
sional game board for your PC.
You find yourself playing a flight
simulator with texture-mapped
polygons and digital sound effects.
You can hear the roar of the
engines as you fly over the San

Mateo bridge. You execute a steep dive,
and, squeezing down on the shaking
joystick, you blast away at the terminals
spreading havoc amongst the innocent.

You’ve fed your lust for destruc-
tion. Then you hear a voice say that
Moffett Field has just launched inter-
ceptor F14s to hunt you down. Let the
missiles fly—you’re ready for a dog-
fight. At this point, you don’t really care
that the hills are texture-mapped poly-
gons using real Landsat imagery. You
are much more interested in surviving
the upcoming dogfight. Unfortunately,
as you pass over the Oakland hills at
500 feet, the frame rate goes down, and
your game turns into a major drag.
What happened?

Frame Rate Blues
The frame rate fell below one frame per
second because the game accelerator’s
graphics capability was unable to han-
dle the number of polygons in the
scene. How do you avoid buying a
graphics card that makes a game
unplayable? What measurements or cri-
teria can we use to judge the perfor-
mance of a particular game on a partic-
ular platform?

These questions are of concern to
many game developers as well as play-
ers. The answer is a standard bench-
mark that’s related to the game rather
than the hardware pixel memory rates.
But a standard benchmark implies a
normalized level of understanding. In
this article, we’ll explore the technology
associated with measuring game play.

Three-dimensional graphics are
the next great graphics hurdle for PCs
and console platforms. For the past two
decades, the workstation industry has
been building three-dimensional graph-
ics engines for CAD/CAM that range

36 GAME DEVELOPER • JUNE/JULY 1995

Figure 1. The Three-Dimensional Graphics Pipeline

Geometry
and

Lighting
Rendering Rasterization 3D

Pixels

in cost from $20,000 up to millions of
dollars. Suddenly that technology is
available in a PC or a game console
platform.

When a new technology hits the
streets, the first things we hear are per-
formance quotes, which are usually
exaggerations, and downright lies. Open
up any gaming magazine, and you can
read about three-dimensional graphics
performance. For example, a recent arti-
cle quoted that a certain console box
could do 1 million flat-shaded polygons
per second and 500,000 texture-mapped
polygons per second. What do these
numbers really mean? What is flat shad-
ing, and why is it mentioned? How do
these numbers compare to the 100,000
polygons per second that a $20,000
workstation can do? Is it actually true
that a $300 game console is 10 times
faster in three-dimensional graphics
then a $20,000 workstation? Obviously,
something must be wrong. Let’s look at
the problem by digging a little deeper
into three-dimensional graphics pro-
cessing and benchmarks.

Graphics Processing
Let’s define a three-dimensional scene
that contains objects from the real world.
A good example would be a room with
walls, a floor, table, chair, and TV. Each
object is broken down into polygons.
We’ve given the polygons position infor-
mation in terms of width, height, and
depth, which mathematicians and com-
puter graphics professionals usually refer
to as x, y, and z respectively.

Application software must turn
each polygon in each of the objects in
the scene into pixels in the frame buffer

for visual consumption by an observer.
This process of converting objects into
polygons is called tessellation. The
process of converting polygons into pix-
els is called the three-dimensional
graphics pipeline. The pipeline is com-
plex and difficult to understand without
a good understanding of geometry and
maybe a little physics. Most of the
details aren’t necessary for this discus-
sion, but it is necessary to understand
that these steps exist and they affect the
overall performance measurements of a
three-dimensional application. A sim-
plified version is shown in Figure 1,
where the arrows show the flow of data
from one stage to another. The larger
the arrow, the larger the amount of data
flow. The greatest amount of data is
passed from the rasterization step to the
pixels step.

Suppose the house in our scene is
represented by 1,000 polygons. When
these polygons are displayed on a
1,280-by-1,024-pixel display, the actual
number of pixels processed is very likely
to be in the millions. This implies that
the majority of the time in the graphics
pipeline is spent generating pixels—and
this is true. Over 80% of the time spent
in the graphics pipeline is spent in the
rasterization stage generating pixels. To
accelerate three-dimensional graphics,
first-generation chip designers are
accelerating the rendering and rasteri-
zation steps. This produces the highest
performance gain for the least amount
of investment. The Glint chip from 3D
Labs is a perfect example of a first-gen-
eration hardware solution. This chip
converts triangles from x,y,z points into
pixels, using a 64-bit memory interface.

Making three-dimen-

sional games that are

playable is no easy

task. It‘s up to the

industry to create

standards and

benchmarks so

consumers aren‘t

confused by false

magic number models.

Stephen Johnson

GAME DEVELOPER • JUNE/JULY 1995 37

Three-Dimensional Pixels
Pixels are generated for the frame buffer
by flat shading, Gouraud shading, or
texture mapping. Flat shading fills a
polygon with pixels that are all the same
color. Gouraud shading fills a polygon
with pixels that are computed using
color gradients. Texture mapping fills a
polygon with a two-dimensional bitmap
like a digital photograph.

Each of these methods has its mer-
its. Flat shading is very fast, but it
doesn’t produce a very good simulation
of the real world. Gouraud shading pro-
duces a much better representation of a
real-world object, and it too is fairly
fast. Most three-dimensional graphics
hardware can produce almost exactly
the same performance with flat- or
Gouraud-shaded polygons. Texture
mapping produces very realistic effects,
but it is much slower than flat or
Gouraud shading.

The 3DO console and Doom use
texture mapping—in the case of the
game, the technique makes players feel
like they are in a real three-dimensional
environment. Unfortunately, for various
reasons, texture mapping is slow, and
poor quality texture mapping produces
a variety of nasty artifacts unacceptable
to players.

So, you can generate a three-
dimensional pixel using one of these
techniques or any combination of them.
Figure 2 shows a three-dimensional
pixel, which is the depth value and the
x, y location taken together. The z value
is stored into a z buffer. A z buffer is a
large chunk of memory dedicated to
saving the last z or depth value for a
particular x, y location in the display.
For every pixel in the display, there is a
z or depth value. For a 1,280-by-1,024
display, there exist 1,310,720 pixels in
the frame buffer and the same number
of depth values. The biggest problem
with a z buffer is that it increases the
amount of memory on the display sub-
system, and this cost is passed onto the
consumer by a price increase.

What’s in a Benchmark?
Traditionally, benchmarks comprised
small applications that measure the per-

formance of a machine. Dhrystones and
Whetstones are perfect examples of
this. These benchmarks contain a vari-
ety of application-like programs that
run in a certain period of time on a par-
ticular platform.

The time it takes to execute these
programs on a particular platform is
measured and can be compared on a
relatively fair basis to the time it takes
to execute them on another platform.
Usually, the time measured is used to
compute a standard unit number. The
industry as a whole looks over the pro-
grams in the benchmark and decides in
some sense what is fair and what is not
fair.

A similar concept exists in the cur-
rent PC graphics benchmark area.
Benchmarks execute a series of graphics
instructions using a standard applica-
tion programmer interface (API) like
the graphics device interface (GDI) in
Windows. The time it takes to perform
the operation is measured. The mea-
sured time is used to determine how
many operations the platform can do
per second. So, numbers like 40 million
lines per second for a benchmark that
measures line rendering using GDI are
reasonable.

Some benchmarks execute real
applications in a scripted environment
resulting in a time measurement. These
benchmarks often produce a single

magical number that can be used for
comparison.

Benchmarks are not perfect. They
don’t actually measure what a particular
user is doing on a particular day.
Instead, benchmarks use a standard
selection of operations that are sup-
posed to represent the core activity of
the average user. Thus, the goal of a
benchmark is to reduce the potentially
infinite combination of operations
(CPU instructions or graphics primi-
tives) down into a subset that represents
a reasonable cross-section of application
or user activities. Presumably, the rep-
resentation of user activity is fair across
the variety of platforms available.

In the workstation arena, the
three-dimensional benchmark is
Graphics Performance Criteria (GPC).
It took 10 years and hundreds of engi-
neers to implement this benchmark.
The result is a magic number that you
can easily translate into frames per sec-
ond. GPC is essentially an application
environment with database traversal,
lighting, clipping, and rendering. On
PC platforms there exists a large num-
ber of GPC-style applications—that is,
games. Most of the games in the PC
already output frames per second. A
perfect example of this is Domark’s
Flight Simulator Toolkit, which lets the
user display the performance levels
while the game is running.

G R A P H I C S B E N C H M A R K S

38 GAME DEVELOPER • JUNE/JULY 1995

Figure 2. 3D Pixels Plus Frame Buffer and Z Buffer

Z Buffer
or Depth
Memory

Frame Buffer Memory

Current Benchmarks
In terms of three-dimensional graphics
benchmarks, do the 1 million flat-shad-
ed polygons per second really tell us
anything about the performance of the
console box? A number of key factors
are missing from such a claim, such as
the database traversal, geometric trans-
formations, clipping, and lighting. This
performance claim relates to the final
stage of the three-dimensional pipeline,
the rasterization stage. This stage only
measures the performance of the frame
buffer memory subsystem.

Chip designers and developers
quote the memory subsystem band-
width in pixels per second, which you
can easily convert to polygons per sec-
ond once you know the area of the
polygon. If the area of the polygon is
quoted with the polygons per second, at
least we can better understand the ras-
terization stage in the pipeline.

This element is missing from the
quote of 1 million polygons per second.
The performance claims for the console
box and the workstation mentioned
previously should be modified to 1 mil-
lion flat-shaded, single-pixel polygons
per second vs. 100,000 flat-shaded,
100-pixel polygons per second. Now we
can compare the last portion of the
pipeline on a relatively fair basis and
then make a straightforward determina-
tion that the workstation is 10 times
faster than the console.

Given the area of the polygons, we
can compare the performance of the
memory subsystem. A fair comparison
between two platforms can only be
made if the other stages have been com-
puted. Then a frames per second num-
ber can be computed.

Game Play Benchmarks
A unit of measurement for graphics
rendering must address the application
level processing that takes place. This is
consistent with benchmarks that exist
for CPUs (Dhrystones and Whet-
stones) and for GDI (WinBench).
Frames per second is a perfectly good
unit of measurement for game play.

With this type of performance
metric, it is possible to say one plat-

form runs Doom II at five frames per
second, and another runs it at 60
frames per second. The higher-perfor-
mance Doom II platform is obvious.
With frames per second, there exists a
system-level performance measurement
that is reliable for comparing different
platforms.

The performance of rendering one
scene is computed by taking the various
boxes shown in Figure 1, measuring the
performance of each box, and summing
the results into one aggregate number.
The separate numbers are as vital as the
total result because they give us the
ability to understand where the bottle-
necks are and optimize the graphics
pipeline to achieve higher performance
for the application.

Unfortunately, the hardware man-
ufacturer provides only the polygons-
per-second statistic, and that isn’t
enough. We only capture the last stage
in the three-dimensional application
pipeline. What other information can
the manufacturer supply that will allow
us to interpolate a frames-per-second
statistic?

Playing the Game
A fair benchmark and the subsequent
published results allow the consumer a
level of confidence. They also allow the
run-time application to choose an
appropriate level of complexity in each
frame at run time. For the actual user, it
appears that a “magic” number is most
appropriate, but this number must be
based on a benchmark that exercises the
entire graphics pipeline. Game develop-
ers must insist that a benchmark can be
easily translated into a metric like “30
frames per second at 1,024-by-768 at
256 colors per pixel.”

The magic number model can be
published with the graphics board or
the actual game platform. These num-
bers give the consumer some guarantee
of game play performance. This is the
same model that is applied to Windows
performance today. If a graphics board
or system has a WinBench 95 of 15
then the consumer knows the platform
is a good accelerator for the majority of
Windows applications. Also, if another

graphics board is a level 19, then there
is some amount of confidence that the
later model is faster for most Windows
applications.

The magic number also has
another effect, which isn’t necessarily
seen by the consumer. If the operating
system environment saves the perfor-
mance criteria for the platform into
system information, then the game can
scale its displayed data appropriately.
For example, if a certain platform pro-
duces 10,000 texture-mapped polygons
per second through the benchmark
then the application can choose to
scale back the scene complexity to
match the platform metrics. You can
easily accomplish this by storing the
results of the benchmark in a system
file and making it accessible to the
application. Microsoft has already
announced its use of this strategy to
the game developer community.

This system-wide performance
information is very important, as certain
games show us. For example, Tie Fight-
er lets the player activate an options
panel to change the rendering pixel
complexity at run time. Gouraud shad-
ing and other effects can be turned on or
off, depending on the player’s choice.
The game runs in a default mode that is
aimed at a 486 DX2/66. With system-
level performance information stored in
an easily accessible form, Tie Fighter
can automatically choose the appropri-
ate level of complexity using the bench-
mark results for the platform.

This doesn’t remove the necessity
for the options panel, but it does allow
the application to start out in a more
appropriate complexity level. At run-
time, the game software reads the
benchmark information and relates it to
database complexity and rendering per-
formance, thus determining a “best
guess” at the frames-per-second number,
which determines the game play criteri-
on. This idea can also be applied to other
areas of the platform. System-level per-
formance data can cover CPU, video,
CD-ROM, audio, fax/modem, and
other areas to provide the application
with complete performance information
about the run-time environment.

GAME DEVELOPER • JUNE/JULY 1995 39

Conclusion
It is very difficult today to choose a
platform that runs the latest and great-
est three-dimensional game with any
certainty that the game wil l be
playable. This is a problem the PC
industry must solve. Game developers
and large companies such as Microsoft
are working on a solution. I mentioned
that the benchmark solution for the PC
should result in run-time game com-
plexity adjustment based on a system
information accessible to the game. In
addition, the benchmark results for
platforms and graphics cards should be
published and understood by users.

Obviously, the best benchmark for
a game is the actual game itself, but
that isn’t enough. Some type of stan-
dard benchmark criteria must exist that
game developers and players can rely
on for fair comparison between plat-
forms. The current performance num-
bers of polygons per second usually
only measure the memory subsystem
performance. It is possible to guess at a

frame-per-second number from a poly-
gons-per-second quote if the area in
pixels is also mentioned. Thus, chip
vendors must be encouraged to publish
numbers that are fully qualified, like
“100,000 lighted, clipped, texture-
mapped, 50-pixel polygons per frame at
65,536 colors per pixel on a PPC 604
processor.” With this quote, a game
developer can make an intelligent guess
as to the resolution and complexity of
each frame in relation to the game.

The PC industry should adopt a
standard benchmark for games and
applications that use three-dimensional
graphics. The benchmark should be
similar to the GPC benchmark used in
the workstation industry in that it
should measure the application-level
performance and not just the memory
subsystem of the graphics device. If a
“magic” number is used then it should
easily translate into scene complexity
and the various stages of the graphics
pipeline. This magic number informa-
tion should be stored with the platform

in an easily accessible form so that
games can adjust scene complexity dur-
ing run time. ■

Stephen Johnson has been a computer
software engineer for the last 15 years. He
has extensive background in C, C++, and
several different assembly languages as
well as experience with UNIX, MacOS,
MSDOS, and Windows. About a year
ago, a game called DOOM popped up on
his home computer. After one intense
weekend of blowing away demons, he
decided to change his career. Strangely
enough he discovered that writing game
software i s way more fun than
CAD/CAM drafting packages. He cur-
rently resides at Diamond Multimedia,
where he is bringing high-resolution,
high-performance three-dimensional
graphics to every Windows user he can
find.

G R A P H I C S B E N C H M A R K S

40 GAME DEVELOPER • JUNE/JULY 1995

vesa
bios

Getting
Started with
VESA Graphics

G E T T I N G S T A R T E D W I T H V E S A

42 GAME DEVELOPER • JUNE/JULY 1995

VESA
MODE
NUMBER TYPE RESOLUTION COLORS

100h GRAPHICS 640x400 256
101h GRAPHICS 640x480 256
102h GRAPHICS 800x600 16
103h GRAPHICS 800x600 256
104h GRAPHICS 1024x768 16
105h GRAPHICS 1024x765 256
106h GRAPHICS 1280x1024 16
107h GRAPHICS 1280x1024 256

108h TEXT 80x 60 16
109h TEXT 132 x 25 16
10Ah TEXT 132 x 43 16
10Bh TEXT 132 x 50 16
10Ch TEXT 132 x 60 16

10Dh GRAPHICS 320x200 32K
10Eh GRAPHICS 320x200 64K
10Fh GRAPHICS 320x200 16M
110h GRAPHICS 640x480 32K
111h GRAPHICS 640x480 64K
112h GRAPHICS 640x480 16M
113h GRAPHICS 800x600 32K
114h GRAPHICS 800x600 64K
115h GRAPHICS 800x600 16M
116h GRAPHICS 1024x768 32K
117h GRAPHICS 1024x768 64K
118h GRAPHICS 1024x768 16M
119h GRAPHICS 1280x1024 32K
11Ah GRAPHICS 1280x1024 64K
11Bh GRAPHICS 1280x1024 16M

* 32K color modes have 1 unused bit,

and 5 bits of Reg,Green, and Blue data.

* 64K color modes have 5 bits of Red

and Blue data and 6 Bits ofGreen data.

* 16M color modes (true color) have 8

bits each of Red, Green, and Blue

data.

Table 1. VESA Mode Numbers

vesa
bios

vesa
biosH

ave you seen some of the
games that have come out
recently? A new trend is afoot
in the game industry. Games
are moving away from 320-
by-200-pixel graphics to 640-
by-480 and higher resolutions.
For a long time now, we’ve

seen game after game with a screen reso-
lution of 320-by-200 pixels—first with
EGA’s 16 colors and then VGA’s 256
colors. In this article I’ll introduce you to
the force that’s making this upward
graphics mobility in games possible and
practical: VESA BIOS extensions.

In the beginning of the PC world,
IBM would introduce a display adapter,
and it would automatically become the
standard to which developers wrote pro-
grams. First came the CGA in 1982, fol-
lowed by the EGA in 1985, and the
MCGA and VGA in 1987. Games and
other graphics programs adapted to the
new video standard, compilers added
built-in support, and the world was an
orderly place for developers.

So what happened to produce the
video card Tower of Babel that we have
today? IBM brought out the 8514/A dis-
play adaptor and users and developers
gave it a big thumbs down.

But the maturing PC industry
didn’t sit still for IBM. In the absence of
a standard that the market was eager for,
video card manufacturers rushed in to
provide their own solutions. First came
enhanced EGA cards with resolutions
up to 800-by-600 pixels, which were
quickly swept away by a new wave of
VGA-compatible cards that took full
advantage of analog VGA monitors,
which were rapidly replacing TTL digi-

tal monitors. Manufacturers rushed to
outdo each other with 256 colors at 640-
by-480, then 800-by-600, and 1,024-by-
768 pixels. Chip makers added another
wrinkle when they developed DAC
chips capable of pumping out 16-bit and
24-bit color. IBM tried to reassert itself
with the XGA graphics adaptor, but it
was too little, too late.

Lacking an IBM standard to
mimic, each video card manufacturer was
on its own when it came to implement-
ing high- resolution modes. The result
was a complete lack of consistency
between video cards in mode numbers,
extended registers, and drivers. Each
manufacturer was responsible for devel-
oping drivers for popular programs and
providing documentation to software
developers. And to be honest, software
developers were pretty low priority for
most video card makers.

The only glimmer of hope for using
a card’s high-resolution modes was pro-
vided by Microsoft’s Windows. As Win-
dows 3.0 and then 3.1 became an indus-
try juggernaut, it forced manufacturers to
make Windows video drivers a priority.
With a Windows video driver, any Win-
dows program could take full advantage
of the video card’s enhanced graphic
capabilities. The only drawback—Win-
dows was anything but an ideal choice
for graphics-intensive games. Microsoft’s
WinG may bridge that shortfall in the
future, but up to this point, games have
pretty much been forced to stick with
DOS and the VGA standard.

To alleviate this problem, the Video
Electronics Standards Association
(VESA) was founded in 1989 as a non-
profit organization to set and support

vesa
bios

VESA was founded to

create industry-wide

open standards for

the PC environment.

By applying these

standards, develop-

ers have the benefit

of a universal method

for using high-reso-

lution video modes.

Matt Pritchard

GAME DEVELOPER • JUNE/JULY 1995 43

vesa
bios

vesa
bios

industry-wide open standards for the PC
environment. Starting in August 1989
with a standard mode number for 800-
by-600, 16-color Super VGA graphics,
VESA has been busy working with the
PCVESA terms standards for video and
related items. VESA came up with a sys-
tem of extensions to the normal VGA
BIOS that manufacturers could retrofit
to existing cards. In October 1991, the
organization released the VESA BIOS
Extension (VBE) standard, version 1.2.
To keep up with evolving video cards,
and the shift to protected mode pro-
grams, the VBE 2.0 standard was
released in November 1994.

Well, all this history is nice to
know, but by now you may be asking
“What’s in it for me, the game software
developer?” The answer is simple: A sin-
gle, clearcut method for using high-reso-
lution video modes on most of the video
cards out there today. The rest of this
article will give you an overview of what
VESA BIOS extensions can give your
software, how they work, and how you
go about coding them.

VESA Terms and Features
For starters, we need to clarify our terms.
VESA has developed many standards for
power management, sound, hardware
and I/O bus interfaces and PC Videos
BIOSes. This article only covers VESA
Video BIOS standards known as Video
BIOS Extensions or VBE for short.

A video card can provide Video
BIOS extensions in different ways. The
ROM BIOS physically on the video card
can support the VESA VBE 1.2 or 2.0
features directly. Most new video cards
do this. However, due to limited ROM

space, some new cards don’t have a com-
plete VESA VBE implementation in
their ROMS. For older cards, the manu-
facturer can provide a driver that is
placed in the AUTOEXEC.BAT or
CONFIG.SYS that augments the card’s
ROM BIOS and provides the VESA
VBE specific functions that reside in
RAM. Or a third-party driver, such as
SciTech Software’s UniVBE program,
can provide the VESA VBE either as a
TSR or library that can be directly linked
into a program, providing VESA VBE
services only while that program is run-
ning. In many cases, especially with older
video cards, some ROM BIOSes and
drivers have bugs or are missing features,
with hardware panning being the biggest
culprit. In these cases, a third party driver
usually works better than the manufac-
turer supplied driver or ROM BIOS.

The major features that VESA
VBEs provide are:
• A consistent way to identify a video

card, how much memory it has, and
what video modes and features it is
capable of.

• A consistent way to set high resolu-
tion (super VGA) video modes.

• A consistent way to access all of the
memory on a video card through a
“window” of memory, usually at seg-
ment A000.

• A consistent way to save and restore
super VGA Modes.

• A consistent way to set logical screen
sizes and page-flip Super VGA
modes.

• A consistent way to access video
DAC registers, including 8-Bit
DACs and DACs that are not VGA
compatible.

vesa
bios

The VESA VBE 2.0 standard
added two major features:
• Support for fast direct access to

VESA VBE function from protected-
mode programs.

• Support for direct access to all video
memory in the form of a Linear
Frame Buffer, accessible from pro-
tected mode.

Accessing VESA
VBE Features
All VESA VBE functions and features
are accessed through the INT 10h inter-
face. For programmers unfamiliar with
this process, allow me to explain. In
addition to traditional hardware inter-
rupts, the Intel CPU design allows for
software to issue interrupts. Software
interrupts are numbered from 0 to 255
and allow a program to call a function
without knowing where it is in memory.
Interrupt number 10h (16 decimal) is
used to access video BIOS services.
These services can be in the video card’s
ROM, DOS, or a driver loaded into
RAM and can be chained together.

To call a Video BIOS function, the
function’s number is put into the CPU’s
AX register and any parameters are put
in the other CPU registers in a manner
that is function specific. Then the INT
10h instruction is executed. The CPU
transfers control to the interrupt handler
which processes the selected function
and returns to the program just as if a
normal function call had taken place.

The starting place for any VESA-
aware program is determining if there
are VESA BIOS Extensions available to
program. All VBE function numbers
have the value 4Fh in the AH register and
the actual function number in the AL reg-
ister (The AH and AL registers make up
the AX register).

The VBE function to return Super
VGA information is number 0, and
before you can call it, you must have a
buffer into which VESA information
can be put. The VBE 2.0 standard
increased the size of the buffer from
256 to 512 bytes, but to keep older
VESA programs from breaking you
must put the four-character string VBE2
at the start of the buffer to get the VBE

G E T T I N G S T A R T E D W I T H V E S A

44 GAME DEVELOPER •JUNE/JULY 19954

/* === */
/* VESACHK.C - Check for VBE Extension and report mode available */
/* === */

#include <stdio.h>
#include <dos.h>
#include <string.h>

#define uchar unsigned char
#define uint unsigned int

typedef struct {

/* These items defined in the VESA VBE 1.2 Spec */

char Vbe_Signature[4]; /* “VESA” */
int Vbe_Version; /* Vesa version *
char far * Oem_String_Ptr ; /* Name of Video Card */
uchar Capabilites[4]; /* Bitmapped features */
uint far * Video_Mode_Ptr; /* >List of Video Modes */
int Total_Memory; /* Video Mem / 64K */

/* These items added in the VESA VBE 2.0 Spec */

int Oem_Software_Rev;
char far * Oem_Vendor_Name_Ptr;
char far * Oem_Product_Name_Ptr;
char far * Oem_Product_Rev_Ptr;

uchar reserved[222]; /* From the 1.2 spec */
uchar Oem_Data[256]; /* VBE 2.0 OEM strings */

} VbeInfoBlock;

int get_VESA_version(VbeInfoBlock far* , int*, int*);

void main (void)
{

VbeInfoBlock VESA_Info;
int VESA_Version, MajorVer, MinorVer, Mode;
uint far * Mptr;

VESA_Version = get_VESA_version(&VESA_Info, &MajorVer, &MinorVer);

if (VESA_Version) {
printf (“This video card has VBE version %d.%d extensions.\n”, MajorVer,MinorVer);
printf (“The Card Name is ‘%Fs’\n”,VESA_Info.Oem_String_Ptr);

/* Display List of Available Modes */

printf (“\nThe Following Modes are supported:\n”);
Mptr = VESA_Info.Video_Mode_Ptr;
while ((Mode = *Mptr++) != 0xFFFF) {

printf (“mode %4.4xh “,Mode);
}
printf(“\n\n”);

} else {
printf (“This video card does not have VESA BIOS support\n”);

}

}

int get_VESA_version(VbeInfoBlock far* VESA_Info,int * MajorVer, int * MinorVer)
{

union REGS in_regs, out_regs;

Listing 1. VESACHK.C (Continued on p. 45)

vesa
bios

vesa
bios

vesa
bios

2.0 specific additional information.
After calling the Video BIOS, if the AX
register has the value 004Fh in it, then
your BIOS has VESA extensions, oth-
erwise it doesn’t. Listing 1 is a function
written in Borland C 3.1 that can tell
you what version of VESA extension
your card supports, if any, and what
VESA display modes it has.

Once you know that your video
card supports VBE, you still need to find
out what video modes your card actually
supports. Two pieces of information in
the VESA information buffer do this for
you. The first is the Total_Memory word,
which returns the amount of actual
memory on the video card in 64K
blocks. The second is the
Video_Mode_Pointer, which is a pointer to
a list of video modes that the card sup-
ports. The mode numbers can include
modes that are unique to your video

card, numbered from 14h to 7Fh, along
with mode numbers that VESA has des-
ignated to be standard on all cards, 100h
to 11Bh. Because of this, it is possible for
a mode to be listed under two different
mode numbers, both equally valid. See
Table 1 for a list of standard VESA
mode numbers.

Now, just because a mode number
is listed doesn’t mean that the mode is
actually supported (for example, there
may not be enough video memory). To
check out the modes you want to use,
you call VBE function 01h, return Super
VGA mode information. You must provide
a 256-byte buffer for information to be
returned in. If AX comes back with any-
thing other than 004Fh then the mode is
not available. If AX is 004Fh and the first
bit of the first word in the buffer
(Mode_Attributes) is 0, then the mode is
not available.

The mode information block
returned by function 01h contains a
wealth of information about how to
actually use that mode. That information
includes:
• Whether the mode is text or graphics,

monochrome or color.
• Whether the BIOS text functions are

available in that mode.
• The screen resolution and character

cell sizes.
• The memory access model and pixel

layout used by that mode.
• The addresses and sizes of the memo-

ry regions used to read and write data
in that mode.

• Whether or not the VGA DAC can
be used in that mode.

VESA Memory Addressing
The whole point of using VESA Video
BIOS extensions is so that you can write
a program that doesn’t have to know a
thing about the video card in your sys-
tem yet can still blast data to the screen
at full speed.

Making a VESA VBE-aware pro-
gram requires some extra work on the
part of the programmer, especially in the
area of graphics memory addressing and
pixel data organization. To make one or
more megabytes of video memory acces-
sible, VESA allows for one or two “win-
dows” into video memory of up to 64K
to be mapped into the CPU’s address
space.

In practice, this usually means a
64K window at segment A000, but there
is no guarantee—you need to look. It’s
possible two independent 32K win-
dows might exist at segments A000 and
A800. Or you might find two overlap-
ping 64K windows at segment A000—
one for reading data from one part of
video memory and another for writing
data to a different section of video
memory.

To access all of video memory VBE
function {05h, Display Window Control}

lets you change the position in video
memory that the window accesses. This
is also known as “bank switching.” One
thing you can count on varying from
card to card is the window granularity.
Window granularity is the “coarseness”

GAME DEVELOPER • JUNE/JULY 1995 45

struct SREGS seg_regs;
int ver, m;

/* Prepare VESA info Buffer */

memset(VESA_Info, 0, 512);
memcpy(VESA_Info->Vbe_Signature, “VBE2”, 4);

/* Call Int 10, VBE Function (4F)00h */

in_regs.x.ax = 0x4F00;
seg_regs.es = FP_SEG(VESA_Info);
in_regs.x.di = FP_OFF(VESA_Info);

int86x(0x10, &in_regs, &out_regs, &seg_regs);

/* Check if VBE Extions present & Get Revision Level */

if ((out_regs.x.ax != 0x004F) ||
(memcmp(VESA_Info->Vbe_Signature, “VESA”, 4) != 0))
{

return 0;
} else {

ver = VESA_Info->Vbe_Version;
*MajorVer = (ver >> 8);

/* bug check - Some BIOSes return 0x0102 instead of 0x0120 */
/* Check for Minor version in wrong nibble and correct */

m = (ver & 0xFF);
if ((m != 0) && ((m & 0x0F) != 0)) {

*MinorVer = m * 10;
} else {

*MinorVer = (m >> 4) * 10;
}
return ver;
}

}

Listing 1. VESACHK.C (Continued from p. 44)

vesa
bios

vesa
bios

vesa
bios

by which the window can be positioned
in video memory. Some cards can let you
move the window address around in 1K
increments while others can only move
32K or 64K at a time. Your drawing
code will have to take into account that
some cards may need to switch banks in
the middle of drawing while others
won’t. For speed considerations, bank
switching is the only operation that you
don’t need to execute an interrupt to
access. The VBE can give your program
the address of a direct function to switch
banks for the current video mode.

For protected mode programs,
VBE version 2.0 opens up a whole new
set of possibilities. With the advent of
local bus architectures, it became popular
among video card manufacturers to sup-
port linear frame buffers. A linear frame
buffer is where a block of very high
memory addresses are directly mapped
into the card’s video memory, eliminat-
ing the need for bank switching entirely.
Some cards offer both modes of memory
access, others just one. Developers
should expect linear frame buffers to
become the preferred method of video
memory access in the years ahead.

Reading and
Writing Video Memory
Once you have gotten through VESA
mode selection and memory addressing,
actually reading and writing image data
is anticlimactic. The most common
memory layout for 256-color modes is
identical to mode 13h. The only addi-

tional need is to use bank switching to
move the currently needed portion of
video memory into the access window.
For high-color and true-color modes,
you need to do more work. The size and
position of each color component can
vary and your drawing code will need to
adapt to the different layouts. For exam-
ple, many new cards use 32-bit pixels for
24-bit true color modes for higher inter-
nal performance. Fortunately, the VBE
mode information block contains
detailed information on the layout of
pixels in these modes. Listing 2 demon-
strates drawing simple patterns using the
VESA 640-by-480 256-color mode.

Panning and Page Flipping
One of the biggest benefits of VBEs for
game programs is that it makes possible
page-flipping and smooth, high-resolu-
tion animation. VBE functions are pro-
vided to let the program change the logi-
cal width of a scan line and select the
position in video memory from which
the screen display starts. Just like in

Mode X, these features
let programs scroll the

screen and use double
and triple animation
buffering.

These functions
are simple to use, but
there are some catches.
Different video cards
have different limits on
how small an adjust-
ment can be made to
line widths and screen
start position. For
example, a card may
only allow the start
position to be on a

Dword (4-byte) boundary, while another
might require paragraph (16-byte)
boundaries. In true color modes, the
pixel size is usually 3 bytes with no
unused bytes. So unless the screen start
position is a multiple of 4 pixels (12
bytes), the display would start in the
middle of a pixel, scrambling the color
data stream! Fortunately, page flipping
can avoid this easily by starting each
page on a large boundary such as 4K.
Smooth panning, on the other hand,
suffers badly on some cards.

Palette Functions
VESA VBEs also provide palette func-
tions. Two aspects of the palette func-
tions make them more desirable than the
traditional method of program the VGA
card directly. The first is that the VGA
Palette registers don’t work in super
VGA modes on some newer cards, while
using the VBE palette functions does.
The second benefit is that VESA VBEs
provide access to 8-bit DACs on cards
that have them. Normal VGA DAC
registers only have 6 bits of color data
per color, but most newer cards can
process 8 bits of color data per color.
Using 8-Bit DACs allows for smoother
looking color ranges and color effects.

Conclusion
A well written VESA-aware program
should have few problems running high
performance graphics on video cards that
have yet to be introduced, including the
increasing number of cards that do not
have a VGA-compatible core for their
high-resolution graphic modes.

If I may share an observation from
experience, when making a VESA VBE-
aware program for the first time, you

G E T T I N G S T A R T E D W I T H V E S A

46 GAME DEVELOPER • JUNE/JULY 1995

S
ciTech Software makes a VESA VBE 2.0 compatible “universal” driver that sup-
ports over 160 different graphics chips. Its VBE driver is available in TSR form as
shareware for end users or developers. Linkable library versions are also avail-
able for software developers. For more information contact SciTech at (916) 894-
8400 or via e-mail at sales@scitechsoft.com.

For more information about VBE contact Kevin Giliett at VESA. The VESA VBE 1.2 and 2.0
Specs can also be ftp’ed on the internet from x2ftp.oulu.fi. Write to VESA at 2150 N. First
St., Ste. 440, San Jose, Calif. 95131-2029 or call (408) 435-0333.

M O R E I N F O

AL= Function Description VBE Revision

000h Return VBE Controller Information 1.2
01h Return VBE Mode Information 1.2
02h Set VBE Mode 1.2
03h Return current VBE Mode 1.2
04h Save/Restore VBE Mode State 1.2
05h Display Memory Window Control 1.2
06h Set/get Logical Scan Line Length 1.2
07h Set/Get Display Start 1.2
08h Set/Get DAC Palette Control 1.2
09h Set/Get Palette Data 2.0
0Ah Return VBE

Protected-Mode Interface 2.0

Table 2. VESA VBE Functions (AH = 4FH)

G E T T I N G S T A R T E D W I T H V E S A

48 GAME DEVELOPER • JUNE/JULY 1995

/* === */
/* VESADEMO.C - A simple 640x480 VESA Graphics Demo */
/* === */

#include <stdio.h>
#include <dos.h>
#include <string.h>

#define uchar unsigned char
#define uint unsigned int

/* Stucture to hold VESA VBE Get SVGA Info Results */

typedef struct {

/* These items defined in the VESA VBE 1.2 Spec */

char Vbe_Signature[4]; /* “VESA” */
int Vbe_Version; /* Vesa version */
char far * Oem_String_Ptr; /* Name of Video Card */
uchar Capabilites[4]; /* Bitmapped features */
uint far * Video_Mode_Ptr; /* >List of Video Modes */
int Total_Memory; /* Video Mem / 64K */

/* These items added in the VESA VBE 2.0 Spec */

int Oem_Software_Rev;
char far * Oem_Vendor_Name_Ptr;
char far * Oem_Product_Name_Ptr;
char far * Oem_Product_Rev_Ptr;

uchar reserved[222]; /* From the 1.2 spec */
uchar Oem_Data[256]; /* VBE 2.0 OEM strings */

} VbeInfoBlock;

/* Stucture to hold VESA VBE Get Mode Info Results */

typedef struct {

/* This section available is all VESA revisions */

uint Mode_Attributes;
uchar Win_A_Attributes; /* Memory Window A */
uchar Win_B_Attributes; /* Memory Window B */
int Win_Granularity; /* in 1K units */
int Win_Size; /* Window Size in K */
uint Win_A_Segment; /* Segment of Window A */
uint Win_B_Segment; /* Segment of Window B */
void far * Win_Func_Ptr; /* Bank Switch func addr */
int Bytes_Per_Scan_Line; /* just what it says */

/* This section available is VBE revision 1.2 & up */

int X_Resolution;
int Y_Resolution;
char X_Char_Size;
char Y_Char_Size;
char Number_Of_Planes;
char Bits_Per_Pixel;
char Number_Of_Banks;
char Memory_Model;
char Bank_Size;
char Number_Of_Image_Pages;
char Reserved1;

/* This section is used for Memory_Model 0x06 and 0x07 i.e. Direct
Color and YUV color modes */

Listing 2. VESADEMO.C (Continued on p. 49)

char Red_Mask_Size;
char Red_Field_Position;
char Green_Mask_Size;
char Green_Field_Position;
char Blue_Mask_Size;
char Blue_Field_Position;
char Rsvd_Mask_Size;
char Rsvd_Field_Position;
char Direct_Color_mode_Info;

/* This section available is VBE revision 2.0 & up */

void far * Physical_Base_Ptr;
void far * Off_Screen_Mem_Offset;
int Off_Screen_Mem_size;

char Reserved[206];

} ModeInfoBlock;

/* Global Registers for calling INT 10h */

union REGS in_regs, out_regs;
struct SREGS seg_regs;

/* Function Prototypes */

int get_VESA_version(VbeInfoBlock far* , int*, int*);
int check_VESA_Mode(int, ModeInfoBlock far*);
int set_VESA_Mode(int);

void main (void)
{

VbeInfoBlock VESA_Info;
ModeInfoBlock MODE_Info;

int VESA_Version, MajorVer, MinorVer;

/* Check if VESA Video BIOS Extension installed */

if (!(VESA_Version = get_VESA_version(&VESA_Info,
&MajorVer, &MinorVer))) {
printf (“Unabale to run demo.\n”);
printf (“This video card does not have VESA BIOS support\n”);
return;

}

/* Check if Mode 101h is available */

if (!check_VESA_Mode(0x0101, &MODE_Info)) {
printf (“Odd... This card has VESA BIOS extension but no “

“support for mode 101h\n”);
return;

}

/* Set display to VESA Mode 101h */

set_VESA_Mode(0x0101);

/* Draw our Test pattern and wait for a keypress */

draw_VESA_triangle_pattern(&MODE_Info,640,480);

/* restore text Mode */

set_VESA_Mode (0x03);
printf (“this VESA 640x480x256 demo is done.\n”);

should start by getting the VESA VBE
1.2 and 2.0 specifications and studying
them. Then I heartily recommend that
you obtain other VESA VBE code and
study it. VBE support varies and the
specifications leave some room for inter-
pretation. For example: Where the VBE
2.0 says “All other registers are pre-
served,” many VBEs still trash the high
words of extended registers. Another
example is that some VBEs return a
value of 0 for a window granularity of
64K instead of returning 64.

There is a wealth of information
and detail involved in using VESA Video
BIOS Extensions, and we didn’t have
room in one article to cover it all. I do
hope you now have an idea of what you’ll
be facing when you develop a program
that uses VESA graphic modes. Making
the effort to use VESA VBEs can bring
great rewards to the developers who want
their programs to stay on the cutting
edge. Until next time, happy coding! ■

Matt Pritchard is presently launching
his software company Innovatix in Gar-
land, Texas, and is the author of
MODEX105, a comprehensive freeware
ModeX library. You can reach him via e-
mail at matthewp@netcom.com or through
Game Developer magazine.

GAME DEVELOPER • JUNE/JULY 1995 49

return;
}

/* Function to get VESA VBE Mode Info for a given mode */

int check_VESA_Mode(int Mode_Num, ModeInfoBlock far* MODE_Info)
{

/* First we get info on the desired mode */

memset(MODE_Info, 0, 256); /* Clear Mode Info */

in_regs.x.ax = 0x4F01; /* Get mode Info Function */
in_regs.x.cx = Mode_Num; /* Mode number */
seg_regs.es = FP_SEG(VESA_Info); /* Buffer to hold results */
in_regs.x.di = FP_OFF(VESA_Info);

int86x(0x10, &in_regs, &out_regs, &seg_regs);

if (out_regs.x.ax != 0x004F) { /* Did an Error occur? */
return 0;

} else {
return Mode_Num;

}

}

/* Function to perform VESA VBE Mode Set */

int set_VESA_Mode(int Mode_Num)
{

in_regs.x.ax = 0x4F02; /* Get mode Info Function */
in_regs.x.bx = Mode_Num; /* Mode number */

int86x(0x10, &in_regs, &out_regs, &seg_regs);

if (out_regs.x.ax != 0x004F) { /* Did an Error occur? */
printf (“Error attempting to set Mode %xh\n”, Mode_Num);
return 0;

} else {
return -1;

}

}

int get_VESA_version(VbeInfoBlock far* VESA_Info,
int * MajorVer, int * MinorVer)

{

int ver, m;

/* Prepare VESA info Buffer */

memset(VESA_Info, 0, 512);
memcpy(VESA_Info->Vbe_Signature, “VBE2”, 4);

/* Call Int 10, VBE Function (4F)00h */

in_regs.x.ax = 0x4F00;
seg_regs.es = FP_SEG(VESA_Info);
in_regs.x.di = FP_OFF(VESA_Info);

int86x(0x10, &in_regs, &out_regs, &seg_regs);

/* Check if VBE Extions present & Get Revision Level */

if ((out_regs.x.ax != 0x004F) ||
(memcmp(VESA_Info->Vbe_Signature,

Listing 2. VESADEMO.C (Continued from p. 48)

“VESA”, 4) != 0))
{

return 0;
} else {

ver = VESA_Info->Vbe_Version;
*MajorVer = (ver >> 8);

/* bug check - Some BIOSes return
0x0102 instead of 0x0120 */

/* Check for Minor version in
wrong nibble and correct */

m = (ver & 0xFF);
if ((m != 0) && ((m & 0x0F) != 0))
{

*MinorVer = m * 10;
} else {

*MinorVer = (m >> 4) * 10;
}

return ver;
}

}

I
n this edition of the Chopping
Block, I review Wing Comman-
der III by Origin Systems Inc.
This technical review contains
minor spoilers. Wing Comman-
der III is the third installment in
the Wing Commander series.
This version is far more techno-

logically advanced than previous Wing
Commander episodes. Game features
include SVGA digitized movies using
well-known actors at the game intro
and end as well as in all cutscenes; the
graphic engine uses polygon-based,
texture-mapped VGA and SVGA
graphics, which result in impressive,
realistic looking spacecraft; the user
interface has a clean simple layout and
is easy to use; and the General MIDI
soundtrack and digitized sound effects
add a full layer of realism and excite-
ment to the game. Wing Commander
III appears to use a combination of
Origin’s trademarked RealSpace tech-

nology—which was used in other Ori-
gin games such as Privateer, Strike
Commander, and Pacific Strike—
mixed with advanced polygonal rou-
tines created specifically for Wing
Commander III.

This Is A Big Game!
The combined English, French, and
German versions of Wing Commander
III comes on four CD-ROMs. Total
distribution size is about 2.3 gigabytes.
The Wing Commander III executable
(WC3.EXE) plus several primary data
files are duplicated on each CD-ROM;
the unique data files require over 1.8
gigabytes of CD-ROM storage space.
The movie files are by far the largest
files in the game and range in size from
108MB to 408MB.

Installing Wing Commander III is
quite an extensive process. To mini-
mize data file loading times during
game play, a full installation is required

Wing
Commander III

There are a lot of

fighter pilot games out

there these days.

Wayne Sikes navigates

through Origin‘s Wing

Commander III, the

third release of the

Wing Commander

series, and it mea-

sures up impressively.

Wayne Sikes

C H O P P I N G B L O C K

GAME DEVELOPER • JUNE/JULY 1995 51

The latest addition to the Wing Commander series features more technologically advanced
graphics that allow for impressive, realistic looking spacecraft.

and uses about 40MB of hard disk
space. A VESA driver is required for
SVGA graphics. Because Wing Com-
mander III is such a large game and
weighs heavily on system resources, it is
no surprise that many users have had
trouble installing it. (I experienced
installation troubles because the size of
my CD-ROM drivers combined with a
Pro Audio Spectrum driver exceeded
the minimum conventional memory
requirements for my 8MB RAM sys-
tem. The game features a boot disk cre-
ation routine that solved my memory
management problems.)

Wing Commander III requires a
minimum of 360K conventional RAM
plus 7,000K of either extended or
expanded memory. Access to memory
above 640K is provided by Origin’s cus-
tom JEMM.OVL protected mode
(DPMI), 32-bit driver. Virtual memory
is emulated through the use of a swap
file named SWAPFILE.$$$. The size
of the swap file is generally determined
by the amount of free hard disk space,
and it is usually 15MB to 20MB. The

swap file is created when Wing Com-
mander III is booted and erased when
you exit the game. (This file is erased
when you exit the game via the Alt-X
keystrokes. So be sure to erase the swap
file from your Wing Commander III
hard drive subdirectory if you exit the
game using any other method such as
rebooting your PC.)

The primary Wing Commander
III executable, WC3.EXE, is about
1.1MB in size. Wing Commander III
was developed using the MetaWare
High C/C++ system and is written pri-
marily in C++. (The MetaWare High C
system features C++ templates and a
compiler for developing 32-bit protect-
ed mode applications.) The WC3.EXE
game engine includes a built-in Exami-
nation Mode that provides general
development and debugging informa-
tion while the game is running. Devel-
opers can observe the status of the
numerous game engine flags, accumula-
tors, stack manipulation calls, and game
flow data such as act, scene, and mis-
sion information. I found several

undocumented keystrokes while explor-
ing game operation, and I’ll summarize
them further on.

Data Storage
Essentially all of the game data is stored
in files suffixed with TRE. (I will refer
to these data files as TRE files.) TRE
files use a very flexible, open-ended
data storage format that allows for very
large files. You can store hundreds of
megabytes of data in a single TRE file.

Listing 1 gives a general summary
of the TRE file format. The first four
bytes in the file contain the XTRE
ASCII text string. The XTRE string
possibly indicates this file contains
cross-referenced data records. The bytes
at offsets 8 to 23 contain four pointers.
The first three pointers give the file off-
sets (offsets into the TRE file with the
first byte in the file referenced as byte
0) of three data tables. The fourth
pointer gives the offset of the first Data
Record in the file.

The first data table in the TRE
file, the Indirect Record Pointer Table,
contains pointers (file offset values) that
reference data in the other TRE file
data tables. In C nomenclature, the
Indirect Record Pointer Table contains
pointers to pointers. The Indirect
Record Pointer Table entries “point” to
various “pointers” contained in other
TRE file tables. Each entry in this table
is an 8-byte structure. The first four
bytes are bit flags and the last four bytes
contain the pointer expressed as a 32-
bit long value. I observed that the Indi-
rect Record Pointer Tables of several
TRE files had “blanks” or empty data
slots. As I mentioned earlier, the TRE
file format is flexible and expandable,
and these empty data slots are probably
part of this expandable format.

The Path Name Table follows the
Indirect Record Pointer Table. Embed-
ded in this table are the ASCII text
strings of the source paths along with
binary (possibly file offset) data related
to each path name.

The Record Pointer Table follows
the Path Name table. The Record
Pointer Table contains the file offsets
and sizes of the Data Records stored in

C H O P P I N G B L O C K

GAME DEVELOPER • JUNE/JULY 1995 53

FILE DATA
OFFSET SIZE DESCRIPTION

0-3 char “XTRE” char string.
4-7 char Blanks. 4 bytes of 00.
8-11 long Starting Offset of the Indirect Record Pointer Table.
12-15 long Starting Offset of the Path Name Table.
16-19 long Starting Offset of the Record Pointer Table.
20-23 long Offset of the first Data Record in this TRE file.
24-(xx-1) var Indirect Record Pointer Table. This table contains indirect

pointers, or “pointers to pointers”. The values in this table
point into the Path Name Table or into the Record Pointer
Table.

xx-(yy-1) var Path Name Table. Table of variable-length records containing
system path names and other path-related data.

yy-(zz-1) var Record Pointer Table. This table consists of structures
containing the file offsets and sizes of the Data Records
in this TRE file.

zz-EOF var Individual Data Records.

NOTES:
1. var refers to data having variable sizes.
2. xx is the Starting Offset of the Path Name Table.
3. yy is the Starting Offset of the Record Pointer Table.
4. zz is the Offset of the First Data Record.
5. EOF refers to the end of the file.

Listing 1. General TRE File Format

the TRE file. The offset and size of
each Data Record is contained in an
eight-byte structure. The first four
bytes of each structure give the offset of
the Data Record as a long value and the
last four bytes contain the long size.

The individual Data Records follow
these tables. These Data Records vary in
size from just a few bytes to several
thousand bytes and contain the actual
game data—fonts, palettes, space and
vehicle graphics, mission data, game
flow data, artificial intelligence informa-
tion, and so on. Some of the game data
is stored in IFF format, which I’ll cover
in the next section.

Does the TRE file structure seem
a bit confusing? Although somewhat
difficult to understand, this file format
is cleanly organized. Basically, the
entries in the three data tables at the
top of a TRE file reference—or point
to—all the Data Records found in the
TRE file. In other words, these tables
tell the game engine where to find the
desired data.

As an example, let’s trace the path
the game engine follows to find a look-

up table containing the file names of
the Wing Commander III missions.
The game engine opens the GAME-
FLOW.TRE file and reads down the
list of entries in the Indirect Record
Pointer Table until it finds the entry
corresponding to our mission file name
look-up table. The engine reads the hex
values 62 2b 01 3f 84 07 00 00. As the
Indirect Record Pointer Table entries
showed us, the 62 2b 01 3f values are
bit flags and the 84 07 00 00 bytes con-
tain the long pointer.

The data beginning at hex offset
784 (don’t forget about the PC’s method
of storing data in low byte and high
byte format) references an entry in the
Record Pointer Table that reads as ae 13
f4 00 ac 04 00 00. Keeping in mind that
the Record Pointer Table contains the
file offset and size of the actual Data
Record, you’ll see the data for the mis-
sion file names is stored at hex offset
f413ae and is 4ac (hex) bytes in size. If
you verify my example by looking in the
GAMEFLOW.TRE file for the mis-
sion file names, you will see these
names (as ASCII text) listed using Ori-

gin’s IFF file format. This format is
discussed in the next section. Listing 2
gives a summary of the Wing Com-
mander III mission file names that
we’ve extracted from the look-up table.

IFF File Formats
Origin has used the IFF file format in
several games including Privateer,
Strike Commander, and Pacific Strike
(see “Bandits at 0x1200 High!” Chop-
ping Block, Dec. 1994, for a discussion
of the IFF files used in Pacific Strike).
To summarize the IFF file format, an
IFF file is composed of one or more
forms, with each form containing one
or more records. The following general
rules are used in IFF file formatting:
• All forms have a header consisting of

the “form” text string followed by a
4-byte number. This number is the
number of data bytes in the form.

• All records have a header consisting
of a record name (that can be up to
eight bytes of text characters) fol-
lowed by a 4-byte number. This
number is the number of data bytes
in the record.

• Records can be located both inside
and outside of a form.

Mission Ordering
Refer to Listing 2 and examine the hex
code that include the mission file name
look-up table we discussed previously,
and you will notice that each mission is
referenced by a unique record name and
data group. Each mission record name
is a text number and the data is a text
file name. For example, mission 0014 is
stored in file misnd003.

The first mission’s record name is
LOOK0000 (file name misna001) and the last
mission’s record name is 0066 (misnp000).
The missions are generally grouped
according to the space system in which
they are located. For example, missions
0036 (misnl001) through 0039 (misnl004)
occur in the Alcor System.

Even though the missions have
record names giving a one-up order, the
game engine does not play the missions
in the specified order. The order in
which the missions are played is deter-
mined by how well or how poorly the

C H O P P I N G B L O C K

54 GAME DEVELOPER • JUNE/JULY 1995

RECORD NAME RECORD DATA (MISSION FILE NAMES)

LOOK0000 0001 0002 0003 misna001 misna002 misna003 misna004
0004 0005 0006 0007 misnb001 misnb002 misnb003 misnb004
0008 0009 0010 0011 misnc001 misnc002 misnc003 misnc004
0012 0013 0014 misnd001 misnd002 misnd003
0015 0016 0017 misne001 misne002 misne003
0018 0019 0020 misnf001 misnf002 misnf003
0021 0022 0023 misng001 misng002 misng003
0024 0025 0026 misnh001 misnh002 misnh003
0027 0028 0029 misni001 misni002 misni003
0030 0031 0032 misnj001 misnj002 misnj003
0033 0034 0035 misnk001 misnk002 misnk003
0036 0037 0038 0039 misnl001 misnl002 misnl003 misnl004
0040 0041 0042 misnm001 misnm002 misnm003
0043 0044 0045 misnn001 misnn002 misnn003
0046 0047 0048 misnp001 misnp002 misnp003
0049 0050 misnr001 misnr002
0051 misnb2ne
0052 misnc2ne
0053 misnd3bd
0054 misnd1b
0055 0056 0057 0058 0059 0060 tsim001 tsim002 tsim003 tsim004 tsim005 tsim006
0061 misnl01d
0062 0063 0064 0065 tsim007 tsim008 tsim009 tsim010
0066 misnp000

Listing 2. The Mission Look-Up Form

player is performing. For example,
assume you, the player, are doing poorly
and you fail to complete mission 0039
(misnl004). (Mission 0039 requires that
you fly down to Alcor V, take out all the
ground installations, and rescue the sci-
entist who knows how to make the
Tembler Bomb.) This failure sends you
to the Proxima System to play missions
0049 (misnr001) and 0050 (misnr002).
(Mission 0050 is the horrid mission
where never-ending waves of enemy
Kilrathi appear; the game never ends
and you have lost.)

In a different scenario, if you are
doing well and complete mission 0039
successfully, you jump to the Freya Sys-
tem and begin mission 0040 (misnm001). If
all goes well after a few missions, you
will be heading to downtown Kilrah
with the Tembler Bomb during mission
0048 (misnp003).

Note that more than one mission
file can be played during a mission. For
example, consider mission 0041

(misnm002). The misnm002 file is played
during the initial space combat part of
the mission. Next, the misnm02g file
plays when the player is doing combat
on the surface of a planet. Lastly, file
misnm02b plays during space combat at
the end of the mission.

Now that I have explained IFF file
formatting and how the mission file
names are stored, I have a little home-
work for you. Try to find the look-up
table that contains the names of the
space systems. Hint: The space systems
IFF fi le data is in the GAME-
FLOW.TRE file. What is the record
data that corresponds to the record
name LOOK0000 in the space systems
look-up table?

Undocumented Keystrokes
I found several undocumented key-
strokes that are not referenced in the
game’s literature. These keystrokes only
appear to be active during the flight
mode (when you are in the cockpit fly-
ing a mission). The Alt-V keystroke
displays the game version and the file
name of the current mission. The dis-
played file name is found in the mission
file name look-up table previously dis-

cussed. The Ctrl-F keystroke toggles
the readout of the current frame rate in
frames per second. The Ctrl-M, Ctrl-J,
and Ctrl-K keystrokes select the mouse,
joystick, or the keyboard, respectively,
as your primary flight control device.

Make Your Missions A
Little Easier (Or Harder)
While playing through the various mis-
sions and scenarios I quickly decided
that my computer pilot needed help
surviving some of the missions. Altering
the game weapons (guns and missiles)
seemed to be the best method for
increasing my pilot’s survival time. I
wrote a utility called WCEASY that
edits most of the primary gun and mis-
sile parameters. The WCEASY.ZIP
routine can be found on CompuServe in
the Flight Simulation Forum (GO
FSFORUM), Space Combat Library.

If you want to write your own util-
ities for altering Wing Commander III
game play, let me warn you that the
Wing Commander III game engine is
very sensitive and very inflexible. The
complexity of this engine is such that
little allowance is made for altering
weapons or missions in drastic ways. (I
wrote an editor for Privateer, PRED-
IT, a couple of years ago that let you
add several hundred missiles to your
vehicle. Do not do this with Wing
Commander III!)

Also some of the mission (and
possibly other nonmission) data is
encrypted or somehow abbreviated in
structure—possibly a new type of IFF
file format. Unless you study this for-
mat carefully, I would not advise chang-
ing it. Any unallowed changes will at
best cause the game to halt and will
quite possibly crash your PC. (Don’t
forget to erase the Wing Commander
III swap file on your hard drive if your
PC crashes.)

Wing Commander III:
The Next Generation
The first two installments of Wing
Commander were impressive to say the
least. Wing Commander III is destined
to be a landmark that other gaming
companies will try to reach in the fore-

seeable future. The beauty of its graphic
renderings combined with a good, well-
acted storyline combine to create a clas-
sic game. I can honestly say that very
few games hold my attention long
enough to keep me playing and replay-
ing scenarios. I found myself constantly
wanting the current mission to be com-
pleted just so I could see what was
going to happen next. The term “Inter-
active Movie” doesn’t seem to do justice
to what Origin has created in Wing
Commander III.

Wing Commander III exacts a
high price in terms of system horsepow-
er. A Pentium is not required, but in
order to get the most from the game
you will need one. Testing the flight
combat sequences using VGA graphics
on my 486DX2/50 gave frame rates of
three-to-six frames per second during
periods of heavy combat action, and the
game occasionally hesitated for several
seconds in order to load the graphics
and sounds for explosions or new waves
of enemy vehicles. The loading times
ranged from 10 seconds during mission
waypoint sequencing to 70 seconds at
mission start up. Is a game with longer
loading times and lower frame rates
worth playing until I can upgrade to a
Pentium? If the game is Wing Com-
mander III, you bet it is! ■

Wayne Sikes has been a computer
hardware and software engineer for the
last 12 years. He has an extensive back-
ground in C, C++, and assembly language
programming. He also has several years
experience as a computer systems intelli-
gence analyst, where he specialized in deci-
phering and disassembling computer code
while working on classified government
projects. He has written game engines as
well as numerous computer gaming help
utilities. You can reach him via e-mail at
70733.1562@compuserve.com or through
Game Developer.

GAME DEVELOPER •JUNE/JULY 1995 55

E
mbarking on an ambitious
project such as a commercial
game can be a taxing experi-
ence, and it’s good to have
friends to help get you
through lean times. For two
programmers who had a
dream of starting a company

and writing their own three-dimen-
sional game, the journey from concept
to product became a real learning
experience.

Matt Toschlog first met Mike
Kulas in 1986 at SubLogic, where they
were both working on Flight Simulator
2 for 68000 series processors (Com-
modore Amiga, Atari ST, and Macin-
tosh). In 1988, Toschlog left SubLogic
for Looking Glass, where he worked
with Ned Lerner on the Car and Driver
computer game. Kulas joined them in
1990 creating game tools for Car and
Driver. While they enjoyed working at
Looking Glass both Toschlog and Kulas
yearned for something different.

Startup
Toschlog and Kulas had each worked on
a number of games for various compa-
nies and were interested in working on
their own creation. Originally, they had
kicked around the idea of doing an
indoor flight simulator using shaded
polygons, similar to the way they’d
worked on Flight Simulator 2. But after
working on Ultima Underworld they
realized that they could use texture
mapping to make the game more spec-
tacular. After considering this for a
while, they finally got together in April
1993 and wrote the two-page sketch for
Descent.

Their next step was to break away
and form a company. They settled on
the name Parallax studios and started
looking for a publisher. One of the first
companies they contacted was Apogee.
Scott Miller, the president of Apogee,
was excited by their proposal and set
them up with a contract. Over the next
nine months Parallax and Apogee

Descending
to the Top

What does it take to

start your own studio

and develop a new

game? In 1993, Matt

Toschlog and Mike

Kulas learned the

ropes when they

formed Parallax

studios. This is

their story.

Alexander
Antoniades

B Y D E S I G N

GAME DEVELOPER • JUNE/JULY 1995 57

Descent, the first game developed jointly by Matt Toschlog’s and Mike Kulas’s Parallax stu-
dio, takes place in a mine on a distant planet.

worked closely in putting Descent
together. Apogee supplied them with
money and experience the company had
gained making three-dimensional share-
ware games, while Parallax implemented
any artistic and structural changes that
Apogee requested.

While the relationship was work-
able Apogee had to break it off. Apogee
was in the midst of starting its three-
dimensional retail project (see “The Sul-
tans of Shareware Go Retail,” By
Design, Feb./Mar. 1995), and Descent
was entering a more expensive stage of
production. Soon Apogee became
overextended—it simply had too many
games in the works—and made a clean
break with Parallax.

So it came to be that nearly a year
later, in January 1994, Parallax Software’s
five-person team (Toschlog, Kulas, artist
Adam Pletcher, programmer John Slagel,
and level designer Che-Yuan Wang) was
almost as far from releasing its first game
as when it started. They had serious work
to do. Working from the code they had
finished, they spent the next three weeks
frantically putting a mock game to show
prospective investors. They sent the mock
up, with accompanying letters, to 50
game companies. From the 50 letters,
they received three replies, which turned
out to be two more than they needed.

Interplay was one of the three
interested. The company signed Parallax
up immediately. Interplay had been
eager to test the waters of the shareware
market ever since it had handled the
Macintosh release of Wolfenstein 3D.
Under the guiding hand of producer
Rusty Buchert, Parallax added two more
people to their team and ended up fin-
ishing Descent eleven months after
starting with Interplay.

Descent
One of the aspects that made Descent
unique was that it combined all six
degrees of freedom from a flight simula-
tor with the traditional Doom texture
mapping. Toschlog, Kulas, and their
team did this by placing the player in a
spaceship surrounded by robot adver-
saries. This let them create all the moving
objects using big polygons that could be

texture mapped and viewed from any
angle. The game takes place in a mine on
a distant planet, so there’s no sky to view,
and all of the remaining objects that
aren’t polygons are either rotated, so
they’re always facing the viewer, or situat-
ed in areas where they can’t be viewed
from above.

Early in the development process,
Parallax toyed with the idea of having
irregular objects that were flat bitmaps
rapidly shift to simulate different view-
points. But having over 70 bitmaps for
each stage of a movement ended up using
too much memory, hence the decision to
stick with simple polygons.

Even though Descent’s game play
didn’t change much from its beginnings
with Apogee, Toschlog and Kulas
learned more about project management
this time around. For example, Toschlog
observed that in a project of this size
almost all things need to be done onsite.
Sometimes they learned this the hard
way, as when the music files came back
towards the end of the project too large
to fit on two disks. A more positive sur-
prise development was that team mem-
bers like Adam Pletcher, who was hired
as an artist, would often make great sug-
gestions in areas outside of their special-
ty, such as game design.

Following the lead of many other
companies, Parallax used Doom as a
benchmark of what to include in its
game. While this took off the pressure of
worrying about things like cut scenes, the
team balked at including one of Doom’s
most popular features—Network play.
Parallax was reluctant to add networking
capability because the work required was
difficult, but the team also knew it was
important for comparison with Doom, so
they gave in. Interestingly, it was not net-
work bandwidth that instituted the
eight-player limit in the final version of
Descent, but the incredible slowdown
that occurred if more than eight players
were in the same room during a network
game.

One area where Parallax took a
definitive Doom approach was making
Descent a shareware release. This was a
decision made during the Apogee days
and Interplay decided to stick with it.

Despite the fact that Descent was no
longer being published by Apogee,
Apogee let Parallax post Descent on its
highly accessible Software Creations BBS
for distribution.

Despite careful planning and pro-
gramming there were some problems
with the 1.0 release of Descent. One bug
that bit Parallax hard was when robots
recharged their shields after the player
died, forcing the player back to the begin-
ning of the level. This took a terrible toll
on level 7 (the last level of the shareware
version), in which wearing down the
“boss” robot’s shield over the course of
many players’ ships was the strategy.
“People aren’t going to register a game, if
they can’t even finish the shareware lev-
els,” lamented Kulas.

After fixing the rejuvenated robots
bug, another aspect of gameplay was
criticized by Descent players. While
players could save pilots and return to
levels they had completed, there was no
in-level save game feature (as in
LucasArts’s Dark Forces). Convinced
that this was too popular a feature to
overlooked, Parallax added an in-level
save game option to one of its first
revisions.

Ascent
What does the future hold for Parallax?
First will be the CD-Enhanced version of
Descent, which will be to Descent what
Doom II is to Doom, that is, more levels
with a few new features. After that maybe
Descent II, but definitely Descent for
Macintosh, for Sega’s Saturn, and Sony’s
Playstation.

While the saying around Parallax
during the making of Descent was “This
project is our company,” in the future
Parallax will concentrate on two projects
instead of one. “We can’t compete with
Wing Commander III,” admits Toschlog,
but with two small teams of programmers
Parallax hopes its games will be written
and designed well enough that it won’t
have to. ■

Alexander Antoniades is Game Devel-
oper’s editor-at-large. Contact him via e-
mail at sander@mfi.com or through Game
Developer magazine.

B Y D E S I G N

GAME DEVELOPER • JUNE/JULY 1995 59

The Three Fs of 3D:
Features, Functionality,
And ’Fordability

A R T I S T ‘ S V I E W

T
hree-dimensional design is hot,
and you want it, but a high-end
workstation isn’t on your shop-
ping list just yet. Where does that
leave you? Well, hardware
improvements are making the PC
a more and more viable alterna-
tive, and PC-based three-dimen-

sional modeling, rendering, and animation
software is cropping up everywhere to cap-
italize on that fact. These products all
promise the moon, and the ads look swell,
but do they really deliver? And how usable
are they? This time around I’ll give you an
artist’s view of three packages representing
a broad range of features, functionality,
and price.

Working in the three-dimensional
arena is compute-intensive and on the
PC that can turn into a major time-
sink, with scene renders dragging on
interminably while your poor little hard
drive emits soul-wrenching little-
engine-that-could sound effects. Fortu-
nately, faster CPUs and system buses,
built-in floating-point units, and a new
generation of graphics accelerator cards
have greatly speeded the PC’s ability to
deal with the rigors of working in and
rendering three dimensions. While of
course you want all the processor speed
and RAM you can get your little meat
hooks into, fledgling three-dimensional
artists on a tight budget can squeak by
on a 386 with math coprocessor and
8MB RAM. Useful libraries of ready-
made objects and textures are generally
going to be on CD, so it would be a
good idea for even a minimalist setup to
include a CD-ROM drive.

Autodesk 3D Studio
Estimates show that 3D Studio now
accounts for more than half of the PC
modeling and animation market, which
makes it a natural standard for compari-
son. This magazine ran a more in-depth
overview of 3D Studio in a previous
article (“What is 3D Studio?” June,
1994), but since that time Autodesk has
come out with Release 4, and its new
features make a revisit worthwhile.

3D Studio runs in DOS, which
may seem something of an anachronism
these days. While the interface might
initially come across as clunky to Win-
dows-dependent users, given the pro-
gram’s depth it’s probably much more
usable than if it were icon driven. Five

The incredible can be made to look believable with the wide array of special effects
available to 3D Studio users. Shown, a scene from The Daedelus Encounter, a Mechadeus
title.

60 GAME DEVELOPER • JUNE/JULY 1995

modules make up the working area of
3D Studio:
• The 3D Editor, which allows the

user to create and alter objects and to
position virtual lights and cameras

• The 2D Shaper for creating spline
polygons, which then are used to
build three-dimensional objects or to
define complex paths for animations

• The 3D Lofter, where two-dimen-
sional polygons are built up into
objects

• The Materials Editor, to create and
edit surface materials

• The Keyframer, for animating lights,
cameras, and action.

The user moves back and forth
freely within these modules, which are
like task-specific workspaces. Release 4
features a significantly speedier 3D
Editor, which is where users spend
much of their time.

One great advantage of 3D Studio
is its support of network rendering.
Using a single copy of the software you
can add any number of networked com-
puters to a queue to participate in ren-
dering a project, essentially multiplying
your computer’s resources manyfold and
saving you valuable time. Multiple files
can be lined up for unattended network
rendering while 3D Studio manages the
workload, assigning tasks to slave
machines as they become available.

A 250-page manual is devoted to
outlining the many new features in
Release 4. One highlight is the Camera
Control and Perspective Match capabil-
ity, which aids in camera placement and
rendering for coordinating your view
with a scanned photo image. Another is
a Keyframe Scripting Language that

uses BASIC-like commands to build in
collision detection and elementary
physics. There’s also a Fast Preview fea-
ture that allows rendering modes from
wireframe to Phong-highlighted
Gouraud shading for full-color previews
of animations. Perhaps the coolest new
feature is the addition of Inverse Kine-
matics. This makes possible hierarchi-
cally linked object chains—such as
jointed limbs—that recognize range-of-
movement constraints.

While it is tempting to describe
3D Studio as fully featured, its tremen-
dous flexibility is further enhanced by
the availability of myriad third-party
plug-ins: alluring little extras that let
you, for example, twist, crumple, or
explode your three-dimensional cre-
ations or add smoke, snow, or fireworks
to a scene and much, much more.
Autodesk encourages developers to
build around its product and claims that
new plug-ins are coming at a rate of
about one a week—there are already
over 200 available. All of which makes
for a very richly featured tool, indeed.
And it can be yours for about $3,000
(third-party plug-ins, of course, are sold
separately).

But what’s it like to use? While the
breadth and depth of 3D Studio is a
spur to the imagination, the sheer scope
of it is also somewhat daunting. I found
the five manuals (that’s right, five) were
clearly written and well organized. They
include an excellent book of tutorials
that’s over 500 pages long yet still bare-
ly scratches the surface. Savvy users also
recommend Inside 3D Studio from New
Riders Publishing (Indianapolis, Ind.),
a hefty book of tips for newcomers and

You need to weigh

many factors when

choosing software

for three-dimension-

al design. Sure, it‘s

great if a tool is hip

and cool—but is it

affordable, usable,

and versatile?

David Sieks

GAME DEVELOPER • JUNE/JULY 1995 61

techniques for professionals, loaded
with hands-on examples. These and a
lot of patient experimentation will get
you going, as the interface—while not
necessarily intuitive—is certainly fairly
logical once you’re grounded. But keep
those manuals handy.

New users will quickly find that
complex paths for animating objects
and cameras can be achieved fairly easi-
ly. Geometric forms can likewise be
created, deformed, and combined with
relative ease to represent an armchair,
say, or a spacecraft. Even experienced
users, however, complain of the diffi-
culty of creating biomorphic forms.
One workaround is to check out plug-
ins from Crestline Software (Crestline,
Calif.), which offer virtual mannequins
with walk and run motion, facial
expressions and hand gestures. Crest-
line’s Tim Wilson says models of other
creatures, starting with dinosaurs, are in
the works.

Joel Gwynn, applications specialist
at Cambridge, Mass.-based Designers’
CADD Company, an Autodesk reseller
and design shop, finds that most 3D
Studio purchasers have a specific task in
mind when they begin. Designer’s
CADD can go onsite and train users
through that project so the knowledge
they’re gaining is immediately applica-
ble, which is a great way for a new user
to get up to speed. Check with your
Autodesk dealer about the availability
of training. There are also training sem-
inars from Autodesk University. If you
don’t have the luxury of a long stretch
for innocent, childlike exploration and
experimentation, that may be your best
bet.

Caligari trueSpace
Or maybe you’ll want to take a look at
what Caligari Corp. has to offer.
“Usable” is the word Caligari prefers in
reference to its product, trueSpace for
Windows. Rather than splitting func-
tions between various modules its so-
called “natural user interface” consists of
one large work area. Features are con-
tained on a single menu bar of icons,
with additional controls accessible via
pull-down menus. Objects are manipu-

lated onscreen in real time. All this is
geared toward making trueSpace more
readily understandable on an immedi-
ate, visual level.

And it is. Navigation around the
workspace could not be more straight-

forward. You can shift your viewpoint
up, down, and around in relation to the
scene or to a selected object, or along
the Cartesian axes. Objects, lights, and
cameras are all manipulated in the same
way. You can open smaller, auxiliary
view windows (and drag them to any
location on the screen) to display a
camera’s viewpoint or to show an
almost instantaneous preview of an ani-
mation or rendered scene.

I have only one gripe about the
interface, and it’s admittedly a niggling
one. The icon buttons are small and the
icons themselves rather obscure. As
your mouse pointer encounters each
icon, a brief description does appear in
the status bar at the bottom of the
screen. However, that means you have
to keep looking back and forth from the
toolbar to the status bar until you
become familiar enough with the loca-
tion and function of each button. That
comes with time, but it’s a little frus-
trating for the novice user, especially
since so much else about the program is

almost immediately comfortable. While
I’m griping, let me just add my hopes
that in future releases Caligari pays
more attention to documentation.

While trueSpace does not support
networkable functions, many users

speak favorably of its speedy rendering
time. Robert Riter of Megabyte Indus-
tries (Moravia, N.Y.) used trueSpace to
create three-dimensional animations for
the Dark Force Productions title
Wormhole and is using it throughout a
first-person action game of his own cur-
rently in development. A former 3D
Studio user, his experience is that ren-
dering tasks that might have run
overnight with that program can be
completed in a fraction of the time with
trueSpace.

He also finds trueSpace a far better
tool for character creation. Indeed, its
modeling tools are not only powerful,
flexible, and easy to use, they’re getting
better—trueSpace for Windows 2.0 was
in beta test when I wrote this, with
release expected for the summer of
1995. I’ve been working with the beta
myself for the past week and have been
impressed with the fluidity of the mod-
eling process. Deformation tools have
been improved over version 1.0 so that,
using the mouse, you can easily push

A R T I S T ‘ S V I E W

62 GAME DEVELOPER • JUNE/JULY 1995

Some users find the trueSpace interface lends itself more readily to character creation than
do other three-dimensional modelers. Here, a fighter wielding a 'body-ripper' from a game-
in-progress by Megabyte Industries.

and pull object faces to alter form. Cali-
gari has also added three-dimensional
Boolean operations, which means that
you can sculpt complex shapes as
though with a chisel, or by fusing three-
dimensional shapes together like lumps
of clay.

Another coup for Caligari is the
addition of real-time solid rendering. If
you’ve used a three-dimensional pro-
gram before to create anything more
than a simple geometric form, you
know how confusing it can get at times
to work in wireframe. With trueSpace
2.0, it is possible to work with rendered
solid forms onscreen in real-time. Two
renderers are included: 3DR, from
Intel, and Renderware, from Criterion
(wireframe is still also an option and
remains most useful for point editing).
I’ve found that 3DR updates the screen
much more quickly than does Render-
ware, though the colors tend to get
lurid. You can expect even better results
if you’re using one of the new graphics
cards, such as the Matrox Impression,
with built-in support for these APIs.

Some further improvements to
enhance the program’s creation of pho-
torealistic effects are the addition of
adjustable depth of field; Adobe Photo-
shop plug-in support; motion blur; and
new seamless procedural textures—
including wood, granite, and marble—
that allow user-definable settings for
roughness, scale, and color. trueSpace
2.0 will retain the $795 SRP and, if it’s
still not out by the time this hits the
stands, you can buy version 1.0 and get
a free upgrade from Caligari when the
new version does come to market.

Visual Software’s
Visual Reality
Visual Software (Woodland Hills,
Calif.) wants to maketh you like unto a
god. Yea, verily, and for cheap, too.
Their Visual Reality suite is a virtual
Swiss Army knife for the aspiring world
maker on a budget. It doesn’t attempt
to do everything, mind, and it’s not
exactly a quick learn, but what it does it
does thoroughly—and for under $300.

Visual Reality consists of five sepa-
rate but cooperative applications:

• Renderize Live is the workhorse of
the group. It serves as the stage
around which you place objects,
lights, and cameras and is also where
you will render final images or ani-
mations.

• Visual Model is where you create
three-dimensional objects that you
can then transfer to your scene in
Renderize Live.

• Visual Font makes possible three-
dimensional text objects with bevel-
ing and extruding properties.

• Visual Image is a two-dimensional
image editor.

• Visual Catalog organizes projects
from the preceding modules and
facilitates the sharing of resources
within the suite.

Visual Catalog is a new feature
with Visual Reality 1.5 and it’s a wel-
come addition that makes it much easi-
er to carry on a project between the dif-
ferent applications. Also the handbooks
for each module, previously available
separately, have been combined into
one integrated user’s manual. It’s well
written and helpful, filled with pointers
for optimizing performance as well as
aesthetic tips. The tutorials are in
depth, explaining each step of the

process rather than just providing a
quick run-through.

What Visual Software invites is the
creation of virtual worlds, and toward
this end Visual Reality’s set design tools
are impressive. The Light Designer in
Renderize Live provides complete con-
trol over light and shadow: define
ambient lighting, point lights, spot
lights, and area lights; specify color,
intensity, and attenuation, as well as
position and direction; shadows can be
enabled or disabled for each light, and
the intensity and sharpness of the shad-
ow set by the user. Photorealistic effects
are enhanced by adjustable distance
haze/fog levels and colors, and by cam-
era settings that simulate the look of
zoom and wide-angle lenses. Cameras
are also fully animatable (though it is
important to note that objects are not
animatable). Materials editing and
mapping capabilities are extensive, not
to mention that the package comes with
over 1,000 textures, including 200
seamless textures. Rendering options
allow for texture, bump, reflection, and
transparency mapping.

Visual Model, the arena for three-
dimensional object creation, is also
packed with features including Boolean

GAME DEVELOPER • JUNE/JULY 1995 63

Create your own virtual worlds with Visual Reality or sample one of theirs. The Northern
Castle is just one royalty-free three-dimensional environment available to game developers
in the Simply Scenes series from Visual Software.

operations for adding, subtracting, and
intersecting forms, along with the usual
editing tools. Unfortunately, I haven’t
found it very easy to make use of all
these goodies. Its method of defining
three-dimensional space is not very
intuitive, so that I’m always having to
refer to the manual to make sense of the
process. And the worlds I’ve created
with Visual Reality are lonely places,
given how difficult I’ve found it to
attempt organic forms in the modeler.

Speaking of lonely virtual worlds,
Visual Software is introducing a com-
panion series called Simply Scenes that
consists of fully rendered yet eerily
uninhabited royalty-free three-dimen-
sional settings for game developers to
use. You can take elements of the three-
dimensional environment and modify,
move, retexture, or even remove them
for use elsewhere. The idea is for
designers to place their own characters
and objects within these ready-made
scenes. A hauntingly beautiful fortress,
The Northern Castle, is one of the first.

There’s also a soup-to-nuts assemblage
of everyday settings such as a dining
room, a beach, and a country club lock-
er room. On deck are Western Town,
the Solar System, and Lunar and Sea
Colonies. You can wander alone
through each of these exotic locales for
a mere $49 per.

3D For You Too
We’ve looked at three significantly dif-
ferent programs, each with its own dis-
tinct advantages and disadvantages.
And the marketplace is crowded with
many more than I could profile here
even if I’d had the chance to use them
all, which I haven’t...yet.

If you’ve been thinking about mak-
ing the move to three-dimensional
design, think some more about just
what it is you hope to find in those
three dimensions. As these three exam-
ples show, there’s a wide range of
prices, features, and functionality to
consider. Asked to choose between
them, I’m not sure I could. I’d hate to

give up the depth afforded by 3D Stu-
dio, I love the natural feel of working in
trueSpace, and if I was just starting
with three-dimensional graphics the
bang-for-the-buck value of Visual Real-
ity would surely be tempting. Fortu-
nately, certain file formats are common
between programs, so if you do have
access to a variety of three-dimensional
software you can probably make use of
the best features of each.

If you’ve been using one three-
dimensional program and you’re not
satisfied with what you’ve been able to
do with it, there may be a better choice
out there for you. It doesn’t necessarily
mean spending more money this time
around, either. Rather, it’s that quest
for the brush that fits your hand. ■

David Sieks is a contributing editor
to Game Developer. Contact him via e-
mail at dsieks@arnarb.harvard.edu or
through Game Developer magazine.

A R T I S T ‘ S V I E W

64 GAME DEVELOPER • JUNE/JULY 1995

	back:

