
JULY 2003

G A M E D E V E L O P E R M A G A Z I N E

L E T T E R F R O M T H E E D I T O R

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Everard Strong estrong@cmp.com
Production Editor

Olga Zundel ozundel@cmp.com
Art Director

Audrey Welch awelch@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Jonathan Blow jon@number-none.com
Hayden Duvall haydend@3drealms.com
Noah Falstein noah@theinspiracy.com

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Monolith
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed Microsoft

ADVERTISING SALES
Director of Sales/Associate Publisher

Michele Sweeney e: msweeney@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 828.350.9392

Account Manager, Northern California & Southeast
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Recruitment
Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225

Account Manager, Western Region & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Account Representative
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz

Advertising Production Coordinator Kevin Chanel

Reprints Cindy Zauss t: 909.698.1780

GAMA NETWORK MARKETING
Director of Marketing Greg Kerwin

Senior MarCom Manager Jennifer McLean

Marketing Coordinator Scott Lyon

CIRCULATION

Group Circulation Director Catherine Flynn

Circulation Manager Ron Escobar

Circulation Assistant Ian Hay

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Executive Vice President & CFO John Day

Chief Operating Officer Steve Weitzner

Chief Information Officer Mike Mikos

President, Technology Solutions Group Robert Faletra

President, Healthcare Group Vicki Masseria

President, Electronics Group Jeff Patterson

President, Specialized Technologies Group Regina Starr Ridley

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, HR & Communications Leah Landro

Vice President & General Counsel Sandra Grayson

Vice President, Creative Technologies Philip Chapnick

W W W . G A M A N E T W O R K . C O M

✎

T here were so many sequels

at this year’s Electronic

Entertainment Expo that

next year I fully expect to

be attending a show called

“E4.” However, unlike many, I don’t see

the prevalence of sequels in a year such

as this one as a harbinger of certain

death for creativity in games. Rather, a

marketplace crowded by product of sim-

ilar quality inevitably drives innovation

for the sake of differentiation.

Sony, lord and master of all it surveys

— to the tune of 50 million Playstation

2s, 100 million original Playstations,

and well over 1 billion pieces of soft-

ware sold for both — bats its seductive

EYE TOY alongside the next GRAN

TURISMO. Microsoft, whose relatively

sparse stable of exclusive titles have had

difficulty combating the Xbox’s reputa-

tion as a Portbox, is positioning itself to

grab the transmedia brass ring through

the carefully concerted push of features

such as Xbox Live and new efforts such

as the Xbox Music Mixer — the light-

bulb of the integrated online living-

room entertainment hub may finally go

off over the heads of Xbox owners.

Besides these platform innovations, if

the majority of the console software on

offer looked like rehashes of hardware

launch titles (with multiplayer added),

that’s what console midlife is really

about: milking it. A well-sowed console

needs its bountiful harvest to help offset

R&D costs in the long run. Meanwhile,

PC games start to lift the skirt on what

the next generation will bring, and

graphics are only the beginning. Emer-

gent gameplay through nonscripted

interactions is redefining game design

the same way that texture mapping

redefined graphics.

For developers, the onus is now on

polish, both in production values and in

gameplay. What dogged determination

used to be applied to massaging per-

formance out of hardware must also be

applied to animation, effects, audio,

visual design, and gameplay fluidity,

whether you’re developing for Game

Boy Advance or the latest PC graphics

hardware. Real polish happens neither

overnight nor by accident; it has to be

scheduled and budgeted for, which

unfortunately leaves smaller, independ-

ent developers at a disadvantage unless

they are in a position to leverage suffi-

cient resources from a mutually commit-

ted publisher.

Polish is what consumers are now

able to discern most quickly. Games that

have similar graphics aren’t a threat to

market health as much as games that all

feel and play the same. Enticing polish

out of a development project doesn’t

require just money and a comfortable

schedule; developers must reexamine

their processes to enable refinement to

occur at this level throughout the devel-

opment cycle, from gameplay prototyp-

ing to art direction to entity planning to

play-testing.

Finally, in the spirit of market differ-

entiation, I’d like to present a list of 30

words that, when used in the title of a

game, render me unable to recall the

game or anything unique about it, a

phenomenon recently tested and proved

over the course of three days of E3. The

Oxford English Dictionary counts

171,476 words in current use. Next

year I’d like to see a few more of them,

and fewer of these:

Rogue. Call. Black. Destiny. Elite.

Ops. Spear. Hunt. Dungeon. Ninja.

Delta. Warrior. Ghost. Strike. Com-

mand. Dark. Legend. Star. Knight. Spy.

Assault. Evil. Force. Shadow. Siege.

King. Underground. Combat. Sword.

Pokemon.

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

2

Game Developer
is BPA approved

G A M E P L A N

Jennifer Olsen

Editor-In-Chief

www.gdmag.com

Sequels 2K3:
Beyond the Return of the Sequels

Designing for Other
Audiences

A lthough I agree with Jennifer

Olsen’s analysis of the challenges

women face in the game industry

(“What’s Good for the Goose . . . ,”

Game Plan, May 2003), I think her con-

clusions are incorrect. The reasons

women and minorities face challenges in

the gaming business have very little to do

with any kind of discrimination.

It takes a lot less effort to build a game

for yourself than to build one for some-

body else. Inexperienced young, male,

white game developers lack the skills to

design a game that would be of interest to

any other demographic group. They build

what they know. The industry as a whole

then produces only games that interest

themselves, creating the feedback loop

described in the Game Plan column.

The solution is for game production

companies to bite the bullet and put

forth the extra effort to hire experienced

developers that can actually design a

game for demographics other than them-

selves. I recently put my money where

my mouth is and, together with a few

fellow developers, funded a game for

eight-to-12-year-olds. The game was fin-

ished under budget and on-schedule, was

profitable in just a few months, and

nobody had to work overtime. And oh

yes, women made up 50 percent of the

development team.

Mike Kelleghan

Brainbarf.com (via e-mail)

Mystaken
Identification

A s one of the creators of the MYST

series, I couldn’t help noticing Hay-

den Duvall’s use of our work in “The

Price of Progress” (Artist’s View, May

2003). The article states essentially that it

behooves game creators to reuse technol-

ogy when doing sequels and uses the

MYST series to propel this argument.

While I agree with this in theory, using

Cyan and the MYST series as the poster

child for reuse of technology is pretty off

the mark. In fact, the two MYST series

images in the article are not only incor-

rectly described, they actually disprove

this theory completely.

The image at the left is supposedly

from “the original MYST.” The purpose

of this image is to show how technology

for an older product was used in its

sequel. Actually, this shot is from our

current project, URU: AGES BEYOND

MYST, which uses a completely new pro-

prietary engine we’ve developed here at

Cyan Worlds.

The image at the right is stated to be

from MYST III. Kudos — this image is
actually from MYST III, but unfortunately

MYST III used a completely different pro-

prietary engine, and it isn’t even ours.

Cyan Worlds licensed MYST III to Presto

Studios (may they rest in peace).

Contrary to the way the MYST series is

portrayed in the context of technology

reuse, Cyan Worlds (for better or worse)

may be riding the most varied produc-

tion/technology process in the history of

a computer game series.

Joshua Staub

Cyan Worlds (via e-mail)

Editor-in-chief Jennifer Olsen replies:
The images in question were selected and
captioned by the section editor, not by
the author, so we take responsibility for
both the inaccurate identification and the
general muddling of the larger issue. We
regret the error.

Inner Product Columns
at Work

I ’m getting into a higher-level scripting

system for player/entity state vari-

ables, so that we can script some time-

sensitive performance-based rewards

much like Jonathan Blow’s November

2002 column (“Toward Better Scripting,

Part 2,” The Inner Product) describes.

We’ve actually been using it for a while

to trigger special moves based on stick

input. So for example, one move is a

reverse backflip that gets triggered if the

player is pushing the stick hard in one

direction, then quickly pushes it the

opposite direction and hits a jump but-

ton. With a third-person tethered camera,

the axis of direction is arbitrary, since the

mapping of stick direction to player

movement is camera-relative. By checking

the ratio of the covariance major axis

length to minor axis length over one of

the shorter timeslices (“My Friend, the

Covariance Body,” The Inner Product,

September 2002), we can detect a quick

180-degree stick direction change along

an arbitrary stick axis.

Nate Burgess

Digital Eclipse (via e-mail)

j u l y 2 0 0 3 | g a m e d e v e l o p e r4

S A Y S Y O U
A F O R U M F O R Y O U R P O I N T O F V I E W . G I V E U S Y O U R F E E D B A C K . . .C

C
E-mail your feedback to

editors@gdmag.com, or write us at

Game Developer, 600 Harrison St.,

San Francisco, CA 94107

It takes a lot less effort to build a
game for yourself than to build one for

somebody else.

Falling dollars, rising units. The NPD

Group reported that total U.S. game

industry sales fell 2.4 percent in the first

quarter of 2003 compared to the same

time last year. However, unit sales grew

7.4 percent. The decline in total sales

and increase in unit sales were attrib-

uted to price cuts of hardware systems

in the second half of 2002. Videogame

hardware experienced a 12.6 percent

drop in dollar sales but a 16 percent

increase in units sold over Q1 last year.

Videogame software saw a 6.5 percent

increase in dollar volume and a 1.5 per-

cent increase in unit volume. In the PC

game market for the same period, dollar

sales fell five percent, and unit sales

decreased by 3.5 percent. Analysts pre-

dict that high-profile PC games such as

DOOM III and HALF-LIFE 2 will turn the

market around.

Atari and Firaxis deepen relationship. Atari

and Firaxis Games announced a new,

long-term development and publishing

deal that will bring a remake of Sid

Meier’s 1987 classic PIRATES! to the PC in

2004. Also included is CIVILIZATION

CONQUESTS, an expansion to CIVILIZATION

III, scheduled for a holiday release. The

deal also involves the transfer of rights to

Firaxis for several classic Sid Meier prop-

erties for future publication, and extends

to first rights of negotiation to Atari for

two future unnamed games.

New handhelds revealed. Competition heats
up. Following Nokia’s February intro-

duction of the N-Gage game deck, Sony

has announced a new portable game

platform, the PlayStation Portable (PSP),

which is scheduled for release in late

2004. Planned features include a back-

lit 480�272 TFT widescreen LCD with

a 16:9 aspect ratio; 3D capability; sup-

port for stereo sound and high-quality

MPEG4 video; and connectivity to a

PC, Playstation 2, or other PSPs via a

USB 2.0 port. PSP games will be avail-

able on 1.8GB Universal Media Disc

(UMD) cartridges.

Joining the competition is Tapwave’s

elusive Helix. It will include Palm OS

PDA functionality; a backlit 480�320

reflective TFT LCD, dual USB 1.1 connec-

tors, wireless multiplayer capability, sup-

port for high-quality sound and MPEG4

video, and graphics acceleration. Although

no specific games have been announced,

Tapwave has revealed partnership agree-

ments with Activision, Digital Eclipse,

Atari, and Midway Home. q

Send all industry and product
release news to news@gdmag.com.

j u l y 2 0 0 3 | g a m e d e v e l o p e r6

TTHHEE TTOOOOLLBBOOXX
D E V E L O P M E N T S O F T W A R E , H A R D W A R E ,
A N D O T H E R S T U F F

IGDA releases free business resources. The

International Game Developers Associ-

ation’s Business Committee is making

available resources for game develop-

ers to improve contracts, streamline

game submission processes, and edu-

cate developers on game industry best

practices. You can download these

resources from their web site at

www.igda.org/biz.

natFX 2.0 available for Maya. Bionatics has

released version 2.0 of their plant-mod-

eling software for Maya users. The ver-

sion will include the hybrid 2D/3D

technology found in their newly-updat-

ed version 1.8 for 3DS Max.

www.bionatics.com

Kaydara to release new Motionbuilder. Kay-

dara is planning to release a new ver-

sion of its 3D character animation soft-

ware, Motionbuilder 5.0, in July.

New features will include a storytelling

timeline integrating 3D animation with

audio, video, and camera shots;

improved character animation tools;

and customizable shortcuts for better

workflow. Motionbuilder 5.0 will be

available on Windows 2000, Windows

XP, and Mac OS X for $3,495.

www.kaydara.com

WildTanget goes retro. WildTangent

revealed their newest game platform,

RetroDriver, giving game developers

the ability to create and publish 2D

online games without needing Java.

The platform supports a range of pro-

gramming languages and includes all

of the nongraphical features of Web

Driver. The RetroDriver SDK will be

free for developers to download.

www.wildtangent.com

I N D U S T R Y W A T C H; K E E P I N G A N E Y E O N T H E G A M E B I Z | e v e r a r d s t r o n g

P
S I G G R A P H 2 0 0 3

SAN DIEGO CONVENTION CENTER

San Diego, Calif.
July 27–31, 2003
Cost: $50–$950
www.siggraph.org/s3003

G A M E D E V E L O P E R S
C O N F E R E N C E E U R O P E
EARL’S COURT CONFERENCE CENTRE

London, U.K.
August 26–29, 2003
Cost: $150-$650 (+VAT)
www.gdc-europe.com

E C T S
EARL’S COURT CONFERENCE CENTRE

London, U.K.
August 26–29, 2003
Cost: Free for industry members
www.ects.com

B U P C O M I N G E V E N T S

CCAALLEENNDDAARR

Atari has teamed up with Firaxis Games to
develop and publish new titles based on clas-
sics like Sid Meier’s PIRATES!

j u l y 2 0 0 3 | g a m e d e v e l o p e r8

M y employer, Rockstar

San Diego, is presently

switching over to flat-

screen displays for a

multitude of reasons:

Flat-screens use much less power, take up

less space, are easier on the eyes, and are

less blurry. However, flat-screens have

their share of disadvantages too: the reso-

lution is not as high as some CRTs, and

the color is not as accurate as a tube mon-

itor, though the latest generations are

much better at color accuracy.

For this review, I gathered four popu-

lar monitor makes and models and

hooked up each one up to a 2.3GHz

Intel box with an Nvidia GeForce4 Ti

4800 SE, comparing them side by side

based on common criteria: screen size

(20 inches), native resolution

(1600�1200), price range ($1,000 to

$2,000), availability, and expected usage

(game art creation). I ran a basic anima-

tion exercise through each, creating first

some texture maps in Photoshop, bring-

ing these into Maya, sculpting a basic 3D

object, and then running it through some

animation sequences. As I tested each

step, I looked at how the monitors

processed and output the data: How did

the colors differ on each monitor? What

kind of detail did each offer? Was there a

lot of gamma correction needed? What

kind of software came with it, and did

that affect how Photoshop or Maya

interacted with the screen? How was cus-

tomer support? Were the on-screen

menus easy to use?

Though a couple of the displays had

more bells and whistles than others,

overall they were all a much better

choice than a CRT.

Planar PL201M

W e have a few of the 19-inch

CT1904M Planar monitors here

at work, but the 20-inch for some reason

seems huge in comparison. The PL201M

has more resolution, more screen space,

and a better swivel mechanism. Setup

was a snap, and the color quality was

excellent once I figured out the menus.

The Good. I pulled the monitor out of

the box, plugged it in, and off I went.

Once I figured out the confusing menu

system, there was little need for fine-tun-

ing. The integrated speakers and head-

phone jack on this model were a nice

touch. As with all the monitors I

reviewed, the monitor angle was

adjustable to a point; not as moveable as

the new Apple iMac, but very adaptable.

As with every monitor I tested, there

was a slight divergence of colors in the

blue/magenta spectrum of the Photoshop

color picker, but other than that it per-

formed well in all my tests. The thin

form factor left plenty of depth on my

desktop once it was installed.

The Bad. Color tuning was a bit diffi-

cult due to a confusing menu, and the

bezel could be a bit thicker to keep the

background off of the screen (what’s

behind the monitor clashes with the data

on-screen).

NEC LCD2080UX

O n first glance, the ultra-thin bezel on

this monitor looked really cool, like

a flat sheet of graphics perched on my

desk. But, after using it for a while, the

absence of a bezel became a detriment, as

whatever was behind the monitor (say, a

Star Wars poster) mixed in with the data

on-screen. A frame around the screen helps

the eyes not to focus on the background

when looking at the edge of the monitor.

The Good. The NEC installed flawlessly

with no need for manufacturer’s drivers,

and color tuning was all set up; I didn’t

have to tweak it at all to get rich colors

and good contrast. When I did fiddle

with the menu system, it was easy to

understand and navigate. Testing showed

this monitor to be a great choice for

developers who have big black walls

behind their desks.

The Bad. The bezel on this monitor is

too thin. This might be a personal taste

issue, but I found that it didn’t keep the

distracting background of my messy

desk from interfering with the screen.

Also, despite wearing the highest price

tag of all four monitors tested ($1,699),

this monitor didn’t have the bells and

whistles I found so appealing in some of

the other monitors.

Dell 2000FP

F or console developers, a good space-

saving feature of a flat-screen moni-

tor is the ability to run component video

through it. Getting that big TV off your

desk is a definite plus. The only dis-

advantage of running the console

XX
P R O D U C T R E V I E W S

T H E S K I N N Y O N N E W T O O L S

S P E N C E R L I N D S A Y | Spencer is a technical artist at Rockstar San Diego, where
there are scary SUVs everywhere. You can contact him at slindsay@rockstarsd.com.

20-Inch LCD Display
Roundup

by spencer l indsay

through your main monitor is if you

have PC-based tuning widgets that you

need to access while viewing the game.

Although the Dell was the only monitor

that had the component video input fea-

ture, this feature is available from Sony

at a higher price range. The display was

a bit blurry until I installed the correct

drivers supplied with the monitor, but

once I got the thing set up, it performed

well through all the tests.

The Good. Another easy install and a

very clear display once the supplied driv-

ers were installed. The S/component

video input is a great addition for con-

sole developers.

The Bad. Setup was a bit more involved

and required special drivers.

Sony SDM-X202

T he Sony SDM-X202 has all the bells

and whistles and is priced better than

many comparable flat-screen monitors.

Setup was a breeze, the display clarity

and color were amazing, and the form

factor was nice and compact. Although I

had some troubles getting the Wacom

tablet to come up at first, I updated the

Wacom drivers and the problem went

away. USB, dual audio I/O, and a set of

speakers take care of a lot of extra desk-

top gizmos you would need with a less

gadgety monitor. Having two USB input

channels allows you to use this monitor

as a KVM switch if you use a digital and

an analog input.

The Good. The monitor was easy to set

up and performed well through all the

tests. The speakers and dual audio I/O

combined with the switchable USB con-

nections makes this monitor perfect for

game development, especially for those

of us with two computers. In addition to

the bells and whistles, the unit is well-

designed, neatly hiding the cables and

connectors behind a shield.

The Bad. There is only one extra

gizmo I’d like on this monitor, and

that’s a component video input.

Although S/component video input is an

option on other monitors, it would

make this unit the perfect game develop-

ment screen. I did have some startup

problems with my Wacom tablet, but

those were resolved by updating from

the Wacom site.

Although all of these monitors were

excellent in different ways, the Sony was

definitely the superior unit, with its mul-

titude of extra components. Based on all

my tests I’d first recommend the Sony

SDM-X202, while a good second alter-

native would be the Dell 2000FP.

Tommy Tallarico
Studios’ SFX Kit

by aaron marks

S ound Ideas has released a new sound

effects library designed specifically

for the game and interactive entertain-

ment industries, and it’s pretty darned

good. The SFX Kit, created by Tommy

Tallarico Studios, boasts seven CDs com-

prising 19,655 game-relevant .WAV

sound effects, arranged in 110 categories

with an included searchable database for

both Macintosh and PC. This collection’s

highlight is its utility — practically every

sound effect can be plugged straight into

a game off the shelf, either as a one-shot

or ready-made loop. The library even

comes packaged in a nice leather pouch

for convenient portability.

Sound categories are far-reaching and

grouped logically on each disk, ranging

from aircraft, vehicles, and machinery to

human sounds and footsteps, monsters

and magic, sports, weapons, and sounds

of destruction. Plenty of original sounds

make production in any game genre top-

notch. The eighth CD is the data disk,

containing files in Excel format, comma-

separated text, tab-delimited text, and a

fully functional, searchable version of

FileMaker Pro 5. With these, you can

import the sound lists into current search

software, or easily import any previous

sound effects database into FileMaker.

For years, game sound designers who

use the many film sound libraries available

on the market have had to do so with a lot

of extra work. Most libraries are released

as audio CDs, and for game guys, ripping

files between audio and .WAV formats can

be cumbersome. With The SFX Kit, you

can examine individual sounds right from

the editor, and open it directly or save it to

w w w . g d m a g . c o m 9

NEC LCD2080UX Planar PL201M Sony SDM-X202Dell 2000FP

MONITOR ROUNDUP
All 20-inch monitors reviewed had an on-
screen resolution of 1600x1200, with 16
million viewable colors.

PLANAR PL201M
www.planar.com
(503) 748-1100
STREET PRICE: $999

NEC LCD2080UX
www.necmitsubishi.com
(888) 632-6487
MSRP: $1,699

DELL 2000FP
www.dell.com
(800) 999-3355
MSRP: $999

SONY SDM-X202
www.sonystyle.com
(877) 865-7669
MSRP: $1,499

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

XXXX

XXXX

XXXX

XXXXX

your hard drive. It’s quick, painless, and

saves a tremendous amount of time with a

large project. This feature is by far the

biggest selling point for me, so my hat’s off

to Tommy and his crew for making game

audio professionals’ lives easier.

But what good is a sound library unless

it sounds good? The SFX Kit is profession-

al grade both in quality of the sounds and

the creativity behind them. I was able to

listen to almost every sound in the library

while working on a recent project, and

except for a few overmodulated files and a

limited amount of stereo files, the 44.1

kHz, 16-bit files sounded excellent. Joey

Kuras, the creator of most of this library, is

known in the industry for his sound design

talent, and it is a treat to have his creations

available for use.

Any discriminating sound designer

knows you are only as good as your tools.

With this set, you’ll sound professional

whether the sounds are used out-of-the-

box or for use in making fresh, innovative

sounds. At $695, this set is great for any-

one in the videogame business who is seri-

ous about making their sounds stand out.

XXXX | The SFX Kit |
Tommy Tallarico Studios |

www.sound-ideas.com/sfx-kit.htm

Aaron Marks is the author of The

Complete Guide to Game Audio (CMP
Books).

Visual SlickEdit 8
by justin lloyd

W hat has always been likable about

SlickEdit is its start-up speed. It’s

as fast as Notepad, making it an ideal

replacement general text editor. It opens

Microsoft Developer Studio projects

faster than Dev Studio.

SlickEdit supports a wide range of lan-

guages and project environments, and

there’s new support for pre- and post-

build steps. It now supports Borland

JBuilder, Visual Studio .NET, C# for

Linux and UNIX, several scripting lan-

guages (Lex, YACC, ANTLR), Verilog,

SAS, and XML schemas, and has

improved support for Apache Jakarta Ant

and various flavors of makefiles. XML

editing is easy and powerful using a tree

view, and SlickEdit lets you add, remove,

and search XML elements and XML

attributes via either local or HTTP-locat-

ed DTD.

SlickEdit’s tagging feature automatical-

ly tags source files in a project, looking

for keywords, function definitions, and

class declarations in each file, and builds

a navigation map. The map enables the

auto-completion features (such as param-

eter type matching, class/structure mem-

ber lists, and syntax expansion) to oper-

ate, and aids in moving around projects.

XP R O D U C T R E V I E W S

10 j u l y 2 0 0 3 | g a m e d e v e l o p e r

New to version 8 is the wildcard feature,

with which you can add entire directory

groups to a project rather than individual

directories. Since tagging can take several

minutes on very large projects, scheduled

tagging can be executed from the com-

mand line at a convenient time. You can

add tag files that have been created and

maintained by another developer for

libraries to which you do not have source

code access.

Recent versions of SlickEdit have

introduced a native Java Debugger for

any JVM via the Java Debug Wire

Protocol (supports JDK 1.3.1 and

above), giving debug access to all the

debug tasks, such as single stepping, vari-

able watches, stack dumps, and break-

points. Added to the Java Debugger in

version 8 is the ability to edit-compile-

continue, allowing you to edit source

code during a debug session and then

continue without restarting the program.

The GNU C/C++ Debugger has not been

neglected, having been extended to facili-

tate debugging of remote processes.

While SlickEdit supports all the major

version control systems, version 8 offers

tighter CVS integration, including view-

ing of histories, single- and multi-file

updates, commits, and comparisons, all

from within the program via an easy-to-

understand interface.

For complex merge operations, Visual

SlickEdit has always offered some of the

best tools around. These tools have now

been improved with the new three-way

merge ability with multiple windows and

shortcuts.

I had gotten used to WndTabs in

Microsoft Developer Studio, so I was

pleasantly surprised to see “Buffer Tabs”

added to Visual SlickEdit. Buffer Tabs

perform the same job as WndTabs by

displaying a tab for each source file that

has an open window.

Small interface changes made to the

color-coding dialog and the extension

options dialog, plus the introduction of

Find/Replace for multi-file operations,

make everything move a little more

smoothly. The code beautifier has been

updated to handle the new languages,

and the internal FTP client now supports

Secure FTP.

Visual SlickEdit continues to improve

in leaps and bounds with every version.

It is what every other code editor aspires

to be, and what every integrated develop-

ment environment should be. Version 8

supports nine keyboard/mouse emulation

modes and more languages and project

environments than you can shake a stick

at, while the powerful Slick-C macro lan-

guage and plug-in extension architecture

ensure that custom, project-specific fea-

tures are easily added.

Visual SlickEdit’s pricing is based on

platform, so it’s best to consult the latest

information on the company’s web site.

There you will find an unusual 50 percent

discount as a competitive upgrade incen-

tive for people considering moving from

another software package. Some consider

SlickEdit to be expensive, but realize that

it is so much more than “just an editor.”

It can replace your current editor/IDE of

choice, while adding a slew of extra fea-

tures to sweeten the transition. q

XXXXX | Visual SlickEdit 8 |
SlickEdit Inc. |

www.slickedit.com

Justin Lloyd has over 18 years of com-
mercial game programming experience.

w w w . g d m a g . c o m 11

XP R O D U C T R E V I E W S XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

With a fast start-up speed, Visual SlickEdit 8 is
an ideal replacement general text editor, sup-
porting a wide range of languages.

W ith broadband capa-

bilities finally reach-

ing an oft-trumpeted

mass-market that

failed to materialize

in the early days of 2000, browser-based

games are experiencing not so much a resur-

gence as outright commercial success.

PopCap, founded in 2000 by friends Brian

Fiete, John Vechey, and Jason Kapalka, has

seen its success — backed by such popular

titles as BEJEWELED, BOOKWORM, and

INSANIQUARIUM — rise alongside broadband-

based entertainment’s rising popularity.

Game Developer talked to Brian Fiete

about how PopCap survived those earlier,

unstable times and how they are transition-

ing to stay fresh and grow — both as a

company and in their product selections —

in an expanding industry.

Game Developer: When you formed PopCap
in 2000, what promise did broadband hold for you?

Brian Fiete: In the beginning we were attracted to creating

web games because of the huge potential audience, the shorter

development cycles, and because most of the web game content

that existed around that time was terrible. We really felt that if

we created kick-ass games that people loved there was no way

we could fail. Developing web games was never supposed to be

a terrifically clever business move, we were only interested in

staying independent and making enough money to afford

ramen, rent, and spiffy computer upgrades.

GD: You started offering enhanced downloadable versions of your
games. How and why did you come up with that strategy?

BF: Things were looking a bit bleak before we tried selling

Deluxe versions of our games. People were a bit pessimistic

about that concept, though, as shareware titles rarely bring in

any real money for anyone. Now that the Deluxe versions are

selling like hotcakes, we pretend we knew it would work all

along.

GD: Can you give us an idea of what your sales have been like
since PopCap’s 2000 launch?

BF: 2001: a little money, 2002: millions, 2003: junkloads. The

long version: We were just starting out in 2001 and though we

had what we thought were a lot of sales and were generating

$30-40,000 a month, it was nothing compared to what we did

in 2002 once we had more products, understood the business,

and had partnered with most of our target major portals. 2003

is turning out to be our best year yet, since now everyone under-

stands marketing the products better, we have

more hits, and we're making more money and

sales from markets such as handhelds and

mobile phones.

GD: Forming a company with three people, did
you have a clear division of labor before forming
PopCap? How has that changed with growth?

BF: Jason did the game design and art, I did

all the programming, and John was responsi-

ble for handling the biz stuff. The team

dynamic was great, things instantly clicked,

and we made a lot of progress in a short

amount of time. Now that we’ve expanded I

think we’ve done a good job building out a

team that has the same spirit we started with.

GD: Did you start PopCap with a detailed mis-
sion plan of where it was headed?

BF: I think the mission plan was something

like “Step 1: Make games. Step 2: Don't

suck.” But aside from a desire to do the right

thing in web game development, we really

didn't have any idea. Since launching, we have found that we

can make compelling games by distilling a concept down into a

small but complete and consistent experience. These days we're

more likely to be looking for ways to trim a product down even

more than to add to it.

GD: In developing new games for browser-based use, what are
your top considerations?

BF: The most important thing is that it must be instantly

understandable. If a user feels confused during even the initial

presentation of the game, it’s likely he will move on to some

other game. Even if the game had all sorts of complexities under

the surface, you must present it in a way that is very approach-

able where new game play concepts are slowly added. Aside

from that, size and compatibility are important (we try to make

sure our games work on 1998-era computers with 4.0 browsers

and 56K modems). Creating an interface/control scheme that

works well in a browser window is important too. Oh, and stay

away from arrow-key controls.

GD: How do you instill a creative, while still productive, atmos-
phere at PopCap?

BF: For me, creativity is the spark which fuels production. A

great idea has little value until you see it through to implementa-

tion. At PopCap we feed off of each others ideas and we all share

in the high of building something that we can really be proud of.

I guess the big thing is that at the core we are all just naturally

hard workers and live for the challenge of figuring out how to

make the next game the best one we have ever made. q

j u l y 2 0 0 3 | g a m e d e v e l o p e r12

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | e v e r a r d s t r o n g

Step 1: Make Games
Step 2: Don’t Suck

Brian Fiete Distills PopCap’s Browser-Based Success

“The last name is pronounced ‘feet,’ as in
stinky feet, big feet, ‘Mr. fatty fatty feet
man.’ Now you can understand why I
was shunned and turned to the dark,
dark world of game development.”

j u l y 2 0 0 3 | g a m e d e v e l o p e r14

j o n a t h a n b l o wI N N E R P R O D U C T

T his series of articles is about

level-of-detail for large trian-

gle soup environments. Such

environments must be divid-

ed into chunks; the biggest

issue in this kind of system is filling in

the holes between neighboring chunks at

different levels of detail. I fill these holes

with small precomputed triangle lists

called “seams,” and earlier in this series I

showed how to construct these seams.

In Part 3 (May 2003), I showed how

to split a single chunk of geometry into

two, and how to generate the initial seam

between them. Last month, in Part 4, I

split a chunk that is connected via a seam

to another chunk, while maintaining

existing manifolds. I mentioned that this

is sufficient to build a chunked BSP tree

of the input geometry, and I showed

some code that split the Stanford Bunny

by arbitrary planes and played with the

LOD of the various pieces.

This month, I’ll begin with that basic

premise of building a chunked BSP tree.

Before long I’ll be rendering a large envi-

ronment with this system, not just a

bunny.

To render a large environment I’ll

focus on three major parts of the algo-

rithm: (1) dividing the environment into

initial chunks, (2) putting those chunks

together into a detail-reduced hierarchy,

(3) choosing which levels of the hierarchy

to display at run time.

Dividing the
Environment

I don’t want to assume anything about

the shape of the environment. Maybe

it’s a big localized block like an office

building, or maybe it’s a loose set of tun-

nels that curve crazily through all three

dimensions. An axis-aligned approach to

segmenting the geometry, like a grid or

octree, would work well for the office

building but not for the tunnel. The

chunked BSP treatment is nice because it

doesn’t much care how pieces of the

environment are oriented.

I needed a method of computing BSP

splitting planes. Most game-related BSP

algorithms divide meshes at a one-poly-

gon granularity, so to acquire a splitting

plane they pick a polygon from the mesh

and compute its plane equation. But

that’s the kind of thing I am trying to get

away from — thinking too much about

single triangles violates the spirit of the

algorithm. I want a more bulk-oriented

approach, so I statistically compute a

plane that divides the input into two

subchunks of approximately equal trian-

gle counts.

There are other

things I might wish

to do besides mini-

mizing the difference

in triangle count

between the two sub-

chunks. I might wish to produce sub-

chunks that are as round as possible, so

that I don’t end up with a scene full of

long, sliver-shaped chunks. I might wish

to balance the number of materials used

in each chunk. Most probably, I’d whip

up a heuristic that combines many

parameters and makes trade-offs to

achieve a happy medium.

To compute the splitting plane in a

quick-and-dirty way, I treat the chunk as a

bunch of point masses, one mass located

at the barycenter of each triangle. I then

compute the vector-valued mean and vari-

ance of these masses (see “My Friend, the

Covariance Body,” The Inner Product,

September 2002). This gives me an ellip-

soid that summarizes the mass of the

chunk, as though that mass were normally

distributed. I then split that ellipsoid in

half, using a splitting plane that passes

through its center and spans the ellipsoid’s

two minor axes. I use the minor axes

because this produces halves of minimum

eccentricity — in other words, pieces that

are “the most round.” (I might produce

pieces that are more nicely shaped by

choosing not to split the ellipsoid through

the center). See Figure 1 for a 2D illustra-

tion of the splitting-plane computation.

Combining Chunks
into a Hierarchy

T his LOD rendering algorithm doesn’t

place many constraints on the way I

organize my chunks. It wants an n-ary

tree with hierarchical bounding volumes

that help me choose detail levels. I’ll talk

about computing those volumes in the

J O N A T H A N B L O W I Jonathan can
be reached at jon@number-none.com. There’s
enough built-in stress in marriage without
noise contributing.

Part
5Unified

Rendering

FIGURE 1. Some triangles (yellow); their
barycenters (white dots); the ellipsoid,
drawn at 1.7 standard deviations, that we
get from treating these barycenters as point
masses (blue); and a splitting plane that
spans the minor axes and passes through
the center of the ellipsoid (red).

LOD

following section; for now I’ll only dis-

cuss putting the chunks together.

First, I need to decide on a policy about

which chunks to combine. The easiest

choice is to use the hierarchy that was cre-

ated by the BSP splits. I would combine

two chunks into one, detail-reducing to a

given triangle budget at each level, until I

once again reach the root of the BSP tree.

This is easy because I don’t have to

think much, and in fact it’s the first thing

I implemented. Clearly, though, it may

not produce the best results. For one

thing, in any tree structure like this I end

up with nodes that are neighbors spatially

but far apart in the hierarchy. In terms of

scene quality it may be best to combine

these nodes early, but they won’t be com-

bined until the level of detail becomes

very low. Second, I’d like the freedom to

combine more than two chunks at once.

The preordained BSP hierarchy does not

provide much freedom.

So instead, I take the chunk geometry

stored on the leaves of the BSP tree,

throwing away the tree structure itself.

Then I cluster the chunks using a heuris-

tic that is independent of the original

chunking process. This lets me match any

number of chunks together, building a

new n-ary tree from the leaves to the

root. At each level of the n-ary tree, I

combine the participating chunks and

seams into one mesh, and then run a stat-

ic LOD routine on that mesh. This is the

same thing I did with the terrain hierar-

chy from Parts 1 and 2 (March and April

2003), but now the environment repre-

sentation is less restricted.

You can imagine many different poli-

cies for choosing the triangle budget for

each node in this geometric hierarchy. In

the sample code, my heuristic is that each

node should have approximately the

same number of triangles (for example,

4,000). So the BSP splits occur until each

leaf has about 4,000 triangles; then I dis-

card the BSP tree and begin combining

leaves four at a time, LOD-ing each com-

bination back down to 4,000 triangles.

So in the end, I have a 4,000-triangle

mesh at the root that represents the

entire world, with subtrees containing

higher-resolution data.

Choosing Which
Resolution to Display
at Run Time

S o these hierarchical chunks are repre-

senting world geometry; at run time I

need to choose which chunks to display.

Typically, LOD systems estimate the

amount of world-space error that would

be incurred by using a particular level of

detail; they project this error onto the

screen to estimate how many pixels large

it is, then use that size in pixels to accept

or reject the approximation.

Algorithms from the continuous-LOD

family tend to perform this operation for

each triangle in the rendered scene. How-

ever, I want to operate at a larger granu-

larity than that. I could do that as fol-

lows: for each chunk, find the longest

distance by which the LOD’d surface dis-

places from the original, pretend this

error happens at the point in the chunk

that is nearest to the camera, and use the

corresponding Z-distance to compute the

error in pixels.

It’s customary in graphics research to

take an approach like this, since it’s con-

servative: it’s possible to achieve a quality

guarantee, for example, that no part of

the chosen approximation is rendered

more than one pixel away from its ideal

screen position.

But with graphics LOD, this kind of

conservatism is not as fruitful as one

might assume. When choosing LODs

based on the distance by which geome-

try pops, such a system ignores warping

of texture parameterizations, changes in

tangent frame direction, and transitions

between shaders. The popping distance

can be vaguely related to some of these

things, but in general it only controls a

portion of the rendering artifacts caused

by LOD transition. Even with a strict

bound on popping distance, there is no

guarantee about the quality of the ren-

dered result.

In addition, this conservative

approach can be harmful to perform-

ance. To provide that somewhat illusory

guarantee, the algorithm must behave

quite pessimistically (for example,

assuming that the maximum popping

error occurs at the position in the chunk

closest to the camera at an angle that is

maximally visible). This causes the algo-

rithm to transition LODs earlier than it

should need to.

I suggest we acknowledge the fact

that, when tuning LOD in games, it’s

standard practice to tweak some quality

w w w . g d m a g . c o m 15

FIGURES 2A-C. (A) QUAKE 3 level “hal9000_b_ta.bsp,” by John “HAL9000” Schuch, rendered using the LOD system. (B) Chunks have been drawn
with color coding showing their resolution level. (C) Level chunks artificially moved apart so you can see the seams (white bands).

CBA

parameters until we find a sweet spot

that gives us a good balance between

running speed and visual quality. So it

doesn’t matter how many pixels of error

a particular LOD parameter represents,

because we don’t set the parameter by

saying, “I want no more than 0.7 pixels

of error,” we set it by tweaking the

pixel-error threshold until we decide

that the result looks good. Whatever

number of pixels is produced by that

tweaking, that’s what the answer is.

Conservative bounds are not specially

meaningful in this situation.

In this month’s sample code (available

for download at www.gdmag.com), I

approximate the spatial error for a

given LOD without using a conservative

worst-case. I do this by finding the root-

mean-square of all the spatial errors

incurred during detail reduction. Recall

that I’m using error quadric simplifica-

tion, so squared spatial errors are easy

to query for. I take each quadric Q and

zero out the dimensions having to do

with texture coordinates, which gives

me Q�. Then I find vTQ�v, where v is

the XYZ-position of a vertex in the

reduced mesh and Q is its error quadric.

That product yields the squared error; I

find the mean of all those squared

errors and square-root that mean.

This gives me an error distance in

world-space units. I use this distance to

compute a bounding sphere centered on

the chunk, whose radius is proportional

to the error distance. If the viewpoint is

outside the sphere, I am far enough from

the chunk that I don’t need more detail,

so the chunk is drawn. If the viewpoint

is inside the sphere, I need more detail,

so I descend to that chunk’s children.

The radius is proportional to the

error distance because perspective

involves dividing by view-space z. For

chunks within the field of view, view-

space z is approximately equal to the

world-space distance from the camera to

the chunk, which is why world-space

bounding spheres make sense. The con-

stant of proportionality is the LOD

quality level, which you can adjust at

will. You need to make sure that the

spheres are fully nested in the chunk

hierarchy, which means potentially

expanding each node’s sphere to enclose

its children’s spheres.

These spheres can be viewed as isosur-

faces of continuous-LOD-style pixel

error projection functions. For more in

the way of explanation, see my slides

from Siggraph 2000, as well as Peter

Lindstrom’s paper (both are in the For

More Information section). Both refer-

ences describe continuous LOD schemes,

so I don’t recommend you implement

either, but the discussion of isosurfaces

can be useful.

Back to talking about nested spheres.

j u l y 2 0 0 3 | g a m e d e v e l o p e r16

I N N E R P R O D U C T

To keep things simple, I have so far pre-

tended that an LOD transition is per-

formed exactly when the viewpoint

crosses one of those spheres. But as you

know from Part 2 (April 2003), we actu-

ally want to fade slowly between LODs.

In the sample code this is done by com-

puting two radii, one that is greater than

the instant-transition radius, and one

that is less than it. LOD fading begins

when the viewpoint crosses one sphere

and ends when it crosses the other.

You can easily imagine more sophisti-

cated methods of computing LOD

sphere radii. Perhaps you want to ren-

der approximately the same number of

triangles every frame, no matter where

the player is standing in the environ-

ment. You could run an energy mini-

mization system at preprocess time,

expanding and contracting the spheres

until you achieve something close to the

desired result. Or instead of tweaking

radii, you could leave radii fixed and

adjust the actual number of triangles

used in each LOD chunk.

Sample Code and
Future Work

T his month’s sample code preprocesses

and renders QUAKE 3 .BSP files. You

can see the results for one such environ-

ment in Figures 2a–c. The code does

everything discussed in this article. It’s

not yet a plug-and-play system for gener-

alized use, but it’s a good starting point if

you want to do LOD experiments or

make custom tools.

Because the system stores triangle soup

meshes, the file size for the environment

might end up being very large. A lot of

space is needed to store a mesh of a

height-field terrain than for height sam-

ples. To alleviate this problem, it may be

worthwhile to investigate mesh compres-

sion. Perhaps that will be a good topic

for some future articles. q

w w w . g d m a g . c o m 17

F O R M O R E I N F O R M AT I O N

Blow, Jonathan. “Terrain Rendering
Research for Games.” Slides from
Siggraph 2000. Available at
www.red3d.com/siggraph/2000/
course39/S2000Course39SlidesBlow.pdf

Lindstrom, P., and Pascucci. V.,
“Visualization of Large Terrains Made
Easy.” Proceedings of IEEE Visualization
2001. Available at
www.cc.gatech.edu/gvu/people/
peter.lindstrom

Gottschalk, S., M. C. Lin, and D. Manocha,
“OBB-Tree: A Hierarchical Structure for
Rapid Interference Detection.”
Proceedings of Siggraph 1996. Available
at http://citeseer.nj.nec.com/
gottschalk96obbtree.html.

A R T I S T ’ S V I E W h a y d e n d u v a l l

j u l y 2 0 0 3 | g a m e d e v e l o p e r18

A s anyone who is familiar

with my writing will be

aware, I don’t know too

many long words. If I

manage to slip in the

occasional “serendipity” or “falsifica-

tion,” I am happy. Today, however, I

have finally found myself in a position to

use a word of no fewer than 20 letters in

length — if only my high school English

teacher could see me now. And what is

this word, you ask? The word is “com-

partmentalization.”

Now, I know that for a word of this

length it doesn’t have the intellectual

overtones of something like anthro-

pophaginian, or rhombicosidodecahe-

dron, but unlike those words, compart-

mentalization affects all of us in one way

or another throughout our lives, and it

has some bearing on game art. If you

look at my photo that accompanies this

article, you will notice two things: first, I

am about as photogenic as a bag of pota-

toes, and second, my hair is not of tradi-

tional coloration. Not surprisingly, blue

(or whatever color) hair is the perfect

excuse for complete strangers to place me

in a box labeled “Warning: Social

Deviant. Keep away from children and

small animals.” It doesn’t matter that I

am a father of four who drives a minivan

and likes cooking, the compartment that

I fit into for those who don’t know me is

the same one that would be chosen for

most anyone one with odd hair, clothes,

piercings, or tattoos.

Breaking the world down into cate-

gories that can be used quickly to inter-

pret what we see and experience, instead

of having to evaluate everything fully

from scratch, helps people expedite the

vastly complex processes of daily life.

Making comparisons in our mind to past

experiences and their subsequent out-

comes as well as consulting information

we have absorbed from our environment

helps us to make decisions and gives us a

wealth of information that we can draw

upon at any time.

The process of compartmentalization

is largely implicit or unconscious, but in

some areas, grouping things by expecta-

tion or generalized content is explicit,

specifically when we talk about things

such as genre. As with film, videogames

are readily broken down into categories

where the content is broadly definable as

sci-fi, horror, adventure, and so on.

There are, however, more specific game

types that allow us to further compart-

mentalize individual games with labels

such as FPS, RTS, and sport sim.

Genre conventions are by their nature

generalizations and can be viewed nega-

tively if they are seen as stifling originali-

ty. On the other hand, it is realistic to

assume that now, as with the movie

industry, every release will be catego-

rized, with a vague genre assigned

whether it fits or not. This tendency is

largely to facilitate the marketing, but it’s

also a by-product of the human urge

toward compartmentalization.

In light of this trend, artists in the

game industry must face an array of

issues that stem from the inevitability of

genre art if we are to get the best results

from our work. This article will look at

the first-person shooter with a view to

establishing some of the ways in which

we can make the most of the genre rather

than simply being overrun by it.

Shooting in the First
Person

T he first-person shooter has come a

long way since the early days of

WOLFENSTEIN 3D and DOOM, and per-

haps more than any other gaming genre,

it places a huge premium on graphics. To

some extent you can say this about most

types of games at present, but the FPS

scene is driven by influential developers

fed by the technology race to constantly

deliver the next big thing in visuals. In all

the graphical advancements over the last

decade, many of them have been herald-

ed by a flagship FPS game that exploits

the new technology on show.

HAYDEN DUVALL I Hayden started work in 1987, creating air-
brushed artwork for the game industry. Over the next eight years,
Hayden continued as a freelance artist and lectured in psychology at
Perth College in Scotland. Hayden now lives with his wife, Leah, and
their four children, in Garland, Texas, where he works as an artist at
3D Realms. Contact Hayden at haydend@3Drealms.com.

Genre Art, Part 1:
Working within an FPS

DOOM III’s release is expected to motivate
games to upgrade their existing hardware.

Predominantly a PC-led genre (although

this is certainly changing), FPSes attract

prominent developers who have tradition-

ally been able to focus on cutting-edge

technology that will allow them to aim at

high-end systems, regardless of the restric-

tions that this puts on their potential mar-

ket. The gaming hard-core are pretty

much guaranteed as consumers, and the

buzz generated by a “spectacular new

game that pushes graphics to the next

level” can motivate a reasonable percent-

age of more casual gamers to upgrade

their hardware.

In addition to the graphics focus at

the consumer end, a selection of FPS

developers are also highly focused on

licensing their technology. The game

itself then becomes part demo and as

such needs to impress with its bells and

whistles. As an artist in this kind of situ-

ation, it is a great opportunity to sail

into uncharted graphics territory, giving

us more tools in our bag of tricks but

also pushing us to learn new techniques.

Outside of this relatively small group,

however, there are still many, many

FPSes in production using older (and

cheaper) licensed technology or internal-

ly developed code, and from an artist’s

point of view, similar areas that need to

be considered regardless of the technolo-

gy involved.

Weapons

W hat is the essence of the visual

experience of playing an FPS? It’s

a hard question to answer, as UNREAL

isn’t the same as HALF-LIFE and HALO is

hard to equate with something like DEUS

EX, but there are some component parts

that are similar.

First, an FPS focuses by definition on

the shooting. The generalized gameplay

premise of most FPS games is to tra-

verse the game world achieving certain

goals that advance you toward the end,

killing hordes of rampaging aliens, mon-

sters, and/or Nazis as you go. Thus, a

player’s weapons are a significant fea-

ture of the FPS.

As first-person perspective dictates

that the game be played from the point

of view of the protagonist, the player

character is either a blank canvas onto

which players are expected to project

themselves, or as in some cases, the play-

er takes control of an actual character

whom they generally only see in

cutscenes. As such, the weapon at the

bottom of the screen is the player’s main

representation of themselves in the

game, adding extra significance to this

element.

Once weapon types and function are

established, the visual design stage is set.

Weapon design can be divided into the

two categories of real-world and imagi-

nary weapons.

Reality Fights

A ny FPS that is set in the real world,

whether it is a historic World War

II environment or a contemporary city,

calls for weapons that are both realistic

and distinctive. There is nothing quite so

dull as 10 handguns that all appear the

same. While many FPS boxes boast

statements like “More than 60 unique

weapons,” what this often means is

“More than 60 variations of the same

four weapon types.” So how does an

artist go about making real-world

weapons look distinctive?

The rather flaccid answer has to be

that, in reality, many guns look very sim-

ilar, so the weapon designer should be

mindful of this rather than relying on the

player to be able to distinguish between a

Ruger and a Glock. A perfectly faithful

reproduction of real weapons may excite

the gun enthusiasts that buy your game,

but differentiating between weapons is

generally helped along by a process simi-

lar to that of caricature, where promi-

nent features are emphasized to produce

a more obvious visual distinction.

In addition to modeling the visual

design, variations in finish (matte black,

nickel plated) can create distinctions.

Sounds, changes in muzzle flash, and

unique recoil animations can also help

differentiate individual weapons in sub-

tle ways.

The bottom line for a player in this sit-

uation is whether or not they feel like

each different weapon is in fact different.

Gameplay elements such as accuracy,

power, and reload times add a lot to this

feeling; artists can reinforce it with visuals

that depart from the strict replication for-

mula and go for a method that evaluates

design in terms of player satisfaction.

Malice in Wonderland

Imaginary settings (and with FPSes this

usually means sci-fi), open up a far

wider spectrum of weapon design possi-

bilities. Here the artist’s challenge is

focusing on visualizing the weaponry

that goes along with the crazy types of

weapon functionality designed for the

game. What does a Nonlinear Ion

Impaction Rifle actually look like, and

how can we make it appear distinctive

from the Gamma-Field Induction

Cannon? The visual design of such exotic

fire-power can increase the quality of the

player’s experience with each weapon,

especially that feeling of excitement the

player gets the first time he or she picks

up something that looks like it packs

enough punch to sink an aircraft carrier.

As a starting point, there is inspiration

of all sorts to be had in the world of

film, some of it more suitable than others

for videogames. Men in Black sported

some attractive chrome pieces that com-

bined the feeling of highly advanced engi-

neering with a coherent design aesthetic.

Aliens, on the other hand, brought us the

natural evolution of the gritty manmade

weaponry we associate with ground

infantry, working from weapons we have

at present rather than straying too far

from what we know.

More recently, nonrealistic FPSes have

also aimed to incorporate information

that gives the player visual feedback on

some aspect of the weapon’s present

state. Such feedback might range from a

simple ammo counter incorporated into

the weapon, to indications of overheat-

ing or current ammo type selected.

Making each weapon dynamic in some

way helps bring them to life and is

undoubtedly better than making players

divert their attention to a separate area

on the HUD.

w w w . g d m a g . c o m 19

As far as actual modeling of these

weapons goes, the simple exercise of

making something look good as it rotates

in the level, ready to be picked up isn’t

the whole story. The player will for the

most part see each weapon protruding

into the game world at the bottom of the

screen at a very specific angle. This is the

primary point of view for the player and

each weapon must be built with this in

mind. While it’s O.K. to have the weapon

that is carried be slightly different from

the one seen in full in the level, any such

change must be limited. Putting in some

really great detail that is obscured once

the player is carrying the weapon is wast-

ed energy.

Having taken care of the player and

the weapons, you may notice that there

is still a lot of screen space to fill. What

do we expect, or perhaps more impor-

tantly, what do we want from our FPS

game world?

A Love-Crate
Relationship

F irst, let’s talk about crates. Crates

inspire a love/hate kind of thing

where half of you love the utility of a

simple wooden box which can be

smashed or jumped on and which can

hold any number of useful items, and the

other half of you feel cheap and dirty for

not coming up with a better solution.

As with weapons, the bottom line is

that the player wants to have fun.

Placing objects in the world that players

can interact with in interesting ways is a

big plus, but do these have to be crates?

Probably not. Is it necessary to tie your-

self in knots trying to come up with

viable alternatives? I doubt it, but in this

case, you may consider putting everyone

on “crate duty” for a limited period.

Despite how it sounds, crate duty is not

a cruel form of punishment where

offending artists are locked into a room

and forced to put things in boxes until

they repent of their evil ways. Rather it’s

a forum where all artists get to explore

their creativity and inventiveness for a

restricted time within a specific set of

guidelines.

Artists on crate duty are given a cer-

tain amount of time to design and create

as many viable alternatives for the hum-

ble crate as they can, within the context

and design limitations of the project.

Special prizes are then given for the most

innovative or amusing one that can actu-

ally be used in the game. Crate duty can

be assigned as an area specific task, with

the “crate” object customized for indi-

vidual locations, or in a more generic

fashion for game-wide implementation. It

may seem frivolous, but this process is a

form of extended brainstorming and it

can allow artists to bring variety and

interest to objects within a game world

that are necessary, but that don’t neces-

sarily have to be dull.

Environmental Block

O nce we are past the crates however,

what then? FPS worlds are now

much more varied than the cuboid corri-

dors and passageways of years gone by,

but certain restrictions tied to engine and

platform still place limitations on what

can make it to the screen for now. Part of

the appeal of an FPS is the intimacy of

the first-person viewpoint, where enemies

come right at you and your screen can be

filled with creatures closing in on you as

you frantically search for a weapon with

sufficient ammo. Expansive areas are

great to add scale to the game, but in

many cases, it can be counterproductive

to have too much unpopulated space if

the pacing is allowed to slip for too long.

Even when exploration is needed, the

FPS genre thrives on action. Building a

world that helps focus the player on the

action heightens the experience. Artists can

create tension for players by fashioning an

atmosphere of foreboding. For example,

UNREAL 2’s many tightly designed sections

(specifically corridors) present the player

with obvious obstacles that block the play-

er’s line of sight and cry out “ambush.”

Building an area where players feel threat-

ened from both the front and the back also

increases tension; players know they must

progress forward, while also needing to

keep looking behind them.

Lighting variations can darken areas

that might contain enemies. As new per-

pixel lighting technology presents a sharp

increase in what can be achieved with

real-time shadow effects (we’ve all seen

how DOOM 3 relies heavily on monsters

springing from the darkness), there will

be greater opportunity to design levels

that use lighting more effectively. Even a

simple lighting shut-off is a useful visual

mechanism to add tension, where the

player is plunged into darkness, hears

ominous sounds, and then is immediately

confronted with an enemy of some kind

when the emergency lighting kicks in

(UNREAL 2 uses similar techniques).

Know Your Conventions

T here is a lot artists can do with

genre conventions that may at first

seem like limitations. Artists can play

with conventions by using them to their

advantage when they want to inform the

player without too much exposition, or

by turning them against the player to

defy their expectations and create greater

emotional impact. All you need to

remember is that that power lies with

you, and using it wisely can have a major

impact on the final product.

Next month, I will be looking at the

different set of challenges and opportuni-

ties facing an artist working in the third-

person genre, where character is a major

factor and where movement through an

environment is central to gameplay. I’ll

examine how these aspects of the third-

person genre affect both the visual design

and its execution. q

A R T I S T ’ S V I E W

j u l y 2 0 0 3 | g a m e d e v e l o p e r20

Making weapons look distinctive was a chal-
lenge for BATTLEFIELD 1942’s artists.

“How did you get into
this business?”

T hat is one of the most com-

mon questions asked of any-

one in game production. The

second most-asked question

would be the follow-up:

“How do I get into this business?” These

two questions were addressed at the

recent Academic Summit held by the

International Game Developers Associ-

ation. We are now at a point where the

first generation of self-taught developers

are dwindling, and the next generation is

coming from schools where game devel-

opment is an emerging discipline.

In major schools and universities,

departments are forming and merging to

address the growing demand for knowl-

edge and experience in interactive media,

design technology, digital editing, and

(you guessed it) game development. This

is not to say that audio and music are

not part of the picture, though as a com-

ponent they are often the last to be

thought of. Because of the precedence in

audio engineering and music depart-

ments, one would think this would give

our discipline a head start. But depending

on the school and the program, getting it

integrated into the other game produc-

tion disciplines is another story.

Finding that right program or school to

fit one’s schedule and/or budget would be

the first hurdle. On the side of higher

education, schools such as MIT and

CalArts take the theoretical high road to

technology and media, offering great

resources but mixed real-world applica-

tion opportunities. Trade schools like

DigiPen and the Academy of Art College

focus on specific skills — like game pro-

gramming or animation modeling, respec-

tively. Other programs, evolving out of

multimedia and web design curriculums,

tend to be more comprehensive if not yet

fully developed (and in the case of com-

munity colleges, very accessible if not

marginally funded).

The Academy of Entertainment and

Technology at Santa Monica College is a

good case study. This community school,

in the heart of the entertainment capital

that is Los Angeles, receives support from

the studio community, has working pro-

fessionals sitting on its advisory board,

and also has a robust intern placement

program. Though few schools can teach

the type of proprietary applications such

as those used in console development, the

basic skills of production can be practiced

and applied.

Increased enrollment in programs that

encourage the integration of the various

disciplines, including audio basics for the

entertainment industry, is a big plus. A

course in ProTools that offers mixing and

editing “to picture” is a good starting

point, but being able to create and apply

audio to branching story lines or user-

driven game states should be in the realm

of a comprehensive game design program.

The best of these should highlight the dif-

ferences between traditional and interac-

tive audio. In both commercial and inter-

active production, learning the tools and

the techniques only serves as a foundation

for applying the tricks of the trade, tricks

that can only be taught by professionals.

The senior members of our industry owe

it to themselves, and the trade, to get

involved if not as part-time instructors,

then at least as participants on the advi-

sory boards of these new programs.

Proper facilities with hands-on hard-

ware experience are as important as class

lectures. Using authorware such as

Director or the more audio-specific

Max/MSP can then help the prospective

game audio developer to not only score

interactive scenarios but also demon-

strate them. As for having enough con-

tent to use, some schools license the same

production libraries — including Sound

Ideas for sound effects and APM for

music tracks — as the big game produc-

tion studios. If your company can share

something with the educational process,

it will contribute to the growth of the

business in the long run while creating

awareness in new developers.

Being able to prototype a game audio

scenario is the only way to gain true

development experience. Without this

experience, the next-generation developers

will have to resort to what they have

always done: reinventing the wheel and

learning everything from scratch. As we

look at the projected growth of game pub-

lishing and the development community

that must support it, we must reinvest our

gains and knowledge into education or be

forced to deal with the truckloads of titles

that all seem the same. The creative spark

that runs dry when we are between tech-

nological advances can be kept alive with

fresh ideas. Investing in innovation is the

best insurance against the inevitable

slumps that plague our game industry. If

we don’t have the best people, we can’t

get the best work done. q

D A V I D J A V E L O S A | David currently teaches interactive media
at Santa Monica College’s Academy of Entertainment & Technology.
A former audio director and game industry specialist, he is working
on a revision of his book Sound and Music for Multimedia (Hungry
Minds, 1997).

Getting a Sound

d a v i d j a v e l o s aS O U N D P R I N C I P L E S

Education

j u l y 2 0 0 3 | g a m e d e v e l o p e r22

B E T T E R B Y D E S I G N

w w w . g d m a g . c o m 23

T his month we have two

straightforward rules about

the design process and the

decisions a designer must

make early on in game

development.

Design Process Rule #1: Design docu-
ments should be detailed in inverse propor-
tion to the skill of the team and their
familiarity with the genre. This is a com-

mon-sense rule: in general the less skilled

the game team and the less familiar they

are with a given game genre, the more

detailed the design document should be.

The rule’s domain. This rule applies to

the design process itself and the prepara-

tion of the design document.

Rules that it trumps. This rule trumps

the extremes. Some people insist that no

design documents are necessary — ever

— while others believe that every single

detail must be specified. The former

group tends to be novices who have

never made a game, vainly hoping to

avoid the difficulty of writing a docu-

ment in the first place. The latter stance

tends to come from people who have

worked in the software industry, but not

on games. They have rightly found that

exhaustively specifying the qualities nec-

essary in a piece of software is useful but

run into trouble trying to define just how

much fun to put in — or how you can

tell when it’s there in the first place.

Rules that it is trumped by. This rule

isn’t trumped by other rules as much as

certain design processes. With single-per-

son iterative designs, for example, a

designer/programmer can start with a

simple concept and keep changing, test-

ing, and improving it without using a

design document.

The rule is also trumped by situations

with external long-distance developers.

Even with an experienced team, if the

people executing the design are not in

daily contact with the designer, more

documentation detail is often needed to

avoid confusion and wasted time.

Examples and counterexamples. The

simplest game design documents I’ve

worked with were a page or two long,

for simple single-person development.

The largest was an 800-page monster

that was a very detailed MMP air com-

bat game intended to be developed by an

external company.

Design Process Rule #2: Begin to design
by identifying your constraints. The first

step in any design should be to identify

the critical constraints on that design —

what must be done, what should be done,

and what cannot be done. Specific areas of

constraints can include creative con-

straints (required game genre or sequel to

existing game, the designer’s previous

experience); technical (the need to use a

specific engine or work within the capabil-

ities of a specific programming team);

business, sales, or marketing considera-

tions (budget, hard delivery date, license);

and personalities (boss’s preferences, lead

artist’s love of anime, producer’s fixation

on Monty Python). Often, the biggest con-

straint is budget — usually the vision

exceeds the funds.

The rule’s domain. This is the earliest

step when working on a design.

Rules that it trumps. This rule trumps

not a specific rule but personal ambitions

in general. Though you may be determined

to create a magnum opus greater than

EVERQUEST, if you are asked to design a

multiplayer game that can be done by a

team of eight people in 14 months for $1

million, you’ll have to adjust your aspira-

tions or change your constraints — but

don’t simply ignore them.

Rules that it is trumped by. This rule is

trumped by the exercise of brilliance or

persistence. Sometimes you can change the

constraints by creating a concept so excit-

ing that you receive additional resources,

or by dogged persistence and belief in your

own vision.

Examples and counterexamples. Al-

though I advise against blindly battering

yourself against unyielding constraints,

always question them. When Dreamworks

Interactive was just starting up, Steven

Spielberg came to us with an idea for a

game where you played an ordinary per-

son in a home, dealing with your family,

cooking meals, taking out the garbage. We

kicked it around, but couldn’t get beyond

the apparent constraint that few would

pay to do that sort of thing, except per-

haps the tiny group of people like Steven

who were so wealthy that they didn’t do

those sorts of things on their own any-

more. He was very cordial when we told

him we thought the audience constrained

us. He was even polite enough not to

bring it up again when THE SIMS came out

a few years later.

Coming soon. Watch this space for

more rules by other designers, plus

responses to last month’s challenge on

consistency. q

for the Design
Process2

Games such as THE SIMS can succeed when
designers first understand and then produc-
tively question their development constraints.

n o a h f a l s t e i n

N O A H F A L S T E I N | Noah is a 23-year veteran of the game

industry. His web site, www.theinspiracy.com, has a description of

The 400 Project, the basis for these columns. Also at that site is a

list of the game design rules collected so far, and tips on how to

use them. You can e-mail Noah at noah@theinspiracy.com.

j u l y 2 0 0 3 | g a m e d e v e l o p e r24

H ow good does AI really have to be? It’s a ques-

tion that few AI programmers stop to ask

themselves. “Good” is usually a metric applied

to how quickly an AI can completely obliterate

your presence in the game. We spend most of

our time optimizing the AI’s quality without thinking about

whether or not the game is more fun as a result.

We’ve done a lot of RTS games at Ensemble Studios, and

RTS games take a lot of AI. We used to be singularly focused

on making an AI that could compete with anyone on the plan-

et. While we’re still working to make our AIs more and more

competitive, a bigger focus for us these days is to make our AIs

play a more fun game.

This article takes a look at some of the techniques we used

in building the computer player AI for AGE OF MYTHOLOGY

(AOM), the third installment in Ensemble’s AGE OF EMPIRES

series. None of these implementations provides a single silver

bullet for creating nutty-good fun. But, taken as a whole, they

illustrate how our methods of data abstraction and representa-

tion worked for us. By building a good foundation of knowl-

edge and paradigms for your AI, you will create newfound time

and ability to chase that ever elusive fun-factor.

Looking Back to Move Forward

W e were fairly happy with the AI on our previous project,

AGE OF EMPIRES 2: THE AGE OF KINGS (AGE 2). It was,

and still is, one of the few RTS AIs capable of playing fully

random maps without any tactical cheating. Nevertheless, the

tactical AI code used in AGE 2 was largely the same as that

used in the original AGE OF EMPIRES (AGE 1). That AI had sev-

eral issues we wanted to address in AOM.

CCoommppuutteerr PPllaayyeerr AAII::
TThhee NNeeww AAggee

How Ensemble Studios’ data
management systems gave AGE OF

MYTHOLOGY’s creators more time to
focus on fun

C O M P U T E R – P L A Y E R A . I . d a v e c . p o t t i n g e r

Ill
us

tr
at

io
n

by
 D

ir
k

M
ic

hi
el

s,
 D

ig
ita

l P
ai

nt
in

g
by

 L
ie

ve
 H

uw
el

s

... scanning

Approaching Characters:

| Wearing armor? Yes

| Carrying swords? Yes

| Swords drawn? Yes

| Menacing faces?Yes

| Red kilts? Yes

... Action:

defensive stance, sword up

w w w . g d m a g . c o m 25

First of all, the AI was too atomic in how it represented

things. It did an excellent job of remembering exactly what it

had experienced. However, due to that overwhelming exact-

ness, it couldn’t spend enough time analyzing that data when it

came time to do something with it.

Second, AGE 2 used an expert system to drive the strategic

part of the AI. Thus, it was fundamentally hard to express an

overall strategic plan in the script language when things like

dynamically declared variables didn’t exist.

And finally, the AGE 2 AI’s terrain and movement capabilities

were too tightly bound to how the AGE 2 simulation worked.

The AI ended up overloaded by the weight of having to know

too much about how the simulation really functioned.

First Things First

W e were able to anticipate many of the components need-

ed to do the AI for AOM based on our previous experi-

ence. We also continually reevaluated those decisions through-

out AOM’s development. By continuing to improve our

abstractions and overall module interactions, we were also able

to improve the quality of the final product.

In reality, our AI doesn’t use superfancy neural nets or genet-

ic algorithms to make decisions. It uses simple techniques,

influenced by the high-level script language content. The under-

lying data representations are the key; it’s those representations

that allow us to expose many powerful things in simple ways.

We didn’t want to get hung up worrying about how to make

our AI learn some new trick without first building a proper

foundation for how it looks at its world.

Given the realities of today’s game schedules, foregoing

early architectural work is rarely fixable during a game’s life

cycle. In our case, the ability to improve the fun-factor of the

AGE 2 AI was eventually handicapped by poor data layout

decisions we made eight months before AGE 1 shipped. If

developers are looking to improve the state, and thus the fun-

factor, of AI in games, a larger focus on underlying data rep-

resentation is needed.

Time to Put up or . . .

S o, with the soapbox firmly back under the table, how did

we go about implementing the AOM AI to fix these issues

we had identified? There were four overriding rules that we

used in developing the AOM AI:

Abstract everything. The most important single module in the

AOM AI turns out to be the knowledge base, or KB. We

shoved absolutely everything our noncheating computer player

could legally know into the KB. This meant more work on the

front end but a lot less work on the back end as we started to

build upon that power.

Scripting is good. The AGE 2 expert system gave us a small

taste of how successful a script language could be. We decided

to build a new interpreted language, called XS, for AOM’s AI.

D A V E C . P O T T I N G E R | Dave is the director of technology at
Ensemble Studios. He’s been there since the days of yore but still man-
ages to end up doing way too much of the AI for their RTS games.
Dave enjoys spending time with his family and building insanely stur-
dy furniture. E-mail him at dpottinger@ensemblestudios.com .

class BKBUnit

{

public:

enum

{

cStateNone =0x00,

cStateBuilding =0x01,

cStateAlive =0x02,

cStateDead =0x04,

cStateAny =0xFF

};

//Constructors and Destructors

BKBUnit(bool allocateCPInfo);

~BKBUnit(void);

//Gets and sets.

long getID(void) const { return(mID); }

const char* getName(void) const;

//PUID.

long getProtoUnitID(void) const;

//IsType.

bool isType(long unitTypeID) const;

bool isAbstractType(long unitTypeID) const;

//State (see above enum list).

BYTE getState(void) const { return(mState); }

//Player ID.

BYTE getPlayerID(void) const { return(mPlayerID); }

//Position.

const BVector& getPosition(void) const;

//Logical Methods.

bool isAlly(const BKB *kb) const;

bool isEnemy(const BKB *kb) const;

//Base ID.

long getBaseID(void) const;

void setBaseID(long v);

//Hitpoints and Health.

float getHitpoints(const BKB *kb) const;

float getMaximumHitpoints(const BKB *kb) const;

float getHealth(const BKB *kb) const;

//Area ID.

long getAreaID(const BKB *kb) const;

//LOS.

float getLOS(const BKB *kb) const;

};

L I S T I N G 1 . S A M P L E O F T H E BKBUnit
P U B L I C I N T E R FA C E

Once done, this work paid large dividends in ease of use and

the ability to customize our content.

The AI must have script content to do anything. That may

seem trite, but it made a big difference. By forcing this con-

vention, we were able to make the tactical C++ code much

more generic, because each strategic script could customize

according to its own needs. Scripts could spend their cycles

deciding whether to rush or boom to the Fourth Age while

the tactical code executed the best building placements. This

decision required us to fully embrace the scripting system

early on, which meant a better overall interpreted language

and toolset.

Eighty percent is good enough. As a programmer, it’s hard to

ship something that you know can be exploited. But it would

have been impossible to catch all of the AI loopholes in a

game as large and complex as AOM without several addition-

al man-years of time. In some cases, we skipped making tacti-

cal combat improvements in favor of more visible, fun fea-

tures, such as AI chatting.

The Knowledge Base

T he KB is the AI’s representation of everything that it

knows about the world. It starts with the overall manager

class, BKB. The KB is a passive device. It serves as the AI’s

memory, whereas the active components of the AI are handled

in another part of the system. The KB can reorganize the data

it owns as new objects are discovered, units move around,

and so on.

The BKB class remembers every unit of consequence that it

has ever seen. BKBUnit (Listing 1) and BKBProtoUnit (Listing 2)

represent instance-specific and type-specific data for units in the

game, respectively. These objects are kept updated as much as

our noncheating system allows.

These BKBUnit objects are stored within the BKBPlayer struc-

tures inside of the KB. Each KB maintains a BKBPlayer for every

other player in the game, representing his knowledge about that

player. The BKBPlayer takes advantage of AOM’s unit type sys-

tem to keep handy, precomputed lists of units around. These

precomputed lists include:

• Alive units

• Dead units

• Partially-built units

• Type-centric lists of units for all unit types in the game.

The AOM unit type system gives each unit (such as

Axeman) a base type in addition to membership in any num-

ber of abstract types (such as Military Units). In concert, these

subsystems allow the AI to ask questions such as “How many

enemy military units have I seen?” or “How many buildings

have I lost in this area of the map?” AOM has a very detailed

query system built on top of the KB that allows the C++ and

script to generically look up any instanced data they want.

This abstraction allows the tactical and strategic AI code to

do amazing things without any special code in the KB.

KB Example #1: Resource
Aggregation

B KB has many specialized data structures to help improve

look-up speed and back-end data analysis. A good example

is the BKBResource class. This class serves to group up various

pockets of resources in the world. For example, a herd of deer go

into a single BKBResource. As a new deer is discovered, we first

look to group it into an existing deer herd. If all herds are too far

away, on different continents, or otherwise unacceptable, we cre-

ate a new BKBResource instance and link the deer’s BKBUnit into that.

Because BKBResources know which BKBUnit entries are inside of

them, we can do a very CPU-friendly lazy update of BKBResources

to maintain their overall resource total, closest dropsite, and

centroid. This representation allows us to make more complex

decisions when picking a new resource site because our choices

are fundamentally limited, as only a small number of

BKBResources exist. In addition, doing mildly unintuitive things

such as computing and storing the closest dropsite during the

lazy update also decreases the overall CPU utilization. In turn,

this affords us more CPU cycles to spend on decisions that can

improve the AI quality and fun-factor.

KB Example #2: Unit Updating

B KB is highly optimized for speed and memory, with most

data updating driven by simulation events. Let’s look at

some of the things that happen when a unit uncovers an enemy

Settlement:

• The simulation detects that Player 1’s Settlement is now vis-

ible to Player 2’s Scout.

• The simulation adds the Settlement to Player 2’s visible unit

system, which pops an event into Player 2’s KB.

• A BKBUnit entry is created, as this is the first time this unit

has been seen by Player 2. If Player 2 had seen this Settlement

already, the BKBUnit entry would have been retrieved via a sim-

ple O(1) lookup.

• This Settlement’s BKBUnit is fully updated to store current

hitpoints, state, and so on.

• The BKBProtoUnit for Player 1’s Settlement is created if not

already in existence. Preexisting or not, it’s updated to store

common unit data such as inverse maximum hitpoints, line of

sight, and armor values. This is possible because those items are

the same for all units of the same base type.

• The Settlement’s area is updated to reflect the new count of

units by relative relationship (self, ally, enemy). This may

change the ownership state of this area, as well.

• The KB detects that the Settlement can shoot, so it also

updates the danger value for the given area.

• The Settlement is put into a base. Because Settlements are

central buildings in AOM, the AI knows it will build a virtual

base around this Settlement rather than trying to put it in

another base.

• The AI then goes through all other nearby bases to see if

j u l y 2 0 0 3 | g a m e d e v e l o p e r26

C O M P U T E R – P L A Y E R A . I .

anything in those bases really should belong in this new base.

Those that should be moved are moved (and their BKBUnit

records are immediately updated accordingly).

This is a lot of work to go through during a simple visibility

change, but visibility doesn’t really change that often. This trade-

off is more than worth it given the fast lookups we can do later.

How About Some Action?

T he BAI class is BKB’s more outgoing sibling. BAI exists as the

big container and overseer of the active parts of the AI. BAI

is broken down into three layers: Goals, Plans, and Units. In

addition to this hierarchy, another useful abstraction is a simple

weighting factor that serves to balance between economic and

military objectives. Because we put this weighting in early dur-

ing development, we were able to factor it into every decision

the AI made. The script can then do very simple prioritization

between the two fairly exclusive parts of gameplay by simply

tweaking this number.

AI Plans

P lans are the fancy word for an AI action. BAIPlans make up

the mid-layer of the AI. They are complex state machines

that know how to do tasks such as building structures, attack-

ing a variety of target types, gathering, and the like. Everything

the AI does requires a plan. This kept us honest during develop-

ment, which eventually allowed us to reuse plans in new, inter-

esting ways at the end of AOM’s development.

The plans store two types of data: plan-specific data and

desired unit types. Plan-specific data may be something like a list

of targets for an attack plan (however that list was derived or

seeded into the plan) or the type of structure to construct for a

build plan. Most all of this plan-specific data is stored in “plan

variables” (Listing 3). Both C++ and script code can read plan

variables, but some plan variables are only modifiable by the C++

code. This distinction allowed us to put both initialization and

run-time variables into the plan variable system, which simplified

things for everyone working on the AI. Content developers could

also dynamically add their own variables to plans, which allowed

them to extend the functionality of plans in their scripts.

This plan variable abstraction also allows the plans to work

off of an expected data set without caring how the values were

obtained. We did track down lots of bugs during AOM where

someone would accidentally misuse plan variables, but none of

those took more than a minute or two to track down. The big

advantage, in terms of AI quality, was that we could write gen-

eral tactical code in each plan. This tactical code was given

many customization points via the plan variable system. This

system created better, more fun AI because it was very easy for

the content developers to totally customize a plan’s behavior.

The desired unit type system was put into place specifically

to be a barrier between the script and the actual control of

units in the game. From experience, we knew that having the

script try to control individual units was difficult because of

interface and latency issues. Plus, a script just isn’t very strate-

gic if it’s trying to decide what to with Unit #4561.

Scripts and goals were allowed to specify how many units of a

given type they wanted to see in each plan. This

Need/Want/Max system allowed plans to set the number of units

they needed, the number of units they actually wanted, and the

maximum number of units they would take. A plan could also

simultaneously want more than one type of unit. That particular

part of the system turned out to be extremely useful for quickly

customizing the AI behavior in our single-player campaign.

Each plan contained its NWM values, set via script or high-

w w w . g d m a g . c o m 27

class BKBProtoUnit

{

public:

//Constructors and Destructors

BKBProtoUnit(void);

~BKBProtoUnit(void);

//Update.

void update(BUnit *unit);

//Max HP.

float getMaximumHitpoints(void) const;

float getMaximumHitpointsRecip(void);

//Max V.

float getMaximumVelocity(void) const;

//Armor.

const BArmorTable* getArmorTable(void) const;

//Damage.

const BDamageList* getDamageList(void) const;

//Damage range.

float getDamageRange(void) {

return(mDamageRange); }

//Damage type.

BYTE getDamageType(void) {

return(mDamageType); }

//LOS.

float getLOS(void) const {

return((float)mLOS); }

protected:

float mMaximumHitpointsRecip;

float mMaximumVelocity;

BArmorTable mArmorTable;

BDamageList mDamageList;

float mDamageRange;

BYTE mDamageType;

BYTE mLOS;

};

typedef BSimpleArray<BKBProtoUnit*> BKBProtoUnitPointerArray;

L I S T I N G 2 . T H E C L A S S D E F I N I T I O N
F O R BKBProtoUnit

er-level tactical code. We also kept a prioritized list of plans at

the ready. Every so often, we would run the “Generic Unit

Assigner.” Despite the overly pretentious name, the assigner

stuffed units into plans based on plan priority and plan NWM

values. So, for example, all “need” requests were filled before

any “want” requests were considered.

This is a simple algorithm, but we felt it was important to pick

some immovable components of the design. This gave the C++

and script code an unchanging implementation upon which it was

possible to build. Plans asked for what they wanted and were

written to make do with what they were assigned. If the script

wasn’t happy with the performance of its attack plans, it had to

up the plans’ priority to get more units assigned to them.

The final noteworthy elements of the plan representation are

the hierarchy and reuse capabilities of the system. There is one

attack plan in the game. It knows how to attack several differ-

ent types of targets (such as players, bases, individual units, and

so on) with a variety of means. This attack plan is reused wher-

ever attacking needs to be done, sometimes as the root plan,

sometimes as the child plan. This reuse allowed us to put all of

our effort into a single code path, which meant fewer bugs and

less overall confusion as the plans interoperated.

Goals Are Part of the Strategic AI

A I goals are super-high-level constructs such as “Attack

Player 4” or “Build a forward base in Player 3’s direc-

tion.” Goals are entirely created and managed by the script;

it’s easiest to think about them as part of the strategic AI. In

standard hierarchy fashion, goals know only what the plans

tell them and can only tell their child plans to do things. Most

of the plan communication with goals consists of sending

“success” or “failure” events back to the goals.

The nifty twist comes in at that point. Done properly, the

script has already given each goal its preplanned behavior for

success or failure. Usually, this behavior is to activate another

goal. The script can reevaluate and update those behaviors at

any time. But the act of storing them ahead of time both takes

advantage of lulls in activity and also increases response time.

This goal chaining is one of the best abstractions in the game. If

the failure goal of “Build a forward base” is to “Fortify home

base,” then we’ve really started to open up a lot of strategic

options via a very simple system. Carried through, the simplicity

of creating those options means more and better content for

your players to experience.

Strategic Attacking

T he attack goal knows how to attack a single player ID. It’s

the script’s responsibility to set that appropriately. If an AI

needs to attack two players at once, two attack goals are creat-

ed. The attack goal spawns attack plans as needed to make

attacks. The attack goal is configurable in ways such as only

attacking on a common continent or only attacking every so

often. Given this high-level method of controlling attacks, we

needed a suitably data-driven means to specify with what units

to attack. But that method also needed to be responsive to what

was going on in the world, without the script needing to micro-

manage those changes.

The BKBUnitPicker was the answer. It’s stored in the KB but

exists to serve the AI. The script can create any number of unit

pickers. Each can be given a certain set of weighted unit pref-

erences. These unit preferences can be evaluated in combat

effectiveness against a set of enemy unit types (dynamically

retrieved by a predefined unit query, of course). They can also

be weighted by cost and other factors.

Once this abstraction is set up, the AI evaluates it when the

goal does its lazy update. The unit picker spits out a prioritized

list of units to build in order to meet its objectives. The attack

goal uses these results to spawn child plans to construct build-

ings, train troops, and purchase upgrades for those troops. The

net result is that, from a strategic script level, it takes about 25

lines of script code to set up your AI attack personality (Listing

j u l y 2 0 0 3 | g a m e d e v e l o p e r28

//XS Script code that uses plan variables to create a simple

//maintain plan to maintain a given number of units in the world.

//==

// createSimpleMaintainPlan

//==

int createSimpleMaintainPlan(int puid=-1, int number=1, bool

economy=true,

int baseID=-1)

{

//Create a the plan name.

string planName=”Military”;

if (economy == true)

planName=”Economy”;

planName=planName+kbGetProtoUnitName(puid)+”Maintain”;

int planID=aiPlanCreate(planName, cPlanTrain);

if (planID < 0)

return(-1);

//Unit type.

aiPlanSetVariableInt(planID, cTrainPlanUnitType, 0, puid);

//Number.

aiPlanSetVariableInt(planID, cTrainPlanNumberToMaintain, 0,

number);

//If we have a base ID, use it.

if (baseID >= 0)

aiPlanSetBaseID(planID, baseID);

//Go.

aiPlanSetActive(planID);

//Done.

return(planID);

}

L I S T I N G 3 . C R E AT I N G A S I M P L E
M A I N TA I N P L A N

C O M P U T E R – P L A Y E R A . I .

4). This allows for really simple attack variation, which makes

the game more fun for the human players.

Terrain Analysis

A GE OF MYTHOLOGY has a fairly robust implementation of

a terrain analysis system to determine logical map areas.

These areas allow us to think about the map in logical terms

rather than as a collection of tiles. The basis for this algorithm

is nothing more than a simple bounded flood-fill, with a lot of

performance and back-end tweaks applied. Most of those back-

end tweaks serve to aggregate smaller regions into larger ones.

None of those algorithms are rocket science, but the usage of

the data they produce is interesting. Every BKBUnit knows what

area it’s in. As it moves, we update unit counts per area. Thus,

we can easily see which player or team controls more of the

map by looking at the area counts. We can then turn these

counts around and use them to figure out what the most vul-

nerable areas are. Given our noncheating system, this data can

be out of date. In a way, though, that makes the AI more

humanlike, which many people find more fun to play against

than foes of superhuman skill.

We also tuned the analysis algorithms to produce the right

amount of data for an area pathing system. Having too many

attack route waypoints can confuse AI logic, whereas having too

few looks dumb. In AOM, getting from the AI player’s home

base to the enemy home base usually yielded five or six way-

points, which felt like the right amount for the game. Tweaking

the desired surface area during map analysis will yield more or

fewer areas if we need to change that number for our next game.

The area pathing system also let us factor in a lot of AI

behavior options. The attack plans can ask the area pathfinder

to return routes that enter an enemy base from a different direc-

tion than last time. In addition, expected enemy concentrations

are easily avoided by factoring area danger into the pathing.

Data That Won’t Buy the Farm

T he AI in AGE 2 was infamous for its kamikaze farm vendet-

tas. Farms had relatively few hitpoints and couldn’t fight

back. Thus, they became the perfect low-risk target. Unfortunate-

ly, due to AGE 2’s unorganized data layout, it was too costly to

fix this problem without totally removing the ability to attack

farms at all.

Thus, the AOM base construct was born. Bases are logical

groups of co-located buildings. The great thing about the base

construct is that it immediately limits the AI’s search space, be it

for placing its own buildings or deciding what targets are viable

for attack. In the latter case, the attack plans select a base to

attack and then run an area-based attack route to it. Once we

know from what direction we’ll be entering the base, we can sort

the potential targets along that base entrance vector. Having the

precomputed list of enemy objects inside the logical base also

allows us the time needed to properly handle the farm problem.

This feature also makes the AI look a lot more intelligent.

We also use the base entrance vector to do wall-busting.

Traditionally, getting an AI to break through walls in a fully

random RTS map is hard. But once you have a pregrouped base,

we can already determine whether or not the base is walled in.

This determination can then be factored into the attack route

selection. If we know that an attack route takes us through a

wall, we can ask for siege units to be added to our attack plan.

That behavior all emerges out of the simple base representation.

The Age of Data Abstraction

T his article only scratches the surface of all the code and con-

tent behind the AOM AI, but I hope our big push toward

fully abstracting all of the game world data has given you a few

ideas on how to give your own AI better data with which to

work. Once we all have better tools at our disposal, we’re one

step farther down the road of making an AI that’s fun to play

against rather than one that just beats up on players. q

w w w . g d m a g . c o m 29

//Create the unit picker.

int upID=kbUnitPickCreate(“Basic Attack UP”);

if (upID < 0)

return(-1);

//Default init.

kbUnitPickResetAll(upID);

//1 Part Preference, 2 Parts CE, 2 Parts Cost.

kbUnitPickSetPreferenceWeight(upID, 1.0);

kbUnitPickSetCombatEfficiencyWeight(upID, 2.0);

kbUnitPickSetCostWeight(upID, 2.0);

//I want to attack with 3 unit types, each made of 2 buildings.

//kbUnitPickSetDesiredNumberUnitTypes(upID, 3, 2, true);

//I want to attack with enough units to equal 20 pop slots, but

//not more than 38.

kbUnitPickSetMinimumPop(upID, 20);

kbUnitPickSetMaximumPop(upID, 38);

//Default to land units that attack land units.

kbUnitPickSetAttackUnitType(upID,

cUnitTypeLogicalTypeLandMilitary);

kbUnitPickSetGoalCombatEfficiencyType(upID,

cUnitTypeLogicalTypeMilitaryUnits);

//Setup our unit preferences. We like lots of infantry.

kbUnitPickSetPreferenceFactor(upID, cUnitTypeAbstractInfantry, 0.8);

kbUnitPickSetPreferenceFactor(upID, cUnitTypeAbstractArcher, 0.4);

kbUnitPickSetPreferenceFactor(upID, cUnitTypeAbstractCavalry, 0.1);

kbUnitPickSetPreferenceFactor(upID, cUnitTypeMythUnit, 0.4);

kbUnitPickSetPreferenceFactor(upID, cUnitTypeAbstractSiegeWeapon, 0.1);

L I S T I N G 4 . U S I N G BKBUnitPicker
TO S E T A N AT TA C K P E R S O N A L I T Y

g u i l l a u m e p r o v o s tC O N T E N T O P T I M I Z AT I O N

j u l y 2 0 0 3 | g a m e d e v e l o p e r30

L ast month, in

the first part

of this series

on content

optimization

techniques (“Beautiful Yet

Friendly, Part 1: Stop

Hitting the Bottleneck,”

June 2003), I reviewed per-

formance at a high level

and looked at how level

design and environmental

interactions affect it.

Since most of the the-

ory behind this

month’s article was

also explained in the

first part, I strongly

suggest that readers

get familiar with the

concepts introduced

last month before

reading this article.

You’ll need to know when and what to

optimize before you can make any use of

knowing how to optimize.

Last month, we saw that meshes could

be transform-bound or fill-bound. I’ve

given a more complete picture of the pos-

sibility space here through the generic

hardware pipe shown in Figure 1.

If you are data-bound, then the amount

of data transferred might also be causing

transform problems (too many vertices)

and/or fill problems (too much texture

data). Data-related problems generally

arise through a collection of objects, not

by single objects in isolation. If you find

that you’re clogging the bus — generally

when there’s too much texture data —

then you should redistribute your texture

and vertex densities across your scene (last

month’s article described how to do this).

If you are CPU-bound, then it’s out of

your hands: the programming team will

need to take a hard look at their code.

Beautiful,
Yet Friendly

Part 2:

G U I L L A U M E P R O V O S T | Originally hired at the age of 17
as a lowly system programmer writing BIOS kernels for banks,
Guillaume has been trying to redeem himself ever since. He now
works as a 3D graphics programmer at Pseudo Interactive and sits
on his local Toronto IGDA advisory board. You can contact him
at depth@keops.com.

Maximizing
Efficiency

w w w . g d m a g . c o m 31

Optimizing Transform-
Bound Meshes

I f design wants marching armies of

zombies attacking the player, you’ll

need to make sure they don’t put the ren-

derer (and artist) on death row by mini-

mizing their transform cost.

We saw last month that the cost of a

transform-bound mesh is:

Transform Cost ≈ Vertex Count *
Transform Complexity

Hence, we need to reduce the transform

complexity or the number of vertices. You

can somewhat reduce the transform com-

plexity by plucking out bones you don’t

really need, but you should consider using

a less expensive type of transform first. If

you can approximate a morph target

accurately enough with a few bones,

you’ll save on transform complexity. If

your engine is optimized for nonweighted

vertex blending (where vertices can be

affected by only one bone), see if you can

substitute your vertex-weighted mesh with

a clever distribution of bones that take no

vertex weights. In any case, take the time

to consult with the programmers, as they

may have insights on better transform

techniques you can use to lower your

transform complexity.

Welcome to Splitsville

B efore you go plucking vertices out of

your mesh, I’ll let you in on a secret:

the vertex counts in your typical model-

ing package don’t reflect reality. As they

travel down the pipeline, vertices get split

and resplit ad nauseam. Vertex splits

adversely affect transform-bound meshes

by adding spatially redundant vertices to

transform. In theory, vertices can get split

as many times as they touch triangles, but

in practice, total vertex counts generally

double or triple. Keeping this in mind,

you can lower this split ratio dramatically

and make your mesh a whole lot more

performance-friendly without removing a

single vertex.

Let’s first examine the nature of the

splits. As I mentioned last month, graph-

ics hardware thinks in terms of surfaces,

not objects (that is, the set of all faces in

an object that share the same material

properties). So the first vertices that get

split are those lying on the boundaries of

two different surfaces. Think of it in

your head as: A vertex cannot be shared

across multiple materials (Figure 2b).

Similarly, renderers typically do not

allow vertices to share polygons with dif-

ferent smoothing groups, or vertices that

FIGURE 1. A typical hardware rendering pipeline architecture and its associated bottlenecks.

FIGURE 2. Vertex splits accumulate over UV
discontinuities, smoothing group boundaries
and material boundaries.

CPU and
MEMORY

CPU

VERTEX
UNIT

(+Vert Cache)

RASTER
UNIT

(+Tex Cache)

SYSTEM
BUS

GRAPHICS
RAMDAC

DISPLAY

GRAPHICS
PROCESSOR(S)

ALL SPLITS

MATERIAL SPLITS

UVW SPLITS

SHADING SPLITS

Object culling, AI,
physics, etc...

Transform vertices
(Xform time)

Draw triangles
(Fill time)

TE
XT

UR
ES

M
ES

H
VE

RT
S

XFORMED
VERTS

FRAME
BUFFER

1. Transform bound. The Vertex unit can’t transform fast enough.
2. Fill bound, the raster unit can’t draw the polygons fast enough.
3. Data bound, the Bus can’t ferry all the data fast enough.
4. CPU bound, the CPU has to cull too many objects, and/or it is clogged by
other game-logic-related tasks.

Typical bottleneck
scenarios:

AA

BB

CC

DD

have different UV coordinates for different

triangles. So vertices that lie on the

boundaries of two different smoothing

groups are split, and vertices that have

multiple UV coordinates (which lie on

the boundaries of discontinuities in UV

space) will also cause splits (Figures 2c

and 2d). Moreover, if you have objects

with multiple UV channels, the splits will

occur successively through every channel.

There are several simple ways to mini-

mize individual types of splits. Intelli-

gently combining and stitching textures

together, for example, can help minimize

material-based splits.

UV space discontinuities tend to be a

bit trickier. Mapping an element with-

out any UV break means that you’ll

have to find either an axis of symmetry

or at the very least a “wrapping point”

on your mesh.

If you can get away with using map-

ping generators, such as planar, cylindri-

cal, or cubic mappings, you can minimize

or altogether eliminate UV space discon-

tinuities. Ball-jointed hips and shoulders,

for example, can make the resulting arm

and leg elements ideal candidates for

such techniques.

If you need to split the mesh in UV

space, both 3DS Max 5 and Maya have

elaborate UV-mapping tools that permit

you to stitch UV seams in order to mini-

mize the damage. (Maya even has a UV-

space vertex counter, which should reflect

the number of vertices in your mesh after

UV splits.) It’s generally well worth

spending the time to optimize your map-

ping in UV space, since it will also both

simplify your texturing pass and minimize

the texture space you will actually need

for the object. When no axis of symmetry

existed, we found that treating the texture

as pieces of cloth that you “sew” up

worked well to minimize UV splits when

texturing humanoids (Figure 3).

If you are building a performance-

critical mesh, it’s probably best that you

fine-tune and optimize the smoothing

groups by hand. Remember that the

goal isn’t to minimize the number of dif-

ferent smoothing groups, but rather the

number of boundaries that separate

those smoothing groups. You can also

fake smoothing groups by using discrete

color changes in the texture applied to

it, avoiding splits altogether, although

this may not result in the visual quality

you are attempting to achieve.

Another way to look at it in the big

picture is to “reuse” vertex splits. For

example, I said earlier that renderers

allow one material per vertex and one

smoothing group per vertex. In other

words, if you have a smoothing group

and a material ID group that occupy the

same set of faces, they’ll get split only

once. The same goes for UV discontinu-

ities: if they occur at smoothing group

boundaries, then they won’t cause an

extra split to occur.

For the record, if your mesh is definite-

ly transform-bound, then it is generally

more important for you to save on vertex

splits than to save on texture memory. If

that means authoring an extra texture for

the mesh in order to get rid of individual

diffuse color-based materials or UV

breaks, then it’s a fair trade-off.

This brings us to normal maps and the

general (and increasingly popular) concept

of using high-detail meshes to render out

game content. Normal maps are textures

for which every texel represents a normal

instead of a color. Since they give extreme-

ly fine control over the shading of a mesh,

you can replicate smoothing groups and

add a whole lot of extra shading detail by

using them. Since normal maps are gener-

ally mapped using the same UV coordi-

nate set as the existing diffuse texture,

they do not cause extra vertex splits to

occur, and are in effect cheaper for trans-

form-bound meshes — and much better

looking — than smoothing groups.

Unfortunately, normal maps cannot

really be drawn by hand; they require

specialized tools to generate them, and

also require higher-resolution detail mesh-

es if you want to take full advantage of

their potential. Because of the pixel oper-

j u l y 2 0 0 3 | g a m e d e v e l o p e r32

C O N T E N T O P T I M I Z AT I O N

FIGURE 3. The texture is unwrapped on the mesh along a single “sewing” line that wraps the tex-
ture like a piece of cloth. This minimizes UV discontiniuities (shown here in red) without introduc-
ing constraints in the visual look of the mesh.

FIGURE 4. Flat shading causes every face in a
mesh to belong to a separate smoothing
group, causing a worst-case split scenario to
occur. Avoid at all costs unless specifically
supported.

ations involved that are required to sup-

port them, they are also not supported on

all hardware platforms.

Overall, absolutely try to avoid

checkerboard-like material switches,

where you consistently cycle between

materials. Unless your programmers

specifically support it, also avoid setting

whole objects as flat-shaded by having

individual faces be a different smoothing

group (Figure 4).

Helping the Stripping
Process

W hen I originally set out writing

this article, I naïvely thought I

could safely cover solid guidelines that

covered all mainstream console systems

and all recent PC-based graphics cards

without encountering critical system-spe-

cific guidelines. I was overly optimistic.

Some systems don’t support indexed

primitives, and some don’t have a T&L

transform cache. In either case, your

surfaces’ transform cost will be signifi-

cantly affected by their “strip-friendli-

ness.” If your hardware does support

both, then strip-friendliness is less of a

performance issue.

A triangle strip is a triangular repre-

sentation some systems use in order to

avoid transforming a vertex multiple

times if it’s shared among one or more

triangles. In a triangle strip, the first

three vertices form a triangle, but every

successive vertex also forms a triangle

with its two predecessors. When graphics

processors draw these strips, they only

need to transform an additional vertex

per triangle, effectively sharing the trans-

form cost of the vertices with the last

(and next) triangle.

Stripping algorithms close a strip (effec-

tively increasing transform time) when

there are no vertices they can choose in

order to form a new triangle. This typical-

ly happens at tension points (Figure 5),

where a single vertex is shared amongst a

very high number (eight or more) of trian-

gles. (Certain renderers support what are

called triangle fans. Fans make tension

points very efficient, but given that cur-

rent hardware only supports one type of

primitive per surface, they tend to rarely

be supported in practice.)

Since tension points are always con-

nected to a series of very thin triangles,

avoiding sliver triangles and distributing

your vertex density as equally as possible

on the surface of your mesh will general-

ly help the stripping process.

Most good triangle-stripping algo-

rithms will automatically retriangulate

triangles lying on the same plane, but

they cannot reorient edges binding faces

on different planes. You should verify

these details with the programmers.

Transform-Bound
Meshes Conquered

K nowing about all these technical

details can make a transform-bound

mesh up to three times more efficient if

you’re smart about what you’re doing,

but it’s still a lot of work. Always ask

yourself whether you need to optimize a

mesh before you dive into the hard work.

Otherwise, use these techniques oppor-

tunistically. In the end, having a tool that

helps visualize where vertex splits occur

is tantamount to building truly optimized

meshes. As a summary of things to look

out for, here’s an optimization checklist

for transform-bound meshes:

• Build one or more LOD (level of

detail) meshes for the object.

• Use as few bones and vertices as you

can, and try to decrease the transform

complexity.

• Use as few material surfaces as you

can get away with; consider texturing

your mesh instead of using several differ-

ent diffuse colors.

• Use UV generators to minimize UV

discontinuities.

• Get rid of smoothing group breaks

you don’t really need, or use discrete

color changes to fake them, or use a nor-

mal map.

• Match the remaining material

boundaries, UV-space boundaries, and

smoothing group boundaries.

• Validate your invisible edges and

look out for tension points.

• Avoid sliver triangles and try to

make the vertex density as uniform as

possible across the surface of the mesh.

If you think that your mesh is fill-

bound instead of transform-bound, then

do not do any of the above. Combining

materials into a single texture applied to

a fill-bound mesh, for example, might

actually hurt your performance by caus-

ing cache misses to occur more frequent-

ly, so fill-bound meshes warrant separate

optimization considerations.

Optimizing Fill-Bound
Meshes

W e saw earlier that the cost associ-

ated with drawing fill-bound

meshes was a function of three things:

Fill Cost ≈ Pixel Coverage
* Draw Complexity * Texel Density

You can’t make your walls any smaller

than they are, but you should avoid over-

w w w . g d m a g . c o m 33

FIGURE 5. At top, a cylinder cap is improperly
triangulated, causing the strip to “break” very
early. The strip cannot cross to the main body
of the cylinder because of smoothing group
splits. At bottom, the cap is retriangulated
properly, and fits completely in a single strip.

AA

BB

laying several large surfaces within the

same visibility space. A typical example

of this would be to have an entire room’s

wall covered with an aquarium (the back

wall and the glass window create two

layers), or successive sky-wide layers of

geometry to simulate a cloudy day.

Transparent and additive geometry tend

to accumulate on-screen, potentially cre-

ating several large layers of geometry the

renderer needs to draw, thereby creating

a fill-related bottleneck.

If your export pipeline supports dou-

ble-sided materials, be wary of using

them arbitrarily on large surfaces; you

can easily double your fill-rendering costs

if you are forcing the render to draw wall

segments that should be culled. On some

platforms, back-face culling is not an

integral part of the drawing process, and

culling individual polygons becomes a

very expensive task; if you are authoring

content for such platforms, you should

ensure that walls that don’t need back

faces don’t have them.

The bigger the triangles, the less texture

space you want to address. Unfortunately,

in practice, meshes that take up the largest

portion of screen space also tend to also

gobble up the most texture space, and so

they are prime targets for being fill-related

bottlenecks. There are two things you

should do to minimize your texture space:

make sure you are using and generating

mip-maps, and choose your texture for-

mats and size intelligently.

Table 1 illustrates savings you can

achieve by making smart choices about

your texture formats. Note that if your

textures are smaller than 32�32 texels,

it’s probably not a good idea to palletize

them, since the cost associated with

uploading and setting up the palette is

larger than just using the unpalletized

version. If your hardware supports native

compression formats, such as DXT1

(DirectX Texture Compression), it’s a

good idea to use them over palettes.

If you can get away with using diffuse

colors only on a fill-bound surface, so

much the better. On several platforms,

drawing untextured surfaces is faster

then drawing textured ones.

I mentioned earlier that it was general-

ly a fair trade-off to sacrifice texture

space in order to prevent UV splits in

transform-bound meshes. When your

mesh is fill-bound, however, the contrary

rule applies: if splitting the vertices in UV

space will help you save texture space,

it’s also a fair trade-off.

Finally, conservative decisions on the

nature of the materials you apply to fill-

bound meshes pay off in performance.

The number of texture passes and the

complexity of their material properties is

always the biggest factor at play when

dealing with fill-bound surfaces.

Texels Miss the Boat

S ome of us deal with the crème de la

crème when it comes to hardware,

but the vast majority of us need to con-

tend with market realities. In the console

market, teams get to push a system to its

limits, but they are also stuck with those

limits for a long time.

If you count yourself in that situation,

then chances are you need to take some-

thing called texel cache coherency into

account. Here’s how it works.

Graphics processors typically draw tri-

angles by filling the linear, horizontal

pixel strips that shape them up in screen-

space. Almost all current hardware can

do this by “stamping” several pixels at a

time, greatly decreasing the time it takes

to fill the triangle.

For every textured pixel the card

draws, it needs to retrieve a certain

amount of texels from its associated tex-

ture (since the pixels are unlikely to fall

directly on a texel, renderers typically set

up video hardware for bilinear filtering,

which fetches and blends four texels for

each texture involved). It does this

through a texel cache, which is basically a

scratchpad on which the card can paste

texture blocks. Every time the card draws

a new set of pixels it looks into its cache.

If the texels it needs are already present

in the scratchpad, then everything pro-

ceeds without a hitch. If some texels it

needs are not in the cache, then the card

needs to read in new texture chunks and

place them in the cache before it can pro-

ceed with drawing. This is called a tex-

ture cache miss.

A good texel cache coherency means

few texture cache misses occur when

drawing a surface. A bad texel cache

coherency will significantly increase the

time it takes to draw a surface. Most PC-

based systems and a few of the current

high-end consoles will automatically

ensure a good texel cache coherency by

choosing the proper mip level at every

pixel they draw. But other systems rely

on the fact that the texel density across

the surface area of a mesh in geometric

space is constant for their mip level

choice to be correct.

On such systems, nonuniform texel

densities will cause the card to “jump” in

texture space from pixel to pixel. This

can cause severe texture aliasing problems

and will also consistently cause texture

cache misses to occur as the card tries to

fetch texels that are not in its scratchpad.

As an artist, you can solve both those

visual artifacts and performance prob-

lems by ensuring you uniformly distrib-

ute texel density across your mesh (Fig-

ure 6). You can do this by ensuring that

the size and shape of your faces in UV

space is roughly proportional to their

counterparts in geometrical space. This is

a concept that makes sense from an artis-

tic perspective as well: if a face is bigger,

it should get more texture detail (a larger

UV space coverage) than a smaller one.

j u l y 2 0 0 3 | g a m e d e v e l o p e r34

C O N T E N T O P T I M I Z AT I O N

Size/Format 16-color PAL 256-color PAL 16-bit RGB 32-color ARGB DXT1 RGB

32 X 32 Do not use Do not use 2K 4K 1K
64 X 64 2K 4K 8K 16K 4K
128 X 128 8K 16K 32K 64K 16K
256 X 256 32K 64K 128K 256K 64K

TABLE 1. This table illustrates simple savings you can do by making smart choices about your
texture formats.

The concept extends to objects too: if

an object is smaller, it’s likely to be smaller

on-screen as well, and should get a smaller

(less detailed) texture.

Fill-Bound Surfaces
Conquered

F ollowing is a list of things to do and

look out for when constructing fill-

bound geometry:

• Build mip-maps for all textures.

• Shy away from large surfaces with

complex material properties, such as

bump maps and glossy materials.

• Don’t overlay several very large

transparent or additive layers.

• Don’t make large wall/ceiling seg-

ments double-sided unless you absolute-

ly must. If your engine doesn’t support

back-face culling, make sure to get rid

of large, unnecessary back faces.

• Choose your texture formats intelli-

gently to save texture space. If you do

not have access to compression formats

such as DXT1, see if you can’t palletize

textures.

• Use small texture swatches or diffuse

materials instead of larger textures, even

at the expense of vertex splits.

• Tweak your UV maps to distribute

your texel density as uniformly as possi-

ble across the surface.

The good news about fill-bound sur-

faces is that, although adding more ver-

tices probably won’t help, it probably

won’t make much of an impact until

your vertex density is high enough for

your mesh to become transform-bound.

(However, very large polygons can on

some systems trash the texture cache,

effectively increasing fill time. In such

cases, tessellating the polygons will actu-

ally help.)

Be Fruitful and
Optimize

I f your head is spinning by now,

remember Douglas Adams’s motto:

Don’t panic. Although there is a lot more

to performance-friendly content than

meets the eye, building efficient content

can become an intuitive, natural process

with practice.

Whether they are vertices, texels,

objects, or textures, it’s more about uni-

formly distributing them than about

plucking out detail. This is a very power-

fully intuitive concept: things that are

smaller on-screen should get less detail

than things that are bigger on screen.

Programmers can always optimize

their code to go just a little bit faster. But

there’s a hardware limit they can never

cross without sacrificing visual quality. If

you are pushing the limits of your sys-

tem, chances are that it is your content

— not code — that drives the frame rate

in your game. q

w w w . g d m a g . c o m 35

FIGURE 6. At left, nonuniform texel densities
will create visual artifacts on certain plat-
forms. At right, the texel density is uniform as
a function of geometric space. If this was a
fill-bound mesh, the unequal texel density
would also cause cache misses to occur on
certain platforms, effectively increasing the
total fill cost of the mesh.

ABOUT THE ILLUSTRATION

The mesh of the character on page 30,
consisting of 2283 vertices (after mesh con-
version for in-game readiness), was con-
structed with real-time constraints in mind
and makes use of a lot of pointers dis-
cussed in this article: texture seam reduc-
tions, uniform texel density, minimal mate-
rial changes, smoothing group optimiza-
tions, and others.

Image created by Danny Oros.

t i m t r a i n w i t h b r i a n r e y n o l d st i m t r a i n w i t h b r i a n r e y n o l d s

36

P O S T M O R T E M

T he name of our company is a summa-

tion of our corporate attitude: aim

for the top, but don’t take yourself

too seriously along the way. In

this case, “aiming for the

top” meant putting together a company

and a game designed to go head-to-head in

one of the most competitive and resource-

intensive segments of the PC market-

place: real-time strategy games. To suc-

ceed, our first game needed all the

fun, depth, and polish of products

that enjoyed bigger budgets and

more manpower due to their rec-

ognizable franchises. Since they

don’t give out Game Developers

Choice Awards for “Best Game Made

With Fewer Than 30 People,” we had to

find ways to work both harder and

smarter if we wanted to achieve our goals.

Big Huge Games was formed in early

2000 by a core team who had worked

together for close to 10 years, creating

best-sellers such as COLONIZATION,

CIVILIZATION II, and ALPHA

CENTAURI. This history of suc-

cessful strategy games allowed

us to go to publishers with a

convincing pitch for a next-gen-

eration RTS. Although we

understood the issues

involved in creating turn-

based games, almost all

of the areas where we

failed to address risks

adequately involved

areas where we had

minimal experi-

ence, such as mul-

tiplayer match-

making and

making linear sin-

gle-player campaigns. In addition to these, we also

stumbled in some areas that were unique to our sit-

uation and company culture.

What Went Right

1. Prototype method of game
design. Part of the core

vision for RISE OF NATIONS

involved introducing gameplay

innovations inspired by our

experience making turn-based

games into the “classic” real

time strategy mix. We had 10

to 15 “wild” ideas about what

might take realtime strategy in

new directions, but we knew that only some,

maybe only a small few, were going to work, and

we didn’t know which ones. It was essential that

we find out as soon as possible which ideas were

worth implementing, and we knew from experience

that the only sure way to accomplish this is to

throw the ideas into a playable prototype right from

the beginning.

We got a playable solo prototype running

within the first month, and a fully

playable multiplayer version more than

two years prior to ship. We could throw

new ideas in and see the results almost

immediately: some concepts needed a

little tweaking to be fun, while oth-

ers got trashed almost as soon as

they went in. The value of pro-

totyping is that core concepts

end up being continuously

refined over years, while pro-

viding lots of time to balance

the game.

As part of the proto-

type approach to

design, we make sure

that everyone in the

j u l y 2 0 0 3 | g a m e d e v e l o p e r

Big Huge Games’

RISE OF NATONS

37

T I M T R A I N | As vice president of operations and development, Tim heads up the internal development
of Big Huge Games. With 12 years of leadership and team experience on numerous landmark PC
titles beginning with CIVILIZATION I, Tim has worked in every genre of computer games. Tim served
as executive producer and designer on RISE OF NATIONS.
B R I A N R E Y N O L D S | Brian is president of Big Huge Games and a 12-year industry veteran.
Honored by PC Gamer as one of 25 “Game Gods,” Brian has masterminded the design of numerous
hit strategy games, including CIVILIZATION II and ALPHA CENTAURI, and now RISE OF NATIONS.

w w w . g d m a g . c o m

company is playing the game on a regular basis. After

each daily play session, a member of the design team

compiles everyone’s feedback and sends a summary to

the rest of the designers. However, we found that we

had to be willing to wade through some resistance to

new features or gameplay tweaks. People would get

very attached to certain strategies for playing or even

just conventions of RTS games of which they were hesi-

tant to let go.

2. Choosing the right publisher. Over the

years, the production values and polish levels

on RTS games have risen along with the popularity of

the genre. Given the scope of the competition we were

up against, a major concern for us was finding a pub-

lisher who would be willing to invest the resources

necessary in a new company to produce a product that

could go head-to-head with the “big boys” — in

essence, finding a publisher who shared our culture and

values. Our task was made somewhat easier by the fact

that the core team had already notched a couple of mil-

lion-sellers with other companies, but we still had diffi-

culty in selling publishers on our business model.

In early 2000, when the company began, the industry

was in the throes of online mania and at the height of

the Internet bubble. The “smart” money was flowing to

online game sites and massively multiplayer titles.

However, in our pitch meeting with Microsoft, we were

impressed with their approach: when we asked them

which of our five proposals they were most interested

in, they just asked us which game we’d be most interest-

ed in making. They seemed more interested in the team

than in the specific proposal, which in our experience is

a great approach to produce top-quality games.

Once we signed on board with Microsoft, we were

amazed at the level of support they gave us. When we

thought of Microsoft, we took their marketing and

sales capabilities for granted, but we were equally

impressed by the quality of their development support.

Two key groups really helped us polish our game: the

G A M E D A T A

PUBLISHER:Microsoft

NUMBER OF FULL-TIME DEVELOPERS: 26

NUMBER OF CONTRACTORS:16

LENGTH OF DEVELOPMENT: 3 years

RELEASE DATE: May 20, 2003

TARGET PLATFORM:PC

DEVELOPMENT HARDWARE: WinXP PC

DEVELOPMENT SOFTWARE USED:

Boundschecker, Altova XMLSpy,

Araxis Merge, MacroExpress, PCLint,

3DS Max, Character Studio, MS Developer

Studio 6.0, Perforce Source Control,

Xoreax Incredibuild, Visual Assist,

Workspace Whiz, Alexsys Team,

Adobe Photoshop, Adobe Premiere,

Intel VTUNE

PROJECT SIZE: *.C, *.CPP, *.H:

1,721 total source files,

837, 939 total lines, 24,610,223 total bytes;

*.BHS: 46 total files, 24,330 total lines,

966,289 total bytes

P O S T M O R T E M

j u l y 2 0 0 3 | g a m e d e v e l o p e r38

play-balancers and the usability labs. Throughout much of the

last eight months of the project we had four to six full-time

play-testers assigned to the project whose sole job was helping

to balance the game. These guys were expert-level RTS players

who could smoke the designers after very little time with the

game. They helped us find and fix all kinds of broken strategies

and degenerate gameplay, and ensured a much more balanced

game for hardcore players right out of the gate.

The usability labs took care of the other end of the spectrum,

the casual players who aren’t as familiar with the ins and outs of

RTS games. Between the various tutorials, core gameplay, and the

Conquer the World single-player campaign, members of Big Huge

took up five weeks of the usability labs as we watched beginner-

level players struggle through basic game concepts. Our program-

mers were there in the labs, coding changes on the fly, able to put

a new version up for the next subject. Usability’s input resulted in

hundreds of changes to the game, making it more streamlined and

easy to jump into. It’s hard to overstate the contribution both the

play-test and usability groups made to the final product.

3. Disciplined hiring process. We started the compa-

ny with a proven method of developing strategy

games through prototyping, and soon afterward we had a pub-

lisher that shared our vision and complemented our strengths.

What we didn’t have, and what would certainly be the biggest

single factor in achieving our goals, was a full team.

From the start of the company, we took great care in selecting

our staff, adopting an interview system that we thought worked

well for Ensemble Studios. All candidates that make it through

two rounds of phone interviews are brought to Big Huge and

interviewed by every person on staff. After each interview the

company meets and discusses the candidate’s strengths and weak-

nesses, at which point anyone can veto a hire for any reason.

Although this process has gotten more time-consuming and

difficult as the company has grown, the end result has been well

worth the effort. A major advantage of this system is ensuring

that every new hire can work and play well with others; if they

can impress through multiple interviews with a diverse set of

people, then we can have confidence that they will fit in from

day one. Perhaps most importantly, it ensures that none of our

full-timers has the experience of being introduced to someone

they’ve never met before in their life as “. . . And here’s who

you’ll be working with on such-and-such for the next year.”

4. Developing powerful in-house tools. Our pro-

grammers worked from the philosophy that taking a

little extra time initially to develop a good tool or algorithm

pays off manyfold in time saved over the course of the project,

while improving the quality of the final product. We also

learned not to rely exclusively on one particular tool but rather

to use an array of tools to help narrow down a problem.

Following are some of the internal tools and techniques which

paid the biggest dividends for us:

The section profiler. Our lead programmer, Jason

Coleman, created an interactive visual profiler, which helped us

identify the correct time segments to bring optimization

resources to bear, particularly when trying to identify intermit-

tent spikes in performance that would ordinarily be averaged

catption here

w w w . g d m a g . c o m 39

out when running a profiler over

many game frames. Our program-

mers mark the beginnings and

ends of key sections of our code as

belonging to one of about 20 color-coded cate-

gories (such as render units, network, pathfinding, and

so on). Then, as the game runs, the programmers have access

to an interactive graphic window with slider bars for time and

scale. The profile chart changes color each time the program

moves from one section to another, and longer times in a par-

ticular section of course result in longer blocks of a particular

color. It is easy to spot spikes in a particular section and then,

using our “recorded game” feature to repeat a game precisely, a

more powerful profiling tool such as VTune can be brought to

bear on just that particular time segment, thereby avoiding the

“averaging out” effect. The section profiler also helps us spot

sections that are being entered too often, even if not for very

long.

The parameter window. Graphics programmer Jason

Bestimt created an interactive “parameter window” module,

which allows our programmers to register as many variables as

they’d like as parameters, which can then be interactively con-

trolled during the game with their choice of slider bars, combo

boxes, or edit boxes, using a special pop-up console without

causing performance degradation. Being able, for instance, to

pull up an interactive page that controls all of the render states

for any desired graphics element made for great progress on

special effects. For example, the nuclear blast effect could be

fine-tuned without having to repeatedly recompile (or even

rerun) the game: the programmer and artist just sat there and

pulled on the slider bars until it looked just right.

The Const System for multiplayer. One of the great night-

mares of creating multiplayer strategy games is keeping the

game world synchronized across each of the player’s machines.

Game code and random number generators must run in virtual

lockstep across every machine in the game, or the whole game

world shatters and goes out of sync — the multiplayer program-

mer’s worst-case scenario which effectively ends gameplay.

Interaction with the outside world (such as the commands play-

ers give to their units) must be carefully propagated to all

machines before they can be safely executed or even safely

“seen” by code that can write to the game state. The smallest

unintentional bypassing of this rule can result in disaster (such as

a graphics routine that accidentally uses the game-side random

number generator, or an input routine that directly affects the

game world without passing it through the network protocols).

To avoid most of the potential catastrophes of this type we

created the “Const System,” essentially a compiler-assisted fire-

wall between the game-world side of the code and the I/O

(graphics and interface) side of the code. There’s game-side

data (the simulation) and non-game-side data (everything else).

Game-side is allowed read-write access to itself but write-only

access to the non-game-side (rendering, for example). Non-

game-side is allowed read-write access to itself but read-only

(const) access to the game-side (user input isn’t allowed to

directly modify the game-state).

The real compiler tricks involved

the fact that C++ doesn’t have an inher-

ent notion of write-only (new standard, any-

one?). Also, once this was worked out, all remain-

ing sync issues involved either the occasional, foolhardy

overriding of the system, or bugs such as uninitialized data

or memory overwrites. Two sets of macros (one each for game

and interface access) made this scheme mostly transparent to

programmers. The end result was that many of the potentially

thorniest multiplayer bugs became easy-to-find “compile errors”

instead of nearly impossible-to-find intermittent out-of-syncs.

5. Great third-party productivity tools. One of the

great life-changers for our team was Xoreax’s

Incredibuild tool. Essentially it lets us turn every machine on our

company network into a vast compile farm — the tool automati-

cally makes use of free cycles on everyone’s machines to compile

our game at jaw-dropping speeds. Even when RISE OF NATIONS

was in gold release, our entire game could compile, including all

of the libraries, in just under two minutes. Optimizations added

an entire extra 15 seconds to the process. Linking the code, the

one step which must be performed entirely on the programmer’s

own machine, took an extra 45 seconds. So, in other words, the

final release of RISE OF NATIONS that we delivered to Microsoft

probably compiled and linked in around three minutes.

The ability to compile (and recompile) the code so quickly led

not only to greatly speeded debugging and development, it also

resulted in much cleaner code: programmers no longer feared

changing header files with the half-hour-plus recompile formerly

associated with such an action, so they no longer felt tempted to

resort to messy workarounds and hacks just to avoid a full

recompile. An amusing side-note is that programmers who had

structured their lives around using long compiles to grab drinks,

chat, and play chess suddenly had to rethink their whole day.

Other tools well-loved by our programming team include the

catption here

Visual Assist and Workspace Whiz add-ons to Microsoft’s

Developer Studio. These two tools add a ton of little improve-

ments to the development environment that end up completely

changing the way programmers use Dev Studio. Features

include toggling directly from .CPP to .H files, opening any file

in your workspace (without needing to provide a path), and

automatic grammar correction. Our programmers always com-

ment about how sad they are when they have to debug on a

machine without these tools installed.

From the standpoint of task organization, the lifesaver for us

was Alexsys’ Team software. This system replaced our “Post-It

note” method of project management with an extremely config-

urable setup and easy access to tasks. One of the greatest fea-

tures of Team is its capacity to send e-mail alerts whenever a

task is created or modified. As a company we use e-mail a lot,

and having a project management system that essentially forced

everyone to stay current with tasks was invaluable.

What Went Wrong

1. Not listening to all the other Postmortems ever
printed in Game Developer. The Postmortems are

the most widely read feature in Game Developer around Big

Huge, and yet somehow we still managed to make many of the

mistakes developers are cautioned against in these pages. We

underestimated the amount of coding time necessary, which

resulted in an extremely overworked programming staff. We

misjudged the amount of revision time that we’d want for vari-

ous systems. We overloaded our lead programmer such that he

became the bottleneck on a number of critical systems, includ-

ing multiplayer and matchmaking. Most of this could be traced

back to simply not hiring enough programmers early in the proj-

ect, and was compounded by lack of scheduling and technical

oversight. We also never knew what was “enough” — since this

was our first project in the RTS world, we were desperate to

cram everything in that we could think of. For the next project,

we will certainly hire more programmers and not schedule our

lead programmer for anything other than management and sup-

port, with the expectation that he will have some flexibility to

jump in and help out wherever it’s needed. We also expect that

we’ll have a much more straightforward perspective on schedul-

ing to meet our goals.

Another classic blunder (comparable to getting involved in a

land war in Asia) was in undervaluing single-player tool cre-

ation. We always assigned our most recent programmer hire at

any time to be the “scenario tools” guy, meaning we not only

always had our least-experienced team member doing that

work, we also had no continuity since we’d pass the torch each

time we hired someone new. The editor also suffered grievously

from several revamps of the game’s terrain system and other

parts of the engine. Hence, we had a great deal of difficulty cre-

ating single-player scenarios, and we were very fortunate to

have the Conquer the World campaign turn out as well as it

did. In the last few weeks of development, programmers Ike

P O S T M O R T E M

j u l y 2 0 0 2 | g a m e d e v e l o p e r40

catption here

catption here

Ellis and Scott Lewis finally whipped the editor

into shape with some intense hours and smart

coding, but for the next game we will have

someone working on this module early and

throughout the project. This task will also

be easier because we’ll be working from a

more mature engine.

2. No clear idea of the kind of
game we were making. In the first year, both we and

the publisher waffled back and forth on whether we should be

doing a “classic” RTS game, a completely new kind of strategy

game with some real-time elements, or something in-between.

The prototype would swing back and forth between those two

poles. Eventually, external events (such as the release of Empire

Earth and Microsoft’s purchase of Ensemble Studios) made it

clear that a straight-down-the-line “classic” RTS was not the

right game to be working on, but not before several months of

work on art and game design were wasted going back and

forth.

For the next game, we have a much better sense of what our

style of game should encompass — epic scope, strategic depth,

and large armies clashing — and hopefully we won’t have to be

so concerned about standing in the shadows of the other giants

of the genre. We’ve also got a much stronger sense about what

works and what doesn’t in an RTS game.

3. Hard time finding the look from the art per-
spective. Partly because of the preceding problem,

we took longer than usual to nail down an art look for the

game. Among other issues, it took us some time to decide

whether we’d be fully 3D. The rest of the market was going full

3D, but we really loved the detail and crispness that 2D offered

for things such as building graphics. The only engine feature we

would give up to go 2D was the ability to rotate the camera,

which we’d never found to be very useful in RTS games any-

way. However, there was also a lot of hand-wringing about

whether we’d be considered behind the curve graphically.

We did numerous tests with 3D and discussed the issue with

marketing, but in the end we went with a 3D engine that utilized

2D for buildings. We’ve been happy with how the game looks

and think the high detail on the buildings adds a lot to the world.

Next time, we’ll do a lot more prototype art and concept work

before going into full production, and we’ll be more confident

diving into a fully 3D world off the bat. Having an experienced,

full staff will also help with this issue — at the beginning of RISE

OF NATIONS we made do with just a couple of artists.

We were also faced with the classic dilemma of doing a history

game — it’s hard to differentiate yourself from earlier products

when you are drawing from common source material. A pikeman

looks like a pikeman, no matter how radical an approach you try

to take. For the most part, we attacked this issue on the market-

ing end. We focused on creating screenshots from the later eras of

the game and highlighted the diversity in cultural art sets from

nations that hadn’t been covered as much in

other products. Art leads Bill Podurgiel and

Ted Terranova worked hard to create units

and buildings that were both realistic and var-

ied, ultimately helping to help differentiate the

look from that of other products.

4. Solo scenario meltdown. When

we started work on RISE OF

NATIONS, we assumed that the single-player game would feature

classic RTS–style linked scenarios that followed a nation’s history

over time. However, we started work on those scenarios and

found that they just weren’t particularly appropriate for our sub-

ject matter — it’s not a lot of fun to take a game about all of his-

tory and then constrain players to a smaller canvas and scope.

This approach also did not play to our strengths as developers;

we are more interested in creating open-ended and infinitely

replayable experiences than in making a scripted, linear campaign.

Our prototype design process ended up helping the situation.

Starting from scratch, programmer Ike Ellis coded up the skele-

ton of the module that would become Conquer the World, which

aimed to bring context and meaning to linked scenarios that

change depending on choices the player makes throughout the

game. This campaign mode went from a prototype experiment to

a central selling point for the game in less than nine months, and

we are planning a new version of Conquer the World for the

next game.

5. Refusal to acknowledge the true state of the
game in the final months. Our insistence that we

could power through our bug counts at a faster-than-light clip

meant that we worked our team much harder than we should

have going into the final months of the project. There were a

couple of modules that were going to cause us to slip by the

month that we did, and recognizing reality sooner would have

saved much of the team a death march that was extremely diffi-

cult for all involved.

On the next project, we’ll retain our faith in our programming

team while making more effort to be up-front with ourselves

about the status of the project at any given time. Specifically, we

need to pay more attention to our bug counts as reflective of the

state of the project. We will also be more careful about not call-

ing something “done” until it is truly “done-done-done,” and

adjust our schedules and expectations accordingly.

It Takes More Than Effort
We’re extremely happy with how RISE OF NATIONS has turned

out. We started the company with a vision of how games

should be created and how teams function best. In the end, the

only tangible validation to our approach is the quality of our

games. We said many times during the project that the gaming

public only rewards success, not effort; we hope that Rise of

Nations demonstrates our commitment to both. q

w w w . g d m a g . c o m 41

S O A P B O X d a m o n c h r i s t i a n w a t s o n

j u l y 2 0 0 3 | g a m e d e v e l o p e r48

T he massively multi-

player online role-

playing game

(MMORPG) is the

game industry’s latest

progeny to spark volatile and

polarized public debate. Supporters tout the genre as a great

social advancement. Critics cite fans’ overenthusiasm as indica-

tive of a growing addiction problem. But so far, no one has

proved conclusively whether MMORPG addiction is real.

The MMORPG allure. For hardcore gamers, the MMORPG

attraction is manifest. They crave immersive story lines and envi-

ronments, challenging levels, replayability, intelligent NPCs, intu-

itive controls, and inviting game design. Replayability is hard-

wired into the MMORPG’s persistent-world infrastructure

(EVERQUEST’s title is itself a replayability tautology). The allure

for game makers includes charging customers’ credit cards

monthly fees for long-term revenue potential that goes far

beyond shrinkwrapped software’s point of sale.

The perceived addiction problem. For casual players and

nongamers, the allure of MMORPGs is confusing and even

frightening. Critics cite the same immersiveness and replayability

as addiction triggers. Some critics (including some self-pro-

claimed MMORPG addicts) argue that MMORPGs have the

potential to, and in fact have caused people to forget their real-

world problems and responsibilities. In an article by author

Jeffrey Russel Stark in Self-Psychology Discussion Forum, a play-

er with the handle “Grezkul” asserts that a high school semester

was “destroyed by an INSANE use of video games.” In an article

for Jive Magazine, author Jewels

writes about Iggy, whose addic-

tion led to his disappearance into

EVERQUEST and subsequent loss

of his job and friends. Iggy

emerged over a year later only

when the server went down for

maintenance one night. These are

but a few of many similar sto-

ries.

Is MMORPG addiction real? The

testimonials are compelling but

they don’t answer the fundamen-

tal question. To determine

whether MMORPG addiction

exists, the camps need to (a)

agree on a workable definition

of what constitutes such addiction, and (b) define the nature

and extent of the problem. Nick Yee, an independent researcher

and psychology degree candidate, conducted extensive research

into the perceived MMORPG addiction problem. For purposes

of his study, Yee defines addiction as “a recurring behavior that

is unhealthy or self-destructive which the individual has difficul-

ty ending” and concludes that “MMORPG addiction is a very

real phenomenon....” Some psychologists support Yee’s conclu-

sion, but ultimately the American Psychiatric Association and/or

the American Medical Association must weigh in on whether

MMORPG addiction is a diagnosable mental disorder.

The public response. One public response to MMORPG excess

has been the formation of various online support groups. EVER-

QUEST Widows is the best-known online discussion forum, its

stated mission to “support each other, and to discuss the trials

and tribulations of living in Real Life while our partner is

immersed in EVERQUEST.” Other support groups include Online

Gamers Anonymous (www.olganon.org), DARK AGE OF CAMELOT

Addiction (www.darkageworld.com/disc7_welc.htm), and

Spouses Against EVERQUEST (http://groups.yahoo.com/group/

spousesagainsteverquest).

Another public response has been threatened litigation. Jack

continued on page 47

Ill
us

tr
at

io
n

by
 S

te
ve

 M
un

da
y

Perfect Game or
Dangerous Addiction?

MMORPGs:

Thompson, a Miami attorney and out-

spoken critic of the game industry,

announced his intention to sue Sony

Online Entertainment on behalf of

Elizabeth Wooley, whose son Shawn

committed suicide in 2001 shortly after

logging off of EVERQUEST. Thompson

argues that SOE “knows [EVERQUEST] is

an addictive game” and says he wants to

“whack [SOE] with a verdict significant-

ly large so that [MMORPG makers], out

of fiscal self-interest, will put warning

labels on ...” However, warning labels

are an incomplete solution and likely

would not dissuade hardcore MMORPG

players from indulging in excess.

The case for self-regulation. The game

industry must resolve the apparent

MMORPG problem before state, local,

and/or federal governments step in and set

their own limits. State and local govern-

ments already have demonstrated their

willingness to impose legislative restric-

tions by targeting the sale of “M”-rated

games to minors. The game industry could

try to preempt government intervention

by investigating the MMORPG issue itself

and implementing self-regulatory meas-

ures (as it already has done with the ESRB

ratings system).

Once the game industry has a handle

on the nature and extent of the problem,

it can work to implement remedial meas-

ures. Taking a cue from the gambling

industry, the companies that maintain

MMORPGs and servers could use login

data to identify excessive players and dis-

seminate information to help those play-

ers identify whether their excess is a

problem and whether and where they can

get help (provided such practices are

addressed in the relevant end-user license

agreements and privacy policies).

Depending upon the official classifica-

tion of excess MMORPG playing as an

addiction or health concern, such prac-

tices also may implicate state or federal

regulations pertaining to the online col-

lection and transmission of health care-

related data. Developers also could write

on-screen timers into the client software

to help excessive players keep track of

how long they have been logged in (some

would-be addicts simply lose track of

time). Ultimately, the solution boils down

to the game industry identifying who, if

anyone, might need helpful information,

and then making that information avail-

able so that players can help themselves.

The debate over MMORPG addiction

may continue for some time without any

meaningful resolution. In the meantime

the game industry must decide whether

to own these issues and implement its

own action plan, or allow litigants, legis-

latures, and courts to move forward in

its stead. q

D A M O N C . W A T S O N | Damon is an
attorney in the Entrepreneurial, Tech-
nology, and Commercial client service
group at Bryan Cave LLP in Santa
Monica, Calif. You can contact him at
dcwatson@bryancave.com.

S O A P B O X

w w w . g d m a g . c o m 47

continued from page 48

	02gameplan
	04saysyou
	06indwatch
	08prodrev
	12profile
	14innerp
	18artview
	22soundp
	23betterby
	24f-pottinger
	30f-provost
	36postmort
	48soapbox

	return:

