
JULY 2002

G A M E D E V E L O P E R M A G A Z I N E

L E T T E R F R O M T H E E D I T O R

Publisher
Jennifer Pahlka jpahlka@cmp.com

EDITORIAL
Editor-In-Chief

Jennifer Olsen jolsen@cmp.com
Managing Editor

Everard Strong estrong@cmp.com
Production Editor

Olga Zundel ozundel@cmp.com
Product Review Editor

Daniel Huebner dan@gamasutra.com
Art Director

Elizabeth von Büdingen evonbudingen@cmp.com
Editor-At-Large

Chris Hecker checker@d6.com
Contributing Editors

Jonathan Blow jon@bolt-action.com
Hayden Duvall hayden@confounding-factor.com
Noah Falstein noah@theinspiracy.com

Advisory Board
Hal Barwood LucasArts
Ellen Guon Beeman Beemania
Andy Gavin Naughty Dog
Joby Otero Luxoflux
Dave Pottinger Ensemble Studios
George Sanger Big Fat Inc.
Harvey Smith Ion Storm
Paul Steed WildTangent

ADVERTISING SALES
Director of Sales & Marketing

Greg Kerwin e: gkerwin@cmp.com t: 415.947.6218

National Sales Manager
Jennifer Orvik e: jorvik@cmp.com t: 415.947.6217

Senior Account Manager, Eastern Region & Europe
Afton Thatcher e: athatcher@cmp.com t: 415.947.6224

Account Manager, Northern California & Southeast
Susan Kirby e: skirby@cmp.com t: 415.947.6226

Account Manager, Recruitment
Raelene Maiben e: rmaiben@cmp.com t: 415.947.6225

Account Manager, Western Region & Asia
Craig Perreault e: cperreault@cmp.com t: 415.947.6223

Account Representative
Aaron Murawski e: amurawski@cmp.com t: 415.947.6227

ADVERTISING PRODUCTION
Vice President, Manufacturing Bill Amstutz

Advertising Production Coordinator Kevin Chanel

Reprints Cindy Zauss t: 909.698.1780

GAMA NETWORK MARKETING
Senior MarCom Manager Jennifer McLean

Marketing Coordinator Scott Lyon

CIRCULATION

Group Circulation Director Catherine Flynn

Circulation Manager Ron Escobar

Circulation Assistant Ian Hay

Newsstand Analyst Pam Santoro

SUBSCRIPTION SERVICES
For information, order questions, and address changes

t: 800.250.2429 or 847.647.5928 f: 847.647.5972
e: gamedeveloper@halldata.com

INTERNATIONAL LICENSING INFORMATION
Mario Salinas

t: 650.513.4234 f: 650.513.4482 e: msalinas@cmp.com

CMP MEDIA MANAGEMENT
President & CEO Gary Marshall

Executive Vice President & CFO John Day

Chief Operating Officer Steve Weitzner

Chief Information Officer Mike Mikos

President, Technology Solutions Group Robert Faletra

President, Business Technology Group Adam K. Marder

President, Healthcare Group Vicki Masseria

President, Electronics Group Jeff Patterson

President, Specialized Technologies Group Regina Starr Ridley

Senior Vice President, Global Sales & Marketing Bill Howard

Senior Vice President, HR & Communications Leah Landro

Vice President & General Counsel Sandra Grayson

W W W . G A M A N E T W O R K . C O M

✎

T he month leading up to E3

this year was marred by a

couple of unfortunate public

policy incidents involving the

sale of videogames and the

constitutional rights of game developers

and publishers. By now you are likely

familiar with the case of Interactive
Digital Software Association v. St. Louis
County, Missouri, in which U.S. District

Judge Stephen N. Limbaugh Sr. (yes, he’s

Rush’s uncle) failed to uphold the IDSA’s

claim that games constitute constitution-

ally protected free speech. While the find-

ings in this case are baffling at best and

potentially disastrous at worst, freedom-

loving developers can only wait this one

out on appeal.

Just days after the Limbaugh decision

came down, Rep. Joe Baca (R-Calif.) and

21 co-sponsors introduced HR 4652, the

Protect Children From Video Game Sex

and Violence Act of 2002, a bill that

would make it a federal crime to sell cer-

tain games to minors, complete with jail

time for scofflaws.

While I always enjoy receiving mail

from readers, as my inbox flooded with

e-mails expressing varying degrees of

outrage, I couldn’t help but think that

the recreational pundits in our industry

spend entirely too much time preaching

to the choir and virtually no time trying

to convert the unclean masses. I’m refer-

ring — not literally, of course — to our

elected officials.

So I am hereby posing a challenge to

every single one of you: You must write

your congressman.

No, I’m not kidding. You know that

bills like HR 4652 get introduced because

members of Congress have constituencies

back home that expect certain things from

them. It’s hard for me to imagine Rep.

Baca not receiving at least one letter in his

past three years in office from a distraught

constituent asking, “Joe, what are you

doing to protect our children?” And the

ones he doesn’t hear from? Well, he can

only guess what’s on their mind, but he

probably won’t.

So while this bill languishes in commit-

tee, take the time to mail (yes, dead tree

and stamp) your congressman a letter.

Introduce yourself. Explain a bit about

what your job is, why you do it, how

your company benefits the local economy

and tax base. Perhaps modestly point out

that the industry in which you work

added the rough equivalent of the gross

domestic product of Panama to the U.S.

economy last year and helps drive other

major high-tech sectors. You can let them

know that the ESRB has an industry-

wide rating system that the FTC seems to

think works pretty well, and that crimi-

nalizing business owners is both extreme

and unnecessary. Use this bill as a back-

drop for simply opening a dialogue.

You’re too busy, you say? Nonsense.

E3 is over and Christmas is still a ways

off. Now if you’re just plain lazy, that’s

O.K. I have taken the liberty of posting

my own letter to my congressperson at

www.gdmag.com/congress.htm that you

can use for some inspiration if you wish,

and also some letter-writing tips. I’ve also

posted a form letter that you can just

outright copy, although be warned that

form letters (and they’re easily spotted)

carry far less weight at your legislator’s

offices. So do something to personalize it

if at all possible.

Every single one of you who is a regis-

tered voter can find at least five minutes

to do this. Do it not just for yourself but

for your colleagues and your collective

future. Once you’ve sent your letter,

e-mail me and let me know, and I’ll try to

offer an update in a future issue of how

we’re doing.

Lawmakers reckon that each letter

they receive in the mail represents the

viewpoint of roughly 500 constituents. If

you’re tired of negative, one-sided PR

against the game industry and develop-

ers, then put some good PR for us out

there to people whose opinions matter

and to whom your opinion matters.

When you’re done, you can celebrate

by playing THE RESIDENT OF EVIL CREEK.

600 Harrison Street, San Francisco, CA 94107 t: 415.947.6000 f: 415.947.6090

2

Game Developer
is BPA approved

G A M E P L A N

Jennifer Olsen

Editor-In-Chief

So It’s Come to This

Xbox cuts price, lowers estimates,
and loses staff. Six weeks after Xbox

made its European debut to uniformly

sluggish sales, and amid vocal criticism

from consumers and publishers alike,

Microsoft chose to reduce the console’s

pricing. The company cut the cost of an

Xbox on the continent from 479 euros to

299 euros, putting Xbox’s price tag

square with that of Playstation 2.

Six weeks of slow European sales at

the higher price, combined with a similar-

ly lackluster Japanese launch, had already

done enough damage to force Microsoft

to revise its Xbox sales estimates.

Microsoft had expected to ship 4.5 to 6

million Xbox consoles by the end of June

2002 but now puts that number closer to

3.5 to 4 million.

New pricing and lowered estimates

were followed by an even greater change

to Microsoft’s Xbox efforts: the departure

of Seamus Blackley. Blackley, credited as

one of the creators of the Xbox, insisted

that the timing of his departure was coin-

cidental and motivated by the desire to

return to a position more closely related

to making games. His next role will be

that of VP of development for the newly

formed Capital Entertainment Group.

CEG, launched by fellow Xbox alum

Kevin Bachus, hopes to carve a niche for

itself by helping developers get the finan-

cial and production resources necessary to

bring their games to market.

Interplay sells Shiny to stay afloat.
Interplay has dodged bankruptcy once

again, but the company lost one of its

most promising assets in the effort. Herve

Caen, Interplay’s CEO, announced in mid-

April that the company was on the verge

of bankruptcy and seeking to raise operat-

ing funds by selling off its Shiny

Entertainment unit. Caen further warned

that money raised by the Shiny sale would

only serve as a temporary solution and

that the company’s operating losses,

deficits in stockholders’ equity, and lack of

working capital raised substantial doubt

about Interplay’s ability to continue as a

going concern.

Infogrames agreed to purchase Shiny

for approximately $47 million in a com-

bination of cash and a promissory note.

That price represents a substantial premi-

um, as Interplay acquired an initial 91

percent of Shiny in 1995 for $3.6 million

in cash and stock, and then picked up the

remaining 9 percent in March 2001 for

$600,000. As a result, Infogrames will

have exclusive worldwide rights to devel-

op and publish games based on sequels

to the movie The Matrix, the first of

which is currently in development by

Shiny. Infogrames also gets Shiny’s patent

for “Advanced Tessellation Technology.”

Dave Perry, founder and president of

Shiny, signed a long-term employment

agreement with Infogrames to remain as

president of Shiny.

EA, Activision report surging fourth-
quarter revenues. Electronic Arts

crushed analysts’ forecasts for the fourth

quarter by posting an impressive 53 per-

cent increase in quarterly revenue.

Revenues expanded to $469.7 million

from $307.3 million a year earlier, and the

surging sales pushed profits to $47.3 mil-

lion — reversing a $17.9 million loss in

the same period last year. The company’s

faltering online division, blemished earlier

in the year by high-profile layoffs and the

cancellation of MAJESTIC, saw improved

numbers but was unable to reach prof-

itability. EA.com nearly doubled its rev-

enue, to $23.6 million from $12.8 million

last year, but still posted a fourth-quarter

loss of $32.9 million.

Activision experienced a similar jump in

sales, as revenues in its fourth quarter

grew by 30 percent to $164.9 million

from $126.8 million last year. Net profit

for the quarter totaled $10.9 million, a

sizeable gain from last year’s $875,000.

Xbox was Activision strongest console

platform for the quarter, accounting for

21 percent of publishing revenue. In light

of the results, Activision has raised its

guidance for 2003 and plans to target $1

billion in revenue in 2004 — joining EA

as the only publisher to realize $1 billion

in annual revenue. q

j u l y 2 0 0 2 | g a m e d e v e l o p e r4

I N D U S T R Y W A T C H
T H E B U Z Z A B O U T T H E G A M E B I Z | d a n i e l h u e b n e rJ

L I N U X W O R L D E X P O
MOSCONE CONVENTION CENTER

San Francisco, Calif.
August 12–15, 2002
Cost: $10–$1,050 (early bird dis-
counts available)
www.linuxworldexpo.com

G D C E U R O P E
EARL’S COURT

London, U.K.
August 27–29, 2002
Cost: £350–£450
www.gdc-europe.com

E C T S
EARL’S COURT

London, U.K.
August 29–31, 2002
Cost: Advance registration free via
web site; £25 on-site registration
www.ects.com

The success of SPIDER-MAN: THE MOVIE games
may help Activision reach new revenue tar-
gets.

U P C O M I N G E V E N T S

CCAALLEENNDDAARR

Profitability continued to evade EA’s online
division in the fourth quarter, despite efforts
such as the cancellation of MAJESTIC.

XX
A Tale of Two Workstations

3DBoxx and Dell
Precision Mobile M50

by david str ipinis

j u l y 2 0 0 2 | g a m e d e v e l o p e r6

P R O D U C T R E V I E W S
T H E S K I N N Y O N N E W T O O L S

T he term workstation is often

used with some alacrity to

describe the computers game

artists work on every day.

Few, however, would truly

be considered an heir to the title passed

down from the SGIs of yesteryear. This

month I took a look at two products

that both live up to the title and at least

one that redefines the way CG artists

can work.

Boxx Technologies’
3DBoxx

F irst up is Boxx Technologies’

3DBoxx, featuring dual AMD

Athlon 2000+ processors, 1GB 266MHz

DDR memory, an Nvidia Quadro 4 900

XGL 128MB DDR video card (which

supports two monitors), and an 80GB

hard drive. Though it comes equipped

with two Ethernet ports, there is no

Firewire port as a standard feature,

which is unfortunate, as any modern

graphics workstation should be able to

support DV camcorders, a variety of

hard drives, and other peripherals that

need the superior bandwidth of Firewire

over USB.

It’s hard to look at a desktop worksta-

tion these days and see its true value.

After all, in the world of www.cheap-

partsforyourpc.com and with the geekish

nature of game developers, we feel we

could make more for less than buying a

turnkey solution. And if you perceive

your purchase as merely the buying of

parts, you may be right. But what is the

value of your time and sanity? Would

you rather spend weeks researching

which motherboard works with which

processor (and with how much RAM)

and then trying to find a good video card

that doesn’t have issues with all of the

above and, on top of it all, performs well

with your software? Or would you rather

just take a machine out of the box, plug

it in, and go to work? With a machine

like the 3DBoxx, that’s precisely what

you do. Throw in one year of 24-hour

guaranteed part replacement, and sud-

denly that extra premium you paid is

looking better.

Upon unpacking the 3DBoxx, two

things struck me. First was its weight (or

lack thereof). While it feels quite solid,

the case and mountings are made of alu-

minum, rather than traditional steel. Not

only does this make the machine more

portable, but, given the qualities of alu-

minum, it turns the entire case into a

gigantic heat sink, dispersing the tremen-

dous amount of heat given off by today’s

high-end processors. The second and def-

initely more noticeable aspect of the

machine is the industrial design of the

case itself. With its retro black-and-

brushed-metal look, dipswitches, and

gigantic, bright LEDs, the machine just

looks powerful. But it also manages to

stay traditional enough so you don’t feel

you are paying a premium simply for the

case design.

After I plugged everything in, I hit the

power button. In a seeming assault on

my senses, the bright power LED and

cooling fans came to life. Now, I realize

the need to keep the chips inside cool,

and the simple physics of fan blades

chopping through the air at high speed

are bound to cause some noise, but the

amount of racket this machine puts out

is quite astounding. Most artists, myself

included, keep our workstations at our

desks, and the constant white noise of

D A V I D S T R I P I N I S | David is currently on the third year of his life sentence as Factor
5’s animation monkey. Care packages and questions can be sent to
david.stripinis@factor5.com.

w w w . g d m a g . c o m 7

the fans began to grate on me after a

while. It would be interesting to see a

commercial workstation vendor like

Boxx start using one of the existing liq-

uid cooling systems.

Perhaps the noise level is justified,

however, because this machine just

screams. Twenty minutes out of the box,

I had both Maya and Lightwave

installed and running. This is one of the

main arguments for purchasing a work-

station, rather than a bunch of parts:

Everything not only worked (and

worked well), but also worked well

together. I had no device conflicts, driver

issues, or odd dipswitches to set, and

this on a Windows 2000 machine (which

is the preinstalled OS, though I had no

trouble installing Red Hat Linux as a

dual boot solution).

The Nvidia Quadro 4 video card is a

true beast, pumping out a 3DMark of

8820 at the default settings. Complex

scenes in Maya with GL fog, shadows,

and large amounts of textures were

swallowed whole. Because the Quadro 4

supports hardware overlay planes, many

of Maya’s features that rely on them,

such as 3D Paint, really displayed the

prowess of the system in a production

environment. Unless you’re working on

some super game platform unknown to

man, this system should handle any

modern videogame art asset without a

problem. The only issue I had within

both Maya and Lightwave was a tenden-

cy for viewports in the background to

not be updated. This is hopefully some-

thing that can be rectified within the

next few driver releases from Nvidia.

Dell Precision Mobile
Workstation M50

T he other machine I had a look at was

the Dell Precision Mobile Worksta-

tion M50. For such a corporate-sounding

name, this is one sexy machine, and with-

out a doubt one of the most impressive

pieces of hardware I have had the pleas-

ure of using. My test system held a

Pentium 4 running at 1.8GHz, 512MB of

DDR memory, a 40GB hard drive, and an

Nvidia Quadro 4 500 Go GL 3D with

64MB DDR memory. This is a true

portable workstation. I hesitate to use the

word laptop, because the heft of this sys-

tem, as well as the heat it generates,

would give pause to

anyone wanting

to keep this

machine on his

or her lap.

Featuring a

crisp, clear 15-

inch display

that runs at a

native

1600�1200

resolution, the

machine is

equipped with

a bevy of

ports. In a

taunting

game of

one-

upmanship

with the

3DBoxx, the Dell does feature a Firewire

port. Lacking, however, was an integrat-

ed 802.11b networking solution. Any

portable in this class should feature such

technology as standard, rather than as

the option it is available.

My other major gripe was the point-

ing devices integrated into the keyboard.

Featuring both a touchpad and a point-

ing stick, the users have a choice as to

which way they wish to navigate around

the UI. However, neither features a scroll

wheel or third button. Most of the appli-

cations I run in my day-to-day existence

require that middle mouse button, so I

found myself carrying around an exter-

nal mouse.

O.K., enough with the griping and on

with the good stuff. Putting it simply,

this machine is unbelievable. Sure, lap-

tops have served as desktop replace-

ments for years now, but the thought of

a portable that would run a 3D pro-

gram, never mind run it faster than 99

percent of the computers people work

on every day, is astounding to me.

Running Maya on it was a dream, and

earned oohs and aahs from my cowork-

ers. I could easily tumble around com-

plex models numbering in the hundreds

of thousands of polygons. I could run

cloth simulations in near real time and

render out animations with surprising

speed. Hard drive

access was a little

slow, but a slower

hard drive lets the

M50 conserve power,

giving it a respectable

average battery life of

two hours and 12

minutes of actual use.

Dell includes a handy

utility that gives a

fairly accurate display

of remaining battery

life in time, rather

than a percentage as

many similar utili-

ties do.

I didn’t need to

take any long

trips while I was

conducting the review,

but I can definitely see the value of hav-

ing a machine of this caliber as a

portable. The ability to run all your tools

and programs wherever you go, be it a

recruiting trip, a professional conference,

or just going outside and working in the

fresh air for a while is truly worth the

premium you pay for portability.

Also equipped with an Nvidia chipset,

the M50 performed well against the Boxx

in the 3DMark, scoring an impressive

4855. Interestingly, neither 3DMark nor

Right Hemisphere’s Deep Exploration

recognized the video chip as anything

above a GeForce 2, so I could not use any

of the pixel shader features of Deep

Exploration nor run the pixel shader tests

of 3DMark. Again, I hope this can soon

be rectified through a driver release.

Max Power’s the Name

I f you are in the market for new work-

stations for your staff, I can’t recom-

mend the 3DBoxx highly enough.

Though the noise can get a little distract-

ing, the intense, raw power it brings to

the table makes it worth it. Maybe we

need to bring back the days when work-

stations were kept in a super air-condi-

tioned room well away from the anima-

tor? You pay a premium for service, but

with 24-hour part replacement and the

personalized service Boxx offers, it’s

more than worth it, especially if your

staffing budget doesn’t allow for full-time

IT support.

If you need to hit the road often, or

you just like the idea of truly being able

to take your work home with you, the

Dell M50 is worth every penny and every

pound. Sure it’s heavy, lacks the essential

third mouse button, and will scorch the

hair off your legs if you actually put it on

your lap, but it’s really a true worksta-

tion disguised as a laptop. While I’m

waiting for Dell to ask for its return, I

am in fact writing this review on it.

They’ll get it when they pry it from my

cold, dead hands.

Looking at these two machines, both

j u l y 2 0 0 2 | g a m e d e v e l o p e r8

XP R O D U C T R E V I E W S

DELL M50 XXXX3DBOXX XXXX

STATS
BOXX TECHNOLOGIES

(877) 877-BOXX (2699)
(512) 835-0400
www.boxxtech.com

PRICE (AS CONFIGURED)
$3,527 (MSRP)

PROS
1. Powerful.
2. Affordable.
3. Great service plan.

CONS
1. Noisy.
2. Case design is a love it/hate it situation.
3. Lacking in I/O abilities.

STATS
DELL COMPUTERS

www.dell.com
PRICE (AS CONFIGURED)

$4,343 (MSRP)

PROS
1. Powerful enough to be a desktop work-

station replacement.
2. Portable.
3. Beautiful high-resolution screen.

CONS
1. Lack of a third mouse button on integrat-

ed devices.
2. No 802.11b as a standard configuration.
3. More expensive than what you’d pay for

a comparable desktop of the same
capabilities.

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

of which retail for less than what I paid

for a 286/16MHz 10 years ago, all I can

say is Moore’s law is really, really cool.

AI GAME
PROGRAMMING
WISDOM
Edited by Steve Rabin

reviewed by Soren Johnson

F ollowing in the foot-

steps of the now-vener-

able Game Programming
Gems series, AI Game
Programming Wisdom
attempts to explore what is

perhaps the least under-

stood of all game develop-

ment disciplines, artificial

intelligence. Like the Gems series, this

book is composed of short chapters

(ranging between five and 10 pages

each) focusing on solutions to common

AI challenges. Typical entries include

“Realistic Turning Between Waypoints,”

“Camera AI for Replays,” “The Beauty

of Response Curves,” and the ever-popu-

lar “Intercepting a Ball.” Indeed, the

sheer scope of the book is impressive;

entire sections are devoted to A*

pathfinding, group movement, scripting,

and even sports-specific AI.

The gems themselves are a mixed bag.

Some detail powerful techniques for

increasing the realism, adaptability, and

fun factor of game AI, while others, such

as “Architecting a Game AI,” are simply

too high-level to be valuable, regardless of

the author’s honesty and good intentions.

The general problem lies within the

old debate of whether AI is an art or a

science. The truth, of course, is that

good game AI requires both creative

vision and solid engineering. Thus, the

best articles are grounded in real-world

experience resulting from this synergy.

For example, Stainless Steel Studios’ Dan

Higgins contributes an excellent chapter

on building a generic “A* machine” for

EMPIRE EARTH, which, besides control-

ling pure pathfinding, also handled

weather models, wall building, terrain

analysis, and choke-point detection.

Even the relatively nonspecific “12 Tips

from the Trenches,” by Monolith’s Jeff

Orkin, is useful for illuminating com-

mon AI stumbling blocks.

Bioware’s Mark Brockington and

Mark Darrah provide a pair of interest-

ing chapters based on their experiences

with BALDUR’S GATE and

NEVERWINTER NIGHTS. The

first one describes a simple

but effective level-of-detail

system for providing each

NPC AI with appropriate

processor time depending

on its proximity to the

users. The second details

“How Not to Implement a

Basic Scripting Language,”

emphasizing the need for

designing a syntax appro-

priate for the script authors and planning

for extensibility from the beginning.

The book also includes excellent build-

ing blocks for beginning AI game pro-

grammers. The companion CD includes

extendible source code for an A* path-

finding algorithm, a finite state machine,

a rules-based inference engine, and a

fuzzy logic library. The accompanying

chapters do a good job of preparing the

developer to dive into the code. The A*

project even includes a fun little program

for viewing the algorithm in action on a

user-modifiable map.

Genetic algorithms and neural net-

works, the redheaded stepchildren of the

game AI community, are confined to a

few blandly general chapters at the back

of the book. Perhaps someday these tech-

niques will become mainstream AI tech-

niques. The path to that day, however, is

not laid out in this book.

The book does suffer from a lack of

articles on AI-based gameplay. Lion-

head’s Richard Evans supplies an inform-

ative, if too short, article on the AI archi-

tecture behind the creatures in BLACK &

WHITE. Perhaps the next version could

dedicate an entire section to this topic,

including articles on CREATURES, THE

SIMS, and THIEF: THE DARK PROJECT.

Another area to improve is diversity.

Just seven authors are responsible for 26

chapters, representing over one-third of

the total content. Of the five chapters

covering A*, for example, three are writ-

ten by the aforementioned Dan Higgins.

Although his series of chapters are uni-

formly excellent, the reader would be bet-

ter served by having a greater variety of

perspectives on the strengths, weaknesses,

and subtleties of the A* algorithm.

So, who should buy AI Game Prog-
ramming Wisdom? For inexperienced

game developers — which describes a

bigger portion of our industry than most

would care to admit — the book is

absolutely essential reading. Nowhere

else can so much basic wisdom be found

in such concentrated form. The path-

finding sections alone make the book a

simply invaluable purchase for begin-

ners. Veteran AI programmers, however,

might be disappointed. Unless the reader

works within one of the AI subdisci-

plines in which the book really excels,

such as racing AI or tactical group

movement, the collection of articles is

unlikely to fundamentally change how

he or she works.

Still, as a collection of this scope is a

first for our young industry, it would

surely be a worthwhile purchase for

almost anyone involved with game AI.

The discipline certainly suffers from a

lack of standards. Like the cursed

Sisyphus spending eternity rolling his

rock up a hill only to see it fall down the

other side, game AI programmers seem

perpetually doomed to throw out their

best work and start from scratch with

each new project. Until this cycle is bro-

ken, high-concept AI work, such as

learning and adaptation, will be confined

to academia and games ambitiously con-

ceived by Peter Molyneux. AI Game
Programming Wisdom represents anoth-

er small but significant step toward an

established game AI community, with

shared algorithms, building blocks, and

architectures. Perhaps the industry is

finally growing up.

| AI Game Programming

Wisdom | Charles River Media |
www.charlesriver.com

Soren Johnson was the co-designer and

XP R O D U C T R E V I E W S

XXXX

XXXXX excellent

XXXX very good

XXX average

=XX disappointing

X don’t bother

j u l y 2 0 0 2 | g a m e d e v e l o p e r10

O nce upon a time,

Graeme Devine was an

ordinary British high

school kid cutting

class to do ports of

games like POLE POSITION for Atari. He

immigrated to the U.S. and later co-

founded Trilobyte in 1990, which

released the seminal 7TH GUEST and its

ambitious sequel, THE 11TH HOUR.

These days he is best known for the

many hats he wears at id Software,

where he has worked as a game

designer, programmer, project manag-

er, and self-described “Mac guy,”

among other things. Game Developer
recently interrupted his work on

DOOM 3 to get some perspective from

a true industry veteran.

Game Developer. You’ve spent a year on the IGDA board of direc-
tors and recently became chairman of the board. What do you feel
like you’ve accomplished, and what do you hope to accomplish still?

Graeme Devine. I think it’s actually done more for me than I

the other way around. I’ve come to respect greatly the commu-

nity, thought, and care that the IGDA drives through its mem-

bers. For me, the big thing in the last year has been that we’ve

plastered schools with information on how to get into the game

industry and what sort of skills we look for. For years after I

worked in this industry my friends and family all thought of it

as a fad job — something you grow out of. They would often

nudge me to go get a real job. Hopefully the IGDA push here

will change that perception, and therapists around the world

will hear less from stigmatized game developers.

Game Developer. You’ve been working on games for almost a
quarter of a century. It’s easy to tell what’s changed about game
development in that time, but is there anything that hasn’t
changed?

Graeme Devine. I think we all get caught up in technology so

much now that we forget that the actual game stuff, the fun part,

the thing you kick, hasn’t really changed much at all. Or perhaps

it was actually more broad way back compared to nowadays.

Game Developer. If we assume that technology is becoming less of
a distinguishing factor among different games out there, how is that
changing the relationship between future technology and future
gameplay opportunities?

Graeme Devine. I think the main deal here is that people will

actually have to get back to making something compelling as

well as something that looks darn cool on that

new piece of hardware you’ve just purchased.

Well, that’s what I’d like to happen. What I

actually think will happen is game content will

become harder and harder to produce because

photorealism is hard to make. Studios will

change their models. For example, small stu-

dios will prosper as providers to a game that

other studios are also working on. Cats and

dogs will live together and we’ll still end up

alone on Friday nights.

Game Developer. How much programming do
you get to do these days?

Graeme Devine. I actually do quite a bit. I

just finished this really cool thing that does

some really cool stuff for DOOM. Of course I

can’t tell you about it, so you’ll have to

believe me at my word. Actually, most of

what I do at id these days is program. Although, of course, you

can’t stop a game designer designing.

Game Developer. Do you subscribe to any game design philoso-
phies? Any method to the madness?

Graeme Devine. Are we old enough yet to have design philoso-

phies? I suppose I try and think to myself about how to get past

an objective without shooting it. Which, while explaining my

poor QUAKE 3 skills, is actually a very good question to apply

anywhere in a game where you play and progress via killing.

There are so many more interesting ways.

Most of the games I design are world first, game second. I

love making worlds and making them work. What is the lan-

guage, how do they work, why do they work, and make that

logical and believable. Then I’ll write a few short stories set in

the world to see if it makes sense to me, and if a story can be

interesting, then the game comes naturally and feels solid. Of

course, that’s just me.

Game Developer. What kinds of game design inspiration do you
find out there in the real world?

Graeme Devine. Comics and films. And sometimes, just sitting

in Starbucks watching the world, you see the strangest glimpses

of other lives that your mind expands out to make some kind

of bizarre, twisted world.

Game Developer. Besides John Carmack, who’s the smartest per-
son at id?

Graeme Devine. That would be John’s clone. We had him

cloned last year so we could get double the amount of work he

does. So far, it’s worked out pretty well except for the huge

amount of diet cola the two of them consume. q

j u l y 2 0 0 2 | g a m e d e v e l o p e r12

P R O F I L E S
T A L K I N G T O P E O P L E W H O M A K E A D I F F E R E N C E | j e n n i f e r o l s e n

id’s Graeme Devine hard at work on DOOM 3.

Devine Revelations
A conversation with id’s

Graeme Devine

T his month’s column contin-

ues our ongoing discussion

of packing values into small

spaces, which is useful for

network communications

and save-games. Previously, I discussed

integers (“Packing Integers,” May 2002)

and scalars (“Scalar Quantization,” June

2002); this month I’ll talk about vectors.

As game developers, we most com-

monly deal with two different categories

of vectors. The first category is uncon-

strained vectors, with “unconstrained”

meaning that none of the vector’s coor-

dinates can be written as an equation of

its other coordinates. An example is the

position vector of an entity in the game

world; we may set limits on the magni-

tudes of the X, Y, or Z components, but

otherwise, they are independent.

The second category is unit vectors,

which are spherically constrained. Exam-

ples are surface normals, direction vec-

tors (perhaps representing which way a

player is looking), and rotations (which

are unit vectors in four dimensions).

Unconstrained Vectors

I’ll start by looking at a 2D position

vector. The most obvious (and most

common) way to quantize the vector is

to treat the coordinates as two separate

scalars and encode them using a method

from last month, probably the vanilla

scalar quantization. This approach is

equivalent to dividing the map up into a

bunch of grid squares, finding which

square contains your entity, and using

the center of that square to represent the

entity’s position.

The resolution of that grid controls the

quality of our encoding; if the grid squares

are too big, we won’t be able to represent

positions accurately. Usually we choose a

grid resolution by determining how much

error we can tolerate and then finding the

square size that gives us that much error

at maximum. The most an entity’s posi-

tion can be wrong via this encoding is the

distance from the center of the square to

one of its corners (Figure 1).

This technique has some disadvan-

tages. One problem is that the accuracy

of transmitted entity positions is highly

anisotropic. If an entity is moving along

a diagonal of the grid, its average error

will be much higher than an entity mov-

ing along an axis. Anisotropy is nice in

rendering, but here it is a bad thing. It’s

bad because if we make the grid squares

small enough that the error in diagonal

directions is acceptable, then we get

more accuracy than we need in the axis-

aligned directions. That means we’ve

wasted some bandwidth.

We can reduce this effect by quantiz-

ing into shapes that are rounder than

squares. War-gamers will be familiar

with the tiling of the plane by hexagons

(Figure 2). A square of area 1 has

extremal points about .707 units away

from the center; a hexagon of area 1 has

extremal points about .620 units from

the center. That’s a little more than 10

percent closer.

This implies, via a little bit of math,

that you need 30 percent more squares

than hexagons to tile an area with equal

error thresholds. So when using hexa-

gons, you save about .4 bits per trans-

mitted position. That might sound

small, but if you have a bandwidth bill

the size of a successful MMORPG’s,

you’ve saved perhaps $2,500 a month.

(Statistically-minded readers can com-

pute the covariance matrices for the

square and hexagon and observe the

magnitudes of the eigenvalues, which

tells you their relative compactness.)

We might try to do better than hexa-

gons by seeding the plane with a bunch

of unstructured points and assigning all

input values to the closest point. This

approach is equivalent to tessellating the

plane by the Voronoi diagram of those

points and choosing the Voronoi region

in which an entity lies.

We want the points to be as evenly

spaced as possible. We could precompute

them by running an energy relaxation

program that causes points to repel each

j u l y 2 0 0 2 | g a m e d e v e l o p e r14

Transmitting Vectors

j o n a t h a n b l o w

FIGURE 1 (left). Tiling the plane by squares of area 1. The point on a square farthest from its
center is about .707 units away. FIGURE 2 (right). Tiling the plane by hexagons of area 1. The
point on a hexagon farthest from its center is about .620 units away.

J O N A T H A N B L O W I Jonathan (jon@bolt-action.com) is a game
technology consultant living in San Francisco. This month’s article
was turned in late to his editor because Jonathan was playing Piranha
Bytes Software’s GOTHIC, one of the most interesting and fun RPGs
made in a long time. Jonathan encourages you to try the game out if
you have any impending deadlines.

I N N E R P R O D U C T

other until they reach equilibrium. I have

included such a program in this month’s

sample code (available for download

from the Game Developer web site at

www.gdmag.com). When you run the

program, you get . . . hexagons.

It turns out that the problem of tes-

sellating the plane into congruent shapes

is equivalent to the circle-packing prob-

lem. (At a coarse level, you can think of

the relationship this way: We are trying

to tessellate the 2D plane with compact

shapes, and a circle is the most compact

2D shape. We want to minimize the

amount of the plane that ends up

between the circles, as these portions

produce higher-than-ideal error.)

A lot of smart people have already

spent a lot of time thinking about circle

packing, which is good for us. It’s been

proven that, in 2D, the most optimal

way to pack circles is in a hexagonal

lattice (see For More Information).

Translated to the task at hand, this

means that there is no better way to

quantize the 2D plane evenly than to

use hexagonal tessellation (when I say

“better” I am judging with respect to

the error metric I outlined earlier).

At this point we may wish to think

about why crystals like to form in hexag-

onal shapes, or why bees build honey-

combs as a hexagonal tiling. These kinds

of phenomena help maintain my faith

that game programming is teaching me

deep and important things.

Expanding to 3D

Suppose we want to quantize 3D

space. We can turn again to the cir-

cle-packing guys for an answer to this

question. As it happens, there are two

equally good packing shapes for 3D, both

of which are proven to be optimal among

regular lattice packings and are very

strongly believed to be optimal as general

packings as well. One of these shapes is a

3D extension of the 2D hexagonal tiling.

The other one, which I find easier to visu-

alize, is called the face-centered cubic

packing. You can find out lots of relevant

things about circle packing just by typing

“face-centered cubic packing” into your

favorite search engine.

However, direct 3D quantization is

probably overkill for most games. For

example, most MMORPG worlds are pre-

dominantly two-dimensional, and most

things in the world are resting on a solid

surface. So a more efficient way of trans-

mitting position is to use the 2D hexago-

nal tiling to communicate the entity’s XY

position and then use a vertical raycast to

compute a small integer index for which

surface the entity is standing on.

When you use this method, however,

you have to provide some handling for

exceptional cases, such as when the trian-

gle on which the entity is standing doesn’t

extend all the way to the XY of the quan-

tized position.

You can Huffman-code these vertical

triangle indices, so when something is sup-

ported by a very popular triangle, the Z

information requires only 1 bit to trans-

mit. When an entity is flying or swim-

ming, you can use a fallback method of

transmitting position that consumes more

bandwidth in order to explicitly commu-

nicate Z.

Constraints

S o you see that before we even intro-

duce constraints, the two dimensions

are tied together somehow — we can’t

really treat them independently without

suffering a bandwidth hit. The dimen-

sions are intertwined by a requirement of

our problem domain, namely that we

want some kind of relativity with respect

to orientation. That is, we want isotropic

behavior so that the reference frame can

rotate and our world will not behave

much differently. At some level I think

this is a deep concept, though when stat-

ed like this, it’s a “well, duh” kind of

thing. Mathematically, this comes down

to the fact that we’re using the Euclidean

norm as our distance metric, and the

Euclidean norm ties dimensions together.

Next I’ll discuss constraints, which tie

things together even more. First, though,

I’ll clarify that the general process we are

performing here, mapping an input vector

to some vector in a fixed dictionary, is

known as vector quantization, or VQ. VQ

has been studied extensively, and there’s a

lot of literature out there about it. I’m not

going to philosophize about general VQ

here; I’m just looking at a couple of very

specific cases.

Unit Vectors

The most popular kind of constrained

vector in games is the unit vector,

either in 3D (to represent things such as

aiming directions or surface normals) or

in 4D (to represent rotations). I’ll start

with 3D.

The most common ad hoc method of

quantizing 3D unit vectors is to convert

them into azimuth-elevation form and

uniformly quantize each parameter sepa-

rately. This technique is awful. When

you use it, you get Figure 3. In order for

the patches near the equator to be

acceptably small, there needs to be a big

excess of patches near the poles. We’re

wasting bandwidth.

The set of all 3D unit vectors is equiva-

lent to the set of points on the unit sphere

in 3D. So to perform VQ, we want a dic-

tionary consisting of points evenly spaced

on the unit sphere.

In 2D, it was easier to visualize the

dilemma by solving the equivalent prob-

lem of tessellating the plane. But on the

unit sphere in 3D, the situation is less

intuitive. We could start solving some

math about how to create a maximally

uniform tessellation of the curved surface

of the sphere (or hitting the math books,

as I’m sure several people have worked

this one out before), but that would be a

w w w . g d m a g . c o m 15

FIGURE 3. When we quantize a sphere para-
meterized by azimuth and elevation, we get
the patches shown here. The patches near
the poles are radically different in size from
those near the equator; this is bad.

big pain. We could also settle for some

shape that seems reasonable, such as a

soccer ball. However, this solution doesn’t

give us any control over how many dic-

tionary vectors we get to use (the resolu-

tion of our encoding), and we also don’t

know how close to optimal it is for a

given dictionary size.

The simplest solution for us is just to

run another relaxation program, using

the dot products between vectors as a

metric that tells us how much they repel

each other. I’ve included such a program

in this month’s sample code. You use a

command-line parameter to tell the pro-

gram how many vectors you want.

Sometimes, quantization is part of a pre-

process, where we don’t care much about

speed. So, you can quantize your input

vector just by comparing it against each

of the dictionary vectors in sequence and

outputting the one with the highest dot

product. This technique is appealing

because of its simplicity.

If you need more speed than that, you

can BSP the set of dictionary vectors. To

do this, first identify the neighboring vec-

tors for each vector in the dictionary, and

for each pair of vectors create a separating

plane exactly halfway between them. Now

construct a BSP tree from these separating

planes. Mark each leaf node of the tree

according to whichever dictionary vector

belongs inside it. Now you’re ready to

encode very quickly.

Rotations

W e want to encode rotations in a

manner that is isotropic in rotation

space. Most ad hoc methods decompose

the rotations into various parameters,

such as Euler angles or an axis-angle rep-

resentation, and then encode each coordi-

nate separately. This process causes the

same anisotropy problems we just saw

with 3D unit vectors, but now they’re

more complex and harder to visualize.

We are going to encode rotations by

leveraging the fact that quaternions are

the natural, undistorted representation

of 3D rotations. Justifying that state-

ment is beyond the scope of this month’s

article, but I’ll do it in a future column.

For now, I’ll just say that it’s related to

the fact that constrained quaternion

interpolation gives you the minimal-

torque transition between two rotations

and refer you to the standard quaternion

references on the web.

We could quantize the quaternion’s

xyzw components separately, taking into

account that the fourth component of a

unit quaternion is mostly determined by

the other three. But this is not a good

idea, since we want our quantization to be

regular in curved space, not linear space.

The most bandwidth-efficient method is

to treat the quaternion, a 4D unit vector,

in exactly the way we just treated 3D unit

vectors. We use a relaxation scheme to

precompute a set of dictionary vectors,

then match the input quaternion against

that dictionary.

The biggest drawback with this method

is that, because 4D space is big, we may

need a lot of dictionary vectors to achieve

the required resolution. If we have too

many dictionary vectors, keeping a BSP

tree of those vectors in RAM becomes

cumbersome. We can start playing tricks

to reduce this storage, for example by

generating vectors that cover only 1/16th

of the unit sphere and requiring the gen-

erated set of vectors to tile with itself to

cover the sphere. The tiling constraint

introduces a small amount of inefficiency,

but it’s not too bad. Try visualizing the

equivalent trick in 3D space: imagine gen-

erating vectors for only one octant of the

3D unit sphere and attaching that octant

to copies of itself in order to cover the

whole sphere.

With quaternions, we shouldn’t forget

that we do not actually want to cover the

whole sphere, because quaternions that

face opposite directions represent the same

rotation. So even if we generate vectors

for a whole sphere, we then want to cull

about half of them. If the input quater-

nion does not lie within the hemisphere

we have covered, we try its opposite.

If you still need too much resolution

for this approach to be practical, then I

recommend using an axis-angle encod-

ing, using the previously discussed 3D

unit vector encoder for the axis and the

scalar quantization for the angle. To

make this method work best, you need

to balance how much resolution goes

into the angle quantization versus the

vector quantization. I haven’t worked

this technique out, but the easiest thing

to do would be to run a numerical opti-

mizer that tries various possibilities until

it achieves the best balance.

Lastly

O ften the vectors we want to trans-

mit are biased somehow. For

example, in an FPS or MMORPG, the

direction a player looks is usually along

the horizon.

You might take advantage of this situa-

tion by distributing the 3D unit dictionary

vectors so that many of them point

toward the equator of the sphere, and few

of them point toward the poles. This trick

allows you to achieve a low mean error

for the directions that you transmit, but

your maximum error will rise, which is

probably not good. As an analogy, think

of frame rate. If you are optimizing a ren-

dering system to achieve high average

frame rate, you don’t want to do things

that sometimes cause the frame rate to

drop very low. Those drops will be very

objectionable, even though the average

remains high.

I think the best method of exploiting

this kind of pattern is to keep the quanti-

zation size fixed as we did this month.

Then, use a statistical encoding scheme,

such as Huffman or arithmetic coding, on

the output. q

I N N E R P R O D U C T

j u l y 2 0 0 2 | g a m e d e v e l o p e r16

F O R M O R E I N F O R M AT I O N

Rush, J. A. "Sphere Packing and Coding Theory."
In Handbook of Discrete and Computational
Geometry, edited by Jacob E. Goodman and
Joseph O'Rourke, pp. 917–932. Boca Raton,
Fla.: CRC Press, 1997.

Sayood, Khalid. Introduction to Data
Compression, 2nd ed. San Diego: Morgan
Kaufmann Publishers, 2000.

Frequently Asked Questions about Spheres
www.math.niu.edu/~rusin/
known-math/index/spheres.html

Circle Packing
http://mathworld.wolfram.com/
CirclePacking.html

j u l y 2 0 0 2 | g a m e d e v e l o p e r18

I n my past two columns, I’ve

looked at types of textures and

the processes involved in the

transformation of source materi-

al into usable textures. This

month, I’ll look at some additional ele-

ments of this process, focusing primarily

on tiling.

The texture-handling capacity of

today’s PCs and consoles is vastly superi-

or to their counterparts from only two

or three years ago. Yet as artists, we

have yet to reach a point where all tex-

ture restraints are removed and we can

happily crank out hundreds of unique

textures at 512�512 and expect our

hardware to display them all at once.

The variation from console to console

(or between graphics cards) is pretty sig-

nificant, and while top-class texture

compression or 128MB of on-board

memory can in some cases give the illu-

sion of freedom, overall texture capacity

is still an issue. This is where tiling steps

forward and offers its assistance.

Find a Source That Will
Tile

T alk to a grizzled veteran texture

monkey and he may well tell you

that he can make anything tile. This may

be true in some cases, but the point is

not really what can and can’t be done —

it’s more about producing quality results

in an acceptable time period. Thus, per-

haps the first skill a prospective texture

artist should acquire is the ability to

identify images that will tile well and

easily versus those that will require a

team of 10 artists working through the

night to pound them into shape.

Consider Figures 1a and 1b as examples

of good and bad tiles, respectively.

Both of these images represent fairly

standard brick walls, but one image looks

less tile-friendly than the other. The uni-

form size and regular placement of bricks

in Figure 1a will ultimately make the task

of tiling it far simpler than Figure 1b,

which has two brick sizes and less unifor-

mity in the way they are placed. There are

many ways to accommodate problems like

this, and the wall in Figure 1b may be

exactly the kind you need. My point is

this: don’t make more work for yourself

than necessary by beginning with an

image that is awkward.

This is where the strategy of working

with source material that is as high-reso-

lution as possible pays off. While the

image as a whole may be unsuitable,

selecting an area that looks like it may

work is entirely possible if the initial res-

olution is high enough.

Know Where to Cut

F or the sake of argument, let’s limit

ourselves to square textures. The

same principles apply to other shapes

(remembering to restrict their dimen-

sions to powers of two), but it’s simpler

for illustrative purposes to use squares.

Choosing the part of the original

image that you wish to work with is

closely linked to the idea of finding a

source that will tile. Obviously, selecting

an area to use has a lot to do with the

content of the image, as well as what the

texture is ultimately supposed to achieve,

but some factors to consider are:

• Distribution of color and brightness

• Variations in sharpness (are some areas

more in focus than others?)

• Areas of strong shadow (which can

H A Y D E N D U V A L L I Hayden started work in 1987, creating
airbrushed artwork for the games industry. Over the next eight years,
Hayden continued as a freelance artist and lectured in psychology at
Perth College in Scotland. Hayden now lives in Bristol, England, with
his wife, Leah, and their four children, where he is lead artist at
Confounding Factor.

FIGURES 1A & 1B (left and right). The uniform size and placement of the bricks in 1a lend them-
selves well to tiling. The irregular size and placement of the bricks in 1b will require additional
artist labor to make them tileable.

h a y d e n d u v a l l

Textures
From Source to Screen

A R T I S T ’ S V I E W

Part 3

make a texture too specific as to light

direction).

In Figure 2, section A represents an

area that would make a good starting

point for a tiling texture. While it would

still require some work, the color and

brightness distribution is quite even —

everything’s in focus and the shadows in

this area are not too harsh. Section B is

not too bad in terms of color or bright-

ness distribution but becomes distinctly

out of focus toward the top. Section C

moves out of focus toward the bottom but

also has significant shadows within its

boundaries, which would be time consum-

ing to remove.

Preparation

I f you’ll excuse me for stating the obvi-

ous, a texture that tiles correctly is

one that you can repeat vertically and

horizontally across a surface, without an

obvious join between tiles. A texture that

tiles well, however, is a little more than

that. Simply disguising the join between

the edges of a tile may be enough if the

repeat is going to be very limited, but

with a texture that has more visible

repeats, you must take care with the

entire texture, not just its edges.

First, consider the fact that the bottom

and top edges of the texture will need to

match, as will the left and right edges.

The following section will deal with the

majority of this process, but in the prepa-

ration phase, we need to look at things

such as matching color and brightness

edge to edge and, where possible, evening

it out across the texture.

There are many ways to do this, but

one useful method uses the Quick Mask

feature in Photoshop. The original image

(Figure 3a) darkens off significantly

toward the bottom and is obviously not

going to tile correctly. By using a simple

black-to-white linear gradient, as Figure

3b shows, in conjunction with the Quick

Mask feature, you can make a selection

that incorporates the values within the

gradient to allow a more controllable

“feathering” effect at the edge of the

selection.

In other words, where the gradient is

100 percent white, no pixels will be

selected, and where the gradient is 100

percent black, all pixels will be selected.

However, the selection also covers the

shades of gray in between. Thus, what-

ever effect you then apply to the selec-

tion will be moderated between the max-

imum and minimum values according to

the distribution of the gradient.

Using this method, you can apply any

operation (level adjustment, color bal-

ance, and so on) across the area of the

texture that needs altering and blend out

smoothly to the areas that need to

remain undisturbed.

To some extent, you can use this same

method with the Sharpen and Blur filters

to compensate for areas that are focused

unevenly. This technique has limited

value, however, as a sharpened image is

artificially adapted to provide the

appearance of crisper detail and doesn’t

actually refocus. Too much sharpening in

certain areas will leave a horrible, pixel-

lated mess.

It’s also worth noting that you can use

a radial gradient if the adjustments need-

ed are at either the center or the edges of

the texture.

Perspective Problems

M any textures will, by their nature,

contain features that run parallel

w w w . g d m a g . c o m 19

FIGURE 2. Evaluate the lay of the land before
putting work into a tiling texture, taking into
consideration variations in focus, color, and
lighting.

FIGURES 3A–C (from left to right). The lighting problems in the original image (3a) can be corrected with a white linear gradient and Photoshop’s
Quick Mask feature (3b), resulting in a more readily tileable image (3c).

to each other. As I discussed back in May

in part 1 of this series, it’s always best to

use an image that was taken at a 90-

degree angle to the surface in question,

to minimize any warping that occurs due

to perspective. Still, in most cases, your

source material is not going to be perfect,

and you will need to correct perspective

problems before a texture can be tiled.

Again using Photoshop as an example,

you can apply the Distort function to

adjust the problem image. Brick walls are

a good example of a texture where both

vertical and horizontal lines come into

play. Figure 4a shows how you’ll need to

stretch the original image in two direc-

tions so that the horizontal lines between

the rows of bricks run level with the top

and bottom edges of the texture (Figure

4b), hopefully lining up at the left and

right edges.

Photoshop’s Distort function allows

you to move each corner of the image

independently (outside the boundaries of

the image if necessary), which gives you

the ability to realign the edges. The qual-

ity of the resampling means that loss of

detail is kept to a minimum, and once

again, using a higher resolution than will

ultimately be necessary makes this largely

irrelevant.

The Basic Maneuver

O nce you’re satisfied that the texture

is ready to be tiled, it’s time to get

your hands dirty. There are a variety of

ways to tile a texture, and some applica-

tions will even claim to do it for you

(with varying degrees of success), but the

basic method is about as straightforward

as you can get.

First, offset the texture so that the edges

(horizontal and vertical) now run across

the middle of the image. In Photoshop,

the option needs to be set to Wrap

Around. The offset doesn’t have to bring

the edges exactly into the center, but it

helps to rearrange the image so that what

are now the edges, having previously been

the center, automatically tile.

Next, cover the joins that cross the

center of the texture. This is usually done

either by cutting and pasting sections

from elsewhere on the texture or from a

similar image, or by using the Rubber

Stamp tool to duplicate other areas

across the join. Using areas from within

the texture itself to cover the join can

lead to noticeable repetition of features.

While the Rubber Stamp tool is quicker,

it is also less easily controlled because the

brush shape is fixed. It works best for

smaller areas, especially in conjunction

with a pressure-sensitive input tablet.

Cutting and pasting an area can pro-

vide a custom-shaped patch that you can

tailor to fit in with the texture under-

neath. Setting the selection tool to feath-

er automatically will blend the edges in

slightly, but the important work is best

done by hand, by erasing the edges

through to the layer beneath in an

attempt to merge them together seam-

lessly. Again, a tablet makes this job

much easier. Certain surfaces, such as a

stone wall, require careful selection of

which pieces to cut and paste, as you

will have to make them fit in with the

layout of the stones around them.

Finally, once you’ve covered the joins,

offset the image again. Doing so allows

you to deal more effectively with the

parts of the joins that were right at the

edge of the texture. The texture should

now tile seamlessly in both directions.

Balancing Act

I n the course of our tiling prepara-

tions, you should have removed large-

scale variations in brightness or hue so

that the texture would match horizontal-

ly and vertically. On a smaller scale, you

need to distribute (or reduce) features

within the texture to minimize obvious

repetition, or patterning.

You should do this, in part, during the

actual tiling step. Cloning and cutting

and pasting should take into account the

overall color and brightness distribution

within a texture and aim to balance them

out. It’s unlikely, however, that the

process of covering up the joins as I just

described will be sufficient, so you

should assess the texture further to see if

more work is necessary.

This balancing act is not just about

controlling the distribution of features in

the texture — it’s also about deciding how

much to homogenize elements in a texture

for the sake of minimizing visible repeti-

tion. Enforcing too much homogeneity

can destroy the detail that makes a texture

good in the first place.

The amount of repetition that each

texture is likely to be subjected to (grass

may stretch on for miles, whereas wood

is generally localized), gives some indica-

tion of the demands on each texture. But,

as always, the choice is up to you.

Tiled textures have long been a staple

of the videogame artist. Even as the

power of our game machines explodes

through the roof, creating quality tex-

tures that tile effectively remains an

important skill, one that is certainly

worth refining. q

A R T I S T ’ S V I E W

j u l y 2 0 0 2 | g a m e d e v e l o p e r20

FIGURES 4A (left) & 4B (right). Fixing a faulty perspective in a source image (4a) with Distort to
create a tileable result (4b).

j u l y 2 0 0 2 | g a m e d e v e l o p e r22

C reating all your sound

effects and music for a

game is one thing; getting

them actually installed

into the game is quite

another. Handing over the audio to be

installed to a programmer — who may

or may not have any kind of audio sensi-

bility — is one approach. Getting that

programmer to do what he or she does

best — coding — and create tools that

allow you to implement the audio your-

self is another option. The more flexible

the tool, the more power you have to get

the game sounding right. But with flexi-

bility comes complexity, and at some

point a tool becomes so flexible (and

thus complex) you’d have to be a pro-

grammer to use it. The best tools strike a

critical balance and leverage the talent

on the team — audio people making

audio, programmers programming.

Do your homework. You won’t get any-

where specifying tools that are impossi-

ble given the game’s basic architecture,

platform, and other considerations. So

make sure you understand all of these

parameters first. It’s also a good idea to

figure out what tools have been created

for other disciplines that audio can easi-

ly piggyback on. You can get great

mileage out of simple audio extensions

to the animation, level building, or cine-

matics tools.

For example, the level editor might

specify surface material, the animation

system might keep track of when a char-

acter’s foot hits the ground, and the

physics system might know how hard it

hits. With tools providing simple access

into these systems, you can play the cor-

rect footstep sound at the correct time

with the correct volume and pitch

parameters. Such a system also provides

other potential benefits: improvements

and refinements to these tools will likely

improve and refine the audio implemen-

tation as well.

Know what you want. Once you know

what’s possible, figure out what you want.

It sounds obvious, but you can’t get what

you want until you know what that is.

Brainstorm, invent sample implementa-

tions, test edge cases, consider every wild

contingency — make sure that your

design really does solve the problem, and

most importantly, that it’s solving the

right problem. Programmers hate nothing

more than trying to solve a changing,

poorly defined problem. Such planning

may seem counterintuitive in the creative

arts, but in fact, if you haven’t done this

level of due diligence, you’re doing your-

self and your game a disservice anyway.

Be prepared, be thorough, and be right

the first time.

Get your terminology together early,

too. If you go into the process referring to

a unique sound as a “sound effect” and

your programmer refers to it as a “one-

shot,” you are going to have a problem.

Programmers will usually be very flexible

if you establish terminology up front and

then use it consistently. Also keep in mind

how your work is categorized — by func-

tionality, by usage, by game area, and so

on. It may make sense to you to organize

your sounds together by their location in

the game, whereas to the programmer,

categories based on functionality see more

logical. There is no one right way; just

agree on whatever works up front and be

consistent until the end, or prepare for an

organizational nightmare

Get it in writing. Once you know what

you want and what you can have, create

two types of documents to communicate

your needs. First, distribute a global

“Basic Functionality” document to the

audio programmer, the lead engineer, and

any designers, producers, art leads, or oth-

ers who are interested. It’s structured as a

bulleted list in simple prose, ordered from

most basic to more sophisticated. In gen-

eral, this document is bone simple — use

a template that, with only minor modifi-

cations, is applicable to almost every proj-

ect on almost every platform. It actually

starts with the requirement that the game

be able to identify a sound, play a sound,

and stop a sound. The point of this docu-

ment is to ease everyone into thinking

about audio and to lay an important func-

tional foundation.

For the details, write a full Functional

Spec for each tool. The Functional Spec

should be very, very thorough, stating the

problem the tool is designed to solve,

describing in extreme detail how the solu-

tion works, and then providing one or

more sample usages. It also describes what

kinds of errors the tool should report and

how it should behave in every edge case,

and makes predictions about likely bugs.

As complete and thoughtful as this docu-

ment is, it will go through a number of

revisions before you are finished with it.

Keeping the document and the tool in

sync is worth it: if the Functional Spec is

well made, you can be sure that everyone

who reads it will understand what the

desired result is, how the result is to be

achieved, and if it’s not working that way,

a good idea of why not. Your game will

sound better for it. q

a n d r e w b o y d

A N D R E W B O Y D I Andrew is audio director at Stormfront Studios.
He is currently audio directing THE LORD OF THE RINGS: THE TWO

TOWERS for PS2. Other recent projects have included BLOOD WAKE

on Xbox and POOL OF RADIANCE: THE RUINS OF MYTH DRANNOR on
PC. Drop him a line at aboyd@stormfront.com.

Audio Tools:
You Get What You Ask For

S O U N D P R I N C I P L E S

j u l y 2 0 0 2 | g a m e d e v e l o p e r24

This month we consider a rule from
Dale Geist and the LucasArts Game
Theory Group, by way of Hal Barwood
and my own editing. I’m also posing a
game design challenge: Name That
Trump!

The Rule: Let players turn the game off.

A player should be able to

save and exit the game at

any point, losing at most

a few seconds of progress

as a result. Our objective

as designers is to entertain, not punish —

and many games force players to play for

extra minutes, even hours, until they can

reach a save-game point. Such a system

forces players to recapitulate those min-

utes if they quit prematurely, in frustrat-

ing repetition of now-familiar events. It’s

a commercially important rule, akin to

the old adage “The customer is always

right.” Players have been known to give

up on games that did not follow this

rule, and even return them.

The Rule’s domain. This rule applies to

all single-player game genres — or does

it? See The Challenge below. This rule

does not apply to most multiplayer

games, because one player’s right to turn

the game off at any point is another’s

ruined game.

Rules that it trumps. See The Chal-

lenge below.

Rules that it is trumped by. This rule is

trumped by the rule “Protect the player’s

suspension of disbelief.” As I discussed in

May’s column, we don’t want players to

be reminded, “It’s only a game.” Beware

of this rule if providing the ability to save

and quit at any time makes it easy for

the player to subvert the game-world

experience by applying the real-world

trick of saving with each incremental

advance and restoring with each incre-

mental failure. For example, in an RPG,

it may be better to avoid saving during

combat, to discourage the player from

taking a swing and saving if it connects

or restoring to the last save if it doesn’t.

Examples and counterexamples. JAK &

DAXTER allows you to save anywhere,

and in return you are rewarded with a

remarkable sense of freedom. RAYMAN

lets you save only between levels, and

many other games, such as the recent

HARRY POTTER AND THE SORCERER’S

STONE game, require you to save only at

certain points, designated by a special

icon or object in the game world. These

games can subject the player to a frustrat-

ing repetition of long gameplay sequences

when it becomes necessary to shut the

game down between these points.

The Challenge. Name That Trump! As

experienced players have probably

already noticed, there are many games

out there — some very popular — that

don’t follow this rule. And yet the rule

seems logical. What’s the catch? What

other rules that enhance the gameplay

trump this rule and dictate that the

player must finish a level or a section of

a level to save? I can think of at least

two possible rules that would trump or

otherwise contradict this one under cer-

tain circumstances, but I suspect there

are more.

I’m challenging the readers of this col-

umn to submit these counter-rules that

trump this one or are trumped by it.

Solve the mystery of the missing between-

level save-games. Here’s one hint: the

freedom to quit at any point can drain a

game of dramatic tension. Freedom from

anxiety is good. Freedom from excite-

ment is boring.

Rules: They’re not just the law. They’re
a good idea.

I’d like to conclude with an observa-

tion. As I’ve struggled to articulate game

rules — and it often can be arduous —

I’ve discovered something unexpected.

Some rules I thought were trivially simple

prove quite complex when set down in

print. Others that I thought were inher-

ently obvious turn out to have hidden

contradictions or inconsistencies when I

tried to write them up. But the main

point is that the actual process of trying

to articulate a rule has been a valuable

learning process for me. I urge you to try

it yourself, even if you don’t send your

rule in. You might just teach yourself

something new. q

n o a h f a l s t e i n

N O A H F A L S T E I N | Noah is a 22-year veteran of the game
industry. You can find a list of his credits and other information at
www.theinspiracy.com. If you’re an experienced game designer inter-
ested in contributing to The 400 Project, please e-mail Noah at
noah@theinspiracy.com (include your game design background) for
more information about how to submit rules.

Naughty Dog’s JAK & DEXTER gives players a sense of freedom and adventure.

B E T T E R B Y D E S I G N

Turn-offs

Game AI: The State
of the Industry

2001–2002

Game AI: The State
of the Industry

2001–2002

G A M E A I s t e v e n w o o d c o c k

26 j u l y 2 0 0 2 | g a m e d e v e l o p e r

ill
us

tr
at

io
n

by
 D

om
in

ic
 B

ug
at

to

L ast year’s State of the In-

dustry report (“Game AI:

The State of the Industry,

2000–2001,” August 2001),

indicated that developers

had finally gotten good game AI to be

taken seriously. AI developers were part

of the integral design process and were

turning to tried-and-true engineering

techniques to build and modify their AIs.

Rather than focusing on flashy new fea-

tures or technologies that didn’t quite

pan out, they were focused on one thing

— building their AIs with a more

straightforward and elegant approach.

After attending the 2002 Game Deve-

lopers Conference (GDC) in March, I

was amazed to see how these trends are

accelerating. As one might expect, the

focus on techniques over technology is

continuing. Developers are in a serious

learning mode and seeking better ways

to do the basics — pathfinding, obstacle

avoidance, planning. They already have

two or three games under their belts and

lots of code to lay their hands on; what

they want now are new ideas, ways to

do things better and faster, and ideas to

make their AIs look smarter with less

effort. In short, they’re where the graph-

ics folks were at the dawn of DirectX —

hungry for more.

Developers are still being inspired by

the designs of others, though their focus

is more broad-based than in the past.

Last year most developers cited Maxis’s

THE SIMS as their primary inspiration,

looking at its design as the basis for many

other types of games. This year, while

THE SIMS still plays a major role as an

example of “AI done right,” many other

games were cited as having excellent AI

design. Poptop’s TROPICO in particular

came up as an excellent example of a very

focused and effective design, as did Time-

gate Studios’ KOHAN: IMMORTAL SOVE-

REIGNS and its sequel, AHRIMAN’S GIFT.

Developers want to make that kind of

focus a part of how they do their job; it

was a recurring theme throughout the

Conference.

Those Ever-Expanding
Resources

I t’s amazing how much better off devel-

opers have it in the current crop of

designs than they had in the past. This

feeling of well-being didn’t seem to match

up with the results of our annual basic

resources survey, however. For the first

time at the GDC AI roundtables, the raw

numbers (Figure 1) indicate that develop-

ers actually lost some resources overall.

Does this data paint a grim picture

indicating that, in the wake of corporate

downsizing and the collapse of the tech

sector, AI developers’ lives are about to

get harder? No, not really.

The resultant discussion of these num-

bers was fascinating. Most developers

feel that, when it comes to resources,

they have it pretty good. While they all

agreed that they have slightly smaller

teams and slightly less CPU resources

overall, they also didn’t feel as if they

needed as much as they had in the past.

For their part, the turn-based strategy

game folks reported both more available

CPU (100 percent if they needed) and

more dedicated AI developers on average

(anywhere from 1 to 2.5 developers) than

developers of other kinds of games did.

The reasoning for this turn of events

ran the gamut from better tools to more

experience to just plain bigger CPUs on

the target platforms. Developers have

built themselves all kinds of toolkits to

help them build game AIs, using scripting

and libraries from previous projects more

efficiently than before. Experience with

previous games helped developers in

optimizing the last game’s AI libraries for

the next. (The wave of sequels we saw in

2001 also encouraged this somewhat.)

Developers also felt that their target

machines just kept getting faster and

faster. Target hardware featured faster

CPUs and better graphics cards than in

previous years, providing more cycles

than before. Even the console developers

reported that they were far more con-

strained by a lack of memory and storage

than anything else.

It is interesting to note that some

developers were reporting their CPU

usage in milliseconds rather than in per-

centage terms. That’s really a better

measure and reflects a number of inter-

esting trends, including an increased use

of developmental resource tools that pro-

vide these kinds of measurements.

Development Now:
Focused on the Tried
and True

I t’s clear from the roundtables and iso-

lated discussions at GDC that AI

developers are much more focused on

refining their current designs and engines

than on innovation. They want to take

what they are doing and make it better,

more efficient, and more lifelike. They are

spending more time on design and think-

ing about how to use the tools they’ve

already developed than on researching

new approaches. Developers want to

focus on results — faster execution and

less memory are the order of the day.

Doing more. It was fascinating to see

how developers are accomplishing these

goals, since it might seem at first glance

that they are resting on their laurels.

After all, if they are only refining their

w w w . g d m a g . c o m 27

S T E V E N W O O D C O C K | Steve’s background in game AI comes from 18 years of ballis-
tic missile defense work building massive real-time war games and simulators. He did a
stint in the consumer arena, then returned to the defense world to help develop the AI for
the national missile defense system. He maintains a web page dedicated to game AI at
www.gameai.com and is the author of a number of papers and publications on the subject.
He now pursues game AI through a variety of contract work and served as contributor to
and technical editor for several books in the field, including the Game Programming Gems

series and AI Game Programming Wisdom. He can be reached at ferretman@gameai.com.

FocusFocus Focus

G A M E A I

j u l y 2 0 0 2 | g a m e d e v e l o p e r28

tools and AI engines to make sure the

next sequel acts a little smarter, they’re

not really taking too many risks or learn-

ing much new, are they?

As it turns out, nothing could be fur-

ther from the truth. Developers reported

that after tweaking their engines to do

things more efficiently than before, they

are using that extra horsepower to just

plain do more. They’re building their

engines to do more line-of-sight checks

per AI cycle, to allow for deeper pathfind-

ing for the player’s units (so they don’t

look so dumb), or to let more bad guys

run through more decisions than before.

First-person shooters, for example, might

have previously focused on having only

the three enemies closest to the player’s

character “act smart” and get lots of CPU

cycles so they’d be intelligent enough to

dive out of the way of a grenade. Now

that developers have a handle on making

their engines work more efficiently, they’re

using those extra CPU cycles to include

not only the three enemies close to the

player but also their five comrades behind

them in the second squad.

Developers have also realized that in

many games their AIs really don’t have

to be smart for very long. The primary

purpose of game AI is not necessarily to

crush the player mercilessly but to enter-

tain the player and provide a challenging

opponent. The lifespan of most tactical

enemy AIs is relatively short — they live

to die, essentially. This means that they

only have to look smart, on average, for

five seconds or so; they don’t have to be

any smarter than they need to be. This

understanding is driving developers to

add a little bit more smarts to their AIs,

and as a result they’re more realistic than

ever before.

One session, hosted by fellow AI mod-

erator Neil Kirby, provided an excellent

example of this kind of realism in Red

Storm’s GHOST RECON. In that game, the

enemies have a number of “idle” anima-

tions, including a fidgeting-like behavior

in which the bad guy glances around and

shifts nervously. Since he can look

around, he stands a chance of glancing at

the player who might be trying to sneak

up on him. Previous games were notori-

ous for instances where an enemy com-

pletely ignored the player under these cir-

cumstances, since the player wasn’t in the

AI’s activation zone. In this case, howev-

er, the AI developers modified their AI’s

perception code to actually react to the

player when this happened.

The result is a bad guy that reacts

much more realistically, making the play-

er work harder without actually doing

anything else much different. (Another

interesting point is that this particular

enhancement came originally from the

game’s art team, not its AI team, again

showing that game AI is something that

all developers are taking more and more

for granted as a feature of a good game.)

In one session, developers also noted

that game AI tends to get better in stair-

step fashion, as more effort and cycles

are added. These stairs are particularly

even, however, and the curve of AI

smarts versus the developer’s program-

ming effort is nothing like a simple

straight line. It takes care and experience

to judge when “enough is enough.”

Languages and scripting. Developers

have been doing some interesting work

with languages and scripting that shows

they’re aiming toward greater modularity

and efficiency. Most developers are still

using C or C++ as their primary language

of choice, though there are a few scat-

tered exceptions. The AIs in Bungie’s

HALO and Naughty Dog’s JAK & DAXTER

both make heavy use of Lisp and script-

ing. A few games (such as the DEER

HUNTER–style games) continue to use

Visual Basic, though they’re a rare bunch.

Scripting itself is still seen primarily as

a tool to save development time and let

AI folks focus on the AI’s features above

all else. Several roundtables at this year’s

GDC focused on scripting, and it was

obvious that a wide variety of scripting

languages are in use across the game

industry. Developers are using everything

from Perl and Lisp derivatives to the

more exotic Lua or home-rolled scripts.

Tweaking the scripting engine from the

previous game before diving into the next

is common.

As a result of the scripting trends there

have been more games released in the

past year that allow a talented player to

modify the AI’s scripts and units to some

degree. Here the player benefits from a

decision by the AI developer to get out of

the level design business, and the AI

Westwood’s COMMAND & CONQUER RENEGADE,
uses a real-time analysis capability allowing
the game to learn from a player by adding
pathfinding nodes to its list of valid paths
when the player does something novel, such
as jumping out a window.

% of overall game CPU
reserved for AI
processing

% of companies with
one or more deve-
lopers dedicated to
game AI

100

80

60

40

20

0
1997 1998 1999 2000 2001 2002

FIGURE 1. The 2002 resource picture.

developer benefits in turn from seeing a

huge variety of new AIs and ideas for

improvements from the user community.

As in previous years, a good scripting

engine also helps get the entire produc-

tion done with fewer people (another

reason why teams have shrunk slightly).

Assimilating technology. The packed

roundtables showed that developers are

still asking a lot of questions about new

technologies that might be useful. It was

clear that they are going to continue to

adapt new technologies to their AIs very

slowly as compared to their academic

brethren.

In general, the AI roundtables showed

that if anybody was using any “exotic”

technologies, they just weren’t talking

about it. All the developers present said

they were continuing to use straightfor-

ward finite state machines and fuzzy state

machines to build their AIs. These were

combined with scripting to handle mis-

sions and the general personalities of the

computer opponents. A couple of devel-

opers spoke at length about how they

were considering using neural networks

for racing games to control the computer

cars, but they weren’t encouraged by oth-

ers who’d had already dabbled in them.

Most developers seem to be using (or

have built) layered AIs in their products,

usually breaking out decision making

along strategic and tactical levels. The

strategic-level AI seemed to get the

broader problems: deciding general

strategies, performing map analysis, set-

ting goals, and managing resources. The

tactical-level AI got the “grunt” jobs:

pathfinding, handling formations, and

fighting. Interestingly, some developers

thought that computer opponent behav-

iors were a strategic-level function, while

others pushed it down to the tactical AIs.

The first group argued that it affected

goals and resource management, while

the other group said it mattered more in

formations and combat. While most

developers are using two levels when

they layer their AI, the developers of

Stainless Steel’s EMPIRE EARTH spoke of

using up to seven layers for their game.

Terrain analysis came up as being new

to many AIs and eating many of the

CPU cycles freed by improvements in

other processing. Most games are doing

it in one fashion or another, though few

are spending enormous amounts of CPU

on it. Most developers use some kind of

terrain analysis either to identify good

paths prior to the scenario or to update

valid paths as the game progresses.

Terrain analysis helps most strategic-

level AIs in identifying locations of

resources or chokepoints on the map

and is generally done during the “idle”

moments when the AI isn’t over-tasked

with doing anything else.

A few developers are using cycles to

analyze maps for connectivity and build-

ing portals or waypoints for later use by

their pathfinders. One game, Westwood’s

COMMAND & CONQUER RENEGADE, uses a

real-time analysis capability allowing the

game to learn from a player by adding

pathfinding nodes to its list of valid paths

when the player does something novel,

such as jumping out a window.

Compared to previous years’ discus-

sions, there really wasn’t much emphasis

on pathfinding issues this time around.

What discussions there were focused less

on how to find the best or shortest path

and more on ways to move units more

intelligently. There was general agree-

ment that all games should be designed

to use hierarchical pathfinding, with one

pathfinding for high-level paths and one

for lower-level obstacle-avoidance issues

(both Blizzard’s STARCRAFT and Ensem-

ble’s AGE OF KINGS do this, for example).

Everybody was interested in ways to

minimize the CPU hit of pathfinding and

do it only when absolutely necessary.

All of this tied in well with the general

trend that AI developers are focusing

more on learning the tools at hand, and

using them better, than on exploring new

technologies. That doesn’t mean, howev-

er, that developers have abandoned all

experimentation.

Development Next:
Focused on
Possibilities

D evelopers at GDC talked about a lot

of possibilities for their future proj-

ects, some of which seemed at odds with

their current mode of retrenching and

regrouping. Nevertheless, it was interest-

ing to kick around ideas about what they

might look at next.

Focus on learning. If there was one

thing to take away from the roundtables

regarding what developers are aiming to

do for future projects, it was that they

are focused on building AIs that can

learn to some degree. The problem is

that while nobody thinks this is very

easy, everybody wants to figure out ways

to make it happen. The learning capabili-

ties of Lionhead’s BLACK & WHITE arose

as something to strive toward, although

there was general agreement that, for

most games, learning on the part of the

AI has to be more “behind the scenes”

than it was in BLACK & WHITE. Many

agreed that learning counts for a lot

when it’s done right, but most developers

reported that they don’t bother with it

outside of limited use during develop-

ment proper, although the C&C RENE-

GADE example prompted a flurry of note

taking by many.

Specifically teaching the AI to learn

from the player or over the course of

many games, as was done in BLACK &

WHITE, just isn’t something most devel-

opers are bothering to do. Most seemed

to think it would be dandy to have an AI

that could ratchet itself up to meet the

ability of the player, but nobody had a

clear idea on how to keep the AI from

learning something dumb (just like a

player). Some developers built on ideas

The developers of KOHAN noted that their AI
engine gives more CPU time to the AIs at
higher difficulty levels so players can consider
more strategic options more deeply.

w w w . g d m a g . c o m 29

from previous years to use limited learn-

ing during development and play-testing,

generally to tweak existing parameters

over the course of hundreds of runs.

However, these parameters are always

locked down before the game ships.

Overall, learning is seen as a logical

extension of the current “do more with

what you have” philosophy. It’s viewed

very much as a potential discriminator

for future games, and we should see

some interesting developments along

these lines.

Focus on scalability. The current focus

on layered AIs lends itself naturally to

the next step, AIs that can easily scale

depending on difficulty level and avail-

able CPU cycles. Some of this has already

been done, though most games so far

approach difficulty levels in a very

straightforward manner — they either

give the smarter AIs more resources at

the start of the game (very common) or

they let the smarter AIs cheat by viewing

more information (ignoring fog of war,

for example).

Many developers are experimenting

with having a game loop perform ongo-

ing terrain analysis whenever there are

spare CPU cycles, so that the AI slowly

gets smarter about the map in a manner

similar to the player as he or she explores

it. Others are making their AI’s CPU

cycles more elastic than they had been in

the past now that they’re generally free

from the tyranny of sharing the CPU

with the graphics engine. These designs

are able to use anywhere from 5 to 60

percent of the machine’s CPU cycles if

necessary. The developers of KOHAN, for

example, noted that their AI engine gives

more CPU time to the AIs at higher diffi-

culty levels so they can consider more

strategic options more deeply.

A few developers said that they are

moving away from multiple levels of dif-

ficulty in future designs, as their feedback

indicated that there are only two modes

players really care about for solo play —

easy and hard. Anything else is done

online. It will be interesting to see

whether this is a long-term trend that

will affect future AI development or just

a response to the rise of online games.

Focus on diplomacy. It’s been said

before, but diplomatic AIs really are

becoming something that developers are

viewing as more significant, particularly

in multiplayer games. Players are tired of

AIs that are just plain dumb, and this in

turn has become a big driver in how

players treat AIs in multiplayer games.

One developer noted that people act dif-

ferently in real life from how they act in

games; in real life people tend to follow a

leader, while in games they tend to gang

up on him.

This makes some aspects of diplomacy

very difficult, especially considering that

many multiplayer games start out with a

general “let’s gang up on the AI” agree-

ment among the players. Developers are

exploring ways to short-circuit this ten-

dency and get human players to consider

allying themselves with an AI player. The

problem is that it’s not easy for an AI to

communicate, coordinate, or even set

mutual goals with the player.

Communication between the AI and

the player might seem a simple task, but

even that is difficult. Firaxis’s CIVILIZA-

TION III, for example, allows players to

view basic diplomatic relations on a big

chart but gives them limited tools to

make proposals themselves. Some games,

such as KOHAN: AHRIMAN’S GIFT, have

crude facilities for players to “tell” an AI

something, but it’s difficult for them to

judge how the AI responds to it.

Since much of the art of diplomacy lies

in the subtle give and take of negotiation

between players, developers want to

build games that provide more than the

bare-bones take-it-or-leave-it options

common today. One roundtable featured

a wide-ranging discussion on the merits

of Nash’s theorem (a gameplay theorem

for optimizing moves based on percep-

tion of diplomatic moves with imperfect

communication), though it was clear that

this goes far beyond the problems most

developers are worried about.

Beyond the problem of getting the

player to engage the AI, the AI needs to

communicate the other way as well, with

the player. Building a strategic AI that

recognizes and can communicate effec-

tively the coincidence of interests

between itself and a player is very diffi-

cult, but most developers think it is

essential if they are ever to build an AI

that truly plays more like another person.

Building AIs that can potentially propose

mutual goals for itself and the player is

extremely important if AIs are to be con-

sidered seriously for an in-game alliance.

We’ve all seen games in which the AIs

seem possessed by schizophrenia, offering

a peace treaty one moment and demand-

ing tribute the next. One developer

pointed out that there are few games that

provide facilities for a diplomatic AI to

work with the player to set a goal for

their alliance, such as “You attack there

and I’ll defend our side.”

Coordination between players and AIs

is another area of potential future

enhancement. Developers recognize that

most AIs have a hard enough time getting

their own units to work together, much

less interfacing with the players or under-

standing the player’s intent. Some games

try to work around this problem by let-

ting allies see each other’s units (such as

in AGE OF KINGS), while others even let

players take over their units completely. A

couple of developers plan to let one play-

er “draw” on the strategic map to indi-

cate proposed goals or attack sites, and

most developers thought that getting the

AI to do this itself would be a big step.

In all cases, developers plan to experi-

ment with various methods of improving

the user interface to the AIs in order to

try to make their diplomatic AIs stronger.

G A M E A I

j u l y 2 0 0 2 | g a m e d e v e l o p e r30

FIRAXIS’S CIVILIZATION III allows players to view
basic diplomatic relations on a big chart but
gives them limited tools to make proposals
themselves.

The turn-based strategy game developers

will probably lead the way here, since

they have more CPU cycles available, but

the real-time strategy genre is also ripe

for developments.

The Middleware Issue:
Better AIs?

F irst broached a couple of years back

in some of the GDC roundtables, the

subject of AI toolkits or SDKs, now more

commonly called middleware, was again

a major topic at this year’s GDC. Devel-

opers are very curious about what kinds

of AI middleware are available and how

these tools might improve their AIs.

There are a number of interesting choices

available at present, and most have

undergone one or more upgrades over

the last year to become more robust and

more capable:

• Biographic Technologies has upgrad-

ed its Maya AI plug-in and renamed it AI

Implant. The tool is available both as a

plug-in and as a stand-alone library for

use by game developers.

• LouderThanABomb’s Spark! fuzzy

logic editor has gone the open-source

route and is now available as a down-

load, together with the Free Fuzzy Logic

Library.

• MASA’s DirectIA is still around and

has been used in a couple of games,

mostly of European origin. Version 3.0

is nearing release and will be available

for Windows, PS2, and Xbox develop-

ment.

• Mindlathe introduced a new AI mid-

dleware product called Pensor at GDC

2002 that offers some interesting capa-

bilities.

It was clear from the conference and

talking to various developers that there is

a great deal of interest in the subject of AI

middleware in general. Developers were

pleased to see that so many new capabili-

ties have been added to previous products

and are generally willing to give them

another look. Nobody I spoke to wanted

to go on record that they were actually

using AI middleware for their next proj-

ects, but several planned on asking for

evaluation copies and taking a closer look.

One roundtable discussed the fact

that it’s possible that AI middleware

won’t gain widespread acceptance until

some common specifications for game

AI (possibly a standardized interface)

evolves. The growing acceptance of

other kinds of middleware products for

graphics and physics may help get devel-

opers and producers used to the idea

more quickly.

Focus on the Future

A t one of the AI roundtables the

question arose, “Where will game

AI be in five years?” There were lots of

opinions on this, as one might expect,

but there were some common themes

among developers’ discussions.

Developers felt that games in general

will likely feature less scripting and

more sophisticated interactive decisions

on the part of the game’s agents. AIs

will make heavier use of layering and

will perform more strategic planning

with less emphasis on templates. We

should also see better tactical coordina-

tion among AIs and their individual

units than we’re seeing now. There will

continue to be expanded support for

players to build their own AIs over

time, if only because the tools that will

enable this will be necessary for the

designers and thus easy to release for

general use with the game.

There will probably continue to be

very slow investigation and adoption of

the more exotic AI technologies such as

neural networks and genetic algorithms.

Even though a few games such as CREA-

TURES and BLACK & WHITE make use of

them, they’re considered isolated cases.

AI middleware will continue to gain

acceptance, and there will almost cer-

tainly be some breakthrough product or

products that will make it more popular.

The use of these products should eventu-

ally give rise to some common specifica-

tions for game AI that transcends game

boundaries and makes possible the cre-

ation of dedicated AI hardware. There’s

a very long way to go to get there,

though; at one roundtable we tried for

half an hour to agree on a common defi-

nition of “a path” and couldn’t even

manage that.

We may also see more text-to-speech

and speech recognition built into game

AIs in the future as developers seek to

make the experience more realistic. This

still sucks up a lot of CPU cycles, how-

ever, so progress and demand will be

slow. Developers are also considering the

possibilities of supporting multiple CPUs

now that we have widespread operating

systems that can do that easily and how

that might affect their designs.

It’s amazing to see how game AI has

evolved over time. It clearly continues to

be one of the most innovative segments

of the game industry and a huge driver

in game design. Developers know what

works and are making it work better.

Advances that help are being incorporat-

ed slowly but efficiently. Reference

works are coming out in increasing num-

bers that are helping developers share

ideas, and AI middleware is finally

becoming robust enough to be taken

seriously. It all bodes well for the game

AI developer in the coming years. q

31w w w . g d m a g . c o m

F O R M O R E I N F O R M AT I O N

B O O K S
Game Programming Gems series, Vols. 1
and 2., Charles River Media, (Vol. 3 is due
in July, 2002)
AI Game Programming Wisdom, Charles
River Media, 2002 (reviewed on p. 10)

W E B S I T E S
AIWisdom.com
Gamasutra.com
Gameai.com
GameDev.net
www.gdconf.com/archives/
proceedings/2002/homepage.htm

T O O L S
Biographic Technologies’ AI Implant
www.ai-implant.com
LouderThanABomb’s Spark!
www.louderthanabomb.com
MASA’s DirectIA
www.animaths.com
Mindlathe’s Pensor
www.pensor.net

T he past year has brought a lot of changes to the game industry, the job

market, and the economy as a whole. The success of new and existing

hardware last year helped pump an unprecedented $9.4 billion in total

game-related sales into a sagging U.S. economy and has generated a lot

of mainstream interest in game development careers.

While some outsiders have yet come to grips with the fact that there’s more to

making games than playing them all day, and some battle-worn industry veterans

have absconded to higher-paying tech sectors (or any job with what resembles regular

work hours), this survey represents the tens of thousands of U.S. professionals who

make their living developing games.

This year’s survey was conducted by research firm Audience Insights. In March

2002, 1,178 Game Developers Conference attendees took our comprehensive annual

survey, of which the salary survey is one module, using on-site tablet computers.

Then, in April, we e-mailed invitations to all Game Developer magazine subscribers

and Gamasutra.com members asking them to participate in the survey and received

5,256 responses.

The survey data presented here is based on a total of 2,524 responses that

remained after we eliminated responses that provided no numerical compensation

data and those whose compensation figures were less than $10,000 or greater than

$300,000 per year. We also eliminated responses that lacked certain demographic and

classification information.

The sample represented in the salary survey data can be projected to the game

development industry as a whole with a margin of error of 1.93 percent at the 95

percent confidence level. That means we can say with 95 percent certainty that the

aggregate statistics reported in this survey would stay consistent within the margin of

error across the entire population.

While the industry job market has remained healthy overall, it hasn’t been immune

to layoffs and other corporate casualties of an increasingly competitive marketplace.

The past year’s unprecedented success was wrought in no small part by the dogged

work and incalculable overtime on the part of thousands of game developers. Game

developers are known to thrive on challenge, though, and they got it in spades in the

form of new hardware, changing market demographics, and relentless jockeying for

position from publishers and hardware vendors.

What’s the payoff for facing all these challenges? The overly simple answer appears

on the following pages. But when a developer stands in a store and sees a game buyer

longingly caress his or her creation, all that matters is the love of the game.

Game Developer’s

2
S A L A R Y S U R V E Y j e n n i f e r o l s e n

j u l y 2 0 0 2 | g a m e d e v e l o p e r32

Annual
nd

Salary Survey

w w w . g d m a g . c o m 33

S A L A R Y S U R V E Y

j u l y 2 0 0 2 | g a m e d e v e l o p e r34

PROGRAMMING

P rogrammers always seem to be in demand, and accordingly
many find their jobs very demanding. The hours are long,

the crunch modes interminable, the bug lists endless. Among

the rank and file of programmers and senior programmers at

most game companies you will likely find developers with a

mastery of at least several of the industry’s most in-demand

skills: AI, networking, tools development, 3D math, physics,

and preferably the ability to invert matrices in one’s sleep.

With the growing focus on console game development, game-

play programming skills are rising in demand. Coding that may

have been a virtual afterthought on a PC title now requires far

more man-hours for fine-tuning the responsive kinds of game-

play favored by console game players. You can program in all

the fluid dynamics simulations and volumetric fog you want in

a scene pushing hundreds of thousands of polygons, but if

someone holding the joypad isn’t having fun with the controls,

your sales (and perhaps your royalties) will suffer.

Experience and reliability are other sought-after qualities,

ones which pay off in higher salaries for seasoned program-

mers. For those who have stuck it out for several years and

have a proven track record, compensation increases accordingly

to reflect both the employee’s experience and the reduced

investment risk on the part of the employer.

Programmers generally report to a lead programmer respon-

sible for planning and scheduling programming tasks for a proj-

ect. At companies with multiple projects, several leads may

report into a technical director, who oversees programming pro-

ductivity for the whole company and perhaps spearheads tools

and technology development to be shared across teams. At sin-

gle-project companies, these responsibilities often fall with

those of a lead programmer upon a single individual.

sa
la

ry
years

100K
90K
80K
70K
60K
50K
40K
30K
20K
10K

0K
<2 2–5 6+

programmer lead programmer technical director

2.6% female
$54,312

avg. salary

No compensation
other than salary

97.4% male

$66,334
avg. salary

Highest salary
$300,000

technical director

38%
2–5yrs

53%
6+ yrs

lead programmer

13%
<2 yrs

39%
6+ yrs

53%
2–5 yrs

19%
6+ yrs

28%
<2 yrs

programmer

Programming salaries per years of experience and position

Years experience in the industry

All programmers

$4
9,

60
2 $6

4,
43

7

$9
5,

58
0

$5
6,

10
6

$6
3,

03
5

$7
3,

78
6

$8
1,

76
6

$7
8,

62
6

$1
04

,2
17

gender

33%

67%

% receiving
additional
compensation

Average
additional

compensation
$17,559

9%
<2 yrs

49%
2–5 yrs

Note: Some percentages do not total 100 due to rounding.

ART

Artists make up an increasingly significant chunk of game
development talent, as every generation of technology

brings with it more polygons to be modeled, more characters

to be animated, and more faces to be plastered with detailed

textures. For the purposes of our survey, we considered as

artists those who described themselves as artists, modelers, ani-

mators, texture artists, concept artists, and graphic or interface

designers. We grouped lead artists and lead animators under

the single classification of lead artist, those who manage and

schedule teams of artists. At multiple-project companies, sever-

al leads might report into an art director, who might be respon-

sible for making technology decisions and perhaps coordinat-

ing a certain look and feel across a range of products.

As with the other disciplines featured in this survey, experi-

ence pays. Hiring rookie artists unfamiliar with the rigid tech-

nical boundaries of game production environments can be

risky when output demands are high and headcount is not.

Clearly, though, there are rewards to sticking it out for a few

projects, as compensation increases to where the most experi-

enced artists can command much higher salaries.

The pay disparity between programmers and artists in the

game industry is not a well-kept secret, but supply and

demand is ever at play in any market, including the job mar-

ket. Turnover and layoffs can be more tumultuous for artists

as well, with the ebb and flow of art needs between major

projects. However, one bright spot in our survey shows that

roughly the same percentage of artists as programmers are

being offered compensation plans above their base salary, and

artists are taking home slightly more above-base compensa-

tion on average than programmers, which can help offset

their generally lower base salaries.

w w w . g d m a g . c o m 35

Highest salary
$285,000

years
<2 2–5 6+

artist lead artist art director

Years experience in the industry

lead artist

artist

Art salaries per years of experience and position

All artists

gender

29%
<2 yrs

25%
6+ yrs

47%
2–5 yrs

57%
2–5 yrs

27%
6+ yrs

16%
<2 yrs

7.1% female
$53,928
avg. salary

92.9% male

$61,362
avg. salary

sa
la

ry

art director

49%
2–5 yrs

42%
6+ yrs

10%
<2 yrs

100k
90k
80k
70K
60K
50K
40K
30K
20K
10K
0K

$5
3,

18
4

$4
1,

74
0

$3
5,

12
7 $5

3,
47

1

$4
9,

40
3

$6
1,

40
2

$8
9,

59
2

$6
9,

22
2 $8

9,
87

6

No compensation
other than salary

34%

66%

% receiving
additional
compensation

Average
additional

compensation
$20,176

Current Hiring
Trends

How healthy is the job market in the game industry?
Job seekers, employees, and industry observers have

asked this question repeatedly over the last year. The

answer is heartening: it’s surprisingly healthy compared

to what many people believe. It seems the recent eco-

nomic downturn has not affected the game industry as

dramatically as we have seen in other industries, though

hiring practices have shifted somewhat. The two most

important factors influencing hiring practices in our

industry have been the platform transitions of the last

two years and the increasingly hit-driven nature of the

industry. Both have forced companies to think seriously

about managing their payroll and hiring costs and maxi-

mizing their return on their investment.

We spoke with hiring professionals at game studios

across the country to understand the changes in hiring

practices that they have observed. While all agree that

there have been differences, most companies told us they

have not made significant changes in their approach to

hiring. As the industry continues to thrive, hiring for

specialized talent and experience is still difficult.

What changes have occurred?
Half of the HR professionals we talked to report that

their company has forecast fewer openings than in pre-

vious years. The other half has experienced no change

at all.

In general, job descriptions have evolved from a wish

list to a longer list of detailed requirements. For exam-

ple, a job listing which would formerly have read

“Playstation 2 experience preferred” now reads

“Applicant must have shipped at least one Playstation 2

title.” This indicates not only increased selectivity on the

part of the hiring authority but also the maturity of the

platform in question. Also, as a result, entry-level appli-

cants and recent graduates are capturing fewer of the

available jobs.

How has the hiring package been affected?
While salaries still must remain competitive to secure

good talent, some companies told us they no longer feel

pressure to pay above market rate to secure the right

candidate. Most said they have not made changes to

their hiring bonus structure or other aspects of potential

incentive packages. Some studios have reported using

fewer signing bonuses.

International candidates who require visa sponsorship

are having a more difficult time obtaining jobs in the

U.S. Even when the economy was in full swing and

“warm bodies with game experience” were at a premi-

um, many companies in the industry did not want to

consider visa sponsorship. There is even less inclination

to consider sponsorship now. The extra costs in legal

S A L A R Y S U R V E Y

36

sa
la

ry

years

90K
80K
70K
60K
50K
40K
30K
20K
10K

0K

<2 2–5 6+

Design salaries per years of experience

All design

genderyears experience
in the industry

8.9% female

$47,735
avg. salary

14%
<2 yrs

34%
6+ yrs52%

2–5 yrs

$5
1,

74
1

$4
5,

70
0 $6

2,
72

7

DESIGN

G ame design is the development discipline that perhaps holds
the most cachet among lay folk, and not coincidentally it is

both very competitive to break into and very hard to delineate in

terms of required skills. Our survey considered designers to be

those respondents who described themselves as game designers,

level designers, lead designers, creative directors, and writers.

With so many people dreaming of breaking into a game

design career, it’s no surprise that salaries are low relative to

other disciplines. But since having a good idea for a game and

actually making a good game are two very different things,

those designers who have the most experience, six years or

more, are rewarded with more generous compensation.

Above-base compensation is also lower and less common

among game designers compared to other disciplines, again

likely due to the competitive nature of the job and relative

paucity of positions available.

Highest salary
$300,000

No compensation
other than salary

29%

71%

% receiving
additional
compensation

Average
additional

compensation
$13,735

91.1% male
$52,725

avg. salary

j u l y 2 0 0 2 | g a m e d e v e l o p e r

fees, relocation expenses, and time lost waiting for the

candidate to arrive in the country are not easily borne

by project teams with time-critical deadlines.

What resources are being used for hiring?
The turnaround in spending, triggered by the dot-com

bomb and 9/11, has brought thrift back in vogue, thus

hiring costs are being scrutinized. Although the popular-

ity of online boards has continued to rise, the number of

candidates received from such sources creates a screen-

ing process nightmare.

Many companies are cutting hiring costs by decreas-

ing internal staff and increasing outsourcing. Other com-

panies are doing the opposite, cutting costs by decreas-

ing outsourcing and increasing the use of internal staff

for hiring. In large companies, outsourcing is generally

used for high-level or specialized openings such as direc-

tor of product development or VP of sales. Smaller com-

panies continue to rely on outsourcing for most of their

hiring needs. When managed effectively, both outsourc-

ing and greater reliance on an already developed internal

hiring staff continue to be useful cost-cutting tools to

companies of all sizes.

What is the reality?
California is no longer the center of the game indus-

try. As the game business grows, companies are spread-

ing across the country. International companies are

increasing in number as well. Hiring is becoming more

of a business initiative, being forecast over the fiscal

year. For the first time in our many years of recruiting,

we had multiple incoming job requisitions this past

December. This seems to indicate that the industry is

focused more on the bottom line and won’t stop think-

ing about their hiring needs due to year-end holidays.

One internal recruiter told us, “The feeling is that the

market is flooded with qualified candidates, and there-

fore companies can be choosy. However, on the flip side,

many candidates are not as desperate as companies

would like to believe. Quality candidates will wait for

the right opportunity at the right price.”

A N D R E A C O U R T I E | Andrea has 12 years’ experience
in recruiting. Prior to joining Mary-Margaret.com, Andrea
worked in-house or on exclusive contracts with many com-
panies including Electronic Arts, Disney Online, Microsoft,
Sierra Online, GT Interactive, OpenTV, and Sun
Microsystems.

M A R Y M A R G A R E T W A L K E R | Mary Margaret is
one of the leading recruiters in the game business, having
co-founded Mary-Margaret.com after six years of game
development with Origin Systems and 3DO.

w w w . g d m a g . c o m 37

PRODUCTION

A producer’s job can run the gamut from devising budget plans
to managing QA to ordering takeout for the team during

crunch modes. These are the people who simply do whatever

needs to be done to get a game out the door on time, on budg-

et, and of high quality. For the purposes of this survey, we con-

sidered a producer to be all those who described themselves as

either a producer, associate producer, executive producer, or

project lead/manager. Producers typically handle the day-to-day

minutiae that spawn relentlessly throughout the course of a

complex project and all its components. An executive producer

might have additional roles within a company and thus oversee

a game’s development from a broader viewpoint, or may super-

vise several producers on several different teams.

Almost half the producers surveyed reported experience of six

or more years, and their employers seem to like what they’ve

done; their salaries far exceed their less experienced colleagues’.

sa
la

ry

years

90K
80K
70K
60K
50K
40K
30K
20K
10K
0K

<2 2–5 6+

Production salaries per years of experience

All production

gender

8.0% female

$75,786
avg salary

92.0% male
$75,918

avg. salary

$6
6,

93
5

$5
5,

64
5

$9
6,

69
7

years experience
in the industry

13%
<2 yrs

45%
6+ yrs

42%
2–5 yrs

No compensation
other than salary

45%

55%

% receiving
additional
compensation

Average
additional

compensation
$19,832

Highest salary
$220,000

S A L A R Y S U R V E Y

j u l y 2 0 0 2 | g a m e d e v e l o p e r38

Across all game industry

All audio

gender

years experience
in the industry

6.6% female
$52,750

avg. salary

93.4% male
$50,467

avg. salary

19% <2 yrs

47%
2–5 yrs33%

6+ yrs

sa
la

ry

years

Salary averages by region
90K
80K
70K
60K
50K
40K
30K
20K
10K
0K

$3
4,

95
5 $5

1,
86

3

$5
9,

31
2

AUDIO

T he audio discipline includes those who describe themselves as
audio engineers, sound designers, composers, and the ever-

popular “audio guy.” With so many independent contractors

plying their trade in the game audio business, this segment is

perhaps subject to greater influence by the vagaries of the econ-

omy as a whole. Still, the most recent crop of game consoles

has made sophisticated audio output a major selling point, and

consumers seem responsive to the extra care developers are

devoting to music and sound effects, a fact that should give

designers and producers pause before simply farming out their

game’s audio to the lowest bidder.

Every generation removed from bleeps and blips that we are

makes life better for game audio professionals. As tools

improve and more development studios bring audio in-house

with full-time audio personnel, the next few years should see

an abundance of new and better opportunities for game audio

professionals.

OTHER TRENDS

F or developers feeling older and wiser than they were a year ago,
it’s not their imagination. This year 31 percent of survey

respondents reported being in the game industry at least six

years, compared with just 19 percent in our 2001 survey.

The western U.S. was both the best represented among our

survey respondents and also the best paid. Clearly salaries rise

with geographic competition where game development studios

cluster, as can be seen with Texas far outpacing the rest of the

southern states.

What can only charitably be called a gender imbalance still

exists among game developers; this year’s survey produced 5.2

percent female respondents overall, a slight drop from the 6.0

percent reported last year. Women in the industry on average

made 89 cents on the dollar compared to men, which exceeds

the national average of 76 cents on the dollar as reported by

the Bureau of Labor Statistics for 2000, the most recent year

for which such data is available. q

Audio salaries per years of experience

<2 2–5 6+

31%

69%

Average
additional

compensation
$13,200

Highest salary
$120,000

gender

years experience
in the industry

5.2% female

$57,110
avg. salary

94.8% male
$64,301

avg. salary

31%
6+ yrs

21%
<2 yrs

49%
2–5 yrs

West
$77,347

South
$66,065

East
$67,849

Midwest
$61,263

Texas
$73,695

California $78,848

No compensation
other than salary

% receiving additional compensation

N early every game developer has experienced that

moment when a family member dubiously

inquires, “Oh, you’re still doing that game

thing?” with the implication that one has yet to

find a proper job. In a culture that defines peo-

ple by the work they do, being a game developer is the equiva-

lent of moving to Never Never Land: we don’t want to grow up.

Despite the lay perception that “it must be fun to play games

all day,” those of us actually in the business know how labor

intensive it can actually be. The key difference between having

fun and working is that you can stop having fun whenever you

like. In particular, those outside the business fail to understand

the nature of the crunch periods that game developers have

come to accept as the norm. Why is it that game developers are

willing to put up with unpaid overtime that goes on for

months, sometimes without any foreseeable conclusion? During

these periods, friends tend to forget we exist, family members

start speaking of us in the past tense, and we become fast

friends with the folks who deliver the take-out food.

Yet we keep doing it, project after project. And though the

lessons we learn from previous development experiences help us

try to make those crunch periods shorter and less painful, we

all enter our new projects knowing, despite our best attempts at

willful self-delusion, that another crunch period

awaits us in the not-too-distant future. But each

game also brings a new spark, a new world to be

conceived, a new play-space to be designed and

created, and somehow we are driven on, back into

the fray.

To Hell and Back

D RAKAN: THE ANCIENTS’ GATES, or DRAKAN 2 as it was

known for most of its development, is the Playstation

2 sequel to the original PC game DRAKAN: ORDER OF THE

FLAME, released in September 1999. Due to the shift in

platforms, it’s hard to consider the game a proper sequel,

especially since the game in no way assumes that its audi-

ence has played or even heard of the original DRAKAN.

However, DRAKAN 2 started its existence as a PC project

that picked up right where the origi-

nal left off and was due to ship

about a year after the first game’s

release. Interestingly, development on

DRAKAN 2 actually began before the

original had shipped. Then-publisher

Psygnosis realized they had a hit on

their hands and wanted to start

P O S T M O R T E M r i c h a r d r o u s e I I I

Surreal Software’s
DRAKAN: THE
ANCIENTS’ GATES

g a m e d e v e l o p e r40

building a

franchise

immediately.

However,

Psygnosis, long

owned by Sony,

soon closed its U.S.

office and was fully

absorbed into Sony

Computer Entertain-

ment Europe. They subse-

quently got out of the busi-

ness of publishing PC soft-

ware, choosing to focus on

bolstering the success of the

Playstation. Surreal had already started

experimenting with Playstation 2 tech-

nology on another project in develop-

ment at the time, and thus it seemed logi-

cal to SCEE that we transmogrify

DRAKAN 2 into a PS2 project.

As a result of the shift in plat-

forms, the game’s original ship date

was pushed out a year, and Surreal

adjusted to developing an entirely differ-

ent type of game from what had origi-

nally been planned. Faced with the chal-

lenges of a new technology, drastically

more complex art content, and a differ-

ent style of gameplay, we set to work.

The largest hurdle turned out to be tech-

nology, and the much-hyped power of

the Playstation 2 did not arrive in any

tangible form for a very long time. Also

during this period, DRAKAN 2’s publisher

switched to Sony Computer Entertain-

ment America, a publisher in our own

time zone that was extremely under-

standing of the troubles we were facing

and supported us through what was our

darkest hour.

When the technology finally arrived,

we were suddenly pushing more poly-

gons than the more cynical among us

had ever thought possible. There was a

sea change in morale at Surreal, and we

undertook a massive push to get two lev-

els ready for the game’s unveiling at E3

2001. This was by far the most satisfying

part of the project for many team mem-

bers, as the game finally became playable

with a high polygon count and a solid

frame rate.

With the technology finally estab-

lished and our E3 demo a success, the

project now needed to ship for the

Christmas season. Although the time

that preceded E3 had been intense for

the team, the period that followed lead-

ing up to the game finally going gold in

January 2002 was brutal, with people

pushed to their breaking point.

Amazingly, no one actually broke, and

the game finally came together. But, as

proud as the team is of the final incarna-

tion of the game, some remain more

proud of having survived the develop-

ment that led up to it.

What Went Right

1. Dedication of the team. With

the technology unfinished for a

large period of the game’s development

and a resulting nine-month crunch time,

DRAKAN: THE ANCIENTS’ GATES could not

possibly have been completed without a

dedicated team that gave up their sum-

mer to see this game through to the end.

Despite doubling in size from the team

that developed the original DRAKAN,

Surreal remains a tight company of

friendly people. Employees who have not

gotten along with the rest of the compa-

w w w . g d m a g . c o m 41

G A M E D A T A

PUBLISHER: Sony Computer Entertainment
America

FULL-TIME DEVELOPERS: 22
PART-TIME DEVELOPERS: 15

CONTRACTORS: 5
LENGTH OF DEVELOPMENT: Two and a half

years
RELEASE DATE: January 2002

PLATFORM: Playstation 2
OPERATING SYSTEMS USED: Windows 95/98,

Windows NT, Linux
DEVELOPMENT SOFTWARE USED: Microsoft

Visual C++, ProDG, GNU C++, Visual
SlickEdit, Photoshop, 3DS Max, Softimage,
WaveLab, Pro Tools, Microsoft SourceSafe,

SourceForge, SourceOffSite
DEVELOPMENT HARDWARE USED: Ranged

from 600MHz to 1GHz Pentium IIIs and
Athlons, typically with 256MB RAM and

GeForce 2s.
PROPRIETARY SOFTWARE TOOLS USED:

Riot Engine Level Editor, Riot Engine Modeler,
Riot Engine Data Visualizer

PROJECT SIZE: 326,000 lines of C++ and
assembly source code, 1,132 C++ classes,
1,152 source code files, 1,600 lines of dia-

logue, and approximately 450 CDs and
DVDs burned.

R I C H A R D R O U S E I I I | Richard served as both a designer and programmer on
DRAKAN: THE ANCIENTS’ GATES. He is currently lead designer on an unannounced Playsta-
tion 2 title at Surreal Software. His previous games include CENTIPEDE 3D, DAMAGE

INCORPORATED, and ODYSSEY: THE LEGEND OF NEMESIS. Rouse’s somewhat hefty book
about game design and development, Game Design: Theory & Practice, was published in
2001, with more information to be found at www.paranoidproductions.com. Feedback is
encouraged at rr3@paranoidproductions.com.

P O S T M O R T E M

j u l y 2 0 0 2 | g a m e d e v e l o p e r42

ny have tended to depart quickly for one

reason or another. There is a distinct lack

of bureaucracy and office politics. Com-

pany outings occur regularly and general-

ly relaxed policies allow for a remarkably

enjoyable workplace. While definitely

knowing how to have a good time, the

team retains a high degree of profession-

alism and a strong work ethic. Through

the stressful development cycle, there

were surprisingly few blow-ups and a

distinct absence of fistfights; everyone

was too busy working.

So what made the team survive the

crunch? First and foremost was a feeling

of responsibility that everyone needed to

pull together for the common good, so

as not to let the other people in the com-

pany down. With a company culture

such as Surreal’s, the feeling of cama-

raderie is palpable. Second was a belief

in what we were building. DRAKAN 2

was a high-profile project from a major

publisher, and though there were

moments of doubt, by and large the

team felt that the game was destined to

be great, if only we could manage to fin-

ish it. Given the number of problems

that befell the game, DRAKAN 2 turned

out better than it really should have

because of the people who gave years of

their lives to make it come together.

2. Flexibility of the tools. The

entire DRAKAN 2 game world

was rebuilt in nine months. Given the

massive size of DRAKAN 2, this timeframe

is staggering, and it was only possible

because of the flexibility of our propri-

etary tools. DRAKAN 2 was built using a

slightly upgraded version of the tools

used for the original DRAKAN, and it is a

testament to their continued flexibility

that we were able to build a vastly more

complex game using tools that are now

several years old.

Our primary tool, the Riot Engine

Level Editor, was built to be completely

modular, allowing the game to grow to a

massive size yet remain manageable. The

editor allows for easy maintenance of a

collection of databases which store mod-

els, animations, textures, sounds, scripted

sequences, and movies. Designers are able

to add and replace assets easily, which

makes getting art into the game extremely

simple. The 3D View window allows for

the easy placement and movement of a

camera in the game world, enabling

designers to watch in real time as they

make changes to the environment. With

all of the rework that was necessary over

the course of the project, our tool set’s

flexibility allowed us to adapt our content

on the fly with a minimum of difficulty.

The tools were also perfect for balanc-

ing the gameplay, allowing designers

enormous flexibility to tweak weapons

and creatures quickly to suit specific situ-

ations. Since the game mechanics were

finalized so late in the project, the degree

to which the tools facilitated balancing

was key to the game turning out as fun as

it did. All told, our tools are such a boon

to our workflow that the development of

either of the DRAKAN games would have

been inconceivable without them.

3. The redesign. Within a few

months after DRAKAN: ORDER

OF THE FLAME shipped in 1999, the team

from that project had recuperated from

the arduous process of that game’s devel-

opment. Around the same time, DRAKAN

2 lost its original lead designer and lead

artist. As the original DRAKAN team

stepped in to take over production of the

sequel, they assessed the state of develop-

ment and found that no one was particu-

larly happy with where the project was

heading. With the public’s reaction to the

original DRAKAN now available and with

time providing valuable perspective, the

team decided DRAKAN 2 was headed in a

direction that did not play to the game’s

strengths. Therefore, we opted to

redesign the game completely.

One of our mistakes was starting a

sequel to a game before the original had

shipped, before we had a clear under-

standing of what was most compelling

about DRAKAN. For example, the most

visceral aspect of the DRAKAN games is

the ability to ride Arokh, a fire-breathing

dragon. But the original DRAKAN 2

design had Arokh only in a single level of

the game, with various other mounts —

including a rhinoceros, a sea dragon, and

a gryphon — available in the other lev-

els. Unfortunately, none of these other

mounts was as exciting as Arokh. Build-

ing on the strengths of the original game,

DRAKAN 2’s redesign made Arokh avail-

able in nearly every level.

This redesign resulted in throwing

away a lot of work that had already been

done, including art, levels, and partially

implemented game mechanics. Though

this early work had merit, it was not

The Riot Engine Level Editor provided the team with a lot of flexibility, streamlining the process of
building the environments and setting up the gameplay.

w w w . g d m a g . c o m 43

appropriate for DRAKAN’S sequel.

The new game tried to use assets

from the original design as much as

possible, such as character types

and locations, but not everything

could be saved. Throwing away so

much quality content was a bold

move, but in hindsight the team

members unanimously feel that it

was the right decision and one that

truly saved the project.

4.A sequel done right.
Many franchises have suf-

fered when subsequent games in the

series introduced little in the way of

new technology or game mechanics.

Players can end up feeling as if

they’ve been cheated into purchas-

ing the same game twice. DRAKAN:

THE ANCIENTS’ GATES improved

over the original in the power of the

engine it used, the gameplay

mechanics it employed, and the

overall presentation of the game.

From a graphical standpoint,

DRAKAN 2 continued in the distinc-

tive visual style of the original and

upgraded it to take advantage of

the Playstation 2. To look at the

two games side by side, DRAKAN 2

obviously looks superior and more

highly detailed, but at the same

time the games are clearly of the

same lineage and art style with

their distinctive, hand-drawn look.

From a game-design standpoint,

the game delivered the strongest

features of the first game while

adding new elements that deepened

the player’s experience. In particu-

lar, we made DRAKAN 2 less of a

strict action experience and more

of an action-RPG hybrid. Through

adding player classes, magic, a skill

system, and an economy, DRAKAN

2 became a richer experience for

the player.

The team was also careful to lis-

ten to the feedback we got from the

first game. One of the biggest com-

plaints from the original was about

the writing and story. This time we

devoted a single in-house writer to

the project and secured vastly supe-

rior voice acting, which benefited

the storytelling aspect of the game.

DRAKAN 2 ended up incorporating

enough original content to give

players a truly new experience

instead of just a level pack.

5. PS2 technology.
Though our PS2 technol-

ogy was an extremely long time in

coming, when it finally did arrive it

blew us all away. For example, in

the original DRAKAN we had a

scene limit of 3,000 polygons. In

DRAKAN 2, Rynn, the main charac-

ter, is made up of that many poly-

gons alone.

Our technology was composed

of a number of core components,

including a stripping system for

efficient model rendering, an

instance renderer for drawing a

large number of identical models

extremely cheaply, an efficient

quaternion-based skeletal anima-

tion system, a “splat” texturing

technology for procedural blending

of landscape textures, and a

dynamic data-loading system that

allowed us to build massive levels

while still fitting within memory.

Coupled with these features was

a range of visualization and debug-

ging tools that allowed developers

to see easily what was taking up

processing time in a given situation,

so levels could be optimized for

peak efficiency. Our Riot Engine

Data Visualizer allowed us to track

the use of each piece of memory,

providing easy navigation of memo-

ry dumps to see what line of code

was allocating what block of mem-

ory. By allowing us to track down

memory leaks readily and identify

what parts of the code were using

up more memory than appropriate,

this tool became crucial to squeez-

ing our massive game into the PS2’s

32MB of memory.

Most importantly, our PS2 tech-

nology was robust enough to be

immediately put into use on our

TOP TO BOTTOM. The Storm Djinn enemy as color concept,
model in 3DS Max, skeleton in Softimage, and final in-
game character.

new PS2 projects. Though we could have

used it a lot sooner, its power made up

for its late arrival.

What Went Wrong

1.Bugs. DRAKAN: THE ANCIENTS’

GATES was built on the code of

the original DRAKAN, code that is now

upwards of six years old. Many of these

older systems were known liabilities

going into the project, but nobody ever

thought that we had time to scrap them

and start from scratch. Constantly mov-

ing deadlines forced programmers to

bandage ailing systems rather than put

them out of their misery. Our AI system

in particular was the bane of the pro-

grammers’ existence; instead of being

modular it was monolithic, and any

seemingly simple change was likely to

break 20 other behaviors.

In addition, some of our older systems

didn’t scale well, which led to more

unanticipated bugs. Effects, collision, and

AI systems that worked fine in low-poly-

gon, low-object-count environments were

brought to their knees or broke com-

pletely when placed in the more compli-

cated world of DRAKAN 2.

Our lack of any sort of testing early on

in the project magnified the bug problem.

Programmers implemented systems that

would then not be used by the designers

or even other programmers for months.

Furthermore, not all of the bugs were

even programming related: half of the

game-breaking bugs in our database were

design and art issues. Our tools put a lot

of power in the designer’s hands to

change behaviors with a minimum of

hassle and to create effects that program-

mers never anticipated. But with great

power came great responsibility, and

when the tools were not used carefully,

their flexibility tended to create bugs.

For our post–DRAKAN 2 projects, we

are starting out with a completely clean

slate of gameplay code. Furthermore, we

have implemented a strict code review

system where multiple programmers go

over all code before it is added to the

project. We are now much more dedicat-

ed about testing new systems as soon as

they are added to a build. As a result, the

projects we now have in early develop-

ment are much less buggy than DRAKAN

2 was when it entered beta.

2. Technology was a long time
coming. For almost a year, the

art and design teams’ mantra to the tech-

nology team was “When

are you going to get the

frame rate up?” The ini-

tial conversion of the

Riot Engine to the

PS2 had gone

extremely smoothly.

The original

Drakan was up and

running at 15fps

within a few

months, with all

rendering occur-

ring on the PS2’s core processor. Initial

estimates were that with another two

months of work numerous systems could

be moved to the VUs and we would have

fully unlocked the promised power of the

PS2. Since then, the PS2 has earned a

reputation as a challenging system to

develop for, but back when we started

everyone had bought into the Sony hype

machine and its startling technical

demos.

Unfortunately, those two months we

had planned on turned into a year. No

one on the programming team anticipat-

ed just how difficult it would be to get a

powerful engine running on the PS2; the

PS2 simply does not have the linear

development curve Surreal was accus-

tomed to on the PC. The PS2’s curve is

more exponential, resulting in a long

period of minor technological improve-

ments before the engine suddenly

becomes extremely powerful. During this

early period of development, it’s

extremely hard to predict just how many

polygons an engine will eventually be

able to push. As expectations about

what we would be able to do shifted, the

art team first built too-high-polygon

objects and then too-low. Once the tech-

nology was solidified, all of the art that

had been constructed had to be rebuilt.

Given how much we knew at the time,

there is not much we could have done

to avoid our technology delays.

We could have put all our

programmers on the PS2

immediately and not

required the new engine

to be backwards compati-

ble with our old content.

But since we switched

platforms mid-project,

these were not really options.

Fortunately, as I mentioned pre-

viously, our finished technology

turned out to be quite powerful;

the steep PS2 learning

curve was simply some-

thing we had to over-

come.

3. Lack of planning. We

planned out DRAKAN 2 to a

much greater extent than the original

DRAKAN, and the early redesign correctly

identified many problems and rectified

them. But at the same time, the redesign

did not go far enough to fully plan out

the game. People implemented systems

and built whole levels before the team

realized that something was never going

to work from a gameplay standpoint. For

example, a massive underwater section of

the game, in which Arokh was able to

swim, was jettisoned when it turned out

to be fundamentally flawed. Unfortu-

nately, it was only cut after a lot of art,

programming, and level design work

went into it.

Certainly game design is an organic

process, and no team is ever going to be

able to plan out a game completely in a

design document. Good ideas will come

up that no one thought of before the

game was actually running, while sys-

P O S T M O R T E M

44 j u l y 2 0 0 2 | g a m e d e v e l o p e r

The rhino was one of the three alternate
mounts Rynn could ride in the original design.

P O S T M O R T E M

j u l y 2 0 0 2 | g a m e d e v e l o p e r46

tems that seemed like good ideas in pre-

production turn out to be tedious in

practice. Nevertheless, some amount of

planning, even if it is only 75 percent

accurate, is better than a plan that only

fully considers 25 percent of what will

take place in the game. More improvisa-

tional game design can work with small-

er teams, but with a team of 30-plus, it is

invariably a scheduling nightmare.

Since DRAKAN 2, Surreal is using a

much more intensive design process in

preproduction. We fully map levels out

on paper before finalizing the design, giv-

ing designers a chance to plan where vari-

ous mechanics will be used and allowing

artists to assess how difficult each envi-

ronment will be to build. This process lets

us understand better what will work in

terms of both gameplay and scheduling,

and we can make adjustments before any

actual implementation has begun.

4. Lack of approval process.
Over the course of DRAKAN 2’s

development, content was often created

without anyone looking it over properly

to see that it matched the game’s overall

vision. As a result, team members added

art, code, or levels that remained in the

game for months before someone would

notice that they were inappropriate for

one reason or another.

Part of the problem was that artists,

designers, and programmers alike were

given too much freedom to take their part

of the game in whatever direction they

thought best, without anyone

checking for overall consis-

tency. Though game

developers appreci-

ate and thrive

on some

amount of

creative

freedom,

they prefer

to work within limitations if

that means their work will

not need to be redone several

times over.

With the growth of our team

and the game’s size, our

problems compounded. In a

smaller team envi-

ronment with a not-

too-large game, it’s sig-

nificantly less work for

everyone to know

what everyone else is

doing and to keep an

eye on all aspects of develop-

ment. For DRAKAN 2, our

team size doubled and

the game size quadrupled

without any change in the

amount of oversight.

DRAKAN 2 matured us

enough to realize that

large-scale game develop-

ment is not a purely creative

process, but

requires a strict

production

pipeline where problems can be discov-

ered early and fixed quickly. Toward the

end of DRAKAN 2’s development, Surreal

implemented a highly structured content

review process with a number of differ-

ent stages for any given game asset. This

all but eliminated rework during the final

months of DRAKAN 2’s development and

has been a boon to our current projects.

5. The scope of the game.
Without a doubt, DRAKAN 2’s

fantasy setting and RPG trappings called

for a truly epic experience. Yet many

wonder if, for our very first console proj-

ect, Surreal wouldn’t have been better off

developing a smaller, simpler game.

Making such a massive

world with enormous lev-

els and extremely far

draw distances meant

we had to push

our technology

above and

beyond

what

most

games

require.

Furthermore,

having such a

large game world

meant that build-

ing all the art

content took

twice as long as it

would have on a more reasonably

sized project. The sheer size of the

game also meant there was a similarly

colossal amount of bugs, compounding

our problems in that department. It’s

impossible for anyone on the team to

look back now and not take some pride

in how huge and epic the game is, yet

taking into account a similarly epic

crunch period, team members are forced

to wonder what compelled us to make

such a damnably big game.

Last Call,
Last Call

A person’s time and labor are the

most precious things he or she can

give. As game developers, we give a lot

of our time to the teams we work with,

to the games we develop, and in turn to

those who play the games we make. It’s

well nigh impossible to explain to people

outside the game industry why exactly

why we do it, yet many of us barely give

it a second thought. What else would we

do with ourselves?

There’s something extremely exciting

about creating something from nothing.

All artists do this to some extent, but

game developers are the only ones who

create worlds that are built for others to

explore and discover in their own way.

For all the advantages that games have

over media, there is an equal trade-off in

terms of the enormous commitment that

they require from their teams. For game

developers, the payoff in the final prod-

uct makes all the time invested worth it.

Otherwise, we wouldn’t still be here. q

Early concept sketch of the Flesh Mage boss.

Concept sketch for Sea Turtle.

G ame

devel-

opment

is a very

competi-

tive and demanding busi-

ness, and few new studio

start-ups mature to the point

where they can make repeat-

edly commercially successful

games. Even ostensibly mature

studios may suffer a lot of turnover or

even blow apart under

the stress.

At Ensemble Studios (ES), we have

managed to beat the odds. We think the

keys to our success so far are an absolute

commitment to making games of the

highest quality, crafting games with

broad commercial appeal, partnering

with (and now being part of) a great

publisher (Microsoft), and building a tal-

ented and motivated team. There are a

number of things ES does to encourage

the team spirit necessary to compete in

this tough industry. And like any good

studio, we are always looking for sugges-

tions on how to improve.

Put people first. Studio head Tony

Goodman has continually stressed the

impor-

tance of finding talented peo-

ple, providing a great studio culture

(workplace, equipment, perks), and

encouraging positive team spirit.

Company morale is discussed at every

management meeting. We are trying to

create careers at ES, not brief career

stops. Our recruiting and interview

process is sometimes painful, but we

want to add people with a great chance

to fit.

Keep people involved. We emphasize com-

munication within the studio and have

experimented with various ways to

improve that. Everyone at ES gets their

say about most major decisions the studio

makes. We regularly poll the company on

questions such as project topics, feature

sets, marketing materials, and changes in

company policies.

Even if the deci-

sion cannot be a

company vote,

everyone has a

chance to voice his

or her opinion.

We hold a com-

pany meeting each

week and hold

impromptu company

meetings to share immediate news. We try

to minimize rumors and uncertainty.

The small group that manages the stu-

dio meets off-site at roughly six-month

intervals. Before this meeting, we give

everyone in the studio an opportunity to

submit items they wish to be discussed

and then we brief the company after-

wards. In early March 2002, for exam-

ple, we met to discuss our product plan

for the near future, which we then shared

with the company.

Share the success. We consider large cash

project bonuses divisive and counterpro-

ductive (and in fact can lead to turnover

rather than retention). Instead we decid-

ed to share ownership of the company

through stock options and reinvest our

S O A P B O X b r u c e s h e l l e y

j u l y 2 0 0 2 | g a m e d e v e l o p e r56

continued on page 55

Ill
us

tr
at

io
n

by
 P

au
l H

ow
al

t

Sells Like
Team Spirit

profits back into funding our own proj-

ects (which leads to better royalties),

offices, and perks. The founding owners

of the studio decided wisely that owning

a smaller slice of a big pie was better

than owning all of a small pie. Our suc-

cessful employee ownership plan has cre-

ated incentives for contributors to

remain committed for the long term.

Take pride in our work. We are the harsh-

est critics of our own games. Our opin-

ion leaders (from anywhere in the com-

pany) set a high standard for all crafts.

At company meetings or in e-mail

threads we acknowledge regularly those

people who have done something

extraordinary. We encourage and even

require all developers to play-test our

current game at least once a week. Play-

testing creates a very personal connection

to the project and gives each person the

chance to see his or her work in action.

Through play we build respect for what

other team members are doing. Play-test-

ing establishes personal ownership of the

game and creates inspiration to make it

special, in addition to being fundamental

to our process of designing by playing.

Foster camaraderie. We encourage team

spirit through company events such as

work-time movie outings (Lord of the
Rings, Final Fantasy, and the like), social

events (company picnics, game launch

parties, Christmas parties), in-house

game tournaments, and conference trips.

At the end of each of our projects, we

traditionally divide the company into

evenly matched teams for a final tourna-

ment, complete with prizes. Everyone in

development at ES gets to attend either

GDC or E3 each year, if they wish. At

such conferences we party as a group.

We make a new company shirt each year

for the conference season and coordinate

the shirt we wear each day. For

Christmas 2000, everyone got a person-

alized leather bomber jacket with badges

noting our projects. We play a lot of

games together, including board games at

lunch and online after hours. Our large

auditorium serves as an entertainment

center for movie night and sports playoff

games. The studio also pays for occasion-

al team trips to sporting events.

Manage expectations. As part of keeping

people informed, we try to manage

expectations by making clear what our

rules are, reviewing individual perform-

ance annually, and offering opportunities

for advancement. We promote from

within whenever possible. During crunch

periods we work 10 A.M. to 11 P.M. four

nights a week (with Wednesday or Friday

off at 6). We try to schedule crunch

weeks far in advance so families can be

prepared. During crunch, we provide

catered lunch and dinner.

Get it all together. Striving for high prod-

uct quality, commercial success, and great

team spirit has worked for us so far. We

don’t see how we could reach one of

these goals independent of the others. q

S O A P B O X

w w w . g d m a g . c o m 55

B R U C E S H E L L E Y | Bruce helped found
Ensemble Studios in early 1995 and con-
tributed to the design of the AGE OF EMPIRES

series of games. Prior to joining Ensemble
Studios he is best known for assisting Sid
Meier with the design of the original editions
of RAILROAD TYCOON and CIVILIZATION.

continued from page 56

We are trying to
create careers at

Ensemble
Studios, not
brief career

stops.

	02gameplan
	04indwatch
	06prodrev
	12profile
	14innerp
	18artview
	22soundp
	24betterby
	26game_ai
	32salary
	40postmort
	56soapbox

	return:

